The structure of Arabidopsis NPR1: its function as a salicylic acid receptor and a metal-binding protein

By

Di Zhang, B.Sc.

A Thesis
Submitted to the Center for Biotechnology
in partial fulfillment of the requirements for the degree of
Masters in Science

November, 2010
Brock University
St. Catharines, ON

© Di Zhang, 2010
Abstract

The Arabidopsis NPR1 protein regulates systemic acquired resistance dependent on salicylic acid. Analyses by plant two-hybrid analysis in vivo and pull-down assays in vitro showed that the BTB/POZ domain of NPR1 at the N-terminus serves as an autoinhibitory domain to negate the function of the transactivation domain at the C-terminus through direct binding of these two domains. It was also shown that the binding of the BTB/POZ domain to the C-terminus of NPR1 was abolished by SA treatment, suggesting that SA could interfere directly with this binding. By gel filtration, it was demonstrated that SA affects the conformation of full-length NPR1, confirming the role of NPR1 as an SA receptor. Gel filtration analysis also indicated that NPR1 could be converted from an oligomer to a dimer with SA treatment. Furthermore, one N-terminal deletion ΔS13 has been shown to act as a metal-binding protein and its two Cys-521 and Cys-529 are important for binding to Ni²⁺ by pull-down assays.
Acknowledgements

I would like to express my appreciation to Dr. Charles Després for his patience, excellent advice and personal interest in this project. I would also like to thank the members of my supervisory committee, Dr. Vincenzo De Luca and Dr. Costa Metallinos, for their guidance in this project. I gratefully acknowledge the contribution of Figure 6A by Dr. Pat Boyle and Figure 5A and 6B by Dr. Amanda Rochon. I would like to express my gratefulness to Dr. Pat Boyle for teaching me useful lab techniques, always being there to help whenever needed and also for his patience and encouragement throughout my studies. I also thank my colleague JeeYan Chu for preparing all the plasmids for me.
Table of contents

Abstract ... 2

Acknowledgements ... 3

Table of contents .. 4

List of Tables .. 6

List of Figures .. 6

List of Abbreviation ... 7

Introduction ... 10

Chapter 1-Literature Review .. 12

1.1. Systemic acquired resistance in plant 12

1.2. NPR1 acting as a central regulator of SAR 13

1.2.1. Important domains in NPR1 16

1.3. The role of SA in SAR (and the relationship b/w SA and NPR1) 19

1.3.1. SA metabolism ... 20

1.3.2. NPR1-dependent and NPR1-independent SA signalling 23

1.3.3. SA feedback loops .. 27

1.3.4. SA-binding proteins ... 27

1.3.4.1. SABP2 and its lipase and esterase activities 28

1.3.4.2. Other SA-binding proteins 29

1.3.4.3. MarR, a model for salicylate binding to protein 30

1.4. Metalloproteins ... 31
Chapter 2- Materials and methods .. 34

2.1. Chemicals ... 34

2.2. Methods ... 36

2.2.1. Bacterial strain, general cloning vector and transformation of plasmids 36

2.2.2. Expression of proteins ... 36

2.2.3. Purification of proteins by pull-down assays using affinity chromatography and detection of protein using western blot ... 37

2.2.4. Plant in vivo transcription assays and two-hybrid assays 38

2.2.5. Analysis of protein by gel filtration ... 39

Chapter 3- Results .. 40

3.1. BTB/POZ domain in NT of NPR1 functions as an inhibitory domain to inhibit transactivation domain in CT of NPR1 ... 43

3.2. N-terminal BTB/POZ domain of NPR1 interacts with C-terminal domain of NPR1 in vitro ... 43

3.3. NPR1 is a receptor for SA ... 47

3.4. NPR1 acts as a metal-binding protein .. 53

Chapter 4- Discussion .. 56

Chapter 5- Conclusions ... 64

Chapter 6- Future experiments ... 65

References .. 66
List of tables

Table 1: Operational Parameters of the S300 Gel Filtration Column 51

Table 2: Predicted and observed elution volumes establishing NPR1 stoichiometry in 1 mM SA ... 52

List of figures

Figure 1: Scheme of NPR1 .. 17

Figure 2: Simplified schematic of pathways for SA biosynthesis and metabolism . 22

Figure 3: The sequence of events from pathogen recognition to defense gene induction ... 26

Figure 4: BTB/POZ domain at NT of NPR1 inhibits transactivation domain at CT of NPR1 .. 42

Figure 5: BTB/POZ domain at NT interacts with Δ513 at CT of NPR1 46

Figure 6: NPR1 is a SA receptor .. 50

Figure 7: Calibration curve obtained from operational parameters of the S300 gel filtration column .. 51

Figure 8: Elution fractions and corresponding volumes for S300 gel filtration analyses ... 52

Figure 9: Immunoblot analysis of N-terminal deletion of NPR1 Δ513HA binding to Ni-NTA ... 55

Figure 10: A proposed model showing the oligomerization of NPR1 without SA treatment and dimerization of NPR1 with SA treatment ... 60

Figure 11: A model showing the binding of SA to metal .. 63
List of abbreviations

2,4-D – 2,4-dichlorophenoxyacetic acid
AA – amino acid
Ala – alanine
as-1 – activation sequence 1
Avr – avirulence
BA2H – benzoic acid-2-hydroxylase
BTB/POZ – Broad-Complex, Tramtrack, and Bric-a-brac/Pox virus and Zinc finger
BTH – benzothiadiazole S-methylester
bZIP – basic domain/leucine zipper
CaMV – cauliflower mosaic virus
CCS – copper chaperone for SOD1
CT – C-terminus
Cys – cysteine
DB – DNA binding domain
DIR1 – defective in resistance 1
DTH9 – detachment 9
DTT – dithiothreitol
E. coli – Escherichia coli
EDS1 – enhanced disease susceptibility 1
EDS5 – enhanced disease susceptibility 5
ET – ethylene
GAL – galactosidase
Gal – Galactose
GAL4 DB – GAL4 DNA-binding domain
GFP – green fluorescent protein
GH3 – Glycoside Hydrolase
GSTF8 – glutathione S-transferase F8
HA – hemagglutinin
HABA – 2-4′-hydroxy-benzeneazobenzoic acid
His – Histidine
HR – hypersensitive response
ICS – isochorismate synthase
ICS1 – isochorismate synthase 1
INA – 2, 6-dichoroisonicotinic acid
IPL – isochorismate pyruvate lyase
JA – jasmonic acid
Leu – leucine
LTP – lipid transfer proteins
Mar – multiple antibiotic resistance
MES – methyl esterase
MeSA – methyl salicylate
MeSAG – methyl salicylate O-β-glucoside
NahG – salicylate hydroxylase
NIM1 – non-inducible immunity 1
NIMIN – NIM1-interacting
Ni-NTA – nickel-nitrilotriacetic acid
NLS – nuclear localization sequence
NMR – Nuclear magnetic resonance
NPR1 – non-expressor of pathogenesis related genes 1
NT – N-terminus
PAD4 – phytoalexin deficient 4
PAGE – polyacrylamide gel electrophoresis
PAL – phenylalanine ammonia lyase
PR – Pathogenesis-related
R – resistance
ROS – reactive oxygen species
SA – salicylic acid
SABP2 – salicylic acid-binding protein 2
SAG – SA O-β-glucoside
SAGT – SA glucosyltransferase
SAMT – SA methyltransferase
SAR – systemic acquired resistance
SDS – sodium dodecyl sulphate
SFD1 – suppressor of fatty acid desaturase deficiency 1
SGE – salicyloyl glucose ester
SID2 – salicylic acid-induction deficiency 2
sin1 – suppressor of npr1-1, inducible 1
SNII – suppressor of NPR1-1, inducible 1
SOD1 – Cu/Zn superoxide dismutase
SPR – surface plasmon resonance
TA – transactivation domain
TF – transcription factor
TGA – TGACG motif binding
UAS – upstream activation sequence
Vir – virulence
WHY1 – whirly 1
ZID – zinc finger protein with interaction domain
Introduction

The Arabidopsis Nonexpressor of Pathogenesis-Related gene 1 (NPR1) has been identified as a master regulator of *Pathogenesis-Related (PR)* gene activation. It has been demonstrated that the signal molecule salicylic acid (SA) accumulates in plant cells upon pathogen attack, and that it is mandatory for the deployment of a systemic broad-spectrum plant disease resistance termed systemic acquired resistance (SAR) (Durrant and Dong, 2004). Despite the numerous published studies on SA, the mechanism by which SA is involved in the activation of *PR* genes is not well understood. NPR1 exists as an oligomer held by intermolecular disulfide bonds in the cytosol. Upon SA treatment, it is reduced to a monomer which enters the nucleus and activates the *PR* genes (Tada et al., 2008). Furthermore, it has been found that the coactivator function of NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines in the transactivation domain (TA) (Rochon et al., 2006). However, in the absence of SA, full-length NPR1 is not able to transactivate, while the TA domain is able to transactivate in the presence and absence of SA. From this study, we can speculate that the BTB/POZ domain is autoinhibitory. Furthermore, these results raise the possibility that the BTB/POZ domain may inhibit the transactivation domain of the CT of NPR1 by directly binding to it. The purpose of this project is therefore to investigate whether the N-terminus (NT) of NPR1 interacts with its C-terminus (CT) in the absence of salicylic acid (SA), thereby functioning as an inhibitory domain to mask the transactivation domain in the CT of NPR1. In addition to that, the speculations that the addition of SA breaks the interaction
between NT and CT of NPR1 exposing the transactivation domain of the CT, and that
NPR1 may function as a metal-binding protein are also explored in more detail. The
focus of the study is to develop methods to assay the structure of NPR1, and
particularly to assess the interaction between the NT and CT of NPR1. The methods
used include plant two-hybrid assays, pull-down assays, and chromatography to
explore the effect of SA on NPR1, and also the metal-binding capacity of NPR1.
Chapter 1. Literature Review

1.1 Systemic acquired resistance in plant

Plants have developed complex defense mechanisms in response to various types of stresses. It has been found that transcription factors induced by stresses are important in inducing defense systems against the stresses (Nishizaw, et al., 2006). These stresses could be salicylic acid, auxin, hydrogen peroxide, and also biotic stimuli such as a pathogen attack.

Pathogens carry avirulence genes (Avr) which encodes proteins recognized by specific receptor proteins in plant cells encoded by host resistance genes. Resistance-gene-mediated recognition of pathogens by plants typically results in a hypersensitive response (HR), which is characterized by rapid apoptotic-like cell death in the local region surrounding the infection site. The HR restricts the growth and spread of pathogens to other parts of plants, and is accompanied by the induction of local and systemic expression of a number of defense genes, ultimately leading to the development of a broad-range long-lasting resistance to pathogen infection known as systemic acquired resistance (SAR) (Després et al., 2003; Kumar and Klessig, 2003; Verk et al., 2008). Therefore, SAR is a general plant resistance response that can be induced during a local infection by an avirulent pathogen. Concurrent with SAR development, SA and pathogenesis-related (PR) gene transcripts also accumulate in plants. Because of the correlation between PR gene expression and systemic resistance, these PR genes are the best-characterized NPR1-dependent SA-induced genes, and are considered excellent markers for SAR. The PR-1 gene is a member of
a family of *PR* genes, and is the most common molecular marker used to measure the induction of SAR.

A necessary prerequisite for the deployment of SAR and *PR*-gene activation is the accumulation of the mandatory metabolite salicylic acid (SA). Treatment of plant tissues with exogenous SA or its functional analogs BTH (benzothiadiazole S-methylester) and INA (2, 6-dichoroisonicotinic acid) is also sufficient for *PR*-gene induction and the establishment of SAR, in a process referred to as chemical SAR (Cao et al., 1994; Ward et al., 1991).

1.2. *NPR1* acting as a central regulator of SAR

NPR1 protein, also known as Non-inducible Immunity1 (NIM1) is recognized as the key positive regulator of *PR-1* gene expression and SAR because of the analysis showing that SA-mediated *PR* gene expression and SAR are impaired in *npr1* mutant plants while disease resistance is enhanced in plants overexpressing NPR1 (Cao et al., 1994; Delaney et al., 1995; Glazebrook et al., 1996). Moreover, NPR1 is an important component of SA signaling, and it functions downstream of SA in the defense signaling pathway (Shah, 2003; Kumar and Klessig, 2003). However, the observation that in *npr1* mutant plants, the establishment of induced systemic resistance (ISR) by non-pathogenic root rhizobacteria is blocked suggests that the *npr1* mutant is not only deficient in SA-mediated defense, but that NPR1 plays a role in other defense signaling pathways dependent on the signaling molecules jasmonic acid (JA) and ethylene (ET) (Pieterse et al., 1998).
In resting cells, the endogenous NPR1 protein is localized to both the nucleus and the cytosol (Després et al., 2000). Other studies suggest that NPR1 is located in the cytosol, where it plays a role in an antagonistic cross-talk between the SA and JA-mediated pathways through a mechanism that is not well understood, possibly by preventing the production of positive regulators of JA signaling or facilitating the delivery of negative regulators of JA signaling to the nucleus (Spoel et al., 2003). In the absence of SA treatment or pathogen attack, NPR1 is maintained in the cytoplasm as an oligomer formed through intermolecular disulfide bonds. Nevertheless, this NPR1 oligomerization was determined when NPR1 is fused with the green fluorescence protein (GFP) (NPR1-GFP). The oligomerization hence could be due to self-assembly of GFP but not NPR1. Upon treatment with SA or its analog or pathogen infection, a redox change is triggered, thereby reducing NPR1. Monomerization of NPR1 is promoted, presumably as a result of the reduction of an intermolecular disulfide bridge between Cys-82 and Cys-216 of NPR1. These monomeric forms of NPR1 are then translocated to the nucleus with the help of NPR1 nuclear localization sequences. Nuclear localization is a prerequisite for PRI gene activation (Mou et al., 2003; Kinkema et al., 2000). It was also found that S-nitrosylation of NPR1 by S-nitrosoglutathione (GSNO) at Cys-156 facilitates its oligomerization in the presence of SA. Conversely, the SA-induced NPR1 oligomer-to-monomer reaction is catalyzed by thioredoxins (TRX) (Tada et al., 2008). The regulation of NPR1 through the opposing action of GSNO and TRX and involving redox changes suggests a new mechanism by which NPR1 enters the
nucleus to activate PR genes and SAR. Durrant and Dong (2004) found that in response to SA, NPR1 moves to the nucleus where it interacts with the TGA class of basic leucine zipper transcription factors to induce defense gene expression, thereby activating SAR.

NPR1 acting as a cofactor interacts with members of the TGA family of basic/leucine zipper (bZIP) transcription factors that bind the activation sequence-i (as-i) or as-1-like sequences identified in the promoter of PR-i genes (Zhang et al., 1999; Després et al., 2000; Niggeweg et al., 2000). The cis element activation sequence-i, originally identified as promoter regulatory elements of plant viruses, such as the cauliflower mosaic virus (CaMV) 35S promoter, and agrobacterial pathogens, has been found in numerous stress-responsive plant promoters. For instance, it is found in the pathogen-inducible Arabidopsis thaliana Pathogenesis Related-i (PR-i) gene and is activated in the course of a defense response upon pathogen attack. In addition, it is also activated by salicylic acid (SA), auxin and its analog 2, 4-D (Lebel et al., 1998). Nowadays, a large number of studies are focusing on NPR1/TGA factors/as-i-like elements since they are interconnected and important in disease resistance. However, some as-i-containing genes, such as glutathione S-transferase F8 (GSTF8) are expressed in an NPR1-independent manner (Blanco et al., 2005), but these NPR1-independent pathways are not well understood.

In addition to members of the TGA family of basic domain/leucine zipper transcription factors, NIMIN (NIM1-interacting) proteins, especially NIMIN1, have also been found to interact with NPR1 in the presence of SAR inducers. These act as
transcriptional repressor to negatively regulate NPR1 and further down-regulate
NPR1-dependent genes, thus compromising PR gene expression and SAR (Weigel et al., 2005). This negative regulation of function of NPR1 by NIMIN proteins has
provided a mechanism to modulate specific features of SAR such as the tradeoff
occurring between SA- and JA-dependent pathways. Li and colleagues reported the
isolation and characterization of snil (suppressor of npr1-l, inducible 1), a mutant
that restores SA- and INA-inducible PR gene expression and disease resistance,
suggesting that SNI1 is also a negative regulator of SAR (Li et al., 1999). Recently,
Chern demonstrated another strong repressor of SAR named NRR (for Negative
Regulator of disease Resistance) identified from rice. NRR is found to display its
suppression of PR gene expression and SAR by binding to NPR1. Suppression is
dependent on its putative repression domain (Chern et al., 2008).

1.2.1. Important domains in NPR1

NPR1 contains two protein-protein interaction motifs: a BTB/POZ (for Broad
complex, Tramtrack, and Bric-a-brac/ Pox virus and Zinc finger) domain at the
N-terminus (Bardwell and Treisman, 1994; Aravind and Koonin, 1999), ankyrin
repeats in the middle of NPR1, and a transactivation domain at the C-terminus of
NPR1 (Cao et al., 1997; Ryals et al., 1997; Mosavi et al., 2004).
Figure 1. Scheme of NPR1 including N-terminal BTB/POZ domain, located in the first 190 residues, ankyrin repeats, residue 265 to 369, C-terminus with indication of truncated versions of CT of NPR1 and nuclear localization signal (NLS) at end of NPR1 (Rochon et al., 2006).

The BTB/POZ domain is an evolutionarily conserved protein-protein interaction domain found in developmentally regulated transcription factors. Many BTB/POZ domain-containing proteins including human promyelocytic leukemia zinc finger (PLZF), tramtrack, and BCL-6, are transcriptional repressors while some including GAGA factor can counteract repression by chromatin remodelling (Ahmad et al., 1998). The three-dimensional structure of PLZF has been solved, and the study of the structure of PLZF BTB domain showed that the BTB domain is a tightly intertwined dimer with a hydrophobic interface which may be important for BTB-BTB domain interactions, and surface features which may be involved in the interactions with other proteins. The BTB/POZ domain can self associate into a homologous dimer, and also can form heterologous dimer or complexes with other non-BTB domain protein (Ahmad et al., 1998). The BTB/POZ domain PLZF was also shown to be crucial for transcriptional repression (Melnick et al., 2000). The BTB/POZ domain of NPR1 likely belongs to that of PLZF. Boyle et al (2009) showed that co-transfecting
POZ:DB and POZ:TA lead to a significant increase in luciferase activity, suggesting that the NPR1 BTB/POZ can self-associate independent of SA. This self-association of BTB/POZ domain to form a dimer was also supported by size-exclusion chromatography followed by immunoblot analysis. However, co-expression of the NPR1 BTB/POZ fused to the VP16 transactivation domain (POZ:TA) with Gal4 DB or co-expression of NPR1 BTB/POZ fused to Gal4 (POZ:DB) with VP16 TA did not activate the reporter gene.

TGA2, one of the members of the TGA transcription factor family, has been reported to be a constitutive repressor with a non-autonomous repression domain at its N-terminus, and the proteins of the TGA2-containing clade are required for basal repression of \(PR-I \) (Zhang et al., 2003; Rochon et al., 2006; Boyle et al., 2009). However, upon SA treatment, TGA2 associates with Arabidopsis NPR1 to form a TGA2-NPR1 enhanceosome that is essential for \(PR-I \) induction. In this TGA2-NPR1 complex, NPR1 functions as a transcriptional coactivator, requiring its BTB/POZ domain and oxidized two cysteines, Cys-521 and Cys-529, located in a C-terminal transactivation domain (Rochon et al., 2006). Boyle et al. demonstrated that the BTB/POZ domain of NPR1 not only interacts with, but also masks or negates the function of the repression domain of TGA2, providing a new insight into the function of the BTB/POZ domain (Boyle et al., 2009).

NPR1 encodes a protein containing ankyrin repeats. The ankyrin repeats are important for NPR1 function as they mediate interactions with TGA factors. Their mutation abolishes the interaction between NPR1 and TGA transcription factors,
therefore compromising PR gene expression and SAR (Cao et al., 1997; Ryals et al., 1997; Zhang et al., 1999; Després et al., 2000, 2003).

NPRI contains an autonomous transactivation domain at its C-terminus that is found in residues 513 to 533. The domain contains two cysteines C521 and C529, which are oxidized. In SA-treated tissues, these cysteines are required for the co-activator function of NPRI to induce PR-1 expression and SAR (Rochon et al., 2006).

1.3. The role of SA in SAR

SA has been found to be an important metabolite involved in plant disease resistance, which is critical for PR expression and SAR. Transgenic Arabidopsis and tobacco plants that express the bacterial salicylate hydroxylase (NahG) gene, whose product is able to convert SA to biologically inactive catechol, fail to develop SAR and show increased susceptibility to primary infection by pathogens (Gaffiney et al., 1993; Delaney et al., 1995). Apart from the influence on disease resistance, SA also influences other processes including seed germination, seedling establishment, cell growth, senescence-associated gene expression, basal thermotolerance, and fruit yield (Klessig and Malamy, 1994; Rate et al., 1999; Morris et al., 2000; Rajou et al., 2006). The effect of SA on some of these processes may be indirect because SA alters the production or signaling effectiveness of other plant hormones such as JA, ET and auxin (Vlot et al., 2009).
1.3.1. SA metabolism

SA in plants can be generated in chloroplast via two distinct pathways, both of which are starting from the primary metabolite chorismate. One of the pathways to synthesize SA involves a series of enzymatic reactions initially catalyzed by the enzyme Phenylalanine Ammonia Lyase (PAL). Another pathway involves two enzymatic reactions catalyzed by the Ichorismate Synthase (ICS) and Ichorismate Pyruvate Lyase (IPL). This latter pathway is the one through which a large number of SA molecules induced by pathogen is synthesized in Arabidopsis (Vlot et al., 2009).

Even though SA is a key molecule to activate defense genes and SAR, an excess amount of free SA may be phytotoxic. Thus, plants regulate free SA level in part by converting it into a glucosylated form, SA O-β-glucoside (SAG), which is the dominant form of SA in plants (Malamy et al., 1992; Lee et al., 1995; Nobuta et al., 2007). Arabidopsis encodes two pathogen-inducible SA glucosyltransferase (SAGT), one of which preferentially converts SA into SAG whereas another one converts SA into salicyloyl glucose ester (SGE) in much lower abundance. SAG is actively transported from the cytosol into the vacuole, where it may function as an inactive primary storage form of SA that can be converted back to SA (Lee and Raskin, 1999; Dean et al., 2004, 2005; Song, 2006). Methyl salicylate (MeSA) and its glucosylated form, methyl salicylate O-β-glucoside (MeSAG) have been also shown to accumulate to high levels in plants (Seskar et al., 1998; Dean et al., 2004, 2005; Park et al., 2007).

PBS3 is a member of the GH3 family of acyl-adenylate/thioester-forming enzyme that conjugates amino acid to SA to form SA-amino acid conjugation (Nobuta et al.,
Amino acid conjugation of SA involving PBS3 is proposed to affect SA action because altered expression of PBS3 affects disease resistance. It was reported that PBS3 plays an important role in pathogen-induced SA metabolism and induced defense responses because its mutations impact SAG accumulation, SA-dependent transcriptional responses such as PR1 gene expression and disease resistance (Nobuta et al., 2007).
Figure 2. Simplified schematic of pathways involved in SA biosynthesis and metabolism.

Abbreviations: PAL, phenylalanine ammonia lyase; ICS, isochorismate synthase; IPL, isochorismate pyruvate lyase; BA2H, benzoic acid-2-hydroxylase; SA, salicylic acid; SAGT, SA glucosyltransferase; aa, amino acid; SAMT, SA methyltransferase; SABP2, SA-binding protein 2; MES, methyl esterase; SGE, salicyloyl glucose ester; SAG, SA O-β-glucoside; MeSA, methyl salicylate; MeSAG, methyl salicylate O-β-glucoside.
1.3.2. NPRI-dependent and NPRI-independent SA signalling

The requirement of NPRI for the induction of SAR and the activation of PR-1 in response to SA is well documented by numerous different genetic screens (Cao et al., 1994; Delaney et al., 1995; Zhang et al., 2003). Plants containing npr1 mutations were first identified in screens for Arabidopsis that were not capable of activating PR gene expression and disease resistance in response to SAR inducer (Cao et al., 1994; Delaney et al., 1995; Shah, 2003). The NPR1 promoter contains a W-box to which a WRKY protein binds in vitro. The binding of an SA-inducible WRKY protein to W-box element in the promoter of NPR1 is necessary for NPR1 expression. Mutation of the W-box in the promoter of NPR1 abolishes the binding of WRKY proteins, thus compromising the ability of NPR1 to complement the npr1 mutant (Yu et al., 2001).

Application of SA or its analogs stimulates the translocation of NPR1 from cytosol to nucleus, where it interacts with members of TGA transcription factors of basic/leucine zipper DNA-binding proteins, thereby activating downstream signalling. Activation of PR genes during SAR not only requires nuclear localization, but also depends on a functionally redundant clade of three basic leucine zipper TGA transcription factors, TGA2, TGA5 and TGA6 (Kinkema et al., 2000; Després et al., 2003; Durrant and Dong, 2004). TGA1, another member of TGA transcription factors, does not interact with NPR1 in yeast two-hybrid assays, but interacts with NPR1 in Arabidopsis upon SA treatment. Moreover, the DNA binding activity of the reduced form of TGA1 is stimulated by NPR1. Only in its reduced form does TGA1 interact with NPR1. TGA1 is in its reduced state after the treatment of plants with SA (Després et al., 2003).
summary, SA affects the NPR1-dependent SA signalling pathway by first activating its expression and then stimulating its translocation to the nucleus where it interacts with TGA transcription factors to induce defense gene expression and SAR.

Loss-of-function mutations in NPR1 do not confer complete loss of PR gene expression and disease resistance, suggesting that these responses also can be activated via an NPR1-independent pathway. The PR-I expression and SAR activation are also regulated in an SA-dependent but NPR1-independent manner by transcription factor WHY1 (Whirly 1) (Desveaux et al., 2004). Two whyl mutant alleles in Arabidopsis were demonstrated to be compromised in SA-induced disease resistance, suggesting that AtWhyl is an important downstream component of the SA-signaling pathway whose activation is independent of NPR1. Furthermore, plants with whyl mutant alleles displayed enhanced susceptibility to infection by virulent and avirulent pathogens (Desveaux et al., 2004). Taken together, WHY1 is critical in plant defense responses in addition to NPR1.

The ssi2 mutant, identified in a genetic screen for suppressors of npr1, also appears to affect the activation of defense responses by modulating an NPR1-independent defense pathway (Shah, 2001). In comparison to wild-type (SSI2 NPR1) plants, which only express PR genes in the absence of SA, and npr1 mutant (SSI2 npr1) plants, which do not express PR genes either in the absence or the presence of SA, the ssi2 npr1 double mutant and the ssi2 NPR1 single mutant constitutively express PR genes and exhibit enhanced resistance to pathogens. However, disease resistance induced by ssi2 is compromised by NahG but is retained in the npr1 mutant background,
indicating that an NPR1-independent mechanism dependent of SA is involved in addition to the NPR1-dependent mechanism (Shah et al., 2001, 2003).
Figure 3. Sequence of events from pathogen recognition to defense gene induction deployed during disease resistance (Durrant and Dong, 2004). DIR1: defective in resistance 1, SFD1: suppressor of fatty acid desaturase deficiency 1, LTP: lipid transfer proteins, EDS1: enhanced disease susceptibility 1, PAD4: phytoalexin deficient 4, ICS1: isochorismate synthase 1, EDS5: enhanced disease susceptibility 5, ROS: reactive oxygen species, SABP2: salicylic acid-binding protein 2, DTH9: detachment 9, WHY1: whirly 1, SNI1: suppressor of NPR1-1, inducible 1.
1.3.3. SA feedback loops

Activation of defense signalling mediated by resistance genes induces SA synthesis and downstream defense responses. In addition to expression of several R genes, application of SA also activates the expression of the *EDS1* gene, which is required for SA accumulation and activation of resistance conferred by R-gene-activated signalling pathways, suggesting a feedback regulation of these R genes and *EDS1* by SA (Feys et al., 2001; Shah, 2003). Furthermore, SA activates the expression of other SA-biosynthesis-related genes including *EDS5, PAD4* and *SID2* (salicylic acid-induction deficiency 2), showing multiple points where SA exerts a regulatory feedback effect important for amplifying plant defense responses (Shah, 2003).

In addition to the positive feedback loop, a negative feedback regulation involving NPR1 is also reported (Shah, 2003). In this negative feedback loop, SA accumulation and *SID2* expression are diminished in wild-type plants containing NPR1 but not in plants with an *npr1* mutant background. It is believed that uncontrolled SA synthesis may affect other signaling pathways that are inhibited by SA such as the JA-dependent signaling pathway. Therefore, both positive and negative feedback loops are important as they allow for the regulation of SA accumulation and fine-tuning of plant defense signaling.

1.3.4. SA-binding proteins

The investigation as to how SA exerts its effect revealed that several putative effector proteins including catalase, ascorbate peroxidase, and carbonic anhydrase bind SA
with low to moderate affinity (Kumar and Klessig, 2003). In comparison, SA-binding protein 2 (SABP2) is a protein from tobacco that displays high affinity for SA and it is involved in the SA-mediated signal transduction pathway leading to defense response to pathogen infection. The binding between SA and SABP2 is reversible and specific to SA and its SAR-inducing analogs such as benzothiadiazole (BTH).

1.3.4.1. SABP2 and its lipase and esterase activities

SABP2 is a member of the α/β hydrolase family that contains a catalytic triad of serine, aspartate and histidine. Crystallographic analysis showed that SA is bound in the active-site pocket of SABP2 located in the C-terminal end via hydrogen-bonding, polar and van der Waals interaction (Forouhar et al. 2004). The carboxylate group of SA is bound deepest in the pocket of SABP2, and one of its oxygen atoms is hydrogen-bonded to the side chain of the histidine in the catalytic triad. The phenyl ring of SA is located in a highly hydrophobic environment.

There is evidence showing that lipids play an important role in signaling during disease resistance. The Arabidopsis EDS1 and PAD4 proteins, which are putative lipases, are required to transduce the resistance signal by a specific class of R genes after pathogen recognition (Kumar and Klessig, 2003). Similar to EDS1 and PAD4, SABP2 also contains the catalytic triad and lipase signature sequence, so it has lipase activity and this lipase activity is stimulated by SA. It is speculated that SABP2 activates the plant defense system through a mechanism that postulates that the SA-stimulated lipase activity of SABP2 generates an SAR-inducing lipid that is
translocated by a lipid transfer protein to the uninfected areas of the plant. Plants with knock-down SABP2 via RNAi fail to express PR-1 gene induced by SA after infection, thereby blocking the development of SAR. Therefore, SABP2 is required for systemic resistance to pathogen infection, and the ability of SA to regulate the lipase activity of SABP2 suggests a mechanism through which lipids are linked to the SA-dependent defense system in the plant.

In addition to the SA-stimulated lipase activity, SABP2 has esterase activity due to the presence of a serine in the catalytic triad, which is able to convert biologically inactive MeSA in systemic tissues to active SA as part of the signal transduction pathways that initiate SAR. It is also found that SA is a potent inhibitor of the SABP2’s esterase activity, which acts as a competitor binding the SABP2 active site. As a result, MeSA accumulates and is then translocated to systemic tissues for perception and processing to SA by SABP2.

1.3.4.2. Other SA-binding proteins

Catalase, ascorbate peroxidase, and carbonic anhydrase bind to SA with much lower affinity compared to SABP2. It was shown that the increase in SA after pathogen infection inhibit the H₂O₂-scavenging activities of both catalase and ascorbate peroxidase. This inhibition results in the alteration of the cellular redox state which facilitates the relocation of NPR1 from the cytoplasm to the nucleus for activation of SA-responsive defense genes including PR gene expression (Mou et al., 2003; Dempsey et al., 1999). The increase in SA does not affect the activity of carbonic
anhydrase, but it appears that carbonic anhydrase is involved in plant immunity because silencing of this enzyme in plant increases the susceptibility to avirulent pathogens (Restrepo et al., 2005).

1.3.4.3. MarR, a model for salicylate binding to protein

Protein members from the MarR family are involved in controlling an assortment of biological functions, including resistance to multiple antibiotics, organic solvents, household disinfectants and oxidative stress agents, that are collectively known as the multiple antibiotic resistance (Mar) phenotype (Martín and Rosner, 1995; Alekshun, et al. 2001). The emergence of multiple antibiotic-resistance bacteria is due to the presence of the mar regulon in E. coli which is inducible by the antibiotics chloramphenicol and tetracycline and aromatic weak acids including salicylate and acetylsalicylate (Martin and Rosner, 1995). The stimulated transcription of the mar operon initiates a cascade of events leading to multiple antibiotic resistance. However, many studies have revealed that the transcription of the operon is repressed in vivo by the marR-encoded protein, MarR, and derepressed by salicylate (Martin and Rosner, 1995; Alekshun, et al. 2001).

By binding to one site of the mar operon where the RNA polymerase would bind, MarR could interfere with the binding of the RNA polymerase to the -35 and -10 sequences necessary for transcription, thereby inhibiting transcription of the operon. The result of electrophoretic mobility assay showed that salicylate binds to MarR
protein and weakens the interaction of MarR with mar DNA (Martin and Rosner, 1995).

The crystal structure of MarR shows that it binds to the mar operon as a dimer with each subunit containing a winged-helix DNA binding motif and with the terminal parts of each monomer contributing to a protein-protein interaction interface in the dimer. The organization of the N-terminal and C-terminal domains and of two DNA binding domains results in the formation of a wide channel through the center of the dimer (Alekshun, et al. 2001). It is believed that salicylate binds to two sites, in each subunit of the MarR dimer, that are on either side of the proposed DNA-binding helix. Binding is via hydrogen bonds and is due to the presence of the hydroxyl and carboxyl group of SA. In each of the sites, the salicylate ring sits over a hydrophobic side chain in the pocket (Alekshun, et al. 2001).

1.4. Metalloproteins

Approximately one-third of all known proteins contains metal ion cofactors and are known as metalloproteins. The majority of them function as essential metalloenzymes. Since protein atoms such as oxygen, nitrogen and sulfur coordinate with metals, for example, zinc, copper, and iron through covalent bonds in metalloproteins, amino acids containing these atoms have been shown to be critical for the function of metalloproteins (Bartnikas and Gitlin, 2001; Kennedy et al., 2001).

To date, metalloproteins have been well-characterized into four major categories, which are transport proteins, electron transport proteins, signal transduction proteins
and metalloenzymes. (1) Transport proteins are responsible for molecular transport such as oxygen transport. The hemoglobin, an iron-containing metalloprotein, is a typical example of this class that carries oxygen in the bloodstream; (2) Since many metals have stable oxidation states that are energetically accessible at physiological conditions, they are ideal for electron transport in processes involving redox reactions. One example of electron transport proteins are the cytochromes containing iron; (3) Many transcription factors may also be found to be metalloproteins. The well-known example is the zinc finger protein domain of transcription factor containing a zinc ion in its centre by which cysteines and histidines are coordinated; (4) Metalloenzymes are proteins that function as enzymes and contain metals to which proteins are tightly bound. In metalloenzymes, the metals are usually located in a pocket into which small substrates fit. These metalloenzymes include superoxide dismutase containing copper or zinc, alcohol dehydrogenase containing zinc and so on.

One previous work demonstrated a novel mechanism to make a metalloprotein using the Cu/Zn superoxide dismutase (SOD1) as a model, revealing that the delivery and insertion of copper to SOD1 within a cell is facilitated by a metallochaperone, the copper chaperone for SOD1 (CCS). The process involves a direct interaction of the chaperone with the metal-binding site of the target protein SOD1 via a disulfide bond (Bartnikas and Gitlin, 2001). Three domains were found in CCS. One is MXCXXC (where X is any amino acid residue), a copper binding motif at the NT of CCS. The second domain is highly similar to that of SOD1, but lacks the critical amino acids required for catalysis. The third domain contains a highly conserved CXC motif that
is critical for copper delivery, but is not needed for protein-protein interactions (Bartnikas and Gitlin, 2001). Because of this structure, CCS can be used for delivery and insertion of copper to SOD1.

According to one previous study, based on the structure of SA, it is capable of coordinating with metals such as copper through its carboxylate groups (Abuhijleh and wood, 2001). Since it was also known that SA is involved in the reduction of NPR1 oligomer, it is possible that NPR1 may serve as a SA receptor. Taken together, one can speculate that the binding of SA to NPR1 could be metal-dependent. In order to confirm this hypothesis, one of the experiments to do can be the examination of metal-binding capacity of NPR1 to test whether NPR1 is a metal-binding protein in addition to the investigation of direct binding of SA to NPR1.
Chapter 2. Materials and methods

2.1. Chemicals

All consumables were purchased from Sigma (St. Louis, MO) unless otherwise stated.

Media for growing E. coli

2xYT media

per liter

- Tryptone 16g
- Yeast extract 10g
- NaCl 5g

LB media (Luria-Bertani Medium)

per liter

- Tryptone 10g
- Yeast extract 5g
- NaCl 10g

- Both of the 2YT and LB media were made according to the recipes listed above by mixing all the chemicals and then dissolving by adding water.

- They must be sterilized by autoclaving before use.
Biological buffers

1. Ni-NTA column (1mL):

(A) Stripping buffer (100ml): 0.276 NaH2PO4 (20mM), 2.922g NaCl (500mM), 1.861g EDTA (50mM), pH 7.4

(B) Binding buffer (100ml): 5ml 1M HEPES (50mM), 3ml 5M NaCl (150mM), 2ml 2M imidazole (40mM), pH 7.4

(C) Elution buffer (100ml): 5ml 1M HEPES (50mM), 3ml 5M NaCl (150mM), 6.81g imidazole (1M), pH 7.4

- Before each use, the Ni-NTA column has to be stripped with stripping buffer containing EDTA to get rid of any proteins and metals that are not eluted completely out of the column by the elution buffer from the previous experiment. It is then recharged with Ni2+. In addition to the binding and elution buffers listed above, binding and elution buffers containing 100mM EDTA (Bioshop) are also used to test the presence of metal-binding protein in my experiments.

2. Strep-Tactin column (1mL):

(A) Regeneration buffer (100ml): 0.69g NaH2PO4 (50mM), 1.75g NaCl (300mM), 0.024g HABA (1mM), pH 8.0

(B) Binding buffer (100ml): 0.69g NaH2PO4 (50mM), 1.75g NaCl (300mM), pH 8.0

(C) Elution buffer (100ml): 0.69g NaH2PO4 (50mM), 1.75g NaCl (300mM), 0.054g desthiobiotin (2.5mM), pH 8.0
Before each use, the Strep-Tactin column always has to be washed with regeneration buffer containing HABA to get rid of all the biotin from the elution buffer remaining on the matrix of column. In addition to the elution buffer as listed above for the Strep-Tactin column, the elution buffer containing 1mM SA is also used for my experiment.

2.2. Methods

2.2.1. Bacterial strain, general cloning vector and transformation of plasmids

E. coli BL21 strain (DE3) was transformed with a vector containing the gene of various deletions of NPR1. The genes from the N-terminus of NPR1 were amplified by PCR and cloned in-frame in pET41a (Novagen) to create N-terminal fusions (with an N-terminal Strep-tag) while the genes from the C-terminus of NPR1 were fused to an HA-tag. Plasmid purification was performed using MiniPrep Kits (Qiagen). All constructs used were verified by sequencing.

2.2.2. Expression of proteins

A five ml culture in 2xYT media containing 50mg/ml kanamycin was inoculated, and grown overnight on a rotary shaker at 250rpm at 37 °C. All 5 ml of this saturated culture was inoculated in 1L of LB (Luria-Bertani) media containing 50mg/ml kanamycin, induced with 0.5M IPTG (Isopropyl-β-D-thiogalactopyranoside; BioShop) when the OD600 of this culture reaches 0.4-0.6 and grown for an additional 2hr with rotary shaker at 250rpm at 37 °C. After 2hr, the cells were harvested by centrifugation.
at 8000rpm for 10min (Sorvall-RC-5C-Plus; Mandel Scientific Company). The cells were washed with MQ H2O and centrifuged at 15000 rpm at 4°C for 5min. The supernatant was discarded and the pellet was stored at -20°C until needed.

2.2.3. Purification of proteins by pull-down assays using affinity chromatography and detection of protein using western blot

The bacterial pellets were resuspended in binding buffer (0.69g NaH2PO4 (50mM), 1.75g NaCl (300mM), pH8.0 for Strep-Tactin column/ 5ml 1M HEPES (50mM), 3ml 5M NaCl (150mM), 2ml 2M imidazole (40mM), pH7.4 for Ni-NTA column), sonicated (Sonic Dismembrator Model 100; Fisher Scientific) on ice, and subsequently centrifuged at 15000 rpm at 4°C for 20min to separate protein from cell debris. The supernatant was filter sterilized (0.45μm) and was then applied to the Strep-Tactin column/Ni-NTA column pre-equilibrated in 5ml binding buffer.

The protein was purified using the ÄKTA Explorer FPLC (GE Healthcare Bio-Sciences) operated with the UNICORN Version 3.00.10 software with a Strep-Tactin 1mL cartridge (Qiagen)/ Ni-NTA 1mL column (Healthcare) according to the manufacturer’s instructions. The filtered protein crudes were loaded onto the column after a 5mL equilibration of the column with binding buffer. The column was then washed with 10mL binding buffer followed by 5mL elution buffer (0.69g NaH2PO4 (50mM), 1.75g NaCl (300mM), 0.054g desthiobiotin (2.5mM), pH8.0 for Strep-Tactin column/ 5ml 1M HEPES (50mM), 3ml 5M NaCl (150mM), 6.81g imidazole (1M), pH7.4 for Ni-NTA column) which was collected in 12 × 500μL
fractions in preparation for analysis by SDS-PAGE. The concentrations of protein in the crude, flow through and wash fractions were determined using the Bio-Rad protein assay reagent (Bio-rad). The collected 10 fractions (0.5 ml/ fraction) were acetone precipitated. The acetone precipitated elutions and thirty μg (or micro liter) of crude, flow through, wash were subjected to SDS-PAGE (14% gel). An immunoblot analysis with an anti-Strep-tag antibody (Qiagen) at a 1:2000 dilution and a monoclonal anti-HA-tag antibody (Santa Cruz Biotechnology) at a 1:1000 dilution were used to detect the presence of the BTB/POZ domain fused with a Strep-tag and the proteins generated from the CT of NPR1 with an HA-tag, respectively.

2.2.4. Plant in vivo transcription assays and two-hybrid assays

All procedures for plant in vivo transcription assays and plant two-hybrid assays were previously described (Després et al., 2003). All constructs were created by PCR as previously described (Rochon et al., 2006). Arabidopsis thaliana (ecotype Columbia) leaves were harvested from 4-week-old plants grown at 21 °C (day) and 18 °C (night) with a 10-h photoperiod and transferred to Petri dishes containing MS salts and micronutrients supplemented with B5 vitamins, 1% sucrose, and 0.8% agar at pH 5.8. When required, filter-sterilized salicylic acid was added to the medium at a final concentration of 1mM. Coating of the gold particles and general procedures and preparation of the biolistic experiments (bombadment) were as described according to the manufacturer’s instructions (Bio-Rad). One microgram of the reporter plasmid (firefly luciferase), 0.1 μg of internal standard plasmid (renilla), and 1 μg of each
effector plasmid were mixed together and the mixture was used to coat beads. Assays were performed using the Dual-Luciferase Reporter Assay system (Promega) following the manufacturer's instructions. Luminescence was measured on a Berthold Lumat LB9507 luminometer (Bad Wildbad), and the data obtained represent the value of the reporter gene (firefly luciferase) divided by the value of the internal standard (renilla) and expressed as relative luciferase units. Each bar in each graph represents five bombardments repeated five times (25 values per point).

2.2.5. Analysis of protein by gel filtration

All the procedures for the gel filtration were described previously (Boyle et al., 2009). Strep-tagged purified proteins were diluted to the required concentrations using S300 running buffer (50 mM HEPES and 250 mM NaCl, pH 7.4) prior to gel filtration analysis on the Sephacryl S300 HR packed in 50-cm-long HR 16 column (GE Health) and equilibrated with S300 running buffer. Elutions were performed in the same buffer containing different chemicals (1 mM SA/1 mM catechol/20 mM DTT) at a flow rate of 0.8 mL/min. Each fraction contains 0.5 mL elution.
Chapter 3. Results

3.1. The BTB/POZ domain at the NT of NPR1 functions as an inhibitory domain to repress the transactivation domain at the CT of NPR1

According to a previous study, NPR1 contains an autonomous transactivation domain in its last 80 amino acids and requires the stretch of residues located between positions 513 and 533, which contains two cysteines (Cys-521 and Cys-529) as shown in Figure 4A and 4B (Rochon et al., 2006). An N-terminal deletion of NPR1 at residue 513 was engineered at the beginning of a stretch of negatively charged and hydrophobic residues, a signature of transactivation domains. A second one, starting at residue 533 starts right before the nuclear localization signal. This deletion effectively removes the two Cys residues (Rochon et al., 2006). Cys-521 and Cys-529 are predominantly oxidized, regardless of whether SA treatment is present or not, and they are required for transactivation only upon SA treatment. To identify whether there is an inhibitory domain in NPR1, the full-length NPR1 and several N-terminal deletions of NPR1 are fused to Gal4 DB, and were assayed using an in vivo plant transcription assay (Figure 4C). The baseline level of transcription was determined by transfecting leaves with Gal4 DB alone with a reporter construct consisting of a firefly luciferase gene under the control of five copies of the Gal4 upstream activating sequences (UAS) fused to a minimal promoter (Rochon et al., 2006). The result in Figure 4C showed that transfection with the full-length NPR1:DB led to reporter gene repression below the baseline level without SA, indicating that the full-length NPR1
did not transactivate without SA. However, transfection with two N-terminal deletion mutants of NPR1, Δ513:DB and Δ533:DB, exhibited reporter gene activation beyond the baseline level, suggesting that the two proteins did transactivate without SA. This result is consistent with a previous result showing that Δ513 at the CT of NPR1 is a transactivation domain (Rochon et al., 2006). As observed in Figure 4C, Δ513:DB resulted in a much more significant increase in reporter gene expression compared to that of Δ533:DB, suggesting that the two Cys at the CT of NPR1 could play an important role in transactivating. Taken together, these results suggest that there is an inhibitory domain in NPR1. Since previous results showed that the POZ domain could inhibit the DNA binding of the zinc finger protein ZID (zinc finger protein with interaction domain) (Bardwell and Treisman, 1994), we speculated that the POZ domain of NPR1 may have a similar role as an inhibitory domain, but this time to inhibit the transactivation domain at the CT of NPR1 via an interaction between BTB/POZ domain and CT of NPR1. Thus, we tested whether the BTB/POZ domain can interact with Δ513 in vivo by using plant two-hybrid assay and in vitro by using pull-down assays.
Figure 4. BTB/POZ domain at NT of NPR1 inhibits the transactivation domain at the CT of NPR1.

(A) Scheme of NPR1 showing the BTB/POZ domain, the ankyrin repeats, the C-terminal transactivation domain (TAD), the NT deletions of NPR1 analyzed in (C), and the nuclear localization signal (NLS). Numbers preceded by Δ indicate the starting amino acid for that particular deletion mutant.

(B) Sequence of amino acids located between positions 513 and 540 of NPR1. Two Cys are observed in position 521 and 529.

(C) Histograms illustrating the transcriptional activity of NPR1 and NPR1 deletions described in (A) tethered to DNA through Gal4 DB.
3.2. The N-terminal BTB/POZ domain of NPR1 interacts with the C-terminal domain of NPR1 in vivo and in vitro

Because of a previous study showing that BTB/POZ domain of the ZID protein is inhibitory (Bardwell and Treisman, 1994) and our results from Figure 1 revealing that there is an inhibitory domain present in the Arabidopsis NPR1 (Rochon et al., 2006), we tested whether the BTB/POZ region can interact with Δ513 in vivo and in vitro. To accomplish this, the BTB/POZ domain of NPR1 was fused to the Gal4 DB (POZ:DB) and Δ513 was fused to the VP16 TA (Δ513:TA). Both constructs were assayed using plant two-hybrid assays in the absence and presence of SA treatment. In the plant two-hybrid system, reporter gene activation is based on the reconstitution of a functional transcription factor, which occurs when a protein fused to the DNA-binding domain of the yeast transcription factor Gal4 interacts with a fusion protein linked to the VP16 transcription activation domain. Transfection of the reporter gene and the internal standard along with Gal4 DB served to determine the baseline level of the system (Boyle et al., 2009). Coexpressing the Δ513 fused to VP16 TA (Δ513:TA) with Gal4 DB did not lead to reporter gene expression beyond baseline. The same result was shown when coexpressing the BTB/POZ fused to Gal4 DB (POZ:DB) along with VP16 TA in Figure 5A. It was also observed that in the absence of SA (white bars), expressing NPR1 BTB/POZ fused to Gal4 DB (POZ:DB) along with Δ513 fused to VP16 TA (Δ513:TA) led to a significant increase in normalized luciferase activity, suggesting that POZ:DB interacts with Δ513:TA
(Figure 5A). However, coexpressing the POZ:DB and Δ513:TA upon treatment with SA (grey bars), did not activate the reporter gene, indicating that the interaction of POZ:DB with Δ513:TA was abolished. This result suggested that SA may function as a competitor interfering with the interaction between the BTB/POZ domain and Δ513. The mode of action of SA as a competitor is not well understood and could probably occur through a binding similar to what is observed with SABP2 or other SA-binding proteins as reported previously (Kumar and Klessig, 2003). Furthermore, it was found that cotransfecting POZ:DB and POZ:TA led to a significant increase in expression beyond baseline, indicating that BTB/POZ domain can self-associate regardless of SA treatment as shown in Figure 5A, which is consistent with previous observations showing that BTB/POZ is capable of interacting with itself.

In addition to examining the interaction of the BTB/POZ domain with Δ513 by using plant two-hybrid assays in vivo, this interaction was further assessed by using pull-down assays in vitro. The basis of the pull-down assay is that a purified protein with a tag specific for an immobilized ligand in a column will capture and "pull-down" its interacting partner. BTB/POZ domain at NT of NPR1 was fused to a Strep-tag which binds with high selectivity to Strep-Tactin, an engineered streptavidin. The binding affinity of the Strep-tag to Strep-Tactin is nearly 100 times higher than to streptavidin (Qiagen). The elution of purified recombinant protein was performed by the addition of biotin or desthiobiotin, which is a natural ligand of streptavidin. In our experiment, the BTB/POZ domain of NPR1 was applied to the Strep-Tactin column under physiological conditions. Subsequently, Δ513 fused to a HA-tag was incubated
with this column to investigate whether it could interact with the BTB/POZ domain.

In our pull-down assays, we used two-step elutions in which proteins were first eluted with 1mM SA elution, to evaluate whether SA has an effect on the NPR1-BTB/POZ interaction, followed by a biotin elution, to ensure that all POZ-Strep molecules elute from the Strep-Tactin column. As observed in Figure 5B, the concentration of the BTB/POZ domain input is much lower than that of the ∆513 input. This was due to the low level expression of the BTB/POZ domain of NPR1. The immunoblot analysis with an anti-Strep antibody was used to detect the presence of the BTB/POZ domain and to confirm that this domain binds to and elutes from the Strep-Tactin column using biotin elution. As expected, BTB/POZ domain is eluted with biotin but not with SA (first panel of Figure 5B). On the other hand, the presence of ∆513 was detected using an anti-HA antibody after SA elution, indicating that ∆513 interacts with BTB/POZ, but that the addition of SA interferes with this interaction (second panel of Figure 5B). This result obtained in vitro is consistent with the in vivo result revealing that BTB/POZ domain interacts with ∆513, but this interaction is abolished in the presence of SA. Furthermore, ∆513 could not be detected after a biotin elution following the SA elution, suggesting that all ∆513 molecules were eluted with SA (second panel of Figure 5B).
Figure 5. The BTB/POZ domain at the NT interacts with Δ513 at the CT of NPR1.

(A) Bar graph illustrating the interaction between BTB/POZ domain at the NT and Δ513 at the CT of NPR1. The BTB/POZ region is tethered to DNA through Gal4 DB (POZ:DB) or to the VP16 transactivation domain (POZ:TA). Δ513 is fused to the VP16 transactivation domain (Δ513:TA). White bars indicate the absence of SA whereas the grey bars mean the treatment of SA.

(B) Immunoblot analysis of the interaction of the BTB/POZ domain with Δ513 after pull-down assay. The BTB/POZ domain and Δ513 are revealed using an anti-StrepTag and anti-HA antibodies, respectively. In the pull-down assay, the proteins are eluted off the 1mL Strep-Tactin column with 1mM SA first and then with 2.5mM biotin elution. Lane 2 and 3 in both panels indicate the eluent from SA and biotin elutions, respectively.
3.3. NPR1 is a receptor for SA

Since it appears that SA affects the interaction between the BTB/POZ domain and Δ513 (Figure 5), we hypothesized that Arabidopsis NPR1 may function as an SA receptor. To test this hypothesis, gel filtration experiment on Sephacryl S300 was performed. It has been demonstrated that it is difficult to produce NPR1 in a soluble form in the amounts required for gel filtration (Boyle et al., 2009). To circumvent the problem, Rochon and colleagues opted to express a variant of NPR1 mutated in the core of the BTB/POZ domain through Ala substitutions (Rochon et al., 2006). Since this mutation affects BTB/POZ domain dimerization, it is not a perfect solution, but it yielded a sufficiently high concentration of soluble protein to perform the gel filtration experiment (Melnick et al., 2000; Boyle et al., 2009). In spite of this imperfection this mutant was used for the development of gel filtration experiments aimed at investigating whether SA has any effect on full-length of NPR1.

As shown in Figure 6A, when analyzed on its own, NPR1 eluted exclusively in the void volume (fraction 55). When treated with 1mM of SA, NPR1 could still be found in the void volume (fraction 55) but also in fractions 90 to 95, indicating that NPR1 was only partially redistributed. This observation has led to a conclusion that SA affects the conformation of NPR1. Previous studies reported that SA induces SAR and PR gene expression. However, catechol, a degraded form of SA produced by the enzyme NahG fails to develop SAR and express PR genes because of the reduction of a carboxylate group to a hydroxyl group. The effect of catechol on full-length of NPR1 was then examined. As observed in Figure 6A, when NPR1 was treated with
catechol, NPR1 was only found in the void volume but not in other fractions, suggesting that the degraded form of SA has no effect on NPR1 conformation. Therefore the experiment with catechol serves as a negative control. Next, gel filtration after treatment of NPR1 with dithiothreitol (DTT), a reducing agent, was performed. Results revealed that DTT does not change the structure of NPR1. Together, these results suggested that NPR1 may be an SA receptor, but future work is required to test whether the binding of SA to NPR1 is direct or indirect.

The stoichiometry of NPR1 in 1 mM SA was also evaluated by using gel filtration on Sephacryl S300. To accomplish this, a Sephacryl S300 calibration curve was established and S300 gel filtration analyses, aimed at determining the elution fractions and corresponding volumes, were performed. As observed in the immunoblot analysis of the NPR1 + SA panel in Figure 6A, besides the detection of NPR1 in the void volume, the highest amount of NPR1 found in the included volume was in fractions 90 and 95. According to Table 2 (predicted fractions as a function of NPR1 stoichiometry), one can see that only the predicted fraction 94 (NPR1 dimer) is located between fraction 90 and 95 of Figure 6 (the fractions which contain the highest amount of NPR1). This suggests that NPR1 exists as a dimer after SA treatment in addition to its detection as an oligomer in void volume.

Since an NPR1 variant Ala-substituted in the BTB/POZ domain was used for gel filtration, we sought to determine whether this mutation affected the interaction with the CT using the plant two-hybrid system. Similarly, transfection of reporter gene and the internal standard along with Gal4 DB served to determine the baseline of the
system. In this assay, BTB/POZ domain with its core substituted with Ala was fused to Gal4 DB (A-SubPOZ:DB), whereas the N-terminal deletion Δ513 was fused to VP16 TA (Δ513:TA). A-SubPOZ:DB alone with VP16 TA did not activate the reporter gene in the absence (white bars) and presence of SA (gray bars) (Figure 6B). As observed in Figure 6B, coexpressing A-SubPOZ:DB and Δ513:TA in the absence of SA did result in a significant increase in normalized luciferase activity, which would suggest that A-SubPOZ interacts with Δ513 without SA treatment. This interaction was abolished upon SA treatment since coexpression of A-SubPOZ:DB and Δ513:TA did not activate reporter gene expression beyond baseline. Comparing the result using the A-SubPOZ (Figure 6B) to those using the wild-type BTB/POZ (Figure 5A) indicated that the A-SubPOZ mutant behaves like the normal POZ domain in vivo.
Figure 6. NPR1 is an SA receptor.

(A) Immunoblot analysis of pooled fractions from a Sephacryl S300 chromatography using an anti-Strep antibody. Fraction 55 in first lane indicates the fraction collected from the void volume. The NPR1 used in this experiment has alanine mutations in the core region of the BTB/POZ. Catechol is the product resulting from the conversion of SA by NahG. DTT is a reducing agent.

(B) Histograms illustrating the effect of SA on NPR1 containing alanine mutations in the core region of the BTB/POZ domain (A-SubPOZ). The BTB/POZ domain with Ala-substitution is tethered to DNA through Gal4 DB (A-SubPOZ:DB) whereas the Δ513 is fused to the VP16 transactivation domain (Δ513:TA). White bars indicate the absence of SA while gray bars mean the presence of SA treatment.
Table 1. Operational Parameters of the S300 Gel Filtration Column.

V_t (Total bed volume of the column) = 100.5 ml

V_o (Void volume of the column evaluated with Blue Dextran 2000) = 38 ml

K_{av} = (V_s - V_o)/(V_t - V_o)

<table>
<thead>
<tr>
<th>MW Standards</th>
<th>kDa</th>
<th>Log MW</th>
<th>Ve (elution volume in ml)</th>
<th>K_{av}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferritin</td>
<td>440</td>
<td>2.643452676</td>
<td>48.27</td>
<td>0.16432</td>
</tr>
<tr>
<td>Catalase</td>
<td>232</td>
<td>2.365487985</td>
<td>53.62</td>
<td>0.24992</td>
</tr>
<tr>
<td>Aldolase</td>
<td>158</td>
<td>2.198657087</td>
<td>55.234</td>
<td>0.275744</td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>67</td>
<td>1.826074803</td>
<td>59.942</td>
<td>0.351072</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td>43</td>
<td>1.633468456</td>
<td>65.774</td>
<td>0.444384</td>
</tr>
</tbody>
</table>

Figure 7. Calibration curve obtained for the S300 gel filtration column. Five protein standards (Ferritin, catalase, aldolase, BSA, and ovalbumin) are used to establish a Sephacryl S300 standard curve in gel filtration.
<table>
<thead>
<tr>
<th>Fraction #</th>
<th>Elution volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From</td>
</tr>
<tr>
<td>50</td>
<td>34.567</td>
</tr>
<tr>
<td>55</td>
<td>37.117</td>
</tr>
<tr>
<td>60</td>
<td>39.601</td>
</tr>
<tr>
<td>65</td>
<td>42.118</td>
</tr>
<tr>
<td>70</td>
<td>44.635</td>
</tr>
<tr>
<td>75</td>
<td>47.119</td>
</tr>
<tr>
<td>80</td>
<td>49.636</td>
</tr>
<tr>
<td>85</td>
<td>52.16</td>
</tr>
<tr>
<td>90</td>
<td>54.644</td>
</tr>
<tr>
<td>95</td>
<td>57.127</td>
</tr>
<tr>
<td>100</td>
<td>59.618</td>
</tr>
<tr>
<td>105</td>
<td>62.135</td>
</tr>
<tr>
<td>110</td>
<td>64.659</td>
</tr>
<tr>
<td>115</td>
<td>67.143</td>
</tr>
</tbody>
</table>

Figure 8. Elution fractions and corresponding volumes for the S300 gel filtration analyses. Each fraction contains approximately 0.5 ml.

Table 2: Predicted and observed elution volumes establishing the NPR1 stoichiometry in 1 mM SA.

Data relating to Figure 7 (S300 Calibration curve).

<table>
<thead>
<tr>
<th>Anticipated Species</th>
<th>MW (kDa)</th>
<th>LogMW</th>
<th>Kav (Predicted)</th>
<th>Predicted Ve (mL)</th>
<th>Predicted Fraction number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPR1 monomer</td>
<td>66</td>
<td>1.819543936</td>
<td>0.377677209</td>
<td>61.60482554</td>
<td>103-4</td>
</tr>
<tr>
<td>NPR1 dimer</td>
<td>132</td>
<td>2.120573931</td>
<td>0.3003125</td>
<td>56.76953123</td>
<td>94</td>
</tr>
<tr>
<td>NPR1 trimer</td>
<td>198</td>
<td>2.29666519</td>
<td>0.255057046</td>
<td>53.94106538</td>
<td>88</td>
</tr>
<tr>
<td>NPR1 tetramer</td>
<td>264</td>
<td>2.421603927</td>
<td>0.222947791</td>
<td>51.93423692</td>
<td>84</td>
</tr>
</tbody>
</table>

Note: the calculation of data in this Table is based on the S300 calibration curve in Fig.7 and elution fractions and corresponding volumes in Fig.8.
3.4. NPR1 acts as a metal-binding protein

The metal-binding capacity of NPR1 was tested using Ni-NTA (nickel-nitrilotriacetic acid). Based on the principle of Ni-NTA, NTA coordinates Ni\(^{2+}\) through its carboxylate groups serving as a tetradentate ligand. Based on the valency of Ni\(^{2+}\), the column offers the possibility of binding a bidentate ligand. Usually, this column is used to purify proteins with a His-tag, which are then eluted with an elution buffer containing high concentration of imidazole. This molecule functions as a competitor of the His-tag because of its structure similar to histidine. The BTB/POZ domain of NPR1 fused to a Strep-tag at the NT was first tested for binding to Ni-NTA to see whether it could interact with a metal. The result showed that it did not bind to Ni-NTA since no BTB/POZ domain was eluted with a high concentration of imidazole (data not shown).

The metal-binding capacity of CT of NPR1 was then investigated using Ni-NTA by pull-down assays. The N-terminal deletion Δ513 fused with a HA-tag was chosen and could be detected using an anti-HA antibody. The reason for using Δ513 is that it contains two Cys residues. Cysteines have been shown to be capable of metal binding, which is observed in proteins containing zinc fingers. As shown on top panel of Figure 9, Δ513HA was collected from both flow-through and eluted fractions (starting from fraction 4 to fraction 10), which suggests that Δ513 binds to Ni\(^{2+}\) or that it could function as a metal-binding domain. To further confirm this hypothesis, EDTA, a chelating agent, was used in the preparation of the Δ513HA and to strip the Ni-NTA of associated nickel. The result revealed that all Δ513 directly passed through the
column and collected in the flow-through, indicating that the binding of Δ513 to column was prevented by the metal chelator EDTA. This result confirmed the previous observation that Δ513 is a novel metal-binding domain. As demonstrated previously, two Cys residues are present in Δ513 and are located in position 521 and 529 (Figure 4B). In order to examine whether the two Cys residues are important for metal binding, Δ513HA with two Cys residues mutated (Δ513 C521S/C529S) was used. It was found that mutation of these two Cys in Δ513HA prevented the binding of Δ513HA to Ni²⁺ because no protein was detected in the eluted fractions as shown in Figure 9 (Δ513 C521S/C529S). Similarly, the result of pull-down assay using Δ533HA which lacks the two Cys residues through deletion, showed all of the Δ533HA was collected in the flow-through. Together, these results suggested that these two Cys residues in position 521 and 529 are important for Δ513HA binding to Ni²⁺, which is consistent with previous finding showing that Cys residues are important for metal binding in zinc finger proteins. Since NPR1 is a novel metal-binding protein, similar experiments conducted with other metals, for example Zn²⁺ and Cu²⁺, may also be performed before drawing any conclusions about the specificity for a given metal.
Figure 9. Immunoblot analysis of the Δ513 HA N-terminal deletion of NPR1 binding to Ni-NTA, resolved by 14% SDS-PAGE and detected using an anti-HA antibody. Thirty micrograms of crude, flow-through, and wash fractions are loaded onto the gel. EDTA is a chelating agent. C521S/C529S indicates mutations simultaneously in both Cys-521 and Cys-529. Binding buffer contains 40mM imidazole whereas elution buffer contains 1M imidazole. Number 2-10 indicate fraction 2-10 containing the eluent collected from the Ni-NTA. Each fraction contains approximate 0.5mL.
Chapter 4. Discussion

Although Arabidopsis NPR1 is well known to play an important role in regulating PR gene expression and SAR induction after SA treatment (Després et al., 2003; Kumar and Klessig, 2003; Verk et al., 2008), the mode of action of SA in regulating PR genes remains unclear. Previous studies have shown that PR-1 gene activation requires the association of TGA2 with NPR1 which occurs upon SA treatment. This complex forms an enhanceosome that requires the core of the NPR1 BTBIPOZ domain and the oxidation of Cys-521 and Cys-529 located in the transactivation domain at the CT of NPR1 (Rochon et al., 2006). However, the question of how SA is involved in the PR-1 gene expression is still unknown. The results in our studies have shed some light on the mode of action of SA. Our results showed that the BTB/POZ domain at the NT of NPR1 interacts with Δ513 at the CT of NPR1, in vivo and in vitro, in the absence of SA treatment only (Figure 5). The data suggest that the BTB/POZ domain masks the autonomous transactivation domain containing two oxidized Cys at the CT of NPR1. Previous studies have reported a similar inhibitory function as that of the BTB/POZ domain of NPR1. For example, in the case of a zinc finger protein containing a BTB/POZ, the domain has been shown to inhibit the DNA binding activity of the zinc finger region (Bardwell and Treisman, 1994). In addition, the NPR1 BTB/POZ domain has been shown to be inhibitory to the N-terminal repression domain of TGA2 as it interacts with it to mask its function. The BTB/POZ domain also precludes the oligomeric form of TGA2 from binding to its cognate DNA sequence (Boyle et al., 2009). The in vivo and in vitro assays showed that in the
presence of SA, the interaction of BTB/POZ domain with Δ513 is abolished, suggesting that SA competitively binds with Δ513 (Figure 5 and 6). Since SA breaks the interaction between the BTB/POZ domain and Δ513, the transactivation domain at the CT of NPR1 becomes exposed, thereby leading to the formation of an enhanceosome comprised of NPR1 and TGA2, which finally results in PR-I gene activation (Rochon et al., 2006; Boyle et al., 2009). From the in vivo plant two-hybrid assays, it is difficult to conclude whether the binding of SA to NPR1 is direct or indirect, or whether any post-translational modifications such as phosphorylation is involved in disrupting the interaction between the BTB/POZ and the CT of NPR1. However, the in vitro pull-down assays indicated that the binding of SA to NPR1 is direct. Our results have provided a novel evidence to support previous studies showing that NPR1 does not interact with TGA2 in untreated cells because of binding between the NT and CT of NPR1 whereas the BTB/POZ domain of NPR1 interacts with N-terminal repression domain of TGA2 upon SA treatment due to the disruption of binding between the NT and CT of NPR1. SA acts as a competitor that frees the BTB/POZ domain from its association with the NPR1.

Even though our results from gel filtration showed that Arabidopsis NPR1 may function as an SA receptor (Figure 6), these results are less convincing because they were obtained with a mutated version of NPR1 compromised in the core of the BTB/POZ domain that may affect dimerization. Although this Ala-substituted mutant is necessary to obtain a sufficient amount of soluble protein to perform the gel filtration experiment, it may cause the binding of SA to NPR1 to be less stable.
However, when comparing the results of the plant two-hybrid using a wild-type BTB/POZ domain to those using the mutated BTB/POZ domain, we found that the obtained results were similar, suggesting that the mutation of the core of BTB/POZ domain by alanine substitution does not affect the interaction with the CT despite the fact that this mutation has been found to affect dimerization.

By gel filtration analysis, it was determined that NPR1 functions as an SA receptor (Figure 8). With respect to our results from gel filtration, it is difficult to make the conclusion that the binding of SA to NPR1 is direct or indirect, which remains to be further determined. Previous studies have reported the structures of SA-binding proteins including SABP2, which is one of the well characterized SA-binding proteins. Crystallographic analysis showed that SA is bound in the active-site pocket of SABP2, located in the C-terminal end, via hydrogen-bonding, polar and van der Waals interaction. The carboxylate group of SA is bound deepest in the pocket of SABP2, and one of its oxygen atoms is hydrogen-bonded to the side chain of the histidine in the catalytic triad with the phenyl ring of SA located in a highly hydrophobic environment (Forouhar et al. 2004). It is speculated that SA binds to Arabidopsis NPR1 via a similar mechanism, but further investigations are required before drawing any conclusion about it.

The gel filtration analysis revealed that NPR1 eluted as an oligomer without SA. Since it has been found that BTB/POZ domain of NPR1 interacts with the CT of NPR1 (Figure 5), the oligomerization of NPR1 can be explained by two possible mechanisms. One model invokes an intermolecular interaction between the BTB/POZ
domain and CT of NPR1, and the other one a combination of intramolecular and intermolecular interactions as illustrated in the model in Figure 10. Upon SA treatment, NPR1 eluted as a dimer (Figure 8). Since the NPR1 mutant used in gel filtration has been reported to affect dimerization, it is postulated that the dimerization of NPR1 could not be through the BTB/POZ domain but could be through the CT of NPR1 (Figure 10). However, future experiments are required to confirm this hypothesis. A previous study has reported a similar effect of SA on the protein MarR, which exists as a dimer. Salicylate binds to two sites on each subunit of the MarR dimer via hydrogen bonds due to the presence of the hydroxyl and carboxyl group of SA. In each of the sites, the salicylate ring sits over a hydrophobic side chain in a pocket (Alekshun, et al. 2001). This study of MarR has provided a new way to explain the binding of SA to NPR1 as a dimer.

One study by Tada et al. demonstrated that NPR1 fused with the green fluorescent protein (NPR1-GFP) is oligomerized in the cytosol and is reduced to a monomer when treated with DTT. The monomer enters the nucleus to activate PR genes (Tada et al., 2008). This finding that NPR1-GFP resides in cytosol as an oligomer is less convincing since GFP is capable of self assembling (Cabantous et al., 2005). Compared to the results showing that DTT converts the NPR1-GFP oligomer to a monomer, our results indicate that DTT has no effect on NPR1 conformation. One possibility to explain this discrepancy could be that other proteins may be present and participating in the reduction of the NPR1-GFP with DTT when analyzed in a cell-free assay, but not in our case in which a purified NPR1 is analyzed by gel
Figure 10. A proposed model showing the oligomerization of NPR1 without SA treatment and dimerization of NPR1 with SA treatment. Two possibilities are indicated for the oligomerization of NPR1 through different mechanisms.

The result in the top panel of Figure 9 showed that Δ513 fused with an HA-tag was collected in the flow-through as well as in the elution fractions. According to this result, it is difficult to make any conclusion on whether this protein binds to Ni-NTA strongly or to the NTA matrix when Ni$^{2+}$ is absent. It is also difficult to conclude whether the high concentration of imidazole (1M imidazole was used in our experiment) can sufficiently displace high amount of Δ513HA off the Ni-NTA even though it is demonstrated that high concentrations of imidazole are effective for
de-binding of 6XHis-tagged proteins from Ni-NTA (Qiagen) due to its similar structure with histidine. One possibility may be that the high concentration of imidazole may not be sufficient to elute all of the Δ513HA off the Ni-NTA if the binding affinity of Δ513HA to Ni\(^{2+}\) is high enough. Our results indicated that the addition of SA disrupted the interaction of the BTB/POZ domain with Δ513 (Figure 5 and 6), so we investigated whether SA can be used to elute Δ513HA off the Ni-NTA. Compared to the result obtained in Figure 9, higher amount of Δ513HA was detected in elutions (approximately 25 X higher) when 500 mM of SA was added in the elution buffer (data not shown), indicating that more Δ513HA could be eluted off the Ni-NTA with SA. This result suggests that 1M of imidazole is not strong enough to break the interaction of all the Δ513HA with Ni\(^{2+}\) compared with SA. However, the use of SA with a concentration of 500 mM could be too high to stabilize the interaction of Δ513HA with Ni-NTA since it may disrupt the structure of Δ513HA, thereby resulting in a chaotropic effect. Therefore, the use of a lower concentration of SA would be more meaningful in order to examine the effect of SA on binding of Δ513HA to Ni-NTA.

Our results indicated that the N-terminal deletion Δ513 is able to bind to Ni\(^{2+}\) in an EDTA-sensitive manner and so, functions as a metal-binding protein (Figure 9). The importance of the two Cys in Δ513 for this binding was also reported since an N-terminal deletion Δ533 lacking two Cys did not bind to Ni\(^{2+}\) and mutation of two Cys abolished the binding of Δ513 to Ni\(^{2+}\). Previous studies have demonstrated that several metal-binding proteins including ATFP3, which can bind Ni\(^{2+}\) and a variety of
other transition metals, for example, bacterial MerP protein, a mercury ions binding protein, and Arabidopsis SBP1, a cadmium binding protein, all contain the important metal-binding motif CXXC and all participate in metal homeostasis (Sahlman and Skarfsted, 1993; Dykema et al., 1998; Dutilleul et al., 2008). The ability of Δ513 to bind Ni\(^{2+}\) could be explained by the presence of a similar metal-binding domain CXXC within the protein in position 521 to 529 as shown in Figure 4B. The finding that metal-binding proteins bind metals via a core motif CXXC provides evidence to support our results showing that two Cys are important for metal binding. It is also consistent with previous observation showing that Cys are important for metal binding in the context of zinc finger protein. In order to understand the role of NPR1 as a metal-binding protein, it will be necessary to determine the ions to which NPR1 is able to bind in vivo.

One of the metal-binding proteins SBP1 was found to be overexpressed in response to oxidative stress, and to be involved in redox control of target proteins due to the presence of the CXXC metal-binding motif (Dutilleul et al., 2008). Similarly, NPR1 is also involved in redox processes. It resides in cytosol as an oligomer maintained through intermolecular disulfide bonds whereas after SA treatment, the NPR1 oligomer is reduced to monomers which translocate to the nucleus where they interact with TGA transcription factors to activate PR genes and SAR (Kinkema et al., 2000; Mou et al., 2003). These findings suggest that some of the metal-binding proteins may function similarly. In fact, metal-binding proteins have been reported to be involved in metal-ion transport, metal detoxification processes and metal-resistant systems.
(Dykema et al., 1998; Permina et al., 2006; Dutilleul et al., 2008). The discovery of
NPR1 as a novel metal-binding protein has provided a new insight into the role of
metal-binding proteins involved in plant defense systems. However, the role of NPR1
as a metal-binding protein remains to be further confirmed in future.

Since one study reported that SA is able to coordinate with metals such as copper
through its carboxylate groups as shown in Figure 11, one can speculate that the
binding of SA to NPR1 could be metal-dependent. However, more evidence is
required to confirm this hypothesis.

Figure 11. A model showing the binding of SA to a metal (Abuhijleh and wood, 2001).
Two salicylic acids on the left and right coordinate with copper in the centre and two
imidazoles on the top and bottom also coordinate with this copper. Cu, Im, and sal
indicate copper, imidazole and salicylic acids, respectively.
Chapter 5. Conclusions

In summary, we have shown that the BTB/POZ domain of the Arabidopsis NPR1 interacts with Δ513 at the CT of NPR1 by using in vivo plant two-hybrid assays and also in vitro pull-down assays. This interaction has been found to negate the function of the transactivation domain at the CT of NPR1. However, upon treatment with SA, this interaction is abolished through a mechanism which remains unknown. Furthermore, the conformation of full-length NPR1 is affected by SA when tested by gel filtration, suggesting that Arabidopsis NPR1 is an SA receptor. Further analysis by gel filtration shows that NPR1 exists as a dimer as well as an oligomer upon SA treatment. Strikingly, it has been found that Δ513 at the CT of NPR1 functions as a metal-binding protein by using pull-down assays and also that two Cys residues are important for the binding of Δ513 to metal.
Chapter 6. Future experiments

Even though examples of small molecule receptor, such as the estrogen receptor, are well understood nowadays, little is known about the function of the Arabidopsis NPR1 as a SA receptor. Thus, future work should focus on the examination of NPR1 as a SA receptor to see if the binding of SA to NPR1 is direct or indirect. To accomplish this, surface plasmon resonance (SPR) can be used to investigate the binding of SA to NPR1. The binding affinity of NPR1 with SA will be evaluated by a Biacore instrument. In SPR assay, NPR1 will be immobilized on the sensor chip with an active biological activity. Subsequently, running buffer containing SA will be injected to see whether SA directly binds to NPR1. In addition, radioactive tests are also suitable for the determination of the binding of SA to NPR1. Initially I would add SA labeled with radio-active 14C to NPR1 fused with a Strep-tag which is bound to Strep-tactin column. And then I would wash excess SA and finally take the beads and count the concentration of NPR1-SA complex by using scintillation counter. The binding affinity of NPR1 with SA can be determined once the dissociation constant is estimated while the concentration of NPR1 and SA can be calculated based on Bradford and radio-activity, respectively. More studies should be performed to provide more evidence for the finding that NPR1 is a novel metal-binding protein. Diverse metal ions including Zn$^{2+}$, Cu$^{2+}$, Ca$^{2+}$ can be used to investigate whether this metal-binding protein can bind other metals in addition to Ni$^{2+}$. I would use NTA column and charge it with different metal ions separately, and do the similar experiments as what I did for Ni$^{2+}$ using Δ513 by pull-down assays.
References

genes and resistance against bacterial and oomycete pathogens. Plant Journal 25, 563-574.

