• Login
    View Item 
    •   Home
    • Brock Theses
    • Doctoral Theses
    • Ph.D. Chemistry
    • View Item
    •   Home
    • Brock Theses
    • Doctoral Theses
    • Ph.D. Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of BrockUCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjectsProfilesView

    My Account

    LoginRegister

    Statistics

    Display statistics

    Synthesis and Reactivity of Low Valent Main Group Element Complexes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Brock_Chu_Terry_2016.pdf
    Size:
    11.54Mb
    Format:
    PDF
    Download
    Author
    Chu, Terry
    Keyword
    main group
    low valent
    bond activation
    
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/10464/10672
    Abstract
    The β-diketiminate aluminum(I) complex NacNacAl (III-1) was shown to activate a range of substrates containing robust single and double bonds. Compound III-1 oxidatively adds a variety of H–X bonds (X = H, B, Al, C, Si, N, P, O) to give a series of four-coordinate aluminum hydride derivatives including the first example of an aluminum boryl hydride. In the case of Al–H addition, the reaction was shown to be in equilibrium and reversible. Furthermore, cleavage of aryl and alkyl C–F bonds, the latter a rare reaction with only a handful of examples in the literature, was observed with III-1. Robust C–O and C–S bonds were also activated by III-1 along with RS–SR and R2P–PR2 bonds. All novel aluminum complexes were characterized by spectroscopic methods and X-ray diffraction analysis for the majority of them. Activation of the C=S or P=S bonds in a thiourea or phosphine sulfide, respectively, was accomplished by III-1 to give the first examples of Lewis base-stabilized monomeric terminal aluminum sulfides. The nature of the Al=S bond was examined computationally as well as experimentally. Related reaction with a urea derivative gave an unexpected aluminum hydride while reaction of III-1 with phosphine oxides gave a putative aluminum oxide as a result of P=O bond cleavage. However, the aluminum oxo promptly deprotonates a neighbouring molecule to furnish an aluminum hydroxide as the isolated product. Reduction of the cationic germanium(II) complex IV-1 affords the formally zero valent germanium complex IV-4 stabilized by the bis(imino)pyridine platform. Compound IV-4 was fully characterized by spectroscopic methods and X-ray diffraction analysis. The molecule has a singlet ground state and DFT studies revealed partial delocalization of one of the germanium lone pairs into the ligand framework. Complex IV-4 was unreactive towards H–X bond activation, the lack of reactivity ascribed to the large singlet-triplet energy gap calculated. The same bis(imino)pyridine ligand was also used to prepare reduced zinc complexes. Monoreduction of the zinc dichloride precursor gave the formally Zn(I) compound IV-6. Further reduction of IV-6 in the presence of DMAP gave the formally zero valent zinc complex IV-9. Both compounds were fully characterized by spectroscopic methods, DFT calculations, and X-ray diffraction analysis which revealed that both zinc atoms are four-coordinate and adopt unusual square planar and see-saw geometry, respectively.
    Collections
    Ph.D. Chemistry

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.