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Abstract 

This thesis explored the development of several methodologies for the 

stereoselective construction of ligand frameworks and some of their applications. The 

first segment concerns the application of an enantioselective lithiation at an Sp3_ 

hybridized position adjacent to nitrogen by means of the widely used and typically highly 

effective enantioselective lithiation with (-)-sparteine. This investigation was intended to 

develop a method to install chirality into a system that would be converted into a family 

of diaminoylidenes for use as phosphine mimics in transition metal catalysis or as 

nucleophilic reagents. Molecular modeling of the system revealed some key interactions 

between the substrate and (-)-sparteine that provided general insight into the diamine's 

mode of action and should lend some predictive value to its future applications. 

The second portion focuses on the development of methods to access 1,2-

disubstituted aminoferrocenes, an underexplored class of metallocenes possessing planar 

chirality. Two routes were examined involving a diastereoselective and an 

enantioselective pathway, where the latter method made use of the first BF3-mediated 

lithiation-substitution to install planar chirality. Key derivatives such as 1,2-

aminophosphines, made readily accessible by the new route, were evaluated as ligands 

for Pd(II), Pt(II) and Ir(I). These complexes show activity in a number of transformations 

with both achiral and prochiral substrates. Optimization experiments were conducted to 

prepare enantiomerically enriched 2-substituted-I-aminoferrocenes by direct asymmetric 

lithiation of BF3-coordinated tertiary aminoferrocenes. A predictive computational model 

describing the transition state of this reaction was developed in collaboration with 

Professor Travis Dudding's group (Department of Chemistry, Brock University). The 
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predicted stereochemistry of the process was confirmed by single-crystal X-ray analysis 

of a 2-phosphino-l-dimethylaminoferrocene derivative. Enantiomerically pure samples of 

the aminophosphine ligands derived from this new process have given promising 

preliminary results in the enantioselective hydrogenation of prochiral alkenes and warrant 

further stUdy in metal-mediated catalysis. 
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Introduction 

There is an increasing interest III chiral compounds, frequently as a single 

enantiomer. This increased demand comes from materials SCIence applications, the 

flavour and fragrance industry, agrochemical synthesis, but in large part from the 

pharmaceutical industry, where many of today's prescription drugs are manufactured as 

enantiomerically pure compounds. Asymmetric synthesis may be achieved by using 

chiral starting materials from nature as building blocks, resolution of a racemic mixture 

or by asymmetric catalysis, where stereogenic elements are established by the use of a 

chiral catalyst. Since the 1970s, asymmetric catalysis has become an intensely 

investigated discipline of synthetic chemistry. The focus of research in the Metallinos 

group is directed toward the development of new classes of reagents for use in 

asymmetric synthesis and catalysis. Currently, these efforts are currently focused on two 

main areas: (i) the development chiral imidazolium and imidazolinium salts for use as 

precursors to diaminoylidenes, and (ii) the synthesis and investigation of 1,2-disubstituted 

aminoferrocenes. 

Part 1 of this dissertation will discuss an enantioselective synthesis of a 

benzimidazolylidene precursor starting from inexpensive and readily available 1,10-

phenanthroline, utilizing a (-)-sparteine-mediated enantioselective lithiation as the key 

step. This approach is unique as it represents the first documented case of lithiation of a 

benzo-fused piperidine and demonstrates the feasibility of ureas as directing groups for 

enantioselective lithiation. Given that piperidines are typically difficult substrates for 

enantioselective lithiation, a collaborative computational investigation was undertaken 
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and offers insight into the nature of the transition state, where key interactions of 

potentially general application were observed between (-)-sparteine and the substrate. 

Part 2 will outline two fundamentally different approaches to this problem and 

provide evidence to support the future investigation of aminoferrocenes by demonstrating 

their utility in several metal-mediated catalytic processes. First, a diastereoselective 

synthesis of aminoferrocenes will be approached by partial reduction of already known 

N-ferrocenyl phthalimide and subsequent use of chiral phthalimidine as an unprecedented 

nitrogen-based directing group for ferrocenes. The use of this directing group will allow 

conversion to the primary amine after the lithiation-substitution has been carried out and 

thus allow complete manipulation at nitrogen. Second, a route involving lithiation

substitution of a tertiary aminoferrocene-BF3 complex will be described. Products from 

this lithiation-substitution sequence, specifically 1,2-aminophosphines, will then be 

structurally characterized and used as ligands for palladium(II), platinum(II) and 

iridium(I), illustrating their competence as useful reagents. Lastly, work towards an 

enantioselective BF3-activated lithiation using chiral diamines will be presented, which 

allows for the synthesis of either enantiomer of these compounds, along with an 

assignment of absolute stereochemistry for the substitution products and a computational 

assessment of the transition state for deprotonation. 
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1 Enantioselective Synthesis of Chiral CrSymmetric Benzimidazolium Salts 

1.1 Historical 

1.1.1 Azolium Salts & Their Corresponding Diaminoylidenes 

Carbenes are defined as molecules containing a divalent and formally neutral 

carbon atom bearing six valence electrons, which were originally thought to be too 

unstable to allow isolation. I This has not always proven to be true, such as in the case of 

diaminoylidenes, a class belonging to the carbene family where the carbene carbon is 

situated between two nitrogen atoms. Diaminoylidenes may gain stability by steric 

shielding of the carbene carbon by large substituents on the nitrogen atoms and 

electronically by the electron-donating ability of the flanking nitrogen atoms. 

Diaminoylidenes may behave as nucleophilic compounds, which differs from the 

electrophilic reactivity of traditional carbenes. This is indicated by resonance forms 1a-c 

in Scheme 1, where structure 1 will be used to represent the average of la-c. 

r=\(B 
RN0NR 
.. 8 0 

1a 

---- r=\ 
RN"-../NR 
l,,-e(B 

1b 

(Br=\ 
RN~.N.R 

e 
1c 1 

Scheme 1. Diaminoylidene resonance structures. 

Diaminoylidenes were first investigated by Wanzlick2 in the early 1960s, where 

he postulated the existence of stable carbenes. Shortly thereafter, he3 and Ofele4 

independently prepared metal complexes (3 and 5 respectively) of diaminoylidenes 

(Scheme 2). 
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e 
Ph CI04 (E)I 

N 
[ ') Hg(OAch • 

N (-2 HOAc) 
\ 

Ph 

2 

Ph Ph 12 (E) 
I \ 

[)>-H9-<C] 2 CIO~ 
N N 
Ph P~ 

3 

Scheme 2. Wanzlick and Gfele's pioneering 
syntheses of diaminoylidene-metal complexes. 

In the following 20 years, few efforts followed these two seminal reports. It was 

not until 1991 , when Arduengo reported "A Stable Crystalline Carbene"s that the 

chemical community took note. Treatment of bis-adamantyl-substituted imidazolium 

chloride 6 with a combination of sodium hydride and catalytic DMSO led to 

diaminoylidene 7 (Scheme 3), which could be isolated and even stored (in the absence of 

oxygen and moisture). 

NaH, DMSO 

MeOH 

7 

Scheme 3. Arduengo's isolation of the first stable diaminoylidene. 

In the years following Arduengo's report and leading to the present, there has 

been a surge of interest in nucleophilic carbenes, particularly 5-membered cyclic 

diaminoylidenes. These may be further classified into three general groups: 

imidazolylidenes (8) with an unsaturated backbone, the benzo-fused 
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benzimidazolylidenes (9) and imidazolinylidenes (10) with a saturated backbone (Figure 

1). These may be arranged according to nucleophilicity/basicity or stability. 

Imidazolinylidenes (8) are typically the most reactive and least stable of the group. 

increasing nucleophilicity/basicity 

Q 
RN "'::::7 NR 

8 9 10 

increasing stability 

Figure 1. Comparison of the three main types of 5-membered diaminoylidenes. 

Diaminoylidenes are most commonly obtained from their azolium salts by deprotonation, 

although they may be obtained by other methods (e.g. reduction of thioureas, elimination 

of volatile compounds such as CHCh or MeOH, etc.) and have proven useful as 

phosphine mimics for ligands in transition metal-mediated transformations6 and as 

nucleophilic catalysts.7 A few selected applications are shown in Scheme 4. The first 

report8 using a chiral diaminoylidene ligand in an asymmetric transformation was 

mediated by Rh complex 13 and although only modest selectivity was achieved in the 

hydrosilylation, it marked the onset of a rapid development for this class of ligands. On 

the topic of selectivity, it should be noted that there is little consensus in peer-reviewed 

literature when reporting selectivities (i.e. as enantiomeric ratios or enantiomeric 

excesses) in asymmetric transformations. Some researchers9 have chosen to support the 

use of enantiomeric ratios and for the purposes of this thesis, enantiomeric ratios will be 

used predominantly, but enantiomeric excesses will be given for convenience. The 
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palladium complex of spirocyc1ic ligand 17, generated in situ by treatment with KH and 

catalytic t-BuOK, was shown to serve as a catalyst for very difficult Suzuki-Miyaura 

couplings to give tetra-ortho-substituted biaryls (16) as products.lo Most recently, 

diaminoylidenes have found application as catalysts themselves, such as in the 

transformation of cinnamaldehyde (18) and p-bromobenzaldehyde (19) into y-

butyrolactone 20. II 

1 equiv. SiH2Ph2 

1 mol% 13 

THF, -34°C, 2 d 

OSiHPh2 

Ph~ 
12 

90% conv. , 
66:34 er 

Q-CI + (HO)'B9- 3 mol% Pd(OAch, 

3.6 mol% 17 

K3P04 , PhMe, 

110°C, 16 h 
14 15 

H~ 
llABr 

19 

8 mol% 21, DBU 

10:1 THFlt-BuOH, 

rt, 15 h 

Q-9-
16 

O~h~ 
~O/~Br 

20 

80:20 dr 

F\ 
R, N NyR 

( 1 .\ 
CI-~ 

13 

R = 1-naphthyl 

21 

Scheme 4. Selected reactions using diaminoylidenes as ligands or catalysts. 

Within the continuum of ylidenes illustrated in Figure 1, nearly all of the 

investigations reported up to 2006 have focused on the species at either end (i.e. 8 and 

10). At the end of 2002, only one researcher reported the synthesis of chiral 

benzimidazolylidenes, but none of these had been applied to an organic transformation at 

that point. Diver prepared benzimidazolium salts 23a-d and 25 by Buchwald-Hartwig 
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aryl amination of 1,2-dibromobenzene, followed by cyclization of the two secondary 

amines and quatemization methods respectively (Scheme 5).12 

Q 1 equiv. HCI. 

RLNH HN-R2 (EtObCH 

22 

Sui, neat 
• 

100°C, 1.5h 

24 25 

Ph 
23b: R1 = Ph, R2 = ),.,~ 

Cy 
23c: R1 = Ph, R2 = ),.,"-.. 

Ph 
23d: R1 = Ph, R2 = ),.,~OMe 

Scheme 5. Benzimidazolium salts prepared by Diver. 

Since that time, only a handful of other chiral benzimidazolium salts have been reported, 

such as 26,13 containing a pendant chiral dioxane, and the bis(benzimidazolium) salts 2714 

and 28,15 containing central and axial chirality in the tether linking the two 

benzimidazolium fragments (Figure 2). 

SB~ 7~ 

f ~ f ~ 21 8 
- -

0=) <~=o 
(!)\ /(!) 

28 

Figure 2. Other reported chiral benzimidazolium salts. 

The preparation of salts 23a-d and 26-28 all relied on the same cyc1ization and 

quatemization techniques, necessitating that the chirality be positioned at either freely 
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rotating sites, or sites remote to the future site of reaction or metal attachment (i.e. the 

ylidene carbon). In contrast to the synthesis of chiral imidazolylidenes and 

imidazolinylidenes, which may be prepared by condensation reactions, the synthetic 

limitation of preparing benzimidazolylidenes by aryl amination or nitrogen quatemization 

methods was most likely responsible for the previous lack of investigation into this 

subclass of reagents or ligands. 

1.1.2 Methods for Preparing Chiral Octahydrophenanthrolines: Azolium Salt 

Precursors 

Given the lack of structural diversity in the benzimidazolylidene class, the 

Metallinos group has made an effort to fill this void, particularly with a focus on 

increasing the rigidity of derived systems to affect greater selectivity in asymmetric 

reactions. The Metallinos group began addressing this issue by reporting a 

benzimidazolylidene synthesis starting from ubiquitous phenanthrolines, made by 

reduction of the pyridyl rings and subsequent formylative cyclization, providing a 

tetracyclic framework for the benzimidazolium salt. 16 Methods relating to and for the 

preparation of chiral derivatives of this system are briefly described in the following 

sections. 

1.1.2.1 Diastereoselective Reduction 

Substitution of phenanthroline, itself a common chelating ligand for metals,17 by 

nucleophilic aromatic substitutionl8 (Scheme 6, A) or Friedlander Condensation19 

(Scheme 6, B) led to the 2,9- and 2,3-substituted derivatives respectively (30 and 34, 35). 
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A d=t>~ 1)1.1-3.0equiv.RLi ~~ /j - ~ ----''------'---" /j - ~ 
2) Mn02 -N N- -N N-

29 (51-84%) R 30 (R) 

B 

0=:. 0 
". 
32 

t-BuOK ~ 
,----t-B-u-O-H,- Q=N,F\Nd 

100°C 34 

(77%) 

@=o 
33 

,--_t-B_uO_K_ ~ 
t-BuOH, @=~Nd 
100°C 35 

(85%) 

,:~ ~~N~ 
36 (27%) 

NaBH3CN + 
80:20 HOAC/MeOHoR=>/j ~ 
reflux /j _ 

:. -N HN 
/'" 

37 (33%) 

~ 
38 (23%) 

NaBH3CN + 
80:20 HOAC/MeOH~/j ~ 
reflux /j _ 

-N HN 

39 (34%) 

Scheme 6: Nucleophilic aromatic substitution (A) and 
Friedlander Condensation (B) routes to variously substituted phenanthrolines. 

Adducts 34 and 35 were subjected to NaBH3CN in HOAc/MeOH at reflux and 

provided diamines 36 and 38 in low yields, accompanied by similar amounts of the 

tetrahydrophenanthrolines (37 and 39 respectively) resulting from reduction of the 

unsubstituted pyridyl ring (Scheme 6).20 It was also demonstrated that secondary 

diamines 36 and 38 could be converted to the target benzimidazolium salts, which now 

contain rigidified a-stereocentres in a tetracyclic framework, by standard cyclization with 

triethyl orthoformate and one equivalent of acid. 
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1.1.2.2 Resolution & Asymmetric Reduction 

Diamines derived from the reduction of 2- or 2,9-disubstituted phenanthrolines 

may also be reduced in a fashion analogous to that used for 2,3-disubstituted derivatives 

34 and 35, providing the corresponding mono- or disubstituted octahydrophenanthrolines 

in greater than 62% yield (with the exception of the 2-tert-butyl-substituted case) as a 

racemic mixture (plus meso isomer for the disubstituted derivatives)?O Enantiopure 

material, in these cases, would need to be obtained through a classical resolution. As 

efforts to separate diastereomeric salts with chiral counterions were unsuccessful,21 

resolution of covalent diastereomers was pursued.2o,22 A procedure developed for the 

resolution of 2,2' -bipiperidine by Herrmann was applied to the mixture of stereoisomers. 

Thus, cyclization of stereomeric mixture 40 with PCh, followed by addition of (-)

menthol and oxidation of the intermediate phosphorodiamidites with sulphur gave adduct 

41 with all three diastereomers in roughly equal quantities according to 31 p NMR analysis 

(Scheme 7). This mixture was separated by fractional crystallization from methanol to 

yield the pure stereoisomers. Removal of the phosphoryl group with LiAIH4 provided the 

enantiopure diamines (40), which were converted to the desired benzimidazolium salts 

under standard conditions. 

Although resolution provided the desired enantiopure benzimidazolium salts, it is 

not the most direct way to obtain them. More ideal would be an asymmetric reduction of 

the appropriately substituted phenanthroline. Toward this goal, several approaches for the 

reduction of quinolines are worthy of discussion. Firstly, Zhou developed an iridium

catalyzed hydrogenation using chiral phosphine ligands that produced the desired 2- and 

2,6-disubstituted tetrahydroquinolines in high yields and selectivites (Scheme 8).23 
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~ 
>-NQN--< 

Ph Ph 

1) PCI3, PhNMe2 

CH2CI2, reflux 

2) (-)-menthol 

rac-40a 

+ meso-40a 

3) Sa 

(86%) 

crystallize 

MeOH 

Qb 
Ph':- ,l" Ph 

S O(-)-menthyl 
(-)-42 

+ 

Qb 
Ph /J" Ph 

S O(-)-menthyl 

meso-42 

~ 
· >-(;N--< 

Ph sl'o Ph 

41;)"l 
LiAIH4' THF ~ 
reflux • )-NQN-{ 

Pn Ph 
(77%) (-)-40a 

LiAIH4' THF 

reflux 

(41%) 

• q;o ~ /; 

NHHN 
Ph Ph 

meso-40a 

Scheme 7. Resolution of 2,9-diphenyl-octahydrophenanthroline (40). 

~ 
0.25 mol% [lr(cod)CI]z, 46 

41 bar H2 co~ 
~NAR 

43 

R = alkyl 

12 or CbzCI, Li2C03 

(80-92% yield, 

94:6-95:5 er) 

E102CXX02El 

I I 48 
N 
H 

2 mol% 49 

43 PhH, 60°C 

R = alkyl, aryl (54-95% yield, 

93.5:6.5- >99:<1 er) 

~ N "'Alk 
G 

G = H (44) 

= Cbz (45) 

~ ~NAR 
H 

47 

<0 
o 

(S)-SEGPHOS (46) 

49 

R = 9-phenanthryl 

Scheme 8. Zhou and Rueping's methods for quinoline reduction. 

Zhou's original method used molecular iodine to activate the substrate, but a later, more 

general procedure employed CbzCl and base, thus affording protected 
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tetrahydroquinolines 45. The major drawback to this procedure is its lack of tolerance for 

2-arylated substrates; however in their final report,23a Zhou et al. reported the reduction 

of 2-phenylquinoline with moderate success, where the reduction product (45, R = Ph) 

was obtained in 41 % yield and 90: 10 er (with opposite stereochemistry from all other 

products). 

Secondly and concurrent with Zhou, Rueping disclosed an organocatalytic 

reduction of 2-substituted quinolines with a broader substrate scope. 24 When a catalytic 

amount of 3,3' -diarylbinaphthylphosphoric acid 49 (2-naphthyl groups provided slightly 

lower, but acceptable, selectivity) was used to proton ate the quinolines and form a tight 

ion pair, 2.4 equivalents of Hantzsch dihydropyridine 48 allowed for complete reduction 

of the pyridyl ring. The only substrates tested that provided any resistance to the method 

were those with bulky aryl substituents (o-tolyl, 54%, and 2,6-xylyl, 65%). 

Based on these results, Rueping's method was applied to 2- and 2,9-disubstituted 

octahydrophenanthrolines (30).25 As has been observed by the Metallinos group, 

transformations of phenanthrolines compared to the analogous quinolines (and pyridines) 

often prove more difficult. When R' is an alkyl substituent with minimal steric bulk, the 

reduction products are obtained in ~50% yield with a 90: 10 er; after isolation of the 

diamine products (40), conversion to ureas 50 facilitated measurement of 

enantioselectivity by chiral HPLC (Scheme 9). Upon introduction of bulkier groups, the 

yields and selectivities decreased (R' = i-Pr: 28% yield, 70:30 er). In contrast, 2,9-

dialkylphenanthrolines (R', R2 = Me, n-Bu) were reduced in 72-88% yield with near 

perfect selectivity (and a diastereomeric ratio of 3:2 ent:meso). 2-Phenyl phenanthroline 

was reduced in low yield but excellent er, while 2,9-diphenylphenanthroline underwent 
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reduction of only one pyridyl ring in high yield and lower. While the results were not 

definitive, a secondary interaction such as 1t-stacking, was suggested as being responsible 

for the switch in yield and selectivity of the phenyl-substituted derivatives. 

w:w
~ 6 equiv. 48, 

Ij , _ ~ 2-10 mol% 49 • 

-N N- PhH, 60°C, 24 h 

R1 R2 (11-88% yield, 
30 

70:30- >99:<1 er) 

ct=b 
R1 R2 

40 

o 
CI3CO)lOCCI3 

Et3N, THF, rt 

Scheme 9. Organocatalytic reduction of 2- and 2,9-disubstituted phenanthrolines. 

Substrates that gave lower yields were accompanied by significant amounts of partially 

reduced material, where one substituted pyridyl ring was left intact. In summary, this 

method proved capable of producing sterically unencumbered alkyl-substituted 

octahydrophenanthrolines (2- or 2,9-) in good yields and with high selectivities. 

1.1.2.3 Asymmetric a-Induction 

One additional method that was considered for the preparation of chiral 

octahydrophenanthrolines with stereo genic centres a to nitrogen was the direct 

installation of substituents at an adjacent sp3-hybridized C-H bond.26 

Shono and Matsumura have developed a procedure to electrochemically oxidize 

N-carbomethoxypyrrolidines27 and piperidines28 at the a-position in good yields. The 

N,O-acetal (52) generated from the piperidine was used to efficiently access 

methylphenidate (Ritalin®, 54) through a diastereoselective TiCl4-mediated C-C bond-

forming reaction (Scheme 10). Attempts to carry out the analogous transformation on 

biscarbamate 55 to generate aminal 57 were unsuccessful. 29 
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0 
I 
C02Me 

51 

_2e8 

Et4NBF4 

MeOH 

(85%) 

o 0 

Ph~NAO 
'--l 

i-P/ 

TiCI4, i-Pr2NEt 

CH2CI2, -78°C 

(54%, >95:<5 dr) 

~ 
CN>=<N~ 

8 
- 2e ~ 
MeOH /, 

I I 
R02C C02R 

R = Me (55) 

= t-Bu (56) 

---- OJOMe 
H Ph 
Ritalin® (54) 

Scheme 10. Electrochemical C-H activation of protected N-heterocyc1es. 

Alternatively to electrochemical activation, Davies has developed a great deal of 

C-H insertion chemistry using chiral rhodium prolinate complexes such as Rh2[(S)-

DOSP]4 (64) and Rh2[(S)-biDOSPh (65), for pyrrolidine, piperidine and indoline 

systems.30 Davies observed that even at low temperatures, Rh-catalyzed decomposition of 

methylaryldiazoacetates in the presence of N-Boc pyrrolidine (58) resulted in the 

formation of C-H insertion product 59 with excellent enantio- and diastereoselectivity. 

Even double C-H insertions were possible, leading to 2,5-disubstituted pyrrolidines. 

Screening of catalysts, solvents and stoichiometry were required to achieve reasonable 

selectivities for the reaction with N-Boc piperidines (60), as notable differences in 

reactivity were displayed compared to 5-membered ring analogue 58. This trend was also 

observed for benzofused N-Boc indo line (62); however very good selectivities were still 

obtained, despite the need to use elevated reaction temperatures. When Rh-catalyst 64 

was used to decompose methylphenyldiazoacetate in the presence of protected 
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octahydrophenanthrolines 55 or 56, no reaction was observed and only the starting 

material could be partially recovered. 31 

Q 
I 

Boc 
58 ' 

N2 

1) Me02cAAr ' 64 

hexanes, -50°C O.",(Ar 
.. N 

2) TFA, CH2CI2 H C02Me 

(49-72%, 96:4-97:3 er, 96:4-97:3 dr) 59 

N2 

1) Me02cAPh ' 65 o 2,2-dimethylbutane, - 50°C 0 
~ -2-) -T-FA-,-C-H-2-C-12----...... • ~ ."'( Ph 

Boc (52%,93:7 er, 87:13 dr) C02Me 
60 61 

\ 

N2 

1) Me02cAp.BrCsH4 ' 64 

2,2-dimethylbutane, 50°C 

2) TFA, CH2CI2 

62 Boc (38%, 95:5 er, 97:3 dr) 

rQ-<:tI: 
S02Ar t 

Rh2[(S)-DOSP14 (64) 

2 

Rh2[( S)-biDOSP)z (65) 

Ar = p-CH3(CH2)1Q.12C6H4 

Scheme 11. Rh-catalyzed C-H activation of protected N-heterocycles. 

Last, consideration should also be gIVen to asymmetric deprotonation-

electrophilic substitution reactions at Sp3 -positions a to heteroatoms (i.e. nitrogen), 

discussed in detail in the following section. 

1.1.3 Organolithium Compounds 

1.1.3.1 Organolithiums 

The earliest report of an organolithium compound, prepared by transmetalation of 

dimethylmercury, was made by Schlenk and Holtz32 in the early twentieth century and 

marked the beginning of this branch of chemistry. Subsequently, the first report of 

metalation with an organolithium was made, whereby 9-fluorenyllithium was produced 

by the action of ethyllithium on fluorene. 33 Following these discoveries, Ziegler34, 
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Wittig35 and Gilman36 showed that organolithiums could also be conveniently generated 

by reaction of lithium metal with organic halides. In the 1970s, the investigation of 

organolithiums as polymerization catalysts37 for unsaturated hydrocarbons led to their 

commercialization, increasing availability and thus allowing further development of the 

field into a fundamental part of contemporary synthetic chemistry. The chemistry of 

organolithium compounds has since been greatly developed and various aspects have 

been reviewed. 38 

The strongly polarized nature of organolithiums is responsible for their typical 

behaviour as strong nucleophiles in addition reactions (to carbon-carbon double bonds, 

carbonyls, imines and other functionalities, such as epoxides and oxetanes) and exchange 

reactions (Sn~Li, P~Li, S~Li, Se~Li, Te~Li, Br~Li, I~Li), or as strong bases for 

deprotonation. Nearly 45 years elapsed from the first report of an organolithium to their 

application in an enantioselective process. In the late 1960s, Nozaki and coworkers 

reported their seminal work on the asymmetric synthesis of allenes from gem-

dibromocyclopropanes39a and additions to carbonyls39b in the presence of the bidentate 

diamine (-)-sparteine (66), of which one conformer (66a) may act as a ligand for lithium 

(Figure 3). 

~~~ 
~N~ 

H 

(-)-sparteine [(-)-66] 

dIe 
H 

H -a-isosparteine (67) 

cf'J) 
H 

(+)-sparteine [(+)-66] 

rfv~~ 
~N~ 

H 
(-H-isosparteine (68) 

Figure 3. (-)-Sparteine conformers and isomers from the Lupin family of alkaloids. 

16 



Following sporadic research in the 1970s, Hoppe reported the first breakthroughs in 

asymmetric deprotonation-electrophile trapping with (-)-sparteine [( - )-66] in the late 

1980s, where O-alkyl carbamate carbanions (70) were generated and shown to react with 

various electrophiles with a high degree of enantioselectivity (Scheme 12).40 This work 

garnered much interest from the synthetic community, as it gave rise to new methods for 

preparing compounds with Sp3 -hybridized chiral centres beside heteroatoms.41 

s-BuLi, 1) Ti(Oi-Pr)4 

~ Hs ,HR (-)-sparteine 
/'-. ~ . 

i-Pr2N 0 ~ CH3 Et20, -78°C 

2) RCHO 

3) H20 

69 
71 

70 90: 1 0-92.5:7.5 er 

Scheme 12. First reported use of (-)-sparteine in highly enantioselective deprotonation. 

Industrial interest in anionic polymerization also led to the finding that small 

amounts of Lewis base additives could significantly alter the reactivity of organolithiums. 

Most of these additives are bidentate and contain tertiary amines,42 ethers, alkoxides or a 

combination thereof, although some tridentate ligands are used as well. (-)-Sparteine43 

[(-)-66], or lupinidine, is the predominant alkaloid in Lupinus mutabilis and a member of 

the Lupin family (Figure 3) of alkaloids. It is the most widely used and studied ligand for 

asymmetric transformations that use organolithium reagents. A major drawback of 

enantioselective (-)-sparteine-mediated transformations leading to a configurationally 

stable single-enantiomer intermediate is that one would require (+)-sparteine [(+)-66], or 

pachycarpine, to access the opposite enantiomer. (-)-Sparteine [(-)-66] was first 

isolated44 in 1851 and is available commercially, readily isolated in large quantities from 
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the extracts of bitter lupin seeds, whereas the (+)-66 is much less abundant and is more 

often (semi)synthesized.45 This has led to considerable interest in methods46 to 

circumvent this shortcoming and, more generally, the search for effective (+ )-sparteine 

surrogates. 47 

1.1.3.2 a-Lithioamines: Lithiation of 5- & 6-Membered N-Heterocycles 

Shortly after Hoppe's disclosure of the high enantioselectivity provided by (- )-

sparteine [(-)-66] in the lithiation-substitution of O-alkyl carbamates (69), Beak reported 

an equally successful synthesis of enriched 2-substituted N-Boc pyrrolidines (58).48 There 

is strong evidence to support an asymmetric deprotonation step leading to u-

lithiopyrrolidine (72), which may then be trapped with various electrophiles in typically 

good yields and excellent enantioselectivities, furnishing the enriched 2-substituted 

pyrrolidines (73a-e, Scheme 13). 

Q s-BuLi , (-)-66 N e n " 'E n",J ) ~oAo 
• .~ N Et20 , -78°C N I--N -78 °C ~ rt A 
~AI o 0 

o 0 
58 asymmetric 72 stereos elective 73 

deprotonation substitution 

Product E Yield (%) er (% eel 

73a CH3 88 3:97 (94) 

73b C02H 55 6:94 (88) 

73c C(OH)ph2 75 5:95 (90) 

73d SnBu3 83 2:98 (96) 

73e SiMe3 87 2:98 (96) 

Scheme 13. (-)-Sparteine-mediated enantioselective substitution of N-Boc pyrrolidine. 
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While exploring the reaction parameters,48b what are now typical trends were observed: if 

the reaction was carried out at temperatures higher than -78°C, erosion of selectivity 

occurred. Sub-stoichiometric amounts of the ligand or strongly coordinating solvents, 

THF49 in particular, also led to significant losses in er due to competitive coordination 

with the alkyl lithium. 

A number of ligands (Figure 4) were screened48b,50 in addition to (-)-sparteine 

[(-)-66]. Of these, only two, pyrrolidine derivative 74 and bispidine 88, provided the 2-

SiMe3 product (73e) with selectivities approaching that of (-)-66 but in diminished 

yields. Of note are the Crsymmetric ligands51 (-)-a-isosparteine (67) and (R,R)-TMCDA 

[(R,R)-87]. (-)-a-Isosparteine (67) provided only a small amount of 73e, albeit with 

moderate enantioselectivity. Beak attributed this lack of reactivity to an overly crowded 

transition state where the Li atom becomes too encapsulated to be reactive, which 

becomes apparent from analysis of simple space-filling models (Figure 5). (R,R)

TMCDA [(R,R)-87] provided an excellent yield, but with no asymmetric induction 

detected. Wiberg and Bailey conducted a computational study, where this lack of 

selectivity was ascribed to a lack of steric interaction between (R,R)-87 and N-Boc 

pyrrolidine (58).52 It was suggested that a trans-diaminocyclohexane bearing branched 

alkyl groups might improve this. 
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liO-KJ Ph Ph 
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Me0:t> dJ:o O~nN 
NMe2 a NMe2 
NMe2 

' NMe2 
-',...-OMe H 

84: n = 1, -24% 86 (R,R)-87 67 

85: n = 2, -16% not determined 0% (90% yield) 61% (10% yield) 

G)/ 
Ph1N 

G)/ 
CY1N PhyO) G)~Ph 

Ph1N 

G)/ 
:)N 

88 89 90 91 92 

-75% (Et2O) -34% (Et2O, -16% (Et20) -1% (Et2O) 27% (Et2O) 

-28% (t-BuOMe) MePh or pent) -20% (MePh) 

-35% (MePh) 

Figure 4. Ligands screened in enantioselective substitution of N-Boc pyrrolidine. 

Lithiation and electrophile-trapping of piperidines is also possible.53 The 

homologous N-Boc piperidine (93), however, does not behave analogously in an 

asymmetric environment. 54 Deprotonation is considerably slower and less selective 

relative to 58, providing only about 8% of 2-TMS piperidine 94 with an er of 13: 87. 
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TMEDA·Li (-)-66'Li 67·Li 

Figure 5. Space-filling models of diamine-Li complexes illustrating 
the extent of encapsulation of the Li atom. 50 

The major product of the reaction was enamine 95 (43%), along with an isomeric mixture 

of ketone 96 (9%) resulting from the attack of s-BuLi on the carbonyl of the Boc group 

(Scheme 14). The sense of enantioselection was confirmed by X-ray diffraction analysis 

of the p-bromobenzamide derivative (97) and shown to be the same (S)-configuration as 

the substituted N-Boc pyrrolidines (73a-e). That is, treatment with s-BuLi'(-)-sparteine 

involves the preferential abstraction of the (equatorial) pro-S hydrogen. Again, alternative 

ligands (-)-TMCDA [(-)-87] and (+)-sparteine surrogate 9847a,c-e were only able to offer 

better chemical yields, with no improvement in selectivity. 

0 1) s-BuLi, ligand 

O"'SiMe3 
0 0 

Et20 , -78°C, 16 h 

~ • + ~+ 
t-BuOAO 

2) Me3SiCI 
t-BuOAO 

93 94 95 96 

ligand = (-)-66: 8%, 13:87 er 43% 9% 

O"'SiMe3 
a NMe2 ClD /N :.: 

94 
1) TFA, CH2CI2 ' NMe2 H . 
2) p-Br-C6H4-COCI o~ (R,R)-87 98 

~ Br 36% 28% 

(S)-97 45:55 er 73:27 er 

Scheme 14. Enantioselective substitution of N-Boc piperidine (93) and 
absolute stereochemical determination via bromobenzamide (S)-97. 
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Directed lithiation using Boc carbamates has also been applied to benzo-fused 

systems, such as the tetrahydroquinolines and indo line derivatives. Meyers carried out 

numerous comprehensive studies on the lithiation of nitrogen-containing heterocycles. It 

was demonstrated that the Boc group predominantly directs lithiation to the 8-position of 

99 under achiral conditions, producing only small amounts of 99_d/. 55a Substitution at C2 

only proved significant if C7 was already substituted. Treatment of 99-d/ under the 

typical metalation conditions for 6 h, followed by quenching with MeOD, led to 99-d2 in 

90% yield (Scheme 15). In contrast, metalation of the t-butylformamidine derivative 

(100) first took place at C2 to give 100-d/. 

1) s-BuLi , TMEDA, 

W W THF, -78°C 

2) E+ 
~ N 

E=D 
~ N 0 

E oAOt-Bu o oAOt-Bu 

CO E=Li(101) 99-d2 

~ N 
= 0 (99-d t ) 

R 

R = Boc (99) 1) t-BuLi , eel ~D = tbf (100) THF, -78 °C ~ N E 
2) E+ E=D N 0 

~ ~Nt-BU Nt-Bu 
E = Li (102) 100-d2 

= 0 (100-d t ) 

1) t-BuLi , THF, -20 OC~ 
100-d2 k · 

2) CD30D 

w,o 
N 0 

o ~Nt-BU 
100-d 3 

Scheme 15. Contrasting regioselectivity for Boc- (99) and tbf-protected (100) 
tetrahydroquinoline derivatives in lithiation-substitution. 

Interestingly, exposure of 100-d/ to metalation and MeOD quench provided the gem-

dideuterated product (100-d2) exclusively, which would not undergo further substitution 

(at C8) to form 100-d3 even after an extended reaction time of 18 h. Only recovered 
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starting material and/or decomposition products were observed in this case. A point of 

difference betweeen 100 and 99 is that the tbf derivatives required the reaction to be 

carried out with t-BuLi in THF at -20°C, while reaction of the Boc derivative could be 

performed with s-BuLi and TMEDA in Et20 at -78°C, thus precluding a direct 

comparison. Comparison of the Boc and t-butylformamidine derivatives led Meyers to 

suggest that conformational populations, in addition to the electronic nature of the 

directing groups and the metalation conditions, played an important role in the kinetic 

acidities of the protons in question. 

Results for the Boc (103) and tbf indo line derivatives mirrored those described for 

the tetrahydroquinolines derivatives above (99, 100). Subsequently, Beak described the 

enantioselective substitution of N-Boc indoline (103) and N-Boc-7-chloroindoline (104) 

in which metalation on the arene artha to the directing group was blocked. 56 Selected 

results for the enantioselective lithiation-substitution of 103 and 104 leading to the (S)

configured products are shown in Scheme 16. Although the er is typically higher for 

105a-c, lithiation of 104 appears to be easier judging by the shorter reaction times. This 

fact is supported by a competition experiment where a mixture of 103 and 104 was 

exposed to lithiation (s-BuLi, (-)-66, i-PrPh, -78°C) in which 104 reacted nearly eight 

times faster than 103, where the 7-chloro substituent was absent. Of note is the aspect of 

regioselectivity in the lithiation of 103 compared to the above results of Meyers; whereas 

he obtained predominantly 8-substituted tetrahydroquinoline products upon lithiation

substitution of 99 using TMEDA, Beak observed mostly substitution at the indoline 2-

position with (-)-sparteine [(-)-66] with < 5% of the 7-substituted regioisomer. Again, 

given that the reaction solvents are not the same, a definite conclusion cannot be made. 
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for 103: s-BuLi , (-)-66 Product E Yield (%) er (% eel 
i-PrPh, -78 cC, 6 h 105a SnMe3 70 1 :99 (98) 

~ 
for 104: s-BuLi, (-)-66 

~"E 
106a SnMe3 75 13:87 (74) 

t-BuOMe, -78 cC, 3 h 105b C(OH)Ph2 11 7.5:92.5 (85) ..-::; N • ..-::; N 
R Boc then E+ \ 

106b C(OH)Ph2 77 14:86 (72) R Boc 

R=H(103) R=H(105) 105c CH2CH=CH2 28 32:68 (36) 

= CI (104) = CI (106) 106c CH2CH=CH2 32 45:55 (10) 

Scheme 16. (-)-Sparteine-mediated enantioselective substitution of N-Boc indolines. 

A set of experiments where 104 was treated under achiral conditions (s-BuLi, TMEDA, 

Et20, -78°C, 1 h) provided (±)-106 in 79-89% yield (with the exception of Mel and 

CH2=CHCH2Br as electrophiles), which further illustrates that blocking a competitively 

lithiated position is a viable way to achieve regioselective substitution. 

1.1.4 Ureas as Directing Groups for Lithiation 

Although only tbf and carbamoyl directing groups have been used for lithiation of 

saturated N-heterocycles, many others are possible for any given substrate. 38g,i The urea 

functionality is one group that has been sparsely applied as a directing group in lithiation 

chemistry and, to the best of our knowledge, never in a (-)-sparteine-mediated reaction 

with a prochiral substrate. Reported examples for non-prochiral substrates include 

indolyl-N,N-diethylurea (107),57 N-aryltetrahydropyrimidinones (108),58 N' -aryl-N,N-

dimethylureas (109)59 and diaryl ureas 11060 and 111 by Clayden (Scheme 17). Shortly 

after reporting the chemistry on 110, Clayden's group discovered a highly stereoselective 

rearrangement of lithiated intermediate 111, which proceeds by N-to-C aryl migration 

when the reaction was carried out in the presence of DMPU. This methodology was 
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extended to the synthesis of chiral diarylmethylamines (114) by subsequent cleavage of 

the urea (113).61 

111 

t-BU~ 

HNyNyyOMe 

00 

s-BuLi , DMPU 

THF, -78°C 

108 

..... N N Li r Me Me 1 
Ar1 I( 'Y" 

o Ar2 

112 

H 
~NI(NMe2 

CI~ 0 

109 

Me Me 
,N~Ny'Ar1 

E II 1""/ 
o Ar2 

113 

110 

----
Scheme 17. Previously employed urea directing groups (107-111), and 

rearrangement of lithiated intermediate 112. 

114 
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1.2 Aims & Objectives 

The aim of the work that follows was to explore the feasibility of a new method, 

namely asymmetric a-induction by deprotonation-electrophile quench, for the preparation 

of chiral C1- and possibly Crsymmetric benzimidazolium salts based on the 

octahydrophenanthroline framework. This route would complement those already 

discussed: diastereoselective reduction (Section 1.1.2.1), reduction-resolution, 

asymmetric reduction (Section 1.1.2.2) and asymmetric a-induction by Rh-catalyzed C-H 

activation (1.1.2.3). The objectives are as follows: 

1. To find a suitable group to direct lithiation to the position a to nitrogen. 

2. To optimize and define the scope of the reaction in terms of asymmetric induction and 

electrophiles. 

3. To determine the absolute stereochemistry of the substituted products. 

4. To find a method to convert the chiral products to ylidene precursors (preferably 

benzimidazolium salts). 
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1.3 Results & Discussion 

1.3.1 Lithiation of Octahydrophenanthroline Derivatives: Access to Chiral 2-

Substituted Benzimidazolium Salts 

At the onset of a program directed towards the use of reduced phenanthrolines in 

asymmetric catalysis,16,62 (-)-sparteine-mediated enantioselective lithiation appeared to 

be a direct path to rigid C1-, and possibly, Crsymmetric molecules. Moreover, the urea 

functionality would serve as a useful directing group for post-substitution modification to 

potentially interesting compounds (e.g. ylidenes or phosphorodiamidites) for catalytic 

applications. A former undergraduate student conducted some substrate preparation and 

preliminary experiments for this work. 63 Considering the amount of work reported on the 

lithiation of Boc carbamates, the most logical derivative to test was bis-N-Boc 

octahydrophenanthroline (117). This was synthesized by heating a mixture of BOC20 and 

octahydrophenanthroline (116),62d which was prepared from readily available 1,10-

phenanthroline (115) by reduction (Scheme 18). The use of any solvents in the Boc 

protection step afforded mixtures of mono- and bis-protected products. The broadened 

NMR spectra of 117 clearly showed the presence of rotamers. The spectra may have been 

complicated further by steric interactions between the two bulky tert-butyloxycarbonyl 

groups projecting towards each other in the "bay region" of the molecule. Lithiation of 

117 under standard (1.2 equivalents s-BuLi, TMEDA, -78°C, THF) or more forcing 

conditions (3.2 equivalents s-BuLi, TMEDA, -78°C) provided no evidence of a

substituted products (117-dJ, 118) after quench with MeaD. Trials using (-)-sparteine 

[(-)-66] in Et20 and methyl iodide to quench the putative carbanion also resulted only in 

recovery of 117. 
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6b 
NaBH3CN 

db 
Boc20 

7:3 HOAclMeOH ~ /; neat, 50 °C .. 
reflux NHHN 12 h 

117 

(55-65%) 

115 

1) 1.2-3.2 equiv. s-BuLi, 

TMEDA or (-)-66, 

THF or Et20 , -78 OC~ .. 

2) MeOD or Mel ~ 

(73%) 

116 

~ 
~~M~~ 

I I 
Boc Boc E 

117-d1.118 

db . 
N N 
I I 
Boc Boc 

117 

Scheme 18. Preparation and attempted lithiation ofbis N-Boc substrate 117. 

The difficulty faced in the lithiation of 117 suggested that the Boc directing groups were 

unable to adopt the required conformations in which the coordinated alkyllithium was in 

close enough proximity to abstract one of the a-hydrogens.64 Molecular modeling with 

Spartan02 provided support for this by allowing calculation of the ground state 

conformers for 117 based on a Boltzmann distribution. Four distinct conformational 

populations (117a-d, Scheme 19) were found to reside within 1 kcallmol of the global 

energy minimum, and visual inspection revealed that both faces of the ring system were 

significantly blocked by the two Boc groups. The Boc groups were oriented above and 

below the mean plane of the piperidyl rings by a gear-like interaction enforced by their 

steric bulk. This conformational arrangement inhibited close approach of the s-

BuLi·diamine complex to an a-hydrogen, thus preventing lithiation. 
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117a 

Me 
MetMe 

6t0;,fo0 
~ ,10 N 

I 

M A e : Me 
117b Me 

Me !VIe 

r--Me 0yO 

~il 
~O 

117d ° }-Me 
Me Me 

Scheme 19. Boltzmann-based conformational states of 117. 

To facilitate lithiation at the 2-position, a smaller directing group would be required, one 

that could bring the organolithium-diamine complex in proximity to the a-hydrogens. 

Bridging the two nitrogens with a carbonyl to make a urea would place the carbonyl in 

the plane of the rings and provide a favourable geometry to allow for deprotonation. To 

this end, cyc1ization of diamine 116 with triphosgene provided 119 as a highly crystalline 

compound in good yield. When subjected to asymmetric lithiation conditions, 119 

gratifyingly afforded monodeuterated 119-dJ in 50% yield with >95% D-incorporation. 

Some ring-opened amide 121 (Scheme 20) was also isolated from the reaction mixture 

(18%). Notably, 2.2 equivalents of alkyllithium were required for complete consumption 

of starting material, as incomplete deuteration was observed when only 1.2 equivalents of 

base were used. The high yield of 119-d/ relative to Beak's 2-TMS substituted N-Boc 

piperidine (8%) was encouraging initially. However, the use of Mel as electrophile in this 

transformation gave methyl adduct 120a in lower yield (25-30%) an er of 20:80. The 

enantioselectivity could be improved somewhat to 16:84 when i-PrLi was employed as 

the alkyllithium. Trapping of the intermediate carbanion with benzophenone gave similar 

results. Attempts to improve the yield and enantioselecivity of these reactions by addition 

of pre-complexed i-PrLi·(-)-66 to the substrate (entries 5 and 6) were not fruitful. In 
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addition, reproducibly better yields and enantiomeric ratios were obtained by transferring 

the putative carbanion to a solution of either electrophile in THF at -78 DC. This 

observation may be attributed to displacement of (-)-sparteine from the carbanion by 

THF, implying that the intermediate possessed configurational stability and that the 

deprotonahon step was enantiodetermining, as with N-Boc pyrrolidine (58). Attempts to 

use Me3SiCI or CH2=CHCH2Br as electrophiles gave only trace amounts of the products, 

a phenomenon that had been observed before with N-Boc piperazines.65 

c9.J 
0 

6.b 
1) 2.2 equiv. RLi, (-)-66, 

db db ~ ~ CI 3CO.Jl.OCCI3 Et20, -78 °C, 4 h ~ ~ ~ ~ • 
NyN E + NHHN Et3N, THF, rt 2) E+, THF, -78 °C, 2 h NH N NyN 

3) NH4CI , -78 °C --+ rt 

12~Y 0 0 
117 119 119-dt , 120a,b 

E+ = MeOD, 
Product RLi E+ E Yield (%) er (% eel 18% yield 
119-dt s-BuLi MeODa D 50 n.d. 

120a s-BuLi Mel Me 25-30 20:80 (60) 

120a i-PrLi Mel Me 25-30 16:84 (68) 

120b i-PrLi Ph2CO C(OH)Ph2 17-27 16.5:83.5 (67) 

120a i-PrLib Mel Me 12 19:81 (62) 

120b i-PrLib Ph2CO C(OH)Ph2 18 19:81 (62) 

a the reaction was allowed to warm to rt after CH30D addition. 

b i-PrLi and (-)-66 were mixed at -78 °C prior to addition to 119. 

Scheme 20. Enantioselective lithiation-electrophile quench of urea 119. 

The preparation of two heavy atom derivatives of 120a was pursued in order to 

determine the stereochemistry of the products by X-ray crystallography. In the first case, 

reduction of urea 120a with LiAIH4 at reflux gave an aminal that proved surprisingly 

difficult to hydrolyze to diamine 122, which nonetheless afforded the 2-methylated 

benzimidazolium iodide (123) under standard conditions with HC(OEt)3. All attempts to 

grow X-ray quality single crystals of 123 (including preparation and crystallization of the 

bromide salt) were unsuccessful. 
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db 00 8 1) LiAIH4' THF, reflux ~ !J HI , HC(OEth. ~!J I 

2) 5 M HCI, reflux NHHN ., 80°C <±) 
No/N ", 

(59% over 2 steps) 
122 

CH3 (73%) 
123 

CH3 

Br2, ZnCI2 

HOAc, rt 

Scheme 21. Derivatization of 120a and ORTEP plot of 124 with 50% probability 
ellipsoids showing absolute stereochemistry. 

Attempts to prepare a bis(p-bromobenzamide) analogous to Beak's 2-TMS benzamide 

(97) was, not surprisingly, thwarted by steric congestion that would be imposed by these 

groups. Electrophilic bromination of the aromatic ring of 120a was affected by exporsure 

to Br2 and ZnCh in acetic acid. This transformation proceeded in high yield and without 

erosion of the er to give dibromide 124. Single crystals of the dibromide (124) were 

grown from EtOAc and determination of the absolute stereochemistry by anomalous 

scattering X-ray diffraction confirmed that it had the (S)-configuration, the same relative 
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streochemistry as p-bromobenzoyl-protected 2-TMS piperidine 94. It may also be 

assumed that product 120b has the same relative configuration as 120a. 

1.3.2 Computational Studies for Deprotonation of 1,2,3,5,6,7-Hexahydro-3a,4a

diazacyclopenta[dej]phenanthren-4-one (119) 

To aid in our understanding of the stereochemical course of lithiation of 119 with 

i-PrLi·( - )-sparteine [( - )-66], a transition state analysis was undertaken in collaboration 

with Professor Travis Dudding who used Gaussian '03 .66 Sixteen different transition state 

geometries were considered for the a-deprotonation of 119 with the C1-symmetric 

complex i-PrLi·(-)-66, in which the relative orientations of the A and D rings of (-)-66 

were exchanged by a rotation of 1800 with respect to the principal axis of the urea. Each 

transition state was optimized at the B3L yp67 /6-31 G( d,p )68 level and verified as a first

order saddle point by frequency calculations. Finally, single-point MP2/6-31 G( d) 

calculations were carried out to obtain a more accurate description of the energies 

involved. 

Inspection of TSI and TS2 (Figure 6) provided some revealing details. TSI 

shows (-)-sparteine and urea in a more sterically encumbered arrangement, with the 

diamine lying over the site of proton transfer. When aligned like this, it is notable that the 

A ring p-methylene hydrogens of (-)-sparteine are quite close to core of the urea and 

appear to be influential in the selectivity. A close contact of 2.18 A in TSI is measured 

for the distance between the axial hydrogen of the urea and a p-methylene hydrogen, 

which leads to a destabilizing interaction in this transition state. 
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TS1 

TS2 

Figure 6. Transition state models leading to pro-R (TSl) and observed pro-S (TS2) 
deprotonation of 119. 

Conversely, the analogous closest contact in TS2 is 2.41 A, which is greater than the sum 

of the radii of two hydrogens (at 2.40 A).69 These results are in accord with precedent 

suggesting the necessity for the presence of the A ring in obtaining high selectivity in 

lithiation-substitution reactions.7o These observations may translate to a predictive tool 

for assessing the performance of (-)-sparteine in future reactions. 
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1.4 Conclusions and Future Work 

It was demonstrated that the urea functional group may serve as a directing group 

for the (-)-sparteine-mediated asymmetric lithiation of benzo-fused piperidines and a 

sequence developed for the conversion of the products to benzimidazolium salts. 

Compared to the analogous lithiation of N-Boc piperidine (93), yields for the reaction 

were slightly higher, while enantioselectivities were marginally lower. By X-ray 

diffraction studies of dibromide 124, the sense of asymmetric induction was shown to be 

the same as for 93; that is, abstraction of the pro-S hydrogen a to nitrogen was preferred, 

which is consistent with previous results on N-Boc pyrrolidines and piperidines. 

Molecular modeling indicated that the pro-S the transition state was favoured over 

pro-R deprotonation in a ratio of 87: 13. The difference in transition states appeared to 

arise from a repulsive interaction between (-)-sparteine' s p-methylene group and an axial 

hydrogen a to nitrogen, an observation that may correlate well with other systems 

In terms of the synthetic route used to access benzimidazolium salt 123, 

transformation of the urea directly to a chloroimidazolium salt with POCh should be 

investigated, as was demonstrated in a recently published paper by Metallinos and Xu.71 

Using the urea directing group, it was shown that 5-5 fused systems (124 and 125) 

underwent the lithiation-substitution reactions with high selectivities, just as in the case 

of Beak's 5-5 fused carbamates,72 to generate a-substituted products 126 and 127 

(Scheme 22). Treatment with POCh and anion exchange allowed conversion to 

diaminoylidene precursors 128 and 129 without removal of the urea carbon. The 5-5 

systems would also stand to be improved by the development of a protocol that would 

allow removal of the substituent (i.e. t-butyl) on nitrogen or employ a latent substituent.73 
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This could be achieved through dealkylation, which proved problematic for Metallinos 

and Xu/' or through latent protection and subsequent lithiation-quench. Essentially, this 

would provide more flexibility for the preparation of derivatives of 128 and 129, namely 

N-arylated compounds. 

126 

(R = CH3) 

1. i-PrLi , (-)-sparteine 

t-BuOMe, -78 DC, 2 h 

2. E+ 

(30-76%,90:10-99:1 er) 

e 
~ BPh4 

NyN_t_Bu 

CI 

128 

~ 1. i-PrLi, (-)-sparteine ~ 
--- Et20 , -78 DC, 2 h 

HR\'~S NyN_t_Bu -2-. -E+-=--.:.---'----- E NyN_t_Bu 

o (50-63%, >95:5 dr) 0 
unsaturated (124) 127 

saturated (125) 

e 
~ BPh4 

127 NyN_t_Bu 
(R = CH3 ) 

CI 

129 

Scheme 22. Enantio- and diastereoselective lithiation-substitution ofpyrrole[1,2-
c]imidazol-3-ones and conversion to chloroimidazol(in)ium salts 128 and 129. 

Lastly, this methodology should be extended to other fused systems and the 

influence of (-)-sparteine's A-ring B-methylene group should be investigated for its 

substrate generality and reaction scope. 
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1.5 Experimental Procedures 

General. All reagents were purchased from Aldrich, Fisher Scientific, Acros or Strem 

and used as received unless otherwise indicated. Tetrahydrofuran was freshly distilled 

from sodium/benzophenone ketyl under an atmosphere of nitrogen. Diethyl ether was 

distilled from LiAIH4 under an atmosphere of argon. Dichloromethane was distilled from 

CaH2 under an atmosphere of nitrogen. Organolithium reagents were titrated against N

benzylbenzamide 74 to a blue endpoint. All reactions were performed under argon in 

flame- or oven-dried glassware using syringe-septum cap techniques unless otherwise 

indicated. TLC was performed on silica gel unless otherwise stated. Column 

chromatography was performed on Silicycle silica gel 60 (70-230 mesh) unless otherwise 

stated. NMR spectra were obtained on a Bruker A vance 300 or A vance 600 instrument 

and are referenced to tetramethylsilane or to the residual proton signal of the deuterated 

solvent for IH spectra, and to the carbon multiplet of the deuterated solvent for l3C 

spectra according to values given in Spectrometric Identification of Organic Compounds, 

Seventh Edition, p. 200 and p. 240. Spectroscopic data are reported as follows: 

(multiplicity, number of protons, coupling constant). FTIR spectra were recorded on an 

ATI Mattson Research Series spectrometer. Low and high-resolution mass spectral data 

were obtained on a Kratos Concept 1 S Double Focusing spectrometer. Enantiomeric 

ratios were determined on an Agilent 1100 HPLC system using either Chiralpak AS-H or 

Chira1cel OD-H columns, and are compared to racemic material. It should be noted for 

HPLC measurements that response factors were not obtained for each en anti orner and the 

reported enantiomeric ratios are not calibrated. Optical rotations were measured on a 

Rudolph Research Autopol III automatic polarimeter. Elemental analyses were performed 
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by Atlantic Microlab, Inc., Norcross, GA, USA. Melting points were detennined on a 

Kofler hot-stage apparatus and are uncorrected. 

1,2,3,4,7,8,9,10-0ctahydro-l,10-phenanthroline (116). 

db This compound was prepared according to a modification of a 
~ !J 

NH HN reported procedure. 75 NaBH3CN (2.00 g, 31.8 mmol) was carefully added 

to a stirring solution of 1,10-phenanthroline (2.00 g, 10.1 mmol) in 7:3 HOAc/MeOH at 

room temperature. The resulting deep red mixture was then heated at reflux and 

additional NaBH3CN (2.00 g, 31.8 mmol) was added every 2 h until 4 additions had been 

made in total (8.00 g, 127 mmol). With each addition, the colour of the reaction mixture 

became more yellow. 2 h after the last addition, the reaction was cooled to 0 °C, made 

strongly alkaline (pH> 12) with aq. 6 M NaOH and the volatiles were removed on a 

rotary evaporator. The separated solids and aqueous layer were extracted with CH2Ch (3 

x 30 mL) and the combined organics washed with brine (1 x 30 mL), dried over anhyd. 

Na2S04 and concentrated to dryness under reduced pressure. The remaining yellowish oil 

was preadsorbed on silica and subjected to flash chromatography (97:3 PhMe/Et3N), 

which afforded diamine 116 (1.18 g, 62%) as a waxy, slightly yellowish solid that was 

stored at -20°C under argon and used without further purification: Rj = 0.22 (97:3 

PhMe/Et3N); mp 66-67 °C (lit. 70 °C76); IR (KBr) Vmax 3249, 3035, 2923, 2834, 1615, 

1583, 1496, 1438, 1327,1262, 1112,782 cm-I; IH NMR (300 MHz, acetone-d6) J 6.23 

(s, 2H), 3.68 (b, 2H), 3.26-3.21 (m, 4H), 2.62 (t, 4H, J = 5.8 Hz), 1.78 (quintet, 4H, J = 

5.9 Hz); l3C NMR (75.5 MHz, acetone-d6) J 133.4,119.9,119.1,43.1,27.9,23.4; ElMS 

[mlz(%)] 188 (M+, 100); HRMS (EI) ca1cd for C12HI6N2: 188.1313; found 188.1315. 
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2,3,4,7 ,8,9-Hexahydro-l,1 O-phenanthroline-l,1 O-dicarboxylic acid di-tert-butyl ester 

(117). 

6b N N 

A round-bottomed flask was charged with diamine 116 (315 mg, 

1.67 mmol) and di-tert-butyl dicarbonate (730 mg, 3.35 mmol), and 
I I 
Boc Boc 

heated to 50°C for 12 h. After cooling to room temperature, column 

chromatography (Si02, 20% EtOAC/hex, Rf 0.29) gave crude 117 as a yellow-orange 

semisolid that solidified on standing. Recrystallization from petroleum ether gave 

biscarbamate 117 as an amorphous off-white solid (473 mg, 73%): mp 113-114 °C (pet. 

ether); IR (KBr) Vmax 3017,2984,2962,2950,2931,2841, 1680, 1457, 1370, 1351, 1159, 

1133 cm-1; lH NMR (300 MHz, CDCh, rotameric) c5 6.83 (s, 2H), 4.08-3 .93 (b, 2H), 3.39 

(b, 2H), 2.62 (b, 4H), 2.07 (b, 2H), 1.70 (b, 2H), 1.44 (s, 18H); 13C NMR (150.9 MHz, 

CDCh, rotameric) c5 153.6, 152.8, 134.8, 133.6, 133.3, 131.7, 124.3, 123.6, 122.8, 80.0, 

79.3, 45.2, 43.2, 41.6, 28.2, 26.7, 24.7, 24.4; ElMS [mlz(%)] 214(M+, 100), 185(12); 

HRMS (EI) ca1cd for C22H32N204: 388.2362; found 388.2359. 

1,2,3,5,6, 7-Hexahydro-3a,4a-diazacyclopenta[dej]phenanthren-4-one (119). 

6b A solution of diamine 117 (1.63 g, 8.65 mmol) and triphosgene 
~ /; 

(2.57 g, 8.65 mmol) in dry THF (180 mL) was treated carefully 
NI(N 

o (exothermic) with anhydrous triethylamine (2.40 mL, 17.3 mmol), and the 

resulting mixture was stirred at room temperature for 12 h. Water (50 mL) was added and 

the THF was removed in vacuo. The remaining aqueous mixture was extracted with 

CH2Ch (3 x 20 mL) and the combined extracts washed with water (20 mL) and brine (20 
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mL), dried over anhydrous MgS04, filtered, and concentrated to approximately 10% of 

its original volume. The concentrated solution was passed through a short column of 

Si02, eluting with 1: 1 EtOAc/hex (Rj 0.19) to give the crude product as an off-white 

solid. Recrystallization from EtOAc/hex gave urea 119 as colorless needles (1.58 g, 85%) 

in two crops; mp 160-162 °C (EtOAc/hex); IR (KBr) Vmax 3053, 2954, 2920, 2857,1701, 

1631,1514,1411,1342, 1230 cm-I; IH NMR (300 MHz, CDCh) b 6.75 (s, 2H), 3.85 (t, 

4H, J= 5.6 Hz), 2.81 (t, 4H, J= 6.3 Hz), 2.12 (quintet, 4H, J= 5.7 Hz); l3C NMR (75.5 

MHz, CDCh) b 152.9, 125.1, 118.4, 116.9, 38.9, 23.3, 22.7; ElMS [mlz(%)] 214(M+, 

100), 185(12); HRMS (EI) ca1cd for Cl3HI4N20: 214.1106; found 214.1109; Anal. calcd 

for Cl3HI4N20: C, 72.87; H, 6.59; found C, 72.75; H, 6.61. 

3-Deu tero-1 ,2,3,5,6,7 -hexahydro-3a,4a-diazacyclopen ta [dejJ p henanthren-4-one 

(119-dJ) and 1-(2,3,4, 7,8,9,10-Heptahydro-[1,1 O]phenanthrolin-1-yl)-2-methylbutan

I-one (121). 

A solution of urea 119 (107 mg, 0.5 mmo1) and (-)-sparteine (0.25 mL, 1.1 mmol) in 

Et20 (15 mL) under argon was cooled to -78°C with stirring. The resulting suspension 

was treated with a solution of s-BuLi (0.93 mL, 1.18 M, 1.1 mmo1) added dropwise over 

10 min, giving a red-brown solution that was stirred for 4 h. Methano1-d4 (0.45 mL) was 

added to quench the reaction mixture, resulting in a rapid change in color to pale yellow, 

and the mixture was allowed to warm to room temperature. Water (10 mL) was added, 

and the reaction mixture was extracted with Et20 (3 x 10 mL) and CH2Ch (1 x 10 mL). 

The combined organic extracts were washed with water (10 mL), dried over anhydrous 

Na2S04, filtered, and concentrated in vacuo. Column chromatography (Si02, 64:35: 1 
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hexanes:EtOAe:MeOH) gave, sequentially, amide 121 (24 mg, 18%) and urea 119-dl (54 

mg, 50%, >95% monodeuterated). 

121. off-white solid; Rj 0.40 (Si02, 64:35: 1 hexanes:EtOAe:MeOH); mp 84-85 DC; lR 

(KBr) Vmax 3393,2957, 2931,2872,2839,1643 em-I; IH NMR (300 MHz, 

DMSO-d6, rotamerie) c> 6.71 (d, 0.5 H, J = 7.2 Hz), 6.69 (d, 0.5 H, J = 7.5 

Hz), 6.33 (d, 0.5 H, J = 7.2 Hz), 6.31 (d, 0.5 H, J = 7.5 Hz), 5.25 (b, 0.5 

H), 5.16 (b, O.SH), 4.60-4.51 (m, 1H), 3.23-3.11 (m, 2H), 2.68-2.39 (m, 4H), 2.28-2.21 

(m, 1H), 2.08-2.02 (m, 1H), 1.79-1.65 (m, 3H), 1.52-1.47 (m, 1H), 1.25-1.09 (m, 2H), 

1.04 (d, 1.5H, J= 6.6 Hz), 0.81 (t, 1.5H, J= 7.5 Hz), 0.66 (d, 1.5H, J= 7.2 Hz), 0.52 (t, 

1.5H, J = 7.5 Hz); l3C NMR (75.5 MHz, DMSO-d6, rotamerie) 8 176.9, 176.5, 140.1, 

139.9, 134.6, 134.5, 127.1, 127.0, 125.0, 124.8, 119.5, 119.3, 114.0, 113.9, 41.1, 40.9, 

40.7, 38.4, 37.8, 27.6, 27 .0, 26.9, 26.3, 25.8, 25.5, 23.93, 23.88, 21.6, 18.0, 17.1, 12.3, 

11.4; ElMS [mlz(%)] 272(M+, 26), 215(74), 187(100); HRMS (El) ea1cd for C 17H24N20: 

272.1889; found 272.1900. 

119-d1o off-white solid; Rj 0.10 (Si02, 64:35: 1 hexanes:EtOAe:MeOH); mp 156-158 DC; 

lR (KBr) V max 3054,2953,2922,2854,2162, 1703, 1631, 1510, 1415, 

1343,1228 em-I; IH NMR (300 MHz, CDCh) c> 6.74 (s, 2H), 3.86-3.81 

(m, 3H), 2.81 (t, 4H, J = 5.9 Hz), 2.16-2.08 (m, 4H); l3C NMR (150.9 

MHz, CDC h) c> 153.0,125.2,118.4,117.0, 39.0,38.7 (t, li 3C_2H = 21.9 Hz), 23.4, 23 .3, 

22.8, 22.7; EIMS [mlz(%)] 215(M+, 100), 186(12); HRMS (El) ea1cd for C l3H I3DN20: 

215 .1168; found 215.1163. 
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(+)-3-Methyl-l ,2,3,5,6,7 -hexahydro-3a,4a-diazacyclopen ta [deJ] phenanthren-4-one 

(120a). 

A solution of urea 119 (643 mg, 3.00 mmol) and (-)-sparteine 

(1.52 mL, 6.60 mmol) in dry Et20 (70 mL) under argon was cooled to 

-78°C with stirring. The resulting suspension was treated with a 

solution ofi-PrLi in pentane (3.73 mL, 1.77 M, 6.60 mmol), added dropwise over 10 min, 

to give a red-brown solution that was stirred at -78°C for 4 h. The reaction mixture was 

then transferred by cannula to a precooled (-78°C) solution of iodomethane (0.65 mL, 

10.5 mmol) in dry THF (80 mL), and stirred for a further 2 h. The resulting pale yellow 

solution was treated with saturated aqueous NH4CI solution (10 mL) and allowed to 

warm up to room temperature. Water (30 mL) was added, the phases were separated, and 

the remaining aqueous phase was extracted with Et20 (3 x 20 mL). The combined 

organic layer was washed with 5% aqueous H3P04 (2 x 10 mL) to remove (-)-sparteine, 

water (30 mL), brine (30 mL), dried over anhydrous Na2S04, filtered, and concentrated in 

vacuo. Column chromatography (Si02, 4: 1 CH2Ch/Et20, Rf 0.32) gave 120a (170 mg, 

25%) as a pale yellow oil, which solidified on standing: CSP HPLC analysis (Chiralpak 

AS-H; eluent: 80:20 hexanes:i-PrOH, 1.0 mLimin) determined 84: 16 er (68% ee) 

[tR(major) = 11.03 min, tR(minor) = 13.34 min]; [a]D20 = +21.0 (c = 4.37, CHCh); mp 57-

59°C; IR (KBr) Vmax 2965, 2933, 2893, 1705, 1505, 1414, 1334, 1237 em-I; IH NMR 

(300 MHz, CDC h) t5 6.76 (s, 2H), 4.45-4.39 (m, 1H), 3.87-3.82 (m, 2H), 2.87-2.73 (m, 

4H), 2.12 (quintet, 2H, J = 5.7 Hz), 2.07-1.99 (m, 2H), 1.40 (d, 3H, J = 6.3 Hz); I3C 

NMR (75.5 MHz, CDCh) t5 152.6, 125.1, 118.4, 118.2, 116.9, 116.73, 116.66,45.3,38.9, 

29.3,23.3,22.7,20.1, 19.1; ElMS [mlz(%)] 228(M+, 100),213(87), 185(17); HRMS (EI) 
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H, 7.06; found C, 73 .16; H, 7.01. 

(-)-3-(Diphenylhydroxy)methyl-l,2,3,5,6, 7 -hexahydro-3a,4a-

diazacyclopenta[dej]phenanthren-4-one (120b). 

_ A solution of urea 119 (214 mg, 1.00 mmol) and (-)-sparteine 

~ 
~J'-i,~ (0.51 mL, 2.20 mmol) in dry Et20 (25 mL) under argon was treated 

NyN "- Ph 

o Hj<Ph with a solution of i-PrLi in pentane (1.29 mL, 1.70 M, 2.20 mmol), 

added dropwise over 10 min, to give a red-brown solution that was stirred at -78 DC for 4 

h. The reaction mixture was then transferred by cannula to a precooled (-78 DC) solution 

ofbenzophenone (638 mg, 3.50 mmol) in dry THF (18 mL) and stirred for a further 2 h. 

The resulting blue-green solution was treated with saturated aqueous NH4CI (3 mL) and 

allowed to warm to room temperature. Water (10 mL) was added, the phases were 

separated, and the resulting aqueous mixture was extracted with Et20 (3 x 20 mL). The 

combined organic extract was washed with 5% aqueous H3P04 (3 x 10 mL), water (15 

mL) and brine (15 mL), dried over anhydrous Na2S04, filtered, and concentrated in 

vacuo . Column chromatography (Si02, 3: 1 hexanes/EtOAc, Rf 0.23) gave 120b as a 

colorless solid (107 mg, 27%); CSP HPLC analysis (Chiralcel OD-H; eluent: 90:10 

hexanes:i-PrOH, 1.0 mLimin) determined 80:20 er (60% ee) [tR(major) = 13.66 min, 

tR(minor) = 22.64 min]; [a]D20 = -75 .9 (c = 0.2, CHCh). A recrystallized sample of 

1.112b (93% ee by CSP HPLC) had the following data: [a]D20 = -122 (c = 0.10, CHCh) 

mp 257-259 DC (hexanes/EtOAc); IR (KEr) Vmax 3387, 3056, 2963, 2938, 2912, 2883, 

2831,1689,1501,1349,1234, 1165 cm-I; IH NMR (300 MHz, CDCh) J 7.43-7 .28 (m, 
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8H), 7.24-7.19 (m, 2H), 6.79 (d, 1H, J= 7.2 Hz), 6.71 (d, 1H, J= 8.1 Hz), 4.80 (dd, 1H, J 

= 8.1, 3.3 Hz), 3.84-3.70 (m, 2H), 2.92-2.73 (m, 2H), 2.54-2.25 (m, 3H), 2.20-2.03 (m, 

13 2H), 1.77-1.67 (m, 1H); C NMR (75.5 MHz, CDCh) c5 154.3, 146.0, 143.9, 127.9, 

127.8, 127.7, 127.5, 127.4, 127.2, 125.8, 125.4, 119.1, 118.6, 118.1, 117.0, 79.9, 62.7, 

39.2, 27.1, 23.3, 23.0, 22.5; EIMS [mlz(%)] 396(M+, 3), 378(16), 214(51), 105(57), 

43(100); HRMS (EI) ca1cd for C26H24N202: 396.1838; found 369.1832; Anal. ca1cd for 

(-)-2-Methyl-l,2,3,4, 7,8,9,10-octahydro-l,10-phenanthroline (122). 

A stirred solution of urea 120a (154 mg, 0.67 mmol) in THF 

(6.5 mL) under argon was cooled to 0 °C and treated with LiA1H4 (128 

mg, 3.37 mmol) in two portions. The resulting mixture was heated to 

reflux for 2 h. After cooling to room temperature, the reaction mixture was worked up by 

sequential addition of water (0.1 mL), 10% aqueous NaOH solution (0.1 mL), and water 

(0.3 mL). The precipitated aluminum salts were removed by filtration through Celite, and 

the filtrate was extracted with Et20 (4 x 10 mL) and concentrated in vacuo. The resulting 

residue was treated with 5 M aqueous HCI solution (6.5 mL) and heated to 60°C for 2 h. 

After cooling to room temperature, the mixture was made strongly alkaline with 10% 

aqueous NaOH (pH ~ 12), and the product was extracted with CH2Cb (4 x 10 mL). The 

combined organic extract was dried over anhydrous Na2S04, filtered, and concentrated in 

vacuo. Column chromatography (Si02, 9: 1 hexanes:EtOAc, Rf 0.27) gave diamine 122 

(80 mg, 59%) as a clear viscous oil; [a]o20 = -41.4 (c = 1.70, acetone); IR (KBr, neat) 

vmax 3333, 3036, 2924, 2842, 1582, 1487, 1332, 1255 cm-I; IH NMR (300 MHz, acetone-
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d6) c5 6.24 (ABq, 2H), 3.73 (b, IH), 3.56 (b, IH), 3.32-3.19 (m, 3H), 2.81-2.55 (m, 4H), 

1.90-1.76 (m, 3H), 1.51-1.38 (m, IH), 1.21 (d, 3H, J = 6.3 Hz); 13C NMR (75.5 MHz, 

acetone-d6) c5 133.5,133.0,119.9,119.4,119.0,118.8,48.4,43.0,31.2, 27.9, 27.5, 23.3, 

22.8; EIMS [mlz(%)] 202(M+, 100); HRMS (El) calcd for C13HISN2: 202.1470; found 

202.1466. 

(-)-Benzimidazolium iodide 123. 

A solution of diamine 122 (31 mg, 0.15 mmol) in HC(OEt)3 (3 mL) in 

a round-bottomed flask equipped with a reflux condenser under argon 

was treated with concentrated HI (21 ,uL, 0.15 mmol) and warmed to 

80°C for 1 h. The reflux condenser was removed, and heating was continued for an 

additional 2 h in the open air. After cooling to room temperature, the yellow reaction 

mixture was poured into Et20 (15 mL), and the precipitated product was collected on a 

Hirsch funnel and dried in vacuo to give iodide 123 (37 mg, 73%) as an off-white 

powder: mp 219-221 °C (CH2Ch/pent) ; [a]n20 = -3.8 (c = 0.40, CHCh); IR (KBr) Vmax 

3091, 3064, 2963, 2917, 2838, 1509, 1320, 1200 ern-I ; IH NMR (600 MHz, CDCh) c5 

10.69 (s, IH), 7.25 (s, 2H), 4.90-4.85 (m, IH), 4.74 (t, 2H, J = 6.0 Hz), 3.08-3.01 (m, 

4H), 2.44-2.40 (m, IH), 2.40-2.36 (m, 2H), 2.09 (sextet, IH, J = 6.0 Hz), 1.85 (d, 3H, J = 

6.0 Hz); J3C NMR (150.9 MHz, CDCh) c5 137.4, 127.8, 127.4, 124.2 (2C), 122.8, 122.5, 

52.6,45.4,30.7,22.8, 22.7,22.0,20.3; FABMS [mlz(%)] 213(M-f, 100), HRMS (FAB) 

ca1cd for CI4H17N2: 213.1392; found 213.1384; Anal. ca1cd for CI4H17IN2: C, 49.43; H, 

5.04; found C, 49.39; H, 5.06. 
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(-)-8,9-Dib ro mo-(3-S)-methyl-l ,2,3,5,6,7 -hexahydro-3 a,4a-diaza-

cyclopenta[def]phenanthren-4-one (124). 

A solution of 120a (228 mg, 1.00 mmol) in glacial acetic acid (5 

mL) was treated with ZnCh (290 mg, 2.13 mmol) and the mixture was d:b 
NVN" stirred until a homogeneous solution had formed. The solution was then 

II CH 3 
o 

treated with Br2 (0.11 mL, 2.1 mmol) by syringe and stirred at room temperature for 12 h. 

The slight excess of Br2 persisted as an orange color in solution for the duration of the 

reaction. A solution of aqueous 50% Na2S03 (10 mL), water (5 mL), and CH2Ch (20 

mL) was added and the mixture was stirred at room temperature for approximately 20 

min. The organic phase was collected and the remaining aqueous mixture was extracted 

with CH2Ch (2 x 10 mL). The combined organic extract was washed with 10% aqueous 

NaOH (3 x 10 mL), water (10 mL), brine (10 mL), dried over anhydrous Na2S04, filtered 

and concentrated in vacuo. The crude product was passed through a short column of Si02 

eluting with CH2Ch to give dibromide 124 (370 mg, 96%) as a colorless oil that 

solidified on standing; CSP HPLC analysis (Chiralpak AS-H; eluent: 80:20 hexanes:i-

PrOH, 1.0 mLimin) determined 84: 16 er (68% ee) [tR(major) = 13.48 min, tR(minor) = 

15.27 min]; [a]o20 = (c = , CHCh); mp 119-123 °C (MeOH); X-Ray analysis (CCDC 

620846) was performed on a colorless triangular needle fragment (0.22 x 0.14 x 0.12 

mm), which was obtained by slow evaporation from EtOAc: C14H14Br2N20: M = 385.08 

g/mol, tric1inic, PI, a = 7.7309(3) A, b = 9.8742(4) A, c = 10.3595(4) A, V = 672.57(5) 

A3, a = 63 .330(1)°, P = 85.655(1)°, Y = 72.561(1)°, Z = 2, Dc = 1.902 g/cm3, F(OOO) = 

378, T = 180(1) K. Data were collected on a Bruker APEX CCD system with graphite 

monochromated Mo Ka radiation (A = 0.71073 A); 7506 data were collected. The 
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structure was solved by Patterson and Fourier (SHELXTL) and refined by full-matrix 

least squares on F2 resulting in final R, Rw and GOF [for 6187 data with F > 2cr(F)] of 

0.0275, 0.0550 and 1.470, respectively, for solution using the S enantiomer model, Flack 

parameter =-0.031(7); IR(KBr)vmax 2934, 2892, 1704, 1507, 1399, 1331 em-I; IHNMR 

(300 MHz, CDCh) t5 4.42-4.35 (m, 1H), 3.85-3.75 (m, 2H), 2.93-2.76 (m, 4H), 2.15 

(quintet, 2H, J = 6.0 Hz), 2.08-2.04 (m, 2H), 1.38 (d, 3H, J = 6.5 Hz); \3C NMR (75.5 

MHz, CDCh) t5 152.1, 125.2, 124.7, 119.0, 118.9, 115.2 (2C), 45.2, 38.5, 29.2, 25.7, 

22.7, 22.5, 18.9; ElMS [mlz(%)] 386(M+, 100), 371(38), 185(17); HRMS (EI) ca1cd for 

C14H1479Br81BrN20: 385.9453; found 386.9454; Anal. ca1cd for C14H14Br2N20: C, 43.55; 

H, 3.65; N, 7.26; found C, 43.69; H, 3.68. 
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2 Stereoselective Synthesis of Aminoferrocenes 

2.1 Historical 

2.1.1 Ferrocenes: History, Synthesis & Applications 

Bis( cyclopentadienyl)iron, or more commonly known as ferrocene, is the 

archetypal metallocene, where a transition metal is 'sandwiched' between two 

cyclopentadienyl rings. The account of its discovery and structural elucidation, which 

goes back to the early 1950s, is a complicated one that is still filled with debate. 1 Kealy & 

Pauson2 (Duquesne University) and Miller, Tebboth & Tremaine3 (British Oxygen 

Company) independently reported the synthesis of a stable orange compound with the 

chemical formula CIOHIOFe, that both groups postulated as having two cyclopentadienyl 

(Cp) rings individually sigma bound to the Fe(II) centre (130). Immediately upon 

publication of these reports, researchers took interest in these compounds, as the study of 

aromaticity and non-benzenoid aromatics was of great interest at the time. Shortly after 

this period, Woodward & Wilkinson4 and Fischer & Pfab5 refuted the former structure 

and proposed a radical new one, where all five carbons of each Cp ring participated in 

bonding (r,s) to iron (131), as seen in Scheme 23. These proposals were independently 

confirmed by X-ray structural analysis. 6 Wilkinson and Fischer later shared the 1973 

Nobel Prize for their work on metallocenes, which accelerated the development of the 

modem field of organometallic chemistry. 

Interest in metallocenes, and ferrocenes in particular, has grown significantly 

since that time. Ferrocene is probably most notable for its use as a ligand scaffold, 

especially when bearing one or two phosphinyl groups on the cyclopentadienyl ring. The 

isolation of monosubstituted ferrocenes is not always a trivial task because of the 
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difficulty sometimes associated with their separation from l,l'-disubstituted products, 

which form to various extents depending on the method of synthesis. Although 

ferrocenes behave as electron-rich aromatics and readily undergo electrophilic aromatic 

substitution processes, such as Friedel-Crafts and mercuration reactions, their 

susceptibility to oxidation precludes their use in electrophilic halogenation and nitration. 

Only radical and electrophilic substitution (under non-oxidizing conditions), borylation, 

lithiation/magnesiation and mercuration are used for the synthesis of monosubstituted 

ferrocenes. Researchers largely rely on lithiation to directly incorporate a heteroatom on 

the Cp ring, although this proved to require extensive investigation; it was originally 

circumvented by the preparation of ferrocene derivatives (i.e. 132-134) that could be 

purified and subsequently converted to monolithioferrocene (135). For example, 

(chloromercurio )ferrocene (132) may be converted to 135 upon treatment with an 

alkyllithium, but this transformation proceeds in moderate yield and requires the handling 

f . 7 
o tOXIC mercury reagents. 

o-Fev 
130 

x = HgCI (132) 

= Br (133) 

= SnBu3 (134) 

RLi 

131 

~Li 

Fe 
$ 135 

x = HgCI, 65% 

= Br, > 95% 

= SnBu3, > 95% 

Scheme 23. Structures of ferrocene and generation of monolithioferrocene. 
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This approach was somewhat improved by derivatives 1338 and 134, which undergo 

efficient exchange reactions with alkyllithiums at low temperatures. Stannane 134 may be 

prepared in up to a 20 g scale and is readily purified by distillation under reduced 

pressure. 9 Direct deprotonation offerrocene (131) with n-BuLi yields mixtures of mono-

and 1,1' -dilithiated species (135 and 136 respectively). When n-BuLi is activated with 

TMEDA, a clean reaction occurs to yield 136 as a complex with TMEDA, which may be 

isolated as a pyrophoric orange solid. IO Comprehensive studies on the lithiation of 

ferrocene and subsequent behaviour of 135 and 136 in solution did eventually lead a 

reliable procedure for the preparation of 135. II In recent years, a more convenient 

preparation of 135 appeared, wherein ferrocene is treated with a sub-stoichiometric 

amount of t-BuLi at 0 DC. After a short time, hexanes are added and the mixture is cooled 

to -78 DC. The orange solids are collected by Schlenk filtration, yielding pure 135 as a 

pyrophoric orange solid that may be stored cold under an inert atmosphere (Scheme 

24).12 

131 
(A) t-BuLi, t-BuOK 

THF, -78 °C ~ rt or 

n-BuLi n-BuLi, TMEDA (B) t-BuLi, THF, O°C, 

hex hex, rt then hexanes, 

-78°C, filtration 
~Li ~Li 

136 I I 

Fe + Fe 

~ $--Li 

135 136 

135 

Scheme 24. Preparation of lithioferrocenes by reaction with alkyllithium reagents. 

Ferrocenes have also been used in materials science applications and derivatives 

with biological activity have been prepared, \3 but they have garnered most of their utility 

57 



from the role they play in synthetic chemistry. Ferrocene derivatives have been used 

significantly as chiralligands for metals 14 in asymmetric catalytic transformations and to 

some degree as nucleophilic catalysts. 15 Most notable are ferrocenyl diphosphines, which 

have seen extensive use and are particularly important in asymmetric hydrogenation 

processes.' A recent example employs the biferrocene PhTRAP ligand (139) in the 

challenging asymmetric reduction of heterocycles, namely 2- and 3-substituted indoles 

(138a,b), which proceeds in good yield with excellent selectivity (Scheme 25).16 These 

ligands have also been significant to industry; a group at Merck interested in the synthesis 

of anthrax LFI (142) employed JosiPhos ligand 143, a commercially available ligand 

from Solvias, in the hydrogenation of tetrasubstituted alkene 140 as a model study to 

provide protected aminoacid 141.17 Arguably the most widely known industrial 

application is in the synthesis of Metolachlor (146), the active agent in the herbicide 

Dual@, which is produced in quantities greater than 20 000 tonnes/year. 18 The activity of 

the complex formed from Xyliphos (147) and the iridium salt is especially remarkable as 

only 1 x 10-7 mol% (or a substrate:catalyst ratio of 106) is required for the process, an 

important feature on this scale. 
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R 50 bar H2, R 

~ 1 mol% [Rh(nbdhlSbF6/139 • 

V-/ CS2C03, i-PrOH, 50°C ~ ~l 
Ts (71-94%,97:3-99:1 er) 

R = (CH2hOTBS (137a) 138a,b 

= (CH2hNHBoc (137b) 

144 

6 bar H2, 

[Ru(p-cymene )C12h/143 

Et3N, EtOH, rt 

(98% conv., 98:2 er) 

80 bar H2, 

1 x1 0-7 mol% [lr(cod)Clh/147 

iodide, HOAc, 50°C 

(90:10 er) 

> 20 000 tonnes/year 

produced 

Ts 

145 

CI~O{ 
Meol)) 
Metolachlor (146) 

PhTRAP (139) 

JosiPhos 143 

~P(3,5-XYIYlh 
Fe PPh2 

~ 
Xyliphos (147) 

Scheme 25. Important ferrocenyl diphosphines in asymmetric hydrogenations. 

Besides ferrocenylligands containing only P-donors, N-, S- and O-donors are also 

known (eg. 148-152, Scheme 26), which are used III many other metal-catalyzed 

asymmetric reactions including cross-coupling, allylic alkylation/amination, 

hydroboration, additions to carbonyl compounds and cycloaddition reactions. P ,N-ligands 

such as 148 and 149 have been shown to be capable of providing high selectivities, 

however ligands where the nitrogen is directly attached to the Cp ring as in 
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aminosulfoxide 152, are generally uncommon. One of the few examples of their 

application is shown in Scheme 26, where aminosulfoxide 152 is used in the 

enantioselective addition of diethylzinc to aromatic aldehydes 153a_g. 19 Considering the 

frequent use of nitrogen as a donating atom on ligands, it is surprising that the potential 

of aminoferrocenes in metal catalysis remains underexplored. 

2.1.2 Aminoferrocenes 

Aminoferrocene (155), which should be differentiated from other nitrogen-

containing ferrocenes such as (dimethylamino )methylferrocene (156) and azaferrocene 

(157), contains a nitrogen atom directly attached to the Cp ring (Scheme 27). 

~NMe2 
Fe PPh2 

~ 
148 

153a-g 

~)"R 
Fe PPh2 

$ 
149 

2 equiv. Et2Zn, 

5 mol% 152 

PhMe, rt, 1-4 d 

(65-86%,69:31-94:6 er) 

~)"R t-Bu ;. 
~ .-

~St-BU ~s-o 
OH 

Fe Ph Fe PPh2 Fe NHTs 

~Ph ~ ~ 
150 

QH 

Ar/'../ 

154a-g 

151 152 

Ar = Ph, P-N02C6H4, 2-naphthyl 

p-Me02C6H4, p-tolyl, 

p-C02MeC6H4, m-FC6H4 

Scheme 26. Various heteroatom donors with a ferrocene backbone 
and application of an aminosulfoxide in diethylzinc addition. 

Aminoferrocenes have long been a topic of interest to coordination chemists, yet this 

group of heteroatom-substituted compounds has lagged in development because of a lack 

of synthetic routes, especially for the preparation of planar chiral analogues. 

Aminoferrocene was first synthesized in 25% yield by Nesmeyanov in 195520a (who laid 

much of the groundwork for early heteroatom-ferrocene chemistry), by reaction of 
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ferrocene with O-benzylhydroxylamine. Consequently, Nesmeyanov developed two 

alternative routes from bromoferrocene (133, Scheme 27): (i) treatment of 133 with 

NaN3 under copper catalysis to give azidoferrocene (158)2ob and subsequent reduction 

with LiA1H4, and (ii) heating 133 with copper(I)-phthalimide as a melt to give N-

ferrocenylphthalimide (159),2od which was easily deprotected with hydrazine 

monohydrate. These paths provided target amine 155 reproducibly, although a 

modification of the latter route by Sato using iodoferrocene, CU20 and phthalimide 

provides 155 more conveniently.21 

~NH2 ~NMe2~ I 

Fe Fe Fe 

$ ~ ~ 
155 156 157 

NaN3, CuBr2 
~N3 

LiAIH4' Et20 I 

Fe 

I DMF/H20 $ (72%) 

~Br 158 
I 

Fe 
0 

155 

$ 
~J:;D N2H4·H2O 

133 
Cu(I)-phthalimide EtOH, reflux 

melt 
Fe 0 

(82%) ~ 
159 

Scheme 27. Nitrogen-containing ferrocenes and aminoferrocene (155) syntheses. 

Aminoferrocene is also available from ferrocenecarboxylic acid22 through Curtius 

rearrangement of acyl azide 160, trapping with acetic anhydride or alcohols and 

subsequent cleavage of the amide (161)23 or carbamate (162, 163).24 Although the 

sequences involving phthalimide 159 and amide/carbamate 161-163 are capable of 

providing large quantities of stable precursors that are readily converted to 155, more 
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synthetic steps are required in comparison to other routes. Perhaps the most convenient 

modem method for generating 155 is by quench of lithioferrocene (135) with a-

azidostyrene at low temperature followed by acidic workup, which is based on a 

synthesis of aromatic amines by Hassner (Scheme 28).25 Upon addition of aqueous HCI 
, 

to the reaction mixture, acetophenone and N2 are liberated from intermediate 164 to 

afford 155. 

Transition metal-catalyzed C-N bond-forming reactions have received much 

attention in recent years and researchers have applied them to ferrocene. Methods similar 

to the copper-catalyzed Gabriel reaction between FcBr (133) or FcI and phthalimide to 

form N-substituted aminoferrocene derivatives have been reported26, however this has yet 

to be extended to a direct metal-catalyzed preparation of FcNH2 (i.e. by coupling of 

Curtius 

rearrangemen! 

(25-70%) 

R = CH3 (161) 

= OBn (162) 

hydrolysis/ 

hydrogenolysis 

(40-80%) 

= O(CH2 l2 TMS (163) 155 

~Li N3~ [~N=N-~-{' 1 t 
I Ph I Ph~ 
Fe • Fe $ - 78 ---+ - 10°C $ Lie±> (50%) 

135 164 

Scheme 28. Alternative preparations of aminoferrocene by 
Curtius rearrangement and trapping with an electrophilic source of nitrogen. 
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2.1.3 Diastereoselective Synthesis of Planar Chiral 2-Substituted Aminoferrocenes & 

Directing Group Manipulation 

One of the most noteworthy attributes of 1,2- and 1,3-disubstituted ferrocenes is 

that they possess planar chirality, and thus potentially available as single enantiomers. As 

in the preparation of monosubstituted derivatives of ferrocene, lithiation-electrophile 

quench has proven to be an important tool and, in these cases, used almost exclusively. A 

number of carbon- (165-169),27 sulphur- (170)28 and phosphorus29-based (171) 

functionalities (Figure 7) have been employed as directing groups for lithiation to 

provide a diverse array of 1,2-disubstituted (and 1,2,1' -trisubstituted) ferrocenes. 

lIJ .\-lNMe2 ~ Ph 9 DG = \~ N 
Fe MeO 

:67 N~eo ¢. 165 166 

~1~ ~(~)"'R 
0 '{ I O. ~ \S"',. , N ' ~ . \P .... O Ph 

OMe R 
168 169 170 171 

R = i-Pr, t-Bu, Ph R = p-Tol , t-Bu 

Figure 7. Some chiral directing groups for diastereoselective 
formation of 1,2-disubstituted ferrocenes. 

The first highly diastereoselective induction of planar chirality in ferrocenes was reported 

by U gi, who used a-ferrocenylethyldimethylamine as a substrate for lithiation [(R)-

165].27a This starting material was prepared by substitution of the hydroxyl group of a-

ferrocenylethanol with a dimethylamino group to yield (±)-165. Resolution of the 

racemate with (+)-tartaric acid gave (R)-165. When (R)-165 was treated with n-BuLi, two 

diastereomeric intermediates, (R,Rp)-172 and (R,Sp)-I72, with a dr of 96:4 were produced 

63 



(Scheme 30). The lithiated interemediates have been shown as non-solvated monomers 

for simplification. 

~NMe2 n-BuLi 
(R)-165 Fe 1 + 

Et20, rt $ 
(R,Rp)-172 

favoured 

Li-NMe2 

~ 
~~ 

E+ ~NMe2 ~NMe2 
--- Fe E + Fe 

(R,Sp)-172 

disfavoured 

~ ~ 
(R,Sp)-173 

96 

(R,Rp)-173 

4 

Scheme 29. Diastereoselective lithiation-substitution of ferrocenylethylamine (R)-165. 

It was suggested that the high diastereoselectivity in the preceding lithiation originates 

from unfavourable steric interactions between the stereogenic a-methyl group and the 

lower Cp ring, as in (R,Sp)-172 . Similar steric arguments have been used to explain the 

high diastereoselectivities (2:96:4) observed in lithiation-substitution of 166-171. An 

exception to this guideline are oxazolines 169, for which it has been postulated that 

coordination of the alkyllithium to nitrogen gives a less hindered and, therefore favoured 

transition state when the y-stereogenic R group of the oxazoline points down towards the 

unsubstituted ring Cp ring as in (S,Rp)-174 (Scheme 30).27i 

i'~R R 

o H p~ o H E N~ 
R'Li 

~;?(y 
E+ ~;?( ~O LO R Fe H Fe E R Fe H (S)-169 - Fe I", + - + 

~ R' ~ ~ ~ 
(S,Rp)-174 (S,Sp)-174 (S,Rp)-175 (S,Sp)-175 

favoured disfavoured 97 3 

Scheme 30. Diastereoselective lithiation-substitution offerrocenyl oxazoline (S)-169. 

Despite the availability of synthetic methods that use chiral directing groups for 

diastereoselective lithiation, the structural diversity of enantiomerically pure 2-substituted 
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aminoferrocenes remains rather limited. To date, only a small number of planar chiral 

aminoferrocenes have been reported, several of which are shown in Figure 8. Despite the 

utility of P,N-ligands in catalysis, just four aminophosphine analogues of general 

structure 176 have been reported in a patent. 30 Compounds 177-180 have served as 

synthetic Intermediates, while 181 was a target compound. Fu's planar chiral DMAP 

analogue (182)15 and Stradiotto's aminophosphine (183)31 rely on de novo syntheses for 

preparation to give racemic products that require resolution. 

PR2 CO2 Me NH2 

~NH2 
NH2 0 

~NH2 ~NH2 ~cH3 ~S.",. . . 
R 

Fe Fe Fe Fe Fe 

~ ~ ~ ~ $ 
176 177 178 179 180 

-@ I 
e PR2 ~ 

o--F\~ 
R'2N ~ 

~NMe2 Fe 
N'0'N ~N 

~H' R Fe R 

R~R 
Fe 

Fe 

~ 181 ~ R ~ 184 
182 183 

Figure 8. Representative chiral aminoferrocenes. 

For resolution of 182, researchers were forced to resort to preparative chiral HPLC to 

separate the enantiomers, whereas 183 has only been prepared as the racemate to date. 

Apart from the de novo syntheses, the aforementioned planar chiral 

aminoferrocenes are typically prepared by installation of nitrogen into the 2-position of 

the Cp ring either directly of after subsequent reactions. For example, en route to amino 

acid analogues, amino ester 177 was synthesized by lithiation of oxazoline 169 (R = i-Pr) 

and quenching with N20 4 (Scheme 31) to give a photosensitive nitroferrocene (185).32 A 

three-step transformation of the oxazoline auxiliary, followed by reduction of the nitro 
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group with Adam's catalyst, gave the primary amine (177). As there is no simple way to 

replace the C02R group with a heteroatom or some other functional group apart from 

Curtius rearragement, this method is not amenable to the synthesis of aminoferrocenes 

with non-carbon based functional groups beside the amine moiety. 

~C02Me H2o Pt02 ~co2Me 

Fe N02 -=E:..:..:tO:....:.H'----_. Fe NH2 

¢ (quant.) ~ 
169 

- 196°C -7 rt THF/MeOH 
185 186 177 

(86%) (64%) 

Scheme 31. The oxazoline directing group in the synthesis of amino ester 177. 

Imidazolium salt 181 represents the only reported case where chiral ferrocenyl 

groups are directly bound to the imidazolium nitrogens/3 although Bildstein has reported 

the synthesis of similar imidazoliums and imidazoliniums from achiral aminoferrocene.34 

Kagan's acetal (168) was diastereoselectively lithiated and quenched with Mel to 

affordmethylated 187. This step was followed by a five-step sequence of transformations, 

highlighted by a Curtius rearrangement of acyl azide 191, to incorporate the Cp-amino 

group (Scheme 32). The difficulty associated with this transformation prompted Togni 

and co-workers to write, " .. . another major challenge in the present ligand synthesis was 

the generation of the nitrogen-ferrocene bond. Since aminoferrocenes serve as 

intermediates in the synthesis of various ligands and optically active materials, this 

problem has attracted considerable interest.,,33 
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~:\ ° 1) t-BuLi, Et20 , -78 °C ~ rt PTSAoH2O, 

~ 2) CH31 , -78 °C ~ rt H20/CH2CI2 • 
166 - Fe OMe Fe 

(95%) ~ (98%) ~ 
187 188 

° 12, KOH, 

MeOH 

(77%) 

~, C02Me NaOH, ~C02H 1) DMF, SOCI2, PhH -----ll 
~ aq. EtOH ~ 2) NaN3, py, BU4NBr, CHCI2 ~ -N3 

Fe ---'---.. - Fe --'----=-.:..-'----'-----=..... Fe 
~ (93%) ~ (95%) $ 
189 190 191 

«;11 F\ 1 
e 

9<NHCbZ 9<NH2 
BnOH, 90°C H2, Pd/C, 3 steps o--NvN~ Fe • Fe • 
(81 % over 2 steps) $ i-PrOH $ I 

Fe 

192 
(quant.) 

193 181 ~ 

Scheme 32. The acetal directing group in the synthesis of imidazolium iodide 181. 

Togni employed a similar strategy to prepare amme 198 starting from Ugi's 

amine (165).35 In this case, quenching with CO2 provided zwitterionic 194, and this was 

followed by elimination of the dimethylamino group and saponification of the ester to 

give 2-vinylferrocenecarboxylic acid (195, Scheme 33). Curtius rearrangement 

employing DPPA as an azide transfer reagent led to construction of the N-C(Cp) bond. 

Addition of nucleophiles (e.g. HPPh2, amines) across the double bond by acid catalysis 

and cleavage of carbamate 197 afforded free amine 198. Although this sequence reduced 

the number of operations (without purification of intermediates) from seven to five steps, 

it requires the preparation of DPP A and relies on a diastereoselective nucleophilic 

addition to the alkene addition, whose stereoselectivity varies with nucleophile. In 

addition, the overall route is still limited to the preparation of aminoferrocenes with 

branched alkyl groups beside nitrogen on the Cp ring. 
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165 

1) t-BuLi, Et20 , -78 °C ~ rt _ J ® 1) Mel, K2C03, Me2CO 

2) CO2, -78 °C ~ rt ~NHMe2 2) PhH, 85 °C ~ 
---'--""'---------. Fe CO2 ~--'------ Fe C02H 
(95%) ~ e 3) NaOH, aq. EtOH, 60°C ~ 

(73%) 
194 195 

~ 
HPPh2, ~PPh2 KOH, ~PPh2 1) DPPA, Et3N,100 °C HOAc, 60°C aq. i-PrOH, 90°C. • Fe NHCbz • Fe NHCbz Fe NH2 

2) BnOH, 100°C ~ (83%) ~ (92%) ~ 
(71%) 

196 197 198 

Scheme 33. Dimethylaminoethyl directing group in the synthesis of amine 198. 

The representative syntheses presented above show that although many chiral 

directing groups on ferrocenes allow for induction of planar chirality, they may not 

provide the desired functionality at the C2-position after metalation; they invariably 

require some degree of manipulation. In this respect, carbon-based directing groups 165-

169 are useful as starting materials for the diastereoselective substitution of ferrocene as 

they provide the a-carbon atom in different oxidation states after removal of the 

auxiliary, usually under mild conditions so as not to affect the group introduced (i .e. 

165/166, alcohol oxidation state; 167, ketone; 168, aldehyde; 169, carboxylic acid) . 

Ideally, the directing group should be entirely removable. The one group that approaches 

this ideal is Kagan's sulfoxide (170, R = p-Tol), where treatment of the substituted 

sulfoxide 199 with t-BuLi results in sulfoxide-lithium exchange to generate a 

lithioferrocene that may be trapped with an appropriate electrophile (E2X) to give 200 

(Scheme 34).36 However, the need to use organolithiums requires that the introduced 

substituent be stable to strong nuc1eophiles/bases or be suitably protected (e.g. when E I = 

NH2), which results in the introduction of additional steps to the overall route. 
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o 
I 

~S"". 
~ ~ . 

, p-Tol 
Fe 

~ 
170 

1) LDA. THF, -78°C. 

2) E1X. -78 °C ~ rt 

E1 0 

--Ls .. ". 
~~ . 

I p-Tol 
Fe 

$ 
1) RLi, THF, -78°C. 

2) E2X, -78 °C ~ rt 

200 

Scheme ,34. Use of a p-tolyl sulfoxide group for preparing 1,2-disubstituted ferrocenes. 

Knochel utilized Kagan's method to prepare ferrocenyl analogues of QUINAP (205).37 

Standard deprotonation of sulfoxide 170 with LDA, followed by transmetalation to the 

organozinc species and Pd-catalyzed Negishi coupling with 2-iodoisoquinoline, furnished 

biaryl sulfoxide 201 in good yield (Scheme 35). The conditions outlined in Kagan's 

original disclosure using t-BuLi provided the desired substitution product (203) in only 

11% yield. 

o 
I 

~S"". 
~ ~ . 

I p-Tol 
Fe 

$ 

c:E~ I ~ 
--N 0 

5 .. ". 
_2.:....) Z_n_B.....:r2,,-, _-7_8_o_C_~_rt ______ • Fe ~-T~I 
1) LDA, THF, -78°C 

3) 2-iodoisoquinoline, 5 mol% Pd(dba)2, $ 
170 

tris(2-furyl)phosphine, 60 °C, 20 h 

(78%) 
201 QUINAP (205) 

1) 2 equiv. PhLi, 

THF/Et20, -78°C, 10 min. 

2) 3 equiv. Ph2CIP·BH3 • 

-78 °C ~ rt, 1 h 

(69%) 
202 203 

c:E:o-'" I ~ 
--N 

Et2NH, neat, F' -----'=----__ • e 
50°C, 30 min $ 
(quant) 

204 

Scheme 35. Use of p-tolyl sulfoxide group to direct lithiation, 
followed by substitution of directing group. 

PPh2 

Experimentation with other organolithiums to promote sulfur-lithium exchange revealed 

that inverse addition of PhLi was more effective, circumventing competitive reaction 
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with 202 to gIVe 203 in nearly 70% yield. Deprotection of borane adduct 203 with 

diethylamine afforded free phosphine 204. There was no explanation given for the lack of 

success with t-BuLi, although it is evident from Knochel's report that replacement of the 

sulfoxide is not always straightforward and success of the sulphur-lithium exchange is 

highly dependent on the other substituent(s) present. 

2.1.4 Enantioselective Lithiation of Ferrocenes 

Besides diastereoselective lithiation of ferrocenes, planar chirality may also be 

installed by enantioselective means, although this alternative is not as well developed. 

The origins of this approach can be traced to Nozaki in the early 1970s, who attempted 

the lithitation of isopropylferrocene (205) with an alkyllithiuml( - )-sparteine complex?8 

Thus, exposure of 205 to 2.5 equivalents of n-BuLi and diamine (-)-66 gave 

predominantly a 3,1' -dilithio intermediate, which was trapped with CO2 or CISiMe3 

(Scheme 36) to give products (206) in very low 3% enantiomeric excess. Moderate 

optical purities of up to 45% were obtained by partial resolution of the carboxylic acid 

products via comparison to tertiary alcohol 207. 

~ 
1) 2.5 equiv. n-BuLi , 

~E 
OH 

2.5 equiv. (-)-66, ~ 
I hexanes, -70 °C ~ rt I I 

Fe • Fe Fe 

$ 2. E+, 0 °C ~ rt 
~E $-

(45-85%, :S 45% o.p.) 
205 206 207 

Scheme 36. Earliest report of asymmetric lithiation of a ferrocene derivative. 

No further reports in this area were published until a resurgence of interest in 

planar chiral ferrocenes in the mid-1990s yielded three different studies within the span 
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of four months. Based on work carried out on (rl-arene )chromium tricarbonyl 

complexes39 where a chiral LDA analogue, Simpkins' base, gave good yields and 

enantioselectivities, Simpkins showed that silylation of prochiral substrates 208-210 

could be carried out in situ with this base.4o Although sulfone 208 and di(iso-

propyl)carboxamide 209 only provided racemic products in this reaction, phosphine 

oxide 210 underwent silylation to give 211 in excellent yield and in moderate 77:23 er 

(Scheme 37). The stereochemical assignment was based on the earlier silylation work 

with chromium complexes and corroborated by circular dichroism data for 211 and the 

corresponding 2-SiMe3-free phosphine, which were in accordance with close derivatives 

of the free phosphine. Attempts at installing groups more useful than trimethylsilyl by 

further metallation of 211 proved fruitless, even with alkyllithiums. However, reaction of 

the silyl group with a carbonyl proved possible in the presence of CsF under somewhat 

forceful conditions to give secondary alcohol 212 as a 1: 1 mixture of diastereomers. 

~DG 

Fe 
$ 

Ph~N~Ph 0 0 
Li ~~Ph2 3 equiv. CsF, ~IIPh2 

Simpkins' base ~S- 10 equiv. PhCHO I Ph 
--'------... Fe iMe3 ----'------ Fe 
Me3SiCI, THF, -78°C $ DMF, 100 cC, 30 h $ OH 

(95%, 77:23 er) (55%) 
211 212 

DG = S02Ph (208) 

= C(O)NiPr2 (209) 

= P(O)Ph2 (210) 

Scheme 37. Enantioselective lithiation of 210 with Simpkin's base. 

A breakthrough occurred when carboxamide 209 was subjected to n-BuLi/(-)-

sparteine lithiation to give the 2-SiMe3-substituted derivative (213a) in excellent yield 

and an even more impressive enantiomeric ratio of 99: 1 .41 Carbon- and heteratom-based 

electrophiles were installed with similar ease, and generally very high levels of 
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enantiomeric purity (213b-e, Scheme 38). In exploring the effects of base and solvent, it 

was noted that branched alkyllithiums such as s-BuLi gave lower yields and selectivities 

in both Et20 (94%, 87: 13 er) and t-BuOMe (97%, 78.5: 11.5). Single-crystal X-ray 

diffraction analysis of the product resulting from 3-pentanone quench was used to 

confirm the stereochemistry of the products and indicated selective abstraction of the pro-

(S) proton of the Cp ring. 

0 E 0 E 0 

~N(i-pr)2 
1) 2.2 equiv. n-BuLi , 

~N(i-prh 
1) n-BuLi, THF, -78°C or 

~N(i-pr)2 2.2 equiv. (-)-66, s-BuLi, Et20 , -78°C 
Fe Fe Fe 

0 Et20 , -78°C 0 2) Ph2CO ~OH 
2) E+, -78°C -t rt (72-79%) 

209 213a-e 214 Ph Ph 

Yield 

E+ 
Ph 

Product E 213 (%) er (% eel 

P~ Ar 0 
213a TMSCI TMS 96 99:1 (98) ~N(i-prh 213b Ph2CO C(OH)Ph2 91 99.5:0.5 (99) I N(i-Prh 

Fe Fe 
213c B(OMeb B(OHh 89 92.5:7.5 (95) ~ 0 
213d 12 85 98:2 (96) 

215 216 
213e CIPPh2 PPh2 82 95:5 (90) 

Ar = 2,4-diMeO-C6H3 

Scheme 38. Highly enantioselective substitution offerrocenyl carboxamide 209. 

The products were subjected to subsequent lithiation with n- or s-BuLi, leading to 

substitution of the lower Cp ring to give a1cohol214 in good yields. The lack of reactivity 

of the remaining artha proton on the substituted Cp ring has been attributed to the steric 

demand of the tertiary amido group, which forces the carbonyl to point towards the lower 

Cp ring, resulting in remote lithiation leading to the 1,2, I '-trisubstituted product. 

Although hydrolysis of the tertiary amide can be difficult, BH3 reduction of 213b 

proceeded in 95% yield to give tertiary aminoalcohol 215 in excellent yield. Suzuki-

Miyaura cross-coupling of 213d afforded a moderate yield of biaryl 216. It should be 

noted that to allow for further manipulation of the tertiary carboxamide, enantioselective 
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lithiation was extended to N-cumyl-N-ethylferrocenecarboxamide42 which gave 

enantiomeric ratios of94:6-98:2 for secondary N-ethylcarboxamides after N-dealkylation. 

The other report of enantioselective ferrocene lithiation from this time was 

disclosed by Uemura, who carried out lithiation-substitutions on 

(dialkylamino )methylferrocenes (156, 218, 220, 222) and ferrocenyl sulfones.43 The 

sulfones (FCS02t-Bu and FcS02p-Tol) provided the 2-substituted products in good yields 

(plus tolyl-substituted regioisomers for that case), but in racemic form upon DMF 

quench.44 More interestingly, it was found that treatment of amine 217 with 1.5 

equivalents of n-BuLi'(R,R)-87 complex for 5 h at 0 °C gave a 26% yield of known 

phosphine 217a with an er of 72:28 (entry 1) in favour of the (R)-isomer as determined 

by comparison of the optical rotations (Scheme 39). 

PPh2 

~NMe2 1) RLi L* Et20 O°C 5 h ~NMe2 
Fe '" , • Fe $ 2) CIPPh2, 0 °C ~ reflux $ 

156 217a 

RLi (equiv.) L* (equiv.) Yield 217a (%) er (% eel 

n-BuLi (1.5) (R,R)-87 (1.5) 26 72.5:28.5 (43) 

s-BuLi (1.5) (R,R)-87 (1.5) 38 74:26 (48) 

t-BuLi (1.5) (R,R)-87 (1.5) trace n.d. 

n-BuLi (1.5) (R,R)-87 (2.0) 49 81:19 (62) 

n-BuLi (3.0) (R,R)-87 (3.0) 31 78.5:21.5 (57) 

n-BuLi (1.5) (-)-66 (2.0) trace n.d. 

n-BuLi (1.5) (S)-86 (2.0) 40 50:50 (0) 

ct10 
H 

(-)-66 

(S)-86 

O:NMe2 

'NMe2 

(R,R)-87 

Scheme 39. Enantioselective lithiation of (dimethylaminomethyl)ferrocene (156). 

Carrying out the reaction in THF or PhMe gave lower yields « 13%) and er « 60:40), as 

did using the bulkier alkyllithiums s- and t-BuLi (entries 2 and 3). Three equivalents ofn-

BuLi'(R,R)-87 marginally increased the yield and er (entry 5), but the best results were 
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obtained when a slight excess of the ligand was present (entry 4). Interestingly, this is a 

case where (-)-sparteine [(-)-66] gave uncharacteristically poor results, while BINAM 

derivative (S)-86 was no better (entries 6 and 7). 

Uemma tested several additional tertiary amines (Scheme 40) to determine their 

effect on the reaction and although the yields stayed around 40% for the formyl 

derivative, the er gradually declined from 90: 10 for the dimethyl derivative (217b) to 

86.5:l3.5 (219b) and 83.5:16.5 for the pyrrolidinyl derivative and morpholinyl 

derivatives (221b) respectively. Di(isopropyl) derivative 222 was almost completely 

resistant to lithiation under these conditions. 

1) 1.5 equiv. n-BuLi, 
~R Fe 2.0 equiv. (R,R)-87, Et20, 0 DC, 5 h • 

~ 
I R 
Fe 

~ 2) DMF, 0 °C ~ rt ~ 
Compound R Product Yield (%) er (% eel 

156 -NMe2 217b 41 9010(80) 

218 -N0 219b 40 86.5: 13.5 (73) 

220 
1\ 

221b 42 83.5: 16.5 (67) -N ° '---I 

222 -Ni-Pr2 223b trace n.d . 

Scheme 40. Enantioselective lithiation of (dialkylaminomethyl)ferrocenes. 

2.1.5 Nitrogen-Based Directing Groups in Lithiation-Substitution Reactions 

2.1.5.1 Lithiation-Substitution of Imides & Phthalimidines 

Nitrogen-based directing groups are common in arene lithiation and metal-

catalyzed C-H activation; however they have not been used in ferrocene substitution. 

Amides and carbamates are most commonly used in lithiation chemistry, although imides 

have seen sporadic use as well. Simpkins has developed an interesting method for the 
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lithiation-substitution of bridgehead positions in bicyclic imides.45 Phenyl-substituted 

imide 224 was shown to undergo racemic deprotonation using LTMP in the presence of 

LiCI and Me3SiCI to furnish (±)-225a in 47% yield. Encouraged by this result, (S,S)-213 

was used as base in its place where a highly enantioselective silylation ensued to give 

225a in excellent yield and 99: 1 er (Scheme 41). This degree of selectivity was also 

observed for a range of carbon-based electrophiles. In addition to the [3.3.1] system, the 

method has been applied to [3.3.2] and the related bicyclic succinimide (226) systems. 

224 

(5,5)-213, E+, LiCI 

THF, -105°C Ph:~ 
o E 

225a-f 

Product E+ E Yield 225 (%) er (% eel 

225a CISiMe3 SiMe3 74 99: 1 (98) 

225b Mel Me 96 98.5:1.5 (97) 

225c BnBr Bn 91 97.5:2.5 (95) 

225d BrCH2CH=CH2 CH2CH=CH2 89 97.5:2.5 (95) 

225e BCH2CH=CMe2 CH2CH=CMe2 85 99: 1 (98) 

225f CIC(O)t-Bu C(O)t-Bu 82 99: 1 (98) 

RN>l, 
o 226 

R = Ph, Bn, OBn 

n = 1-3 

Scheme 41. Enantioselective bridgehead substitution using an imide directing group. 

Related to Simpkins' studies are benzo-fused imides, namely phthalimide or 

isoindoline derivatives, variations of which have been used in Clayden's (±)-kainic acid 

synthesis and also by Weinreb for the generation of N-acyliminium46 building blocks. 

Clayden displayed his dearomatizing cyclization method of N-benzylbenzamides in order 

to set the correct relative stereochemistry of kainic acid (232), a naturally occurring 

proline derivative with diverse biological activity.47 Treatment of benzamide 227 with t-

BuLi and HMP A expectedly affected benzylic deprotonation (Scheme 42). Upon 

prolonged reaction time, lithiated intermediate 228 added to the anisyl ring, causing 
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dearomatization and formation of lithium enolate 229. Upon workup, phthalimidine 

derivative 230 was initially obtained. In situ treatment with hydrochloric acid 

transformed the enol to a,p-unsaturated ketone 231 in remarkable yield while setting 

three contiguous stereocentres. A number of subsequent transformations were then 

required to convert 231 into kainic acid (232). 

1 M HCI 

THF 

(94%) 

-4. o---C02H 

~C02H 
H 

kainic acid 

(232) 

Scheme 42. Clayden's synthesis of (±)-kainic acid from N-benzyl-N-cumylbenzamide. 

The same year, Weinreb investigated the synthesis of a number of N-cumyl-N-(a-

methoxy)benzamides and their subsequent derivatization by N-acyliminium ion 

chemistry.48 Substrates 233 and 235 were prepared by benzylic oxidation and it was 

observed that treatment with BF3·OEt2 as a Lewis acid efficiently generated the iminium 

ion (Scheme 43). 
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0 
~SiMe3 

0 Ph 

cX:N)(Ph BF3'OEt2, CH2CI2 ~~~ rt, 18 h 
.& PhAOMe (-CMe2Ph) 

233 (81%) 234 

O~ H 

Ph)lN 
BF3'OEt2, MeS03H 

• OJ) 
+OMe 

CH2CI2, rt, 18 h 
PhAN 

Ph (-CMe2Ph) H 

235 (61%) 236 

Scheme 43. Weinreb's use of a-methoxy benzamides as N-acyliminium precursors. 

These reactive intermediates could be trapped by nucleophiles, as in the case of 233, 

leading to homoallylic benzamide 234 in good yield. Tethered alkenes, such as 235, 

could also be used to undergo cycloaddition with the acyliminum, producing bicyclic 

oxazine 236. 

In the original study, N-cumylphthalimidine (237) was subjected to lithiation with 

two equivalents of s-BuLi/TMEDA at low temperature (Scheme 244).49 The resulting 

dianion was then trapped with excess CISiMe3 and allowed to warm to room temperature, 

giving disilylated 238 in excellent yield. Further manipulation of the phthalimidine 

portion served to illustrate conversion to the phthalimide (239) with relative ease. 

o 1) 2 equiv. s-BuLi , TMEDA, 

~ ~ THF,-78°C 
Ph Ny-V -2)-e-X-ce'--ss-CI-S-iM-e-3,---78-o-C-..... -rt 

o SIMe3 1) K CO MeOH 

~N~ 2) p~c , ~MF 
Ph ~ (86%) 

HO (94%) Me3SiO 
237 238 239 

Scheme 44. Use of the phthalimidine moiety as a directing group. 
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2.1.5.2 Enantioselective Lithiation-Substitution of Cr(CO)3-Complexed Anilides 

Interest in planar chiral systems as a route to atropisomeric axial chiral ami des 

prompted Uemura to study the lithiation-substitution of anilide (and benzamide) moieties 

of Cr(COh "piano-stool" complexes.50 Attempts to distinguish between two enantiotopic 

methyl groups on the aromatic ring with n-BuLi and chiral diamines [such as (-)-

sparteine, (R,R)-TMCDA and a chiral TMEDA analogue] only resulted in mediocre 

yields (24-50%) of (±)-241a. Chiral lithium amide ligands gave much improved results. 

The best results were obtained with (S)-phenylethylamine derivative 244d, which 

afforded product 241a in excellent yield as nearly pure (R)-enantiomer (Scheme 45).51 

Based on the ligands screened, the N-methyl and CH2t-Bu portions of the chiral ligand 

(i.e. "X" and "ROO of 244) were key structural features of the reagent. A number of 

electrophiles could be introduced with similar selectivities. 

1) 1.2 equiv. n-BuLi, 
H3C 0yt-Bu 1.5 equiv. L*, THF, 

0 
H3C yt-Bu 

(xN'R 
-78 ---+ -30 °C, 1 h 

q:~,= • 
~I 2) E+, -78 ---+ -30 °C 

.;::' CH3 
Cr(COb Cr(COb 

R = CH3 (240) R = CH3 (241 a-d) 

= CH20CH3 (242) = CH20CH3 (243a-b) 

Yield 

rN-"YPh 
Product L* E+ E 241/243 ~%l er ~% eel 

241a 244a Mel Me 90 97.5:2.5 (95) 
XJ NHR 

241b 244b BnBr Bn 90 98.5:1 .5 (97) L* X R 

241c 244c Ph2CO C(OH)Ph2 73 98:2 (96) 244a CH2 i-Pr 

241d 244d CIC(O)Ph C(O)Ph 31 98.5: 1.5 (97) 244b CH2 CH2t-Bu 

243a 244a Mel Me 73 98:2 (96) 244c CH2 CH2O(CH2l20CH3 

243b 244b BnBr Bn 78 97:3 ~94l 244d NMe CH,t-Bu 

Scheme 45. Anilides as directing groups in 
chirallithium amide-mediated deprotonation of benzylic groups. 
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Upon switching to a-alkoxy anilide 242, an acyclic analogue of O-alkylated 

phthalimidines, the high reaction selectivity was retained. Finally, sunlight-induced 

decomplexation of products 241a-d and 243a,b gave the atropisomeric compounds as 

mixtures of cis/trans rotamers. 

2.1.5.3 Lithiation-Substitution of Lewis Acid-Complexed Tertiary Amines 

Many heteroatoms are known to increase the acidity of protons at adjacent Sp3_ 

hydridized carbon atoms in heterocycles. Thus, 0-, P- and S-containing compounds may 

be regioselectively deprotonated at the a-position upon treatment with strong bases, as 

the resulting carbanions are stabilized by a number of factors (i.e. inductive effect of 

heteroatom, polarizability and ability to accept negative charge density). In contrast N

containing hereocycles, and amines specifically are typically quite resistant to treatment 

with base and require forcing conditions to form a-carbanions. For example, 

deprotonation of N-methyl piperidines was only achieved with so-called superbases (s

BuLi and KOt-Bu) in neat amine. 52 These observations may be rationalized by 

considering that nitrogen is less polarizable that phosphorus or sulphur, its inductive 

effect is smaller than oxygen, and its lone pair creates a repulsive interaction with the 

adjacent carbanion. 

In the past 20 years, it was found that prior complexation of amines with Lewis 

acids such as BH3 or BF/3 facilitates a-deprotonation of heterocycles. Other Lewis acids, 

such as BH2CN, BCh, AIMe3 and AICh have also been screened in such reactions, but 

usually give inferior results. The method also proved amenable to the development of 

enantioselective variants by the use of chiral diamines. In one of the earlier examples, 
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Simpkins treated N-methylisoindoline (245) with borane and was able to isolate the 

resulting zwitterionic Lewis acid-base adduct (246), which are sometimes even stable to 

column chromatography on silica gel (Scheme 46).54 Exposure of amine-borane complex 

246 to excess n-BuLi in the presence of (-)-sparteine [(-)-66], followed by electrophile 

quench, produced the diastereomeric products (247a-d) with substitution occurring at the 

benzylic position. An important observation made here was that the major diastereomer 

was always the one where the newly introduced substituent was always syn to the borane 

moiety on nitrogen. Standard carbon-based electrophiles, such as methyl iodide and 

benzyl iodide, were introduced with good selectivity and yield, as were trimethylsilyl 

chloride and tributyltin chloride. Decomplexation of the products was effected in 62-94% 

yield by heating their ethanol solutions for five hours. 

1. 2.0 equiv. n-BuLi, 

2.2 equiv. (-)-66, E 
(3 :0 (3 (CN- BH3 03N\BH3 Et20, -78°C, 1 h. WN\BH3 -THF 

:::,-.. , 
2. E+, -78°C 

:::,-.. , 
245 246 247a-d 

Yield 

Product E+ E 247 1%l er (% eel 

247a Mel Me 70 91.5:8.5 (83) 

247b BnBr Bn 83 91.5:8.5 (83) 

247c CISiMe3 SiMe3 84 92.5:7.5 (85) 

247d CISnBu3 SnBu3 95 94.5:5.5189l 

Scheme 46. BH3-mediated enantioselective lithiation of N-methylisoindoline. 

Kessar later reported the first stereoselective lithiation at non-benzylic si-
hybridized centres using this technique, and also provided the first computational 

analyses on Lewis acid-promoted lithiation.55 It was demonstrated that BF3-complexed 

N-ethylpyrrolidine (2.113) undergoes lithiation at low temperature when exposed to s-
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BuLi·(-)-sparteine to produce tertiary alcohol (S)-250 in low yield with an 85:15 er upon 

electrophile quench with benzophenone and aqueous work-up (Scheme 47). If lithiated 

intermediate 249 was subjected to a warm-cool cycle (-78 °C ~ 0 °C ~ -78°C), 

followed by benzophenone quench, the er was inverted to 14:86. This result implied an 

initial lithiation syn to the BF 3 group followed by inversion of the carbanionic centre 

upon warming. Indolizidine complex 251, which has a fixed stereocentre already in the 

molecule, corroborated this result since subjection of the carbanion to a warm-cool cycle 

changed the enantiomeric ratio of products from 97:3 ~ 41:59. DFT computational 

studies of gas phase intermediates with BF3 showed one strong Li-F interaction (1.82 A.), 

while in the case of BH3-coordinated intermediates, close contacts (1.92 and 2.01 A.) 

were seen between lithium and two hydrogens on boron. 

W 
N 

Et4 'BF3 

e 
248 

s-BuLi , (-)-66, • r Cj("/LiO(-)_661-p_h.::..2C_O-,-, -_7_8_o C __ • Q""PPh 

1:1 PhMe/Et20 , -78°C Et BF3 (26%, 85:15 er) Et OH 
e 
249 

1) s-BuLi , TMEDA, H 

Et20 , -78°C ~ 
2) Ph2CO, -78°C' ~N--! 
(46%, 97:3 dr) /\Ph 

252 HO Ph 

Scheme 47. BF3-mediated stereoselective lithiation of 
N-ethylpyrrolidine and isoindolizidine. 

250 

It was tentatively suggested that these types of interactions in a precomplex or transition 

state could be responsible for a kinetically controlled syn lithiation (CIPE).56 

Another important example, reported by Kessar in early 2008, involved the 

application of his BF3-mediated method to N,N-dimethylanilines 253-255, compounds 

that have rather poor directing ability and are known to require rather harsh conditions 
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(alkyllithiums, hexane, reflux) to effect lithiation. 57 Complexation of the tertiary anilines 

to BF3 allowed deprotonation to occur at -78 °C (Scheme 48). The putative ortho-

lithiated zwitterions were trapped with CH30D, PhCHO or Ph2CO to afford modest 

yields of the ortho-substituted anilines (257a-c, 258a and 259a).58 Despite the moderate 

yields of this process, ortho lithiation of BF3-complexed dimethylanilines is actually 

quite remarkable as it allows complete regiocontrol even in the presence of the known 

methoxy and chi oro substituents, which themselves may behave as directing groups. 59 It 

was originally thought that tertiary anilines would not be amenable to this method of 

lithiation as the zwitterionic intermediates would be prone to benzyne formation. 

ZNMe2 r Me, 1 2.0 equiv. s-BuLi. N, E+ ::? NMe2 
::? (j) BF3 • n e -78°C---+rt n ~I THF, -78°C 

R R Li R E 

R = H (253) 256 R = H (257a-c) 

= OCH3 (254) 

j -78 ---+ 0 °C 

= OCH3 (258a) 

= CI (255) 
Yield 

= CI (259a) 

Product E+ E 257 ~%l 

257a CH30D D 40 [ 0 1 ] 

PhSLi or rySPh 
257b PhCHO C(OH)HPh 51 I or ceo .0 
257c Ph2CO C(OH)Ph2 41 :::,... 0 0 

258a Ph2CO C(OH)Ph2 40 260 261 

259a Ph2CO C(OH)Ph2 30 (36%) 

Scheme 48. BF3-mediated lithiation of N,N-dimethylanilines 
and trapping of proposed benzyne intermediate. 

262 

(11%) 

Attempts to find eveidence of benzyne formation at low temperatures by addition of 

lithium thiophenolate and anthracene as a diene did not result in formation of a 

cycloadduct. However, upon warming the reaction mixture to 0 °C, some benzyne-

derived products (261 or 262) were obtained in low yield. 
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Computational modeling of a simplified system with aniline and methyllithium 

once again revealed an important role for Li-F of Li-B interactions. As shown in Figure 

9, when BH3 is used a five-membered ring intermediate is predicted that has a Li-B 

contact of 2.21 A (Li-HI and Li-H2 contacts of 1.92 A). On the other hand, a six

membered ring appears to be favoured when BF3 is used, leading to a Li-F distance of 

1.82 A. 

Lithiation-substitution of BF3_ of BH3-complexed tertiary amines has also been 

carried out on aziridines,6o Troger's base61 (diastereoselective) and on s/-hybridized 

heterocycles, such as pyridines62 and oxazoles.63 

Figure 9. Kessar's modeling of BH3- and BF3-promoted lithiation of aniline. 
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2.2 Aims & Objectives 

The aim of the current work is to develop a more direct method for the synthesis 

of 2-substituted aminoferrocenes possessing planar chirality. Historically, as lithiation-

substitution has proven to be the most useful tactic to selectively substitute ferrocenes, 

this approach was taken. Two methods have been pursued: the first involved 

diastereoselective lithiation using a chiral directing group, while the second investigates 

enantioselective lithiation of a prochiral substrate. Both routes differ from previous 

aminoferrocene syntheses in that they use starting materials in which nitrogen is directly 

attached to the Cp ring. These approaches would obviate the need to introduce nitrogen 

into the products at a later stage of synthesis, thus avoiding cumbersome protection-

deprotection sequences or the need for rearrangement reactions. With these issues in 

mind, the objectives of this work are to: 

1. Investigate whether N-ferrocenyl phthalimide (159), a common and easily prepared 

precursor to aminoferrocene (155), can be reduced and protected as a phthalimidine 

(263), which would serve as a chiral directing group in the diastereoselective lithiation of 

the Cp ring (Scheme 49). Success in this endeavour would give access to primary 

aminoferrocenes (265) via standard deprotection of nitrogen using reducing agents or 

hydrazine (the latter after oxidation of 2-substituted product 264 to the phthalimide). 

0YJ o~ E 0JP E 
\Gr"N \,ij \Gr"N ~ \ ,ij ~N \,ij ~NH2 

I I I I 
Fe - - - - - - -.. Fe - - - - - - -.. F - - - - - - - .. F $ ° $ OSiR3 .$ OSiR3 .$ 

159 263 264 

Scheme 49. Proposed use ofphthalimidine as a removable, N-based 
directing group for the synthesis of 2-substituted aminoferrocenes. 

265 
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2. See if Kessar's BF3-mediated lithiaton methodology can be extended to tertiary 

aminoferrocenes (266, Scheme 50). The use of achiral substituents would allow for the 

development of enantioselective lithiation procedures in the presence of (-)-sparteine or 

other appropriate diamines . Moreover, in the case that the tertiary amine group is chiral 

(i.e. 269), \ BF3-activated lithiation may also be diastereoselective, since the chiral centre 

would be ~- to the Cp ring, as in the proposed phthalimidine 263 above. 

~NR2 
Fe -------.. 

$ 
266 267 

R = alkyl 

E 

Q..--NR2 
-------+- I 

Fe 

$ 
268 

~:f-;j 
Fe T 
~ 

269 

Scheme 50. Proposed BF 3-mediated lithiation of tertiary aminoferrocenes. 

3. Given that many of the derivatives obtainable by the methods described above would 

be new or uncommon, especially with two heteroatoms on the Cp ring, the coordination 

chemistry of these new ligands is open for study (271 , Figure 10). For example, to the 

best of our knowledge, Stradiotto's Rh complex 27031 is the only example thus far that 

contains a 2-phosphino-l-aminoferrocene ligand. 

RP-M l _' ~NMe2 

Fe 
$ 

270 271 

M = metal 

Figure 10. Ferrocenyl aminophosphine Rh and metal complexes. 
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2.3 Results & Discussion 

2.3.1 Diastereoselective Lithiation-Substitution of Ferrocenyl Phthalimidines64 

N-Ferrocenylphthalimide was prepared from ferrocene following the procedures 

of Bildstein 12 and Sato?1 Thus, lithioferrocene (135) was generated with a slight excess 

of t-BuLiin THF at 0 DC, precipitated with hexane at -78°C, and isolated while cold by 

filtration under inert atmosphere. Addition of iodine to lithioferrocene in THF at low 

temperature gave the iodide (272), which was converted to phthalimide 159 with CU20 in 

pyridine. The overall yield for this process was about 30%. Imide 159 was readily 

reduced to the phthalimidine (273) with NaBH4 in MeOH/MeCN and the product was 

then O-silylated with either CISiMe3 or CISiEt3. The triethylsilyl adduct (263b) was 

stable to silica gel chromatography and generally easier to handle than the methyl 

analogue (263a). 

~ 
1) t-BuLi, THF, 0 °C, 15 min 

~Li ~I 
I 2) hexanes, 0 ~ -78°C, filtration I 12, THF, -78°C I 

Fe Fe - Fe 

$ (58%) $ (81%) $ 
131 135 272 

000 

HN~ ~, ro ~, N}--() 
o , CU20 ~r NaBH4 ~r 

-------"'---- Fe 0 ---"-------. Fe OH 
py, reflux, 2 d $ MeOH/MeCN, O°C $ 
(62%) (97%) 

273 

159 273 

for R = Me, 0\=0 
CISiMe3, Et3N , THF, rt ~, N \,1 
(90%) 

--'---'------------- Fe OSiR 
forR=Et, $ 3 

CISiEt3, DMAP, imidazole, DMF, rt 
R = Me (263a) 

(95%) = Et (263b) 

Scheme 51. Synthesis of N-ferrocenylphthalimidines. 
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Considering the position of the stereogenic centres in 165 and 169, either alpha or 

gamma to the Cp ring, it was thought that silylated phthalimidines 263a,b (Figure 11) 

would also provide diastereoselectivity during lithiation of the ferrocene core. The 

phthalimidines would be converted to primary amines after substitution at the 2-position 

of ferrocene. 

_ --1~),:, 
~"N R 

Fe 
¢\ 

o 

~JP 
Fe OSiR ¢\ 3 

165 169 263a,b 

Figure 11. Comparison of stereogenic centres in chiral ferrocene directing groups. 

Exposure of 273 to reaction conditions similar to those for N-cumylphthalimidine 

237 (2.2 equiv. s-BuLi, 2.2 equiv. TMEDA, THF, -78°C, then 2.2 equiv. CISiMe3, -78 

DC) gave an inseparable mixture of compounds; however, it was clear from the SiMe3 and 

Cp signals in I H NMR that the desired product was formed. It was thought a cleaner 

reaction may take place if the acidic hydroxyl group was protected with SiMe3 (CISiMe3, 

Et3N, THF, 0 DC) or SiEt3 (CISiEt3, DMAP, imidazole, DMF, rt) group to generate 

silylethers 263a and 263b respectively. 

Treatment of trimethylsilyl adduct 263a with 2.5 equivalents of LDA and 4 

equivalents of CISiMe3 in situ in THF at -78°C and quenching with H20 at low 

temperature gave the desired Cp-silylated product, which was difficult to isolate in pure 

form because of the lability of the O-trimethylsilyl group on silica gel. To alleviate this 

problem, the bulkier O-triethylsilyl derivative was used in its place. Under optimized 
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conditions, lithiation of 263b (2.5 equivalents of LDA, 2.5 equivalents of CISiMe3, -78 

DC, 2 h) and workup with water at low temperature gave the 2-silylated product (274) as 

the major product (30%), along with an inseparable mixture of two aryl-silylated 

products (275 and 276) in less than 5% combined yield (Scheme 52). More importantly, 

according to IH and I3C NMR, 274 appeared to be a diastereomerically pure compound, 

as no other diastereomers could be detected. This implied that the lithiation occurred in 2: 

95:5 diastereoselectivity,65 which is a ratio comparable to those obtained from the use of 

other chiral directing groups, such as oxazolines and Ugi's amine. Given a particular 

configuration of the p-stereocentre, the conclusion may be drawn that the p-stereocentre 

efficiently dictates the position of lithiation on the Cp ring (i.e. pro-R or pro-S lithiation 

of the ferrocenyl moiety). This important result implied that if the phthalimidine starting 

material (263b) was of a single stereochemical configuration, then deprotection of 

nitrogen to the primary amine after Cp-silylation would afford an enantiomerically pure 

product possessing only planar chirality. 

o 0 \V Me3Si YJ QY, N \ ~ 1) 1.1 equiv. LOA, Q.-N \ ~ 
1.1 equiv. CISiMe3 ' 

Fe OS·IEt ------'-------':..... Fe OS·Et + $ 3 THF -78°C 3 h c!s I 3 

263b 274 + ent 275 276 
2) H20 : -78 oC '~ rt ~ I 

L-___________ .-__________ ~ 

(30%) 

« 5%) 

Scheme 52. Diastereoselective substitution of phthalimidines 263b. 

Encouraged by these results, the silyl ether of 274b was manipulated further to 

assess the ease with which the auxiliary could be removed. 274b was easily desilylated 

under standard conditions, revealing the free hydroxyl group. Attempts to oxidize 
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phthalimidine 277 to the phthalimide (278) with PDC or PCC caused significant 

decomposition of the starting marerial and provided only a trace amount of 2-SiMe3 

phthalimide 278. That phthalimidine 277 was prone to irreversible oxidation to Fe(III) 

species was supported by voltammetry.66 Even qualitatively, dark magnetic particles, 

presumabiy Fe(III) could be seen adhered to the stir bar during attempted oxidation with 

PDC or PCC. In contrast, classical Oppenauer conditions67 [AI(Oi-Pr)3, cyclohexanone, 

PhH, reflux] provided the desired phthalimide (278) without decomposition, although the 

transformation was sluggish. Modified Oppenauer conditions68 (AIMe3, p-

nitrobenzaldehyde, PhMe, 80 DC) gave 278 in a much improved yield of 60-70% in 16 h 

(Scheme 53). Removal of the phthalimide under standard conditions with hydrazine in 

refluxing ethanol for 1 h gave the simple, but as yet unreported, 2-trimethylsilyl primary 

aminoferrocene 279 in quantitative yield. The preceding sequence of transformations 

involving diastereoselective lithiation-substitution of the Cp ring, followed by N-

deprotection to the primary amine under mild conditions seemed to prove, in principle, 

the feasibility of the approach. 

274 

Scheme 53. Deprotection ofphthalimidine 274 and 
synthesis of 2-SiMe3 aminoferrocene (279). 

In addition, it may also be possible to use Ganem's approach in N-deprotection of 

phthalimidine 274.69 Specifically, it was found that sequential addition of K2C03 to 263a 

and NaBH4 reduction gave the putative hydroxyamide 285, which could be cleaved to 
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aminoferrocne and phthalide with p-toluenesulfonic acid (Scheme 54). This procedure 

avoids the requirement for a separate oxidation step. 

~:}-() 
F' ~r 1) K2C03, i-PrOH, rt 

e OSiMe • $ , 3 2) NaBH4 , reflux 

o 

~~ 
Fe OH 

~ 

~NH2 
p-TsOH ' 
-'----.. Fe + 
reflux ¢. 

o 

O~ 
263a 280 (60%) 

155 281 

Scheme 54. Model study of one-pot deprotection of O-SiR3 phthalimidines. 

Attempts to control the absolute stereochemistry of the products by asymmetric 

reduction of the phthalimide (159) to the SiEt3-protected phthalimidine (263b) were 

investigated next. Two reagents were employed for this purpose, namely BINAL-H and 

the Corey-Bakshi-Shibata oxazaborolidine. In these reactions, it was critical to maintain a 

basic environment until O-silylation occurred to avoid racemization of the hemiaminal. 

Both reactions provided some of the desired O-silylated phthalimidine (263a,b), which 

could not be separated from the starting material (159). The use of excess reagents did 

not lead to complete conversion of the starting material (Scheme 55). Metal-mediated 

hydrosilylation of the imide was briefly investigated as an alternative, considering that 

the product would be configurationally stable. Although the catalytic asymmetric 

hydrosilylation of imides (e.g. phthalimides) had no literature precedent, it is well 

established for ketones. It has been reported that Stryker's reagent 70, [(Ph3P)CuHh, is 

capable of promoting such ketone hydrosilylations 71, with Et3SiH, whereas many Rh-

catalyzed72 processes require dihydrosilanes as reagents. It was found that catalytic 

amounts of Stryker's reagent did not result in hydrosilylation of the phthalimidine. 

However, the combination of a stoichiometric amount of Stryker's reagent, dppf and 
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Et3SiH gave the O-triethylsilyl phthalimidine 263b in 60% yield. Attempts to perform 

this reaction in asymmetric fashion by replacing dppfwith MeO-BIPHEP or BINAP gave 

no product (Scheme 55). Although these results were discouraging, the asymmetric 

hydrosilylation of imides certainly warrants further investigation possibly with other 

. . I ( . 73) b I· h d 74 mexpensive meta s e.g. Hon or even y organocata ytiC met 0 s. 

0t;p 1) BINAL-H (-)-288, THF, 0 ·C ---+ rt 0V' 
Ph Ph 

eGo ~N ~ # or CBS (-)-289 , BH3 'THF, ~N • ~ # 
, CH2CI2 , 0 ·C ---+ reflux , 
Fe 0 Fe OSiR \ $ 2) R3SiCI $ 3 

159 263a,b 
BINAL-H 

(-)-281 

CBS 

(-)-282 

159 
Et3SiH, [(PPh3)CuH16 , dppf. 

PhMe, rt, 26 h 

(60%) 

263b 

dppf MeOBIPHEP BINAP 

283 (-)-284 (-)-285 

Scheme 55. Attempts at controlling phthalimidine absolute stereochemistry 
by 2- and I-step hydrosilylation processes. 

One potential alternative to hydrosilylation is the control of absolute 

stereochemistry of the phthalimidine by preparaing a hemiaminal from a chiral alcohol 

such as (-)-menthol, as has been done with other imide derivatives. 75 In principle, these 

products could be separated and independently subjected to the lithiation-substitution, 

thereby providing access to both antipodes of the 2-substituted aminoferrocene. 

In any case, it was also of interest to increase the scope of the reaction beyond 

CISiMe3 to other electrophiles which are stable to lithium amide bases (such as CISnBu3 

or B(Oi-Pr)3). Subjection of 263a to LDAlB(Oi-Pr)3 conditions unfortunately gave the 

undesired phenyl-substituted product (286). Similarly, the use of LTMP/CISnBu3 also 
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afforded only aryl-substituted stannane (287, Scheme 56). The reasons for this switch in 

regioselectivity were unclear. To better understand what was happening in these 

reactions, L TMP was used in combination with CISiMe3, which also afforded the 

benzene-substituted regioisomer (275) as the sole product in 85% yield. Although this 

was the undesired product, it was thought that disilylated compound 275 may serve as a 

blocked substrate which would be forced to undergo Cp ring deprotonation-silylation 

with LDAlTMSCl. 

263a,b 

B(OHl2 

1) 1.1 equiv. LOA O~--.;:: 
~_--'------'-------""--- ~, N ~ ,_ 2) 2.5 equiv. B(Oi-Prb ~ 

THF, -78°C, 1 h Fe OH 

(59%) $ o 

~YJ 
Fe OSiR $ 3 

286 

E 

~, :~ 
1) 1.1 equiv. LTMP ~r 

'---2-'-) -2.-5 -eq-'-U-iv-. E-+---,& OSiR3 

THF, -78°C, 1 h 

E = TMS, R = SiEt3, 275 (85%) 

= SnBu3, R = SiMe3, 287 (72%) 

Scheme 56. Formation ofregioisomeric products upon using 
different bases and/or electrophiles. 

In fact, exposure of 275 to these conditions gave what has been tentatively 

assigned structure 289, a constitutional isomer of the starting material, in a low yield. 

This product may have been formed by deprotonation of the methine proton at the 

benzylic centre, followed by equilibration of the anion and silyl migration (Scheme 57). 

All efforts to change this regioselectivity of the former reactions by using other bases (i.e. 

LiHMDS, LiBSBA,76 i-PrMgCI'LiC177 or bimetallic bases78) proved fruitless. 
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o SiMe3 1) n-BuLi , TMEDA, [ Fo~~¢c5e, 1 
Me3SiO SiMe3 

FO-N;O THF, -78°C, 30 min. FO-N>6 2) CISiMe3 

Et3SiO H (62%) Et3SiO 0 

263b 288 289 

Scheme 57. Unanticipated potential formation of byproduct 289. 

TMS-substituted arenes are known to undergo halodesilylation reactions with 

various halogenating agents. Attempts were made at inducing ipso-substitution of 274 

using leI, which is known for electron-rich aromatics,79 or carbodesilylation by in situ 

trapping with benzaldehyde as demonstrated by Simpkins (Scheme 58).80 Both reactions 

led only to decomposition of 274. 

o 

M~~ 
Fe 0 

$ 
274 

ICI, CICH2CH2CI, 0 ~ 40°C or ,f" 
CsF, PhCHO, DMF, 40 ~ 110°C r. · 

o 

~~ 
Fe 0 

~ 
R = I (290) 

= C(OH)HPh (291) 

Scheme 58. Attempts at ipso-desilylation ofphthalimide 274. 

The persisiting issues of electrophile scope and control of absolute sterochemistry 

of the starting material prompted an exploration of an alternative method for the synthesis 

of aminoferrocenes possessing planar chirality. 

2.3.2 Boron Trifluoride-Activated Lithiation of Tertiary Aminoferrocenes 

Ready access to aminoferrocene (155) via hydrazinolysis of phthalimide 159 

allows for the preparation of any N-substituted aminoferrocene. Although the phthalimide 
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route to aminoferrocene reliably provides pure aminoferrocene, for the quantities that 

were required for this research, a more convenient preparation of 159 was sought. 

Although known for several years, Hessen's procedure2sa for preparing aminoferrocene 

(Scheme 59) had been avoided because of the necessity to handle significant quantities of 

potentially explosive vinyl azide. Nevertheless, this route was reproduced on a small 

scale, validated, and then gruadually scaled up. All told, Hessen's procedure afforded 

aminoferrocene in 50-60% yield via quench of lithioferrocene with a-azidostyrene (292) 

and acid workup. The a-azidostyrene is readily prepared according to the route of 

Smolinski81 from (l,2-dibromoethyl)benzene (292), by treatment with sodium azide in 

DMSO. The intermediate azidobromide (293) then undergoes elimination with sodium 

hydroxide (Scheme 59) to 294 at room temperature. 

Br NaN3, DMSO [ N3 j 
Ph~Br 15 °C ~ rt, 24 h Ph~Br 

292 293 

50% NaOH N3 

15 °C ~ rt, 16 "h Ph~ 
(60-80%) 294 

Scheme 59. One pot synthesis of a-azidostyrene (294). 

With ample quantities of aminoferrocene on hand, N,N-dimethylaminoferrocene82 

(295) was prepared by reductive amination with paraformaldehyde and NaBH3CN in 

acetic acid. Control experiments were conducted for the lithiation of 

dimethylaminoferrocene with n-BuLi in THF at 0 °C for three hours . Addition of 

CISiMe3 after this period did not show any sign of silylation of the Cp ring. This result 

was an unsurprising observation and is consistent with the recalcitrance of anilines to 

undergo lithiaition without the use of forcing conditions (alkyllithiums/refiuxing hexanes, 
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vide supra).57 Attempts to perform this lithiation at higher temperatures were not pursued 

as it was felt that these conditions were not conducive to good asymmetric induction. 

To lower the temperature of the reaction while ensuring lithiation, pre

coordination of aminoferrocene 295 to a Lewis acid was pursued. 53 . In early experiments, 

dimethylaminoferrocene was coordinated to borane by addition of aiM solution of BH3 

in THF to the starting material at 0 DC. The putative FcNMe2·BH3 adduct (which was 

unstable to air, as observed previously for BH3-complexed anilines83), underwent 

lithiation with n-BuLi at -78°C which, following ClSiMe3 quench, gave a trace amount 

of 2-trimethylsilyl derivative. Although the yield was low, this result was encouraging 

considering the temperature at which the reaction was conducted. Switching to the 

stronger Lewis acid BF3·OEt2 gave significantly better results. In this case, addition of an 

equimolar amount of BF3·OEt2 to dimethylaminoferrocene in THF at 0 °c resulted in a 

rapid colour change of the solution from orange to yellow-orange. The resulting solution 

of FcNMe2·BF3 was stirred for 10 minutes to ensure complete complexation of the 

reagents, and then cooled to -78°C. At this point, 1.1 equivalents of n-BuLi was added, 

the mixture was stirred for 2 h and then quenched with CISiMe3 as before. Again, only a 

trace amount of product was obtained, along with recovery of the majority of starting 

material unchanged. As a result, the experiment was repeated, except that the reaction 

mixture was allowed to warm slowly from -78 C to -40 DC, at which point a discernible 

colour change had occurred from yellow-orange to red-orange. Addition of CISiMe3 to 

the mixture afforded 2-trimethylsilyl-I-dimethylaminoferrocene in 81 % yield. To the best 

of our knowledge, this result represented the first example of a direct 2-lithiation of an 

aminoferrocene. This procedure was streamlined and repeated for many different 
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electrophiles. Thus, after coordination of the substrate with BF3, the mixture was cooled 

to -78 DC, treated with n-BuLi and then warmed to -40 DC by transferring the reaction 

mixture to a different cold bath. The mixture was stirred at -40 DC for I h, cooled back to 

-78 DC, quenched with the appropriate electrophile, and then allowed to warm slowly to 

room temperature. Workup by addition of saturated aqueous sodium bicarbonate and 

purification of the products afforded 2-substituted aminoferrocenes 297a-k in very good 

to excellent yields ranging from 76-94% (Scheme 60).84 It was later found that it was 

unnecessary to cool the mixture to -78 DC and that the deprotonation-quench sequence 

could be carried out at -40 DC for the duration of the reaction with similar results. 

Notable substituents that could be installed included carbon-based groups such as formyl, 

amido and diphenylhydroxymethyl. Heteroatom substituents included boron, silyl, 

stannyl, iodo, sulfido and phosphino groups. It is noteworthy that these yields are 

significantly higher than what Kessar58 obtained in BF3-activated lithiation of 

dimethylanilines. The higher yields, in the case of dimethylaminoferrocene, may be 

tentatively attributed to the greater basicity of aminoferrocenes versus anilines, which 

may result in stronger coordination of the amine to BF3. 
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~NH2 
I 

Fe 

¢\ 
155 

[ e
BF 1 (CH2O)n, ~NMe2 

BF3·OEt2 tN~e, 1) 1.1 equiv. n-BuLi 

NaBH3CN. I THF, O°C -40 °C, 1 h 
Fe • 

50% HOAc ¢\ 15 min 2) 1.2 equiv. E+ 

(>90%) -78 ~ rt 
295 296 

Product E+ E Yield 297 (%) 

297a DMF CHO 76 

297b Ph2CO C(OH)Ph2 87 

297c PhCHO C(OH)HPh 86a 

297d PhNCO C(O)NHPh 93 

297e CISiMe3 SiMe3 93 

297f CISnMe3 SnMe3 91 

297g B(OEth Bpin 84b 

297h (SPhh SPh 82 

297i CIPPh2 PPh2 77 

297j CIPCY2 PCY2 65 

297k I(CH2hl I 94 

a separable 3:2 mixture of diastereomers. 

b isolated as pinacol ester. 

Scheme 60. Preparation of N,N-dimethylaminoferrocene and 
BF3-mediated synthesis of (±)-2-substituted aminoferrocenes. 

E 

Q,--NMe2 
I 

Fe 

¢\ 
297a-k 

Many of these heteroatom-substituted products may be useful for further 

transformations, specifically stannane 297f, boronate 297g and iodide 297k, as these are 

key intermediates for cross-coupling, transmetalation and metal-halogen exchange 

reactions. Unfortunately, attempts to incorporate bromine via quench with Br2, 1,1,2,2-

tetrabromoethane, 1 ,2-dibromo-l, 1 ,2,2-tetrachloroethane or N,N-

dibromodimethylhydantoin only led to decomposition and small amounts of recovered 

starting material. Similarly disappointing results were obtained when tellurium powder 

or BuTeBr85 were used as electrophiles. In addition, tosyl azide quench, according to 

Carretero's procedure l9 also failed to give the azide. 

Further elaboration of iodide 297k was possible III a very fast reaction with 

CU(OAC)2 to provide 2-acetoxy derivative 298, a rare N, O-substituted ferrocene (Scheme 
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61). In addition, copper-mediated Ullmann homocoupling86 of the iodide gave a 1: 1 

mixture of separable rac- and meso-I, 1" -diaminobiferrocenes (299) in 52% combined 

yield. It is noteworthy that rac-299 is an unprecedented planar chiral analogue of axially 

chiral tetramethyl BINAM (300), which may have future applications in catalysis. 

OAe 
Cu(OAeh'H2O ~NMe2 
EtOH, 80 °C, <10 min I 

Fe 
(82%) ¢\ I 

~NMe2 298 
I 

Fe 

$ ~ 
I 

Cu powder Fe 
297k 

~ 
NMe2 

110°C, 18h 
NMe2 

(52%) Fe NMe2 NMe2 

$ rac-299 

+ meso-299 
tetramethyl BINAM 

(300) 

R 
1) BF3'OEt2 R 

Q,--NMe2 2) 2.1 equiv. n-BuLi ~NMe2 
I -78 ---+ -40 °C, 1 h Fe CHO Fe • 
~ 2) DMF, -78 ---+ rt ~ 
297e,h R = SiMe3, 301 (60%) 

= SPh, 302 (59%) 

Scheme 61 . Copper-mediated transformations of iodide 297k 
and consecutive lithiation-substitution of 297e,h. 

It was found that exposure of 2-SiMe3 adduct 297e or phenyl sulphide 297h to an 

additional BF3-activated lithiation sequence with 2.1 equivalents n-BuLi gave the 

contiguously l,2,3-trisubstituted formyl adducts 301 and 302 after DMF quench. 

Aldehyde 297a also serves as a precursor to the alcohol, a synthetically useful 

intermediate. Thus, treatment with NaBH4 afforded alcohol 303, which readily undergoes 

SN2-like substitution reactions, unlike Ugi's amine in which an a-ferrocenyl carbocation 
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is implicated. In this way, diamine 30487 and imidazole 305 may be prepared, the latter of 

which may be a precursor to an imidazolylidene via imidazolium salt formation. 

,£.-Et2 1) CISiMe3, Nal 
NMe2 

MeCN, 10 min 
I 

2) HNEt2, rt, 15 h Fe 

£:-
OH (95%) ~ 

NMe2 
NaBH4 ~NMe2 304 

I H2O/MeOH, I 

Fe . Fe 

$ o °C ~ rt 
~ r=\ 

(93%) 0 £vN 
297a 303 -'l'N)lN~ NMe2 

N~ ~N 
I 

Fe 
CH2CI2, reflux, 16 h $ 
(53%) 

305 

Scheme 62. Aldehyde 297a as a precursor to bidentate ligands. 

In addition, ferrocenyl iodide 297k was subjected to Suzuki-Miyaura cross-

coupling with arylboronic acids (306a-e), catalyzed by 10 mol% of Pd(PPh3)4 and 

aqueous NaOH to give the coupled products (307a-e) in 23-93% yield. The more typical 

phenylboronic acids are easier to install than the pyrrole moiety and the yields of these 

products compare favourably with previous Suzuki-Miyaura couplings of 2-substituted 

ferrocenes (Scheme 63). 
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~I 
10 mol% Pd(PPh3)4 

~Ar 
Fe NMe2 + ArB(OHh • Fe NMe2 

~ 3 M NaOH, DME, 80 ce, 14-17 h ~ 
297k 306a-e 307a-e 

ArB(OHh Product Yield 307 (%) 

306a D (HOhB 0 307a 80 

306b ~ (HOhB 0 
307b 93 

306e 
Me0l) 

(HOhB 1 0 
307e 87 

306d J[) 
(HOhB N 307d 23 

Boc 

306e Br)) 
10 

(HOhB 

307e 46 

Scheme 63. Suzuki-Miyaura coupling of iodide 297k. 

Coupling of N-Boc 2-pyrrylboronic acid (306d), a challenging heterocyclic substrate for 

Suzuki-Miyaura reactions,88 afforded 23% of the biaryl on the first attempt. Removal of 

the Boc group may allow installation of other groups on nitrogen such as phosphines. 0-

Bromophenylboronic acid (306e), prepared in one step by selective metal-halogen 

exchange of 1,2-dibromobenzene, was also a demanding coupling partner that provided 

307e in a moderate 46% yield, along with a small quantity of oligomers formed by 

further reaction of 307e with the o-bromophenylboronic acid (306e). Overall, the yields 

obtained in these cross-couplings are quite respectable in comparison to other ferrocenyl 

biaryl bromides, which typically have relied on Negishi couplings of ferrocenyl zinc 

species. For example, Richards89 and Weissensteiner90 have reported yields of 27% and 

27 -45% for coupling of ferrocenylzinc chloride and 2-halozinc-l-ferrocenyl sulfoxides, 

respectively. 
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The bromobiaryl derivative 307e was open to further manipulation via metal-

halogen exchange. In this case, Br~Li exchange (n-BuLi, THF, -78°C) proceeded very 

well, and addition of chlorodiphenylphosphine provided P,N-ligand 309 via the sulfide. 

The sulfide was prepared as an intermediate for ease of purification, and then reduced to 

the phosphine with Raney Ni (Scheme 64). Aminophosphine 309 is notably a planar 

chiral analogue of Buchwald's DavePhos (310),91 a frequently used phosphine ligand for 

a number of transition metal-catalyzed processes. 

307e 

Raney Ni 

MeCN, 60°C 

(73%) 

1) n-BuLi, THF, -78°C 

2) CIPPh2, -78 °C ~ rt. 

3) Sa, PhMe, 40°C 

(>90%) 
308 

DavePhos(310) 

Scheme 64. Conversion of bromide 307e to biaryl phosphine 309. 

2.3.3 Coordination Chemistry and Applications of 2-Phosphino-l-

dimethylaminoferrocenes 

The use of BF3-mediated lithiation-substitution on dimethylaminoferrocene (295) 

gives access to rare 1,2-aminophosphines such as 297i,j in short order. As Stradiotto has 

investigated the coordination chemistry of related indenyl-derived aminophosphine 270 

with Rh(I) (vide supra), it was of interest to study the tendency of the new 

aminophosphines to chelate catalytically useful transition metals. For this purpose, 
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transition metals that favour square planar geometry such as palladium(II), p1atinum(II) 

and iridium(I) were studied. Thus, coordination of aminophosphines 297i,j (R = Ph, Cy) 

to palladium was effected with Pd(MeCN)2Clz in CH2Clz at room temperature to give 

complexes 311a,b in 87-91 % yield (Scheme 65). In similar fashion, ligands 297i,j were 

coordinated to platinum by heating the aminophosphines wtih Pt(COD)Clz at reflux in 

toluene. Evidence for chelation of either ligand to the metals was provided by IH NMR in 

which the amino methyl groups were rendered non-equivalent, and by 31 p NMR where 

the phosphine chemical shifts moved significantly downfie1d in comparison to the free 

ligands. 

31p 1H 

(ppm) (ppm) 

297i (R = Ph) -20.4 2.69 

297j (R = Cy) -12.3 2.75 

Pt(COD)CI2, 

PhMe, reflux 

~ 
I 

Fe 
~=>--PR 
\"" I 2 

Me2~~:d-CI 

311a, R = Ph (87%) 

311b, R = Cy (91%) 

~ 
I 

Fe 
~=>--PR 
\"" / 2 

Me2N-,Pt-CI 
CI 

312a, R = Ph (50%) 

312b, R = Cy (79%) 

1) 0.5 equiv [lr(COD)Clb , 

CH2CI2, reflux ~ 8 SX4 
~--~~--------~ Fe 

2) 1.5 equiv NaX4 ~ 
PPh2 

(R = Ph, 94%) (fJ I 
Me2N-lr(COD) 

313a, R = Ph , X = Ph (92%) 

313b, R = Ph, X = ArF (94%) 

31P(ppm) 1H(ppm) 

25.3 3.46, 3.09 

51.1 3.47, 3.12 

2.0 3.65, 3.24 

21.7 3.64, 3.26 

15.0 3.13, 3.69 

Scheme 65. Aminophosphine 297i,j coordination to Pd(II), Pt(II) and Ir(I). 
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Specifically, upon coordination of diphenylphosphine derivative 297i to Pd, the 

phosphorus signal moved from -20.4 ppm to 25.3 ppm and the NMe2 singlet at 2.69 ppm 

from uncoordinated 297i split into two signals at 3.46 and 3.09 ppm in IH NMR. 

A cationic Ir(I) complex (313a) was formed by heating by heating a CH2Ch 

solution of 297i with [Ir(COD)Clh. The complex was isolated as the tetraphenylborate 

salt after anion exchange with NaBPh4, but due to its insolubility, it was not fully 

characterized. Characterization of the cationic Ir(l) complex was carried out on the 

chloride and BArF (313b) salts. The latter counterion is weakly coordinating and known 

to be beneficial in certain catalytic transformations performed concurrently in the 

Metallinos group.92 Characterization, including a crystal structure, of 313b will be 

presented in the M.Sc. thesis of Lori Van Belle.93 The above Pt(II) and Ir(l) complexes 

(312a,b and 313b) displayed the same IH and 31p trends as in the Pd(II) complexes. 

Key data from the X-ray analyses from the palladium and platinum complexes 

(Figures 12 and 13 respectively) showed that the ligand chelates the metals with bite 

angles of 87.87(6)° for Pl-Pdl-N2 and 88.78(5)° for Pl-Ptl-N2, respectively. Because 

these values are close to orthogonal, no distortion from the ideal square planar geometry 

at the metal centre is observed. Pd complex 311a and Pt complex 312a were shown to be 

nearly isostructural. Both were characterized by staggered conformations of the Cp rings 

with dihedral angles (H4-C4-C4'-H4') of 32.27(14) and 28.59(13t for 311a and 312a 

respectively. 
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~Cl' 
:: [2' 

" " " 
Fel~ 

" " " " " 

Figure 12. ORTEP plot ofPd complex 311a at 50% probability. 

~Cl ' 
:: C2' 
" " " " " 

Figure 13. ORTEP plot ofPt complex 312a at 50% probability. 
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The ability of both of the preceding aminophosphines to readily coordinate to 

palladium, platinum and iridium prompted a preliminary study of their catalytic potential 

in Suzuki-Miyaura94 coupling, Buchwald-Hartwig91a,95 amination and intramolecular 

hydroamination reactions. For Suzuki-Miyaura reactions, a number of aryl chlorides 

(314a-f), which are typically less reactive than bromides or iodides, were investigated, In 

this respect, cross coupling ofphenylboronic acid with aryl chlorides 314a-f catalyzed by 

2 mol% Pd(OAch, 4 mol% aminophosphine 297i and three equivalents of CsF gave 

product yields ranging from 70-94% for all substrates, with the exception of 314f, which 

afforded a moderate yield of 56% (Scheme 66). In addition, dibromide 314g, provided by 

Professor Martin Lemaire's laboratory (Brock University), underwent double phenylation 

in 88% yield under the same conditions. Notably, double phenylation of 314g with 

Pd(PPh3)4 afforded the product (31Sg) in less than 50% yield. 

Ph-B(OH)z + x ~ G 

314a-g 

Aryl Halide 

314a (G = 4-CF3 ) 

314b (G = 4-COMe) 

314c (G = 4-CN) 

314d (G = 2-N02) 

314e (G = 4-0Me) 

314f (G = 4-Me) 
Br 

314g W Br;::"" N'" 

NH2 

2 mol% Pd(OAc)z, 

4 mol% 297i, 

3,0 equiv, CsF, 

dioxane, reflux 

X Yield 315 (%) 

CI 94 

CI 88 

CI 92 

CI 73 

CI 70 

CI 56 

88 

~I -G 
Ph ~ I 

315a-g 

Scheme 66. Suzuki-Miyaura cross-coupling ofPhB(OH)2 using phosphine 297i. 
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The aryl amination reactions proved more challenging. In this reaction, a 1: 1 ratio 

of Pd:ligand was found to give better results. Acceptable yields of 74-77% for coupling 

products 317a,b were obtained for electron deficient chlorides having 4-CF3 or 4-

C(O)Me groups. An artha-substituent on the chloride (316d) adversely affected the 

reaction, providing 43% of the desired biaryl. Electron-rich or neutral substrates required 

the use of the corresponding aryl bromides (316e,h) to obtain reasonable yields. 

~I -G 
~' 

2 mol% Pd2(dbah'CHCI3, ~I 
4 mol% 297i ~ ,-G 

• ,/""'N 
X 1.4 equiv. NaOf-Bu, 6 I 

dioxane, reflux --./ 
316a-g 317a,b,d,e,h 

Aryl Halide X Yield 317 (%) 

316a (G = 4-CF3) CI 77 

316b (G = 4-COMe) CI 74 

316d (G = 2-N02) CI 43 

316e (G = 4-0Me) Br 67 

316h (G = H) Br 82 

Scheme 67. Aryl amination of various aryl halides using phosphine 297i. 

In a subsequent test of catalytic competency, the late transition metal-catalyzed 

intramolecular hydroamination of unactivated alkenes96 was briefly investigated. 

Widenhoefer96d,e has reported that a combination of PtCh and Buchwald's biaryl 

aminophosphine ligand was able to catalyze the formation of pyrrolidine 319 from 

amino alkene 318 in high yield. In our hands, the intramolecular hydroamination was first 

carried out using Pt(II) following Widenhoefer's reports, which after significant 

experimentation with solvents, Ptligand ratios and use of the discreet complex (312a), 

led only to a 27% yield of spirocyclic pyrrolidine 319 (Scheme 68). The corresponding 

cationic Ir(I) complex (313b) effected the same transformation in a much-improved 64% 
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yield of spirocyc1e 319, along with an inseparable mixture of compounds that appeared to 

result from alkene isomerization and reduction. These byproducts may be diminished by 

the use of Rh(I) to catalyze this transformation, as shown by Hartwig.96g Nonetheless, this 

Ir(I)-catalyzed hydroamination was only the third of its type to be reported, following 

recent work by Stradiott096a,b and Hollis.96c 

~ conditions 

318 

Conditions 

5 mol% PtCI2, 10 mol% 297i , 

diethylene glycol , 100 DC, 48 h 

2.5 mol% 297b, 

dioxane, reflux, 22 h 

~ 
Bn 

319 

Yield (%) 

27 

64 

Scheme 68. Intramolecular hydroamination with Pt(II) and Ir(I). 

2.3.4 Enantioselective Lithiation-Substitution of BF3-Activated Tertiary 

Aminoferrocenes 

As mentioned previously, asymmetric lithiation of BF3- or BH3-activated tertiary 

amines, such as isoindolines,54 pyrrolidines55 and aziridines60a has been established. In all 

of these cases, (-)-sparteine was used as a chiral diamine additive. When 

dimethylaminoferrocene was complexed as usual with BF3·OEt2, treated with n-BuLi'(-)-

sparteine at -78°C and the resulting mixture was warmed to -40 °C over 2 h, DMF 

quench gave formyl derivative 297a in 43% yield but a disappointing 44:56 er. Replacing 

n-BuLi with s-BuLi or i-PrLi resulted in insignificant improvements to the 

stereoselectivity, prompting the investigation of other chiral diamine additives . 
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Recent reports by Alexakis97 and O'Brien98 have indicated that trans-

cyc1ohexanediamines, which are available in either enantiomeric form by resolution of 

racemic 320 with tartaric acid, may serve as alternatives to (-)-sparteine for asymmetric 

reactions using organolithium reagents. Alexakis has shown that these additives afford 

moderateenantioselectivities in additions of alkyllithiums to imines, while O'Brien has 

used similar analogues as (+)-sparteine surrogates in lithiation of N-Boc pyrrolidine. 1,2-

Diaminocyc1ohexane ligands (S,S)-87 and 323-327 were prepared by resolution of (±)-

trans-cyc1ohexanediamine [(±)-320] according to established procedures.97,98 Eschweiler-

Clarke methylation (CH20, HC02H, reflux) of the diastereomeric tartrate gave the 

N,N,N',N'-tetramethyl derivative; in this case, (S,S)-321·(-)-tartrate afforded (S,S)-87 in 

good yield (Scheme 69). 

(±)-320 

1) (+)-tartaric acid, 

H20/HOAc, 90 ~ 5 °C 

2) (-)-tartaric acid, 5°C 

(40-60%) 

• 

(S, S)-321 0 ( - )-tartrate 
reflux, 2.5 h 

(88%) 

(±J e 
~NH3 02CX,-OH 

V"/NH 02C OH 
(±J 3 e 

(R, R)-321 0 ( + )-tartrate 

a NMe2 

NMe2 

(S,S)-87 

Scheme 69. Resolution of trans-(±)-cyc1ohexanediamine 
and preparation of (S,S)-87. 

Cyc10hexanediamine ligands 323-327, with two different N-substituents were 

prepared by modified syntheses, as outlined in Scheme 70 below. 
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0 

1) CICOzMe, NaOH, I 1) CI~t-Bu I 
PhMe, rt, 2 d 

a
NH NaOH, PhMe, rt, 2 d aN~t-BU 

(R,R)-321 o ( + )-tartrate 
2) LiAIH4' THF, 2) LiAIH4' THF, "'N~t-Bu 

I 

0
NH 

NH 
I 

(S,S)-322 

I 

a
NH 

"'NH 
I 

(R,R)-322 

"'NH 
reflux, 2 d I reflux, 2 d I 

(83%) (R,R)-322 (74%) (R,R)-323 

0 0 

HAt-Bu I I 1)CI~Ph I 
NaBH(OAcb, 0 N::t-BU 

0
NH NaOH, PhMe, rt, 2 d 0N~Ph . 

CHzClz, 24 h, rt 2) LiAIH4' THF, N~Ph N t-Bu NH 
(67%) I I reflux, 2 d I 

(S,S)-324 (S,S)-322 (58%) (S,S)-325 

0 0 

H~i-pr I I H~ I 
NaBH3CN aN~i-pr 

0
NH NaBH3CN 0N~ . . 

HOAc, MeOH " 'N~i-Pr HOAc, MeOH N~ NH 
(82%) I I (93%) I 

(R,R)-326 (S,S)-322 (S,S)-327 

Scheme 70. Preparation of cyclohexanediamine ligands with 
different nitrogen substituents. 

For example, 321 was transformed into the bis(carbamate), which was reduced with 

LiAIH4 in THF in over 80% yield. (+ )-Sparteine surrogate (R,R)-323 and Ph-terminated 

ligand (S,S)-325 were made in two steps from 321, each by way of amide formation and 

subsequent reduction (LiAIH4' THF, reflux, 2 d, 58-74%). It was found that reductive 

amination was more conveneient for the preparation of (S,S)-324, (R,R)-326, (S,S)-327. 

Evans' bis( oxazoline) was also prepared for use in the BF 3-activated 

aminoferrocene lithiation as it has been reported to be effective in the cyclization of 

olefinic organolithiums by Bailel9 and the enantioselective lateral lithiation of 

azaferrocenes. loo According to Evans' procedure, the ligand was prepared from 

commercially available malonate 328, which was saponified to dicarboxylic acid 329 

(Scheme 71). Treatment with thionyl chloride, followed by addition of (S)-valinol gave 
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diol (S,5)-330. Fonnation of the bis(mesylate) (MsCl, Et3N, CH2Ch, 0 °C ~ rt) and 

treatment with NaOH at reflux effected ring closure to furnish bisoxazoline (S,5)-331. 

KOH V aq.MeOH. 

Me02C C02Me reflux, 6 h 

· 328 (72%) 

1) MsCI, Et3N, 

CH2CI2, 0 ~ rt, 2 h 

2) NaOH, 

aq. MeOH, reflux, 3 h 

(98%) 

1) SOCI2, V 0 ~ reflux, 18 h 

H02C C02H 2) (S)-valinol, 

329 

(S,S)-331 

Et3N, CH2CI2, 

o ~ rt, 14 h 

(62%) 

Scheme 71. Preparation ofbis(oxazoline) ligand (S,5)-331. 

With all of these diamines in hand, BF3-mediated lithiation-substitution was 

systematically investigated. 101 The use of (S,5)-87 in lithiation-substitution of 

dimethylaminoferrocene (295) provided a good yield of fonnyl derivative 297a, but with 

a selectivity no better than that obtained with (-)-sparteine (entry 1, Scheme 72). 

Interestingly, (R ,R)-323 provided 297a in 71% yield and 61:39 er favouring the same 

enantiomer as that produced by the action of (-)-sparteine. This result is in contrast to 

what was observed by O'Brien and coworkers in the asymmetric lithiation of N-Boc 

pyrrolidine, where (R,R)-323 behaved as a (+)-sparteine surrogate.98 Significant 

improvements in enantioselectivity were observed when (R ,R)-323 and secondary 

alkyllithiums were employed in this reaction. Lithiation of 295· BF 3 with 1.1 equivalents 

of s-BuLi'(R,R)-323 afforded the same product in 22% yield and 83: 17 er in (entry 3). If 

2.l equivalents s-BuLi were used, the product was obtained in 35% yield, but marginally 

lower 80:20 er (entry 4). Further improvements in enantioselectivity were observed by 
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switching to i-PrLi. As in the experiments with s-BuLi, lithiation of 295· BF 3 with 1.1 

equivalents of i-PrLi'(R,R)-323 gave a lower yield of product (36%, entry 5) than when 

2.2 equivalents of reagent were used in entry 6. In both cases, similar enantioselectivities 

(86.5:13.5 and 86:14, respectively) were obtained for 297a. Cyc10pentyllithium did not 

lead to improvement in stereo selectivity, while l-BuLi showed poor reactivity and gave 

almost racemic product. 

CHO 

~NMe2 
1) BF3·OEt2, TBME, 0 DC, 10 min 

~NMe2 Q--NMe2 
I I 

Fe Fe CHO + Fe 

~ 
2) RLi, L*, -78 ~ -40 DC, 3 h 

~ ~ 3) DMF, -78 ~ rt, 16 h 
295 297a ent-297a 

I 

a NMe2 aN~t-Bu 
"/N~t-Bu NMe2 

I 
(S,S)-87 (R,R)-323 

Equiv. RLi L* 
Yield 297 er 297a:ent-297a Recovered 295 

(%) (% eel (%) 

2.1 n-BuLi (S,S)-87 64 45:55 (10) n.d. 

2 2.1 n-BuLi (R,R)-323 71 61 :39 (22) n.d. 

3 1.1 s-BuLi (R,R)-323 22 83:17 (66) 70 

4 2.1 s-BuLi (R,R)-323 35 80:20 (60) 25 

5 1.1 i-PrLi (R,R)-323 36 86.5:13.5 (73) 47 

6 2.1 i-PrLi (R,R)-323 56 86:14 (72) 20 

7 1.1 t-BuLi (R,R)-323 7 54.5:45.5 (9) 79 

8 2.1 t-BuLi (R,R)-323 10 53.5:46.5 (7) 79 

9 1.1 c-PentLi (R,R)-323 24 79.5:20.5 (59) 75 

10 2.1 c-PentLi (R,R)-323 56 78:22 (56) 40 

Scheme 72. Preliminary screening of chiralligands and bases. 

In all of the preceding experiments, it appeared that deprotonation occurred upon slow 

warming of the reaction mixture from -78 to -40 DC. Allowing the reaction mixture to 

warm up to only -60 or -50 DC gave no appreciable improvement in selectivity and only 
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resulted in diminished yields of the product. This was likely, in part, a result of the 

reduced solubility of 295·BF3 at -78 to -78 DC. Switching to other solvents such as 

toluene, cumene or i-Pr20 did not afford improved selectivities or only exacerbated the 

insolubility of 295·BF3. In fact, no reaction occurred in i-Pr20. For these reasons, TBME, 

or mixtur~s of TBME and other solvents, were used for subsequent optimization 

experiments. 

Encouraged by the improved selectivity obtained in the reaction with i-PrLi· 

(R,R)-323, similar ligands (S,S)-324, (S,S)-325, (R,R)-326 and (S,S)-327 were 

investigated in this transformation (Scheme 73). (S,S)-324 displayed very poor reactivity, 

resulting in very low conversion of the starting material, while (S,S)-325 suffered from 

competitive benzylic deprotonation. Under the typical conditions using i-PrLi in TBME, 

bisoxazoline (S,S)-331 only gave 13% yield. Thus, (S,S)-324, (S,S)-325 and (S,S)-331 

were not investigated further. 

In general, (R,R)-326 and (S,S)-327 provided better results than the previous 

chiral diamines that were tested. As expected, the primary alkyllithium n-BuLi did not 

provide adequate selectivity, even with alternative ligand (S,S)-327 (Scheme 73, entry 1). 

An improved er of 89: 11 was obtained upon switching to i-PrLi (entry 2). Direct 

comparison of (S,S)-327 and (R,R)-326 using i-PrLi showed that these two chiral 

diamines provided nearly the same results (entries 2 and 3) and could be used 

interchangeably. Other secondary alkyllithiums, such as s-BuLi and c-PentLi (entries 4 

and 5), did not provide better results than i-PrLi. In an attempt to further improve on 

these results, reactions were run in mixtures of TBME with Et20, PhMe and i-PrPh 

(entries 6-8), with 1: 1 TBME/Et20 giving the best results (60% yield, 89: 5: 10.5 er). 
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Using Et20 as the solvent (entry 9) provided comparable results to those from using 1: 1 

TBME/Et20. As anticipated, the use of THF as a solvent afforded nearly racemic product 

(entry 10), however the use of a ligand to base ratio of 3 :2 (entry 11) gave similar results 

to the experiment conducted in Et20. 

CHO 

~NMe2 
1) BF3 oOEt2, solvent, 0 °C, 10 min 

~NMe2 ,Q.--NMe2 
I 

Fe CHO 
I 

Fe • + Fe 

~ 2) RLi , L *, -78 ----f -40 °C, 3 h ~ ~ 3) DMF, -78 ----f rt, 16 h 
295 297a ent-297a 

I I 
aN~. CXN~ /-Pr 

"/N~i-Pr N~ 
I I 

(R,R)-326 (S,S)-327 

Equiv. RLi L* Solvent 
Yield 297a er 297a :ent-297a Recovered 

(%) (%ee) 295 (%) 

2.1 n-BuLi (S,S)-327 TBME 69 22 .0:78.0 (56) 18 

2 2.1 i-PrLi (S,S)-327 TBME 44 11 .0:89.0 (78) 37 

3 2.1 i-PrLi (R,R)-326 TBME 43 87.0:13.0 (74) 24 

4 2.1 s-BuLi (R,R)-326 TBME 30 85.5:14.5 (71) 52 

5 2.1 c-PentLi (R,R)-326 TBME 48 78 .0:22.0 (56) 28 

6 2.1 i-PrLi (R,R)-326 1:1 TBME/Et20 60 89.5:10.5 (79) 4 

7 2.1 i-PrLi (R,R)-326 1:1 TBME/PhMe 45 90.5:9.5 (81) 10 

8 2.1 i-PrLi (R,R)-326 1:1 TBMEli-PrPh 47 90.5:9.5 (81) 10 

9 2.1 i-PrLi (S,S)-327 EbO 55 10.5:89.5 (79) 26 

10 2.1 i-PrLi (R,R)-326 THF 60 50.5:49.5 (1) 23 

11 2.1 i-PrLia (R,R)-326a TBME 56 90.0: 1 0.0 (80) 28 

a (R,R)-326:i-PrLi = 3:2 

Scheme 73 . Screening of additional chiral diamine ligands. 

Dimethylaminoethanol (333)102 and diisopropylamine (334)103 have also been 

used as Lewis basic additives in asymmetric lithiation reactions. These additives have 

been reported to afford improved yields and selectivities in some cases; they also offer 
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the advantageous use of sub stoichiometric amounts of chiral diamine. The combination 

of various alkyllithium reagents with either 333 or 334 in the presence of chiral diamines 

maintained the level of selectivity and was able to marginally improve the yields. 

Notably, the higher reactivity104 of this combination of reagents was observed by the 

isolation ~fsome 1,2,1'-trisubstituted material (332a). Entries 1-4 (Scheme 74) show the 

combination of n-BuLi and DMAE or DIPA for comparison with the previous results 

using unbranched alkyllithiums. In the presence of these Lewis basic additives, it still 

proved beneficial to the yield to use additional alkyl lithium (Entries 1-2). It was also 

observed that DMAE and DIPA produce similar results as additives to n-BuLi and (S,S)-

327 (entries 2 and 3). Entry 4 shows that the added steric bulk present in (R,R)-326 was 

of no benefit and proved inferior to (S,S)-327. Entries 5-10, where i-PrLi was used in 

combination with 333 or 334, serve to reinforce the necessity of using a more branched 

alkyllithium (i.e. i-PrLi) than n-BuLi. Entries 5 and 6 show that diamine (S,S)-327 

performed marginally better (76 and 79% ee respectively) than (R,R)-326 with 1.65 

equivalents i-PrLi. When the amount of i-PrLi was increased to 3.15 equivalents, (S,S)-

327 again proved to be slightly better than (R,R)-326 (entries 7-8), giving respective 

selectivities of 82 and 78% ee. This trend also held for entries 9-10, where DIPA was 

used instead of DMAE. Thus, the conclusion may be drawn that DMAE is slightly better 

than DIPA and that (S,S)-327 offers marginally better selectivity than (R,R)-326 in the 

given system. 
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CHO CHO 

~NMe2 
1) BF3·OEt2, TBME, 0 ec, 10 min 

~NMe2 Q,--NMe2 Q,--NMe2 
I I I 

Fe Fe CHO + Fe + Fe 

$ 2) RLi , L *, -78 ---+ -40 ec, 3 h 
~ $ $--CHO 

295 
3) DMF, -78 ---+ rt, 16 h 

297a ent-297a 332a 

I I 
aN~. 0N~ ~N~ /-Pr r\ 

. ·"N~i-Pr N~ 
Me2N OH 

H 
I I 

(R,R)-326 (S,S)-327 DMAE (333) DIPA (334) 

Yield er 297a :ent-297a Yield Recovered 
Equiv. RLi Equiv. L* 

297a (%) (%ee) 332a (%) 295 (%) 

1.65 n-BuLi 0.55 (S,5)-327 16 23.5:76.5 (53) 0 76 
and DMAE 

2 3.15 n-BuLi 1.05 (5,5)-327 67 23.5:76.5 (53) <5 13 
and DMAE 

3 3.15 n-BuLi 1.05 (5,5)-327 64 22.5:77.5 (55) 0 24 
and DIPA 

4 3.15 n-BuLi 1.05 (R,R)-326 52 72.5:27.5 (45) 0 33 
and DIPA 

5 1.65 i-PrLi 0.55 (R,R)-326 43 88 .0:12.0 (76) 7 48 
and DMAE 

6 1.65 i-PrLi 0.55 (5,5)-327 43 10.5:89.5 (79) <5 32 
and DMAE 

7 3.15 i-PrLi 1.05 (5,5)-327 61 9.0 :91.0 (82) 9 19 
and DMAE 

8 3.15 i-PrLi 1.05 (R,R)-326 41 89.0:11.0 (78) 21 9 
and DMAE 

9 3.15 i-PrLi 1.05 (R,R)-326 24 89.0:11.0 (78) 9 26 
and 1.1 DIPA 

10 3.15 i-PrLi 1.05 (5,5)-327 59 10.0:90.0 (80) <5 26 
and DIPA 

Scheme 74. Evaluation of achiral additives in the 
(R,R)-326- and (S,S)-327-mediated lithiation of 295·BF3. 

The optimum conditions for lithiation-electrophile quench usmg electrophiles 

other than DMF varied somewhat (Scheme 75). Nevertheless, the carboxamide derived 

from PhNCO quench was produced by standard lithiation with i-PrLi·(R,R)-323. In the 

case of stannane 297f, sulfide 297h and iodide 297k, the use of DMAE was beneficial to 
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avoid the production of trisubstituted material and led to more complete consumption of 

starting material. This was important for the purification of the major product, which 

invariably co-eluted with starting material and/or by product, depending on the 

electrophile used. 
, 

The enantiomeric ratio for stannane 297f was measured via the formyl derivative 

(297a) by way of trans metal at ion and subsequent DMF quench (1. 2.1 equiv. MeLi, THF, 

-40°C, 10 min; 2. DMF, -78°C -----+ rt). This result was also important, as it verified that 

products ent-297a and ent-297f possessed the same configuration, which was expected 

since both were obtained by asymmetric deprotonation of 295·BF3 with i-PrLi·(S,S)-327. 

The enantiomeric purity of the silane (297e) and phenyl sulfide (297h) derivatives was 

measured by conversion to trisubstituted formyl derivatives 301 and 302 by resubjection 

to BF3-mediated lithiation as shown in Scheme 61 (vide supra). Iodide 297k was 

converted to O-acetate 298 for the same purpose (Scheme 61, vide supra). The 

development of an enantioselective protocol for the lithiation of 295 enabled the 

preparation of several enantiopure derivatives, such as tertiary alcohol ent-297b in 

Scheme 75, by way of crystallizaiton. In addition to ent-297b, biferrocene 299 was 

obtained in enantiopure form after two recrystallizations from i-PrOH. Importantly, 

phosphine 297i could be recrystallized to enantiopurity as the phosphine sulfide· HBF 4 

salt. 105 
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Product 

297a 

297b 

297d 

297e 

297f 

297h 

297i 

297k 

295 

Equiv. 
i-PrLi 

3.15 

2.1 

2.1 

2.1 

2.4 

2.4 

3.15 

2.4 

1) BF3"OEt2, TBME, 0 cC, 10 min 

2) i-PrLi, L*, -78 ~ -40 cC, 3 h 

3) E+, -78 ~ rt, 16 h 

Equiv. L * 

1.05 (S,5)-327 

and DMAE 

297a-h 

I 

aN~. p /- r 

"/N~i-Pr 

I 
(R,R)-326 

E 

DMF CHO 

2.1 (5,5)-327 Ph2CO C(OH)Ph2 

2.1 (R,R)-323 PhNCO C(O)NHPh 

2.1 (5,5)-327 CISiMe3 SiMe3 

0.80 (5,5)-327 CISnMe3 SnMe3 

and DMAE 

0.80 (5,5)-327 

and DMAE 

(SPhh 

1.05 (R,R)-326 CIPPh2 

and DMAE 

0.80 (5,5)-327 

and DMAE 

SPh 

E 

~NMe2 
+ Fe 

~ 
ent-297a-h 

I 

CX'\N~ 
N~ 
I 

(S,S)-327 

Yield 

297/ent-297 (%) 

61 

74 

72 

39 

42 

71 

50 

47 

er 297:ent-297 
(% ee) 

9:91 (82) 

ent-297ba 

88:12 (76) 

11.5:88.5 (77)b 

9:91 (82)c 

12:88 (76)b 

88.5:11.5 (77) 

12:88 (76)e 

a Recrystallized to enantiomeric purity, configuration determined by X-ray. 
b Measured by CSP HPLC analysis of the 1 ,2,3-trisubstituted formyl derivatives (i.e. 301, 302) 
c Measured as formyl derivative 297a by transmetalation-DMF quench of 297f. 
d Converted to phosphine sulphide for purification and CSP HPLC purposes. 
e Measured as O-acetate 298. 

Scheme 75. BF3-mediated enantioselective deprotonation of dimethylaminoferrocene and 
quench with various electrophiles. 

Single crystal X-ray analysis of ent-297b (Figure 14) and phosphine 

sulfide'HBF4 335 (Figure 15) determined that the compounds both had the (S)-absolute 

stereochemistry, but opposite relative stereochemistry. This was expected considering 

that the two derivatives were prepared by using different enantiomers of the chiral 

diamines, illustrating that both antipodes of the reaction products may be obtained 
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(Scheme 76). It is also clear from this data that the use of the (S,S)-cyclohexyl diamines 

favours abstraction of the pro-(S) hydrogen atom of the substituted Cp ring, while using 

(R,R)-diamines gives products of pro-(R) lithiation. 

I 
aN~ 8 

N~ 
Li BF3 

~NMe2 I (S,S)-327 (±J Ph2CO ~h Fe HR Me2N Fe Ph 
i-PrLi, DMAE, 

$ $OH 

8 
TBME, -78 ~ -40 °C 

Hs BF3 
( S)-296 (S)-297b 

~NMe2 (±J 

Fe HR I 
$ aN~i-pr e 

Hs BF3 

295'BF3 
"N~i-Pr ~NMe2 1) CIPPh2 

Ph, ~(±J I (±J 
(R,R)-326 

Fe Li -78 ~ rt Ph-P Fe NMe2 

i-PrLi , DMAE, $ 2) S8 M$H e 
BF4 

TBME, -78 ~ -40 °C 
(R)-296 

3)HBF4 
(S)-335 

Scheme 76. (S,S)-327- and (R,R)-326-mediated lithiation of 295·BF3. 

C4:::>Hl :: C3, 01 
c 

C2 • 

cs · 
Cl ' 

Figure 14. ORTEP plot of tertiary alcohol (S)-297b at 50% probability. All hydrogen 
atoms except HI are omitted for clarity. 
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Figure 15. ORTEP plot of (S)-33S·HBF4 at 50% probability. All hydrogen atoms except 
Hla are omitted for clarity. 

The stereochemistry of the reaction was also investigated by computational 

modeling, performed by Keivan Taban of Professor Travis Dudding's group (Brock 

University). Using Gaussian 09,106 it was found that calculation of pro-(R) and pro-(S) 

transition states during lithiation of 29S·BF3 with i-PrLi·(S,S)-323 at the M06_2Xl07/6_ 

311 +g(2d,2p) 108 level predicted that abstraction of the pro-S hydrogen was favoured by 

0.841 kcallmol. This energy difference corresponds to a predicted er of 88:12 at -60°C 

and 90: 10 at -78 DC, which is consistent with experimental observations. 

A key feature of the transition state models is the unsymmetrical coordination of 

chiral ligand (S,S)-323 to lithium, which is apparent in the difference in the two N-Li 

bond distances. In the dis favoured pro-(R) transition state (Figure 16, left), the difference 

in distance between these bonds is 0.028 A (based on contact distances of 2.041 and 

2.069 A). In the favoured pro-(S) transition state (Figure 16, right), the corresponding 

difference in these bonds is 0.071 A (based on N-Li contact distances of 2.040 and 2.111 
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A). Of further note is the syn-arrangement of the bulky N-3,3-dimethylbutyl groups of 

(S,S)-323 and their orientation relative to FcNMe2·BF3. In the favoured transition state, 

the N-3,3-dimethylbutyl groups project out and away from i-PrLi and FcNMe2·BF3, while 

in the dis favoured one these same groups are oriented towards i-PrLi and the substrate. 

The latter arrangement leads to greater steric encumbrance around the site of 

deprotonation and appears to be a major factor in stereoselection. Other metrics in the 

pro-(S) transition state model, such as F-Li (1.621 A) and N-B bonds distances (1.715 A) 

are similar to Kessar's model of the (-)-sparteine-mediated lithiation of BF 3-activated N-

ethylpyrrolidine.55 

Figure 16. Lowest energy transition states for (dis favoured) pro-(R) deprotonation on the 
left and (favoured) pro-(S) deprotonation on the right using diamine (S,S)-323. 

In an effort to investigate the regioselectivity of the lithiation and substrate scope, 

N-ferrocenyl pyrrolidine was synthesized (Scheme 77). Stirring aminoferrocene 155 and 
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succinic anhydride together, followed by heating the intennediate in buffered AC20, gave 

a 78% yield of crystalline succinimide 336. Reduction of the imide with LiAIH4 provided 

the desired pyrrolidine (337), but in low yield and purity. Alternatively, using borane for 

the reduction gave 337 in high yield. On some occasions when conducting this reaction, a 

more polar compound (than 336 and 337) was observed, which proved to be partially 

reduced pyrrolidone 336. 

o 0 0 

~NH21) ~ 
I THF/Et20 , rt, 2h 
Fe • 
~ 2) NaOAc, AC20, 

80 cC, 1 h 
155 (78%) 

~, :}-, ~() ~y BH3"THF I 

Fe 0 -"'------. Fe 
~ THF, reflux, 2h ~ 

(90%) 
336 337 

Scheme 77. Synthesis of pyrrolidinylferrocene. 

° ~b 
+ Fe 
~ 

338 

Exposure of pyrroldinyl ferrocene (337) to similar conditions as used previously for 

lithiation of 295 gave the desired 2-substituted pyrrolidinyl ferrocenes (339a,b) in 

comparable yields and selectivities to the dimethylamino derivatives (Scheme 78). Thus, 

asymmetric lithiation of 337·BF3 (2.1 equiv i-PrLi, (R,R)-323, -78 ---+ 40°C, TBME), 

followed by DMF quench provided (R)-2-fonnyl pyrrolidinylferrocene [(R)-339a]. Iodo 

derivative (S)-339b was also prepared by lithiation [3.15 equiv. i-PrLi, 1.05 equiv. (R,R)-

326, 1.05 equiv. DMAE] of 337·BF3 in 62% yield and 89:11 er (measured as the 

corresponding O-acetate). It is noteworthy that for this substrate deprotonation occured 

exclusively at the 2-position and not the a-methylene group of the pyrrolidinyl ring, 

which had been previously observed. 109 This observation may be due to the greater 

acidity of the Cp ring hydrogens compared to those of the pyrrolidinyl ring. 
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337 

1) BF3·OEt2 , TBME, 0 °C, 10 min ~N~ 
2) i-PrLi , L*, -78 ---+ -40 °C, 3 h 

Fe E 
3) E+, -78 ---+ rt , 16 h ~ 

E:: CHO, 339a (43%,87:13 er) 

:: I, 339b (62%, 89:11 er) 

I 

aN~.p /- r 

"/N~i-Pr 

I 
(R,R)-326 

Scheme 78. Asymmetric lithiation of337'BF3 
using cyc10hexyl diamines (R,R)-323 and (R,R)-326. 

The above result prompted an attempt at a diastereoselective lithiation of chiral N-

ferrocenyl-(2R,5R)-dimethylpyrrolidine (341), for which the I, I ' -disubstituted version of 

this compound had been reported. llo Following a procedure analogous to that reported for 

the 1,1' -disubstituted case gave unacceptable yields of less than 20% (although yields for 

the 1,1'-system were reportedly 18-24%). Sequential addition of n-BuLi and heating at 

reflux increased the yield to an acceptable 59% (Scheme 79). 

Attempts to lithiate 341 by coordination of BF3 to the substrate in THF, as used 

previously for dimethylaminoferrocene, resulted only in recovery of starting material. A 

lack of colour change or formation of precipitate seemed to indicate that coordination of 

BF3 to the substrate may not have taken place. Switching to a non coordinating solvent, 

such as PhMe, allowed formation of the putative zwitterion (as indicated by NMR 

spectrometry), but lithiation under a number of conditions (n-BuLi, i-PrLi; THF, TBME, 

PhMe; -78 ~ 0 °C) still returned unreacted starting material, probably owing to the 

lability of the 341·BF3 adduct in the presence of alkyllithiums. Based on the observed 
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weaker coordination of the amine (341) to BF3, it was proposed that an unfavourable 

steric interaction was occurring between an a-methyl group and BF3. 

o;lJ + 0"" \ 
o . 

1) n-BuLi , THF, -40 °C ~ reflux, 21 h -"y'. 

2) n-BuLi , 0 °C ~ reflux, 23 h ~N 
~--~------~------ Fe 

(59%) ~ 

155 340 341 

1) BF3'OEt2, PhMe, 0 °C, 10 min o~ 
2) 2.1 equiv. RLi , -78 ~ -40 °C, 3 n~. 

341 3) E+, -78 ~ rt, 16 h ~ 
+.-:? 
$ 

: I 

:. Fe 

~ 
342 343 

Scheme 79. Synthesis and attempted diastereoselective BF3-mediated 
lithiation of a chiral N-ferrocenyl pyrrolidine (341). 

123 



2.4 Conclusions & Future Work 

Two complementary approaches for the synthesis of 2-substituted 

aminoferrocenes have been developed. Both rely on a nitrogen-based directing group, 

which is unprecedented for aminoferrocene synthesis. The first approach described a 

modification of N-ferrocenyl phthalimide (159), a known and reliable precursor to 

aminoferrocene (155), to generate a chiral directing group that was removable and also 

served as the stereo determining group. The simple, yet unreported, 2-

trimethylsilylaminoferrocene (279) was synthesized to demonstrate this approach. 

Attempts to control the absolute stereochemistry of the phthalimidine by reduction of 

phthalimide 159 with standard reducing reagents were unsuccessful, but led to the 

interesting observation of a eu-mediated imide hydrosilylation using Et3SiH. To the best 

of our knowledge, imides are unknown hydrosilylation substrates and therefore warrant 

further investigation on this transformation as it may lead to valuable chiral building 

blocks Efforts to install groups other than SiMe3 at the 2-position resulted in the 

formation of undesired arene-substituted regioisomers. The last two issues prompt 

consideration of an alternative route, one which would involve the union of two projects 

within the Metallinos group. Thus, transition metal-catalyzed coupling of previously 

reported III proline-derived bicyclic imide 344 to iodoferrocene (272), followed by 

reduction-silylation, would give 345, which may undergo diastereoselective lithiation

substitution with an improved electrophile scope and little opportunity for the formation 

of regioisomers (Scheme 80). 

124 



~I 
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Fe + 
~ 

272 

0 1. Cu-mediated o~ diastereo 

HNAN aryl amination ~N -selective 
------------------~ ---------.p. 

oW 2. diastereoselective 
I 

lithiation Fe OSiR3 

reduction-silylation ~ -substitution 

344 345 

Scheme 80. Alternative imide-based route for 
the diastereoselective synthesis of aminoferrocenes. 

E o~ 
o--N 

I 

Fe OSiR3 

~ 
346 

The problems associated with regiochemistry and electrophile scope for the 

phthalimidine project that could not be overcome at the time led to the development of 

the complementary BF3-mediated enantioselective approach. Coordination of BF3 to 

tertiary aminoferrocenes (295 and 337) facilitated a regioselective lithiation at the 2-

position low temperature, allowing incorporation of various electrophiles in generally 

excellent yields and leading to many unusual aminoferrocenes that would be difficult to 

make by other means. This method gives access to a number of ferrocenyl 

aminophosphines, whose coordination chemistry with Pd(II), Pt(II) and 1r(l) was studied. 

The catalytic potential of those aminophosphines was briefly explored in several metal-

mediated transformations with promising results. 

The realization of an enantioselective version of the BF3-mediatied lithiation-

substitution of tertiary aminoferrocenes was also made, currently giving products in 

moderate yields and up to 90: 10 er. Based on the computational results, a ligand based on 

a chiral bicyclic piperazine should be synthesized and tested in the enantioselective 

deprotonation of the BF3-mediated substitution. The application of other enantiopure 

aminoferrocenes made available by this process, such as BINAM analogue 299, should 

also be carried out as compounds of this type would be difficult to synthesize by other 

means. Aminophosphines and complexes thereof should most certainly be exploited as 
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ligands in asymmetric transformations. For example, complex 313b has gIven some 

excellent preliminary results in the asymmetric hydrogenation of prochiral olefins (347-

349, Scheme 81) and has therefore become a current project in the laboratory.93 

~C02Et 
MeoJl) -

347 

348 

~C02Et 
349 

~e 
I BArF 

Fe 

~=>--PPh2 
\"" <±) I 

Me2N-lr(COD) 

2.5 mol% 313b 

62 bar H2, 72 h 

~C02Et 
MeoJl) -

350 (99%, 96:4 er) 

351 (94%, 95:5 er) 

~C02Et 
352 (88%, 91:9 er) 

Scheme 81. Preliminary asymmetric hydrogenation results using 
aminophosphine-Ir complex 313b. 

Lastly, in an effort to improve the manipulability, some preliminary experiments 

were carried out to effect non-oxidative N-demethylation on some of the derivatives by 

usmg chloroformates. The most promlSlng of those tried was 2,2,2-

trichloroethy1chloroformate (Scheme 82). When these reactions were conducted in 

solvents (MeCN, CICH2CH2CI), decomposition resulted. Upon reaction in neat TrocCI at 

60°C, the formation of a less polar compound was observed by TLC. Attempts to isolate 

carbamate 354 in pure form were unsuccessful, as residual TrocCI and trichloroethanol 

could not be removed from the desired product. Cleavage of carbamate 354 would give a 

2-substituted secondary aminoferrocene (355) thereby increasing the number of possible 

derivatives and potential applications, making this a worthwhile addition to the BF3-

mediated methodology that was established in this thesis. 
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R / 0 R I R / 

~N" CI )l.O/"".-CCI3 ~N)(O~CCI3 ~NH 
I . ------- ... I 

Fe neat, 60 °c Fe 0 Fe 

~ ~ ~ 
353 354 355 

Scheme 82. TrocCl-mediated demethylation and carbamate 
hydrolysis of substituted dimethylaminoferrocenes. 
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2.5 Experimental Procedures 

General. All reagents were purchased from Aldrich, Fisher Scientific, Acros or Strem 

and used as received unless otherwise indicated. Tetrahydrofuran, diethyl ether and 1,4-

dioxane were freshly distilled from sodiumlbenzophenone ketyl under an atmosphere of 

I 

nitrogen. Toluene was freshly distilled from sodium under an atmosphere of nitrogen. t-

Butyl methyl ether was distilled from LiAIH4 under an atmosphere of argon. 

Dichloromethane was distilled from CaH2 under an atmosphere of nitrogen. i-PrLi was 

prepared according to the procedure in: Morrison, R. C.; Hall, R. W.; Schwindeman, 1. 

A.; Kamienski, C. W.; Engel, 1. F., European Patent 0525881, 1993 and cyclo-

pentyllithium in analogous manner. Organolithium reagents were titrated against N-

benzylbenzamide l12 to a blue endpoint. All reactions were performed under argon in 

flame- or oven-dried glassware using syringe-septum cap techniques unless otherwise 

indicated. TLC was performed on silica gel unless otherwise stated. Column 

chromatography was performed on Silicyc1e silica gel 60 (70-230 mesh) unless otherwise 

stated. NMR spectra were obtained on a Bruker A vance 300 or A vance 600 instrument 

and are referenced the residual proton signal of the deuterated solvent for 1 H spectra and 

to the carbon multiplet of the deuterated solvent for l3C spectra according to values given 

in Spectrometric Identification of Organic Compounds, Seventh Edition, p. 200 and p. 

240. Spectroscopic data are reported as follows: (multiplicity, number of protons, 

coupling constant), where s = singlet, d = doublet, t = triplet, q = quartet. FT-IR spectra 

were recorded on an ATI Mattson Research Series spectrometer. Low and high-resolution 

mass spectral data were obtained on a Kratos Concept 1 S Double Focusing spectrometer. 

Enantiomeric ratios were determined on an Agilent 1100 HPLC system using either 
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Chiralpak AS-H or Chiralcel OD-H columns, and are compared to racemic material. It 

should be noted for HPLC measurements that response factors were not obtained for each 

enantiomer and the reported enantiomeric ratios are not calibrated. Optical rotations were 

measured on a Rudolph Research Autopol III automatic polarimeter. Elemental analyses 

were performed by Atlantic Microlab, Inc., Norcross, GA, USA. Melting points were 

determined on a Kofler hot-stage apparatus and are uncorrected. 

3-Hydroxy-2-ferrocenyl-2,3-dihydro-isoindol-l-one (273). 

o Phthalimide 159 (3.32 g, 10.0 mmol) was suspended in 1:1 

~~ MeOHlMeCN open to air and cooled to - \0 "C. NaBH, (0.76 g, 20.0 
Fe OH 

$ mmol) was added in one portion and stirred for 2.5 h, at which point 

TLC indicated completion of the reaction. The mixture was cooled to 0 °C, quenched 

with H20 (50 mL) and allowed to warm to rt. The mixture was then cooled back to 0 °C, 

collected by suction filtration and washed with water (2 x 50 mL). After drying in air for 

15 min, the resulting orange powder was recrystallized from i-PrOH/H20 to give 

ferroceny1phthalimidine 273 (2.78 g, 93%) as red-orange crystals; Rr 0.09 (30:70 

Et20/hexanes); mp 219-220 °C (i-PrOH/H20); IR (KBr) Vmax 3276, 3115, 3094,2931, 

2875, 1664, 1498, 1054 cm-I; IH NMR (300 MHz, CDCh) c5 7.74 (d, 1H, J = 7.2 Hz), 

7.66-7.59 (m, 2H), 7.53-7.47 (m, 1H), 6.09 (d, 1H, J= 11.1 Hz), 5.08 (m, 1H), 4.85-4.85 

(m, 1H), 4.16 (s, 5H), 4.12-4.10 (m, 2H), 2.90 (d, 1H, J= 11.1 Hz); ElMS [mlz(%)] 333 

(M+, 100); HRMS (EI) calcd for CIsHIsN02s6Fe: 333.0452; found 333.0454; Anal. calcd 

for CIsHIsN02Fe: C, 64.89; H, 4.54; found C, 64.64; H, 4.50. 
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2-Ferrocenyl-3-trimethylsilyloxy-2,3-dihydro-isoindol-l-one (263a). 

o TMSCI (0.80 mL, 6.30 mmol) was added to an ice-cold 

~~ solution o£173 (1.40 g, 4.20 mmol) and Et3N (0.87 mL, 6.30 mmol) in 
Fe OTMS 

$ THF (20 mL) and stirred at that temperature for 3 h. The reaction 

mixture was diluted with Et20, quenched with H20 (15 mL) and allowed to warm to rt. 

The aqueous layer was extracted with Et20 (1 x 15 mL) and the combined organic 

extracts were washed with brine, dried over anhyd. Na2S04 and the volatiles were 

removed under reduced pressure. Recrystallization of the resulting orange solid from 

hexanes at -20°C gave 263a (1.54 g, 90%) as yellow-orange cyrstals in two crops; Rf 

0.46 (30:70 Et20/hexanes); mp 94-96 °C (hexanes); IR (KBr) Vrnax 3146, 3100, 3086, 

2954,2897,1694,1498,1119,1076 cm-I; IH NMR (300 MHz, CDCh) 6 7.84 (d, IH, J= 

7.2 Hz), 7.62-7.52 (m, 3H), 6.31 (s, IH), 5.40-5.38 (m, IH), 4.62-4.60 (m, IH), 4.17-4.15 

(m, IH), 4.15 (s, 5H), 4.09-4.07 (m, IH), -0.16 (s, 9H); 13C NMR (75.5 MHz, CDC h) 6 

165.8, 143.6, 132.2, 132.0, 130.0, 123.5, 123.4, 94.9, 84.2, 68.9, 65.4, 64.2, 61.8, 60.1, 

1.0; EIMS [mlz(%)] 405 (M+, 100), 195 (30), 167 (20); HRMS (EI) calcd for 

C21H23N02Si56Fe: 405.8047; found 405.0840; Anal. calcd for C21 H23N02SiFe: C, 62.22; 

H, 5.72; found C, 61.98; H, 5.70. 

2-Ferrocenyl-3-triethylsilyloxy-2,3-dihydro-isoindol-l-one (263b). 

o TESCI (1.73 mL, 10.3 mmol) was added to a suspension of273 

~N~ (3.12 g, 9.36 mmol), DMAP (0.12 g, 0.94 mmol) and imidazole (l.47 
Fe OTES 

$ g, 21.5 mmol) in DMF (25 mL) at rt. Upon addition of TESCl, the 

starting material begins to go into solution. The mixture was stirred at rt for 18 h, then 
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diluted with Et20 and quenched with H20 (50 mL). The organic layer was then washed 

with H20 (3 x 40 mL), brine, dried over anhyd. Na2S04 and the volatiles were removed 

to get an orange solid as the crude. The crude was taken up in a minimum amount of 

hexanes and filtered through a pad of Si02 with 100% hexanes, which gave 263b as 

orange crystals (3.99 g, 95%) in 2 crops; mp 83-85 °C (hexanes); lR (KBr) Vrnax 3081, 

3050, 2950, 2905, 2873, 1695, 1490, 1068 cm-I; IH NMR (300 MHz, CDCh) c5 7.84 (d, 

1H, J= 7.2 Hz), 7.62-7.52 (m, 3H), 6.32 (s, 1H), 5.39 (s, 1H), 4.60 (s, IH), 4.15 (s, 1H), 

4.14 (s, 5H), 4.06 (s, 1H), 0.73 (t, 9H, J = 7.8 Hz), 0.33-0.28 (m, 6H); l3C NMR (75 

MHz, CDCh) c5 165.9, 143.7, 132.2, 131.9, 130.0, 123.4, 94.8, 83.8, 68.9, 65.5, 64.0, 

61.6, 60.4; EIMS [mlz(%)] 447 (M+, 100), 103 (40), 75 (32); HRMS (El) ca1cd for 

2-(2-Trimethylsilyl-l-ferrocenyl)-3-triethylsilyloxy-2,3-dihydro-isoindol-l-one (274). 

0\D TMSC1 (0.95 mL, 2.50 mmol) was added to a solution of 263b 
TMS \ 

~N § (447 mg, 1.00 mmol) and LDA solution (1.64 mL, 1.52 M in 
Fe OTES 

$ THF/hexanes, 2.50 mmol) in THF (7 mL) at -78°C and the resulting 

mixture was stirred for 2.5 h at that temperature. The reaction was quenched by addition 

of H20 (5 mL) at -78°C, then allowed to warm to rt. The reaction mixture was diluted 

with Et20 , washed with H20 (2 x 10 mL), brine, dried over Na2S04 and the volatiles 

removed under reduced pressure to yield an orange oil as the crude. Careful column 

chromatography (Si02, 2:98 Et20/hexanes) gave regioisomer 275 (156 mg. 30%), 

followed by Cp-substituted product 274 (155 mg, 30%) as a waxy, orange solid and a 

mixture of 274 and unreacted 263b (~1:4, 175 mg); Rr 0.58 (30:70 Et20/hexanes); mp 
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112-114 °C (hexanes); IR (KBr) Vrnax 2953,2908,2874, 1712, 1454, 1065 em-I; IH NMR 

(300 MHz, CDCh) b 7.83 (d, 1H, J = 6.9 Hz), 7.62-7.50 (m, 3H), 6.28 (s, 1H), 4.42 (s, 

1H), 4.38 (t, 1H, J= 2.4 Hz), 4.33 (s, 5H), 4.16 (m, 1H), 0.87 (t, 9H, J= 7.8 Hz), 0.52-

0.44 (m, 6H), 0.14 (s, 9H); I3C NMR (75 MHz, CDCh) b 167.2, 143.5, 132.3, 131.9, 

129.8, 123.5, 123.2,97.4, 87.3,72.3,71.0,69.4, 68.5,68.1,6.8,5.8,0.1; ElMS [mlz(%)] 

519 (M+, 14), 103 (100),75 (92); HRMS (EI) ca1cd for C27H27N02Si256Fe: 519.1712; 

found 519.1705; Anal. ca1cd for C29H37N02ShFe: C, 62.41; H, 7.18; found C, 62.63; H, 

7.12. 

3-Hydroxy-2-(2-trimethysilyl-l-ferrocenyl)-2,3-dihydro-isoindol-l-one (277). 

o K2C03 (166 mg, 1.20 mmol) was added to a solution of 274 
TMS~ 
~N~ (125 mg, 0.24 mmol) in MeOH (3 mL) and stirred at room temperature 

Fe OH 

~ open to air. TLC indicated complete consumption of 274 after 2 h, at 

which point the volatiles were removed under reduced pressure. Gravity filtration of the 

mixture in CH2C12 gave, after removal of volatiles from the filtrate, Cp-substituted 

phthalimidine 277 (97 mg, quant.) as an orange solid; Rr 0.11 (20:80 EtOAc/hexanes); 

mp 105-110 °C (CHCh/hexanes); IR (KBr) Vrnax 3355, 3083, 2952, 1689, 1454, 1405, 

1371 cm- I ; IH NMR (600 MHz, CDCh) b 7.78 (d, 1H, J = 7.8 Hz), 7.67-7.59 (m, 2H), 

7.57 (t, IH, 7.8 Hz), 4.43 (s, IH), 4.37 (s, IH), 4.35 (s, IH), 3.55 (d, IH, J = 7.2 Hz), 0.17 

(s, 9H); I3C NMR (150 MHz, CDCh) b 168.2, 142.7, 132.6, 131.8, 130.0, 123 .6, 123.2, 

96.2, 86.0, 72.6, 72.5, 69.7, 69.4, 69.3, -0.2; ElMS [mlz(%)] 405 (M+, 47), 390 (17), 84 

(100); HRMS (EI) calcd for C2IH25N02Si56Fe: 405.0847; found 405.0850. 
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2-(2-Trimethylsilyl-l-ferrocenyl)-isoindole-l,3-dione (278). 

o AlMe3 (5 ilL, 0.01 mmol) was added to a solution of 

TMS~ 
~N~ phthalimidine 277 (34 mg, 0.08 mmol) in PhMe (0.75 mL) and stirred 

Fe 0 
$ for 30 min. p-Nitrobenzaldehyde (38 mg, 0.25 mmol) was then added 

and the reaction mixture heated at reflux for 1 h. The reaction was quenched with H20 (5 

mL) and the aqueous extracted with CH2Ch (1 x 5 mL). The combined organics were 

washed with H20 (1 x 5 mL), brine (1 x 5 mL), dried over Na2S04 and concentrated to 

dryness. Column chromatography gave 278 (19 mg, 56%) as orange oil that solidified on 

standing; mp 124-126 °C (EtOAc/hexanes); IR (KBr) Vmax 3428, 3350, 3093, 2954, 2896, 

1613, 1463 cm-I; IH NMR (300 MHz, CDCh) t5 7.92-7.89 (m, 2H), 7.77-7.74 (m, 2H), 

4.45-4.44 (m, 1H), 4.40-4.39 (m, IH), 4.34 (s, 5H), 4.22-4.19 (m, IH), 0.23 (s, 9H); l3C 

NMR (150.9 MHz, CDCh) t5 167.7, 134.2, 131.9, 123.3, 91.4, 72.4, 70.3, 69.8, 69.2, 

67.8, 0.2; ElMS [mlz(%)] 403 (M+, 100), 388 (47); HRMS (EI) ca1cd for 

H, 5.25. Found: C, 62.48; H, 5.27. 

2-Trimethylsilylaminoferrocene (279). 

TMS A solution of phthalimide 278 (42 mg, 0.10 mmol) and N2H4·H20 
~NH2 

Fe (0.18 mL, 3.64 mmol) in stock EtOH (1 mL) was sparged with Ar for 10 
$ 

min, followed by heating at reflux for 40 min. the mixture was cooled to 

room temperatue, H20 (10 mL) was added and the aqueous extracted with Et20 (2 x 10 

mL). The combined organic layers were washed with H20, brine, dried over anhyd. 

Na2S04 and the volatiles were removed under reduced pressure to give pure 
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aminoferrocene 279 (28 mg, quant.) as a yellow oil; Rj0.45 (30:70 EtOAc/hexanes); IH 

NMR (300 MHz, CDCh) b 4.14 (s, lH), 4.07 (s, 5H), 4.00 (s, lH), 3.77 (s, lH), 2.60 (b, 

2H), 0.32 (s, 9H); 13C NMR (300 MHz, CDCh) 110.4, 69.0, 68.9, 65.6, 61.5, 59.7, 0.01; 

EIMS [mlz(%)] 273 (M+, 100); HRMS (El) calcd for C13HI9NSi56Fe: 273.0635; found 

273 .0639. 

2-Ferrocenyl-3-triethylsilyloxy-7 -trimethylsilylsoindol-l-one (275). 

TMS TMSCI (0.24 mL, 1.88 mmol) was added to a solution of 263b 

~~~ (112 mg, 0.25 rumol) and LTMP solution (0.30 mL, 0.89 M in 

Fe OTES $ THF/hexanes, 0.26 mmol) in THF (2.5 mL) at -78°C, which caused a 

colour change to dark orange-brown, and the resulting mixture was stirred for 110 min at 

that temperature. The reaction was quenched by addition of H20 (5 mL) at -78°C, then 

allowed to warm to rt. The reaction mixture was diluted with Et20, washed with H20 (1 x 

5 mL), brine, dried over Na2S04 and the volatiles removed under reduced pressure. The 

crude was loaded on a column as a solution in hexanes and column chromatography (2 :98 

---+ 10:90 Et20/hexanes) gave 275 (116 mg, 89%) as an orange oil; IH NMR (300 MHz, 

CDCh) b 7.69 (dd, 1H, J = 6.9, 1.8 Hz), 7.59-7.52 (m, 2H), 6.29 (s, 1H), 5.37 (s, 1H), 

4.58 (s 1H), 4.13 (s, 6H), 4.05 (s, 1H), 0.72 (t, 9H, J = 7.8 Hz), 0.44 (s, 9H), 0.32-0.26 

(m, 6H); l3C NMR (150 MHz, CDCh) b 166.8, 143 .7, 139.0, 136.4, 135.9, 130.8, 123.9, 

95 .7,83.5, 69.1,65.6, 64.1,61.7,60.5,6.6, 5.4, -0.7; EIMS [mlz(%)] 519 (M+, 100), 103 

(82),75 (66); HRMS (El) calcd for C27H37N02Si256Fe: 519.1712; found 519.1715. 
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(1-Hydroxy-2-ferrocenyl-3-oxoisoindolin-4-yl)boronic acid (286). 

O~)2 B(Oi-Pr)3 (0.14 mL, 0.62 mmo1) was added to a solution of 263a 

~N~ (100 mg, 0.25 mmo1) and LDA solution (0.22 mL, 1.25 M in 

Fe OH $ THF/hexanes, 0.27 mmo1) in THF (1.5 mL) at -78°C, which caused 

a colour change to dark orange-brown, and the resulting mixture was stirred for 120 min 

at that temperature. The reaction was quenched by addition of HC1 (1.00 mL, 1.00 M in 

H20) at -78°C, then allowed to warm to rt. The reaction mixture was diluted with EhO, 

washed with H20 (1 x 5 mL), brine, dried over Na2S04 and the volatiles removed under 

reduced pressure. Column chromatography (30:70:0 ---+ 25:70:5 EhO/hexanes/MeOH) of 

the residue gave 75 mg of an orange solid that was purified further by recrystallization 

from MeCN to give 286 (55 mg, 59%) as an orange powder; mp 185-188 °C (MeCN); IH 

NMR (600 MHz, DMSO-d6) J 9.54 (s, 2H), 8.04 (d, 2H, J= 6.6 Hz), 7.74-7.68 (m, 2H), 

6.95 (d, 1H, J= 10.2 Hz), 6.22 (d, 1H, J= 10.2 Hz), 5.11 (s, 1H), 4.91 (s, 1H), 4.20 (s, 

6H), 4.16 (s, 1H); I3 C NMR (150 MHz, DMSO-d6) J 169.1, 145.2, 137.5, 135.3, 131.9, 

125.8,94.0,83.3,69.2,65.2,64.8,61.6,60.5; ElMS [mlz(%)] 377 (M+, 12),331 (10),41 

(100); HRMS (El) calcd for CI8HI6BN0456Fe: 377.0523; found 377.0522. 

2-Ferrocenyl-3-trimethylsilyloxy-7 -tributylstannylisoindol-l-one (287). 

SnBU3 BU3SnCl (0.16 mL, 0.62 mmol) was added to a solution of 263a (100 

~:~ mg, 0.25 mmol) and LTMP solution (0.69 mL, 0.89 M in 

¢. OTMS THF/hexanes, 0.62 mmol) in THF (1.5 mL) at -78°C, which caused a 

colour change to dark orange-brown, and the resulting mixture was stirred for 100 min at 

that temperature. The reaction was quenched by addition of a saturated aqueous solution 
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ofNH4Cl (1 mL) at -78 DC, then allowed to warm to rt. The reaction mixture was diluted 

with Et20, washed with H20 (1 x 5 mL), brine, dried over Na2S04 and the volatiles 

removed under reduced pressure. Column chromatography (alumina, hexanes) of the 

preadsorbed crude mixture gave 287 (115 mg, 72%) as an orange oil; 'H NMR (300 

MHz, CDCh) J 7.73-7.64 (m, 1H), 7.55-7.51 (m, 1H), 6.31 (s, IH), 5.40 (s, 1H), 4.59 (s, 

IH), 4.12 (s, 6H), 4.06 (s, 1H), 1.55-1.50 (m, 6H), 1.35-1.28 (m, 6H), 1.22-1.18 (m, 6H), 

0.87 (t, 9H, J = 7.2 Hz), -0.18 (s, 9H); I3C NMR (150 MHz, CDCh) J 167.6, 142.7, 

140.4,138.0,137.4,131.0,123.0,95.2,84.1,68.8,65.3, 64.0, 61.8, 60;0,29.3,27.4,13.7, 

10.5, 1.0; ElMS [mlz(%)] 638 (M+, 18), 370 (100), 269 (88); HRMS (El) calcd for 

C29H40N02Si56FeSn: 638.1194; found 638.1199. 

General Procedure for Lithiation-Electrophile Quench of N,N-

Dimethylaminoferrocene. 

To a solution of dimethylaminoferrocene 295 (1 equiv.) in THF (0.10 M) at 0 °C 

under argon was added BF3·OEt2 (1.05 equiv.). After stirring for 15 min, the yellow 

solution was cooled to -40 °C and treated with n-BuLi (1.10 equiv.). A distinct color 

change from yellow to orange-red was observed over a period of 1 h. The reaction 

mixture was then quenched with the desired electrophile (1.20 equiv.) and allowed to 

warm to room temperature. Standard Workup: The reaction mixture was diluted with 

Et20 and a saturated solution of aq. NaHC03 was added. The phases were separated and 

the aqueous layer was extracted once with Et20. The combined organic extracts were 

washed with water, brine, dried over anhyd. Na2S04 and volatiles were removed on a 
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rotary evaporator under reduced pressure. The crude product was purified by flash 

chromatography or recrystallized to give the desired 2-substituted product (297a-k). 

(±)-2-Formyl-N,N-dimethylaminoferrocene (297a). 

;0 
~NMe2 

According to the General Procedure, a solution of 295 (100 mg, 

Fe 
0.44 mmol) in THF (5 mL) was sequentially treated with BF3·OEt2 (58 ilL, 

$ 
0.46 mmol), n-BuLi (0.51 mL, 1.70 M, 0.87 mmol) and DMF (0.17 mL, 

2.18 mmol). Standard workup followed by gradient column chromatography (silica gel, 

5:94:1~15:84:1 Et20/hexanes/Et3N) gave 297a (85 mg, 76%) as a red oil: lR (KBr, neat) 

Vrnax 3097,2943, 2851, 2826, 2785, 1667 cm-I; IH NMR (300 MHz, CDCh) c5 10.13 (s, 

1H), 4.61 (m, 1H), 4.40 (t, 1H, J = 2.7 Hz), 4.29 (m, 1H), 4.27 (s, 5H), 2.70 (s, 6H); \3C 

NMR (75.5 MHz, CDCh) c5 192.8, 117.5, 71.8, 69.5, 67.7, 66.2, 60.2, 45.6; EIMS 

[mlz(%)] 257 (M+, 100), 229 (13), 119 (54), 44 (66); HRMS (El) calcd for 

C\3H I5N056Fe: 257.0503; found 257.0504. 

(±)-2-[ (Diphenylhydroxy)methyl]-N ,N-dimethylaminoferrocene (297b). 

Ph According to the General Procedure, 295 (229 mg, 1.00 mmol) in 
PhyOH 

~NMe2 THF (10 mL) was sequentially treated with BF3·OEt2 (0.13 mL, 1.05 
Fe 

$ mmol), n-BuLi (0.59 mL, 1.86 M, 1.10 mmol) and quenched with a 

solution of benzophenone (218 mg, 1.20 mmol) in THF (8 mL). Standard workup and 

filtration through a plug of silica gel, eluting with Et20, gave an orange oil that solidified 

on standing. Recrystallization from EtzO/hexanes afforded 297b (358 mg, 87%) as a 

crystalline orange solid: mp 189-190 °C (Et20/hexanes); lR (KBr) Vrnax 3237, 3081, 2955, 
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2780 cm-I; IH NMR (300 MHz, CDCh) c5 8.10 (s, 1H), 7.64-7.62 (m, 2H), 7.38-7.10 (m, 

8H), 4.18 (m, 1H), 4.08 (m, 1H), 4.06 (s, 5H), 3.93 (m, 1H), 2.35 (s, 6H); l3C NMR (75.5 

MHz, CDCb) c5 150.0, 146.1, 127.5, 127.2, 127.0, 126.9, 126.4, 126.2, 109.5, 91.8, 78.0, 

69.8, 65.9, 63.8, 57.4, 46.7; EIMS [mlz(%)] 411 (M+, 51), 273 (l00); HRMS (El) ca1cd 

for C25H25N056Fe: 411.1285; found 411.1282. Anal. ca1cd for C25H25NOFe: C, 73 .00; H, 

6.13. Found: C, 73 .05; H, 6.15. 

(± )-2-N,N-Dimethylamino-N-p henylferrocenecarboxamide (297 d). 

O~NHPh 
$-NMe2 

Fe 

$ 

According to the General Procedure, a solution of 295 (115 mg, 

0.50 mmol) in THF (5 mL) was sequentially treated with BF3·OEt2 (66,uL, 

0.53 mmol), n-BuLi (0.23 mL, 2.45 M, 0.55 mmol) and quenched with 

PhNCO (65 ,uL, 0.60 mmol). Standard workup followed by column chromatography 

(silica gel, 30:70 Et20/hexanes) gave 297d (162 mg, 93%) as an orange oil: Rf = 0.15 

(30:70 EhO/hexanes); lR (KBr, neat) Vrnax 3236, 3179, 3096, 3023, 3003, 2951, 2848, 

2786, 1674, 1596, 1550 cm-I; IH NMR (300 MHz, CDCb) c5 10.88 (b, 1H), 7.65 (d, 2H, J 

= 7.8 Hz), 7.36 (t, 2H, J = 7.5 Hz), 7.09 (t, 1H, J = 7.5 Hz), 4.89 (m, 1H), 4.31 (m, 1H), 

4.28 (t, 1H, J = 2.7 Hz), 4.22 (s, 5H), 2.75 (s, 6H); I3C NMR (75.5 MHz, CDCb) c5 168.7, 

139.2, 129.0, 123.2, 119.5, 112.5, 70.6, 69.2, 66.8, 66.1, 59.3,46.8; EIMS [mlz(%)] 348 

(M+, 88), 43 (l00); HRMS (El) calcd for C19H20N2056Fe: 348.0925; found 348.0931. 
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(±)-2-Trimethylsilyl-N ,N-dimethylaminoferrocene (297 e). 

TMS 

~NMe2 
Fe 

~ 

According to the General Procedure, a solution of 295 (229 mg, 1.0 

mmol) in THF (10 mL) was sequentially treated with BF 3 ·OEt2 (0.13 mL, 

1.05 mmol), n-BuLi (0.48 mL, 2.30 M, 1.10 mmol) and quenched with 

TMSCI (0.15 mL, 1.20 mmol). Standard workup, followed by column chromatography 

(silica gel, 3:7 Et20/hexanes) gave 297e (279 mg, 93%) as an orange oil: Rf= 0.68 (silica, 

30:70 Et20/hexanes); IR (KBr, neat) Vmax 3096, 2952, 2818, 2774, 1247 cm-I; IH NMR 

(300 MHz, CDCh) c5 4.16 (s, 5H), 4.13 (t, 1H, J = 2.7 Hz), 4.10 (m, 1H), 3.86 (m, 1H), 

2.57 (s, 6H), 0.33 (s, 9H); l3C NMR (75.5 MHz, CDCh) c5 120.1, 70.6, 68.5, 66.2, 65.9, 

58.0, 46.1, 0.5; ElMS [mlz(%)] 301 (M+, 100); HRMS (EI) calcd for CISH23N2sSis6Fe: 

301.0949; found 301.0945. 

(± )-2-Trimethylstannyl-N ,N-dimethylaminoferrocene (297f). 

SnMe3 

~NMe2 
Fe 

$ 

According to the General Procedure, a solution of 295 (300 mg, 1.31 mmol) 

in THF (13 mL) was sequentially treated with BF3·OEt2 (0.17 mL, 1.37 

mmol), n-BuLi (0.59 mL, 2.45 M, 1.44 mmol) and Me3SnCI (1.57 mL, 1.57 

mmol). Standard workup followed by filtration through a plug of basic alumina, eluting 

with hexanes, gave 297f (466 mg, 91 %) as an orange oil; IR (KBr, neat) Vmax 3093, 2980, 

2940,2910,2825,2775 cm-I; IH NMR (300 MHz, CDC h) c5 4.16 (s, 6H), 4.06 (m, 1H), 

3.81 (m, 1H), 2.59 (s, 6H), 0.32 (s, 9H); l3C NMR (75 .5 MHz, CDCh) c5 120.2, 70.9, 

67.8,66.4,60.4,58.0,45.1 , -7.6; ElMS [mlz(%)] 393 (M+, 100),348 (88); HRMS (EI) 

calcd for CISH23NIIsSnS6Fe: 391.0198; found 391.0194. 
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(±)-N,N-Dimethyl-2-( 4,4,5,5-tetramethyl-[1,3,2] dioxaborolan-2-yl)-aminoferrocen e 

(297g). 

According to the General Procedure, a solution of 295 (229 mg, 1.0 

mmol) in THF (10 mL) was sequentially treated with BF 3 ·OEt2 (0.13 mL, 

1.05 mmol), n-BuLi (0.55 mL, 2.00 M, 1.10 mmol) and quenched with 

B(OEt)3 (0.20 mL, 1.20 mmol). Standard workup gave the extract, to which 

was added pinacol (138 mg, 1.10 mmol) and stirred at room temperature for 5 min. After 

removal of volatiles under reduced pressure and column chromatography (basic alumina, 

hexanes) gave 297g (298 mg, 84%) as an orange oil that solidified on standing: mp 75-76 

°C (pentane); IR (KBr) Vmax 3090, 2978, 2833, 2785, 1141, 1077 cm-I; IH NMR (300 

MHz, acetone-d6) c5 4.18 (s, 5H), 4.16 (s, 1H), 4.08 (s, 2H), 2.65 (s, 6H), 1.32 (s, 12H); 

I3C NMR (75.5 MHz, acetone-d6) c5 119.6, 82.7, 71.9, 68.3, 67.5, 66.0, 60.1, 43.7, 24.4, 

24.1; ElMS [mlz(%)] 355 (M+, 100), 255 (15), 121 (20); HRMS (EI) calcd for 

H, 7.38. Found: C, 60.96; H, 7.48. 

(± )-2-Thiophenyl-N ,N-dimethylaminoferrocene (297h). 

SPh 

~NMe2 
Fe 

$ 

According to the General Procedure, a solution of 295 (229 mg, 

1.00 mmol) in THF (10 mL) was sequentially treated with BF3·OEt2 (0.13 

mL, 1.05 mmol), n-BuLi (0.51 mL, 2.15 M, 1.10 mmol) and quenched with 

a solution of (PhSh (262 mg, 1.20 mmol) in THF (2 mL). Standard workup followed by 

gradient column chromatography (silica gel, 0:99: 1 ~ 2:97: 1 Et20/hexanes/Et3N) gave 

297h (278 mg, 82%) as an orange oil that solidified on standing: mp 79-80 °C (pentane); 
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lR (neat) Vmax 3098,3087,3055,2967,2847,2785, 1498, 1002 cm-I; IH NMR (300 MHz, 

CDCh) 6 7.20-7.15 (m, 2H), 7.08-7.01 (m, 3H), 4.32 (s, 5H), 4.22 (m, 1H), 4.16-4.12 (m, 

2H), 2.66 (m, 6H); I3C NMR (75.5 MHz, CDCh) 6 140.8, 128.6, 125.3, 124.5, 115.9, 

73.0, 69.2, 65.9, 64.5, 58.5, 44.4; EIMS [mlz(%)] 337 (M+, 51), 229 (100); HRMS (El) 

ca1cd for CISHI9NS56Fe: 337.0587; found 337.0588. Anal. ca1cd for CISHI9NSFe: C, 

64.10; H, 5.68. Found: C, 64.08; H, 5.61 

(±)-2-Diphenylphosphino-N ,N-dimethylaminoferrocene (297i). 

PPh2 According to the General Procedure, a solution of 295 (229 mg, 
~NMe2 

Fe 1.00 mmol) in THF (10 mL) was sequentially treated with BF3·OEt2 (0.13 

$ 
mL, 1.05 mmol), n-BuLi (0.45 mL, 2.45 M, 1.10 mmol) and quenched 

C1PPh2 (0.22 mL, 1.20 mmol). Standard workup followed by filtration of the pre-

adsorbed product through a plug of silica gel, eluting with Et20, gave an orange solid. 

Recrystallization from Et20 afforded 297i (317 mg, 77%) as orange needles in two crops: 

mp 146-148 °C (Et20); lR (KBr) Vmax 3090, 3050, 2952, 2840, 2780, 1494 cm-I; 31 p 

NMR (121.5 MHz, CDCh) 6 -20.37; IH NMR (600 MHz, CDCh) 67.55-7.52 (m, 2H), 

7.39 (m, 3H), 7.28 (m, 5H), 4.20 (s, IH), 4.13 (s, 5H), 4.10 (t, 1H, J = 2.4 Hz), 3.50 (s, 

1H), 2.69 (s, 6H); I3C NMR (150.9 MHz, CDCh) 6 139.8 (d, J = 11.0 Hz), 137.9 (d, J = 

10.6 Hz), 135.3 (d, J = 22.6 Hz), 132.4 (d, J = 18.1 Hz), 129.0, 128.1 (d), 128.0 (d), 

127.8, 119.0 (d, J = 18.1 Hz), 68.7, 68.5 (d, J = 3.0 Hz), 65.9 (d, J = 10.6 Hz), 65.2, 60.1, 

45.5; EIMS [mlz(%)] 413 (M+, 100); HRMS (El) calcd for C24H24Np56Fe: 413.0995; 

found 413.0991. Anal. ca1cd for C24H24NPFe: C, 69.75; H, 5.85. Found: C, 69.87; H, 

5.94. 
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2-Dicyclohexylphosphino-l-dimethylaminoferrocene (297j). 

PCY2 

~NMe2 
Fe 
~ 

In a dry round bottom flask under argon, an ice-cold solution of 

dimethylaminoferrocene 295 (229 mg, 1.00 mmol) in THF (10 mL) was 

treated with BF3·OEt2 (0.13 mL, 1.05 mmol). After 15 min, the yellow 

solution was cooled to -40°C and n-BuLi (0.46 mL of 2.40 M solution in hexanes, 1.10 

mmol) was added by syringe to give an orange-red solution that was stirred for 1 h before 

CIPCY2 (0.24 mL, 1.10 mmol) was added and the mixture was allowed to warm to room 

temperature. The reaction mixture was diluted with Et20 (10 mL) and worked up with 

saturated aqueous NaHC03 solution (10 mL). The organic layer was washed with H20 (1 

x 10 mL), brine (1 x 10 mL), dried over anhydrous Na2S04 and concentrated to dryness. 

The residue was redissolved in pentane and chromatographed on silica gel (25 mL), 

eluting with 95:5 pentane/Et20 to give 397 mg (77%) of the desired aminophosphine 

297j as a moderately air-sensitive viscous orange oil: Rf 0.50 (Si02, 90: 10 

hexanes/EtOAc); IR (CHCh): Vmax 2920, 2848, 1489, 1446 em-I; 31 p NMR (121 MHz, 

acetone-d6): b -12.3; IH NMR (300 MHz, acetone-d6): b 4.22 (s, 5H), 4.15 (t, 1H, J= 1.1 

Hz), 4.04 (t, 1H, J = 2.3 Hz), 3.92 (t, 1H, J = 1.7 Hz), 2.75 (s, 6H), 2.49-2.41 (m, 1H), 

2.00-1.93 (m, IH), 1.92-1.81 (m, 3H), 1.77-1.67 (m, 2H), 1.67-1.61 (m, 1H), 1.61-1.52 

(m, 3H), 1.50-1.20 (m, 7H), 1.20-1.06 (m, 2H), 1.06-0.97 (m, 1H), 0.90-0.79 (m, 1H); 

13C NMR (75.5 MHz, acetone-d6) b 118.0 (d, i 3 C_31 P = 14.0 Hz), 67.5, 66.6 (d, J13 C_31 P = 

3.4 Hz), 63.3 (d, i3C_31p = 25.3 Hz), 63.2, 61.3 (d, i3C_31p = 1.5 Hz), 43.9 (d, i3C_31p = 

13.2 Hz), 35.0 (d, i3C_31p = 15.9 Hz), 33.2 (d, i3C_31p = 13.2 Hz), 32.2 (d, i3C_31p = 20.6 

Hz), 30.2 (d, i 3 C_31 P = 15.9 Hz), 29.5 (d, i 3 C_31 P = 10.8 Hz), 29.0, 27.3 (d, i 3 C_31 P = 11.8 
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26.3 (d, i 3 C_31 P = 15.5 Hz). ElMS (mlz (%)): 425 (M+, 87), 130 (62), 55 (100), 41 (94); 

HRMS (EI; mlz): ca1cd for C24H36Np56Fe 425.1936; found 425.1934. 

(±)-2-Iodo-N,N-dimethylaminoferrocene (297k). 

I 

~NMe2 
Fe 

$ 

According to the General Procedure, a solution of 295 (250 mg, 

1.09 mmol) in THF (10 mL) was sequentially treated with BF3·OEt2 (0.14 

mL, 1.15 mmol), n-BuLi (0.49 mL, 2.45 M, 1.20 mmol) and quenched with 

a solution ofICH2CH21 (369 mg, 1.31 mmol) in THF (2 mL). Standard workup including 

an additional washing with sat. aq. Na2S203 solution and filtration through silica, eluting 

with 2:98 Et20/pentane, gave 297k (334 mg, 94%) as a moderately light-sensitive orange 

oil: IR (neat) Vrnax 3087, 2948, 2777, 1486 em-I; IH NMR (300 MHz, CDCh) c5 4.28 (m, 

1H), 4.21 (s, 5H), 4.05 (t, 1H, J = 2.7 Hz), 4.02 (m, 1H), 2.69 (s, 6H); l3C NMR (75.5 

MHz, CDCh) c5 113.4, 71.9, 71.1,64.8,56.3,45.5, 38.7; ElMS [mlz(%)] 355 (M+, 100), 

290 (24); HRMS (EI) calcd for C12H14N156Fe: 354.9520; found 354.9517. 

(±)-2-Acetoxy-N,N-dimethylaminoferrocene (298). 

o 

-\ 
~NMe2 

Fe 

$ 

A solution of 297k (144 mg, 0.41 mmol) in abs. EtOH (3 mL) was 

treated with Cu(OAc)2·H20 (95 mg, 0.50 mmol) and heated to reflux for 

10 min to give a dark mixture. After cooling to room temperature, 

volatiles were removed under reduced pressure. The residue was dissolved in Et20 and 

filtered through a pad of Celite in a sintered funnel to give 298 (99 mg, 86%) as an 

orange oil that solidified on standing: mp 52-54 DC (pentane); IR (KBr, neat) Vrnax 3103, 
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2974, 2851, 2793, 1752, 1210 cm-I; IH NMR (300 MHz, acetone-d6) <5 4.29, 4.17 (dd, 

1H, J = 2.4, 1.5 Hz), 3.78 (dd, 1H, J = 2.7, 0.9 Hz), 3.68 (t, 1H, J = 2.7 Hz), 2.61 (s, 6H), 

2.15 (s, 3H); 13C NMR (75.5 MHz, acetone-d6) <5 169.8, 106.4, 69.2, 67.6, 60.0, 57.5, 

55.4, 43 .5, 21.2; ElMS [mlz(%)] 287 (M+, 71), 245 (100); HRMS (EI) calcd for 

CI4H17N0256Fe: 287.0608; found 287.0606. Anal. calcd for C I4H 17N02Fe: C, 58.56; H, 

5.97. Found: C, 58.56; H, 5.97. 

N,N,N",N"-Tetramethyl-2,2 "-diamino-l,l "-biferrocene (299). 

A mixture of 297k (88 mg, 0.25 mmol), dichloromethane (5 mL) and purified Cu 

powder (787 mg, 12.4 mmol) was concentrated to dryness under reduced pressure. The 

resulting solid mass was heated under argon at 110°C for 18 h. After cooling to room 

temperature, the solid mass was taken up in dichloromethane (20 mL) and filtered 

through a pad of Celite in a sintered funnel. Removal of volatiles from the filtrate under 

reduced pressure and gradient column chromatography (neutral alumina, 2:98---+5:95 

Et20/hexanes) sequentially gave meso-299 (14 mg, 26%) and rac-299 (15 mg, 26%) as 

orange solids. 

meso-299. mp 198-200 °C (abs. EtOH); IR (KBr) Vrnax 3088, 3073, 2999, 2940, 2822, 

~ 2780,1472, 1411 cm-I; IH NMR (300 MHz, CDCh) <54.88-4.86 (m, 2H), 

~ 4.14-4.13 (m, 2H), 4.05 (s, IOH), 3.99 (t, 2H, J~ 2.7 Hz), 2.73 (s, 12H); 
Fe NMe2 

~ 13C NMR (75.5 MHz, CDCh) <5 112.0, 76.4, 69.2, 66.4, 62.5, 57.7,46.2; 

ElMS [mlz(%)] 456 (M+, 100); HRMS (EI) calcd for C24H2SN256Fe2: 456.0949; found 

456.0950. 
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rac-299. IH NMR (300 MHz, CDCh) b 4.38- 4.37 (m, 2H), 4.32 (s, 10H), 3.93-3.92 (m, 

'¥ 4H), 2.38 (s, 12H); l3 C (150 MHz, CDCh) b 114.7, 74.7, 71.2, 68.2, 
Fe 

~Me, 61.2,57.5, 43.9; ElMS [mlz(%)] 456 (M+, 100); HRMS (EI) caled for 

$ C24H28N/6Fe2: 456.0949; found 456.0941. 

2-N,N-Dimethylamino-3-trimethylsilanyl-ferrocenecarboxaldehyde (301). 

To a solution of dimethylaminoferrocene 297e (81 mg, 0.27 mmol) 

in THF (2.5 mL) at 0 °C under argon was added BF3·OEt2 (35 ,uL, 0.28 

mmol). After stirring for 15 min, the yellow solution was cooled to -78°C, 

treated with n-BuLi (0.28 mL, 2.00 M, 0.56 mmol) and immediately warmed to -40 °C 

for 1 h. The reaction mixture was then cooled back to -78°C before addition ofDMF (52 

,uL, 0.67 mmol) and allowed to warm slowly to room temperature. Standard workup 

followed by gradient column chromatography (silica gel, 2:96:2----dO:88:2 

hexanes/Et20/Et3N) gave 301 (53 mg, 60%) as a dark red oil; lR (KBr) Vrnax 3096, 2955, 

2926, 2853,2780, 1669 em-I; IH NMR (300 MHz, CDCh) b 10.23 (s, 1H), 4.78 (s, IH), 

4.36 (s, 1H), 4.28 (s, 5H), 2.78 (s, 6H), 0.29 (s, 9H); l3C NMR (75.5 MHz, CDCh) b 

193.7, 120.5, 76.4, 75 .5, 74.4, 70.3 , 68.4, 47.3, 0.3; EIMS [mlz(%)] 329 (M+, 100); 

HRMS (El) calcd for CI 6H23NOSi56Fe: 329.0898; found 329.0893. 

2-N,N-Dimethylamino-3-thiophenyl-ferrocenecarboxaldehyde (302). 

SPh 

~NMe2 
~O 

Fe 

$ 

To a solution of dimethylaminoferrocene 297h (81 mg, 0.27 mmol) 

in THF (2.5 mL) at 0 °C under argon was added BF3·OEt2 (35 ,uL, 0.28 

mmol). After stirring for 15 min, the yellow solution was cooled to -78°C, 
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treated with n-BuLi (0.28 mL, 2.00 M, 0.56 mmol) and immediately warmed to -40 °C 

for 1 h. The reaction mixture was then cooled back to -78°C before addition of DMF (52 

,uL, 0.67 mmol) and allowed to warm slowly to room temperature. Standard workup 

followed by gradient column chromatography (silica gel, 2:96:2-10:88:2 

hexanes/Et20/Et3N) gave 302 (53 mg, 60%) as a dark red oil: IR (KBr) Vrnax 3073, 2927, 

2853,2787,1669 cm-I; IH NMR (300 MHz, CDCh) b 7.28-7.15 (m, 2H), 7.15-7.03 (m, 

3H), 4.83 (d, 1H, J = 2.7 Hz), 4.59 (d, 1H, J = 3.0 Hz), 4.36 (s, 5H), 2.82 (s, 6H); l3C 

NMR (75 MHz, CDCh) b 193.0, 139.9, 128.8, 126.3, 125.4, 117.8,76.7,71.8,71.5, 70.8, 

65.2,46.1; ElMS [mlz(%)] 365 (M+, 100),71 (58),57 (69), 43 (53); HRMS (EI) calcd for 

2-Hydroxymethyl-N ,N-dimethylaminoferrocene (303). 

OH 

~NMe2 
Fe 
~ 

A solution of NaBH4 (130 mg, 3.45 mmol) in H20 (3.5 mL) was 

added to an ice-cold solution of 297a (443 mg, 1.72 mmol) in MeOH (10 

mL) that was open to air. After addition, a gradual colour change from red 

to orange was observed and the reaction mixture was allowed to warm to room 

temperature over 20 h. The reaction mixture was poured into a cold saturated solution of 

NH4Cl (10 mL) and subsequently made weakly alkaline (pH 8) with a saturated solution 

of NaHC03 (xx mL). The resulting mixture was extracted with Et20 (2 x 20 mL). The 

combined organic extracts were washed with H20 (1 x 10 mL), brine (1 x 10 mL), dried 

over Na2S04 and all volatiles were removed in vacuo. The crude was dissolved in Et20 

and filtered through a pad of silica, eluting with Et20. Evaporation of the filtrate afforded 

303 (415 mg, 93%) as an orange oil: Rj= 0.12 (silica, 50:50 hexanes/EtOAc); IR (KBr, 
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neat) Vrnax 3369, 2943, 2851, 2785, 1485, 1455, 1422 cm-I; IH NMR (300 MHz, CDCh) b 

4.46 (AB q, 1H, J = 12.3, 12.3 Hz), 4.21 (s, 5H), 4.12-3.98 (m, 1H), 3.97-3 .94 (m, 1H), 

3.93 (t, 1H, J = 2.4 Hz), 3.48 (br s, 1H), 2.60 (s, 6H); l3C NMR (75 MHz, CDCh) b 

112.1 , 81.7,68.7,65.4,62.8,60.3,56.2,45.1; ElMS [mlz(%)] 259 (M+, 25), 121 (66), 86 

(65),84 (100); HRMS (EI) calcd for Cl3H 17N056Fe: 259.0659; found 259.0658. 

2-Diethylaminomethyl-N,N-dimethylaminoferrocene (304). 

A stirred solution of alcohol 303 (90 mg, 0.35 mmol) and Nal (104 

mg, 0.69 mmol) in MeCN (3 mL) under argon at room temperature was 

treated with CISiMe3 (0.11 mL, 0.87 mmol), resulting in the formation of 

fine precipitate. After stirring for 10 minutes, Et2NH (0.14 mL, 1.39 mmol) was added 

and the reaction mixture left to stir for a further 15 h. CH2Ch (10 mL) was added and the 

mixture washed with H20 (3 x 5 mL), brine (1 x 5 mL), dried over Na2S04 and all 

volatiles were removed in vacuo. The crude mixture was dissolved in EtOAc and filtered 

through a pad of silica, eluting with 95 :3:2 EtOAcli-PrOH/Et3N. Evaporation of the 

filtrate afforded the amine 304 (103 mg, 95%) as an orange oil: Rf = 0.25 (silica, 95:3 :2 

EtOAcli-PrOH/Et3N); IR (KBr, neat) Vrnax 3093, 2968, 2937, 2819, 2780, 1487" 1452, 

1421 cm-I; IH NMR (300 MHz, CDCh) 54.13 (s, 5H), 3.97 (t, 1H, J= 1.8 Hz), 3.89 (t, 

1H, J = 2.0 Hz), 3.86 (t, 1H, J = 2.4 Hz), 3.75 (AB d, 1H, J = 13.2 Hz), 3.12 (AB d, 1H, J 

= 12.9 Hz), 2.68 (s, 6H), 2.61 (dq, 2H, J= 13.8, 6.9 Hz), 2.41 (dq, 2H, J= 13.0, 7.1 Hz), 

0.98 (t, 6H, J = 7.2); l3C NMR (75 MHz, CDCh) 5113.7, 76.6, 68.5, 68.3, 61.7, 56.9, 

52.2, 45.9, 44.9, 11.2; ElMS [mlz(%)] 314 (M+, 100),241 (39), 121 (38); HRMS (EI) 

calcd for C17H26N256Fe: 314.1445; found 314.1445. 
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2-Imidazolylmethyl-N,N-dimethylaminoferrocene (305). 

t=\ Alcohol 303 (60 mg, 0.23 mmol) and carbonyl diimidazole (47 mg, 

r N0 N 

~NMe2 0.29) were added to a round bottom flask, equipped with a condenser, under 
Fe 
~ argon. CH2Ch (3 mL) was added, followed by heating at reflux for 16 h. 

After cooling to room temperature, the mixture was preadsorbed on silica and loaded on a 

column. Flash chromatography (silica, 98:0:2 ----+ 93:5:2 EtOAc/MeOH/Et3N) afforded 

the desired 2-substituted imidazole 305 as a yellow-brown oil (38 mg, 53%): Rf = 0.25 

(silica, 93:5:2 EtOAc/MeOH/Et3N); IR (KBr, neat) Vrnax 3100, 2949, 2848, 2784, 1504, 

1421 cm-I; IH NMR (300 MHz, CDCh) 57.50 (s, IH), 7.00 (s, IH), 6.92 (s, IH), 5.11 (d, 

IH, J= 14.1 Hz), 4.83 (d, IH, J= 14.4 Hz), 4.16 (s, 5H), 4.10 (t, IH, J= 1.8 Hz), 4.02-

3.93 (m, 2H), 2.61 (s, 6H), 2.03 (s, IH); 13C NMR (75 MHz, CDC h) 5136.7, 129.1, 

118.9, 113.4, 75.2, 68.9, 66.6, 63.5, 57.4, 45.5, 45.3; EIMS [mlz(%)] 309 (M+, 48), 121 

(l00); HRMS (EI) calcd for C16H19N356Fe: 309.0928; found 309.0930. 

2-Phenyl-N ,N-dimethylaminoferrocene (307a). 

Iodoferrocene 297k (89 mg, 0.25 mmol), PhB(OH)2 (34 mg, 0.28 

mmol) and Pd(PPh3)4 (29 mg, 2.51 x 10-2 mmol) were added to a dry 

Schlenk flask, followed by DME (2 mL) and an aqueous solution of 3 M 

NaOH (0.17 mL, 0.50 mmol). Argon was bubbled through the resulting mixture for 10 

minutes, followed by heating the system at 55 DC for 14 h. The reaction was allowed to 

cool to room temperature, diluted with Et20, washed with water (1 x 5 mL), brine (1 x 5 

mL), dried over Na2S04 and all volatiles were removed in vacuo. Flash column 
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chromatography (silica, 98:2 hexanes/EtOAc) afforded biaryl 307a (61 mg, 80%) as an 

orange oil: Rf 0.45 (90: 10 hexanes/EtOAc); IR (KBr, CHCh) Vrnax 3091, 2941, 2852, 

2779, 1601, 1491, 1444, 1416 em-I; IH NMR (300 MHz, CDCh) 8 7.80-7.74 (m, 2H), 

7.36-7.19 (m, 3H), 4.28-4.25 (m, IH), 4.18 (s, 5H), 4.15-4.11 (m, IH), 4.05 (t, 1H, J= 

, 13 
2.7 Hz), 2.53 (s, 6H); C NMR (75 MHz, CDCh) 8 139.1, 128.4, 127.8, 125.9, 112.5, 

78.1,69.2,66.5,62.4,58.0,44.6; EIMS [mlz(%)] 305 (M+, 100); HRMS (El) ca1cd for 

2-(3-Methylphenyl)-N ,N-dimethylaminoferrocene (307b). 

Iodoferrocene 297k (102 mg, 0.29 mmol), PhB(OH)2 (78 mg, 

0.57 mmol) and Pd(PPh3)4 (33 mg, 2.86 x 10-2 mmol) were added to a dry 

Schlenk flask, followed by DME (3 mL) and an aqueous solution of 3 M 

aqueous NaOH (0.25 mL, 0.70 mmol). Argon was bubbled through the resulting mixture 

for 10 minutes, followed by heating the system at reflux for 17 h. The reaction was 

allowed to cool to room temperature, diluted with Et20, washed with water (1 x 5 mL), 

brine (1 x 5 mL), dried over Na2S04 and all volatiles were removed in vacuo. Flash 

column chromatography (silica, 98:2 hexanes/EtOAc) afforded biaryl307b (85 mg, 93%) 

as an orange oil: Rj0.41 (90:10 hexanes/EtOAc); IR (KBr, film from CHCh) Vrnax 3093, 

2940, 2848, 2778, 1605, 1487, 1452, 1416 em-I; IH NMR (300 MHz, CDCh) 8 7.61 (d, 

1H, J= 7.8 Hz), 7.49 (s, 1H), 7.23 (t, lH, J= 7.5 Hz), 7.04 (d, 1H, J= 7.5 Hz), 4.23 (s, 

1H), 4.18 (s, 5H), 4.11 (s, 1H), 4.02 (t, 1H, J = 2.7 Hz), 2.52 (s, 6H), 2.39 (s, 3H); 13C 

NMR (75 MHz, CDCh) 8 139.0, 137.1, 129.0, 127.7, 126.7, 125.7, 112.4,77.9,69.1, 
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66.7, 62.2, 58.1, 44.6, 21.5; EIMS [mlz(%)] 319 (M+, 100); HRMS (El) calcd for 

2-(2-Methoxyphenyl)-N ,N-dimethylaminoferrocene (307 c). 

lodoferrocene 297k (101 mg, 0.28 mmol), 2-

methoxyphenylboronic acid (86 mg, 0.57 mmol) and Pd(PPh3)4 (33 mg, 

2.86 x 10-2 mmol) were added to a dry Schlenk flask, followed by DME (3 

mL) and an aqueous solution of 3 M aqueous NaOH (0.24 mL, 0.70 mmol). Argon was 

bubbled through the resulting mixture for 10 minutes, followed by heating the system at 

reflux for 14 h. The reaction was allowed to cool to room temperature, diluted with Et20, 

washed with water (1 x 5 mL), brine (1 x 5 mL), dried over Na2S04 and all volatiles 

were removed in vacuo. Flash column chromatography (silica, 98:2 ---+ 95:5 

hexanes/EtOAc) afforded biaryl 307c (83 mg, 87%) as an orange oil that solidified on 

standing: Rf 0.19 (95:5 hexanes/EtOAc); mp 92-93 °C (hexanes); lR (KBr) Vmax 3082, 

2941,2833,2776, 1597, 1450, 1411 em-I; IH NMR (300 MHz, CDCh) 0 8.09 (dd, IH, J 

= 7.5, 1.8 Hz), 7.26 (td, IH, J = 7.8, 1.8 Hz), 7.02 (td, IH, J = 7.5, 0.9 Hz), 6.87 (d, IH, J 

= 8.4 Hz), 4.27 (t, IH, J = 3.6 Hz), 4.24 (s, 5H), 4.09 (t, IH, J = 2.1 Hz), 4.05 (t, 1H, J = 

2.7 Hz), 3.79 (s, 3H), 2.47 (s, 6H); I3C NMR (75 MHz, CDCh) 0 157.5, 132.6, 127.5, 

127.0, 120.0, 113.1, 110.5, 75.5, 68.9, 66.8, 62.0, 56.8, 55.6, 44.1; EIMS [mlz(%)] 335 

(M+, 100),229 (24); HRMS (El) calcd for CI9H2IN056Fe: 335.0972; found 335.0978. 
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2-(N-Boc pyrrolyl)-N,N-dimethylaminoferrocene (307d). 

o 
t-BuO~ 

~ 
Fe NMe2 

$ 

lodoferrocene 297k (107 mg, 0.30 mmol), 2-pyrrylboronic acid (95 

mg, 0.45 mmol), K3P04 (127 mg, 0.60 mmol) and Pd(PPh3)4 (35 mg, 0.03 

mmol) were added to a dry Schlenk flask, which was evacuated and 

backfilled with argon (x 2). n-BuOH was added, followed by heating the system at 100 

DC for 14 h. The reaction was allowed to cool to room temperature, diluted with EhO, 

washed with water (1 x 5 mL), brine (1 x 5 mL), dried over Na2S04 and all volatiles 

were removed in vacuo. Flash column chromatography (silica, 97:3 hexanes/EtOAc) 

afforded biaryl 307d (27 mg, 23%) as an orange oil: Rf O.35 (90:10 hexanes/EtOAc); IR 

(KBr, film from CHCh) Vrnax 3094, 2979, 2951, 2851, 2787,1736,1731 em-I; IH NMR 

(600 MHz, CDCh) c> 7.32 (t, IH, J = 1.8 Hz), 6.44 (t, IH, J = 2.4 Hz), 6.18 (t, IH, J = 2.7 

Hz), 4.31 (s, 5H), 4.01 (t, IH, J = 1.8 Hz), 3.94-3.92 (m, 2H), 2.38 (s, 6H), 1.31 (s, 9H); 

l3C NMR (150 MHz, CDCh) c> 149.6, 130.2, 122.0, 115.7, 114.1, 110.0,83.1,69.2,68.7, 

68.0, 61.2, 58.3, 43.1, 27 .5; ElMS [mlz(%)] 394 (M+, 11), 294 (100), 229 (14); HRMS 

(EI) ca1cd for C21H26N20256Fe: 394.1343; found 394.1340. 

2-(2-Bromophenyl)-N,N-dimethylaminoferrocene (307e). 

lodoferrocene 297k (355 mg, 1.00 mmol), 2-bromophenylboronic 

acid (210 mg, 1.05 mmol) and Pd(PPh3)4 (115 mg, 0.10 mmol) were added 

to a dry Schlenk flask, followed by DME (10 mL) and an aqueous solution 

of 3 M aqueous NaOH (0.50 mL, 1.50 mmol). Argon was bubbled through the resulting 

mixture for 10 minutes, followed by heating the system at reflux for 15 h. The reaction 

was allowed to cool to room temperature, diluted with EhO, washed with water (1 x 5 

151 



mL), brine (1 x 5 mL), dried over Na2S04 and all volatiles were removed in vacuo. Flash 

column chromatography (silica, 97:3 ---+ 95:5 TBME/hexanes) afforded biaryl 307e (177 

mg, 46%) as an orange oil: Rf O.38 (90:10 hexanes/EtOAc); IR (KBr, CHCh) Vmax 3091, 

2947,2846,2783, 1587, 1502, 1485, 1416 em-I; IH NMR (300 MHz, CDCh) b 8.12 (dd, 

1H, J= i7, 1.5 Hz), 7.26 (dd, 1H, J= 8.1,1.2 Hz), 7.34 (td, 1H, J= 7.5, 1.2 Hz), 7.13 

(td, 1H, J= 7.8,1.8 Hz), 4.32 (s, 5H), 4.13 (t, IH, J= 1.8 Hz), 4.10-4.05 (m, 2H), 2.41 (s, 

6H); 13C NMR (75 MHz, CDCh) b 157.5, 132.6, 127.5, 127.0, 120.0, 113.1, 110.5, 75.5, 

68.9,66.8,62.0,56.8,55.6,44.1; ElMS [mlz(%)] 385 (81 Br M+, 91), 383 C9Br M+, 100), 

182 (62); HRMS (EI) calcd for C18H18N56Fe79Br: 382.9972; found 382.9974. 

(± )-2-(2-Dipbenylpbospbinopbenyl)-N ,N-dimetbylaminoferrocene (309). 

Bromoarene 307e (194 mg, 0.51 mmol) was dissolved in THF (5 

mL) in a Schlenk tube, cooled to -78°C and treated with a solution of n-

BuLi (0.28 mL, 0.56 mmol, 2.00 M in hexanes). After 10 minutes, CIPPh2 

(0.11 mL, 0.61 mmol) was added and the reaction mixture allowed to warm to room 

temperature over 2.5 h. The reaction mixture was diluted with Et20, washed with a 

saturated solution of NaHC03 (l x 10 mL), water (l x 10 mL), brine (1 x 10 mL), dried 

over Na2S04 and all volatiles were removed in vacuo. The crude was dissolved in 75:25 

Et20/pentane, filtered through a pad of silica, eluting with 75:25 Et20/pentane and 

evaporation of the filtrate afforded the crude. For the purpose of purification, the 

phosphine was treated with sulfur (19 mg, 0.60 mmol) in PhMe (5 mL) at 40°C for 15 h. 

After cooling to room temperature, the mixture was preadsorbed on silica and loaded on a 

column. Flash column chromatography (silica, 85: 15 pentane/Et20) afforded phosphine 
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sulfide 308 (274 mg, 96%) as an orange-red oil: Rf 0.18 (90:10 hexanes/EtOAc); IR 

(KBr, CHCh) Vrnax 2918, 2848, 2779, 1481, 1437, 1097 em-I; IH NMR (600 MHz, 

CDCh) <5 8.56-8.51 (m, 1H), 7.87-7.81 (m, 2H), 7.69-7.63 (m, 2H), 7.50 (t, 1H, J = 3.6 

Hz), 7.47-7.42 (m, 1H), 7.41-7.36 (m, 2H), 7.35-7.30 (m, 1H), 7.28-7.09 (m, 4H), 4.28 (s, 

1H), 4.08 ' (s, 5H), 3.72 (s, 1H), 3.62 (t, 1H, J = 1.2 Hz), 2.39 (s, 6H); I3C NMR (150 

MHz, CDCh) <5 142.1 (d, i3C_31p = 9.0 Hz), 135.9 (d, i3C_31p = 10.5 Hz), 134.1 (d, Jl3c-

31p = 84.0 Hz), 133.8 (d, i 3 C)lp = 12.0 Hz), 133.4 (d, i 3 C_31 P = 58.5 Hz), 132.26 (d, i 3 c-

31p = 6.0 Hz), 132.22 (d, i3C_31p = 27.0 Hz), 131.8 (d, i 3C)lp = 6.0 Hz), 131.3 (d, i 3C-

31p = 3.0 Hz), 130.99 (d, i 3 C_31 P = 10.5 Hz), 130.91 (d, i 3 C)lp = 3.0 Hz), 130.55 (d, i 3 c-

31p = 3.0 Hz), 130.27 (d, i 3 C_31 P = 1.5 Hz), 128.5 (d, i 3 C_31 P = 12.0 Hz), 128.03 (d, i 3 c-

31p = 12.0 Hz), 127.84 (d, i 3 C_31 P = 12.0 Hz), 126.0 (d, i 3 C_31 P = 13.5 Hz), 113.7, 81.8 

(d, JI3 C_31 P = 4.5 Hz), 77.2, 76.9 (d, i 3 C_31 P = 31.5 Hz), 61.5, 55.8, 44.2; 31 p NMR (243 

MHz, CDCh) <5 43.6; ElMS [mlz(%)] 521 (M+, 50), 489 (10), 456 (39), 218 (100); 

HRMS (EI) ca1cd for C30H28NPS56Pe: 521.1029; found 521.1027. 

A portion of the aforementioned phosphine sulfide 308 (63 mg, 0.12 mmol) in 

MeCN (2 mL) was added to a suspension of activated Ni-AI catalyst [518 mg, 6.04 mmol 

activated by digesting with an aqueous solution of 6 M NaOH for 1 hat 50°C (addition 

of NaOH solution is exothermic), followed by cooling to room temperature and 

successively washing the Ni-AI catalyst with H20 (10 x 3 mL), MeOH (4 x 3 mL) and 

MeCN (3 x 3 mL)] in MeCN (3 mL) under argon. The resulting mixture was heated at 60 

°C for 18 h. After cooling to room temperature, the mixture was filtered through a pad of 

Celite®, eluting with MeCN and all volatiles were removed in vacuo. The mixture was 

dissolved in 95:5 hexanes/EtOAc and carefully filtered through a pad of silica, eluting 
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with 95:5 hexanes/EtOAc, to afford biaryl phosphine 308 (43 mg, 73%) as a yellow-

orange oil: Rf 0.35 (silica, 90: 10 hexanes/EtOAc); lR (KEr, CHCh) Vrnax 3070, 3051, 

2948,2849,2781 , 1499, 1480, 1434 em-I; IH NMR (600 MHz, CDCh) b 8.20-8.16 (m, 

lH), 7.42-7.38 (m, IH), 7.31-7.25 (m, 6H), 7.23-7.15 (m, 5H), 7.02-6.99 (m, IH), 4.28 

(s, 5H), 4.05 (t, IH, J = 1.8 Hz), 3.94 (t, IH, J = 3.0 Hz), 3.85 (t, IH, J = l.2 Hz), 2.29 (s, 

6H); I3C NMR (150 MHz, CDCh) b 143.8 (d, /3C_3Ip = 28.5 Hz), 138.4 (d, /3C_3Ip = 

13.5 Hz), 138.1 (d, /3C_3Ip = 13.5 Hz), 135.7, 133 .91, 133.76, 133.62, 133.53, 133.40, 

132.84 (d, /3C_3Ip = 6.0 Hz), 128.38, 128.15, 128.11 , 128.04, 128,01, 128.00, 126.7, 

125.5, 113.8, 80.93 (d, J'3 C_31 P = 10.5 Hz), 69.36 (d, /3 C_31 P = 7.5 Hz), 68.5, 61.5, 56.8, 

43.9; 31 p NMR (243 MHz, CDCh) b -13.9; ElMS [mlz(%)] 489 (M+, 2), 242 (40), 199 

(100); HRMS (El) calcd for C30H28Np56Fe: 489.1308; found 489.1309. 

2-Diphenylphosphino-l-dimethylaminoferrocene palladium dichloride (311a). 

Representative procedure. A solution of aminophosphine 297i (94 mg, 0.30 

~ mmol) and Pd(MeCN)2Clz (58 mg, 0.30 mmol) in CH2Clz (2 mL) was 
J 

Fe 

~PPh2 stirred at room temperature in a dry flask under argon until TLC indicated 
Me2N-fd-CI 

CI consumption of the aminophosphine (75 min). The reaction mixture was 

then filtered through a pad of silica gel, eluting with 97:3 CH2Clz/MeOH, and 

concentrated. Recrystallization from acetonitrile at -20°C gave 311a (154 mg, 87%) as a 

light orange powder in two crops. mp > 225 °C (decomp. at 210 °C); lR (KEr) Vrnax 3448, 

1460, 1434 em-I; 31 p NMR (243 MHz, CDCh): b 25.3 ; IH NMR (600 MHz, CDCh): b 

8.11-8.05 (m, 2H), 7.63-7.58 (m, IH), 7.58-7.52 (m, 4H), 7.51-7.46 (m, IH), 7.39-7.34 

(m, 2H), 4.74 (t, IH J = 2.3 Hz), 4.53 (s, IH), 4.21 (s, IH), 4.00 (s, 5H), 3.46 (s, 3H), 
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3.09 (s, 3H); l3C NMR (150 MHz, CDCh) c5 134.6 (d, }3 C_31 P = 11.6 Hz), 132.2 (d, }3 c-

= 3.1 Hz), 129.4 (d, }3 C_31 P = 67.7 Hz), 128.9 (d, }3 C_31 P = 11.6 Hz), 128.6 (d, }3 C_31 P = 

12.1 Hz), 126.9 (d, }3C_3Ip = 24.6 Hz), 75.2 (d, }3C_3Ip = 6.1 Hz), 72.8 (d, }3C_3Ip = 56.1 

Hz), 63.9, 60.3 (d, }3C_3Ip = 12.3 Hz), 58.2, 54.5. FABMS (mlz (%)): 591 (M+, 14),554 

(90), 518 (84), 413 (77), 292 (73), 229 (85), 214 (81), 108 (100). Anal. calcd for 

C24H24NPChFePd: C, 48.81; H, 4.10. Found: C, 49.04; H, 4.09. 

2-Dicyclohexylphosphino-l-dimethylaminoferrocene palladium dichloride (311 b). 

Prepared on a 0.22 mmol scale in a manner analogous to 311a to give 311b 

(121 mg, 91%) as rust-colored crystals after recrystallization from 

acetonitrile at -20°C. mp > 225°C (decomp. at 195°C); IR (KBr): Vrnax 

2931,2850, 1446 ern-I; 31p NMR (121.5 MHz, CDCh): c5 51.1; IH NMR (300 MHz, 

CDCh): c5 4.71 (s, 1H), 4.59 (s, lH), 4.46 (s, 5H), 4.00 (s, 1H), 3.47 (s, 3H), 3.12 (s, 3H), 

2.72-2.54 (m, 1H), 2.52-2.33 (m, 1H), 2.33-2.16 (m, 2H), 2.16-1.88 (m, 5H), 1.87-1.31 

(m, 10H), 1.31-1.05 (m, 3H); l3C NMR (75.5 MHz, CDCh): c5 128.0 (d, }3C_3Ip = 20.9 

Hz), 74.6 (d, }3c_3Ip = 5.6 Hz), 73.8, 73.3, 63.1, 60.4 (d, }3C_3Ip = 10.6 Hz), 58.5, 56.7, 

37.7 (d, }3C_3Ip = 30.2 Hz), 35.1 (d, }3C_3Ip = 30.2 Hz), 29.0 (d, }3c_3\ = 2.0 Hz), 28.7, 

28.1, 28.0, 26.9 (d, }3 C?lp = 2.0 Hz), 26.7, 26.6 (d, }3 C_31 P = 2.9 Hz), 26.5, 26.4, 25.8, 

25.4; FABMS (mlz (%)): 603 (M+, 8), 566 (81), 229 (100); Anal. calcd for 

C24H36NPChFePd: C, 47.83; H, 6.02. Found: C, 47.77; H, 6.20. 
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2-Diphenylphosphino-l-dimethylaminoferrocene platinum dichloride (312a). 

~ Representative procedure. A suspension of aminophosphine 297i (100 mg, 
I 

Fe 
~PPh2 0.24 mmol) and Pt(COD)Clz (90 mg, 0.24 mmol) in PhMe (2.5 mL) was 

Me2N-,Pt-CI 
CI heated at reflux until TLC indicated consumption of the aminophosphine 

(1.5 h). The solvent was removed on a rotary evaporator, the residue redissolved in 

CH2Clz, filtered through a pad of silica gel eluting with 97:3 CH2Clz/MeOH, and 

concentrated again under reduced pressure. Recrystallization from acetone at -20°C 

gave 312a (82 mg, 50%) as fine orange crystals. mp > 225°C (decomp. at 210°C); IR 

(KEr): Vmax 3469, 3421, 3048, 2925, 1435 em-I; 31 p NMR (243 MHz, CDCh): c5 2.01 (t, 

31 195 ) I ( s; ( J p_ Pt = 1982 Hz; H NMR 300 MHz, CDCh): u 8.18-8.06 m, 2H), 7.63-7.40 (m, 

6H), 7.39-7.30 (m, 2H), 4.92 (t, IH, J = 2.6 Hz), 4.53 (s, IH), 4.29 (t, IH, J = 1.0 Hz), 

3.94 (s, 5H), 3.65 (t, 3H, J = 16.6 Hz), 3.24 (t, 3H, J = 15.1 Hz); IH NMR (600 MHz, 

acetone-d6): c5 8.24-8.17 (m, 2H), 7.70-7.60 (m, 3H), 7.59-7.53 (m, 2H), 7.53-7.48 (m, 

IH), 7.45-7.39 (m, 2H), 5.08 (t, IH, J = 2.3 Hz), 4.94 (s, IH), 4.62 (t, IH, J = 1.1 Hz), 

4.01 (s, 5H), 3.66 (s, 3H), 3.22 (s, 3H); I3C NMR (150 MHz, CDCh) c5 134.5 (d, i 3 C_31 P 

= 11.9 Hz), 132.1 (d, i 3 C_31 P = 2.2 Hz), 131.5 (d, i 3 c_3l p = 10.3 Hz), 131.1 (d, i 3 C_31 P = 

68.8 Hz), 130.9 (d, i3C_31p = 2.7 Hz), 129.1 (d, i3C_31p = 21.6 Hz), 128.9 (d, i3C_31p = 

73.8 Hz), 128.8 (d, JI3 C_31 P = 11.4 Hz), 128.6 (d, i 3 C_31 P = 12.3 Hz), 74.9 (d, i 3 C_31 P = 6.4 

Hz), 74.0 (d, i3C_31p = 66.7 Hz), 63.2, 59.7, 59.4 (d, i3C_31p = 10.6 Hz), 55.6; FABMS 

(mlz (%)): 679 (M+, 6), 643 (100), 605 (30),486 (22); Anal. calcd for C24H24NPClzFePt: 

C, 42.44; H, 3.56. Found: C, 42.67; H, 3.56. 
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2-Dicyclohexylphosphino-l-dimethylaminoferrocene platinum dichloride (312b). 

~ Prepared on a 0.19 mmol scale in a manner analogous to 312a to give 312b 
I 

Fe 

~PCY2 (101 mg, 79%) as orange crystals after recrystallization from 
Me2N-,Pt-CI 

CI CH2Ch/EtOAc at -20 DC. mp > 225 DC (decomp. at 210 DC); IR (KBr): 

448 ' 46 4 -I 31 ( s; 31 195 vmax 3 ,1 0, 143 em; P NMR 121 MHz, CDCh): u 21.7 (t, J p_ Pt = 1898 Hz); 

IH NMR (600 MHz, CDCh): b 4.86 (t, 1H, J = 2.5 Hz), 4.57 (s, 1H), 4.46 (s, 5H), 4.00 

(s, 1H), 3.65 (t, 3H, J = 14.8 Hz), 3.26 (t, 3H, J = 14.3 Hz), 2.77-2.61 (m, 1H), 2.57-2.39 

(m, 1H), 2.31-2.17 (m, 1H), 2.14-1.75 (m, 8H), 1.74-1.53 (m, 4H), 1.50-1.30 (m, 3H), 

1.30-1.05 (m, 4H); l3C NMR (150 MHz, CDCh) b 129.9 (d, i 3 C_31 P = 17.8 Hz), 74.5 (d, 

i 3 C_31 P = 52.6 Hz), 74.3 (d, i 3 C_31 P = 4.8 Hz), 71.5, 62.44, 59.4, 59.2 (d, i 3 C_31 P = 8.9 

Hz), 58.0, 36.1 (d, i 3C?lp = 36.9 Hz), 33.0 (d, i3C_31p = 37.6 Hz), 28.9,28.0,27.6 (d, 

= 6.1 Hz), 26.5 (d, i3c_3lp = 11.9 Hz), 26.1, 25.5; FABMS (mlz (%)): 691 (M+, 8), 655 

(100),616 (59), 55 (76). Anal. calcd for C24H24NPChFePd: C, 48.81; H, 4.10. Found: C, 

49.04; H, 4.09. 

General Procedure A (Suzuki-Miyaura Couplings). An oven-dried reaction tube under 

argon containing a mixture of phenylboronic acid (91 mg, 0.75 mmol), CsF (228 mg, 

1.50 mmol), Pd(OAc)2 (2 mg, 0.01 mmol) and 297i (8 mg, 0.02 mmol) in dioxane (2.5 

mL) was treated with an aryl halide 314a-g (0.50 mmol) and stirred at room temperature 

for 5 min before heating to reflux for 22 h. After cooling to room temperature and 

diluting with Et20 (7 mL), the mixture was filtered through a pipette containing a plug of 

silica gel and eluted with additional Et20. Evaporation of the solvent under reduced 
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pressure and recrystallization or column chromatography gave the purified products 

315a-g. 

4-Trifluoromethylbiphenyl (315a). 

According to General Procedure A, a mixture of 4-chloro 

cfY~ I CF
3 

trifluoromethylbenzene (0.07 mL, 0.50 mmol), phenylboronic acid (91 
I';::, 
~ 

mg, 0.75 mmol), CsF (228 mg, 1.50 mmol), Pd(OAc)2 (2 mg, 0.01 

mmol) and 297i (8 mg, 0.02 mmol) in l,4-dioxane (2.5 mL) was heated to reflux, cooled 

and filtered. Column chromatography (silica, 98:2 hexanes/EtOAc) gave 315a (104 mg, 

94%) as a colorless crystalline solid. mp 66-69 QC (95% EtOH) (lit. ll3 66-68 QC). 

Spectroscopic data matched literature reports. I 14 lH NMR (300 MHz, CDCh) <5 7.70 (s, 

4H), 7.60 (d, 2H, J = 7.2 Hz), 7.50-7.41 (m,3H). 

4-Phenylacetophenone (315b). 

o 
According to General Procedure A, a mixture of 4-

chloroacetophenone (65 ilL, 0.50 mmol), phenylboronic acid (91 mg, 

0.75 mmol), CsF (228 mg, 1.50 mmol), Pd(OAc)2 (2 mg, 0.01 mmol) 

and ligand 297i (8 mg, 0.02 mmol) in l,4-dioxane (2.5 mL) was heated to reflux, cooled 

and filtered. After evaporation of the solvent, recrystallization from hexanes containing a 

small amount of EtOAc gave 315b (86 mg, 88%) as colorless crystals. Spectroscopic data 

matched literature reports. I IS IH NMR (300 MHz, CDCh) <5 8.05 (d, 2H, J = 8.4 Hz), 

7.69 (d, 2H, J = 8.4 Hz), 7.63 (d, 2H, J = 7.2 Hz), 7.50-7.40 (m, 3H), 2.64 (s, 3H); I3C 
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NMR (75.5 MHz, CDCh) J 197.7, 145.8, 139.8, 135.8, 128.93, 128.89, 128.2, 127.24, 

127.20,26.6. 

4-Cyanobiphenyl (315c). 

cf1CN According to General Procedure A, a mixture 4-

~I 
I '-':: chlorobenzonitrile (69 mg, 0.50 mmol), phenylboronic acid (91 mg, 

o 
0.75 mmol), CsF (228 mg, 1.50 mmol), Pd(OAc)2 (2 mg, 0.01 mmol) 

and 297i (8 mg, 0.02 mmol) in 1,4-dioxane (2.5 mL) was heated to reflux, cooled and 

filtered. Evaporation of the solvent under reduced pressure and column chromatography 

of the pre-adsorbed crude material (silica, 95:5 hexanes/EhO) gave 315c (83 mg, 92%) as 

a colorless solid. Spectroscopic data matched literature reports. 1 16 IH NMR (300 MHz, 

CDCh) J 7.69 (q, 4H, J = 6 Hz), 7.61-7.57 (m, 2H), 7.52-7.40 (m, 3H); l3C NMR (75.5 

MHz, CDCh) J 145.6, 139.1, 132.5, 129.0, 128.6, 127.6, 127.1, 118.8, 110.8. 

2-Nitrobiphenyl (315d). 

According to General Procedure A, a mixture of 0-

v91 

'-':: ~ chloronitrobenzene (79 mg, 0.50 mmol), phenylboronic acid (91 mg, 0.75 

I 0 N02 
mmol), CsF (228 mg, 1.50 mmol), Pd(OAc)2 (2 mg, 0.01 mmol) and 297i 

(8 mg, 0.02 mmol) in l,4-dioxane (2.5 mL) has heated to reflux, cooled and filtered . 

Evaporation of the solvent under reduced pressure and column chromatography of the 

pre-adsorbed crude material (silica, 99:1 hexanes/Et20) gave 315d (73 mg, 73%) as a 

bright yellow oil. Spectroscopic data matched literature reports. ll7 IH NMR (300 MHz, 

CDCh) J 7.86 (d, 1H, J= 8.0 Hz), 7.62 (t, 1H, J= 7.5 Hz), 7.51-7.40 (m, 5H), 7.34-7.31 
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(m, 2H); l3C NMR (75.5 MHz, CDCh) b 149.3, 137.4, 136.3, 132.2, 131.9, 128.7, 128.2, 

128.1, 127.9, 124.0. 

4-Metboxybipbenyl (315e). 

dYOMe According to General Procedure A, a mixture of 4-

~I 
I '-':: chloroanisole (0.06 mL, 0.50 mmol), phenylboronic acid (91 mg, 0.75 
~ 

mmol), CsF (228 mg, 1.50 mmol), Pd(OAc)2 (2 mg, 0.01 mmol) and 

297i (8 mg, 0.02 mmol) in l,4-dioxane (2.5 mL) was heated to reflux, cooled and filtered. 

Evaporation of the solvent under reduced pressure and column chromatography of the 

pre-adsorbed crude material (silica, 99.5:0.5 - 99:1 i-PrOH/hexanes) gave 315e (64 mg, 

70%) as a colorless solid. Spectroscopic data matched literature reports. lH NMR (300 

MHz, CDCh) b 7.54 (t, 4H, J= 6.8 Hz), 7.42 (t, 2H, J= 6.8 Hz), 7.32-7.26 (m, lH), 6.99 

(d, 2H, J = 8.7 Hz), 3.86 (s, 3H); l3C NMR (75.5 MHz, CDCh) b 159.1, 140.8, 133.8, 

128.7, 128.1, 126.7, 126.6, 114.2,55.3. 

4-Metbylbipbenyl (315t). 

According to General Procedure A, a mixture of 4-chlorotoluene 

(59 ilL, 0.50 mmol), phenylboronic acid (91 mg, 0.75 mmol), CsF (228 

mg, 1.50 mmol), Pd(OAch (2 mg, 0.01 mmol) and 297i (8 mg, 0.02 

mmol) in l,4-dioxane (2 .5 mL) was heated to reflux, cooled and filtered. Evaporation of 

the solvent under reduced pressure and column chromatography of the pre-adsorbed 

crude material (silica, 99:1 hexanes/Et20) gave 315f (47 mg, 56%) as a colorless solid. 

Spectroscopic data matched literature reports. lH NMR (300 MHz, CDCh) b 7.59 (d, 2H, 
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J = 7.8 Hz), 7.51 (d, 2H, J = 7.8 Hz), 7.44 (d, 2H, J = 7.8 Hz), 7.35-7.24 (m, 3H), 2.41 (s, 

3H); l3C NMR (75.5 MHz, CDCh) 6 141.1, 138.3, 137.0, 129.5, 128.7, 127.0, 126.9, 

21.1. 

5, 7-Diph~nyl-8-aminoquinoline (315g). 

According to General Procedure A, a mixture of 5,7-dibromo-8-

aminoquinoline (314g, 100 mg, 0.33 mmol), phenylboronic acid (60 

mg, 0.50 mmol), CsF (150 mg, 0.99 mmol), Pd(OAc)2 (1.3 mg, 0.007 

mmol) and ligand 297i (5.3 mg, 0.013 mmol) in l,4-dioxane (2.5 mL) 

was heated to reflux, cooled and filtered. After evaporation of the solvent, 

recrystallization from Et20/hexanes gave 315g (86 mg, 88%) as colorless crystals. mp: 

100-102 °C (Et20/hexanes). lR (KBr): Vmax 3450, 3347, 3050, 3023, 1583 cm· l • IH NMR 

(300 MHz, CDCh): 6 8.85-8.80 (m, 1H), 8.28 (dd, 1H, J = 8.4, 1.5 Hz), 7.66-7.63 (m, 

2H), 7.54-7.44 (m, 6H), 7.42-7.34 (m, 4H), 5.32 (s, 2H). l3C NMR (75.5 MHz, CDCh): 6 

147.5, 140.2, 139.9, 138.3, 134.2, 130.2, 130.0, 129.2, 129.0, 128.4, 128.2, 127.2, 126.8, 

126.1, 121.7, 121.2. ElMS (m/z, (%»: 296 (72), 219 (24), 86 (100), 47 (85). HRMS (El; 

m/z): calcd for C21 H I6N2: 296.1314; found 296.1312. 

General Procedure B (Buchwald-Hartwig Couplings). An oven-dried reaction tube under 

argon containing a mixture of Pd2(dbakCHCh (10 mg, 0.01 mmol), 297i (8 mg, 0.02 

mmol) and NaOt-Bu (67 mg, 0.70 mmol) in PhMe (2.5 mL) was treated with an aryl 

halide (316a,b,d,e,h) (0.50 mmol) and morpho line (52 ilL, 0.60 mmol). The resulting 

green-brown mixture was heated at 100°C for 22 h. After cooling to room temperature, 
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the reaction mixture was diluted with Et20 (5 mL) and filtered through a pipette 

containing a plug of silica gel while eluting with additional Et20. Evaporation of the 

solvent under reduced pressure and recrystallization or column chromatography of crude 

material gave products 317a,b,d,e,b. 

N-( 4-Trifluorometbylpbenyl)morpboline (317 a). 

According to General Procedure B, a mixture of 4-chloro 
~CF3 

rN~ trifiuoromethylbenzene (67 ilL, 0.50 mmol), morpho line (52 ilL, 0.60 

o-J 
mmol), NaOt-Bu (67 mg, 0.70 mmol), Pd2(dba)3·CHCh (10 mg, 0.01 

mmol) and 297i (8 mg, 0.02 mmol) in PhMe (2.5 mL) was heated, cooled and filtered. 

Evaporation of the solvent under reduced pressure and column chromatography of the 

pre-adsorbed crude material (silica, 80:20 hexanes/Et20) gave 317a (89 mg, 77%) as off-

white crystals. Spectroscopic data matched literature reports. 114 IH NMR (300 MHz, 

CDCh) t5 7.50 (d, 2H, J = 8.7 Hz), 6.92 (d, 2H, J = 8.7 Hz), 3.87 (t, 4H, J = 4.8 Hz), 3.24 

(t, 4H, J= 5.1 Hz); l3C NMR (75.5 MHz, CDC h) t5 153.3,126.4 (g, J= 3 Hz), 124.6 (g, J 

= 271 Hz), 120.9 (g, J= 33 Hz) 114.3,66.6,48.1. 

N-( 4-Acetylpbenyl)morpboline (317b). 

o According to General Procedure B, a mixture of 4-

~ chloroacetophenone (65 ilL, 0.50 mmol), morpho line (52 ilL, 0.60 
r NN 
o-J mmol), NaOt-Bu (67 mg, 0.70 mmol), Pd2(dbakCHCh (10 mg, 0.01 

mmol) and 297i (8 mg, 0.02 mmol) in PhMe (2.5 mL) was heated, cooled and filtered. 

Evaporation of the solvent under reduced pressure and column chromatography of the 
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pre-adsorbed crude material (silica, 83: 15:2 to 78:20:2 hexanes/EtOAc/Et3N) gave 317b 

(76 mg, 74%) as a pale yellow solid. Spectroscopic data matched literature reports. IH 

NMR (300 MHz, CDCh) c5 7.90 (d, 2H, J = 9.0 Hz), 6.87 (d, 2H, J = 9.0 Hz), 3.86 (t, 4H, 

J= 4.8 Hz), 3.31 (t, 4H, J= 5.1 Hz), 2.53 (s, 3H); 13C NMR (75.5 MHz, CDCh) c5 196.4, 

154.2, 130.3, 128.1, 113.2,66.5,47.5,26.1. 

N-(2-Nitrophenyl)morpholine (317d). 

(') According to General Procedure B, a mixture of 2-nitro 

rN'Y chlorobenzene (79 mg, 0.50 mmol), morpho line (52 ilL, 0.60 mmol), 

o~ N02 
NaOt-Bu (67 mg, 0.70 mmol), Pd2(dba)3·CHCh (10 mg, 0.01 mmol) and 

297i (0.4 mL of 0.05 M solution in PhMe) in PhMe (2.5 mL) was heated, cooled and 

filtered. Evaporation of the solvent under reduced pressure and column chromatography 

of the pre-adsorbed crude material (silica, 40:60 Et20hexanes) gave 317d (45 mg, 43%) 

as a yellow oil. Spectroscopic data matched literature reports. 118 IH NMR (300 MHz, 

CDCh) c5 7.79 (d, 1H, J= 8.1 Hz), 7.52-7.47 (m, 1H), 7.15 (d, 1H, J= 8.3 Hz), 7.10-7.06 

(m, 1H), 3.85-3.83 (m, 4H), 3.07-3.04 (m, 4H); 13C NMR (75.5 MHz, CDCh) c5 145.8, 

143.7,133.5,125.9,122.3, 120.9,66.8,52.1. 

N-( 4-Methoxyphenyl)morpboline (317 e). 

According to General Procedure B, a mixture of 4-bromoanisole (63 ilL, 0.50 

mmol), morpholine (52 ilL, 0.60 mmol), NaOt-Bu (67 mg, 0.70 

mmol), Pd2(dbakCHCh (10 mg, 0.01 mmo!), and 297i (8 mg, 0.02 

mmo!) in PhMe (2.5 mL) was heated, cooled and filtered. 
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Evaporation of the solvent under reduced pressure and column chromatography of the 

pre-adsorbed crude material (silica, 50:48:2 Et20/hexanes/Et3N) gave 317e (64 mg, 67%) 

as an off-white solid. Spectroscopic data matched literature reports. 119 IH NMR (300 

MHz, CDCb) b 6.92-6.84 (m, 4H), 3.86 (t, 4H, J = 4.8 Hz), 3.77 (s, 3H), 3.06 (t, 4H, J = 

4.8 Hz); l3C NMR (75.5 MHz, CDCb) b 153.9, 145.5, 117.7, 114.4,66.9,55.5,50.7. 

N-Phenylmorpholine (317h). 

n According to General Procedure B, a mixture of bromo benzene (53 

AJ o !lL, 0.50 mmol), morpho line (52 !lL, 0.60 mmoI), NaOt-Bu (67 mg, 0.70 

mmol), Pd2(dbakCHCh (10 mg, 0.01 mmol) and 297i (8 mg, 0.02 mmol) in PhMe (2.5 

mL), was heated, cooled and filtered. Column chromatography (silica, 93 :6: 1 

hexanes/Et20/Et3N) gave 317h (67 mg, 82%) as a colorless solid. Spectroscopic data 

matched literature reports. ll8 IH NMR (600 MHz, CDCb) b 7.32 (t, 2H, J = 4.2 Hz), 

6.97-6.91 (m, 3H), 3.90 (t, 4H, J = 2.4 Hz), 3.19 (t, 4H, J = 2.4 Hz); l3C NMR (150.9 

MHz, CDCb) b 151.3, 129.2, 120.1, 115.7,67.0,49.4. 

(S)-2-Dimethylamino-l-ferrocenecarboxaldehyde [(S)-297a] and (S)-2-

Dimethylamino-l,l '-ferrocene-dicarboxaldehyde [(S)-332a]. 

rO 
Qr-NMe2 

I 

Fe 

~ 

A solution of (8,S)-327 (134 mg, 0.53 mmol) in t-BuOMe (4 mL) 

was cooled to -40 °C, treated with i-PrLi (1.18 mL, 1.34 M, 1.58 mmoI) 

and a solution ofDMAE (47 mg, 0.53 mmol) in t-BuOMe (1 mL), and the 

mixture was stirred for 20 min. This solution was transferred by cannula to a mixture of 

29S·BF3 at -78°C [prepared by addition ofBF3·OEt2 (66 JlL, 0.53 mmol) to a solution of 

164 



295 (115 mg, 0.50 mmol) in t-BuOMe (5 mL) at 0 °C and stirring for 10 min]. After 

stirring for 10 min, the mixture was allowed to warm slowly to -40 °C over 2 h and then 

held at that temperature for an additional hour. After cooling back to -78°C, the 

electrophile DMF (96 ilL, 1.25 mmol) was added and the mixture was allowed to warm 

to room temperature over 16 h. The reaction mixture was diluted with Et20 and worked-

up by addition of a saturated solution of aqueous NaHC03. The aqueous layer was 

extracted with EtzO (2 x 10 mL) and the combined organic extract was washed with H20 

(1 x 10 mL), saturated NaCl solution (1 x 10 mL), dried over anhydrous Na2S04 and 

concentrated under reduced pressure on a rotary evaporator. Gradient flash column 

chromatography (95:5 to 90:10 to 80:20 CH2Clz/Et20) gave, sequentially 295 (22 mg, 

19%), (S)-297a (78 mg, 61 %) as a red oil and (S)-332a (13 mg, 9%) as a red oil. 

(S)-297a. CSP HPLC analysis (Chiralpak AS-H; eluent: 80:20 hexanesli-PrOH, 

1.0 mLimin) determined an enantiomeric ratio (er) of 91:9 (82% ee) [tR(minor) = 12.48 

min, tR(major) = 26.38 min]. All other spectroscopic data matched racemic (±)-297a 

(vide supra). 

(S)-332a. [a]o20 +118.9 (c 0.09, CHCh); CSP HPLC analysis (Chiralpak AS-H; 

eluent: 60:40 hexanesli-PrOH, 1.0 mLimin) determined an er of 91.5:8.5 

(83% ee) [tR(minor) = 28.19 min, tR(major) = 40.3 min]; IR (KBr): Vmax 

3113,3099,2959,2870,2806, 1644, 1522, 1233, 1034 cm- I; IH NMR (300 

MHz, CDCh) r5 10.13 (s, 1H), 9.93 (s, lH), 4.90-4.89 (m, lH), 4.86-4.85 (m, lH), 4.70-

4.66 (m, 2H), 4.43 (t, IH, J = 2.7 Hz), 4.27 (dd, lH, J = 2.7, 1.8 Hz), 2.73 (s, 6H); l3 C 

NMR (75.5 MHz, CDCh) r5 192.8, 192.1, 119.6, 80.2, 74.1, 73.5, 70.65, 70.60, 70.4, 
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68.5, 67.3, 60.1, 44.6; ElMS [m/z, (%)] 285 (100), 119 (35); HRMS (El) calcd for 

(S)-2-[ (Diphenylhydroxy)methyl]-l-dimethylaminoferrocene [(S)-297b]. 

Ph A solution of (S,S)-327 (267 mg, 1.05 mmol) in t-BuOMe (5 mL) 
Ph+OH 

Q.--NMe2 was cooled to -40 °C, treated with i-PrLi (0.42 mL, 2.49 M in pentane, 
Fe 

$ 1.05 mmol), and the mixture was stirred for 20 min. This solution was 

transferred by cannula to a mixture of 295·BF3 at -78°C [prepared by addition of 

BF3·OEt2 (66 ilL, 0.53 mmol) to a solution of 295 (115 mg, 0.50 mmol) in t-BuOMe (5 

mL) at 0 °C and stirring for 10 min]. After stirring for 10 min, the mixture was allowed to 

warm slowly to -40 °C over 2 h and then held at that temperature for an additional hour. 

After cooling back to -78°C, an ice-cooled solution of benzophenone (200 mg, 2.20 

mmol) in MTBE (5 mL) was added by cannula, and the mixture was allowed to warm to 

room temperature over 19 h. The reaction mixture was diluted with Et20 and worked-up 

by addition of a saturated aqueous solution of NaHC03. The aqueous layer was extracted 

with Et20 (1 x 10 mL) and the combined organic extract was washed with H20 (1 x 10 

mL), brine (1 x 10 mL), dried over anhydrous Na2S04 and concentrated under reduced 

pressure on a rotary evaporator. The crude mixture was dissolved in 1:1 THF/MeOH (10 

mL) and treated with an aqueous solution of NaBH4 (42 mg, 1.10 mmol) at room 

temperature for 16 h to reduce excess benzophenone. The reaction mixture was then 

poured into an ice-cold solution of saturated aqueous NH4CI and subsequently brought to 

pH 8 by addition of saturated aqueous NaHC03. Solvents were removed on a rotary 

evaporator and the remaining aqueous layer was extracted with Et20 (2 x 10 mL). The 
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combined organic extract was washed with H20 (1 x 10 mL), brine (1 x 10 mL), dried 

over anhydrous Na2S04 and concentrated in vacuo. Flash column chromatography (silica 

gel, 98:2 hexanes/EtzO) gave alcohol (S)-297b (152 mg, 74%) as an orange powder: mp 

189-192 DC; [a]D20 +45.8 (c 1.0, CHCh). Determination of the enantiomeric ratio by CSP 

HPLC using Daicel Chiralpak AS-H, or Chira1cel OD-H or OB-H columns with mixtures 

of hexanes, i-PrOH, EtOAc or t-BuOMe as eluents, was unsuccessful; however, one 

recrystallization from EtzO at -20°C afforded orange cubes of constant melting point 

and optical rotation that were homochiral by X-ray diffraction: mp 191-192 DC; [a]D20 

+69.0 (c 1.0, CHCh); X-Ray analysis was performed on an orange block (0.17 x 0.15 x 

0.05 mm3): C2sH2SFeNO: M = 411.31 glmol, monoclinic, P2 1, a = 9.415(3) A, b = 

10.637(4) A, c = 10.440(4) A, V = 997.6(6) A3, a = 90 0, ~ = 107.404(6) 0, Y = 90°, Z = 

2, Dc = 1.369 g/cm3, F(OOO) = 432, T = 100(2) K; 13421 data were collected. The 

structure was solved by Direct Methods (SHELXTL) and refined by full-matrix least 

squares on F2 resulting in final R, Rw and GOF [for 4424 data with F > 2cr(F)] of 0.0328, 

0.0646 and 1.01, respectively, for solution using the (S)-enantiomer model [Flack 

parameter = 0.010(13)]. All other spectroscopic data matched (±)-297b (vide supra). 

(R)-2-Dimethylamino-l-(N -phenylferrocenecarboxamide) [(R)-297 d]. 

~Me2 
I 0 
Fe 

~NHPh 

A solution of (R ,R)-323 (327 mg, 1.05 mmol) in t-BuOMe (3 mL) 

was cooled to -40 DC, treated with i-PrLi (1.05 mL, 1.00 M, 1.05 mmol), 

and the mixture was stirred for 20 min. This solution was transferred by cannula to a 

mixture of 295·BF3 at -78 °C [prepared by addition ofBF3·OEt2 (66 ilL, 0.53 mmol) to a 

solution of295 (115 mg, 0.50 mmol) in t-BuOMe (5 mL) at 0 °C and stirring for 10 min]. 
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After stirring for 10 min, the mixture was allowed to warm slowly to -40 °C over 2 hand 

then held at that temperature for an additional hour. After cooling back to -78°C, the 

phenylisocyanate (0.14 mL, 1.25 mmol) was added and the mixture was allowed to warm 

to room temperature over 16 h. The reaction mixture was diluted with Et20 and worked-

up by addition of a saturated solution of aqueous NaHC03. The aqueous layer was 

extracted with Et20 (2 x 10 mL) and the combined organic extract was washed with H20 

(1 x 10 mL), saturated NaCl solution (1 x 10 mL), dried over anhydrous Na2S04 and 

concentrated under reduced pressure on a rotary evaporator. Flash column 

chromatography (88: 10:2 hexanes/EtOAc/Et3N) gave carboxamide (R)-297d (172 mg, 

72%) as a dark orange oil. 

(R)-297d. CSP HPLC analysis (Chiralce1 OD-H; eluent: 99: 1 hexanesli-PrOH, 1.0 

mLimin) determined an enantiomeric ratio (er) of 88: 12 (76% ee) [tR(minor) = 17.60 min, 

tR(major) = 18.80 min]. All other spectroscopic data matched (±)-297d (vide supra). 

(R)-2-Trimethylsilyl-N,N-dimethylaminoferrocene [ (R)-297 e). 

SiMe3 

Q-NMe2 

Fe 
~ 

A solution of (S,S)-327 (267 mg, 1.05 mmol) in t-BuOMe (5 mL) 

was cooled to -40 °C, treated with i-PrLi (0.42 mL, 2.49 M in pentane, 

1.05 mmol), and the mixture was stirred for 20 min. This solution was 

transferred by cannula to a mixture of 295·BF3 at -78°C [prepared by addition of 

BF3·OEt2 (66 ilL, 0.53 mmol) to a solution of 295 (115 mg, 0.50 mmol) in t-BuOMe (5 

mL) at 0 °C and stirring for 10 min]. After stirring for 10 min, the mixture was allowed to 

warm slowly to -40 °C over 2 h and then held at that temperature for an additional hour. 

After cooling back to -78 °C, C1SiMe3 (0.16 mL, 1.25 mmol) was added and the mixture 
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was allowed to wann to room temperature over 19 h. The reaction mixture was diluted 

with Et20 and worked-up by addition of saturated aqueous NaHC03. The aqueous layer 

was extracted with Et20 (1 x 10 mL) and the combined organic extract was washed with 

H20 (1 x 10 mL), brine (1 x 10 mL), dried over anhydrous Na2S04 and concentrated in 

vacuo. Flash column chromatography (silica gel, 95:5 hexanes/EtOAc) gave silane (R)-

297e (58 mg, 39%) as an orange oil: [a]o20 -128 (c 1.0, CHCh); for er detennination, see 

(R)-301; All other spectroscopic data matched (±)-297e (vide supra). 

(R)-3-Trimethylsilyl-2-dimethylamino-l-ferrocenecarboxaldehyde [(R)-301]. 

To a solution of enriched silane (R)-297d (58 mg, 0.19 mmol) in 

THF (2 mL) at 0 °C under argon was added BF3·OEt2 (25 ilL, 0.20 mmol) . 

After stirring for 10 min, the yellow solution was cooled to -78°C, treated 

with n-BuLi (0.22 mL, 1.79 M in hexanes, 0.39 mmol) and immediately wanned to -40 

°C for 1 h. The reaction mixture was then cooled back to -78°C before addition of DMF 

(37 ilL, 0.48 mmol) and allowed to wann slowly to room temperature. After addition of 

Et20, the reaction mixture was worked-up by addition of saturated aqueous NaHC03. 

The aqueous layer was extracted with Et20 (1 x 10 mL) and the combined organic extract 

was washed with H20 (1 x 10 mL), brine (1 x 10 mL), dried over anhydrous Na2S04 and 

concentrated in vacuo. Flash column chromatography (silica gel, 90:10 hexanes/EtOAc) 

gave the title compound, (R)-301 (35 mg, 56%) as a dark red oil: [a]o20 -557 (c 0.18, 

CHCh); CSP HPLC (Chiralpak AS-H, 95:5 hexanesli-PrOH, 1.0 mLimin) detennined an 

er of 88.5: 11.5 [tR(minor) = 6.36 min, tR(major) = 8.63 min]. All other spectroscopic data 

matched (±)-301 (vide supra). 
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(R)-2-Trimethylstannyl-l-dimethylaminoferrocene [(R)-297t)]. 

SnMe3 

~NMe2 
Fe 

$ 

A solution of (S,.5)-327 (102 mg, 0.40 mmol) in t-BuOMe (4 mL) 

was cooled to -40 °C, treated with i-PrLi (0.90 mL, 1.34 M, 1.20 mmol) 

and as solution of dimethylaminoethanol (DMAE, 36 mg, 0.40 mmol) in t-

BuOMe (1 mL), and the mixture was stirred for 20 min. This solution was transferred by 

cannula to a mixture of 295·BF3 at -78°C [prepared by addition of BF3·OEt2 (66 ilL, 

0.53 mmol) to a solution of 295 (115 mg, 0.50 mmo!) in t-BuOMe (5 mL) at 0 °C and 

stirring for 10 min]. After stirring for 10 min, the mixture was allowed to warm slowly to 

-40 °C over 2 h and then held at that temperature for an additional hour. After cooling 

back to -78°C, chlorotrimethylstannane (1 mL, 1.0 M solution in hexane, 1.0 mmol) was 

added and the mixture was allowed to warm to room temperature over 16 h. The reaction 

mixture was diluted with Et20 and worked-up by addition of a saturated solution of 

aqueous NaHC03. The aqueous layer was extracted with Et20 (2 x 10 mL) and the 

combined organic extract was washed with 10% aqueous potassium fluoride solution (2 x 

10 mL), H20 (1 x 10 mL) and saturated NaCI solution (1 x 10 mL), dried over anhydrous 

Na2S04 and concentrated under reduced pressure on a rotary evaporator. Gradient flash 

column chromatography (98:2 to 95:5 hexanes/EtOAc) gave, (R)-297f (83 mg, 42%) as a 

red oil. All other spectroscopic data of (R)-297f matched (±)-297f (vide supra). 

Transmetalation: The enantiomeric purity of (R)-297f was determined by 

conversion of the stannane to the aldehyde. A solution of (R)-297f (13 mg, 0.00372 

mmol) in THF (1 mL) at -40 °C was treated with methyllithium (61 ilL, 1.15 Min Et20 , 

0.00697 mmol) and stirred for 1 h. Dimethylformamide (6 ilL, 0.008 mmol) was added 
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and the mixture was left to warm slowly to room temperature. The reaction mixture was 

diluted with Et20 and worked-up by addition of a saturated solution of aqueous NaHC03. 

The aqueous layer was extracted with Et20 (2 x 10 mL) and the combined organic extract 

was washed with 10% aqueous potassium fluoride solution (2 x 10 mL), H20 (1 x 10 

mL) and \ saturated NaCI solution (1 x 10 mL), dried over anhydrous Na2S04 and 

concentrated under reduced pressure on a rotary evaporator. The mixture was filtered 

through a pad of silica gel, eluting with Et20 to give (5)-297a (8 mg, 89%) as a red oil 

CSP HPLC analysis (Chiralpak AS-H; eluent: 80:20 hexanesli-PrOH, 1.0 mUm in) 

determined an enantiomeric ratio (er) of91:9 (82% ee) [tR(minor) = 13.9 min, tR(major) = 

29.2 min]. All other spectroscopic data matched (±)-297a (vide supra). 

(R)-2-Thiophenyl-l-dimethylaminoferrocene [(R)-297h]. 

SPh A solution of (S,5)-327 (102 mg, 0.40 mmo!) in t-BuOMe (5 mL) 
Q,--NMe2 

Fe was cooled to -40 °C, treated with i-PrLi (0.53 mL, 2.25 M in pentane, 

$ 
1.20 mmol) and a solution of dimethylaminoethanol (36 mg, 0.40 mmo!) in 

t-BuOMe (1 mL), and the mixture was stirred for 20 min. This solution was transferred 

by cannula to a mixture of 295·BF3 at -78°C [prepared by addition of BF3·OEt2 (66 ilL, 

0.53 mmo!) to a solution of 295 (115 mg, 0.50 mmol) in t-BuOMe (5 mL) at 0 °C and 

stirring for 10 min]. After stirring for 10 min, the mixture was allowed to warm slowly to 

-40 °C over 2 h and then held at that temperature for an additional hour. After cooling 

back to -78°C, a solution of phenyl disulfide (273 mg, 1.25 mmol) in t-BuOMe (5 mL) 

was added over 2 min and the mixture was allowed to warm to room temperature over 16 

h. The reaction mixture was diluted with Et20 and worked-up by addition of saturated 
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aqueous NaHC03. The aqueous layer was extracted with Et20 (1 x 10 mL) and the 

combined organic extract was washed with water (1 x 10 mL), brine (1 x 10 mL), dried 

over anhydrous Na2S04 and concentrated in vacuo. Flash column chromatography (silica 

gel, 99: 1 hexanes/EtOAc) gave (R)-297h, (120 mg, 71 %) as an orange oil: [a]D20 -43.6 (c 

1.0, CHCh); for er determination, see (R)-302. All other spectroscopic data matched (±)-

297h (vide infra). 

(R)-3-Thiophenyl-2-dimethylamino-l-ferrocenecarboxaldehyde [(R)-302]. 

SPh 

~NMe2 
~O 

Fe 

$ 

To a solution of enriched sulfide (R)-297h (41 mg, 0.12 mmol) in 

THF (1 mL) at 0 °C under argon was added BF3·OEt2 (16 ilL, 0.13 mmo1). 

After stirring for 10 min, the yellow solution was cooled to -78°C, treated 

with n-BuLi (0.12 mL, 1.95 M in hexanes, 0.24 mmol) and immediately warmed to -40 

°C for 1 h. The reaction mixture was then cooled back to -78°C before addition of DMF 

(23 ilL, 0.30 mmol) and allowed to warm slowly to room temperature. The reaction 

mixture was diluted with Et20 and worked-up by addition of saturated aqueous NaHC03. 

The aqueous layer was extracted with Et20 (1 x 10 mL) and the combined organic extract 

was washed with H20 (1 x 10 mL), brine (1 x 10 mL), dried over anhydrous Na2S04 and 

concentrated in vacuo. Flash column chromatography (silica gel, 90: 10 hexanes/EtOAc) 

gave (R)-302 (14 mg, 32%) as a dark red oil: [a]D20 -175 (c 0.14, CHCh); CSP HPLC 

(Chiralpak AS-H, 90:10 hexanesli-PrOH, 1.0 mLimin) determined an er of 88:12 

[tR(minor) = 13.04 min, tR(major) = 16.85 min]. All other spectroscopic data matched 

(±)-302 (vide supra). 
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Preparation of (S)-[2-(Diphenylphosphinothioyl)ferrocenyl]-1-dimethylamine [(S)-

297i]. 

A solution of (R,R)-326 (390 mg, 1.38 mmol) in t-BuOMe (3 mL) 

was cooled to -40 DC, treated sequentially with i-PrLi (2.23 mL, 1.85 M in 

pentane, 4.13 mmol) and dimethylaminoethanol (124 mg, 1.39 mmol) in t-BuOMe (3 

mL), and stirred for 20 min at that temperature. The solution was transferred by cannula 

to a pre-formed mixture of29S·BF3 at -78°C [prepared by addition ofBF3·OEt2 (175 ilL, 

1.39 mmol) to a solution of FcNMe2 (300 mg, 1.31 mmol) in t-BuOMe (13 mL) at 0 °C 

and stirring for 10 min]. After stirring for 10 min at -78°C, the mixture was allowed to 

warm slowly to -40 °C over 2 h and then held at that temperature for an additional hour. 

After cooling back to -78°C, CIPPh2 (600 ilL, 3.27 mmol) was added and the mixture 

was allowed to warm slowly to room temperature. The reaction mixture was diluted with 

Et20 and worked-up by addition of a saturated solution of aqueous NaHC03. The 

aqueous layer was extracted with Et20 (3 x 15 mL) and the combined organic extract was 

washed with H20 (1 X 15 mL), brine (1 x 15 mL), dried over anhydrous Na2S04 and 

concentrated under reduced pressure on a rotary evaporator to afford the crude 

aminophosphine. To the crude mixture in a dry round bottom flask was added sulfur 

powder (1.59 g, 49.6 mmol) under argon. Toluene (25 mL) was added and the reaction 

mixture heated at 40°C for 2 h. The reaction mixture was gravity filtered to remove 

excess sulfur and pre-adsorbed on silica gel. Flash column chromatography (90: 10 

pentane/diethyl ether) gave (S)-297i (285 mg, 50%) as an orange foam. [a]2oD +38.5 (c 

1.0, CHCb); CSP HPLC analysis (Chiralpak OD-H; eluent: 99: 1 hexanes/i-PrOH, 1.0 

mLimin) determined a 88.5: 11.5 er (77% ee) [tR(minor) = 6.74 min, tR(major) = 7.23 
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min]; IR (KBr) Vmax 3394, 2950, 2788, 1494, 1419 em-I; 31 p NMR (121.5 MHz, CDCh) 

44.2 ppm; IH NMR (300 MHz, CDCh) 8.00-7.88 (m, 2H), 7.79-7.71 (m, 2H), 7.48-7.36 

(m, 6H), 4.33 (s, 5H), 4.29 (s, IH), 4.13 (s, IH), 3.81 (s, IH), 2.50 (s, 6H) ppm; l3C NMR 

(75 MHz, CDCh) 135.4 (d, J = 87.5 Hz), 133.5 (d, J = 86.8 Hz), 132.6 (d, J = 10.6 Hz), 

131.8 (d, j= 10.6 Hz), 131.1 (d, J= 2.3 Hz), 130.8 (d, J= 2.3 Hz), 127.9 (d, J= 12.8 

Hz), 117.2 (d,J= 9.1 Hz), 72.3 (d,J= 13.6 Hz), 69.9, 67.1 (d,J= 92.8 Hz), 65.3 (d,J= 

11.3 Hz), 61.8 (d, J = 8.3 Hz), 46.0 ppm; ElMS [m/z(%)] 445 (M+, 100), 413 (32); 

HRMS (EI) calcd for C24H24Np56Fe: 445.07161; found 445.07158. Anal. Calcd for 

C24H24NPSFe: C, 64.73; H, 5.43. Found: C, 64.79; H, 5.44. 

(R)-2-Iodo-l-dimethylaminoferrocene [(R)-297k)]. 

I A solution of (S,S)-327 (204 mg, 0.80 mmol) in t-BuOMe (5 mL) 
~NMe2 

Fe was cooled to --40 °C, treated with i-PrLi (1.79 mL, 1.34 M, 2.40 mmol) 
$ 

and as solution of dimethylaminoethanol (DMAE, 71 mg, 0.80 mmol) in t-

BuOMe (1 mL), and the mixture was stirred for 20 min. This solution was transferred by 

cannula to a mixture of 295·BF3 at -78°C [prepared by addition of BF3·OEt2 (0.13 mL, 

1.05 mmol) to a solution of 295 (229 mg, 1.00 mmol) in t-BuOMe (8 mL) at 0 °C and 

stirring for 10 min]. After stirring for 10 min, the mixture was allowed to warm slowly to 

--40 °C over 2 h and then held at that temperature for an additional hour. After cooling 

back to -78°C, a solution of 1,2-diiodoethane (705 mg, 2.5 mmol) in t-BuOMe (5 mL) 

was added over 2 min and the mixture was allowed to warm to room temperature over 16 

h. The reaction mixture was diluted with Et20 and worked-up by addition of a saturated 

solution of aqueous NaHC03. The aqueous layer was extracted with Et20 (2 x 10 mL) 
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and the combined organic phase was washed with saturated sodium thiosulfate solution 

(2 x 10 mL), water (2 x 10 mL), brine (1 x 10 mL), dried over anhydrous Na2S04 and 

concentrated under reduced pressure on a rotary evaporator. The reaction mixture was 

dissolved in 95:5 pentane/Et20 and filtered through a pad of silica gel. Concentration of 

the filtrat~ in vacuo gave (R)-297k (168 mg, 47%). Spectroscopic data of (R)-297k 

matched (±)-297k (vide supra). 

The enantiomeric purity of (R)-297k was determined by conversion of the iodide 

to the acetate. A solution of (R)-297k (11 mg, 0.031 mmol) in absolute EtOH (0.5 mL) 

was treated with Cu(OAc)2·H20 (8 mg, 0.039 mmol) and heated at reflux for 10 min to 

give a dark mixture. After cooling to room temperature, the mixture was concentrated 

under reduced pressure. The residue was dissolved in Et20 and filtered through a pipette 

of silica gel and the filtrate was concentrated to give (R)-298 (7 mg, 78%) as a yellow 

film; CSP HPLC analysis (Chiralcel OD-H; eluent: 95:5: hexanesli-PrOH, 1.0 mLimin) 

determined an enantiomeric ratio (er) of 88 : 12 (76% ee) [tR(minor) = 8A min, tR(major) = 

lOA min]. All other spectroscopic data of (R)-298 matched (±)-298 (vide supra). 

Preparation of N,N,N" ,N"-Tetramethyl-2,2 "-diamino-l,l "-biferrocene (R,R)-299 . 

A mixture of (S)-297k (96 mg, 0.27 mmol), dichloromethane (5 

mL) and purified Cu powder (860 mg, 13.5 mmol) was concentrated to 

dryness under reduced pressure. The resulting solid mass was heated 

under argon at 110°C for 17 h. After cooling to room temperature, the solid mass was 

taken up in dichloromethane (20 mL) and filtered through Celite in a sintered funnel. 

Concentration of the filtrate under reduced pressure and gradient column chromatography 
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(neutral alumina, 99: 1 to 95:5 hexanes/Et20) gave, sequentially, meso-299 (11 mg, 18%) 

as red-orange solid, and (R,R)-299 (35 mg, 56%) as a yellow-orange solid; 

(R,R)-299. mp 115-116 DC; [a]D20 -517 (c 1, CHCh). Two recrystallizations from 

isopropanol afforded (R,R)-299 with the following physical data: mp 143-145 °C 

(isopropanol); [a]D20 - 695° (c = 1 CHCh). All other spectroscopic data of (R,R)-299 

matched that of (±)-299 (vide supra). 

N-Ferrocenylsuccinimide (336). 

o A solution of succinic anhydride (378 mg, 3.78 mmol) in THF (10 

~NV mL) was added to a solution of aminoferrocene 155 (760 mg, 3.78 rumol) 
Fe 0 

~ in Et20 (25 mL) and stirred for 2 h, at which point the mixture was 

concentrated on a rotary evaporator to yield a viscous brown oil as the intermediate 

amide. To this was added a suspension of NaOAc (310 mg, 3.78 mmol) in AC20 (8 mL) 

and the resulting mixture was heated at 80°C for 1 h. The reaction mixture was poured 

into an ice cold solution of saturated aqueous NaHC03 (20 mL) and extracted with 

EtOAc (2 x 10 mL). The combined organic layers were washed with H20 (1 x 20 mL), 

brine (1 x 20 mL), dried over anhydrous Na2S04 and all volatiles were removed in vacuo. 

The residue was preadsorbed on silica and filtered through a pad of silica, eluting with 

50:50 hexanes/EtOAc. Concentration of the filtrate and recrystallization from 

hexanes/EtOAc gave ferrocenyl succinimide 336 (838 mg, 78%) as dark orange crystals; 

Rj 0.53 (75:25 EtOAc/hexanes); mp 187-189 °C (EtOAc/hexanes); IR (KBr) Vrnax 3147, 

2970, 1707, 1468, 1149 cm-I; IH NMR (300 MHz, CDCh) J 4.90 (t, 2H, J = 2.0 Hz), 

4.19 (s, 5H), 4.16 (t, 2H, J= 2.0 Hz), 2.77 (s, 4H); l3C NMR (300 MHz, CDCh) J 175.6, 
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88.7, 69.6, 65.6, 63.1, 28.2; EIMS [mlz(%)] 283 (M+, 100),218 (22); HRMS (EI) calcd 

for C14H13N0256Fe: 283.0295; found 283.0293; Anal. calcd for CI4Hl3N02Fe: C, 59.40; 

H, 4.63; Found: C, 59.31; H, 4.58. 

N-Ferrocenylpyrrolidine (337). 

~N~ A solution of BH3·THF (5 .02 mL, 0.80 M in THF, 4.00 mmol) was 

Fe 

~ 
added to a room temperature solution of succinimide 336 (284 mg, 1.00 

mmol) in THF (5 mL) and the resulting mixture heated at reflux for 2 h. The reaction 

mixture was then cooled to 0 DC, diluted with Et20 and quenched with aq. 10% NaOH 

until gas evolution ceased. The layers were separated and the organic washed with H20 

(1 x 10 mL), brine (1 x 10 mL), dried over anhydrous N a2S04 and all volatiles removed 

in vacuo. The crude was taken up in hexanes, filtered through a pad of basic alumina and 

concentrated. Recrystallization from hexanes gave N-ferrocenyl pyrrolidine 337 (232 mg, 

91%) in two crops; Rf O.63 (30:70 Et20/hexanes); mp 105-106 °C (hexanes); IR (KBr) 

Vmax 2964, 2904, 2872, 2810,1510 cm- I; IH NMR (300 MHz, acetone-d6) <54.16 (s, 5H), 

3.83 (t, 2H, J= 1.8 Hz), 3.69 (t, 2H, J= 2.1 Hz), 3.03-2.88 (m, 4H), 1.96-1.84 (m, 4H); 

l3C NMR (300 MHz, CDCh) <5 115.0, 67.9, 64.0, 56.4, 51.6, 25.8; EIMS [mlz(%)] 255 

(M+, 100); HRMS (EI) calcd for CI4H17N56Fe: 255.0710; found 255.0703; Anal. calcd for 

C I4H 17NFe: C, 65.91; H, 6.72; Found: C, 65.67; H, 6.63 . 

N-Ferrocenylpyrrolidin-2-one (338). 

n On several occasions during the preparation of 337, a more polar 
~Ny 
$ 0 reduction product was also observed (in up to 50% yield) and assigned the 

177 



structure of N-Ferrocenylpyrrolidin-2-one (338). It appeared as yellow plates after 

recrystallization from EtOAc/hexanes and had the following properties: Rf 0.35 (75:25 

EtOAc/hexanes); mp 134-135 °C (EtOAc/hexanes); IR (KBr) Vmax 2977, 2933, 2880, 

1683,1499 cm- I; IH NMR (300 MHz, CDCh) b 4.69 (t, 2H, J= 2.1 Hz), 4.14 (s, 5H), 

4.01 (t, 2H, J= 1.8 Hz), 3.65 (t, 2H, J= 6.9 Hz), 2.44 (t,2H, J= 8.1 Hz), 2.10 (q, 2H, J= 

3.9 Hz); l3C NMR (300 MHz, CDC h) b 173.5,96.2,68.6,64.6,60.1,48.5,32.2, 18.1; 

ElMS [mlz(%)] 269 (M+, 100),204 (68); HRMS (EI) calcd for CI4HISNOS6Fe: 269.0503; 

found 269.0508. 

(R)-2-Pyrrolidinyl-l-ferrocenecarboxaldehyde [(R)-339a]. 

A solution of ligand (R,R)-323 (256 mg, 0.82 mmol) in t-BuOMe 

(2.5 mL) was cooled to -40 °C, treated with i-PrLi (0.82 mL, 1.00 M, 0.82 

mmol) and stirred for 20 min at that temperature. The solution was 

transferred by cannula to a mixture of 337·BF3 at -78°C [prepared by addition of 

BF3·OEt2 (52 ilL, 0.41 mmol) to a solution of 337 (100 mg, 0.39 mmol) in t-BuOMe (4 

mL) at 0 °C and stirring for 10 min]. After stirring for 10 min, the mixture was allowed to 

warm slowly to -40 °C over 2 h and then held at that temperature for an additional hour. 

After cooling back to -78°C, DMF (75 ilL, 0.98 mmol) was added and the reaction 

mixture was allowed to warm to room temperature over 16 h. The reaction mixture was 

diluted with Et20 and worked-up by addition of saturated aqueous NaHC03. The aqueous 

layer was extracted with Et20 (1 x 10 mL) and the combined organic extract was washed 

with H20 (1 x 10 mL), brine (1 x 10 mL), dried over anhydrous Na2S04 and concentrated 

in vacuo. Flash column chromatography (silica gel, 95:5 CH2Ch/Et20) gave (R)-339a (47 
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mg, 43%) as a red oil that crystallized on standing; mp 78-80 °C (hexanes); [a]D20 -264 (c 

= 0.10 CHCh); CSP HPLC analysis (Chiralpak AS-H; eluent: 80:20 hexanesli-PrOH, 1.0 

mLimin) determined an er of 87:13 (74% ee) [tR(major) = 21.42 min, tR(minor) = 27.32 

min]; lR (KBr) Vmax 3442, 2956, 2875, 2823, 1648 em-I; IH NMR (600 MHz, acetone-d6) 

b 10.23 (s, 1H), 4.59 (s, IH), 4.37 (s, IH), 4.28 (s, 6H), 3.26 (m, 2H) 3.16 (m, 2H), 1.99-

1.96 (m, 4H); I3C NMR (150.9 MHz, acetone-d6) b 193.8, 115.7,69.34,69.29,68.3,65.9, 

61.8, 53.5, 26.1; EIMS [m/z(%)] 283 (M+, 100), 145 (53); HRMS (El) calcd for 

CI5HI7N056Fe: 283.0660; found 283.0659. 

(S)-N-(2-iodoferrocenyl)pyrrolidine [(S)-339b]. 

~N~ 
Fe I 

~ 

This procedure is best conducted in subdued light. A solution of 

(R,R)-326 (155 mg, 0.55 mmol) in t-BuOMe (6 mL) was cooled to -40 DC, 

treated with i-PrLi (0.67 mL, 2.45 M in pentane, 1.65 mmol) and a solution of 

dimethylaminoethanol (50 mg, 0.55 mmol) in t-BuOMe (1 mL), and the mixture was 

stirred for 20 min. This solution was transferred by cannula to a mixture of 337·BF3 at -

78°C [prepared by addition of BF3·OEt2 (90 !lL, 0.72 mmol) to a solution of 337 (175 

mg, 0.69 mmol) in t-BuOMe (6 mL) at 0 °C and stirring for 10 min]. After stirring for 10 

min, the mixture was allowed to warm slowly to -40 °C over 2 h and then held at that 

temperature for an additional hour. After cooling back to -78°C, a solution of 1,2-

diiodoethane (329 mg, 1.17 mmol) in t-BuOMe (5 mL) was added over 2 min and the 

mixture was allowed to warm to room temperature over 16 h. The reaction mixture was 

diluted with Et20 and worked-up by addition of saturated aqueous NaHC03. The aqueous 

layer was extracted with Et20 (1 x 10 mL) and the combined organic phase was washed 
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with saturated aqueous sodium thiosulfate (2 x 10 mL), water (2 x 10 mL), brine (1 x 10 

mL), dried over anhydrous Na2S04 and concentrated in vacuo. The reaction mixture was 

dissolved in 95:5 pentane/Et20 and filtered through a pad of silica gel. Concentration of 

the filtrate in vacuo gave (S)-339b (161 mg, 62%) as an orange oil: [a]D20 +3.0 (c 1.0, 

acetone); for er determination, the iodide was converted to the corresponding O-acetate 

(vide infra); IR (KBr, neat) Vrnax 3092, 2965, 2872, 2812, 1492, 1477, 1459 em-I; IH 

NMR (300 MHz, acetone-d6) b 4.22 (s, 5H), 4.17-4.12 (m, IH), 4.00 (t, 1H, J = 3.0 Hz), 

3.95-3.89 (m, lH), 3.38-3.24 (m, 2H), 3.17-3.06 (m, 2H), 1.98-1.77 (m, 4H); 13C NMR 

(75 MHz, acetone-d6) b 111.8, 71.9, 69.9, 63.9, 57.7, 52.0, 31.4, 24.5; ElMS [mlz(%)] 

381 (M+, 100); HRMS (El) ca1cd for C14H16N56Fel: 380.9676; found 380.9672. 

A solution of (S)-339b (77 mg, 0.20 mmol) in absolute EtOH (2.0 mL) was 

treated with Cu(OAc)2·H20 (50 mg, 0.25 mmol) and heated at reflux for 20 min to give a 

dark mixture. After cooling to room temperature, the volatiles were removed in vacuo. 

The residue was dissolved in Et20, filtered through a pad of silica gel and the filtrate was 

concentrated to give (S)-N-(2-acetoxyferrocenyl)pyrrolidine (21 mg, 33%) as a yellow-

brown oil: [a]D20 -60.6 (c 0.50, acetone); CSP HPLC analysis (Chira1cel OD-H; eluent: 

95:5: hexanesli-PrOH, 1.0 mLimin) determined an enantiomeric ratio of 89: 11 (78% ee) 

[tR(major) = 7.6 min, tR(minor) = 19.1 min]; lR (KBr, neat) Vrnax 3095, 2968, 2931, 2871, 

2834, 1757, 1520, 1205 em-I; IH NMR (300 MHz, acetone-d6) b 4.22 (s, 5H), 3.65 (t, lH, 

13 ( J = 3.0 Hz), 3.12-2.95 (m, 4H), 2.13 (s, 3H), 1.95-1.78 (m, 4H); C NMR 75 MHz, 

acetone-d6) b 170.2, 105.6, 104.6,69.3,59.4,57.7,55.0,52.0,25.7,21.4; ElMS [mlz(%)] 

313 (M+, 91), 271 (100), 145 (71); HRMS (El) calcd for C16H19N0256Fe: 313.0765; 

found 313.0760. 
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(+ )-N-Ferrocenyl-(2R,5R)-dimethylpyrrolidine (341). 

~:'J 
Fe r 

Aminoferrocene 155 (302 mg, 1.50 mmol) was dissolved in THF (8 

mL) in a round bottom flask, fitted with a condenser, under argon and 

$ cooled to 0 0c. n-BuLi (0.75 mL, 2.00 M in hexanes, 1.50 mmol) was 

added and the mixture stirred 15 minutes at that temperature. The mixture was cooled to 

-40°C and a room temperature solution of cyclic sulfate 340'20 (270 mg, 1.50 mmol) in 

THF (2 mL) was added by cannula. After warming to room temperature over 30 minutes, 

the mixture was heated at reflux for 21 h, cooled back to 0 °C and treated with an 

additional portion of n-BuLi (0.75 mL, 2.00 M in hexanes, 1.50 mmol). After warming to 

room temperature over 30 minutes, the mixture was heated at reflux for 23 h. After 

cooling to room temperature, the mixture was diluted with Et20 and quenched with a 

saturated solution of NaHC03 (10 mL). The aqueous layer was extracted with Et20 (1 x 

10 mL) and the combined organic extracts were washed with H20 (1 x 10 mL), brine (1 

x 10 mL), dried over Na2S04 and all volatiles were removed in vacuo. The crude was 

dissolved in pentane and filtered through a pad of neutral alumina, eluting with the same 

solvent, and evaporation of the filtrate afforded dimethylpyrrolidine 341 (250 mg, 59%) 

as an orange oil; Rf 0.73 (50:50 EtOAc/hexanes); [a]D20 +20.9 (c 1.00, hexanes); IR 

(KBr) Vrnax 3092, 2959, 2925, 2870, 1519 cm-'; 'H NMR (300 MHz, acetone-d6) 8 4.00 

(s, 5H), 3.86-3.79 (m, 2H), 3.72 (s, 1H), 3.63 (s, 1H), 3.55 (t, 2H, J = 6.0 Hz); 13C NMR 

(75 MHz, acetone-d6) 112.2,69.3,63.6,63.0,56.0, 55.0, 54.0, 31.7, 19.7; ElMS [mlz(%)] 

283 (M+, 100), 268 (74), 121 (43); HRMS (EI) ca1cd for C'6H2,N56Fe: 283.1023; found 

283.1024. 
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Appendix A. X-ray Crystallographic Data for Dibromide 124. 

data cm1345am 

audit creation method 
chemi ca l name systematic 

SHELXL - 97 

? 

chemica l name common 
chemica l _me l ting_ point 
chemica l _fo r mu l a_moiety 
chemica l fo r mu l a sum 

- -
' C14 H1 4 Br 2 N2 0' 

? 
? 
? 

chemica l formu l a weight 386.09 

loop 
atom type_symb o l 
atom_type_desc r iption 
atom_type_sca t _dispers i on r eal 
atom_ type scat d i sper s i on i mag 
atom_ type scat_source 

' C ' 'C ' 0 . 0033 0.00 1 6 
' Inte r nationa l Tab l es Vo l C Tab l es 
' H' ' H' 0 . 0000 0 . 0000 
' Internationa l Tables Vo l C Tab l es 
' N' ' N ' 0 . 006 1 0 . 0033 
'Inte r nationa l Tab l es Vo l C Tab l es 
' 0 ' ' 0 ' 0.0 1 06 0 . 0060 
' International Tab l es Vo l C Tab l es 
' Br' 'Br' - 0 . 290 1 2 .4 595 
' Inte r nationa l Tab l es Vo l C Tab l es 

4.2.6 . 8 

4 .2 . 6.8 

4 . 2.6.8 

4 . 2 . 6 . 8 

4 . 2 . 6 . 8 

and 

and 

and 

and 

and 

symmetry_ ce ll setting 
symmetry space group name H- M 

'Tric l inic ' 
PI 

l oop 
symmetry_equiv_ pos as xyz 

' x , y , z ' 

cel l _ l ength a 
ce l l _ l ength_b 
ce ll_ l ength_c 
cell ang l e a l pha 

7 .7 309 (3 ) 
9 . 8742 (4 ) 
1 0 . 3592(4) 
63 . 330(1) 

6. 1.1. 4 ' 

6. 1.1.4' 

6 .1.1. 4 ' 

6. 1.1.4' 

6 .1.1. 4 ' 
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cell_angIe_beta 
cell_angIe_gamma 
cell volume 
cell formula units Z 
cell_measurement_temperature 
cell measurement reflns used 
cell measurement theta min 

- - -
cell measurement theta max 

exptl_crystal_description 
expt l _ crystal_ colour 
exptl_crystal_size_ max 
exptl_crystal_size_ mid 
exptl_crystal_size_ min 
exptl_crystal _density_ meas 
exptl_crystal_density_diffrn 
expt l _crysta l _density_method 
expt l _ crystal _ F_OOO 
expt l _absorpt coefficient_mu 
exptl_absorpt_ correction type 
exptl_absorpt_ correction_T_min 
exptl_ absorpt_correction_T_ max 
expt l absorpt_ process detai l s 

expt l special details 

? 

diffrn ambient_temperature 
diffrn_radiation_wavelength 
diffrn_radiation_type 
diffrn radiation source 
diffrn radiation monochromator 
diffrn_ measurement_device type 
diffrn measurement method 
diffrn detector area resol mean 

- - -
diffrn standards number 
diffrn standards interval count 
diffrn standards interval time 
diffrn_ standards_decay_% 
diffrn reflns number 
diffrn_reflns_ av_ R_equiva l ents 
diffrn_ reflns_ av_sigmaI/netI 
diffrn reflns limit h min 
diffrn reflns l imit h max 
diffrn reflns l imit k min 
diffrn reflns l imit k max 
diffrn reflns l imit 1 min 
diffrn reflns limit 1 max 
diffrn reflns theta min 
diffrn reflns theta max 
ref Ins number total 
ref Ins number gt 

85.655( 1) 
72 . 561( 1) 
672 . 57(5) 
2 
180 (1) 
6566 
2.42 
34.97 

'Triangular need l e fragment ' 
'Colourless' 
0 . 22 
0 .14 
0 .1 2 
? 
1.906 
'not measured ' 
380 
6.019 
' Integration ' 
0 . 330 
0.628 
' Face - indexed analytical' 

180 (1) 
0.71073 
MoK\a 
'fine-focus sea l ed tube ' 
graphite 
'Bruke r APEX' 
'Omega' 
? 
? 
? 
? 
? 
7506 
0 . 0196 
0 . 0339 
-1 0 
10 
-1 3 
13 
-14 
14 
2.21 
30.03 
6709 
6187 
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reflns threshold expression 

computing_data_ col l ection 
computing_cell_ refinement 
computing_data_reduction 
computing_structure solution 
computing_ structure_refinement 
computing_mo l ecular_graphics 
computing_publ ication_material 

refine specia l details 

>2sigma(I) 

' SMART' 
'SAINT' 
'SAINT' 
'SHELXTL' 
' SHELXTL ' 
' SHELXTL ' 
'SHELXTL' 

Refinement of FA2A against ALL reflections. The weighted R-factor 
wR and goodness of fit S are based on FA2 A, conventional R-factors R 
are based on F, with F set to zero for negative FA2A. The threshold 
expression of FA2A > 2sigma(FA2A) is used on l y for ca l cu l ating R
factors (gt) etc . and is not relevant to the choice of reflections 
for refinement. R-factors based on FA2A are statistical l y about 
twice as l arge as those based on F, and R-factors based on ALL data 
wi ll be even larger. 

refine Is_structure_factor coef Fsqd 
refine_ls_matrix_type full 
refine_ l s_weighting_ scheme cal c 
refine_ls_ weighting_detai l s 
'calc w=1 / [ \sA2A(FoA2A) +( 0.0 100P)A2A +0.0000Pj where 

P=(Fo A2 A+2Fc A2 A)/3' 
atom_ sites_so l ution_ primary 
atom_sites_so l ution_ secondary 
atom_ sites_so l ution_hydrogens 
refine_l s_hydrogen_treatment 
refine I s extinction method 
refine I s extinction coef 

direct 
difmap 
geom 
mixed 
SHELXL 
0 . 0165(4) 

refine_ l s _ extinction_expression 
'Fc A*A=kFc [1+ 0 . 001xFc A2 A\ l A3 A/sin (2\q) ]A -1 /4A ' 
refine I s abs structure details 

- - - -
'Fl ack H D (1983), Acta Cryst . A39, 876 - 881 ' 
refine Is abs structure Flack -0.017(6) 
refine I s number reflns 6709 
refine_ l s _ number_parameters 
refine I s number restraints 

- - -
refine Is R factor al l 
refine_ls_R_factor_ gt 
refine Is wR factor ref 
refine_ls_wR_factor_ gt 
refine_ls_goodness of_ fit ref 
refine I s restrained S all 
refine I s shift/su max - - -
refine I s shift/su mean 

337 
o 
0.0283 
0.0259 
0.0487 
0.0484 
1. 300 
1. 300 
0.001 
0 . 000 
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loop 
atom site label 
atom_site_ type_symbol 
atom site fract x 

- - -
atom_site_fract_ y 
atom site fract z 
atom_ site_ U_ iso_or equiv 
atom_site_adp_type 
atom_site_occupancy 
atom_ site_ symmetry_multiplicity 
atom_site_calc_flag 
atom_ site_refinement_flags 
atom_ site_ disorder_assembly 
atom_ site_ disorder_group 

Br13 Br 0.6269 0.8576 0.7811 0.03394(10) Uani 1 1 d ... 
Br14 Br 0.75017(7) 0.71107(5) 0 . 54185(5) 0.03223(9) Uani 1 1 d ... 
Br28 Br 0.11757(7) 0.63552(5) 0 . 22176(5) 0.03701(10) Uani 1 1 d .. 

Br29 Br 0.24350(7) 0.25184(5) 0.46000(5) 0.03462(9) Uani 1 1 d 
N1 N 0.7847(4) 0.2496(3) 1.1655(3) 0.0262(6) Uani 1 1 d 
C2 C 0 .7 054(5) 0 . 2846(4) 1.2852(3) 0.0324(8) Uani 1 1 d 
H2 H 0.5724 0 .2 976 1.2797 0.039 Uiso 1 1 calc R . 
C3 C 0.7252(5) 0.4407(4) 1.2615(4) 0.0347(8) Uani 1 1 d 
H3X H 0.8554 0.4252 1.2790 0.042 Uiso 1 1 calc R .. 
H3Y H 0.6589 0.4689 1.3358 0.042 Uiso 1 1 calc R .. 
C 4 CO. 6587 (5) O. 5835 (4) 1. 1124 (3) o. 0280 (7) U an ill d . . . 
H4X H 0.5246 0.6252 1.1063 0.034 Uiso 1 1 ca l c R . 
H4Y H 0 .7 093 0.6690 1.1009 0 . 034 Uiso 1 1 calc R .. 
C4A C 0 .71 68(4) 0.5362(4) 0.9925(3) 0.0225(7) Uani 1 1 d .. . 
C5 C 0 . 7137(4) 0 . 6349(3) 0.8431(3) 0.0232(7) Uani 1 1 d .. . 
C6 C 0 .7 629(4) 0.5734(4) 0.7430(3) 0.0238(7) Uani 1 1 d .. . 
C6A C 0 . 8165(4) 0 .41 00(4) 0.7841(3) 0.0240(7) Uani 1 1 d .. . 
C7 C 0.8608(5) 0.3246(4) 0 . 6911(3) 0.0342(8) Uani 1 1 d .. . 
H7X H 0.9357 0 . 3749 0.6127 0.041 Uiso 1 1 ca l c R . 
H7Y H 0.7469 0.3338 0.6458 0.041 Uiso 1 1 calc R . 
C8 C 0.9638(6) 0.1494(4) 0.7805(4) 0.0417(10) Uani 1 1 d ... 
H8X H 0.9691 0.0935 0.7207 0.050 Uiso 1 1 calc R . 
H8Y H 1.0902 0.1409 0.8023 0 . 050 Uiso 1 1 calc R . 
C9 C 0.8834(6) 0 . 0641(4) 0.9226(4) 0.0422(10) Uani 1 1 d ... 
H9X H 0.7656 0 . 0544 0.9028 0.051 Uiso 1 1 calc R . 
H9Y H 0.9667 - 0.0439 0.9792 0 . 051 Uiso 1 1 calc R .. 
N10 N 0.8576(4) 0.1554(3) 1.0040(3) 0.0299(7) Uani 1 1 d .. . 
C10A C 0.8213(4) 0.3182(4) 0.9309(3) 0.0254(7) Uani 1 1 d .. . 
C10B C 0.7748(4) 0.3771(4) 1.0302(3) 0.0230(7) Uani 1 1 d .. . 
C11 C 0.8269(5) 0.1107(4) 1.1495(3) 0.0308(8) Uani 1 1 d 
C12 C 0.7842(6) 0.1509(4) 1.4312(3) 0.0398(9) Uani 1 1 d ... 
H12X H 0.7660 0.0529 1.4406 0.060 Uiso 1 1 calc R 
H12Y H 0.7235 0.1765 1.5074 0.060 Uiso 1 1 calc R . 
H12Z H 0.9146 0.1362 1.4406 0.060 Uiso 1 1 calc R 
015 0 0.8356(4) - 0.0231(3) 1.2408(2) 0.0462(7) Uani 1 1 d 
N16 N 0 . 3019(4) 0.4113(3) -0.1647(3) 0.0265(6) Uani 1 1 d A 
C17 C 0.3100(5) 0.5640(4) - 0.2842(3) 0.0351(9) Uani 1 1 d 
H17 H 0.4344 0.5721 -0.2770 0.042 Uiso 1 1 calc R 
C18 C 0.1771(5) 0.6957(4) -0.2594 (3) 0 . 0352(8) Uani 1 1 d 
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H18X H 0.0531 0.6980 -0.2803 0.042 Uiso 1 1 calc R .. 
H18Y H 0.195 1 0 .7 973 - 0.3318 0.042 Uiso 1 1 calc R .. 
e19 e 0.1832(5) 0.6911(4) -0.1098(3) 0.0305(8) Uani lId ... 
H19X H 0.2839 0.7300 -0.1013 0.037 Uiso 1 1 calc R .. 
H19Y H 0.0680 0.7621 -0.0987 0.037 Uiso 1 1 calc R .. 
e19A e 0.2108(4) 0.5239(4) 0 . 0086(3) 0.0229(7) Uani lId. A . 
e20 e 0.1949(4) 0.4752(4) 0.1577(3) 0.0242(7) Uani lId ... 
e21 e 0.2331(4) 0.3137(4) 0.2581(3) 0.0247(7) Uani lId. A . 
e21A e 0.2825(5) 0.1944(4) 0.2139(3) 0.0280(7) Uani lId ... 
e22X e 0.3069(11) 0.0114(9) 0.3028(9) 0.0241(10) Uiso 0.46 1 d PAl 
H22W H 0.3643 -0.0286 0.4004 0.029 Uiso 0.46 1 calc PR A 1 
H22X H 0.1867 -0.0075 0.3142 0.029 Uiso 0 .4 6 1 calc PR A 1 
e23x e 0.4278(11) -0.0779(9) 0.2221(8) 0.0288(11) Uiso 0 .4 6 1 d P A 
1 
H23W H 0 . 5530 -0.0726 0.2264 0.035 Uiso 0.46 1 calc PR A 1 
H23X 
e24X 

H 
e 

0.4322 -0.1911 0.2743 0.035 Uiso 0.46 1 calc PR A 1 
0.3661(11) - 0.0153(9) 0 . 0637(8) 0.0274(10) Uiso 0 .4 6 1 d P A 

1 
H24W 
H24X 

H 
H 

0.4553 -0.0719 0.0173 0.033 Uiso 0 .4 6 1 calc PR A 1 
0.2465 -0.0297 0.0561 0.033 Uiso 0.46 1 calc PR A 1 

e22Y e 0.3544(9) 0.0205(8) 0.3070(7) 0.0241(10) Uiso 0.54 1 d P A 2 
H22Y H 0.2851 -0.0119 0.3946 0.029 Uiso 0.54 1 calc PR A 2 
H22Z H 0.4839 - 0.0086 0.3378 0.029 Uiso 0.54 1 calc PR A 2 

e23ye 0.3331(9) -0.0642(7) 0.2147(7) 0 . 0288(11) Uiso 0.54 1 d P A 2 
H23Y H 0.2026 - 0.0380 0.1886 0.035 Uiso 0.54 1 calc PR A 2 
H23Z H 0.3810 -0.1807 0.2733 0.035 Uiso 0.54 1 calc PR A 2 
e24ye 0.4376(9) -0.0117(8) 0.0726(7) 0.0274(10) Uiso 0.54 1 d P A 2 
H24Y H 0.5685 - 0.0356 0.0960 0.033 Uiso 0.54 1 calc PR A 2 
H24Z H 0.4247 - 0.0668 0.0159 0.033 Uiso 0.54 1 calc PR A 2 
N25 N 0.3528(4) 0.1584(3) -0.0074(3) 0 . 0346(7) Uani lId. 
e25A e 0.2950(5) 0 .2466(4) 0.0681(3) 0.0274(7) Uani lId. A . 
e25B e 0.2646(5) 0.4035(4) -0.0297(3) 0.0238(7) Uani lId ... 
e26 e 0.3660(5) 0.2579(4) - 0.1524(3) 0.0342(8) Uani lId. A . 
e27 e 0.2822(6) 0.5753(4) -0.4298(3) 0.0424(10) Uani lId ... 
H27X H 0.3808 0.4942 -0.4434 0.064 Uiso 1 1 calc R 
H27Y H 0.2820 0.6808 -0.5046 0.064 Uiso 1 1 calc R . 
H27Z H 0.1656 0.5582 - 0.4373 0.064 Uiso 1 1 calc R . 
030 0 0.4244(4) 0.2149(3) -0.2449(3) 0.0502(8) Uani lId ... 

loop 
atom site aniso labe l - -
atom site aniso U 11 

- -
atom site aniso U 22 

- - - -
atom site aniso U 33 

- -
atom site aniso U 23 - - - -
atom site aniso U 13 - -
atom site aniso U 12 - - - - -

Br13 0.0469(2) 0.01806(16) 0.03078(19) -0.00793(14) 0.00471(16) -
0.00666(15) 
Br14 0.0398(2) 0.02682(18) 0.01948(16) -0.00377(13) 0.00053(14) -
0.00576(15) 
Br28 0.0590(3) 0 . 0310(2) 0.02901(19) -0.01949(16) 0.00837(l7) -
0.01589(18) 
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Br29 0.0428(2) 0.0379(2) 0.01841(16) -0.01231(14) 0.00543(14) -
0.00698(16) 
Nl 0.0383(17) 0.0190(13) 0.0183(13) -0.0060(10) 0.0058(12) -
0.0091(12) 
C2 0.039(2) 0.0341(19) 0.0245(17) -0.0131(14) 0.0085(15) -0.0129(16) 
C3 0.050(2) 0.0299(18) 0.0245(17) -0.0144(15) 0.0048(16) -0.0090(17) 
C4 0.038(2) 0.0235(16) 0.0240(17) -0.0127(13) 0.0064(15) -0.0088(14) 
C4A 0.0244(17) 0.0256(16) 0.0215(16) -0.0142(13) 0.0043(13) -
0.0079(13) 
C5 0.0264(17) 0.0143(14) 0.0253(16) -0.0077(12) 0.0023(13) -
0.0032(12) 
C6 0.0253(17) 0.0218(15) 0.0190(14) -0.0047(12) 0.0002(13) -
0.0066(13) 
C 6A o. 0239 (1 7) O. 0244 (16) o. 0205 (15) - 0 . 0080 (12) O. 0008 (13) -
0.0059(13) 
C7 0.048(2) 0.0289(18) 0.0241(17) -0.0127(14) 0.0040(15) -0.0084(16) 
C8 0.062(3) 0.032(2) 0.0297(19) -0.0190(16) 0.0049(18) - 0 .0045(18) 
C9 0.072(3) 0.0248(18) 0.0325(19) -0.0177(15) 0.0051(19) -0.0100(18) 
NI0 0.0473(19) 0.0175(13) 0.0234(13) -0.0098(11) 0.0045(13) -
0.0073(13) 
CI0A 0.0309(18) 0.0193(15) 0.0223(15) -0.0087(12) 0.0055(13) -
0.0045(13) 
CI0B 0.0266(17) 0.0234(16) 0.0192(15) -0.0095(13) 0.0044(13) -
0.0084(14) 
Cll 0.044(2) 0.0221(16) 0.0248(16) -0.0106(13) 0.0084(15) -
0.0095(15) 
C12 0.063(3) 0.0330(19) 0.0240(17) -0.0098(15) 0.0035(17) -
0.0197(19) 
0150.084(2) 0.0221(12) 0.0283(13) -0.0070(10) 0.0080(13) -
0.0186(13) 
N16 0.0378(17) 0.0233(13) 0.0175(13) -0.0097(11) 0.0049(12) -
0.0074(12) 
C17 0.049(2) 0.0271(18) 0.0227(17) -0.0070(14) 0.0053(16) -
0.0104 (16) 
C18 0.055(2) 0.0226(17) 0.0244(17) -0.0065(13) 0.0016(16) -
0.0119(17) 
C19 0.047(2) 0.0231(16) 0.0241(17) -0.0115(14) 0.0042(16) -
0.0134(15) 
C 19A O. 0268 ( 18 ) O. 0225 ( 16) O. 0193 (15) - 0 . 0069 (13) O. 0024 (13) -
0.0113(14) 
C20 0.0297(18) 0.0259(16) 0.0234(15) -0.0162(13) 0.0026(13) -
0.0090(14) 
C21 0.0281(18) 0.0304(17) 0.0159(14) -0. 0 111(13) 0.0038(13) -
0.0085(14) 
C21A 0.0341(19) 0.0261(16) 0.0194(15) -0.0086(13) 0.0029(13) -
0.0058(14) 
N25 0.056(2) 0.0191(13) 0.0222(14) -0.0099(11) 0.0053(13) -
0.0023(14) 
C25A 0.036(2) 0.0215(15) 0.0225(15) -0. 0 109(13) 0.0033(14) -
0.0045(14) 
C25B 0.0295(18) 0.0223(16) 0.0150(14) -0.0059(12) 0.0011(13) -
0.0053(13) 
C26 0.047(2) 0.0266(17) 0.0194(15) -0.0097(13) -0.0009(15) 
0.0012(16) 
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C27 0.068(3) 0 . 0324(19) 0.0222(17) -0.0088(15) 0.0087(18) -
0.0162(19) 
030 0.085(2) 0.0305(14) 0.0249(13) -0.0149(11) 0.0086(14) 0.0001(14) 

geom_ special details 

All esds (except the esd in the dihedral angle between two 1.s. 
planes) are estimated using the full covariance matrix. The cell 
esds are taken into account individually in the estimation of esds 
in distances, angles and torsion angles; correlations between esds 
in cell parameters are only used when they are defined by crystal 
symmetry. An approximate (isotropic) treatment of cell esds is used 
for estimating esds involving l.s. planes. 

loop 
geom_bond atom site label 1 
geom_ bond_ atom_site label 2 
geom_bond_distance 
geom_bond_ site_symmetry_2 
geom_bond_publ_ flag 

Br13 C5 1.900(3) . ? 
Br14 C6 1.899(3) . ? 
Br28 C20 1.902(3) . ? 
Br29 C21 1.898(3) . ? 
N1 C10B 1.389(4) . ? 
N1 C11 1.394(4) . ? 
N1 C2 1.475(4) . ? 
C2 C3 1.502(5) . ? 
C2 C12 1.505(5) . ? 
C3 C4 1.539(4) . ? 
C4 C4A 1.509(4) ? 
C4A C10B 1.369(4) . ? 
C4A C5 1.408(4) . ? 
C5 C6 1.398(4) . ? 
C 6 C 6A 1. 4 02 (4) . ? 
C6A C10A 1.374(4) . ? 
C6A C7 1.505(4) . ? 
C7 C8 1.527(5) . ? 
C8 C9 1.524(5) . ? 
C9 N10 1.454(4) . ? 
N10 C10A 1.380(4) ? 
N10 C11 1.391(4) . ? 
C10A C10B 1.371(4) . ? 
C11 015 1.216(4) . ? 
N16 C25B 1.379(4) . ? 
N16 C26 1.393(4) ? 
N16 C17 1.476(4) ? 
C17 C27 1.489(5) ? 
C17 C18 1.507(5) ? 
C18 C19 1.534(4) ? 
C19 C19A 1.512(4) . ? 
C19A C25B 1.359(4) . ? 
C19A C20 1.405(4) . ? 
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C20 C21 1.409(4) . ? 
C21 C21A 1.390(4) . ? 
C21A C25A 1.365(4) ? 
C21A C22Y 1.487(7) . ? 
C21A C22X 1.574 (8) . ? 
C22X C23X 1.548(11) ? 
C23X C24X 1.528(10) . ? 
C24X N25 1.505(8) . ? 
C22Y C23Y 1.570(9) . ? 
C23Y C24Y 1.573(9) . ? 
C24Y N25 1.452(7) . ? 
N25 C25A 1.377 (4) . ? 
N25 C26 1.394 (4) . ? 
C25A C25B 1.375(4) ? 
C26 030 1.220(4) . ? 

loop 
geom angle_atom_site_label_1 
geom_angle_atom_site_label_2 
geom_angle atom_site label_3 
geom_angle 
geom_angle_site_symmetry_1 
geom_angle_site_symmetry_3 
geom_angle_publ_flag 

C10B N1 C11 109.0(2) .. ? 
C10B N1 C2 117.8(3) .. ? 
C11 N1 C2 130.8(3) .. ? 
N1 C2 C3 108.7(3) .. ? 
N1 C2 C12 112.2 (3) .. ? 
C3 C2 C12 113.3(3) .. ? 
C2 C3 C4 117.6(3) .. ? 
C4A C4 C3 110.8(3). ? 
C10B C4A C5 114.4(3) ? 
C10B C4A C4 117.1(3) ? 
C5 C4A C4 128.5(3). ? 
C6 C5 C4A 122.0(3). ? 
C6 C5 Br13 120.9(2) .. ? 
C4A C5 Br13 117.0(2) .. ? 
C 5 C 6 C 6A 122. 4 (3) . . ? 
C5 C6 Br14 120.6(2) .. ? 
C6A C6 Br14 116.9(2) ? 
C10A C6A C6 113.5(3) ? 
C10A C6A C7 117.0( 3 ) ? 
C 6 C 6A C 7 12 9 . 4 (3). ? 
C6A C7 C8 111.0 (3). ? 
C9 C8 C7 115.4(3) .. ? 
N10 C9 C8 108.5(3) .. ? 
C10A N10 C11 109.6(3) .. ? 
C10A N10 C9 119.6(3) .. ? 
C11 N10 C9 129.5(3) .. ? 
C10B C10A C6A 124.5(3) .. ? 
C10BC10AN10 107.8(3) .. ? 
C6AC10AN10 127.5(3) .. ? 
C4A C10B C10A 123.1 (3) .. ? 

201 



C4A C10B N1 128.9(3) .. ? 
C10AC10BN1107.8(3) .. ? 
015 C11 N10 125.8(3) .. ? 
015 C11 N1 128.6(3). ? 
N10 C11 N1 105.6(2). ? 
C25B N16 C26 109.3(2) ? 
C25B N16 C17 118.6(3) ? 
C26 N16 C17 130.4(3) ? 
N16 C17 C27 112.9(3) ? 
N16 C17 C18 108.0(3) ? 
C27 C17 C18 113.5(3) ? 
C17 C18 C19 118.5(3) ? 
C19A C19 C18 110.6(3) .. ? 
C25B C19A C20 114.6(3) .. ? 
C25B C19A C19 117.7 (3) .. ? 
C20 C19A C19 127.6 (3) .. ? 
C19A C20 C21 121.9(3) .. ? 
C19A C20 Br28 117.7(2) .. ? 
C21 C20 Br28 120.3(2) .. ? 
C21A C21 C20 121.6(3) .. ? 
C21A C21 Br29 117.7 (2) .. ? 
C20 C21 Br29 120.3(2) .. ? 
C25AC21AC21114.6(3) .. ? 
C25A C21A C22Y 117.0 (4) .. ? 
C21 C21A C22Y 127.3(4) .. ? 
C25A C21A C22X 114.9(4) .. ? 
C21 C21A C22X 130.2(4) .. ? 
C22Y C21A C22X 15.2(4) .. ? 
C23X C22X C21A 109.4 (5) .. ? 
C24X C23X C22X 115.3(7) .. ? 
N25 C24X C23X 105.8(5) .. ? 
C21AC22YC23Y 107.2(5) .. ? 
C22Y C23Y C24Y 111.4(5) .. ? 
N25 C24Y C23Y 104.9(5) .. ? 
C25A N25 C26 109.9(3) .. ? 
C25A N25 C24Y 118.9(3) .. ? 
C26 N25 C24Y 128.4 (3) .. ? 
C25A N25 C24X 120.1(4) .. ? 
C26 N25 C24X 129.3(4). ? 
C24Y N25 C24X 22.6(4) .. ? 
C21A C25A C25B 124.0 (3) .. ? 
C21AC25AN25128.6(3) .. ? 
C25BC25AN25107.2(3) .. ? 
C19A C25B C25A 123.1(3) .. ? 
C19A C25B N16 128.7(3) ? 
C25A C25B N16 108.2(3) ? 
030 C26 N16 129.1(3) ? 
030 C26 N25 125.7(3) ? 
N16 C26 N25 105.2(3) ? 

diffrn measured fraction theta max 
diffrn reflns theta full 
diffrn measured fraction theta full 
refine diff_ density_max 0.573 

0.982 
30.03 
0.982 

202 



refine_ diff_ densitY_ IDin 
refine diff density rIDS 

- 0.372 
0.071 
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Appendix B. X-ray Crystallographic Data for Pd Complex 311a. 

~eC I ' 
: : (2' 

Fel~ 

CI8 

data costa3 

audit creation method SHELXL- 97 

chemical name systematic 

? 

chemica l name common ? 

? 

chemica l formula_moiety ' C24 H24 C12 Fe N P Pd' 

chemica l formula sum 

' C24 H24 C12 Fe N P Pd' 

chemical formula weight 590 . 56 

l oop 

atom type symbo l 

atom_type description 

atom_type scat dispersion real 
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atom_type scat dispersion imag 

atom_type scat source 

'C' 'C' 0.0033 0.0016 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

'H' 'H' 0.0000 0.0000 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

'N' 'N' 0.0061 0.0033 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

, P' 'P' 0.1023 0.0942 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

'CI' 'CI' 0.1484 0.1585 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

'Fe' 'Fe' 0.3463 0.8444 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

'Pd' 'Pd' -0.9988 1.0072 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

symmetry_cell setting 

symmetry_space_group name H-M 
symmetry_ space group name Hall 

loop 

'x, y, z' 

'-x+1/2, -y, z+1/2' 

'-x, y+1/2, -z+1/2' 

'x+1/2, -y+1/2, -z' 

Orthorhombic 

Pbca 
'-P 2ac 2ab' 
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'-x , - y , -z' 

' x -1 /2 , y , -z-1/2 ' 

' x , - y-1 /2 , z -1 /2 ' 

'-x -1 /2 , y -1 /2 , z ' 

cell l ength a 

cell l ength_ b 

cell l ength c 

cell angl e a l pha 

cell angl e beta 

ce ll ang l e gamma 

cell vo l ume 

ce ll f o rmu l a uni t s Z 

cell_measu r ement temp eratu r e 

cell meas urement r e fl ns used 

cell measu r ement theta mi n 

ce ll measu r ement theta max 

expt l crysta l descript i on 

exp t l crysta l co l ou r 

expt l c r ysta l size_max 

expt l c r ysta l size_ mid 

expt l c r ysta l size_mi n 

expt l c r ysta l _ density_meas 

expt l c r ysta l _ density_d i ff rn 

expt l c r ysta l density_ method 

expt l crysta l F OOD 

17. 378 (3 ) 

14.1 396 (1 8 ) 

1 8 . 736 (3 ) 

90 . 00 

90 . 00 

90 . 00 

4 603 . 8 (11) 

8 

2 96 (2 ) 

989 7 

2 .1 5 

30.52 

b l oc k 

o r ange 

0.2 4 

0.22 

0. 1 8 

' not measu r ed ' 

1. 70 4 

' not measu r ed ' 

2368 
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expt l absorpt coef f icient_ mu 

expt l absorpt correction type 

expt l absorpt correction_T_min 

expt l absorpt correction_T_max 

expt l absorpt_process details 

expt l specia l detai l s 

? 

1.725 

numerical 

0 . 6823 

0 . 7465 

SADABS 

diffrn_ ambient temperature 296(2) 

diffrn_ radiation wavelength 0.71073 

diffrn radiation_ type MoK\a 

diffrn radiation source 'f ine-focus sealed tube' 

diffrn radiation monochromator graphite 

diffrn_measurement device type ' CCD area detector' 

diffrn measurement method 'phi and omega scans' 

diffrn detector area resol mean ? 

diffrn standards number ? 

diffrn standards interva l count ? 

diffrn standards interval time ? 

diffrn standards decay_% ? 

diffrn reflns number 61593 

diffrn reflns aV_R_equiva l ents 0.0398 

diffrn reflns av_ sigmaI/netI 0.0197 

diffrn reflns limit h min - 23 
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diffrn reflns limit h max 19 

diffrn reflns limit k min -14 

diffrn reflns limit k max 19 

diffrn reflns limit 1 min -25 

diffrn reflns limit 1 max 25 

diffrn reflns theta min 2.15 

diffrn reflns theta max 29.00 

reflns number total 6126 

reflns number gt 5104 

reflns threshold expression >2sigma(I) 

computing_ data collection 'Bruker SMART' 

computing_cell refinement 'Bruker SMART' 

computing data reduction 'Bruker SAINT' 

computing structure solution 'SHELXS-97 (Sheldrick, 1990)' 

computing structure refinement 'SHELXL-97 (Sheldrick, 1997)' 

computing_molecular graphics 'Bruker SHELXTL' 

computing_publication_material 'Bruker SHELXTL' 

refine_special details 

Refinement of FA2A against ALL reflections. The weighted R-factor 
wR and goodness of fit S are based on FA2A, conventional R-factors R 
are based on F, with F set to zero for negative FA2A. The threshold 
expression of FA2A > 2sigma(FA2A) is used only for calculating R
factors (gt) etc. and is not relevant to the choice of reflections 
for refinement. R-factors based on FA2A are statistically about 
twice as large as those based on F, and R-factors based on ALL data 
will be even larger. 
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refine ls structure factor coef Fsqd 

refine ls_matrix type full 

refine ls weighting_ scheme calc 

refine ls_weighting details 

'calc w=1/[\sA2A(FoA2A)+(0.0453P)A2A+4.3915P] where 
P=(Fo A2 A+2Fc A2 A)/3' 

atom sites solution_ primary direct 

atom_sites solution secondary difmap 

atom_ sites solution hydrogens geom 

refine ls_ hydrogen treatment constr 

refine ls extinction method none 

refine ls extinction coef ? 

refine ls number reflns 6126 

refine ls number_parameters 271 

refine ls number restraints o 

refine ls R factor all 0.0411 

0.0324 

refine ls wR factor ref 0.0888 

0.0831 

refine ls goodness of fit ref 1.055 

refine ls restrained S all 1.055 

refine ls shift/su max 0.001 

refine ls shift/su mean 0.000 

loop 

atom site label 
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atom_ site type symbol 

atom site fract x 

atom_site fract y 

atom site fract z 

atom site U iso or equiv 

atom_site_ adp type 

atom_site occupancy 

atom_ site symmetry_multiplicity 

atom_site calc flag 

atom site refinement flags 

atom_site disorder assembly 

atom_ site disorder group 

Pdl Pd 0.006389(10) 0.254722(12) 0.346925(10) 0.02407(6) Uani lId 

Fel Fe -0.223663(19) 0.30664(2) 0.386286(19) 0.02496(9) Uani lId. 

Cll Cl 0.08702(4) 0.31026(5) 0.26013(4) 0.03760(15) Uani lId 

C12 Cl 0.10650(4) 0.26315(5) 0.43328(4) 0.04278(17) Uani lId 

PI P -0.08581(3) 0.25004(4) 0.26510(3) 0.02198(12) Uani lId ... 

Nl N -0.07195(12) 0.18816(15) 0.41890(11) 0.0292(4) Uani lId 

Cl C -0.16637(13) 0.21721(16) 0.31890(13) 0.0237(4) Uani lId 

C2 C -0.15094(14) 0.19456(16) 0.39204(13) 0.0267(5) Uani lId 

C3 C -0.22136(15) 0.17132(18) 0.42634(16) 0.0340(6) Uani lId 

H3A H -0.2280 0.1528 0.4764 0.041 Uiso 1 1 calc R . 

C4 C -0.28 0 10(15) 0.18027(18) 0.37462(17) 0.0350(6) Uani lId ... 

H4A H -0.3351 0.1703 0.3836 0.042 Uiso 1 1 calc R . 

C5 C -0.24805(14) 0.20914(17) 0.30820(15) 0.0294(5) Uani lId ... 

H5A H -0.2761 0.2207 0.2637 0.035 Uiso 1 1 calc R . 
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C1 ' C - 0.2310(2) 0 .442 8(2) 0.3485(2) 0.0542(10) Uani 1 1 d . . . 

H1'A H - 0.2219 0.4628 0 . 2992 0 . 065 Uiso 1 1 calc R . 

C2' C -0.1767(2) 0.4377(2) 0.4012(3) 0.0602(11) Uani 1 1 d ... 

H2 ' A H - 0 .1 222 0.4538 0 . 3961 0 . 072 Uiso 1 1 calc R . 

C3 ' C - 0.2125(2) 0 .4 075(2) 0 .4 644(2) 0.0639(11) Uani 1 1 d ... 

H3'A H -0.1878 0.3992 0 .51 09 0 . 077 Uiso 1 1 calc R . 

C4 ' C - 0 . 2913(2) 0.3923(2) 0.44845( 1 9) 0 . 0499(9) Uani 1 1 d ... 

H4'A H -0.3314 0.3720 0.4819 0.060 Uiso 1 1 calc R 

C5' C - 0.30122(19) 0 .41 55(2) 0 . 37689(19) 0.0473(8) Uani 1 1 d ... 

H5 ' A H - 0 . 3500 0.4128 0.3507 0.057 Uiso 1 1 calc R 

C6 C -0.11 006(14) 0 . 35730(17) 0.21677(13) 0 .0 272(5) Uani 1 1 d 

C7 C - 0 . 07686(15) 0.44371(18) 0.23497(15) 0.0339(6) Uani 11 d 

H7A H - 0.0379 0.4461 0 . 2689 0.041 Uiso 1 1 calc R 

C8 C - 0 .1 0206( 1 9) 0 .5 264(2) 0 . 20228(18) 0 . 0450(7) Uani 1 1 d ... 

H8A H - 0.0804 0 . 584 1 0.2150 0 . 054 Uiso 1 1 calc R 

C9 C - 0 .1 592(2) 0 . 5232(2) 0 .1 5102(17) 0.0492(8) Uani 1 1 d ... 

H9A H -0.1757 0 . 5788 0 .1 293 0.059 Uiso 1 1 calc R .. 

C10 C - 0 .1 9188(19) 0 .4 379(2) 0 .1 3183(16) 0 . 0458(7) Uani 1 1 d ... 

H10A H - 0 . 230 1 0.4360 0.097 1 0 . 055 Uiso 1 1 calc R 

C11 C -0.16752(17) 0.3540(2) 0 .1 6470(14) 0.0358(6) Uani 1 1 d ... 

H11A H - 0.1895 0 . 2965 0 .151 9 0 . 043 Uiso 1 1 calc R 

C12 C -0.07348(14) 0.15933(16) 0 .1 973 1(1 3) 0 . 0259(5) Uani 1 1 d .. 

C13 C - 0.11928(16) 0 . 078 12(1 8) 0.19619(14) 0.0328(5) Uani lId .. 

H13A H - 0 .1 582 0.0704 0 . 2297 0.039 Uiso 1 1 ca l c R . 

C14 C - 0 .1 0652(17) 0.00863(18) 0.14464(15) 0.0367(6) Uani 1 1 d .. 
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H14A H -0.1377 -0.0448 0.1434 0.044 Uiso 1 1 calc R .. 

C15 C -0.04807(18) 0.0189(2) 0.09566(14) 0.0371(6) Uani 1 1 d ... 

H15A H -0.0394 -0.0282 0.0620 0.045 Uiso 1 1 calc R .. 

C16 C -0.00217(16) 0.0986(2) 0.09616(15) 0.0371(6) Uani 11 d ... 

H16A H 0.0372 0.1051 0.0629 0.044 Uiso 1 1 calc R .. 

C17 C -0.01506(16) 0.1697(2) 0.14681(14) 0.0327(5) Uani 1 1 d ... 

H17A H 0.0153 0.2238 0.1468 0.039 Uiso 1 1 calc R .. 

C18 C -0.04941(18) 0.0857(2) 0.42006(19) 0.0447(7) Uani 1 1 d ... 

H18A H -0.0828 0.0518 0.4519 0.067 Uiso 1 1 calc R 

H18B H 0.0028 0.0800 0.4362 0.067 Uiso 1 1 calc R .. 

H18C H -0.0538 0.0599 0.3729 0.067 Uiso 1 1 calc R .. 

C19 C -0.0675(2) 0.2261(3) 0.49333(16) 0.0484(8) Uani 1 1 d ... 

H19A H -0.1039 0.1936 0.5230 0.073 Uiso 1 1 calc R 

H19B H -0.0792 0.2925 0.4930 0.073 Uiso 1 1 calc R 

H19C H -0.0165 0.2167 0.5118 0.073 Uiso 1 1 calc R 

loop 

atom site aniso label 

atom site aniso U 11 

atom site aniso U 22 

atom site aniso U 33 

atom site aniso U 23 

atom site aniso U 13 

atom site aniso U 12 

Pd1 0.02144(10) 0.02180(10) 0.02897(12) -0.00220(7) -0.00238(6) 
0.00202(6) 

Fe1 0.02444(17) 0.02114(16) 0.02929(19) -0.00300(13) 0.00521(13) -
0.00197(12) 
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Cll 0 . 0274(3) 0 . 0412(3) 0 . 0443(4) - 0.0063(3) 0.0099(3) -0. 0038(3) 

C12 0.0362(3) 0.0394(3) 0 . 0527(4) 0.0025(3) - 0 . 0 1 96(3) 0.00 11( 3) 

P1 0 . 0222(3) 0 . 0210(3) 0.0228(3) - 0.0019(2) 0 . 0005(2) 0 . 0017(2) 

N1 0 . 0316(11) 0.0284(10) 0 . 0276(11) 0 . 0042(8) - 0.0030(9) 0 . 0024(8) 

C1 0 . 0227( 1 0) 0 . 0209(10) 0 . 0273( 1 2) - 0 . 0025(9) 0.0001(9) 0 . 0002(8) 

C2 0.0284(11) 0 . 0224( 1 0) 0 . 0292( 1 3) 0 . 00 11( 9) 0 . 0021(9) -0.0021(9) 

C3 0.0368( 14) 0.0272(12) 0 . 0379(15) 0 . 0062( 11) 0.0078(11) -
0.0030( 1 0) 

C4 0.0272(12) 0 . 0235(11) 0 . 0543(17) - 0.0026( 11) 0 . 0058(12) -
0.0059(9) 

C5 0 . 0233( 11) 0.0238( 1 0) 0.0413(15) - 0 . 0054( 1 0) - 0.0020(10) -
0 . 0004 (9) 

C1' 0 . 08 1( 3) 0 . 0244(13) 0 . 057(2) 0 . 00 1 9(13) 0 . 03 1 3(19) 0 . 0129(15) 

C2 ' 0.0395(17) 0.0295( 14) 0.112(3) - 0.0248(18) 0.0 1 90(19) -
0.0057(13) 

C3 ' 0.088(3) 0.0452( 1 8) 0.058(2) - 0 . 0300(17) - 0.031(2) 0 . 0263(19) 

C4' 0 . 061(2) 0 . 03 1 2( 14) 0.058(2) - 0 . 0068(13) 0.0342(17) 0.0020(13) 

C5 ' 0.0448( 1 6) 0.03 4 0(14) 0 . 063(2) - 0 . 0187( 14) - 0 . 0083(15) 
0 . 0 1 39(13) 

C6 0.0307(12) 0 . 0262( 11) 0 . 0247( 1 2) 0 . 00 1 9(9) 0 . 0063(9) 0.0048(9) 

C7 0 . 0338(13) 0 . 0284( 1 2) 0 . 0395( 1 5) 0.005 1(11) 0 . 0058(11) -
0.00 1 0(10) 

C8 0.0523(18) 0.028 1(13) 0.0545(19) 0.0108( 1 3) 0.0 1 25( 1 5) 0.0000( 1 2) 

C9 0 . 064(2) 0 . 0385(16) 0 .044 9(18) 0.015'8(13) 0 . 0 114(1 5) 0.0171(15) 

C10 0.0532( 1 8) 0 . 0550( 1 8) 0.029 1(1 5) 0 . 0054(13) -0.0005(13) 
0 . 0221 (15) 

C11 0.0417 (15) 0.0370(14) 0.0285( 1 3) - 0 . 0020 (11) - 0.0012(11) 
0 . 0102(12) 

C12 0 . 0307 (12) 0 . 0240(10) 0 . 0228(11) -0.0041 (9) -0.0035(9) 0 . 0073(9) 

C13 0 . 0383(14) 0 . 0272(11) 0 . 0330( 14) - 0.0018 (10) - 0 . 00 1 9( 11) 
0 . 0006( 1 0) 
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C14 0 . 0463(16) 0.0237(11) 0.0402(15) - 0.0057(11) -0.0100(12) 
0.0025(11) 

C15 0.0492(17) 0.0342(13) 0.0280(13) -0.0087(10) - 0 . 0099(12) 
0.0143(12) 

C16 0 . 0408(15) 0 . 0434(16) 0 . 0270(14) - 0.0082(11) 0.0012(11) 
0.0097(12) 

C17 0 . 0375(14) 0 . 0324(13) 0 . 0282( 1 3) - 0 . 0055(10) - 0.0006(10) 
0.0012(11) 

C18 0.0399(15) 0.0340( 14) 0 . 060(2) 0 . 0190( 14) -0.0044(14) 0.0057(12) 

C19 0.0451(17) 0.072(2) 0.0281(15) - 0.0017( 14) - 0 . 007l(13) 
0 . 000 1(1 6) 

geom_special details 

All esds (except the esd in the dihedral angle between two l. s. 
planes) are estimated using the full covariance matrix. The ce ll 
esds are taken into account individually in the estimation of esds 
in distances , ang l es and torsion angles; correlations between esds 
in cel l parameters are only used when they are defined by crystal 
symmetry . An approximate (isotropic) treatment of cell esds is used 
for estimating esds involving l.s. planes. 

loop 

geom_bond atom site label 1 

Pdl Nl 2.135(2) ? 
Pdl PI 2.2185(7) ? 
Pdl Cll 2.2857(7) ? 
Pdl C12 2.3788(7) ? 
Fel C22 . 030(2) ? 
Fel C2' 2 . 044(3) ? 
Fel C12 . 046(2) ? 
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Fe1 C4 2.050 (2) . ? 
Fe1 C4 ' 2 .0 5 1( 3) ? 
Fe1 C3 ' 2 . 052(3) . ? 
Fe1 C5' 2.054(3) . ? 
Fe1 C5 2.055(3) . ? 
Fe1 C1 ' 2.056(3) . ? 
Fe1 C3 2.056(3) . ? 
P1 C1 1.787(2) . ? 
P1 C6 1.816(2) . ? 
P1 C12 1.818(2) . ? 
N1 C2 1.465(3) . ? 
N1 C19 1.496(4) . ? 
N1 C18 1.500(3) . ? 
C1 C2 1.433(3) ? 
C1 C5 1.438(3) ? 
C2 C3 1.421(3) ? 
C3 C4 1.413(4) ? 
C3 H3A 0.9800 . ? 
C4 C5 1.423 (4) . ? 
C4 H4A 0.9800 . ? 
C5 H5A 0.9800 ? 
C1' C2 ' 1.368(6) 
C1 ' C5' 1. 385(5) 
C1 ' H1 ' A 0.9800 
C2 ' C3' 1.403(6) 
C2' H2'A 0 . 9800 
C3 ' C4 ' 1.418(5) 
C3' H3'A 0 . 9800 
C4' C5 ' 1. 39 1( 5) 
C4' H4'A 0 . 9800 

? 

? 

? 

? 
C5 ' H5'A 0.9800 . ? 
C6 C7 1.394(4) . ? 
C6 C1 1 1.397(4) . ? 
C7 C8 1. 391(4) . ? 
C7 H7A 0.9300 . ? 
C8 C9 1.382(5) . ? 
C8 H8A 0.9300 . ? 

? 
? 

? 

? 

? 

C9 C10 1. 382(5) . ? 
C9 H9A 0 . 9300 . ? 
C10 C11 1.401(4) . ? 
C10 H10A 0.9300 . ? 
Cll HllA 0.9300 ? 
C12 C17 1.396(4) ? 
C12 C13 1.397(4) ? 
C13 C14 1.396(4) ? 
C13 H13A 0.9300 ? 
C14 C15 1.376(4) ? 
C14 Hl4A 0.9300 ? 
C15 C16 1.381(4) ? 
C15 Hl5A 0.9300 ? 
C16 C17 1.400(4) ? 
C16 Hl6A 0.9300 ? 
C17 H17A 0 . 9300 ? 
C18 Hl8A 0.9600 ? 
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C18 R18B 0.9600 ? 
C18 R18C 0.9600 ? 
C19 R19A 0.9600 ? 
C19 R19B 0.9600 ? 
C19 R19C 0.9600 ? 

loop 

geom_angle atom_site label 1 

geom_ angle atom_site label 2 

geom_angle atom_site label 3 

geom_angle 

N1 Pd1 P1 87.87(6) ? 
N1 Pd1 Cll 172.65(6) ? 
P1 Pd1 Cll 87.78(3) ? 
N1 Pd1 C12 93.37(6) ? 
P1 Pd1 C12 l78.58(3) ? 
Cll Pd1 C12 91.05(3) ? 
C2 Fe1 C2' 116.88(13) ? 
C2 Fe1 C1 41.16(10) ? 
C2 ' Fe1 C1 116.80(12) ? 
C2 Fe1 C4 67.86(10) ? 
C2' Fe1 C4 174.73(12) ? 
C1 Fe1 C4 68.17(10) ? 
C2 Fe1 C4 ' 142.00(13) ? 
C2 ' Fe1 C4' 67.38(13) ? 
C1 Fe1 C4 ' 174.07(13) ? 
C4 Fe1 C4' 107.53(12) ? 
C2 Fe1 C3 ' 116.49(12) ? 
C2' Fe1 C3' 40 . 06(17) ? 
C1 Fe1 C3' 145.46(14) ? 
C4 Fe1 C3' 136.62(17) ? 
C4' Fe1 C3' 40.42 (15) ? 
C2 Fe1 C5' 176.78(12) ? 
C2' Fe1 C5' 66.04(14) ? 
C1 Fe1 C5' 136.88(12) ? 
C4 Fe1 C5' 109.29(12) ? 
C4' Fe1 C5 ' 39.61(14) ? 
C3' Fe1 C5' 66.54 (13) ? 
C2 Fe1 C5 69.04 (10) ? 
C2' Fe1 C5 142.03(15) ? 
C1 Fe1 C5 4l.06(9) ? 
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C4 Fe1 C5 40.58(11). ? 
C4' Fe1 C5 133.04(13) ? 
C3' Fe1 C5 173.43(13) ? 
C5' Fe1 C5 107.86(12) ? 
C2 Fe1 C1' 142.05(12) ? 
C2' Fe1 C1' 38.98(16) ? 
C1 Fe1 C1' 113.40(11) ? 
C4 Fe1 C1' 138.60(15) ? 
C4' Fe1 C1' 66.81(13) ? 
C3' Fe1 'C1' 66.43(16) ? 
C5' Fe1 C1' 39.40(14) ? 
C5 Fe1 C1' 111.76(14) ? 
C2 Fe1 C3 40.70(10). ? 
C2' Fe1 C3 141.82(16) ? 
C1 Fe1 C3 68.93(10). ? 
C4 Fe1 C3 40.27(11). ? 
C4' Fe1 C3 110.72(12) ? 
C3' Fe1 C3 112.63(15) ? 
C5' Fe1 C3 137.89(13) ? 
C5 Fe1 C3 68.86(11). ? 
C1' Fe1 C3 177.24(12) ? 
C1 P1 C6 108.45(11). ? 
C1 P1 C12 107.65(11) .. ? 
C6 P1 C12 105.56(11) .. ? 
C1 P1 Pd1 100.59(8) .. ? 
C6 P1 Pd1 119.16(9) .. ? 
C12 P1 Pd1 114.76(8) ? 
C2 N1 C19 110.3(2) .. ? 
C2 N1 C18 108.0(2) .. ? 
C19 N1 C18 108.6(2) .. ? 
C2 N1 Pd1 110.69(15) .. ? 
C19 N1 Pd1 113.43(18) ? 
C18 N1 Pd1 105.55(17) ? 
C2 C1 C5 107.5(2). ? 
C2 C1 P1 116.81(17) ? 
C5 C1 P1 135.7(2). ? 
C2 C1 Fe1 68.84(14) ? 
C5 C1 Fe1 69.80(13) ? 
P1 C1 Fe1 124.68(12) .. ? 
C3 C2 C1 108.9(2) ? 
C3 C2 N1 129.6(2). ? 
C1 C2 N1 121.2(2). ? 
C3 C2 Fe1 70.63(15) ? 
C1 C2 Fe1 70.01(13) ? 
N1 C2 Fe1 130.53(17) .. ? 
C4 C3 C2 106.9(2). ? 
C4 C3 Fe1 69.65(15) ? 
C2 C3 Fe1 68.68 (14) ? 
C4 C3 H3A 126.5 .. ? 
C2 C3 H3A 126.5 .. ? 
Fe1 C3 H3A 126.5 .. ? 
C3 C4 C5 110.0(2). ? 
C3 C4 Fe1 70.08(15) ? 
C5 C4 Fe1 69.88(14) ? 
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C3 C4 H4A 125.0 ? 
C5 C4 H4A 125.0 ? 
Fe1 C4 H4A 125 . 0 ? 
C4 C5 C1 106.7(2) ? 
C4 C5 Fe 1 69.54 (15) ? 
C1 C5 Fe1 69.13(13) ? 
C4 C5 H5A 126.7 ? 
C1 C5 H5A 126.7 ? 
Fe1 C5 H5A 126.7 ? 
C2 ' C1' 'C5 ' 108 .4( 3) ? 
C2' C1 ' Fe1 70.05(19) ? 
C5 ' C1' Fe1 70.24( 1 8 ) ? 
C2 ' C1' H1 'A 125.8 ? 
C5 ' C1' H1 ' A 125.8 ? 
Fe1 C1 ' H1 ' A 125.8 ? 
C1' C2 ' C3 ' 108.6(3) ? 
C1 ' C2 ' Fe1 70.97(19) ? 
C3 ' C2 ' Fe1 70.27(19) ? 
C1 ' C2 ' H2'A 125.7 ? 
C3 ' C2 ' H2'A 125.7 ? 
Fe1 C2 ' H2 ' A 125.7 ? 
C2' C3 ' C4 ' 107.3(3) ? 
C2' C3 ' Fe 1 69 . 67(19) ? 
C4 ' C3 ' Fe1 69.78(18) ? 
C2' C3 ' H3 ' A 126.3 ? 
C4 ' C3 ' H3 ' A 126.3 ? 
Fe1 C3 ' H3 ' A 126.3 ? 
C5' C4 ' C3 ' 106.6(3) ? 
C5' C4 ' Fe1 70.29(17) ? 
C3 ' C4' Fe1 69 . 80(18) ? 
C5 ' C4' H4'A 126.7 ? 
C3' C4' H4'A 126.7 ? 
Fe1 C4' H4 ' A 126.7 ? 
C1' C5' C4 ' 109.1(3) ? 
C1 ' C5 ' Fe1 70.36(18) ? 
C4' C5' Fe1 70 .1 0(18) ? 
C1' C5' H5 ' A 125.5 ? 
C4 ' C5 ' H5 ' A 125.5 ? 
Fe1 C5 ' H5 ' A 125.5 ? 
C7 C6 C11 119.7(2) ? 
C7 C6 P1 120.9(2) ? 
C11 C6 P1 119.1(2) ? 

.I C8 C7 C6 119.9(3) ? 
C8 C7 H7A 120.0 ? 
C6 C7 H7A 120.0 ? 
C9 C8 C7 120.3(3) ? 
C9 C8 H8A 119.8 ? 
C7 C8 H8A 119.8 ? 
C10 C9 C8 120.3(3) ? 
C10 C9 H9A 119.8 ? 
C8 C9 H9A 119.8 ? 
C9 C10 C11 120.0(3) ? 
C9 C10 HlOA 120.0 ? 
C11 C10 H10A 12 0.0 ? 
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C6 C11 C10 119.7(3) ? 
C6 C11 H11A 120.2 ? 
C10 C11 HIlA 120.2 ? 
C17 C12 C13 119.4(2) ? 
C17 C12 P1 119.05(19) ? 
C13 C12 P1 121.5(2) ? 
C14 C13 C12 119.9(3) ? 
C14 C13 H13A 120.0 ? 
C12 C13 H13A 120.0 ? 
C15 C14 C13 120.3(3) ? 
C15 C14 H14A 119.9 ? 
C13 C14 H14A 119.9 ? 
C14 C15 C16 120.5(2) ? 
C14 C15 H15A 119.7 ? 
C16 C15 H15A 119.7 ? 
C15 C16 C17 119.9(3) ? 
C15 C16 H16A 120.1 ? 
C17 C16 H16A 120.1 ? 
C12 C17 C16 120.0(3) ? 
C12 C17 H17A 120.0 ? 
C16 C17 H17A 120.0 ? 
N1 C18 H18A 109.5 ? 
N1 C18 H18B 109 .5 ? 
H18A C18 H18B 109.5 ? 
N1 C18 H18C 109.5 ? 
H18A C18 H18C 109.5 ? 
H18B C18 H18C 109.5 ? 
N1 C19 H19A 109.5 ? 
N1 C19 H19B 109.5 ? 
H19A C19 H19B 109.5 ? 
N1 C19 H19C 109.5 ? 
H19A C19 H19C 109.5 ? 
H19B C19 H19C 109.5 ? 

l oop_ 

geom_torsion atom site label 1 

geom_torsion atom_ site label 2 

geom_torsion atom_ site label 3 

geom_torsion atom_site label 4 

geom_torsion 

geom_torsion site symmetry_1 

geom_torsion site symmetry_ 2 

geom_ torsion site symmetry_3 
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N1 Pd1 P1 C1 11 . 11(1 0 ) . ? 
Cll Pd1 P1 C1 -1 7 4. 8 1( 8 ) ? 
N1 Pd1 P1 C6 1 29 . 35 (11) . ? 
Cl1 Pd1 P 1 C6 - 56 . 58 ( 9 ) . ? 
N1 Pd 1 P1 C1 2 -1 0 4.1 0 (11) ? 
Cl1 Pd1 P1 C1 2 69 . 9 7( 9 ) . ? 
P1 Pd 1 N1 C2 -1 5 . 87 (1 5 ) . ? 
C1 2 Pd 1 N1 C2 1 63 .4 4 (1 5 ) .... ? 
P 1 Pd1 N1 C1 9 -14 0 .4 3 (1 9 ) .... ? 
C1 2 Pd1 N1 C1 9 38 . 88 (1 9 ) .... ? 
P 1 Pd 1 N1 C1 8 1 00 .7 6 (1 7 ) .... ? 
C1 2 Pd1 N1 C1 8 - 79 . 93 (17) ? 
C6 P1 C1 C2 -1 3 1. 8 1(1 8 ) .... ? 
C1 2 P1 C1 C2 114. 43 (1 9 ) .... ? 
Pd 1 P1 C1 C2 - 6 . 0 1 (1 9 ) .. . . ? 
C6 P 1 C1 C5 4 6 .2( 3 ) . ? 
C1 2 P1 C1 C5 - 67 . 6 (3 ) . ? 
Pd 1 P 1 C1 C5 1 72.0 (2 ) . ? 
C6 P 1 C1 Fe 1 -4 9 . 98 (1 8 ) ? 
C1 2 P 1 C1 Fe 1 -1 63 . 7 4 (14) ? 
Pd 1 P1 C1 Fe 1 75 . 82 (1 4 ) . ? 
C2 ' Fe 1 C1 C2 1 0 1.1( 2 ) .... ? 
C4 Fe 1 C1 C2 - 80 . 86 (1 6 ) . ? 
C3 ' Fe1 C1 C2 62 . 2 (3 ) ... . ? 
C5 ' Fe 1 C1 C2 -1 76 .1 9 (1 8 ) . .. ? 
C5 Fe 1 C1 C2 -11 9 .1( 2 ) .... ? 
C1' Fe 1 C1 C2 144.14(1 8 ) .... ? 
C3 Fe 1 C1 C2 - 37 .4 6 (1 4 ) ? 
C2 Fe 1 C1 C5 11 9 .1 (2 ) .... ? 
C2 ' Fe 1 C1 C5 -1 39 . 9 (2 ) .... ? 
C4 Fe 1 C1 C5 38.20 (1 5 ) .... ? 
C3 ' Fe 1 C1 C5 -17 8 . 8 ( 2 ) .... ? 
C5 ' Fe 1 C1 C5 - 57 .1( 2 ) . ? 
C1' Fe 1 C1 C5 - 96 . 80 (19 ) ? 
C3 Fe 1 C1 C5 8 1. 61(1 6 ) . ? 
C2 Fe 1 C1 P1 -1 08 . 7 (2 ) . ? 
C2 ' Fe 1 C1 P 1 -7. 6 (2 ) .... ? 
C4 Fe 1 C1 P 1 1 70 .4 6 (1 9 ) .... ? 
C3 ' Fe 1 C1 P1 -4 6 . 5 (3 ) .... ? 
C5 ' Fe 1 C1 P1 75 .1( 2 ) ? 
C5 Fe 1 C1 P1 1 32 . 3 (2 ) .... ? 
C l' Fe 1 C 1 P 1 35.5 (2 ) . . . . ? 
C3 Fe 1 C1 P 1 -1 46 .14 ( 18 ) ? 
C5 C1 C2 C3 0 . 9 ( 3 ) .. ? 
P 1 C1 C2 C3 1 79 .4 0 (1 7 ) ? 
Fe1 C1 C2 C3 60 .1 9 (1 8 ) ? 
C5 C1 C2 N1 174. 6 (2 ) . ? 
P 1 C1 C2 N1 - 6 . 8 (3 ) .... ? 
Fe 1 C1 C2 N1 -1 26 . 0 (2 ) .. . . ? 
C5 C1 C2 Fe 1 - 59 . 33 (1 6 ) .... ? 
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P1 C1 C2 Fe1 119.21(15) .... ? 
C19 N1 C2 C3 -44.6(3) .... ? 
C18 N1 C2 C3 74 . 0(3) .... ? 
Pd1 N1 C2 C3 -1 70 . 9(2) .... ? 
C19 N1 C2 C1 143.1(2) .... ? 
C18 N1 C2 C1 - 98.4(3) .... ? 
Pd1 N1 C2 C1 16.7(3) .... ? 
C19 N1 C2 Fe1 53.5(3) .... ? 
C18 N1 C2 Fe1 1 72.1(2) ? 
Pd1 N1 C2 Fe1 - 72 . 8(2) ? 
C2 ' Fe1 C2 C3 139.7(2) ? 
C1 Fe1 C2 C3 -11 9.5(2) ? 
C4 Fe1 C2 C3 - 37.80( 17) ? 
C4 ' Fe1 C2 C3 52.6(3) . ? 
C3 ' Fe1 C2 C3 94.6(2) . ? 
C5 Fe1 C2 C3 -81.56(17) ? 
C1 ' Fe1 C2 C3 1 79.6(2) .... ? 
C2 ' Fe1 C2 C1 -1 00.85( 1 9) .... ? 
C4 Fe1 C2 C1 81. 70( 1 6) .... ? 
C4 ' Fe1 C2 C1 172.12(19) . ... ? 
C3 ' Fe1 C2 C1 -14 5 . 93(19) .... ? 
C5 ' Fe1 C2 C1 54(2) .. .. ? 
C5 Fe1 C2 C1 37 . 94( 14) .... ? 
C1 ' Fe1 C2 C1 - 60 . 9(3) .... ? 
C3 Fe1 C2 C1 119.5(2) ? 
C2 ' Fe1 C2 N1 13.6(3) .... ? 
C1 Fe1 C2 N1 114.5(3) .... ? 
C4 Fe1 C2 N1 -1 63 . 8(3) ? 
C4 ' Fe1 C2 N1 -7 3 .4( 3) ? 
C3 ' Fe1 C2 N1 - 31 . 5(3) ? 
C5 ' Fe1 C2 N1 168(2) . ? 
C5 Fe1 C2 N1 152.4(2) .... ? 
C1' Fe1 C2 N1 53 . 5(3) .... ? 
C3 Fe1 C2 N1 -1 26 . 0(3) .. .. ? 
C1 C2 C3 C4 -0.4(3) ... . ? 
N1 C2 C3 C4 -17 3.5(2) .. . . ? 
Fe1 C2 C3 C4 59.40(18) .... ? 
C1 C2 C3 Fe1 - 59 . 80(17) .... ? 
N1 C2 C3 Fe1 127.1(3) .... ? 
C2 Fe1 C3 C4 -11 8 . 6(2) .... ? 
C2' Fe1 C3 C4 172.3(2) .... ? 
C1 Fe1 C3 C4 - 80.70(17) .... ? 
C4 ' Fe1 C3 C4 93.0(2) .... ? 
C3 ' Fe1 C3 C4 136.6(2) .... ? 
C5' Fe1 C3 C4 57 .1( 2) .... ? 
C5 Fe1 C3 C4 - 36 . 54(16) .... ? 
C2 ' Fe1 C3 C2 -69.1(3) . ... ? 
C1 Fe1 C3 C2 37.87(15) .. . . ? 
C4 Fe 1 C3 C2 11 8 . 6(2) .. ? 
C4' Fe1 C3 C2 -14 8.46(18) .... ? 
C3 ' Fe1 C3 C2 -104.9(2) .. . . ? 
C5 ' Fe1 C3 C2 175.63(18) . .. ? 
C5 Fe 1 C3 C2 82.03(16) .. .. ? 
C2 C3 C4 C5 -0.2(3) .... ? 
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Fe1 C3 C4 CS S8.S7 (18) .... ? 
C2 C3 C4 Fe1 -S8.78(17) .... ? 
C2 Fe1 C4 C3 38 .1 9(lS) .... ? 
C1 Fe1 C4 C3 82 .74(1 7) .... ? 
C4 ' Fe1 C4 C3 -1 01. 60( 1 9) .... ? 
C3 ' Fe1 C4 C3 - 67.S(2) .... ? 
CS ' Fe1 C4 C3 -14 3.40( 1 8) ? 
CSFe 1 C4C3 121.4( 2) .. ? 
C1' Fe1 C4 C3 -17 6 .1 6( 1 8) ? 
C2 Fe1 C4 CS - 83 . 20(16) . ? 
C1 Fe1 C4 CS - 38.6S(14) . ? 
C4 ' Fe1 C4 CS 137.02(17) .... ? 
C3' Fe1 C4 CS 171.11 (18) .... ? 
CS ' Fe 1 C4 CS 9S .2 2(18) .... ? 
C1' Fe1 C4 CS 62.S(2) .... ? 
C3 Fe1 C4 CS -121.4(2) ? 
C3 C4 CS C1 0 .7( 3) .... ? 
Fe1 C4 CS C1 S9 .4 2(16) . .. ? 
C3 C4 CS Fe1 -S8.69(19) ? 
C2 C1 CS C4 -1.0( 3) .. ? 
P1 C1 CS C4 -1 79 .1( 2) . ? 
Fe 1 C1 CS C4 - S9.68(17) ? 
C2 C1 CS Fe1 S8 . 72(16) ? 
P1 C1 CS Fe1 -11 9 .4 (2) ... . ? 
C2 Fe1 CS C4 80 . 02(16) .... ? 
C2 ' Fe1 CS C4 -1 72 . 8(2) .... ? 
C1 Fe1 CS C4 118.0(2) .... ? 
C4 ' Fe1 CS C4 - 62 . 8(2) .... ? 
CS ' Fe1 CS C4 - 99 . 0S(18) .... ? 
C1 ' Fe1 CS C4 -14 0 . 8S(18) .... ? 
C3 Fe1 CS C4 36.27 (lS) .... ? 
C2 Fe1 CS C1 - 38 . 02(14) .... ? 
C2 ' Fe1 CS C1 69 . 2 (2) . . . . ? 
C4 Fe1 CS C1 -11 8 . 0(2) . ? 
C4 ' Fe1 CS C1 179.14(17) ? 
CS ' Fe1 CS C1 142.91(17) ? 
C1 ' Fe1 CS C1 101.11(17) ? 
C3 Fe1 CS C1 - 81. 77 (lS) .... ? 
C2 Fe1 C1 ' C2 ' - 6S .4( 3) .... ? 
C1 Fe1 C1 ' C2 ' -1 04 . 3(2) .... ? 
C4 Fe1 C1 ' C2 ' 172. 7(2) ? 
C4' Fe1 C1 ' C2 ' 82 . 2(2) . .. . ? 
C3 ' Fe1 C1 ' C2 ' 38 . 0(2) .... ? 
CS ' Fe1 C1 ' C2 ' 119.2(3) .... ? 
CS Fe1 C1 ' C2 ' -14 8.9(2) .... ? 
C2 Fe1 C1' CS ' 17S.40(19) ? 
C2 ' Fe1 C1' CS' -11 9.2(3) .... ? 
C1 Fe1 C1 ' CS ' 1 36 . S8(19) .... ? 
C4 Fe1 C1 ' CS ' S3 . 6(3) . ? 
C4 ' Fe1 C1' CS ' - 37 . 0(2) ? 
C3' Fe1 C1' CS ' - 81 . 2(2) ? 
CS Fe1 C1 ' CS' 92.0(2) . ? 
CS ' C1' C2' C3' - 0.S(4) .... ? 
Fe1 C1' C2' C3 ' - 60 . S(2) .... ? 
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C5 ' C1 ' C2 ' Fe 1 60 . 0(2) .... ? 
C2 Fe1 C2 ' C1 ' 141.16(18) .... ? 
C1 Fe1 C2 ' C1 ' 94.8(2) .. .. ? 
C4 ' Fe1 C2 ' C1 ' - 80.6(2) .... ? 
C3 ' Fe1 C2 ' C1 ' -11 8 . 8(3) .... ? 
C5 ' Fe1 C2 ' C1 ' -37.3(2) . ? 
C5 Fe1 C2 ' C1 ' 51.3(3) .. ? 
C3 Fe1 C2 ' C1 ' -17 5.77(19) ? 
C2 Fe1 C2 ' C3 ' -1 00 . 0(2) . ? 
C1 Fe1 C2 ' C3 ' -14 6 .4 3(19) ? 
C4 ' Fe1 C2 ' C3 ' 38.2(2) ? 
C5 ' Fe1 C2 ' C3 ' 81. 5(2) ... ? 
C5 Fe1 C2 ' C3 ' 170.1(2) ... ? 
C1' Fe1 C2 ' C3 ' 118.8(3) .... ? 
C3 Fe1 C2 ' C3 ' - 57.0(3) .... ? 
C1' C2 ' C3 ' C4 ' 1.0(4) .... ? 
Fe1 C2 ' C3 ' C4 ' - 59.9(2) .... ? 
C1' C2 ' C3 ' Fe1 60.9(2) .... ? 
C2 Fe1 C3 ' C2 ' 101.1(2) .... ? 
C1 Fe1 C3 ' C2 ' 60.5(3) .... ? 
C4 Fe 1 C3 ' C2 ' -173.8(2) .... ? 
C4 ' Fe1 C3 ' C2 ' -11 8.3(3) .... ? 
C5 ' Fe1 C3 ' C2 ' - 80. 1( 2) .... ? 
C1 ' Fe1 C3 ' C2 ' - 37.0(2) .... ? 
C3 Fe1 C3 ' C2 ' 14 5 . 8(2) .... ? 
C2 Fe1 C3 ' C4 ' -14 0.59(19) .... ? 
C2 ' Fe1 C3 ' C4' 118.3(3) .... ? 
C1 Fe1 C3 ' C4 ' 178.84(19) ? 
C4 Fe1 C3 ' C4 ' - 55.5(3) ? 
C5 ' Fe1 C3 ' C4 ' 38 . 2(2) ? 
C1 ' Fe1 C3 ' C4 ' 81 .4( 2) ? 
C3 Fe1 C3 ' C4 ' - 95 . 8(2) ? 
C2 ' C3 ' C4 ' C5 ' -1. 2 (3) ? 
Fe1 C3 ' C4 ' C5 ' - 61 . 0(2) .... ? 
C2' C3 ' C4' Fe1 59 . 8(2) .... ? 
C2 Fe1 C4 ' C5 ' -17 5 . 55(19) . . .. ? 
C2 ' Fe1 C4 ' C5 ' 79.2(2) .... ? 
C4 Fe1 C4 ' C5 ' -99.3(2) .... ? 
C3' Fe1 C4 ' C5 ' 117.1(3) .... ? 
C5 Fe1 C4 ' C5 ' -62.0(2) .... ? 
C1 ' Fe1 C4 ' C5 ' 36 . 8(2) .... ? 
C3 Fe1 C4 ' C5 ' -141. 91(19) ? 
C2 Fe1 C4' C3 ' 67.3(3) .... ? 
C2 ' Fe1 C4 ' C3 ' - 37 . 9(2) .... ? 
C4 Fe1 C4 ' C3' 1 43.6(2) .... ? 
C5 ' Fe1 C4' C3 ' -11 7.1(3) ... . ? 
C5 Fe1 C4 ' C3' -179.1(2) . ... ? 
C1' Fe1 C4' C3 ' - 80 . 3(3) . .. . ? 
C3 Fe1 C4 ' C3 ' 101.0(2) ? 
C2 ' C1 ' C5' C4 ' - 0.3(3) .... ? 
Fe1 C1 ' C5 ' C4 ' 59.6(2) .... ? 
C2 ' C1 ' C5' Fe1 - 59.9(2) ? 
C3 ' C4 ' C5 ' C1 ' O. 9 (3) ? 
Fe1 C4 ' C5 ' C1 ' -59.8(2) ? 
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C3 ' C4' C5 ' Fe1 60.7(2) ? 
C2 ' Fe1 C5' C1' 36 . 9(2) ? 
C1 Fe1 C5' C1 ' - 67 . 4(3) ? 
C4 Fe1 C5 ' C1 ' -14 5 . 7(2) .... ? 
C4 ' Fe1 C5 ' C1 ' 11 9 . 9(3) .... ? 
C3 ' Fe1 C5 ' C1 ' 80.9(3) .... ? 
C5 Fe 1 C5 ' C1 ' -1 02 . 8(2) . ... ? 
C3 Fe1 C5 ' C1 ' 179.2(2) .... ? 
C2 ' Fe1 C5 ' C4 ' -82.9(2) .... ? 
C1 Fe1 C5 ' C4 ' 1 72.76(18) .... ? 
C4 Fe1 C5' C4 ' 94 .4( 2) .... ? 
C3 ' Fe1 C5 ' C4 ' - 39.0(2) .... ? 
CS Fe1 C5 ' C4 ' 137.34(19) .... ? 
C1 ' Fe1 C5 ' C4 ' -11 9 . 9(3) ... . ? 
C3 Fe1 C5 ' C4 ' 59.4(3) ? 
C1 P1 C6 C7 108.0(2) . ? 
C12 P1 C6 C7 -136.9(2) ? 
Pd1 P1 C6 C7 - 6. 1( 2) . ? 
C1 P1 C6 Cll -66.6(2) .... ? 
C12 P1 C6 Cll 48.5(2) .... ? 
Pd1 P1 C6 C11 1 79 . 28(17) . ... ? 
C11 C6 C7 C8 1.2 (4) . ? 
P1 C6 C7 C8 -17 3.4(2) ? 
C6 C7 C8 C9 - 0 . 9(4) . ? 
C7 C8 C9 C10 0 .1( 5) . ? 
C8 C9 C10 C11 0 .4( 5) .... ? 
C7 C6 Cll C10 - 0.7(4) .... ? 
P1 C6 C11 C10 174.0(2) .... ? 
C9 C10 C11 C6 - 0 .1(4) .... ? 
C1 P1 C12 C17 178.3(2) .... ? 
C6 P1 C12 C17 62 . 6(2) . ? 
Pd1 P1 C12 C17 -7 0 . 6(2) ? 
C1 P1 C12 C13 -4.0(2) . ? 
C6 P1 C1 2 C13 -11 9.7(2) ? 
Pd1 P1 C12 C13 107.1(2) ? 
C1 7 C12 C13 C14 - 0.3(4) ? 
P1 C12 C13 C14 -1 78.0(2) .... ? 
C12 C13 C14 C1S 1.2(4) .... ? 
C13 C14 C1 5 C16 -1.1(4) .... ? 
C14 C1 5 C1 6 C17 0 . 0(4) .... ? 
C13 C12 C17 C16 - 0 .7(4) .... ? 
P1 C12 C17 C1 6 177.0(2) .... ? 
C15 C16 C17 C1 2 0 . 9(4) .... ? 

diffrn measured fraction theta max 1. 000 

diffrn ref l ns theta full 29.00 

diffrn measured fraction theta full 1.000 

refine diff density_ max 1. 583 
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refine diff density min 

refine diff_ density_rms 

-0.468 

0.098 
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Appendix C. X-ray Crystallographic Data for Pt Complex 312a. 

~Cl ' 
:: C2 ' 

Fel~ 
" 

data costadec08a 

audit creation method 
chemica l name systematic 

? 

SHELXL-97 

? 
? 

chemica l name common 
chemica l _me l ting_point 
chemica l _formula_moiety 
chemica l formula sum 

' C2 4 H2 4 C1 2 Fe N P Pt ' 

- -
' C24 H24 C1 2 Fe N P Pt ' 
chemical formu l a weight 679 

loop 
atom type_symbo l 
atom_type_ description 
atom_type_scat_dispersion rea l 
atom_type scat dispe r sion imag 
atom_ type scat_ source 

' C ' 'C ' 0 . 0033 0 . 0016 
' Internationa l Tables Vo l C Tab l es 
' H' ' H ' 0 . 0000 0.0000 
' Internationa l Tab l es Vol C Tab l es 
' N ' ' N ' 0.0061 0.0033 
' International Tables Vo l C Tab l es 
, P ' , P ' 0.1023 0 . 0942 
' Internationa l Tables Vol C Tab l es 
' Cl ' ' Cl ' 0 .1 484 0 .1 585 
' International Tab l es Vo l C Tab l es 
' Fe ' ' Fe ' 0 . 3463 0 . 8444 
' Internationa l Tables Vo l C Tab l es 
'Pt ' ' Pt' -1. 7033 8 . 3905 
' Internationa l Tab l es Vol C Tab l es 

4 . 2 . 6 . 8 

4 . 2 . 6 . 8 

4. 2 . 6.8 

4 . 2.6 . 8 

4.2.6.8 

4 . 2 . 6.8 

4 . 2 . 6 . 8 

and 6. 1.1. 4 ' 

and 6 .1.1. 4 ' 

and 6 .1. 1. 4' 

and 6 . 1.1.4' 

and 6.1.1.4 ' 

and 6 .1.1. 4 ' 

and 6 . 1.1.4 ' 
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symmetry_cell setting 
symmetry_ space_group_name Hall 
symmetry_ space group name H-M 

loop 
symmetry_equiv_ pos as xyz 

'x, y, z' 
'-x+1/2, y+1/2, -z+1/2' 
'-x, -y, -z' 
'x-l/2, -y-1/2, z-1/2' 

cell_ length_ a 
cell_ length_ b 
cell_length_ c 
cell_angIe_alpha 
cell_angIe_beta 
cell_ angIe_gamma 
cell volume 
cell formula units Z 
cell_measurement_temperature 
cell measurement ref1ns used 
cell measurement theta min 
cell measurement theta max 

exptl_ crystal_description 
exptl_ crystal_colour 
expt1_crystal_ size_max 
expt l_crystal_size_mid 
exptl_crystal_size_min 
exptl_crystal_ density_meas 
exptl_crystal_ density_diffrn 
expt l _c rystal_density_ method 
exptl_crystal_F_OOO 
expt l _absorpt_coefficient_mu 
expt l_absorpt_correction type 
exptl_absorpt_correction_T_ min 
expt l_abs orpt_ correction_T_max 
expt l absorpt_process details 

exptl special_details 

? 

diffrn ambient_temperature 
diffrn_radiation_wavelength 
diffrn_radiation_type 
diffrn radiation source 
diffrn radiation monochromator 
diffrn_measurement device type 

detector' 

'Monoclinic' 
'-p 2yn' 
'P21/n' 

9.9906(18) 
14.365(3) 
16.145(3) 
90.00 
90.946(6) 
90.00 
2316.7(8) 
4 
150 (2) 
1051 
2.84 
28.21 

'Block' 
'orange ' 
0.34 
0.27 
0.12 
? 
1.947 
'not measured' 
1312 
6.970 
'multi-scan' 
0.110 
0.432 
'SADABS, Bruker 2001' 

150 (2) 
0.71073 
MoK\a 
'sealed tube' 
graphite 
'Bruker Kappa Apex II area 

diffrn_ measurement_method 'phi and omega scans' 
diffrn detector area resol mean ? 
diffrn standards number ? 
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diffrn standards interval count 
- - -

diffrn standards interval time 
diffrn_standards_decay_% 
diffrn reflns number 
diffrn_reflns_av_R_equivalents 
diffrn_reflns_av_s igmaI/netI 
diffrn reflns limit h min 
diffrn reflns limit h max 
diffrn reflns limit k min 
diffrnreflns limit k max 
diffrn reflns limi t 1 min 
diffrn r ef lns limit 1 max 
diffrn r ef lns theta min 
diffrn reflns theta max 
reflns number total 
r ef lns_number_gt 
reflns threshold_expression 

computing_data_collection 
computing_cell_refinement 
computing_data_reduction 
computing_structure_solution 
computing_structure_refinement 
computing_mol ecular_graphics 
computing_publication_material 

refine specia l details 

? 
? 
? 
36191 
0.0237 
0.0157 
-13 
12 
-19 
19 
-20 
21 
2.52 
28.63 
5807 
5286 
>2sigma(I) 

'Bruker SMART' 
'Bruker SMART ' 
'Bruker SAINT' 
'SHELXS -97 (Sheldrick, 1 990 )' 
'SHELXL - 97 (Sheldrick, 19 97 )' 
'Bruker XP' 
'Bruker SHELXTL' 

Refinement of FA2A against ALL r ef l ections . The weighted R-factor 
wR and goodness of fit S are based on FA2A, conventional R-factors R 
are based on F, with F set to zero for negative FA2A. The threshold 
expression o f FA2 A > 2sigma(FA2A) is used on ly for calculating R
factors (gt) etc. and is not relevant to the choice of reflections 
for refinement. R-factors based on FA2A are statistically about 
twice as large as those based on F, and R- factors based on ALL data 
wi ll be even larger. 

refine l s_structure_factor coef Fsqd 
refine_ l s_matrix_type full 
refine_ ls_weighting_scheme calc 
refine_ls_weighting_ details 
' ca l c w= 1 /[\sA2 A(Fo A2 A)+ (0.0 11 9P ) A2 A+2. 1255P ] where 

P=(Fo A2 A+2Fc A2 A)/3' 
atom_sites_so lution_primary 
atom_sites_solution_secondary 
atom_sites_solution_hydr ogens 
refine_ls_hydrogen_ treatment 
refine ls extinction method 
refine ls extinction coef 
refine l s number reflns 
refine_ls_ number_ parameters 
refine ls number restraints - - -
r efine l s R factor all 

direct 
difmap 
geom 
constr 
none 
? 
5807 
273 
o 
0.0187 
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refine_ls_R_factor_ gt 
refine ls wR factor ref - - - -
refine_ ls_ wR_factor_gt 
refine_ls_goodness_of_ fit ref 
refine ls restrained S all 
refine ls shift/su max 

- - -
refine ls shift/su mean 

loop 
atom s 'i te label 
atom_site_type_symbol 
atom site fract x 

- - -
atom_ site_ fract_ y 
atom site fract z 
atom_site_U_iso_or equiv 
atom_ site_ adp_ type 
atom_ site_ occupancy 
atom_site_symmetry_ multiplicity 
atom_ site_ calc_ flag 
atom_site_refinement_ flags 
atom_site disorder assembly 

atom_ site_ disorder_group 

0.0148 
0.0347 
0.0331 
1.068 
1.068 
0.003 
0.000 

Ptl Pt 0.321842(7) 0.792077(5) 0.153565(4) 0.01592(3) Uani 1 1 d .. 

Fe1 Fe 0.70060(3) 0.707433(19) 0.250826(18) 0.01847(6) Uani 1 1 d 

P1 P 0.38932(5) 0.79566(3) 0.28436(3) 0.01382(9) Uani 1 1 d 
N1 N 0.52127(16) 0.81816(12) 0.11836(10) 0.0187(3) Uani 1 1 d 
Cll Cl 0.10400(5) 0.77267(4) 0.19118(4) 0.03055(12) Uani 1 1 d .. . 
C12 Cl 0.25147(6) 0.79049(4) 0.0l369(3) 0.02926(11) Uani 1 1 d .. . 
C1 C 0.56517(18) 0.81112(12) 0.27339(12) 0.0151(4) Uani 11 d 
C 2 CO. 61237 (18) O. 81551 (l3) o. 19024 (12) O. 0169 ( 4 ) U an ill d 
C3 C 0.75339(19) 0.82884(14) 0.19273(13) 0.0223(4) Uani 11 d 
H3 H 0.8090 0.8345 0.1474 0.027 Uiso 1 1 calc R .. 
C4 C 0.79324(19) 0.83189(14) 0.27768(14) 0.0238(4) Uani 1 1 d 
H4 H 0.8804 0.8401 0.2974 0.029 Uiso 1 1 calc R .. 
C5 C 0.67890(18) 0.82051(14) 0.32749(13) 0.0195(4) Uani 1 1 d 
H5 H 0.6781 0.8194 0.3851 0.023 Uiso 1 1 calc R .. 
C6 C 0.32754(19) 0.89095(l3) 0.34680(12) 0 . 0176(4) Uani lid 
C7 C 0.4033(2) 0.97012(14) 0.36252(14) 0.0264(4) Uani 1 1 d 
H7 H 0.4893 0.9749 0.3418 0.032 Uiso 1 1 calc R .. 
C8 C 0.3507(3) 1.04243(16) 0.40935(15) 0.0350(5) Uani 1 1 d 
H8 H 0.4016 1.0956 0.4196 0.042 Uiso 1 1 calc R .. 
C9 C 0.2233(3) 1.03535(16) 0.44058(15) 0.0341(5) Uani 1 1 d 
H9 H 0.1885 1.0836 0.4721 0.041 Uiso 1 1 calc R .. 
CI0 C 0.1476(2) 0.95709(17) 0.42518(15) 0.0340(5) Uani 1 1 d 
H10 H 0.0617 0.9527 0.4462 0.041 Uiso 1 1 calc R .. 
C11 C 0.1986(2) 0.88445(15) 0.37842(14) 0.0264(4) Uani 11 d 
H11 H 0.1471 0.8317 0.3682 0.032 Uiso 1 1 calc R .. 
C12 C 0.36069(19) 0.69452(l3) 0.34804(12) 0.0183(4) Uani 11 d 
C13 C 0.4086(2) 0.69414(14) 0.42975(13) 0.0227(4) Uani 1 1 d 

H13 H 0.4468 0.7475 0.4526 0.027 Uiso 1 1 calc R .. 
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C14 C 0.3990(2) 0 . 61339( 1 6) 0.47687 (14) 
H14 H 0 .4 322 0 . 6 1 24 0 . 53 1 0 0.035 Uiso 1 
C15 C 0.3400(2) 0.53475( 1 6) 0.44333 (16) 
H15 H 0 . 3326 0 .4 812 0 .475 3 0.041 Uiso 1 
C16 C 0 . 2922(2) 0 . 53510 (16) 0 . 36277 (17) 
H16 H 0.2528 0 .4 817 0 . 3407 0 . 042 Uiso 1 
C17 C 0.3023(2) 0.61470(14) 0.31436(14) 
H17 H 0 . 2703 0.6147 0.2599 0.032 Uiso 1 
C19 C 0 .5 674 (2) 0.75278(18) 0.0525 1(1 3) 
H19A H d . 6594 0.7654 0.0404 0.046 Uiso 1 
H19B H 0.5135 0.7612 0 . 0033 0.046 Uiso 1 
H19C H 0.5590 0.6898 0 . 0716 0 . 046 Uiso 1 
C18 C 0.5253(2) 0 . 91516(15) 0 . 08383( 14) 
H1 8A H 0.503 1 0.9589 0 .12 64 0 . 042 Uiso 1 
H18B H 0.4619 0 . 9205 0.0388 0.042 Uiso 1 
H18C H 0.6136 0.9282 0.0642 0 . 042 Uiso 1 
C1 ' C 0 . 6527(3) 0 . 58226(16) 0 . 3045 1 (18) 
H1 ' H 0 . 5888 0.5733 0.3450 0.048 Uiso 1 
C2 ' C 0 . 6296(3) 0 . 57776(16) 0 . 21904 (19) 
H2' H 0.5480 0 .5 654 0.1928 0 . 05 1 Uiso 1 
C3 ' C 0 .7 517(3) 0.59516(17) 0.17979(16) 
H3 ' H 0.7653 0.5963 0.1230 0 . 048 Uiso 1 
C4 ' C 0.8498(2) 0.61060(16) 0 . 24219(18) 
H4 ' H 0.9397 0.6239 0 . 2339 0 . 045 Uiso 1 
C5' C 0.7875(3) 0 . 60235 (17) 0 . 31882 (16) 
H5' H 0 . 8289 0.6091 0 . 3705 0 . 046 Uiso 1 

l oop_ 
atom site aniso label 
atom site aniso U 11 

- - --
atom site aniso U 22 
atom site aniso U 33 

-
atom site aniso U 23 
atom site aniso U 13 

- -
atom site aniso U 12 

- - - - -

0.0293(5) Uani 1 1 d 
1 ca l c R 
0 . 0340(5) Uani 1 1 d 
1 ca l c R 
0 . 0346(5) Uani 1 1 d 
1 calc R 
0.0263(4) Uani 1 1 d 
1 calc R 
0 . 0304 (5) Uani 1 1 d 

1 ca l c R 
1 calc R 
1 calc R 

0 . 0282 (5) Uani 1 1 d 
1 calc R 
1 calc R 
1 ca l c R 

0 . 0399(6) Uani 1 1 d 
1 calc R 
0.0428(7) Uani 1 1 d 
1 ca l c R 
0 . 0403(6) Uani 1 1 d 
1 calc R 
0.0374 (6) Uani 1 1 d 
1 calc R 
0.0383(6) Uani 1 1 d 
1 ca l c R 

Ptl 0.01625(4) 0.01281(4) 0.01864(4) - 0.00074(3) -0.00182(3) 
0 . 00060(2) 
Fe 1 O. 01 71 0 (12) O. 01497 (13) O. 02342 (14) - 0 . 00028 (11) O. 00283 (10 ) 
0.00325(10) 
P1 0 . 0142(2) 0.0105(2) 0.0 1 68(2) 0.00006(17) 0.00218(16) 0 . 00013(16) 
N1 0 . 0188(8) 0.0191(8) 0.0183(8) 0 . 0011(6) 0.0029(6) -0.0004(6) 
Cll 0.0 1 52(2) 0.0355(3) 0 . 0409(3) -0.0026(2) -0.0002(2) -0.00126(19) 
C12 0.0378(3) 0.0267(3) 0.0229(3) - 0.0025(2) - 0.0112(2) 0.0011(2) 
C1 0.0159(8) 0.0106(8) 0 . 0189(9) - 0.0002(7) 0.0016(7) 0.0014(6) 
C2 0.0171(8) 0.0145(9) 0.0191(9) 0.0011(7) 0.0022(7) 0 . 0003(7) 
C3 0.0197(9) 0.0199(10) 0.0277(11) 0.0035(8) 0.0067(8) - 0.0010(7) 
C4 0.0166(9) 0.0196(10) 0 . 0352(12) - 0.0006(9) -0.0012(8) - 0.0015(7) 
C5 0 . 0 1 96(9) 0 . 0158(9) 0.0229(10) - 0.0010(8) -0.0020(7) 0.0011(7) 
C6 0.0233(9) 0.0125(9) 0.0172(9) - 0.0002(7) 0.0029(7) 0.0032(7) 
C7 0.0306(11) 0.0 171(1 0) 0.0319(12) - 0.0019(9) 0 . 0087(9) - 0.0017(8) 
C8 0.0477(14) 0 . 0160(10) 0.0414(14) - 0.0069(10) 0.0072(11) -
0.000 1(1 0) 
C9 0 . 0502(14) 0.0223(11) 0.0303(12) -0.0047(9) 0.0111( 1 0) 0.0125(10) 
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C10 0.0333(12) 0.0313(12) 0.0379(13) -0.0027(10) 0.0145(10) 
0.0100(10) 
C11 0.0256(10) 0.0226(11) 0.0314(11) -0.0031(9) 0.0075(8) 0.0009(8) 
C12 0.0171(8) 0.0144(9) 0.0237(10) 0.0026(7) 0.0060(7) 0.0014(7) 
C13 0.0234(10) 0.0204(10) 0.0243(10) 0.0010(8) 0.0057(8) 0.0026(8) 
C14 0.0316(11) 0.0300(12) 0.0268(11) 0.0097(9) 0.0099(9) 0.0107(9) 
C15 0.0326(11) 0.0237(11) 0.0461(14) 0.0179(10) 0.0155(10) 0.0044(9) 
C16 0.0320(11) 0.0192(11) 0.0529(15) 0.0053(10) 0.0060(10) -
0.0058(9) 
C17 0.0267(10) 0.0182(10) 0.0339(12) 0.0011(9) 0.0012(8) -0.0033(8) 
C19 0.0327(11) 0.0392(13) 0.0196(11) -0.0056(10) 0.0074(9) 
0.0052(10) 
C18 0.0300(11) 0.0249(11) 0.0296(12) 0.0107(9) -0.0004(9) -0.0051(9) 
C1' 0.0439(14) 0.0190(11) 0.0575(17) 0.0109(11) 0.0231(12) 
0.0120(10) 
C2' 0.0364(13) 0.0159(11) 0.076(2) -0.0073(12) -0.0097(13) 0.0029(9) 
C3' 0.0655(17) 0.0237(12) 0.0318(13) -0.0053(10) 0.0080(12) 
0.0166(11) 
C4' 0.0242(11) 0.0213(12) 0.0671(18) -0.0009(11) 0.0116(11) 
0.0093(9) 
C5' 0.0515(15) 0.0258(12) 0.0373(14) 0.0000(10) -0.0073(11) 
0.0211(11) 

geom_special details 

All esds (except the esd in the dihedral angle between two l.s. 
planes) are estimated using the full covariance matrix. The cell 
esds are taken into account individually in the estimation of esds 
in distances, angles and torsion angles; correlations between esds 
in cell parameters are only used when they are defined by crystal 
symmetry. An approximate (isotropic) treatment of cell esds is used 
for estimating esds involving l.s. planes. 

loop_ 
geom_ bond atom site label 1 
geom_bond_ atom_site label 2 
geom_bond_distance 
geom_bond_site_symmetry_2 
geom_bond_ publ_flag 

Ptl N1 2.1144 (16) . ? 
Pt1 P1 2.2066(6) . ? 
Pt1 Cl1 2.2862(6) ? 
Pt1 C12 2.3542(7) . ? 
Fe1 C2 2.0286(19) . ? 
Fe1 C4' 2.046(2) . ? 
Fe1 C3' 2.049(2) . ? 
Fe1 C1 2.0490(18) . ? 
Fe1 C5' 2.051(2) . ? 
Fe1 C3 2.053(2) . ? 
Fe1 C2' 2.055(2) . ? 
Fe1 C5 2.056(2) . ? 
Fe1 C1' 2.056(2) . ? 
Fe1 C4 2.056(2) . ? 
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P1 C1 1.7826( 1 9) . ? 
P1 C1 2 1. 80S3( 1 9) . ? 
P1 C6 1.8142(19) . ? 
N1 C2 1.463(3) . ? 
N1 C19 1. 497(3) . ? 
N1 C18 1.S02(3) . ? 
C1 CS 1 .4 28(3) ? 
C1 C2 1.431(3) ? 
C2 C3 1.422(3) ? 
C3 C4 1.422(3) ? 
C4 CS 1.417(3) ? 
C6 C7 1. 387(3) ? 
C6 C1 1 1. 396(3) . ? 
C7 C8 1 .393(3) . ? 
C8 C9 1. 38 1( 3) . ? 
C9 C10 1. 37S(4) . ? 
C10 C11 1.390(3) ? 
C1 2 C17 1.393(3) ? 
C12 C13 1. 396(3) ? 
C1 3 C1 4 1. 391(3) ? 
C14 C1 S 1. 380(4) ? 

C1S C16 1. 378(4) ? 
C16 C17 1 .390(3) ? 
C1 ' CS ' 1. 393(4) ? 
C1 ' C2 ' 1. 397(4) ? 
C2 ' C3 ' 1.4 06(4) ? 
C3 ' C4' 1.412(4) ? 
C4 ' CS' 1.399(4) ? 

l oop 
geom angle_ atom_ site_l abel_1 
geom_angle_atom_ site label_2 
geom_ang l e atom_site l abel 3 
geom_ angle 
geom_ angle_site_symmetry_l 
geom_angle_site_ symmetry_ 3 

_geom_ang l e_publ_ flag 
N1 Pt1 P1 88.78(S) .. ? 
N1 Pt1 ell 176.78(S) . . ? 
P1 Pt1 Cl1 91.48(2) .. ? 
N1 Pt1 C12 90 . 67(S) .. ? 
P1 Ptl C12 179 .11 3(18) ? 
Cll Ptl C1 2 89.03(2) ? 
C2 Fe1 C4' 143 . 03(9) . ? 
C2 Fe1 C3' 116.29 (9) . ? 
C4 ' Fe1 C3' 40.34(11) .. ? 
C2 Fe1 C1 41.10(7) . . ? 
C4' Fe1 C1 172.16(10) . . ? 
C3' Fe1 C1 147.49(10) .. ? 
C2 Fe1 CS' 176 .4 6(9) . . ? 
C4' Fe1 CS' 39.9S(10) .. ? 
C3' Fe1 CS' 67.23(10) .. ? 
C1 Fe1 CS' 1 3S . 63(9) .. ? 
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C2 Fe1 C3 40.76(7) .. ? 
C4' Fe1 C3 110.70(9) .. ? 
C3' Fe1 C3 110.16(10) .. ? 
C 1 Fe 1 C 3 68. 84 (8) . . ? 
C5' Fe1 C3 139.47(10) .. ? 
C2 Fe1 C2' 115.33(9) .. ? 
C4' Fe1 C2' 67.39(10) .. ? 
C3' Fe1 C2' 40.08(11) .. ? 
C1 Fe1 C2' 118.50(9) .. ? 
C5' Fe1C2' 66.91(11) .. ? 
C3 Fe1 C2' 138.24(11) .. ? 
C2 Fe1 C5 68.67(8) .. ? 
C4' Fe1 C5 131.50(9) .. ? 
C3' Fe1 C5 171.44(10) .. ? 
C1 Fe1 C5 40.72(7). ? 
C5' Fe1 C5 107.89(9) .. ? 
C3 Fe1 C5 68.55(8) .. ? 
C2' Fe1 C5 145.80(10) .. ? 
C2 Fe1 C1' 140.37(9) .. ? 
C4' Fe1 C1' 66.99(10) .. ? 
C 3' Fe 1 C l' 67. 01 (11) . . ? 
C1 Fe1 C1' 113.69(8) .. ? 
C5' Fe1 C1' 39.65(11) .. ? 
C3 Fe1 C1' 177.14(9) .. ? 
C2' Fe1 C1' 39.72(11) .. ? 
C5 Fe1 C1' 114.18(10) .. ? 
C2 Fe1 C4 68.08(8) .. ? 
C4' Fe1 C4 106.24(9) .. ? 
C3' Fe1 C4 133.40(10) .. ? 
C1 Fe1 C4 68.08(8) .. ? 
C5' Fe1 C4 110.00(10) .. ? 
C3 Fe1 C4 40.50(9). ? 
C2' Fe1 C4 173.21(9) .. ? 
C5 Fe1 C4 40.32(8) .. ? 
C1' Fe1 C4 141.14(11) . . ? 
C1 P1 C12 108.82(9) .. ? 
C1 P1 C6 107.82(9) .. ? 
C12 P1 C6 103.43(9) .. ? 
C1 P1 Pt1 101.18(6) .. ? 
C12 P1 Pt1 118.52(7) .. ? 
C6 P1 Pt1 116.61(6) .. ? 
C2 N1 C19 110.61 (16) ? 

C2 N1 C18 107.36(16) ? 
C19 N1 C18 107.94(17) .. ? 
C2 N1 Pt1 111.01(12) .. ? 
C19 N1 Ptl 112.49(13) ? 
C18 N1 Ptl 107.19 (12) ? 
C5 C1 C2 107.36(16) ? 
C5 C1 P1 136.60(15) ? 
C2 C1 P1 116.04 (14) ? 
C5 C1 Fe1 69.90(11) ? 
C2 C1 Fe1 68.69(10) ? 
P1 C1 Fe1 125.58(10) .. ? 
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C3 C2 C1 108.73(17) ? 
C3 C2 N1 128.45(17) ? 
C1 C2 N1 122.32(16) ? 
C3 C2 Fe1 70.55( 11) ? 
C1 C2 Fe1 70 . 2 1(11) ? 
N1 C2 Fe1 131.44(14) ? 
C2 C3 C4 107.03(17) ? 
C2 C3 Fe1 68 . 69(11) ? 
C4 C3 Fel 69.86(12) ? 
C5 C4 C3 1 09 .1 6(17) ? 
C5 C4 Fe1 69.82(11) ? 
C3 C4 Fe1 69.64( 12) ? 
C4 C5 C1 107.72(18) ? 
C4 C5 Fe1 69.85(12) ? 
C1 C5 Fe1 69.38(11) ? 
C7 C6 C11 119.44 (18) ? 
C7 C6 P1 122.05(15) ? 
C11 C6 P1 118.49(15) ? 
C6 C7 C8 120.1(2) ? 
C9 C8 C7 120.1(2) ? 
C10 C9 C8 120.1(2) ? 
C9 C10 C11 120.4 (2) ? 
C10 C11 C6 119.8(2) ? 
C17 C12 C13 120.04 (18) ? 
C17 C12 P1 120.63(16) ? 
C1 3 C12 P1 119.09(15) ? 
C14 C13 C12 119.6(2) ? 
C15 C14 C13 120.1(2) ? 
C16 C1 5 C14 120.4(2) ? 
C15 C1 6 C17 120.4(2) ? 
C16 C17 C12 119.4(2) ? 
C5 ' C1 ' C2 ' 108.5(2) ? 
C5 ' C1 ' Fe1 69.97(14) ? 
C2' C1 ' Fe1 70.11(14) ? 
C1' C2' C3 ' 107.9(2) ? 
C1 ' C2 ' Fe1 70.17( 14) ? 
C3 ' C2' Fe1 69 .71(1 4) ? 
C2 ' C3' C4 ' 107.7(2) ? 
C2 ' C3 ' Fe1 70.22(14) ? 
C4 ' C3 ' Fe1 69 .71(1 3) ? 
C5' C4' C3' 107.7(2) ? 
C5 ' C4' Fe1 70.22(13) ? 
C3' C4 ' Fe1 69 . 95(13) ? 
C1' C5 ' C4' 108.3(2) ? 
C1' C5 ' Fe1 70.38(13) ? 
C4' C5 ' Fe1 69 . 83(13) ? 

diffrn measured fraction theta max 
diffrn reflns theta ful l 
diffrn measured fraction theta full 
refine_diff_density_ max 0.523 
refine_diff_density_ min -0.741 
refine diff density rms 0.089 

0.977 
28 . 63 
0.977 
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Appendix D. X-ray Crystallographic Data for Alcohol (S)-297b. 

data costa5 Om 

audit creation method 

chemical name systematic 

? 

chemical name common 

chemical_melting_point 

chemical formula_moiety 

chemical formula sum 

'C25 H25 Fe N 0' 

chemical formula weight 

l oop 

atom type symbol 

atom_type description 

SHELXL-97 

? 

? 

'C25 H25 Fe N 0 ' 

411.31 
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atom_typ e scat dispersion real 

atom_type scat dispersion imag 

atom_type scat source 

, C ' ' C ' 0 . 0033 0 . 00 1 6 

' International Tab l es Vo l C Tables 4.2.6.8 and 6 .1.1.4' 

'H' 'H' 0 . 0000 0 . 0000 

'International Tables Vo l C Tables 4. 2 . 6 . 8 and 6 .1.1.4' 

' N ' ' N' 0 . 006 1 0 . 0033 

' Internationa l Tables Vo l C Tables 4.2 . 6.8 and 6 .1.1.4' 

' 0 ' ' 0 ' 0 . 01 06 0 . 0060 

' Internationa l Tab l es Vo l C Tables 4.2.6.8 and 6 .1.1.4' 

'Fe ' 'Fe ' 0.3463 0 . 8444 

' Internationa l Tab l es Vo l C Tab l es 4 .2.6 . 8 and 6. 1.1.4' 

symmetry_cel l setting 

symmetry_space_group_name H-M 
symmetry_space g r oup_ name Hall 

'x, y , z ' 

'-x , y +1 /2, - z ' 

ce l l l ength a 

cell length c 

cell ang l e a l pha 

Monoc l inic 

P2( 1) 
'p 2yb' 

9 .41 5(3) 

10.637(4) 

1 0 .44 0(4) 

90.00 
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cell angle_beta 

cell angle gamma 

cell volume 

cell formula units Z 

cell_measurement temperature 

cell measurement reflns used 

cell measurement theta min 

cell measurement theta max 

exptl crystal description 

exptl crystal colour 

exptl crystal size_max 

exptl crystal size_mid 

exptl crystal size_min 

exptl crystal density_meas 

exptl crystal density_diffrn 

exptl crystal density_ method 

exptl crystal F 000 

exptl absorpt coefficient mu 

exptl absorpt correction type 

exptl absorpt correction_T_min 

exptl absorpt correction_T_max 

exptl absorpt_process details 

exptl special details 

107.404(6) 

90.00 

997.6(6) 

2 

100 (2) 

401 

2.80 

22.14 

block 

orange 

0.17 

0.16 

0.05 

'not measured' 

1. 369 

'not measured' 

432 

0.771 

numerical 

0.8795 

0.9596 

SADABS 
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? 

diffrn ambient temperature 1 00 (2) 

diffrn radiation wave l ength 0 . 71 073 

diffrn radiation type MoK\a 

diffrn r adiation source 'fine -focus sea l ed tube' 

diffrn radiation monochromator graphite 

diffrn_measurement device type ' CCD area detector' 

diffrn measurement method ' phi and omega scans ' 

diffrn detector area r eso l mean ? 

diffrn standards number ? 

diffrn standards interval count ? 

diffrn standards inte r va l time ? 

diffrn standards decay_% ? 

diffrn reflns number 1342 1 

diffrn reflns aV_R_equiva1ents 0 . 0439 

diffrn_ reflns av_ sigmaI/netI 0.0542 

diffrn reflns l imit h min -12 

diffrn reflns limit h max 12 

di ffr n reflns l imit k min -14 

diffrn reflns l imit k max 12 

diffrn ref l ns limit 1 min -1 2 

diffrn r e flns limit 1 max 13 

diffrn reflns theta min 2 .2 7 

dif fr n reflns theta max 28.39 

reflns number tota l 442 4 
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reflns number gt 4016 

reflns threshold expression >2sigma(I) 

computing data collection 'Bruker SMART' 

computing_cell refinement 'Bruker SMART' 

computing_data reduction 'Bruker SAINT' 

computing structure solution 'SHELXS-97 (Sheldrick, 1990)' 

computing_ structure refinement 'SHELXL-97 (Sheldrick, 1997)' 

computing_molecular graphics 'Bruker SHELXTL' 

computing_publication_material 'Bruker SHELXTL' 

refine special_details 

Refinement of FA2A against ALL reflections. The weighted R-factor 
wR and goodness of fit S are based on FA2A, conventional R-factors R 
are based on F, with F set to zero for negative FA2A. The threshold 
expression of FA2A > 2sigma(FA2A) is used only for calculating R
factors (gt) etc. and is not relevant to the choice of reflections 
for refinement. R-factors based on FA2A are statistically about 
twice as large as those based on F, and R-factors based on ALL data 
will be even larger. 

refine ls structure factor coef Fsqd 

refine ls weighting scheme calc 

refine ls_ weighting details 

'calc w=1/[\sA2A(FoA2A)+(0.0293P)A2A+0.0000P] where 
P=(Fo A2 A+2Fc A2 A)/3' 

atom sites solution primary direct 

atom_sites solution secondary difmap 
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atom_sites solution_hydrogens 

refine ls hydrogen treatment 

refine ls extinction method 

refine ls extinction coef 

refine ls abs structure details 

geom 

mixed 

none 

? 

'Flack H 0 (1983), Acta Cryst. A39, 876-881' 

refine ls abs structure Flack 

refine ls number reflns 

refine ls number parameters 

refine ls number restraints 

refine ls R factor all 

refine lS_R_factor gt 

refine ls wR factor ref 

refine ls_ wR_factor gt 

refine ls goodness of fit ref 

refine ls restrained S all 

refine ls shift/su max 

refine ls shift/su mean 

loop 

atom site label 

atom_site type symbol 

atom site fract x 

atom_site fract y 

atom site fract z 

atom site U iso or equiv 

atom_site adp type 

0.010(13) 

4424 

349 

1 

0.0387 

0.0328 

0.0680 

0.0646 

1.010 

1. 010 

0.001 

0.000 
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atom_site occupancy 

atom_site symmetry_multiplicity 

atom_site_ca l c flag 

atom_ site_ refinement flags 

atom_site_disorder assembly 

atom_site_disorder_ group 

Fe 1 Fe 0.47854(3) 0.06 1 73(3) 0 . 64101(3) 0 . 012 06(8) Uani 1 1 d .. . 

01 0 0.81934(18) - 0. 1 0789(15) 0.70627(15) 0.0 1 35(3) Uani 1 1 d . . . 

H1 H 0.757(3) -0.145(3) 0 . 737(3) 0.026(8) Uiso 11 d . 

N1 N 0.6 1 89(2) - 0 .14 447( 1 9) 0.86024(19) 0 . 0165(4) Uani 1 1 d 

C1 C 0 . 5900(3) - 0 . 0149(2) 0 . 8244(2) 0.0143(5) Uani 1 1 d 

C1 ' C 0.4750(3) -0.0302(3) 0.4668(2) 0.0172(6) Uani 1 1 d 

H1A H 0.548(3) - 0 . 082 (3) 0.454 (3) 0.027 (8) Uiso 1 1 d 

C2 C 0 . 6879(2) 0.06 1 5(3) 0.77453( 1 7) 0.0120(4) Uani 1 1 d 

C2 ' C 0 .4 594(3) 0 .1 0 11( 2) 0 . 4453(2) 0 . 0195(6) Uani 1 1 d 

H2A H 0 . 523(3) 0 .1 51 (3) 0 .4 20(3) 0 . 0 1 5(7) Uiso 1 1 d 

C3' C 0.3290(3) 0 .1 406(3) 0 .4 761(2) 0.0197(6) Uan i 1 1 d 

H3A H 0.295(4) 0.223(3) 0.468(3) 0.040(9) Uiso 1 1 d 

C3 C 0.6276(3) 0.1861 (2) 0.7562(2) 0 . 0144(5) Uani 1 1 d 

H3 H 0.667 (3) 0.256(3) 0.721(2) 0.013(6) Uiso 1 1 d 

C4 ' C 0.2657(3) 0.0334(2) 0.5176(2) 0 . 0186(6) Uani 1 1 d 

H4A H 0 .1 84(3) 0.033(3) 0.548(2) 0.029(8) Uiso 1 1 d 

C4 C 0.4934(3) 0.1858 (2) 0.7920(2) 0 . 0179(5) Uani 1 1 d 

H4 H 0.425(3) 0.256(3) 0.786(3) 0.020(7) Uiso 1 1 d 

C5 C 0.4698(2) 0.0636(3) 0 . 83453(19) 0.0170(4) Uani 1 1 d 

H5 H 0.387(3) 0.042 (3) 0 . 859(2) 0 . 025(7) Uiso 1 1 d 

C5' C 0.3553(3) -0.0718(2) 0.5110(2) 0.0165(5) Uani 1 1 d 
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H5A H 0 . 335(3) - 0 .1 53(3) 0.530(2) 0.0 1 0(6) Uiso 1 1 d . .. 

C6 C 0 .7171( 3) - 0 .1 585(3) 0.9987(3) 0 . 0230(6) Uani 1 1 d .. 

H6C H 0 . 677(3) - 0 .1 22(3) 1. 067(3) 0 . 032(8) Uiso 1 1 d 

H6B H 0 . 730(3) - 0 .24 3(3) 1.018(3) 0.022(8) Uiso 1 1 d 

H6A H 0.81 1( 3) - 0 .1 26(3) 1.004(3) 0.020(7) Uiso 1 1 d 

C7 C 0.4828(3) - 0.218 1( 3) 0.8442(3) 0.0210(5) Uani 1 1 d .. 

H7C H 0.425(3) - 0.207(2) 0 . 76 1( 3) 0 . 014(6) Uiso 11 d 

H7B H 0.512(3) -0.309(3) 0.862(2) 0.024(7) Uiso 11 d 

H7A H 0.432(3) -0.194(3) 0.916(3) 0 . 027(8) Uiso 1 1 d 

C8 C 0 . 8346(2) 0 . 0185(2) 0.7568(2) 0.0 1 22(4) Uani 1 1 d 

C 9 CO . 9593 (2) O. 0219 (2) o. 8930 (2) O. 0 1 26 (5) U an i ll d 

C10 C 1.0830(3) - 0.0556(2) 0.9110(2) 0.0 1 61(5) Uani 1 1 d 

H10 H 1.086(3) - 0. 1 05(2) 0.842(2) 0.0 14( 7) Uiso 1 1 d 

C11 C 1.1 950(3) - 0.0567(2) 1. 0331( 2) 0 . 0 1 94(5) Uani 1 1 d 

H11 H 1. 277(3) - 0 .1 07 (3) 1.045(3) 0 . 028(8) Uiso 1 1 d 

C1 2 C 1.1853(3) 0.0192(2) 1.1 370(2) 0 . 0 1 93(5) Uani 1 1 d 

H12 H 1.264(3) 0 . 014 (3) 1 .216(3) 0.030(8) Uiso 1 1 d 

C13 C 1.0659(3) 0.0989(2) 1.1193(2) 0 . 0205(6) Uani 1 1 d 

H13 H 1.059(3) 0. 14 9(2) 1.192(3) 0 . 0 1 8(7) Uiso 1 1 d 

C14 C 0.9529(3) 0. 1 002(2) 0.9965(2) 0 . 0168(5) Uani 1 1 d 

H14 H 0.866(3) 0. 1 59(2) 0 . 988(2) 0.013(6) Uiso 1 1 d 

C15 C 0.8807 (2) 0.1009(2) 0 . 6553(2) 0 . 0135(5) Uani 1 1 d 

C16 C 0.9556(3) 0.2140(2) 0.6949(2) 0.0170(5) Uani 1 1 d 

H16 H 0.978(3) 0 . 243(3) 0.781(3) 0.037(9) Uiso 1 1 d 

C17 C 0 . 9954(3) 0.2892(2) 0 . 6025(3) 0.0203(5) Uani 1 1 d 

H17 H 1.043(3) 0.363(3) 0 . 625(3) 0.023(7) Uiso 1 1 d 

C18 C 0 . 96 1 6(3) 0.2529(2) 0 . 4692(2) 0.0211(6) Uani 1 1 d 
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H18 H 0.9900 0.3041 0.4064 0.025 Uiso 1 1 calc R . 

C19 C 0.8862(3) 0.1417(2) 0.4289(2) 0.0190(5) Uani lId 

H19 H 0 . 864(3) 0.119(2) 0 . 337(3) 0.020(7) Uiso lId 

C20 C 0.8462(2) 0 . 0650(3) 0.52082(19) 0 . 0148(4) Uani lId 

H20 H 0.797(3) - 0 . 014(2) 0 .4 93(2) 0.013(6) Uiso lId ... 

loop 

atom site aniso label 

atom site aniso U 11 

atom site aniso U 22 

atom site aniso U 33 
- -

atom site aniso U 23 
- -

atom site aniso U 13 - -

atom site aniso U 12 
- -

Fel 0.01120(14) 0.01324(14) 0.01063(13) -0.00067(15) 0 . 00158(10) -
0 . 00017(16) 

010.0161(8) 0 . 0120(8) 0 . 0123(8) - 0 . 0025(6) 0.0044(7) - 0 . 0028(7) 

Nl 0.0190(10) 0 . 0175(10) 0.0141(9) 0 . 0024(8) 0.0063(8) -0.0032(8) 

C1 0 . 0158(12) 0.0166(12) 0.0093(10) -0.0012(9) 0.0019(9) 0 . 0003( 1 0) 

C1' 0.0 1 25(12) 0 . 0259(15) 0 . 0105( 11) -0.0066(10) - 0 . 0007(9) -
0 . 0002 (11) 

C2 0.0123(9) 0.0156(9) 0.0073(8) - 0.0003(12) 0.0017(7) - 0 . 0007(13) 

C2 ' 0.0214(13) 0 . 0233(15) 0 . 0110(11) 0 . 0006(9) 0.0004(9) - 0.0089(10) 

C3 ' 0.0214(13) 0.0149(13) 0.0160(12) 0 . 0016(10) -0.0043(10) 
0 . 000 1(11) 

C3 0.0165( 1 2) 0.0159(12) 0.0083(10) -0.0015(9) 0 . 0000(9) -0.0015(10) 

C4' 0.0114(11) 0.0198(17) 0.0216(11) -0.0013(9) 0 . 0004(9) - 0 . 0008(9) 

C4 0.0179(12) 0.0200(13) 0.0157(11) -0.0058(9) 0.0050(10) 0.0035(10) 
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C5 0.0170(10) 0 . 0233(11) 0 . 0 1 25 ( 9) 0 . 0000( 1 3) 0 . 0069(8 ) 0 . 0017(15) 

C5 ' 0 . 0166(12) 0.0152(13) 0 . 0135(11) -0.0010(10) - 0.00 1 9(9) -
0.0022(10) 

C6 0 . 0241(14) 0.0244( 1 5) 0.0195( 1 2) 0 . 0107( 11) 0.0052(11) -
0.0006(12) 

C7 0.0234(13) 0 . 0200(14) 0.0191(12) 0.0037(10) 0 . 0055(11) -
0 . 0030(11) 

C8 0.0127(10) 0 . 0117(10) 0 . 0109(9) - 0.0025(8) 0.0017(8) 0.0004(8) 

C9 0 . 011 6(10) 0 . 0143(11) 0 . 0110(10) 0 . 0031(8) 0.0022(8) - 0.0010(8) 

CI0 0.0187(12) 0.0173(12) 0.0127(11) - 0 . 0012(9) 0.0052(9) -
0 . 0011(10) 

Cll 0.0150(12) 0.0203(13) 0 . 0202(12) 0.0070(10) 0.0013(10) 
0.0020( 1 0) 

C12 0.0187 (12) 0.0231( 1 3) 0 . 0115(10) 0 . 0018(9) - 0 . 0021(9) -0.0025(9) 

CI30 . 0236(13) 0.0235(14) 0 . 0128(10) - 0.0044 (9) 0.0029(9) -
0.0033(10) 

C14 0 . 0169(11) 0.0164(12) 0.0153(10) - 0.0009(8) 0.0020(9) 0 . 0014(9) 

C1 5 0 . 0099(10) 0.0169(11) 0.0133(10) 0.0027(8) 0 . 0027(8) 0.0018(8) 

CI60 . 0162(12) 0.0173(13) 0.0160(12) 0.0019(9) 0.0027(10) -

0.000 1(1 0) 

C17 0.0162(12) 0.0 1 59(13) 0.0287(13) 0.0039(11) 0.0063( 1 0) -
0.0019(10) 

C18 0.0181(13) 0.0253(14) 0.0226(13) 0 . 0135( 1 0) 0.0104(10) 
0.0055(10) 

C1 9 0 . 0188(12) 0.0238(13) 0.0156(12) 0 . 0047( 1 0) 0 . 0068(10) 
0 . 0046(10) 

C20 0.0132(9) 0.0174(10) 0.0144(9) 0.0017(12) 0.0049(7) 0.0024(13) 

All esds (except the esd in the dihedral ang l e between two l. s. 
planes) are estimated using the full covariance matrix. The cell 
esds are taken into account individually in the estimation of esds 
in distances , angles and torsion ang l es; corre l ations between esds 
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in cell parameters are only used when they are defined by crystal 
symmetry. An approximate (isotropic) treatment of cell esds is used 
for estimating esds involving l.s. planes . 

loop 

geom_bond atom site label 1 

Fe1 C4 2.028(2) ? 
Fe1 C3 2.038(2) ? 
Fe1 C2 2.0454(18) ? 
Fe1 C2' 2 . 040(3) ? 
Fe1 C5 2.047(2) ? 
Fe1 C3' 2.049(2) ? 
Fe1 C4' 2.055(2) ? 
Fe1 C1 2.057(2) ? 
Fe1 C1' 2.056(3) ? 
Fe1 C5 ' 2.065(2) ? 
01 C8 1.436(3) ? 
01 H1 0.84 (3) ? 
N1 C1 1 . 433(3) ? 
N1 C6 1.472(3) ? 
N1 C7 1.468(3) ? 
C1 C2 1.438(3) ? 
C1 C5 1.435(4) ? 
C1 ' C5' 1 . 411(4) ? 
C1' C2' 1.416(4) ? 
C1' H1A 0.92(3) ? 
C2 C3 1.431(4) ? 
C2 C8 1.518(3) ? 
C2' C3 ' 1.422(4) ? 
C2 ' H2A 0.90 (3) ? 
C3' C4' 1.413(4) ? 
C3' H3A 0.93(3) ? 
C3 C4 1.421(4) ? 
C3 H3 0.95 (3) ? 
C4' C5' 1.416(3) ? 
C4' H4A 0.91(3) ? 
C4 C5 1.412(4) ? 
C4 H4 0.98 (3) ? 
C5 H5 0.91 (3) ? 
C5' H5A 0 . 92 (3) ? 
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C6 H6C 0 . 98 (3) ? 
C6 H6B 0 . 92(3 ) ? 
C6 H6A 0 . 93 (3) ? 
C7 H7C 0 . 88(3) ? 
C7 H7B 1. 01(3) ? 
C7 H7A 1.03(3) ? 
C8 C1 5 1. 534(3) . ? 
C8 C9 1. 550(3) . ? 
C9 C14 1. 380(3) . ? 
C9 C10 1. 393(3) . ? 
C10 C1 1 1. 390(3) . ? 
C10 H10 0 . 90(3) . ? 
C1 1 C12 1. 377(4) . ? 
C1 1 H11 0 . 92(3) . ? 
C12 C1 3 1. 375(3) . ? 
C12 Hl2 0 . 93 (2) . ? 
C1 3 C14 1.4 01( 3) . ? 
C13 H13 0 . 94(3) . ? 
C14 H14 1.01(3) . ? 
C15 C16 1.393(3) ? 
C15 C20 1. 397(3) . ? 
C16 C17 1.389(4) . ? 
C16 H16 0 . 91(3) . ? 
C17 C18 1.386(4) . ? 
C17 H17 0.90(3) . ? 
C18 C19 1.379(4) ? 
C18 H1S 0.9500 . ? 
C19 C20 1.395(4) . ? 
C19 H19 0.95(3) ? 
C20 H20 0 . 96(3) . ? 

loop 

C4 Fe1 C3 40.92(10) 
C4 Fe1 C2 69.08 (10) 
C3 Fe 1 C2 41.04(11) 
C4 Fe1 C2 ' 127.56(11) 
C3 Fe1 C2' 107.25(10) 

? 
? 
? 

? 
? 
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C2 Fe1 C2 ' 117.48(10) ? 
C4 Fe1 C5 40.55(13) ? 
C3 Fe1 C5 68 . 61(11) ? 
C2 Fe1 C5 69 . 03(8) ? 
C2' Fe1 C5 165.71(12) ? 
C4 Fe1 C3 ' 104.89(11) ? 
C3 Fe1 C3 ' 114.13(10) ? 
C2 Fe1 C3 ' 148 . 53(11) ? 
C2 ' Fe 1 C3 ' 40 . 70(11) ? 
C5 Fe1 C3 ' 127.23(11) ? 
C4 Fe1 C4 ' 114.20(10) ? 
C3 Fe1 C4 ' 146.64(10) ? 
C2 Fe1 C4' 170.86(12) ? 
C2 ' Fe1 C4 ' 67.96(11) ? 
C5 Fe1 C4 ' 107.50(10) ? 
C3 ' Fe1 C4 ' 40.28(10) ? 
C4 Fe1 C1 68.72(10) ? 
C3 Fe1 C1 68 . 81(9) ? 
C2 Fe1 C1 41.04(10) ? 
C2 ' Fe1 C1 151.82(11) ? 
C5 Fe1 C1 40.95(10) ? 
C3 ' Fe1 C1 167.25(11) ? 
C4' Fe1 C1 130.98(10) ? 
C4 Fe1 C1' 167.38(11) ? 
C3 Fe1 C1' 131.01(10) ? 
C2 Fe1 C1 ' 111.07(10) ? 
C2 ' Fe1 C1 ' 40 .4 3(12) ? 
C5 Fe1 C1 ' 151.99(12) ? 
C3 ' Fe1 C1 ' 68 . 06(11) ? 
C4 ' Fe1 C1 ' 67 . 75(11) ? 
C1 Fe1 C1 ' 120.23(10) ? 
C4 Fe1 C5 ' 148.52(10) ? 
C3 Fe1 C5 ' 170.54(10) ? 
C2 Fe1 C5 ' 1 33.20(12) ? 
C2' Fe1 C5' 67.61(10) ? 
C5 Fe1 C5 ' 118.35(12) ? 
C3 ' Fe1 C5 ' 67.64 (12) ? 
C4 ' Fe1 C5' 40.20(9) ? 
C1 Fe1 C5 ' 111.66(10) ? 
C1 ' Fe1 C5' 40.05(10) ? 
C8 01 H1 107 (2) ? 
C1 N1 C6 111.63(19) ? 
C1 N1 C7 113.1 (2) ? 
C6 N1 C7 109.2 (2) ? 
N1 C1 C2 123.1(2) ? 
N1 C1 C5 129.3(2) ? 
C2 C1 C5 107.6(2) ? 
N1 C1 Fe1 128 . 95(15) ? 
C2 C1 Fe1 69 . 06(11) ? 
C5 C1 Fe1 69 .1 5(12) ? 
C5' C1 ' C2 ' 107.8(3) ? 
C5' C1 ' Fe1 70.30(15) ? 
C2 ' C1 ' Fe1 69.18(16) ? 
C5 ' C1 ' H1A 124 .4(1 9) ? 
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C2 ' C1 ' H1A 127.8( 1 9) ? 
Fe1 C1 ' H1A 127 . 0(l7) ? 
C3 C2 C1 107.S(2) ? 
C3 C2 C8 126 . 9(2) ? 
C1 C2 C8 12S.4 (3) ? 
C3 C2 Fe1 69 . 22 (1 2) ? 
C1 C2 Fe1 69 . 90( 11 ) ? 
CB C2 Fe1 130 . 07( 1 4) ? 
C1 ' C2 ' C3 ' 108 .1 (2) ? 
C1 ' C2 ' Fe 1 70 . 39(lS) ? 
C3 ' C2 ' Fe1 69 . 98(lS) ? 
C1 ' C2 ' H2A 12S . 6(18) ? 
C3 ' C2' H2A 126 . 2(18) ? 
Fe 1 C2 ' H2A 123 . 2(17) ? 
C4 ' C3 ' C2 ' 107 . 7(2) ? 
C4 ' C3 ' Fe1 70 . 08(14) ? 
C2 ' C3 ' Fe1 69 . 33(14) ? 
C4 ' C3 ' H3A 129 (2) ? 
C2 ' C3 ' H3A 124 (2) ? 
Fe1 C3 ' H3A 127(2) ? 
C4 C3 C2 1 08 .1 (2) ? 
C4 C3 Fe1 69 .1 S(14) ? 
C2 C3 Fe1 69 . 75(13) ? 
C4 C3 H3 12S . 9(16) ? 
C2 C3 H3 12S.9(16) ? 
Fe1 C3 H3 124 . 0(lS) ? 
C3' C4' C5 ' 1 08.1(2) ? 
C3 ' C4 ' Fe1 69.63( 1 4) ? 
C5' C4 ' Fe1 70 . 28( 1 4) ? 
C3 ' C4 ' H4A 126 .1 (19) ? 
C5 ' C4 ' H4A 125.8(19) ? 
Fe1 C4 ' H4A 123 . 4(lS) ? 
C5 C4 C3 108 . 7(2) ? 
C5 C4 Fe1 70 . 43(14) ? 
C3 C4 Fe1 69.93(14) ? 
CS C4 H4 1 24 . 3(l7) ? 
C3 C4 H4 1 27 . 0( 17) ? 
Fe1 C4 H4 123.9(15) ? 
C4 CS C1 10B . 1 (2) ? 
C4 CS Fe 1 69 . 02(13) ? 
C1 CS Fe 1 69 . 91 (12) ? 
C4 CS HS 123 . 0 (19) ? 
C1 CS HS 129(2) ? 
Fe1 C5 HS 123.8(14) ? 
C1 ' CS ' C4 ' 108.3(2) ? 
C1' CS ' Fe 1 69.66( 1 4) ? 
C4 ' C5 ' Fe1 69.S3(14) ? 
C1 ' C5 ' HSA 126.7(16) ? 
C4 ' C5 ' H5A 124.9(16) ? 
Fe1 C5 ' H5A 128.4(14) ? 
N1 C6 H6C 11 3.9( 1 6) ? 
N1 C6 H6B 10B.4(17) ? 
H6C C6 H6B 107(2) ? 
N1 C6 H6A 109.3(16) ? 
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H6C C6 H6A 112 (2). ? 
H6B C6 H6A 107 (2). ? 
N1 C7 H7C 107.7(17) ? 
N1 C7 H7B 107.9(15) ? 
H7C C7 H7B 112(2) . ? 
N1 C7 H7A 111.2(16) ? 
H7C C7 H7A 113(2) . ? 
H7B C7 H7A 106 (2). ? 
01 C8 C2 109.39(19) ? 
01 C8 C15 107.40(17) .. ? 
C2 C8 C1 5 111.59(19) .. ? 
01 C8 C9 108.93(17) .. ? 
C2 C8 C9 110.38( 1 7) .. ? 
C15 C8 C9 109.08(18) .. ? 
C14 C9 C10 118.82(19) .. ? 
C14 C9 C8 122.28(19) .. ? 
C10 C9 C8 118.90(19) .. ? 
C1 1 C10 C9 120.2(2) .. ? 
C11 C10 H10 122.0(16) .. ? 
C9 C10 H10 11 7.8( 1 6) .. ? 
C12 C1 1 C1 0 120.4(2) .. ? 
C12 C11 H11 11 9 . 2(18) .. ? 
C10 C11 H11 120 . 3(18) .. ? 
C13 C12 C11 120 . 0(2) .. ? 
C13 C12 H12 124 . 2(17) .. ? 
C11 C12 H12 11 5 . 8(17) .. ? 
C12 C13 C14 11 9 . 7(2) .. ? 
C12 C13 H13 11 9.2(16) ? 
C14 C13 H13 121.1(16) .. ? 
C9 C14 C13 120.8(2) .. ? 
C9 C14 H14 122.0(13) .. ? 
C13 C14 H14 117. 2(14) .. ? 
C16 C15 C20 11 8.6(2) .. ? 
C16 C15 C8 120.7(2) .. ? 
C20 C15 C8 120.6 (2) . . ? 
C17 C1 6 C15 120.6(2) ? 
C17 C1 6 H16 117(2). ? 
C15 C1 6 H16 122 (2). ? 
C16 C17 C18 120.5(2) ? 
C1 6 C17 H17 122 . 7( 1 8) .. ? 
C1 8 C17 H17 116 . 7( 1 8) .. ? 
C19 C18 C17 119.2(2) .. ? 
C19 C18 H18 120.4 .. ? 
C17 C18 H18 120 .4 ? 
C18 C19 C20 120.8(2) ? 
C18 C19 H19 117.9(15) ? 

C20 C19 H19 121.3(16) ? 
C19 C20 C15 120 . 2 (3) ? 
C19 C20 H2O 120.5(15) ? 
C15 C20 H2O 119.3(15) ? 
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l oop 

geom_torsion atom site l abe l 1 

geom_torsion atom_site l abe l 2 

geom_to r sion atom_site l abe l 3 

geom_torsion atom_site l abe l 4 

geom_torsion 

geom_torsion site symmetry_l 

geom_torsion site symmetry_2 

geom_to r sion site symmetry_4 

C6 N1 C1 C2 84 . 8 (3 ) . .. ? 
C7 N1 C1 C2 -1 51. 6 (2) ? 
C6 N1 C1 C5 - 92 . 5(3) .... ? 
C7 N1 C1 C5 31.1( 3 ) .. ? 
C6 N1 C1 Fe1 173.55(19) ? 
C7 N1 C1 Fe1 - 62 . 9 (3 ) ? 
C4 Fe1 C1 N1 161.6(2) ? 
C3 Fe1 C1 N1 -1 5 4.4( 2 ) ? 
C2 Fe 1 C1 N1 -11 6 . 3 (3) .... ? 
C2 ' Fe 1 C1 N1 - 67.3(3) .... ? 
C5 Fe1 C1 N1 1 2 4. 3(3 ) ? 
C3 'Fe 1 C1N1 99 . 7(5 ) .... ? 
C4' Fe1 C1 N1 57. 4( 3 ) .... ? 
C1' Fe1 C1 N1 -2 8 . 3 (3) .... ? 
C5 ' Fe1 C1 N1 1 5 .5(2) . ? 
C4 Fe1 C1 C2 - 82 .17(17) ? 
C3 Fe1 C1 C2 - 38 .12(1 6) ? 
C2 ' Fe1 C1 C2 49.0(3) ? 
C5 Fe1 C1 C2 -11 9 . 5(2) .. . . ? 
C3 ' Fe1 C1 C2 -144. 0( 4) . . . . ? 
C4 ' Fe1 C1 C2 17 3.68 (1 7) .... ? 
C1 ' Fe1 C1 C2 87.9 4(1 8) .... ? 
C5 ' Fe1 C1 C2 1 31.7 3( 1 6 ) ? 
C4 Fe1 Cl C5 37 . 32(17) .. .. ? 
C3 Fe 1 C1 C5 81.37( 1 8) .... ? 
C2 Fe1 C1 C5 11 9 . 5 (2) ... . ? 
C2' Fe1 C1 C5 168.5(2) ? 
C3 ' Fe1 C1 C5 - 24.5(5 ) . ... ? 
C4 ' Fe1 C1 C5 - 66.8(2) .... ? 
C1' Fe1 C1 C5 -1 52.57( 1 7 ) .. .. ? 
C5 ' Fe1 C1 C5 -1 08.79( 1 8 ) ... . ? 
C4 Fe1 C1' C5 ' -1 38.8(4) ... . ? 
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C3 Fe 1 C1' CS ' 1 7 S. S8 (l S ) ? 
C2 Fe 1 C1' CS ' 1 32 . 99 (1 6 ) ? 
C2 ' Fe 1 C1' CS ' -11 8 . 9 (2 ) ? 
CS Fe 1 C1' CS ' 4 8 . 3(3 ) . . ? 
C3 ' Fe 1 C1' CS ' - 80 . 89 (1 8 ) ? 
C4' Fe 1 C1 ' CS ' - 37 . 26 (l S ) ? 
C1 Fe 1 C1' CS ' 88 . 3 1(17) . ? 
C4 Fe 1 C1' C2 ' -1 9 . 9 ( 6) .... ? 
C3 Fe 1 C1' C2 ' - 6S . S (2 ) .. . . ? 
C2 Fe 1 C1' C2 ' -1 08 . 08 (1 8 ) .. . . ? 
CS Fe 1 C1' C2 ' 1 67 . 23 (1 8) ? 
C3 ' Fe 1 C1' C2 ' 38 . 0 4(1 6 ) . . .. ? 
C4' Fe 1 C1' C2 ' 81. 67 (1 7) .. .. ? 
C1 Fe 1 C1' C2 ' -l S2 . 76 (l S ) ... . ? 
CS ' Fe 1 C1' C2 ' 11 8 . 9 (2 ) ... . ? 
N1 C1 C2 C3 -1 77. 1 3 (1 9 ) . .. . ? 
CS C1 C2 C3 0 . 6 (2 ) ... . ? 
Fe 1 C1 C2 C3 S9 . 2 4 (13 ) .... ? 
N1 C1 C2 C8 -1. 9 (3 ) ... . ? 
CS C1 C2 C8 1 7S.90 (1 8) .... ? 
Fe 1 C1 C2 C8 - 1 2S . S(2 ) . .. . ? 
N1 C1 C2 Fe 1 1 23 . 6 (2 ) . ? 
CS C1 C2 Fe 1 - S8 . S9 (l S) ? 
C4 Fe 1 C2 C3 - 37.S 4 (14) ? 
C2 ' Fe 1 C2 C3 84 . 92 (1 6 ) ? 
CS Fe 1 C2 C3 - 81.11 (1 7) ? 
C3 ' Fe1 C2 C3 46 . 8 (2 ) . ? 
C1 Fe1 C2 C3 - 1 1 8 . 77 (1 9 ) ? 
C1' Fe 1 C2 C3 1 28 . 94 (l S ) ? 
CS ' Fe1 C2 C3 1 69 .1 S (1 6 ) ? 
C4 Fe 1 C2 C1 81. 22 (l S ) . ? 
C3 Fe 1 C2 C1 11 8 . 77 (1 9) . . .. ? 
C2 ' Fe 1 C2 C1 -l S6 . 3 1(1 4) .. . . ? 
CS Fe 1 C2 C1 37.66 (1 6 ) .... ? 
C3 ' Fe1 C2 C1 16S . 61 ( 1 9 ) . ... ? 
C1' Fe 1 C2 C1 -11 2 . 29 (1 S) .. . . ? 
CS ' Fe 1 C2 C1 - 72 . 08( 1 7 ) ? 
C4 Fe 1 C2 C8 - lS8 . 9 ( 3 ) ? 
C3 Fe1 C2 C8 -1 2 1.4( 3 ) . ? 
C2 ' Fe1 C2 C8 - 36 . S(3 ) . ? 
CS Fe 1 C2 C8 l S7 . S(3 ) ... . ? 
C3 ' Fe 1 C2 C8 - 7 4. S ( 4 ) .. .. ? 
C1 Fe 1 C2 C8 11 9.9(3 ) ... . ? 
C1' Fe1 C2 C8 7.6(3 ) .. . . ? 
CS ' Fe1 C2 C8 47 . 8(3) . .. . ? 
CS ' C1' C2 ' C3 ' - 0. 1 (3) . .. . ? 
Fe 1 C1' C2 ' C3 ' - 60.06 (1 7) . .. . ? 
CS ' C1' C2 ' Fe 1 S9 . 93 (1 7) ? 
C4 Fe 1 C2 ' C1' 174.63( l S ) ... . ? 
C3 Fe 1 C2 ' C1' 1 34 . 03 (1 6 ) .... ? 
C2 Fe 1 C2 ' C1' 90 . 82( 1 8 ) .. .. ? 
CS Fe 1 C2 ' C1 ' -l SS. 1 (4) . .. . ? 
C3 ' Fe 1 C2 ' C1' -11 8 . 8 (2) .. . . ? 
C4 ' Fe 1 C2 ' C1' - 8 1. 09( 1 7) .... ? 
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C1 Fe1 C2' C1 ' 56 . 9(3) .... ? 
C5 ' Fe1 C2 ' C1 ' -37.52(15) . .. ? 
C4 Fe1 C2 ' C3 ' - 66.60( 1 9) .... ? 
C3 Fe1 C2 ' C3' -1 07.19(16) .... ? 
C2 Fe1 C2 ' C3' -1 50.41(16) . . .. ? 
C5 Fe1 C2 ' C3' - 36.4(5) . ? 
C4' Fe1 C2 ' C3' 37 . 68( 1 5) .... ? 
C1 Fe1 C2 ' C3' 1 75 . 6(2) .... ? 
C1' Fe1 C2 ' C3 ' 118.8(2) .... ? 
C5 ' Fe1 C2 ' C3 ' 81.25(17) .... ? 
C1' C2' C3 ' C4 ' 0.5(3) .... ? 
Fe1 C2' C3 ' C4 ' -59.84(16) .... ? 
C1 ' C2 ' C3 ' Fe1 60 . 32( 1 8) .... ? 
C4 Fe1 C3 ' C4' -11 0 . 03(17) .... ? 
C3 Fe1 C3 ' C4' -1 52.50(15) .... ? 
C2 Fe 1 C3 ' C4 ' 1 75 . 85( 1 9) ... . ? 
C2' Fe1 C3 ' C4 ' 118.8(2) . . .. ? 
C5 Fe 1 C3 ' C4 ' - 71 . 8(2) . ? 
C1 Fe 1 C3 ' C4' - 51 . 8(5) . ? 
C1 ' Fe1 C3 ' C4 ' 81.01(17) ? 
C5 ' Fe1 C3 ' C4 ' 37 . 62(16) ? 
C4 Fe 1 C3 ' C2 ' 131.17(15) ? 
C3 Fe1 C3 ' C2' 88.70(16) .... ? 
C2 Fe1 C3' C2' 57.0(3) .... ? 
C5 Fe1 C3 ' C2' 1 69 . 40(17) .... ? 
C4' Fe1 C3 ' C2 ' -11 8.8(2) ... . ? 
C1 Fe1 C3 ' C2 ' -1 70 . 6(4) ? 
C1 ' Fe1 C3 ' C2 ' - 37.80(16) .. ? 
C5' Fe1 C3 ' C2 ' - 81.18(16) .. ? 
C1 C2 C3 C4 -1. 0(2) .... ? 
C8 C2 C3 C4 -17 6 .14(1 9) .... ? 
Fe1 C2 C3 C4 58 . 69(15) .... ? 
C1 C2 C3 Fe1 - 59 . 67(14) .... ? 
C8 C2 C3 Fe1 125.18(18) .... ? 
C2 Fe1 C3 C4 -119.7(2) .... ? 
C2 ' Fe1 C3 C4 1 28.05(16) .... ? 
C5 Fe1 C3 C4 - 37 .4 5(15) ? 
C3 ' Fe 1 C3 C4 85 . 00(17) ? 
C4 ' Fe1 C3 C4 52 .1( 2) ? 
C1 Fe1 C3 C4 -81.54(15) ? 
C1 ' Fe1 C3 C4 1 66 . 21(16) .... ? 
C4Fe1C3C2119 . 7(2) .... ? 
C2 ' Fe1 C3 C2 -11 2.29(14) . ... ? 
C5 Fe1 C3 C2 82.22 (14) .... ? 
C3 ' Fe1 C3 C2 -1 55.33(13) .... ? 
C4 ' Fe1 C3 C2 171. 78 (16) ? 
C1 Fe1 C3 C2 38. 12(13) .... ? 
C1 ' Fe1 C3 C2 - 74 . 13(17) .... ? 
C2 ' C3 ' C4 ' C5 ' - 0.6 (3) . . . . ? 
Fe1 C3 ' C4' C5 ' -60.01(17) .. .. ? 
C2 ' C3' C4 ' Fe1 59.37(17) .... ? 
C4 Fe1 C4 ' C3 ' 84.56(18) . ? 
C3 Fe1 C4 ' C3' 50.0(3) .. ? 
C2' Fe1 C4' C3' - 38.05(16) ? 

252 



CS Fe1 C4' C3 ' 1 27 . S3 (1 8 ) .... ? 
C1 Fe 1 C4' C3 ' 1 66 . 7 1(1 6 ) .... ? 
C1' Fe 1 C4' C3 ' - 8 1. 8 7(1 8 ) .... ? 
CS ' Fe 1 C4 ' C3 ' -11 9 . 0 (2 ) .... ? 
C4 Fe 1 C4' CS ' -l S6 .4 S (l S ) .... ? 
C3 Fe1 C4' CS ' 1 69 . 03 (1 8 ) ... . ? 
C2 ' Fe 1 C4' CS ' 80 . 93 (17) .... ? 
CS Fe1 C4' CS ' -11 3. 4 8 (1 8 ) .... ? 
C3 ' Fe 1 C4' CS ' 11 9 . 0 (2 ) .... ? 
C1 Fe 1 C4' CS ' -74. 30 (1 9 ) .. ? 
C1' Fe 1 C4' CS ' 37 .12(1 6 ) ... . ? 
C2 C3 C4 CS 0 . 9 (2 ) . . .. ? 
Fe 1 C3 C4 CS 60 . 00 (1 6 ) .... ? 
C2 C3 C4 Fe 1 - S9 . 06 (l S ) .... ? 
C3 Fe1 C4 CS -11 9 . S (2) . ... ? 
C2 Fe1 C4 CS - 8 1. 81(l S ) .... ? 
C2 ' Fe 1 C4 CS 1 68 . 98 (14) ... . ? 
C3 ' Fe 1 C4 CS 1 30 .7 2 (l S ) ... . ? 
C4' Fe 1 C4 CS 88 . 96 (l S ) ? 
C1 Fe 1 C4 CS - 37 . 67(14) ? 
C1' Fe 1 C4 CS -1 7 4. 9 (4) ? 
CS ' Fe 1 C4 CS S9 .4( 2 ) . ? 
C2 Fe1 C4 C3 3 7 .6S (14) .... ? 
C2 ' Fe 1 C4 C3 -71. S7 (1 9 ) . . . . ? 
CS Fe 1 C4 C3 11 9 . S (2 ) . . ? 
C3 ' Fe 1 C4 C3 -1 09 . 83 (l S ) ... . ? 
C4' Fe 1 C4 C3 -l Sl.S 9 (14) ... . ? 
C1 Fe 1 C4 C3 8 1.7 9 (l S ) . ? 
C1' Fe 1 C4 C3 - SS.4( S ) .... ? 
CS ' Fe 1 C4 C3 17 8 . 82 (1 8 ) . .. ? 
C3 C4 CS C1 - 0 . S (2 ) . . . . ? 
Fe 1 C4 CS C1 S9 .1 S (l S ) .... ? 
C3 C4 CS Fe 1 - S9 . 69 (1 6 ) .... ? 
N1 C1 CS C4 177 . S (2 ) . .. . ? 
C2 C1 CS C4 - 0 .1 (2 ) . . . . ? 
Fe 1 C1 CS C4 - S8 . 61 (l S ) . .. . ? 
N1 C1 CS Fe 1 -1 23 . 9 (2 ) ? 
C2 C1 CS Fe 1 S8 . S3 (l S ) ? 
C3 Fe 1 CS C4 37 . 77 (14) ? 
C2 Fe 1 CS C4 8 1. 93 (1 7 ) ? 
C2 ' Fe 1 CS C4 - 37 . 9 (S ) ? 
C3 ' Fe 1 CS C4 - 66 . 93 (1 9 ) ? 
C4' Fe 1 CS C4 -1 07.02 (l S ) .. .. ? 
C1 Fe 1 CS C4 11 9 . 7 (2 ) .. .. ? 
C1' Fe 1 CS C4 1 7 7. 6 (2 ) .. .. ? 
CS ' Fe 1 CS C4 -14 9 . 29 (14) .. . . ? 
C4 Fe 1 CS C1 -11 9.7 (2) . . . . ? 
C3 Fe 1 CS C1 - 8 1. 90 (1 6 ) ? 
C2 Fe 1 CS C1 - 37 . 7 4(1 6 ) . ... ? 
C2 ' Fe 1 CS C1 - lS7 . 6 (4) ... . ? 
C3 ' Fe 1 CS C1 17 3 . 39 (l S ) .... ? 
C4' Fe 1 CS C1 1 33 . 30 (l S ) . . . . ? 
C1' Fe 1 CS C1 S7 . 9 (2 ) . ? 
CS ' Fe 1 CS C1 91. 03 (1 6 ) . ... ? 
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C2 ' C1' C5' C4 ' - 0 . 3(3 ) .... ? 
Fe 1 C1' C5 ' C4 ' 58 . 95 (1 7 ) .... ? 
C2 ' C1' C5 ' Fe 1 - 59.23( 17) ? 
C3 ' C4' C5 ' C1' 0 . 6 (3) .... ? 
Fe1 C4 ' C5 ' C1' - 59.04 (17) . .. ? 
C3 ' C4 ' C5 ' Fe 1 59.61 (1 7 ) ? 
C4 Fe1 C5 ' C1' 164.01(19) ? 
C2 Fe1 C5 ' C1 ' - 69.5 (2) . ? 
C2 ' Fe1 C5 ' C1' 37.87 (1 7) ? 
C5 Fe1 C5 ' C1 ' -1 56 .52(15) .... ? 
C3 ' Fe1 C5 ' C1' 82.05 (17) .. .. ? 
C4 ' Fe1 C5 ' C1' 11 9 . 8 (2 ) . ? 
C1 Fe1 C5 ' C1 ' -111. 69( 17) .... ? 
C4 Fe1 C5 ' C4 ' 44. 3 (3 ) .... ? 
C2 Fe1 C5 ' C4 ' 1 70.80 (14) .... ? 
C2 ' Fe 1 C5 ' C4' - 81. 88( 17) ? 
C5 Fe1 C5 ' C4 ' 83 .7 3 (1 8) .... ? 
C3 ' Fe1 C5 ' C4' - 37 . 70 (1 5) . . . . ? 
C1 Fe1 C5 ' C4 ' 128.56(15) ? 
C1' Fe1 C5 ' C4' -11 9.8 (2 ) . ? 
C3 C2 C8 0 1 -14 6 .1( 2 ) ? 
C1 C2 C8 01 39 . 6(3 ) . ? 
Fe1 C2 C8 01 -53.1(3) ? 
C3 C2 C8 C15 -27.4( 3 ) ? 
C1 C2 C8 C15 1 58 . 25( 1 9 ) ? 
Fe 1 C2 C8 C1 5 65 . 6(3 ) . ? 
C3 C2 C8 C9 94 . 0 (2) .. ? 
C1 C2 C8 C9 - 80.3(3) . ? 
Fe1 C2 C8 C9 -1 73 . 0(2 ) .... ? 
0 1 C8 C9 C14 -14 5 . 2(2) .... ? 
C2 C8 C9 C1 4 -2 5 .1 (3 ) ... . ? 
C15C8C9Cl 4 97 . 8(2 ) .... ? 
01 C8 C9 C1 0 35.6(3) .... ? 
C2 C8 C9 C10 1 55 .7( 2 ) . .. . ? 
C15 C8 C9 C10 - 81.3(2 ) .... ? 
C14 C9 C10 C1 1 2.3(4) .... ? 
C8 C9 C1 0 C11 -17 8 . 5(2) .... ? 
C9 C10 C11 C12 - 0 . 5(4) .... ? 
C10 C11 C12 C1 3 -1.4(4) .... ? 
C11 C1 2 C13 C14 1.4(4) ? 
C10 C9 C14 C1 3 -2. 3(3) .... ? 
C8 C9 C14 C13 178.5(2) .... ? 
C12 C13 C14 C9 0 .4 (4) . ? 
01 C8 C15 C16 -15 6.3(2) ... . ? 
C2 C8 C15 C16 83 . 8(2) .... ? 
C9 C8 C1 5 C16 - 38 .4( 3) .... ? 
01 C8 C15 C20 24.8(3) .... ? 
C2 C8 C15 C20 - 95 .1( 2) .... ? 
C9 C8 C15 C20 14 2 .7( 2) . . .. ? 
C20 C1 5 C16 C17 - 0.2(3) .... ? 
C8 C15 C16 C1 7 -17 9 .1( 2 ) .. .. ? 
C1 5 C1 6 C17 C18 - 0.2(4) .... ? 
C1 6 C17 C18 C19 0 . 8(4) .... ? 
C17 C1 8 C19 C20 -1.1(4) .... ? 

254 



C18 C19 C20 C15 0.7(4) .... ? 
C16 C15 C20 C19 -0.1(3) ? 
C8 C15 C20 C19 178.8(2) .... ? 

diffrn measured fraction theta max 

diffrn ref1ns theta full 

diffrn measured fraction theta full 

refine diff density_max 0.372 

-0.339 

0.058 

0.998 

28.39 

0.998 
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Appendix E: Selected Spectra 
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