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Abstract

Four problems of physical interest have been solved
in this thesis using the path integral foraalism.

Using the trigonometric expansion method of Burton
and de Borde (1955), we found the kernel for two interacting
one dimensional oscillators. The result is the same as
one would obtain using & normal coordinate transformation.

We next introduced the method of Papadopolous (1969),
which is a systematic perturbation type method specifically
geared to finding the partition function Z, or equivalently,
the Helmholtz free energy F, of a system of interacting
oscillators. We applied this method to the next three
problems considered.

First, by summning the perturbation expansion, we found
F for a system of N interacting Einstein oscillators. The
result obtained is the same as the usual result obtained
by Shukla and Muller (1972).

Next, we found F to OO, where A is the usual Van
Hove ordering parameter. The results obtained are the
same as those of 3hukla and Cowley (1971), who have used
a diagrammatic procedure, and did the necessary sums in
Fourier space. We performed the work in temperature space.

Pinally, slightly modifying the method of Papadopolous,
we found the finite temperature expressions for the Debye-

P
Waller factor in Bravais lattices, to OOV and OOK’*),



iy
e

where 'ﬁ is the scattering vector. The high temperature
limit of the expressions obtained here, are in complete
agreement with the classical results of Maradudin and

Flinn (1963).
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1. 1Introduction to the Path Integral Formulation

In the more well known formulations of non-relativistic
quantum mechanics, one is interested in studying the
Hamiltonian of a system. This fact is evident when one

writes down the time-dependent Schroedinger equation;
HY = ik j-lfﬁ (1.1)

where H 1s the Hamiltonian, ? is the wave function, and
h  is Planck's constant divided by 2m .

There are many reasons for the development of the
Schroedinger formulation of quantuam mechsnics. The main
one is that for most cases, one looks for a one-to-one
correspondence between the operators of quantum mechsanics
and the classical quantities. Tor example, one can
associate H with the energy of the systemx.

However, one can formulate classical mechanics in
terms of an action princinle, or as more commonly known,
Hawilton's principle, (Goldstein (1950)). When first
formulated, one was interested in the Lagrangian of the
system, and from the action principle, one obtained
Lagrange's ecuations of motion. Later on, the Hamiltonian
was related to the Lagrangian via a ceanonical transformation.
In some ways the Lagrangian may be a more fundamenteal
function describing a system.

Cne may then ask the following questions. TIs it
nossible to formulate quentum mechanics in terms of the

Lagrangian, and if so, how cen this be done?



The answer to the first question is yes. The second
question was partially answered by Dirac (1932) who ls2id
down the foundations of the path integral formilation of
quantum amechanics in his paper on the role of the
Lagrangien in quantum theory. Feynman (1948) proposed a
path integral formulation of gquantum theory in terms of
the Lagrangian as suggested by Dirac (1932).

As is shown in chapter 4 of the book by Feynmen and
LLibbs (1905), (from now on known as FH), the 3chroedinger
and peth integrel formalations are ecuivalent in the sense
that the basic equations in either formulation can be
derived from the other. What makes the »nath integral
formulation worth studying separately is that it exhibits
certain interesting features that are not evident in the
Schroedinger formulation. We indicate some of these
featares presently.

In the 3chroedinger formulation, there are basicslly
two postulates. OCne of the postulates involves the equetion
of motion and the other involves the commutation relations
emong ocuantum mechanical operators, especially the
canonically conJjugate operotors. This latter postulate
is a consequence of the use of the Hamiltonian to describe
a system, and hence the need for canonically conjugate
operators. If instead, we use the Lagrangian to describe
a system, then we avoid the necessity o“ introducing
canonically conjugate variables, and hence we may be able

to drop the postulate of the commutation relations. IHence



ve need only one postulate as Feynmen used in his path
integral formulation.

It is appropriate now to give a brief sketch of what
arguments Feynman used in develoning the path integral.
Juppose the Lagrangian of a system under consideretion is
given by

L= gmg’=V(gg.4d (1.2)

Here ¢ is the position coordinate of the system, (not
necessarily in one dimension), m is the mass, (not
necessarily a constant and could be a vector), and V(?’i‘{)
is the potentisl. Given the system starts at aE@vﬂ),
we want to find the probebility thet it will arrive near
bs%ﬂfﬂ) , 4,>t. + Arguing that, in gquantum mechanics,
probability is like intensity, one must find the sum of
the probability amplitudes of all possible paths from gq
to b that the system can take, and then take the sguare
of its modulus to get the probability. Formally, one
can write this as

K(bya) =2_ [ qe)] (1.3)

over all
P“"H"S From
a +O b

where @fgﬁﬂ =  probability amplitude of & path described
by ?ﬁH going from « to

Feynman nostulated the following form for <@B%Hl

3lgtt)] = exp {£ SLalf (1.4)



¢
where 5[%&3] - QLL(’?,%*) gt (1.5)

and the integral is evalaated along 3f0 . S is called
the action. 1In words, each path contributes ena2lly in
magnitude to K(b,a) but differs in phase.

If we consider a one dimensional particle with a
potential V=V(%) that 1s well behaved, then the mathematical
prescription for calculating the sum over paths (or also
sometimes known as kernel) as given by Feynman (1948) is

Kbg) = fim fH&' J%&N_ eXF{_z;gz”-_[_:l (%g,_.,)z_wﬁ)]f (1.6)

Nt 1‘:\ Jst

L1}

4
where €= {L‘%“ s A= (ME-)J ’ ?o

m

Joo fu= s

and the integration is Jdone over all possible values of 9
Feynman (1948) has also considered cases where the potential
is of a different form in the sense that V may Jdepend on
+ and ? . Then the expression in Egq. (1.6) becomes
more complicated.

In defining the kernel, K(ba), in Eq. (1.3), one observes
that the function @%&ﬂ(iepends on the action 3%@” which is
a claessical quantity. The h 1nskes the argument of the
exponential dimensionless, and brings in the acuantum
mechanical effects.

Intuitively, one can see that the nath integral
formulation has close ties with classical mechanics. This
can be shown using the following argaments. If one

formiletes the classical laws of physics asing Hamilton's



principle, the path teken by the system, that is, the so-
called classical path, will be the one that extremizes sugun
In the cases we consider, this extremum #ill be a minimum.
Cbserve that as we .ove away from the classical path, the
action will become larger, and because K is small, @%M}will
oscillete wildly. Hence all contributions to the kernel

for paths thet are not in the neighbourhood of the classical
path will cancel out, (‘unther and ¥Xalotas (1977)). Thus
the classical peth and the paths in the neighbourhood of

it will contribute most to the kernel.

In the Schroedinger formulation, the wave function of
a system associates a probability amplitude to the system
at a particular position and time. The wave function gives
a local description of the system. TFTurthermore, one must
impose certain restrictions on the wave function which may
be ad hoc or have a physically intuitive besis. While in
the path integral formulation, the kernel assoclates a
quantum mechanical amplitude to the motion of the system
as a fanction of space and time. This is more of a global
description. Also, the boundary conditions for the kernel
can be chosen a priori.

One of the more apnealing features of the path integral
formulation is that the arbitrary phase factor of the wave
function does not enter into the kernel because it is
already fixed.

Looking at the expression for the kernel given in Eq.

(1.6), one observes that one can perform the mathematical



manipulations as is done in classical mechanics. This is
also true for systeme with other types of potentials,
(Feynnan (1948)). IHence one avoids the troublesome task
of perforuing operator algebra. J3ince quantum mechanical
operators are still of importance because they are related
to physical quantities describing a system, one can use the
path integral formalism to define "matrix" elements of an
operator as was Jone by Feynman (1948), Davies (1963),
Cohen (1970), and Mandelstam and Yourgrau (1968).

Although the psth integral formulation is conceptually
elegant, there is a major shortcoming which is exnressed
in 2g. (1.6). First, one has to determine whether or not
Eq. (1.6) is well defined and second, one has to nerform
the integrations given in Eq. (1.6).

In fact, to obtein the kernel, one must perform a
functional integral which is formally written as,

9((,,)=$b 4,
Kiba) = [ &Tgt0] exp [§ [ 1tf (1.7)
ﬁ({ﬂ):}a *

The expression given in Bq. (1.6) is similar in foram to
the Riemeann sum definition of the Riemann integral.

wiener (1923) developed, in connection with Browniean
motion, what is now called the Wiener integral. The Jiener
integral has a striking resemblance to the nath integral
given in Eg. (1.6). There has been much theoretical work
done on the .iiener integcral and how it is related to the

path integral. This work is well covered in & review



article by Koval'chik (1963)., 1In fact, in develoning an
expression for the density matix, one can use the JViener
integral which is what will be done in section 3.

Vore recently, much theoretical work has been done on
the study of 2q. (1.7). There are two points of concern.
One is that the expression given in Ea. (1.8) usel in
defining the kerrel given in Ec. (1.7) was developed on an
intuitive basis and so should be nut on a firm mathemeticel
basis. Jecond, the convergence of the integrals in ZIg.
(1.6) must be handled carefully in & strict mathematical
sense. Fundamental work discussing these points inclule
Davison (1954), It0 (1961), Keller and NcLaughlin (1975),
De Witt (1972), Albeverio and Hoegh-Krohn (187¢6), and
Mizrahi (1978). Lhe latter three references give a definition
of the path integral in &q. (1.7) without recourse to the
liriting procedure as given in ig. (1l.9).

rrom & w@wore practical viewpoint, considerable effort
has been put in to evaluate the path integral in 2Za. (1.7).
Unfortunately, there are not too many ceses that can be
done exactly, hence some effort is needed in finding good
approximations to the path integral.

A class of path integrals that can be done exactly are
the so-called Gaussian path integrals, that is, psth integrals
with quadratic Lagrangians. Notable examples of physical
probleuns with quadratic Lagrangians include harmonic

oscillators, free particles, perticles in & constant magnetic



field, and particles subject to a constant force.
Papadopoloas (1975) has evaluated the general faussian
path integral, while examples of special cases can be
found in FH (Ch. 3).

Some of the work that has been done in evaluating
path integrals, either approximately or exactly, if possible,
vill be presently given.

The expression in i&g. (1.6) can be used, but is
extremely tedious as is shown in ¥H (Ch. 3) for the free
particle, and in Devreese and Panadopolous (1978), »ng. 123,
for the harmonic oscillator.

Davison (1954) developed the mathematics for evaluating
the path integral by expanding the paths in a complete set
of orthogonal functions. Davies (1957) and Glasser (1964)
expand the paths in a trigonometric series to evaluate
certain Gaussian path integrals. Durton and de Rorde (1955)
use a different expansion in trigonometric series and
evaluate some Gaussien peath integrals. This last method
will be discuassed in section 3.

The so-called semiclassicsl or WKD expansion has been
explored. The method as described by Morette (1951) will
be discussed in section 3 for non-relativistic quantum
mechanics. Lore recent work along these lines is thst of
Gatzwiller (1967) and Levit and Smilansky (1977).

Much work has becen done in expansion proceduares also.

This involves the expansion of the part of the exponential



term of 3Zg. (1.7) that includes the potential or part of

the potential, in a power series and term-by-term evaluation.
Yaglom (1956) has followed this procedure in connection

with the evaluation of the partition function. For further
work on expansion formulae we refer to the work of
Papadopolous (1969), Goovaerts and Devreese (1972 a,b),
Siegel and Burke (1972), Coovaerts and Zroeckx (1972),
Goovaerts, Dabenco, and Devreese (1973), and Maheshwari
(1975).

In some cases it may not be nossible to get a good
approximation to the path integsral. In those cases then,
one may be able to get some bounds on what it should be.
Specifically, these bounds are in terms of some nhysical
quantity describing a system. TFeynman, (FH (Ch. 11)),
developed a generalized variational method in which he
obtained an upper bound for the Helmholtz free energy of
a gystemn.

There are other methods for evaluating the path integr=l
but they will not be indicated here.

The Feynuwan formulation, and hence the use of the path
integral and siener integral, has been applied to solve or
at least partielly solve some important problems of physics.
The areas of physics where the path integral has been
applied include cuantum, statistical, and solid state
physics.

One of the most notable successes of the path integral
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formulation has been in the determination of certain
properties of the polaron as described by Frohlich (1954),
such as the effective mass. Some of the work done on the
polaron include Feynman (1855), Osaka (1959), Schultz (1960),
Feynman, Hellwarth, Iddings, and Platzman (1962), and
Thornber and Feynman (1970).

Feynman (1955) used the variational method, as noted
above, in determining the effective mass of the polaron.
This vaeriational method has recently been applied by Telman
and Spruch (1969) to problems in which the Hamiltonian of
the system being studied has a term containing angular
momentum. |

Pechukas (1969) has used the path integral to derive
the semiclassical theory of potential scattering.

Papadopolous (1971) has applied the path integral to
the problem of a harmonically bound charge in a uniform
magnetic field, from which he evaluated the partition
function and density of states.

Lam (1966), Meheshwari and Sharma (1973), and 3Seshadri
and Mathews (1975) have done some work on approximating
the kernel of a one dimensional anharmonic oscillator with
potential V(x) = ax?® +bx*

Khandekar and Lawande (1972) and Goovaerts (1975) have
applied the path integral formulation to a three body
problem considered by Calogero (1969).

There are many more applications of the path integral
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formulation, some of which are of far greater importance
than those mentioned. Many of these applications along
with some of the theory of path integrals and Wiener integrals
is given in the review articles of Cel'fand and Yaglom
(1960), Brush (1961), Barbashov and Blokhintsev (1972),

and Wiegel (1975). The standard text on path integrals is
FH which gives the path integral formulation as developed
by Feynmen along with many applicetions including Feynman's
work on quantum electrodynamics. More recently, the book
edited by Devreese and Papadopolous (1978) gives some of
the other developments of the path integral formulation and
the present status of the path integral.

Before we end this introduction to the path integral,
there are three points which should be noted.

First, Davies (1963) and Garrod (1966) have develoned
the path integral using the Hamiltonian. They showed that
their path integral is the same as that using the Lagrangian.

Second, iandelstam and Yourgrau (1968) have related
Schwinger's variational principle to the Feynman path
integral formulation.

Finally, work has been done in evaluating path integrals
in general curvilinear coordinate systems other than the
asual cartesian system. Nost of the work has been done in
polar or spherical coordinates; for example see (Edwards
and CGulysev (1964), Arthurs (1969), Peak and Inomata (1969),

and Arthurs (1970)).
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2. Outline of the Work done in the Thesis

Four problems of physical interest will be tackled
using the path integral.

As can be found in meny standard textbooks on solid
state physics (Kittel, for example), a model that is
freguently used in describing the dispersion forces of
condensed matter is a system of coupled oscillators. In
section 4, we use the expansion in trigonometric functions
as discussed in section 3 to evaluate the path integral
for two interacting one di.mensional oscillators without
using a normal coordinate transformation. This problem
has already been solved using the normal coordinate
trensformation as is shown in ¥FH (Ch. 8).

The partition function, or equivalently, the Helmholtz
free energy, F, is an extremely useful cuantity in describing
systems which are in thermodynamic ecuilibrium. However,
for a system of interacting oscillators, such as an
anharmonic crystal, it is difficult to find an exact
expression for F. Hence one must develop approximetion
methods to get F, one of which is a perturbation type
expansion. In section 6, we derive the method of
Papadopolous (1969). This is a perturbation method using
the path integral and functional differentiation. Using
this, we develop a systematic method of obtaining the isual
perturbation expansion of the partition function for a

system of interescting oscillators. This method is
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specifically geared for a system of interectings oscillators
and will be applied to the next three problems discussed.

In section 7, we find the free energy of N interacting
one dimensional Einstein oscillators. This oroblem hes
already been solved in the same vein by Jhukla and Muller
(1971) using a Creen function method and agsin by 3hukla
and Muller (1972) using a diagrammetic procedare. In
studying this problem, one is looking at the simplest
problem which exhibits certain features that occar in more
realistic models. To simplify greatly the calculations
needed, one transforms the problem to wave vector space.

In this space, one can use the symmetry of the system to
apply periodic boundary conditions and develop the dispersion
relationship. Also, when one is doing the perturbation
expansion, the expansion cannot be cat off anywhere to give
correct results because the interaction term is as strong

as the harmonic part of the potential. Hence, one must

sum the series to infinity.

The next two »roblems studied have to do with the
anharaonic crystal. The interaction or anharmonic parts
which are expanded oat, are gencrally mach smaller than the
harmonic narts in their contribution to certain nroperties
of a crystal, bat are still necessery to describe the
properties of a crystael such as thermsl expansion, specific
heat, etc. Perturbetion theory 1s & standard method used

in studying, theoretically, the properties of a crystal.
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In section 8, we find the free energy of an anharmonic
crystal, or system of anharmonic oscillators, as described
in section 5, to O(X) , where X 1is the usual Van [Pove
ordering psraueter. This is the second lowest order of
perturbation that gives a non-trivial contribution to the
free energy. It has been found that the lowest order of
pertarbation, that is O(V), is inedequete in describing
the temperature dependence of the heat capacity of certain
materials at high teaperatures, and hence, one must include
the next order of perturbation to account for some of the
discrepancy. oShukla and Cowley (1971) have done this
calculation by using a diagrammatic procedure, and evaluating
the necessary sums in Fourier space. We will perform the
calculations in temperature space. These calculations have
been done in temperature space to oMY , (Papadopolous (1969),
end Sarron and Klein (1974)), but to our knowledge have not
been done to O(*) . The results we obtain are equivalent
to those of Jhukla and Cowley. As a further sidelight, we
will indicate how one can draw Feynman diagrams from the
expressions we derive.

The decreasse in intensity of x-rays scattered from a
crystal occurs because of the thermel vibration of the atoms
of the crystal about their lattice sites, and is accounted
for, in theory, by using the Debye-Waller factor. In section
9, we determine the Debye-Waller factor for a monatomic

3ravais lattice, which is a special case of the system
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described in section 5 to O(® and OURY) | where K is
the scattering vector. Je do the calculation to O(¥) because
this is the lowest order of perturbetion that gives & non-
trivial contribution to the Debye-W¥aller factor. The reason
for doing the calculation to O(IRY is that if one were to
write out the full formal expression for the Debye-ialler
factor, one would find that the lowest order term is
proportional to R* and the next lowest order term is
proportional to IRI* | but both terms are of 009 in
anharmonicity. We then take the high tempersture limit to
show that our results coincide with those of Maradadin and
Flinn (1963). Current numerical technicues make the
calculation of the terms of the Debye-Waller factor extrenely
time consuming, even for the high temperature limit. However,
the finite temperature results are of some interest in
investigating the temperature dependence beyond the leading
temperature terms derived in the classical procedure of
Maradudin and Flinn (1963).

In section 10, we suuwmarize our findings and make our

conclusions.
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3. Mathematical Preliminsries

In this section, we present a mathematical formulation
of the path integral starting from the time dependent
Schroedinger equation and its general solution. We then
describe two methods for evaluating the path integral;

(a) the semiclassical or WKE expansion of Morette (1951)
for non-relativistic qguantum mechanics, and (b) the
expansion in trigonometric series as given by Rurton and
de Borde (1955). The trigonometric expsnsion method will
be used in section 4 to solve the problem of two interacting
one dimensional oscillators. The method of Yorette will
be used in section 6 in connection with the study of a
system of N interacting Einstein oscillators (Sec. 7), and
the anharmonic crystal (Sec,8, 9). Finally, we show how
the density matrix can be written in terms of a path
(Wiener) integral. The density matrix, and hence the
partition function, Z, or equivalently, the Helmholtz free

energy, F, will be employed in sections 7 and 8.

(A) The Path Integral

The time dependent Schroedinger equation is

-k 2% (1.1)
HY =ih g

where the symbols are defined in section 1. Suppose the
Hamiltonian is given by

H:i_’;]o2+V(§a) (3.1)

wvhere F,% are the usual momentum and position operators,



respectively, (not necessarily one dimensional), m is the
mass which is appropriate for the system considered, and
\V(%) is the potential which depends on position only.

The general solution of Eg. (1.1) is then separable
in the sense that it can be written as the product of two
functions, one depending on time and the other on position.
It then remains to find the energy eigenvalues and
eigenstates of the associated time-independent Schroedinger
equation. Let the stationary eigenstates be ¢%qﬂ and the
assocliated energy levels be E . As is well known, the
set f()s(g)} forms a complete, orthonormal set.

Using the notation of section 1, and following the

procedure of Jchiff (1968), the wave functionlgqg@f:>of the

system under consideration can be expanded in terms of the

energy eigenstates to give

@(Q) = @(gaa%q) = %— Qg (-éa.) (PE (gq> (3.2)
where aE(‘{a) = [d%a Qb;(gQ) @(ﬁa){a)

The wave function q}(%b)'(’[)where {b >ta is given by
D) =Wl t) = Zalt) )
T 0 () de () € FEEH

i

- ~LEG1, )
gty g
= f{g e"xz‘E(ﬂ{' “>¢E(;b>¢:(%a>} @(a) dia (3.3)

17
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Let

Z e¥Eht o () 620 4ok
Klba) ={ Pelp Bl (3.4)

O >‘éb<_£°-
Then, Eg. (3.3) becomes

V(b)) = JKUo,a) YSa) o[ga (3.5)

K(bﬁﬂ is often caelled the kernel, propageator, or ‘reen
function.

Bssentially, Eq. (3.5) is an integrated version of
the 3chroedinger equation, for given the wave function at
some point in space and time, and the kernel, one can find
the wave function at later times.

We note the following three important properties of

the kernel.

First, K(b}a) =K(%b,%aj{[,*{a) (3.6)
The kernel is a& function of the difference in time.

d
'{'L%{‘a*
where in taking the limit fy*{: , it is understood that

one approaches {Q from values greater than %q « The last

equality is Jjust the closure property, with g%ffJ denoting

the usual Dirac delta function.

Third, suppose that ‘:E(gc)é) is an intermediate point

such that %&<fc<%g . Then, by Zq. (3.5),






