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This paper develops a model of short-range ballistic missile defense and uses it to study the performance 
of Israel’s Iron Dome system.  The deterministic base model allows for inaccurate missiles, unsuccessful 
interceptions, and civil defense.  Model enhancements consider the trade-offs in attacking the interception 
system, the difficulties faced by militants in assembling large salvos, and the effects of imperfect missile 
classification by the defender.  A stochastic model is also developed.  Analysis shows that system 
performance can be highly sensitive to the missile salvo size, and that systems with higher interception 
rates are more “fragile” when overloaded.  The model is calibrated using publically available data about 
Iron Dome’s use during Operation Pillar of Defense in November 2012.  If the systems performed as 
claimed, they saved Israel an estimated 1778 casualties and $80 million in property damage, and thereby 
made preemptive strikes on Gaza about 8 times less valuable to Israel.  Gaza militants could have 
inflicted far more damage by grouping their rockets into large salvos, but this may have been difficult 
given Israel’s suppression efforts.  Counter-battery fire by the militants is unlikely to be worthwhile 
unless they can obtain much more accurate missiles.  
 
Subject classifications: Warfare models: tactical ballistic missiles, counterinsurgency, Hamas-Israel 
conflict; Defense systems: ballistic missile defense, civil defense.  
 
Area of review: Military and Homeland Security 
 
1. Introduction 
 
 Ballistic missile defense (BMD) has been a topic of interest for operations researchers for over 50 
years (Matlin, 1970).  This research has mostly focused on strategic defense against nuclear-armed 
intercontinental ballistic missiles (ICBMs); thankfully these weapons have never seen hostile action.  
Some studies have instead examined theater defense against medium-range ballistic missiles (e.g., Brown 
et al, 2005).  Systems of this type, such as the Patriot interceptor missile, have been deployed in several 
countries, and a few have participated in actual combat (Shapir, 2013a; Wilkening, 1999). 
 
 The role in which BMD has seen the most combat, but the least research, is tactical defense 
against short-range missiles.  Israel’s Iron Dome “counter-rocket, artillery, and mortar” system entered 
operational service in March 2011, and in the following month claimed its first interception of an enemy 
rocket (Shapir, 2013b).  By early 2012, 4 batteries had been deployed; later that year these became 
heavily engaged during Operation Pillar of Defense (OPOD), and were credited with 421 rocket 
interceptions over 8 days (IDF, 2012a).   
 
 Iron Dome’s performance has attracted an unusual amount of public attention.  Live combat 
videos have appeared on the internet (Rafael, 2014), recruits for the Israel Defense Forces (IDF) consider 
it prestigious to be assigned to the batteries (Shapir, 2013b), and one Israeli town asked the courts to order 
a battery into their region (Paraszczuk, 2011).  This civilian interest is not surprising, given the high 
frequency of rocket attacks in Israel.  Between 2005 and 2013, Gaza militants fired 8977 rockets towards 
southern Israel (ISA, 2013b), and Lebanese militants launched thousands more.  In 2012, rockets were the 
cause of 78% of the country’s total casualties due to terrorist attacks (ISA, 2012). 
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 Iron Dome has also attracted controversy regarding how well it actually stops incoming missiles; 
some commentators have been very skeptical (Broad, 2013; Pedatzur, 2013) while others have been 
supportive (Kober, 2013; Rubin, 2013; Shapir, 2013a).  Other writers have questioned whether the system 
encourages or hinders peace in the Middle East, and whether it offers any lessons for BMD efforts in 
other countries and at other levels (Kober, 2013; Selinger, 2013; Shapir, 2013b).  There are concerns as 
well in Israel and the USA regarding the high costs of developing the technology, building the batteries, 
and replenishing the ammunition (Harel and Cohen, 2014; BBC, 2012).  Given this interest and debate, a 
better understanding of Iron Dome in particular and short-range BMD in general would be valuable.   
 
 This paper develops a model of short-range BMD and uses it to analyze the performance of the 
Iron Dome system during OPOD.  The work is related to several topics in military operations research, 
including BMD, naval missile warfare, and counter-terrorism. 
 
 The most obvious connection is to missile warfare at the theater and strategic levels.  Brown et al 
(2005) is an example of theater BMD research, while studies of strategic BMD include Soland (1987), 
and Burr, Falk, and Karr (1985); see Matlin (1970) or Eckler and Burr (1972) for reviews of earlier work.  
This research tends to focus on the optimization of each side’s missile allocation problem (MAP): i.e., 
allocating attacking ICBMs to target cities to maximize the damage inflicted, or allocating defending 
interceptors to incoming missiles to minimize the damage suffered.    
 
 Although short-range BMD shares much of the same physics and terminology as strategic and 
theater BMD, its decision context can be quite different.  MAP tends to focuses on detailed planning of 
one-time attacks, whereas the work herein considers on-going operations over prolonged periods.  Iron 
Dome, for example, has been dealing with periodic rocket attacks for several years.  MAP is also less 
relevant for short-range missiles because of their small warheads and low accuracy relative to the large 
area targets.  Detailed allocation of missiles to targets would be a secondary concern for the attacker, and 
may not even be practical for a mobile or insurgent force with only partial control of its surroundings.  
The attacker may simply want to land as many missiles as possible in the target area.  Similarly, the 
defender must deal with missiles that have flight times measured in seconds, coming from launchers in 
unknown locations, against area targets; thus its interception decisions change as well.   
 
 The study by Wilkening (1999) is closer in style to the work herein.  Instead of optimizing MAP, 
he constructs a simple aggregate model for national and theater BMD.  His objective is to determine how 
many interceptors would be required to provide a given probability that all the incoming missiles are 
intercepted.  By contrast, the modeling herein estimates the mean losses due to non-intercepted missiles.  
As well, his calculations assume that every missile is engaged by at least one interceptor, whereas this 
paper allows overloading of the interception system by large salvos. 
 
 This study is also similar in style to the salvo models of naval missile combat of Hughes (1995) 
and Armstrong (2005, 2014).  In that context, the interplay between offensive missiles and defensive 
interceptions is central, and salvo size is a key parameter (Armstrong, 2007).  However, that research 
considers cruise missiles fired at warships: multiple interception attempts are possible, hits on the target 
will reduce future interceptions, and a single salvo will often end the battle.  Conversely, the models here 
represent ballistic missiles fired at urban targets: at most one interception attempt per missile is possible, 
hits do not reduce the interception ability, and the conflict could be prolonged.  
 
 Given the source of the attacks, the work herein also is related to counterinsurgency and 
counterterrorism.  This area has seen much recent modeling research.  Kress (2005), for example, models 
the number of casualties inflicted by a suicide bomber.  Other studies include Arce, Kovenock, and 
Roberson (2012), Atkinson and Wein (2008), Enders and Sandler (2012), and Kaplan (2010).  In 
particular, this work and that of Kaplan, Kress, and Szechtman (2010) both consider conflicts in which 
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militants fire rockets at Israel.  Their work models a ground offensive to attack the militants before they 
fire their rockets, whereas this study models air defenses that intercept the rockets after launch. 
 
 This paper begins by constructing a deterministic model in which the attacker’s missiles may be 
inaccurate, the defender’s interceptions may be unsuccessful, and missile damage can be mitigated by 
civil defense measures.  It subsequently enhances the model to reflect imperfect knowledge of the 
missiles’ trajectories, security efforts that discourage large salvos, and counterbattery fire against the 
interception system itself.  The paper also develops a stochastic version of the base model. 
 
 Analysis shows that the system’s performance is heavily influenced by the attacker’s salvo size.  
Damage remains constant as long as the salvo remains smaller than the system’s interception capacity, 
quickly increases as that capacity is exceeded, and then exhibits diminishing returns thereafter.  This 
nonlinear behavior is more pronounced for systems with higher interception rates; that is, “better” 
systems are ironically more “fragile” when overloaded.  Better interception systems also make other 
protective measures, such as civil defense and preemptive strikes, less valuable to the defender.   
 
 Further analysis shows that targeting the BMD system itself is increasingly worthwhile for 
attackers who possess more numerous and/or more accurate missiles.  It also becomes more worthwhile 
as interception rates increase, except perhaps when those rates become extremely high.  Despite the 
greater power of large salvos, they might not be used if the attacker risks having its missiles preemptively 
destroyed.  If that risk is high enough, the attacker is better to fire missiles one at a time.  
 
 The model is calibrated with publically available data on the performance of Iron Dome during 
OPOD in November 2012.  Some of those data are very approximate, but they illustrate the model’s 
application and provide a sketch of the system’s impact.  During OPOD, militants in Gaza fired 1506 
rockets towards Israeli towns (IDF, 2012a), causing 245 casualties and an estimated $11 million of 
property damage.  If the Iron Dome batteries intercepted rockets as well as the IDF claimed, then the 
model estimates they saved Israel 1778 civilian casualties and $80 million of property damage.  They also 
made it 8 times less valuable for the IDF to destroy the militants’ rockets preemptively, and thus much 
less tempting for Israel to invade Gaza.     
 
 The militants could have overcome Iron Dome’s impact by coordinating their attacks into larger 
salvos.  For example, rough numerical work suggests that firing the rockets in salvos of about 50 at a 
time, rather than piecemeal, could have quintupled Israel’s losses.  But the militant’s irregular forces 
could have found this difficult or even counter-productive, given Israel’s efforts to locate and destroy 
rocket launchers.  The calculations also suggest that firing rockets directly at the Iron Dome batteries is 
not currently worthwhile, but could become so if the militants obtain much more accurate missiles.  If the 
batteries sometimes misclassify incoming rockets as accurate instead of inaccurate, or vice versa, this 
could explain some of the differences in reports regarding Iron Dome’s success rate.   
 
2. Basic Model 
 
 Consider a conflict between opponents Red and Blue, in which Red will fire short-range ballistic 
missiles at Blue targets.  Red has an available stockpile of A missiles to launch in salvos of m ≥ 1 missiles 
each, for a total of A/m salvos.  Proportion pm of these missiles will strike targets unless intercepted, while 
proportion 1 – pm will miss.  For convenience, the former missiles will be called “accurate” and the latter 
ones “inaccurate”.   
 
 Blue can detect these missiles and determine their trajectories; it will ignore the inaccurate 
missiles and try to intercept the mpm accurate ones.  It can attempt to intercept up to n ≥ 0 missiles per 
salvo; only proportion pn of those interceptions will succeed, giving it an effective capacity of npn 
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successful interceptions.  Because of the short flight times, Blue can attempt to intercept each missile no 
more than once.  Blue cannot “shoot-look-shoot”, though it could fire several anti-missile missiles 
together as a volley.  This single-attempt assumption is similar that of Brown et al (2005), but is different 
from other BMD models such as Soland (1987) and Wilkening (1999).  Aside from Tiah (2007), it also 
differs from most naval salvo model research, such as Hughes (1995) and Armstrong (2005, 2014).   
 
 Even if Blue has enough capacity to try to intercept every accurate missile, proportion (1 – pn) of 
the interceptions will fail, allowing mpm(1 – pn) missiles to penetrate the defenses.  The other mpmpn 
missiles will be intercepted if Blue has sufficient effective capacity npn.  Thus the number of Red missiles 
per salvo that hit Blue targets will be as follows. 

 
Hits/salvo = mpm(1 – pn) + [ mpmpn – npn ]

+          (1) 
 
 For example, suppose that pm = 3/4 of Red’s missiles are accurate, and that Blue can attempt n = 6 
interceptions per salvo, of which pn = 2/3 succeed.  If Red fires m = 4 missiles, then 1 will be miss; Blue 
will engage the other 3 and succeed 2 times, leaving 1 missile to hit the target.  If instead Red fires 12 
missiles, then 3 will miss; Blue will engage 6 of the rest and succeed against 4, leaving 5 to hit. 
 
 Each hit will inflict nominal damage of value v against a target.  Damage may be measured in 
human casualties, material destruction, financial cost, etc.  However, Blue may reduce this damage by 
taking advance measures to harden buildings, construct warning systems and shelters, and so forth.  (This 
corresponds to “civil defense” in the BMD context, and “staying power” in the naval context.)  Parameter 
h ≥ 1 represents these hardening efforts, so that the effective damage per hit is reduced to v/h.   
 
 Blue’s targets are assumed to cover large areas relative to the destructive power of the missiles, 
so that Red cannot run out of targets or risk “overkill”.  Example targets are towns full of buildings, and 
bases full of soldiers.  The total damage is therefore proportional to the number of missiles that hit.   
 
 Combining the number of salvos fired, the number of hits per salvo, and the effective damage per 
hit, yields the following expression for the total loss inflicted on Blue targets by Red missiles. 

 

Loss = (A/m){ mpm(1 – pn) + [ mpmpn – npn ]
+ }(v/h)    (2) 

 

3. Model Properties 

 
 Equations 1 and 2 are heavily influenced by the size of Red’s salvo relative to Blue’s interception 
capacity.  In particular, it is useful to distinguish between “small” and “large” salvos.   
 
 Salvos are “small” whenever Blue can attempt to intercept all of the accurate missiles; i.e., when 
mpm ≤ n.  In this case, missiles hit targets only where the corresponding intercept attempt fails (i.e., the 
missiles “leak” through the defenses), and Equation 2 simplifies to Loss = Apm(1 – pn)(v/h).  
 
 Salvo sizes are “large” when there are more accurate missiles than Blue can attempt to intercept; 
i.e., mpm > n.  In this case, missiles that survive interception are joined by ones that outnumber the 
defense; they exceed the “price of admission”.  In the limit, Loss → Apm(v/h) as m → ∞. 
 
 Taking derivatives of Equation 2 (see appendix) confirms the following first-order influences.  
(a) For all salvo sizes, losses are increasing in missile stockpile A and damage per hit v; and decreasing in 
target hardening h and interception success rate pn. 
(b) For small salvos, losses are “slowly” increasing in missile accuracy rate pm; and unaffected by salvo 
size m or interception capacity n. 
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(c) For large salvos, losses are “quickly” increasing in missile accuracy rate pm and salvo size m; and 
decreasing in interception capacity n. 
 
 Improving missile accuracy always increases losses, but the rate of increase depends on the salvo 
size.  With small salvos ∂Loss/∂pm = (1 – pn)Av/h, while with large salvos ∂Loss/∂pm = Av/h.  The (1 – pn) 
term means that losses increase more slowly with small salvos, especially if most interceptions succeed.   
 
 Similarly, the impact of increasing salvo size depends on whether the salvos are (or become) 
large, as then ∂Loss/∂m = pn(n/m2)(Av/h).  This expression is positive but decreasing, indicating that 
losses are concave-increasing in m; i.e., they increase but with diminishing returns.  Thus the greatest 
increases occur around the transition from small to large salvos at m = n/pm, while smaller increases occur 
with larger salvos. (No increases occur with small salvos.) 
 
 Some of the second-order influences are also worth noting; they can be found by taking the 
appropriate second partial derivatives of Equation 2.  Blue’s efforts to increase effective interception 
capacity mpn or target hardening h, or to reduce Red’s stockpile A, accuracy pm, damage value v, or salvo 
size m, are all “supplementary” to each other.  That is, improvements in one make improvements in the 
others less valuable.  By contrast, the interception capacity n and success rate pn are “complimentary”: 
increases in one make increases in the other more valuable. 
 
4. Israel’s Iron Dome System 

 

4.1 Background 

 

 Israeli towns have been attacked periodically by rockets fired by militants in the Gaza Strip to the 
south and Lebanon to the north.  For example, during the first 10 months of 2012 Israel reported 596 
rockets launchings from Gaza (ISA, 2012).  Most of these have been unguided short-range rockets such as 
the Grad and Qassam.  Depending on the version, Grad artillery rockets carry 18 to 21 kg of explosive to 
a range of up to 32 km (FAS, 1999), while Qassam improvised rockets carry from 0.5 to 15 kg of 
explosive up to 17 km (Dullum, 2009). 
 
 Israel has been developing several interception systems to counter these attacks.  The only one 
that has seen action so far is Iron Dome (Rafael, 2010).  Each Iron Dome battery consists of a radar 
module, a command module, and 3 launchers; each launcher carries 20 Tamir interceptor missiles 
(Shapir, 2013b).  The system developers faced a difficult task: “... design a rocket system that can identify 
a rocket launch, classify its type, calculate its trajectory, decide the level of the threat it poses, launch an 
interceptor missile at it, keep the interceptor locked onto the incoming rocket, and blow it out of the sky – 
and all within a minimum of 15 seconds and a maximum time of 40 seconds, depending on the distance 
from the launch source” (Mizroch, 2012). 
 
4.2 Operation Pillar of Defense  

 
 From 14 to 21 November 2012, the IDF launched a series of air strikes against militant targets in 
Gaza as part of OPOD.  These strikes concentrated on destroying rocket launch sites and the supporting 
infrastructure, and claimed the elimination of 980 launchers (IDF, 2012a, 2012b).   
 
 Gaza militants responded by firing 1506 rockets at Israel during the 8-day operation, including 
316 on 15 November alone (IDF, 2012a).  Most were directed at towns near Gaza, though 10 longer-
ranged rockets were fired towards Tel Aviv and Jerusalem (ISA, 2013a).  According to the IDF, 152 of 
the rockets misfired or landed within Gaza, while 875 landed in open areas within Israel; these caused no 
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losses (IDF, 2012a).  It seems that the rockets were mostly fired individually or in small groups, though 
one report mentions a salvo of 16 rockets (Economist, 2012).   
 
 This was Iron Dome’s first large battle; Rafael (2014) shows videos of the system in action.  
Israel had 4 batteries spread across its south, and during OPOD added another near its capital (AFP, 
2012). The IDF claims to have intercepted 421 rockets, leaving only 58 to hit urban areas.  These hits 
killed 5 Israelis, wounded 240 more (IDF, 2012a), and caused property damage that triggered 3165 
insurance claims (Pedatzur, 2013).  Assuming average property damage of $190K per hit (Kober, 2013), 
this implies 58 x 190 = $11.02 million in total property damage. 
 
4.3 Fitting the Model 
 
 The OPOD data can be used to calibrate the model from Section 3 to represent Iron Dome’s 
performance.  To start with, consider the losses inflicted by the rockets that hit.  If Israel suffered 245 
casualties from 58 rocket hits, then the average was 245/58 = 4.224 casualties per hit.  These casualties 
would likely have been much higher without Israel’s civil defenses.  Zucker and Kaplan (2014) estimated 
that rocket attack casualties in the town of Sderot between 2001 and 2010 would have been 3 to 9 times 
higher in the absence of such passive defenses.  This suggests that a target hardening value of at least h = 
3 would be appropriate here, in which case the average nominal loss against an unprepared target would 
have been v = 3 x 4.224 = 12.672 casualties per hit.  Property damage can be measured by insurance 
claims, which averaged v = 3165/58 = 54.569 claims per hit; or financially at $190K per hit.  Measures 
such as sirens and shelters presumably had little impact on property losses, so set h = 1 for those. 
 
 The interception capacity of an Iron Dome battery is secret (Shapir 2013b).  It is known that flight 
times for Qassam rockets range from 10 to 45 seconds (Dullum, 2009; Mizroch, 2012), and apparently the 
battery crew has only 3 to 5 seconds to make each interception decision (CBS, 2013).  Dividing the 
median flight time of 27.5 seconds by the median decision time of 4 seconds provides a very rough 
estimate for the capacity, i.e. n = 27.5/4 = 6.875 ≈ 7 interceptions per salvo. 
 
 Regarding the rockets themselves, 1506 - 152 - 875 = 479 successfully launched towards urban 
areas in Israel, making the proportion accurate pm = 479/1506 = 31.81%.  The IDF claimed to have 
intercepted 421 of these rockets, for an interception success rate of pn = 421/479 = 87.89%, assuming that 
all rockets were fired at areas protected by Iron Dome.  Since the batteries sometimes fired Tamirs in 
pairs, this rate reflects the average per volley, not per individual Tamir interceptor missile.   
 
 However, there was subsequently some debate regarding the actual interception rate.  For one 
thing, there were apparently 109 police reports of rockets hitting urban areas during OPOD (Pedatzur, 
2013).  This suggests a lower interception rate of (479 – 109) / 479 = 77.24%.  Assuming the total losses 
remain as before, the larger number of hits necessarily implies smaller losses per hit: 245/109 = 2.248 
casualties, 3165/109 = 29.037 claims, and 11020/109 = $101.1K damage. 
 
 Some critics later suggested that Iron Dome’s true success rate was even lower: 30-40%, 5-10%, 
or just 0% (Broad, 2013; Pedatzur, 2013).  They argued that although the Tamirs were exploding in the 
sky, it was not clear that they were disabling the rocket warheads.  If explosion fragments damaged only 
the rocket body, or missed it completely, then the rocket would continue along its trajectory to the target.  
Other writers, however, have supported the IDF’s claims (Rubin, 2013; Shapir, 2013a). 
 
 Suppose that the interception rate was only 35%.  This would imply 0.35 x 479 = 168 effective 
interceptions and 479 - 168 = 311 hits.  This would in turn give new losses per hit of 245/311 = 0.7878 
casualties, 3165/311 = 10.177 claims, and 11020/311 = $35.4K damage.  (If there were actually zero 
interceptions, then the casualties per hit would have been just 245/479 = 0.5115.) 
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4.4 Relative Contributions to Loss Avoidance 

 
 Israel’s losses during OPOD could have been much worse.  They were reduced not only by rocket 
interceptions, but also by civil defenses, preemptive destruction of rockets in Gaza, and the inaccuracy of 
the rockets themselves.  The model provides a way to estimate these reductions. 
 
 Zucker and Kaplan (2014) concluded that Israel’s civil defenses (target hardening) reduce rocket-
related casualties by at least a factor of 3.  This suggests that OPOD casualties would consequently have 
been at least 245 x 3 = 735, or 490 higher, if Israel had lacked these passive defenses. 
 
 The inaccuracy of the militants’ rockets had a similar impact.  If 100% of the rockets had headed 
towards urban targets, instead of just 31.81%, then casualties and damage would have more than tripled.  
Rocket inaccuracy thus saved Israel about 525 casualties and 6785 damage claims worth $23.6 million. 
 
 The IDF reported destroying 980 rocket launchers during OPOD.  If this means 980 rockets were 
thereby destroyed or prevented from being produced, then those preemptive strikes saved Israel about 160 
casualties and 2061 damage claims worth $7.2 million.  (The disruptions to the militants’ infrastructure 
may have produced further savings.) 
 
 The benefits from rocket interceptions clearly depend on the success rate.  If Iron Dome 
succeeded 87.89% of the time, then it saved Israel 1778 casualties and 22970 claims worth $80.0 million.   
 
 The calculations above are for individual components of Israel’s defenses; they estimate the 
change if one component had been absent.  But Section 3 previously noted that increases in interception 
capacity and decreases in the missile stockpile supplement each other.  So what would have been the 
impact of IDF preemptive strikes on Gaza if Iron Dome had not existed?  This was the IDF’s predicament 
prior to 2011; if they didn’t destroy the rockets on the ground in Gaza, they could only watch as they 
landed in Israel.  Assuming an interception rate of 87.89%, then without Iron Dome the 980 destructions 
would have preempted 1317 Israeli casualties.  That is, preemptive strikes were 1317/160 = 8.23 times 
less valuable because of the system.  Thus Iron Dome not only gave Israel’s political leaders an excuse 
for not invading Gaza (Shapir, 2013b), it actually made such an invasion less worthwhile. 
 
 These casualty avoidance estimates are summarized in the first column of numbers in Table 3.  
The table’s other columns show the corresponding estimates using 3 other potential interception rates.  
The benefits of target hardening, rocket inaccuracy, and preemptive strikes are the same in all 4 cases.  By 
contrast, the casualties avoided due to Iron Dome depend heavily on its interception success rate; the 
benefit naturally decreases as the rate decreases.  Perhaps less obviously, the same is true for the value of 
preemptive strikes if Iron Dome were removed.  For example, if the true interception rate was only 35%, 
then preemptive strikes were only 1.53 times less valuable with the system than without it, and the 
disincentive for a land invasion of Gaza would have been correspondingly reduced. 
 
5. Further Modeling and Analysis  
 

5.1 Counter-Battery Fire 
 
 Red’s objective is to damage Blue’s targets, but it may sometimes be worthwhile to fire missiles 
at the interception system first.  If the system can be disabled, then more of the remaining missiles 
subsequently will reach their targets.  (This assumes that the system stays disabled during all remaining 
attacks.)  Of course, such an attack might miss, especially if the interception system is smaller and harder 
to hit than a regular target.  There is also a potential trade-off relating to the interception success rate.  If 
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the rate is high, then it will be very valuable to disable the system but also difficult to penetrate its 
defenses to hit it; if the rate is low, then hitting it will be easier but less valuable. 
 
 Let pc represent the proportion accurate for Red missiles used in counter-battery fire, c the salvo 
size fired for this purpose, and qc the resulting proportion of such attempts that disable the system.  The 
loss that Red will inflict with its remaining A – c missiles can be calculated by Equation 2, adjusted to 
reflect whether or not the system has been knocked out.  Red should fire at the interception system only if 
that increases the losses inflicted; that is, if (qc)LossOut, A-c + (1 – qc)LossA-c > LossA, where LossOut, A-c = 
mpm(A - c)v/(hm).  If Red will be firing c = 1 missile at a time at the system (“shoot-look-shoot”), then 
this inequality can be simplified to one of the following, depending on whether Red will subsequently fire 
small or large salvos at Blue targets; see the appendix for the derivations. 
 
  pc > 1/{pn(A - 1)}   if m ≤ n/pm      (3) 
 
  pc > (mpm – npn) / {npn(1 -  pn)(A - 1)} if m > n/pm      (4) 
 
 Equation 3 shows that if subsequent salvos will be small, then Red should be more inclined to fire 
at the system if its chance of hitting it is high, it has many missiles, and/or the interception rate is high.   
 
 Equation 4 shows that if subsequent salvos will be large, Red again should be more inclined to 
attack the system when its chance of hitting it is high or when many missiles are available.  In addition, it 
also should attack when its missile accuracy is low, or its effective salvo size is only slightly greater than 
the effective interception capacity.  With respect to interception success, the right hand side of the 
expression is decreasing in pn for pn < 0.5 but might become increasing thereafter, especially with very 
large salvos.  Roughly speaking, Red becomes more likely to shoot at the system as it improves from bad 
to fair to good, but less likely if it further improves from good to great. 
 
 Consider the Iron Dome case with pn = 87.89%.  If the militants’ attacks were evenly spread 
across the area covered by the 4 main batteries, then each battery would have faced A = (1506 - 10)/4 = 
374 rockets.  Assuming the militants were restricted to small salvos, they should have fired their first 
rocket at the battery only if their chance of hitting it was at least pc > 1/(0.8789(374 - 1)) = 0.305%.  If the 
rocket missed the battery, they could have continued firing at it, but the threshold would have increased 
each time; e.g., with only 100 rockets left, they would have needed pc > 1/(0.8789(100 - 1)) = 1.149%.  
 
 Alternatively, suppose that the militants had been able to fire large salvos of 30 rockets at Israel.  
Then they would have benefited from firing at the battery only if the chance of hitting was at least pc > 
(30x0.3181 – 7x0.8789) / {(374 – 1)0.8789(1 – 0.8789)7} = 1.22%.  This number is higher than the 
0.305% from the small salvo case: because large salvos are less impeded by interceptions, disabling the 
system becomes less worthwhile.  If instead the interception rate was 77.24%, then the militants would 
have needed pc > 0.89%.  If the interception rate was 35%, then pc > 1.18% would have been needed. 
 
 To put these numbers in perspective, consider that these unguided rockets are very inaccurate, 
with circular error probable (CEP) ratings of around 1000 meters (FAS, 1999; Rubin, 2013).  Also, each 
one has a lethal radius of only about 5 meters (Zucker and Kaplan, 2014).  Thus a rocket’s chance of 
disabling either the battery’s control module or radar module might be just 0.0034%, based on 
calculations using a Rayleigh distribution (see, e.g., Eckler and Burr, 1972: 27).  This suggests that the 
militants would need rockets at least 0.305/0.0034 ≈ 90 times more accurate for counterbattery fire. 
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5.2 Discouraging Large Salvos 
 
 Since losses are increasing in salvo size for m > n/pm, Red clearly should prefer to concentrate its 
missiles into large salvos.  If there is some physical limit on its salvo size, such as the number of 
launchers, then Red should fire salvos equal to that limit. 
 
 However, there may be other factors that discourage large salvos.  If Red is an insurgent 
organization, it may lack good communications with its personnel, making it difficult to coordinate 
multiple launch sites.  As well, Blue may be working to detect and destroy the missiles prior to launch.  
Since larger salvos would require more time, space, and/or personnel to prepare, they presumably would 
face increasing risks of detection by informants or aerial patrols.  (Preparation time was a key variable in 
the counterterrorism model of Kaplan, 2010.) 
 
 To model this issue, let increasing function g(m) represent the proportion of salvos destroyed by 
Blue before launch, where the derivative g’(m) > 0.  This changes the loss equation as follows. 

 

Loss = { mpm(1 – pn) + [ mpmpn – npn ]
+ }(1 - g(m))(Av)/(hm)      (5) 

 
 For small salvos, ∂Loss/∂m = -g’(m) pm(1 – pn)Av/h is negative, confirming that losses decrease 
with salvo size.  So if Red must use small salvos, it should fire individual missiles.  For large salvos, 
∂Loss/∂m = { -g’(m)( pm – npn/m )  + (1 - g(m))(n/m2) }Av/h, and its sign will depend on g(m).   
 
 For example, suppose that the fraction of missiles preemptively destroyed by the IDF in Gaza is 
g(m) = k(m - 1), and that the interception rate is 87.89%.  With a k = 1% chance of discovery per added 
rocket, the optimal salvo has 44 rockets.  With k = 2%, this drops to 31 rockets.  With k = 3%, it is best to 
fire individual rockets, as the risk of discovery then outweighs the benefits of large salvos. 
 
5.3 Imperfect Missile Classification 
 
 If Blue can perfectly distinguish between inaccurate and accurate missiles, it only needs to 
intercept the latter.  But if this distinction is imperfect, then some inaccurate missiles may be incorrectly 
treated as accurate.  Such “false positives” might occur, for example, if Blue defines a safety margin 
around the target.  Missiles slightly outside the target area would then be selected for interception.   
 
 To model this, suppose that proportion (1 – pm) of Red’s attack is actually inaccurate, but Blue 
classifies only (1 – pm - pfp) as inaccurate.  Proportion pfp represents false positives: missiles that won’t 
cause damage, but that Blue will attempt to intercept.  In effect, these act as decoys.  Assuming that Blue 
intercepts both types of missiles in proportion to their numbers, then fraction (pm / (pm+ pfp)) of the 
interceptions will be directed against accurate missiles and the remainder against false positives. 
 
 (Note that Iron Dome’s ability to correctly discriminate between accurate and inaccurate rockets 
is very important: it permits the system to focus on just the 31.81% of rockets that would otherwise hit 
towns.  Otherwise, the batteries would need to engage 100% of the rockets, effectively making pfp = 
68.19%.  This would roughly triple their consumption of expensive Tamir interceptors.  It would also 
drop each battery’s effective interception capacity from n/pm ≈ 22 down to just n = 7 rockets per salvo, 
making it more susceptible to being overloaded by large salvos.) 
 
 Alternatively, Blue might incorrectly classify some accurate missiles as being inaccurate.  These 
“false negatives” would go unchallenged and subsequently hit the target.  Suppose that proportion pm is 
actually accurate, but Blue classifies only (pm - pfn) as accurate, and so ignores proportion pfn.   
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 These features change Equation 1 as follows; the other equations change in a similar manner. 
 

Hits / salvo = mpm(1 – pn) + mpfnpn + (pm / (pm + pfp))[ mpmpn + mpfp – npn ]
+          

 
 This incidentally provides a way to partially reconcile the conflicting estimates of Iron Dome’s 
interception rate during OPOD.  For example, suppose that the interception rate was 35%, the IDF 
counted 479 rockets heading towards urban areas, and 109 rockets hit.  The first two numbers imply that 
only 479 x 0.35 = 168 rockets were effectively intercepted; but if only 109 of the rest hit urban targets, 
then 202 were not intercepted and yet did not hit targets.  Perhaps only 109/(1 - 0.35) ≈ 167 rockets were 
actually headed towards urban areas; and of these, 167 x 0.35 ≈ 58 were intercepted.  There would have 
been (479 – 167) / (1 - 0.35) ≈ 312 false positives headed for rural areas but treated as threats; of these, 
312 x 0.35 = 110 would have been intercepted.  This gives a real missile accuracy rate of pm = 167/1506 = 
11.09%, along with a false positive rate of pfp = 312/1506 = 20.72%, where 20.72 + 11.09 = 31.81. 
 
 Conversely, suppose instead that the interception rate during OPOD was 87.89%, and that 421 of 
479 rockets were effectively intercepted, leaving 58 to strike their targets; and yet 109 hits were recorded.  
Perhaps the remaining 51 hits came from other rockets that were also accurate but not part of the 479 
identified as such.  In this case the rockets would have had a true accuracy rate of pm = (479 + 51)/1506 = 
35.19%, along with a false negative rate of pfn = 35.19% – 31.81% = 3.38%.   
 
 These calculations are not intended to suggest that false positives and negatives were the main 
reasons for differences in reported interception rates; the “fog of war” admits many other possibilities.  
But they do show that imperfect missile classification would have contributed to those differences.    
 
6. A Stochastic Approach 
 
 So far this paper has viewed the missile accuracy rate and interception success rate as constant 
proportions.  This section instead treats them as probabilities and develops a stochastic version of the 
model, similar to how Armstrong (2005) extended Hughes’ (1995) model of naval missile combat.   
 

6.1 Stochastic Model 

 
 Let Bernoulli random variable Xi represent missile i: it equals 1 with probability pm to indicate the 
missile is accurate, and 0 otherwise.  Likewise let Yj represent the success of interception attempt j, taking 
a value of 1 with probability pn if successful, and 0 otherwise.  The total numbers of accurate missiles M 
and successful interceptions N per salvo therefore are also random variables, and can be written as 
summations; their difference gives the number of hits per salvo as follows. 

min{ , }

1 1

Accurate missiles / salvo Interceptions / salvo
M nm

i j

i j

M X N Y
= =

= =∑ ∑  

    
min{ , }

1 1

Hits / salvo
M nm

i j

i j

M N X Y
= =

= − = −∑ ∑    (6) 

 
 Equation 6 simplifies when m ≤ n, so that every missile faces an interception attempt.  It becomes 
a single summation, with a mean that matches the deterministic model. 

[ ] ( ) ( )
1

Hits / salvo 1 1
m

i i m n

i

E E X Y mp p
=

 
= − = − 

 
∑  when m ≤ n 
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 Equation 6 also has a simple approximation when salvos are large enough that every available 
interceptor has an accurate missile to challenge; i.e., where almost always M ≥ n.  It becomes a pair of 
independent sums, with a mean difference that also matches the corresponding deterministic case. 

[ ]
1 1

Hits / salvo
m n

i j m n

i j

E E X Y mp np
= =

 
≈ − = − 

 
∑ ∑   when M ≥ n 

 
 Between the extremes of very small and very large salvos, Equation 1 will underestimate the 
mean number of hits as calculated by Equation 6, especially when the number of accurate missiles is close 
to the interception capacity, i.e., mpm ≈ n.  This is because the actual number of accurate missiles 
sometimes will exceed that capacity by chance, even though their average number is less.  
 
 In modeling this feature, this paper will follow the practice of some existing studies by assuming 
that the missile and interception variables are all (approximately) statistically independent from each 
other.  For example, Wilkening (1999) described several reasons why BMD interceptions could be either 
independent or dependent, but assumed independence in all of his calculations.  Similarly, Armstrong 
(2005) assumed independence when modeling naval missile battles.  Armstrong (2011) later showed that 
the resulting model tolerates small amounts of statistical dependence.  In particular, the model’s estimate 
of mean losses remains reasonable even with correlation of +0.4 between missiles.   
 
 Given this approximation, reconsider the numerical example from Section 3.  Each Red missile 
has probability pm = 3/4 of being accurate, and Blue can make up to n = 6 interceptions per salvo, each 
with probability pn = 2/3 of success.  If Red fires m = 4 missiles, the mean number of hits calculated using 
Equation 6 and binomial distributions will be 1, as in the deterministic model.  If m = 12, then the mean 
hits will be 5.012, almost matching the 5 from the deterministic model.  If however Red fires 8 missiles, 
then the mean hits will be 2.312, rather than the 2 from the deterministic model.   
 
 To adjust for this factor, start by taking expectations of Equation 6. 

  [ ] [ ]
min{ , }

1 1

Hits / salvo min{ , }
M nm

i j m n

i j

E E X Y mp E M n p
= =

 
= − = − 

 
∑ ∑  

 
 The term E[min{M, n}] can be closely approximated via the same technique Armstrong (2005, 
2014) used for stochastic salvo models of naval missile combat; see the appendix for details.  Armstrong 
(2011) showed that this approximation is very good across a wide range of parameter values. 
 

  E[min{M, n}] ≈ mpmF(n) + n[1 – F(n)] – mpm(1 – pm)f(n)  
 
Here, f(n) represents the probability density function and F(n) the cumulative distribution function for a 
normal approximation to the binomial distribution of M; it has mean mpm and variance mpm(1 - pm), and is 
evaluated at the interception capacity n.  This leads to expressions for the mean number of hits per salvo 
and the mean total losses.  When M is either very large or very small relative to n, these expressions 
approach their deterministic equivalents, as then f(n) ≈ 0 and either F(n) ≈ 0 or F(n) ≈ 1.  
 
     E[Hits/salvo] = mpm(1 - pn) + (mpmpn - npn)[1 – F(n)] + mpm(1 – pm)pnf(n)       (7) 
 
     E[Loss] = (A/m){mpm(1 - pn) + (mpmpn - npn)[1 – F(n)] + mpm(1 – pm)pnf(n)}(v/h)      (8) 
 
 Continuing with the previous numerical example, Table 2 shows how the hits estimated by 
Equations 6 and 7 compare.  The approximation seems quite reasonable. 
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 Figure 1 compares the deterministic and stochastic models in the OPOD case.  It displays the total 
rocket hits estimated by each model across a range of salvo sizes, given pn = 87.89% and a fixed total of 
1506 rockets.  The dashed line represents the deterministic model, while the solid line represents the 
stochastic model.  As expected, the outputs are indistinguishable for very small and very large salvos.  For 
example, both models indicate that salvos of 9 rockets at a time would have caused 58 hits total (the 
actual OPOD figure), while salvos of 49 rockets would have caused 290 (5 times more).  In between, the 
stochastic model’s estimates are higher than the deterministic ones; the largest difference occurs around m 
≈ n/pm.  This is the point where the deterministic model shows an abrupt increase in losses; the stochastic 
model produces a more gradual transition along an s-shaped curve.  The incremental loss increase (curve 
steepness) in both models is also greatest near m ≈ n/pm, and gradually diminishes thereafter.  
 
6.2 Salvo Sizes versus Iron Dome 

 
 The calculations in this paper have assumed that the majority of rocket attacks during OPOD 
were made with small salvos (m ≤ 22 rockets), so that hits occurred only after the corresponding 
interception attempts had failed.  This seems like a reasonable assumption given the available data.  
However, if the salvos had been consistently larger, Israel’s losses could have been much higher.   
 
 Figure 2 uses the stochastic model to estimate mean casualties with 3 interception rates for a 
range of salvo sizes.  All of the curves are s-shaped, with their steepest slopes around the small-to-large-
salvo transition point m = n/pm.  In a sense the interception capacity n and the missile accuracy rate pm 
determine the figure’s “horizontal scale”.  For example, the plots assume n = 7 interception attempts per 
salvo; if its actual value is lower or higher, then the transition point will shift to the left or the right, 
respectively.  However, the overall shapes of each curve will remain much the same.   
 
 Figure 2 also illustrates some other properties that were derived earlier.  For example, the overall 
steepness of the curves is greatly influenced by the interception rate pn.  If the true interception rate was 
high, then few rockets leaked through the defenses, and each one was credited with many casualties.  
Thus each rocket that exceeds the interception capacity makes a large incremental addition to the total 
hits, and each hit adds many casualties.  Conversely, a low interception rate means that many rockets 
were already leaking through the defenses, each causing relatively few casualties.  In this case, extra 
rockets make only small additions to the total hits, and each hit adds only slightly to the total casualties.   
 
 Figure 3 refines this comparison by displaying the mean number of rocket hits for the same 
interception rates and salvo sizes.  If the interception rate is high, then the total hits are low for small 
salvos, but increase quickly once the interception capacity is exceeded.  By contrast, if the interception 
rate is low, then the hits are moderately high even for small salvos, and increase only slightly as salvo 
sizes increase.  In each case, the mean number of hits asymptotically approaches the 479 that would occur 
if there were no interceptions. 
 
 Figure 4 shows the mean number of rocket hits for different salvo sizes as well, but it compares 4 
different rocket accuracy rates.  The lowest curve represents the number of hits for the OPOD accuracy 
rate of 31.81%, while the other curves show the impact of improving (multiplying) this rate by a factor of 
1.5, 2.0, and 2.5.  Not surprisingly, increased rocket accuracy yields more hits.  More subtly, it also shifts 
the small-to-large-salvo transition point to the left, showing that the Iron Dome batteries would become 
more easily overloaded if the militants were to improve their rocket accuracy.  
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7. Discussion 
 
7.1 Comments Regarding Iron Dome 
 
 Missile defense is expensive.  For Iron Dome, the initial cost to construct each battery has been 
estimated at $50 million (BBC, 2012; Mizroch, 2012), giving a total of $200 million for the 4 main 
batteries active during OPOD.  Estimates for Tamir interceptor missiles range from $40K to $75K each, 
with $50K being common (CBS, 2013; AFP, 2012; BBC, 2012; Mizroch, 2012), and in some cases 
during OPOD several interceptors were fired as a volley against a single rocket.  Altogether during OPOD 
the batteries expended $25 to $30 million worth of Tamirs (NBC, 2012).  This suggests roughly 500 to 
600 interceptors were fired, or an average of 1.04 to 1.25 Tamirs per rocket engaged.  By contrast, if Iron 
Dome successfully intercepted 421 rockets as claimed, then this expenditure saved Israel from about 1778 
casualties and $80 million worth of property damage.   
 
 The effectiveness of interception systems depends heavily on the salvo sizes they face.  Iron 
Dome seems to provide credible protection against low-volume threats, such as sporadic attacks from 
dissident factions during relatively quiet years like 2013.  It also protects against moderate-volume attacks 
that are relatively uncoordinated, such as during OPOD.  In this regard, it can complicate the militants’ 
planning: on the one hand, small salvos can now be countered by interception; on the other hand, large 
salvos may be more risky to carry out.   
 
 However, if in the future the militants increase their salvo sizes even slightly beyond Iron Dome’s 
interception capacity, the resulting losses could increase quickly.  This nonlinear or “fragile” behavior 
suggests that Israel must not rely on interceptions alone.  It must work to minimize the salvo sizes and 
rocket accuracy of the militants, e.g., by detecting potential rocket build-ups and interdicting arms 
shipments.  As well, Iron Dome would provide little benefit against high-volume threats, such as regular-
army multiple rocket launcher vehicles that can each fire 40-rocket barrages (FAS, 1999).  
 
7.2 Research Extensions and Limitations 
 
 This paper developed its model to study rocket attacks against Israel, but it also could be applied 
to situations elsewhere in the Middle East, as well as locations such as Korea.  A renewed conflict 
between North and South Korea would likely include a variety of missile fire (Kim, 2013).  The model 
could represent potential North Korean attacks with KN-2 Toksa missiles against nearby Seoul.  Longer-
range attacks by Scud missiles would better fit the theater BMD model of Brown et al (2005).   
 
 The model herein might also be useful alongside existing salvo models (e.g., Armstrong, 2005) 
for representing naval missile warfare where only one interception attempt per missile is possible.  This 
may include attacks by very fast anti-ship missiles, such as the P-700 Granite supersonic cruise missile or 
the DF-21 Dong Feng ballistic missile.  It could also include conventional missiles fired at close range, as 
might occur during battles in the littorals.  For example, coastal patrol boats might surprise an 
approaching amphibious group by hiding among the mundane masses of coastal freighters and fishing 
trawlers.  Research along these lines could build on the scenarios examined numerically in graduate 
theses such as that of Tiah (2007). 
 
 One limitation of this research is that its empirical data for OPOD is far from perfect.  This is not 
surprising, given that they come from an unresolved military conflict where both sides focus on fighting 
their battles, not on taking scientific measurements.  Furthermore, the participants have obvious motives 
to keep certain information secret, and perhaps to distort whatever they make public.  Thus all of the 
numerical details here need to be viewed with a degree of caution.  Conversely, one of the benefits of 
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developing this model is to allow analysts with access to classified data, or with different assessments of 
the true military situation, to easily rerun the calculations.  
 
Appendix 

 

A1. Basic Model Properties for Section 3 
 
The first derivatives of the Equation 2 loss function are shown below. 
 
 ∂Loss/∂A = { mpm(1 – pn) + [ mpmpn – npn ]

+ }(v)/(hm)  > 0 
 ∂Loss/∂v = { mpm(1 – pn) + [ mpmpn – npn ]

+ }(A)/(hm) > 0  
 ∂Loss/∂h = { mpm(1 – pn) + [ mpmpn – npn ]

+ }(-vA)/(h2) < 0   
 
For small salvos only: 
 
 ∂Loss/∂pn = -pmvA/h < 0   ∂Loss/∂n = 0  
 ∂Loss/∂pm = (1 - pm)vA/h > 0  ∂Loss/∂m = 0 
 
For large salvos only: 
 
 ∂Loss/∂pn = -(nvA)/(hm) < 0   ∂Loss/∂n = -(pnvA)/(hm) < 0 
 ∂Loss/∂pm = vA/h > 0    ∂Loss/∂m = pn(n/m2)(Av/h) > 0 
 
The complementary and supplementary relationships follow from the second partial derivatives.  For 
example, with large salvos ∂Loss/∂pn∂n = -(vA)/(hm) < 0 and ∂Loss/∂pn∂m = (n/m2)(Av/h) > 0. 
 
A2. Counterbattery Fire Analysis for Subsection 5.1 
 
Red should attack the interception system if (qc)LossOut, A-c + (1 – qc)LossA-c > LossA.  That is, 
 
 (qc)mpm(A - c)v/(hm) + (1 – qc){mpm(1 – pn) + [ mpmpn – npn ]

+}(A - c)v/(hm)  
  > {mpm(1 – pn) + [ mpmpn – npn ]

+}Av/(hm) 
 
If c = 1 missile at a time, then qc = pc(1 -  pn) and this simplifies to 
 
 pc(1 -  pn)mpm(A - 1) + {1 – pc(1 -  pn)}{mpm(1 – pn) + [ mpmpn – npn ]

+}(A - 1)  
  > {mpm(1 – pn) + [ mpmpn – npn ]

+}A  
 
This further simplifies when m ≤ n/pm . 
 
 pc(1 -  pn)mpm(A - 1) + {1 – pc(1 -  pn)}{mpm(1 – pn)}(A - 1) > mpm(1 – pn)A 
 pc(A - 1) + {1 – pc(1 -  pn)}(A - 1) > A 

 (1 + pcpn)(A - 1) > A 

 
Alternatively, it simplifies as follows when m > n/pm . 
 
 pc(1 -  pn)mpm(A - 1) + {1 – pc(1 -  pn)}(mpm – npn)(A - 1) > (mpm – npn)A 
 pc(1 -  pn)mpm(A - 1) + (mpm – npn)(A - 1) – pc(1 -  pn)(mpm – npn)(A - 1) > (mpm – npn)A 
 pc(1 -  pn)npn(A - 1) > mpm – npn 

 pc > (mpm – npn)/{npn(1 -  pn)(A - 1)} 
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To see the behavior with respect to interception rates, take the derivative of the right hand side.   
 
 ∂/∂pn RHS = [– n{npn(1 -  pn)(A - 1)}- (mpm – npn){n(1 - 2pn)(A - 1)} ] / {npn(1 -  pn)(A - 1)}2   
  = -[ npn(1 -  pn) + (mpm – npn)(1 - 2pn) ] / {npn

2(1 - pn)
2(A - 1) }   

 
With large salvos, (mpm – npn) > 0; so this is negative when pn < 0.5, but may be positive when pn > 0.5. 
 
A3. Stochastic Model Derivations for Section 6 
 
 Since the Xi are iid, M follows a binomial distribution.  To derive an approximation for 
E[min{M,n}], replace the summation by integration and approximate the distribution of M with a normal 
distribution with mean µ = mpm, variance σ2 = mpm(1 – pm), probability density function f(), and 
cumulative distribution function F(), where F(m) = 1, F(0) = 0, and f(m) = f(0) = 0.   

[ ] ∫∫ +=

m

n

n

dllnfdlllfnME )()(},{min
0

 

The following is a known result for normal distributions (see, e.g., the appendix of Armstrong, 2005). 
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Combine these two expressions and simplify as follows. 

 [ ] [ ] [ ] [ ])()()0()()0()()()(},{min 2

0

nFmFnfnfFnFdllnfdlllfnME

m

n

n

−+−−−≈+= ∫∫ σµ  

 = µ[F(n) – 0] – σ2[f(n) – 0] + n[1 – F(n)] = mpmF(n) + n[1 – F(n)] – mpm(1 – pm)f(n) 
 

E[N] = E[min{M, n}]E[Y] = mpmF(n)pn + n[1 – F(n)]pn – mpm(1 – pm)f(n)pn  
 

E[Hits/salvo] = E[M] - E[N] = mpm - mpmF(n)pn - n[1 – F(n)]pn + mpm(1 – pm)f(n)pn  
 = mpm(1 - pn) + mpmpn[1 – F(n)] - n[1 – F(n)]pn + mpm(1 – pm)f(n)pn   
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Table 1. Notation for the basic model and its enhancements. 
 

Symbol Description 

A Total available stockpile of attacker’s missiles 
m Number of missiles fired per salvo 
pm Proportion of missiles that are accurate 
n Number of interception attempts per salvo 
pn Proportion of interceptions that are successful 
v Damage value per hit on non-hardened targets 
h Damage mitigation due to target hardening 

c Number of missiles fired counter-battery 
pc Proportion of missiles accurate against the system 
qc Resulting chance of hitting the interception system 
g() Proportion of salvos destroyed prior to launch 
k Chance of prior destruction, per missile per salvo 
pfn Proportion of missiles that are false negatives 
pfp Proportion of missiles that are false positives 

M Total number of accurate missiles 
N Total number of successful interceptions 
Xi Accuracy of missile j: 1 = accurate, 0 = not 
Yj Success of interception l: 1 = successful, 0 = not  
F() Cumulative distribution function for M 
f() Probability density function for M 

 
 
 
Table 2. Hits per salvo from the deterministic model, the stochastic model, and direct numerical 
calculation, for an example with n = 6, pm = 2/3 and pn = 3/4.  
 

Missiles m 4 5 6 7 8 9 10 11 12 

I. Deterministic 1.000 1.250 1.500 1.750 2.000 2.750 3.500 4.250 5.000 

II. Stochastic 1.000 1.252 1.525 1.868 2.326 2.902 3.563 4.274 5.008 

III. Numerical 1.000 1.250 1.500 1.839 2.312 2.901 3.568 4.279 5.012 

Difference II - III 0.000 +0.002 +0.025 +0.029 +0.014 +0.001 -0.005 -0.005 -0.004 

 
 
 
Table 3. OPOD casualties avoided for various cause factors and interception rates. 
 

Interception success pn 87.89% 77.24% 35.00%   0.00% 

Target hardening   490   490   490   490 
Rocket inaccuracy   525   525   525   525 
Interceptions 1778   831   132       0 
Preemptive strikes   160   160   160   160 
Preemption, no interception 1317   701   245   160 
Relative preemption value  8.23  4.38  1.53  1.00 
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Figure 1. Estimated hits for the stochastic and deterministic models, with accuracy rate 31.81% and 
interception rate 87.89%. 
 
 

 
 
 

 

 
Figure 2. Mean casualties for 3 interception rates, using accuracy rate 31.81%. 
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Figure 3. Mean hits for 3 interception rates, using accuracy rate 31.81%. 
 

 
 
 
 
Figure 4. Mean hits for 4 missile accuracy rates, using interception rate 87.89%. 
 
 

 
 


