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Abstract 

Four problems of physical interest have been solved 

in this thesis using the path integral formalism. 

Using the trigonometric expansion method of Burton 

and de Borde (1955), we found the kernel for two interacting 

one dimensional oscillators• The result is the same as 

one would obtain using a normal coordinate transformation, 

We next introduced the method of Papadopolous (1969), 

which is a systematic perturbation type method specifically 

geared to finding the partition function Z, or equivalently, 

the Helmholtz free energy F, of a system of interacting 

oscillators. We applied this method to the next three 

problems considered• 

First, by summing the perturbation expansion, we found 

F for a system of N interacting Einstein oscillators^ The 

result obtained is the same as the usual result obtained 

by Shukla and Muller (1972) • 

Next, we found F to 0(Xi)f where A is the usual Tan 

Hove ordering parameter* The results obtained are the 

same as those of Shukla and Oowley (1971), who have used 

a diagrammatic procedure, and did the necessary sums in 

Fourier space* We performed the work in temperature space• 

Finally, slightly modifying the method of Papadopolous, 

we found the finite temperature expressions for the Debye-

caller factor in Bravais lattices, to 0(AZ) and u(/K/ j, 
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where K is the scattering vector* The high temperature 

limit of the expressions obtained here, are in complete 

agreement with the classical results of Maradudin and 

Flinn (1963) . 
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1. Introduction to the Path Integral Formulation 

In the more well known formulations of non-relativistic 

quantum mechanics, one is interested in studying the 

Hamiltonian of a system. This fact is evident when one 

writes down the time-dependent Schroedinger equation; 

where H is the Hamiltonian, 1P is the wave function, and 

P\ is Planck's constant divided by S.Tf 

There are many reasons for the development of the 

Schroedinger formulation of quantum mechanics• The main 

one is that for most cases, one looks for a one-to-one 

correspondence bet¥vTeen the operators of quantum mechanics 

and the classical quantities^ For example, one can 

associate H aith the energy of the system. 

However, one can formulate classical mechanics in 

terms of an action principle, or as more commonly known, 

Hamilton's principle, (Goldstein (1950)). .Vhen first 

formulated, one was interested in the Lagrangian of the 

system, and from the action principle, one obtained 

Lagrange's eouations of motion. Later on, the Hamiltonian 

was related to the Lagrangian via a canonical transformation. 

In some ways the Lagrangian may be a more fundamental 

function describing a system* 

One may then ask the following questions* Is it 

possible to formulate quantum mechanics in terms of the 

Lagrangian, and if so, how can this be done? 
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The answer to the first question is yes. The second 

question was partially answered by Dirac (1932) who laid 

down the foundations of the path integral formulation of 

quantum mechanics in his paper on the role of the 

Lagrangian in quantum theory. Feynman (1948) proposed a 

path integral formulation of quantum theory in terms of 

the Lagrangian as suggested by Dirac (1932). 

As is shown in chapter 4 of the book by Feynman and 

Libbs (19o5), (from no* on known as FH), the Schroedinger 

and path integral formulations are eauivalent in the sense 

that the basic equations in either formulation can be 

derived from the other, fhat makes the path integral 

formulation worth studying separately is that it exhibits 

certain interesting features that are not evident in the 

Schroedinger formulation* vVe indicate some of these 

features presently. 

In the Schroedinger formulation, there are basically 

two postulates. One of the oostulates involves the equation 

of motion and the other involves the commutation relations 

among ouantum mechanical operators, especially the 

canonically conjugate operators. This latter postulate 

is a consequence of the use of the Hamiltonian to describe 

a system, and hence the need for canonically conjugate 

operators. If instead, we use the Lagrangian to describe 

a system, then we avoid the necessity o^ introducing 

canonically conjugate variables, and hence we may be able 

to drop the postulate of the commutation relations* Hence 
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we need only one postulate as Feynman used in his path 

integral formulation. 

It is appropriate now to give a brief sketch of what 

arguments Feynman used in developing the path integral* 

Suppose the Lagrangian of a system under consideration is 

given by 

L = irf- V(^p4) (1.2; 

Here CL is the position coordinate of the system, (not 

necessarily in one dimension), m is the mass, (not 

necessarily a constant and could be a vector) , and V(%>i>A) 

is the potential. Given the system starts at Q^lf^^J , 

we want to find the probability that it will arrive near 

k£(fo»̂ i) > ̂ >4* * Arguing that, in quantum mechanics, 

probability is like intensity, one must find the sum of 

the probability amplitudes of all possible paths from a 

to b that the system can take, and then take the square 

of its modulus to get the probability. Formally, one 

can write this as 

U.3) 

where $fe#£J s probability amplitude of a path described 
by fM going from ct to b 

Feynman postulated the following form for $[(l(i% 

i>r<^)] = *«!> [jrStfWil ( 1*4) 
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"here sr^)] = f ' u ^ p i ) ^ (1*5) 

anl the integral is evaluated along ad) . 3 is called 

the action. In words, each path contributes eoualiy in 

magnitude to K(fc,a) but differs in phase. 

If we consider a one dimensional particle with a 

potential V-V(o) that is well behaved, then the mathematical 

prescription for calculating the sum over paths (or also 

sometimes known as kernel) as given by Feynman (1948) is 

6) 

.vhere t. <£*. , A - ( ^ - ^ , f. -J. , f. • ?. . 

and the integration is done over all possible values of Qj . 

Feynman (1948) has also considered cases where the potential 

is of a different form in the sense that V may depend on 

f and 6 . Then the expression in Eq. (1.6) becomes 

more complicated. 

In defining the kernel, KOyO, in Eq. (1.3), one observes 

that the function $[Q$] depends on the action st0l which is 

a classical quantity. The £ makes the argument of the 

exponential dimensionless, and brings in the nuantum 

mechanical effects. 

Intuitively, one can see that the oath integral 

formulation has close ties ^ith classical mechanics. This 

can be shown using the following arguments. If one 

formulates the classical laws of physics using Hamilton!s 
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principle, the path taken by the system, that is, the so-

called classical path, will be the one that extremizes S[o(i)]. 

In the cases we consider, this extremum will be a minimum. 

Observe that as we move away from the classical path, the 

action will become larger, and because £ is small, $&$] will 

oscillate wildly. Hence all contributions to the kernel 

for paths that are not in the neighbourhood of the classical 

path will cancel out, (Hunther and Kalotas (1977)). Thus 

the classical path and the paths in the neighbourhood of 

it will contribute most to the kernel* 

In the Schroedinger formulation, the wave function of 

a system associates a probability amplitude to the system 

at a particular position and time. The wave function gives 

a local description of the system. Furthermore, one must 

impose certain restrictions on the wave function which may 

be ad hoc or have a physically intuitive basis• fhile in 

the path integral formulation, the kernel associates a 

quantum mechanical amplitude to the motion of the system 

as a function of space and time. This is more of a global 

description. Also, the boundary conditions for the kernel 

can be chosen a priori. 

One of the more apoealing features of the path integral 

formulation is that the arbitrary phase factor of the wave 

function does not enter into the kernel because it is 

already fixed. 

Looking at the expression for the kernel given in Eq. 

(1.6), one observes that one can perform the mathematical 
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manipulations as is done in classical mechanics. This is 

also true for systems with other types of potentials,-

(Feynman (,1948)). Hence one avoids the troublesome task 

of performing operator algebra. Since quantum mechanical 

operators are still of importance because they are related 

to physical quantities describing a system, one can use the 

path integral formalism to define "matrix" elements of an 

operator as was done by Feynman (1948), Davies (1963), 

Cohen (1970), and Mandelstam and Yourgrau (1968). 

Although the path integral formulation is conceptually 

elegant, there is a major shortcoming which is expressed 

in 3q. (1.6). First, one has to determine whether or not 

Eq# (1.6) is well defined and second, one has to perform 

the integrations given in Eq. (1.6). 

In fact, to obtain the kernel, one must perform a 

functional integral which is formally written as, 

K(ka) * J MfM] exj, f| I LeflJ (1.7) 

The expression given in Eq. (1.6) is similar in form to 

the Riemann sum definition of the Riemann integral. 

wiener (1923) developed, in connection with lirownian 

motion, what is now called the wiener integral. The wiener 

integral has a striking resemblance to the path integral 

given in Eq. (1.6 J. There has been much theoretical work 

done on the wiener integral and how it is related to the 

path integral. This work is well covered in a review 
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article by Kovalfchik (1963). In fact, in developing an 

expression for the density matix, one can use the .Viener 

integral which is what will be done in section 3# 

llore recently, much theoretical work has been done on 

the study of Eq. (1.7). There are two points of concern. 

One is that the expression given in Ea. (1.6) used in 

defining the kernel given in Eq. (1.7) was developed on an 

intuitive basis and so should be nut on a firm mathematical 

basis. Second, the convergence of the integrals in 3q. 

(1.6) must be handled carefully in a strict mathematical 

sense. Fundamental work discussing these points include 

Davison (1954), I to (1961), Keller and McLaughlin (1975), 

De Witt (1972), Albeverio and Hoegh-Krohn (1976), and 

Llizrahi (197?). The latter three references give a definition 

of the path integral in Eq. (1.7) without recourse to the 

limiting procedure as given in Eq. (1.6). 

From a more practical viewpoint, considerable effort 

has been put in to evaluate the path integral in EQ. (1.7). 

Unfortunately, there are not too many cases that can be 

done exactly, hence some effort is needed in finding good 

approximations to the path integral. 

A class of path integrals that can be done exactly are 

the so-called Gaussian path integrals, that is, path integrals 

with quadratic Lagrangians. Notable examples of physical 

problems with quadratic Lagrangians include harmonic 

oscillators, free particles, particles in a constant magnetic 
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field, and particles subject to a constant force. 

Papadopolous (1975) has evaluated the general Gaussian 

path integral, while examples of special cases can be 

found in FH (Gh. 8). 

Some of the work that has been done in evaluating 

path integrals, either approximately or exactly, if possible, 

will be presently given. 

The expression in Eq. (1.6) can be used, but is 

extremely tedious as is shown in FH (Ch. 3) for the free 

particle, and in Devreese and Paoadopolous (1978), og. 123, 

for the harmonic oscillator. 

Davison (1954) developed the mathematics for evaluating 

the path integral by expanding the paths in a complete set 

of orthogonal functions• Davies (1957) and Glasser (1964) 

expand the paths in a trigonometric series to evaluate 

certain Gaussian path integrals. Burton and de Borde (1955) 

use a different expansion in trigonometric series and 

evaluate some Gaussian path integrals* This last method 

will be discussed in section 3. 

The so-called semiclassical or WKD expansion has been 

explored* The method as described by Morette (1951) will 

be discussed in section 3 for non-relativistic quantum 

mechanics^ More recent work along these lines is that of 

Gutzwiller (1967) and Levit and Smilansky (1977). 

Much work has been done in expansion procedures also. 

This involves the expansion of the part of the exponential 
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term of Eq. (1*7) that includes the potential or part of 

the potential, in a power series and term-by-term evaluation. 

Yaglom (1956) has followed this procedure in connection 

with the evaluation of the partition function. For further 

work on expansion formulae we refer to the work of 

Papadopolous (1969), Goovaerts and Devreese (1972 a,b), 

Siegel and Burke (1972), Goovaerts and Broeckx (1972), 

Goovaerts, Dabenco, and Devreese (1973), and Maheshwa'ri 

(1975). 

In some cases it may not be possible to get a good 

approximation to the path integral. In those cases then, 

one may be able to get some bounds on what it should be. 

Specifically, these bounds are in terms of some physical 

quantity describing a system. Feynman^(FH (Oh. 11)) 

developed a generalized variational method In which he 

obtained an upper bound for the Helmholtz free energy of 

a system. 

There are other methods for evaluating the path integral 

but they will not be indicated here. 

The Feynman formulation, and hence the use of the path 

integral and wiener integral^ has been applied to solve or 

at least partially solve some important problems of physics* 

The areas of physics where the path integral has been 

applied include cuantum, statistical, and solid state 

physics. 

One of the most notable successes of the path integral 



formulation has been in the determination of certain 

properties of the polaron as described by Frohlich (1954), 

such as the effective mass* Some of the work done on the 

polaron include Feynman (1955), Osaka (1959), Schultz (1960), 

Feynman, Hellwarth, Iddings, and Platzman (1962), and 

Thornber and Feynman (1970). 

Feynman (1955) used the variational method, as noted 

above, in determining the effective mass of the polaron^ 

This variational method has recently been applied by Celman 

and Spruch (1969) to problems in which the Hamiltonian of 

the system being studied has a term containing angular 

momentum. 

Pechukas (1969) has used the path integral to derive 

the semiclassical theory of potential scattering* 

Papadopolous (1971) has applied the path integral to 

the problem of a harmonically bound charge in a uniform 

magnetic field, from which he evaluated the partition 

function and density of states* 

Lam (1966), Maheshwari and Sharma (1978), and Seshadri 

and Mathews (1975) have done some work on approximating 

the kernel of a one dimensional anharmonic oscillator with 

potential V(*) = <*** + *>***• 

Khandekar and Lawande (1972) and Goovaerts (1975) have 

applied the path integral formulation to a three body 

problem considered by Calogero (1969)* 

There are many more applications of the path integral 
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formulation, some of which are of far greater importance 

than those mentioned. Many of these applications along 

with some of the theory of path integrals and Wiener Integrals 

is given in the review articles of Gelffand and Yaglom 

(1960), Brush (1961), Barbashov and Blokhintsev (1972), 

and rfiegel (1975;- The standard text on path integrals is 

FH which gives the path integral formulation as developed 

by Feynman along with many applications including Feynman1s 

work on quantum electrodynamics. More recently, the book 

edited by Devreese and Papadopolous (1978) gives some of 

the other developments of the path integral formulation and 

the present status of the path Integral. 

Before we end this introduction to the path integral, 

there are three points which should be noted. 

First, Davies (1968) and Garrod (1966) have develooed 

the path integral using the Hamiltonian. They showed that 

their path integral is the same as that using the Lagrangian. 

Second, Eandelstam and Yourgrau (1968) have related 

Schwingerfs variational principle to the Feynman path 

integral formulation. 

Finally, work has been done in evaluating path integrals 

in general curvilinear coordinate systems other than the 

usual cartesian system. ?,Iost of the work has been done in 

polar or spherical coordinates; for example see (Edwards 

and Gulyaev (1964), Arthurs (1969), Peak and Inomata (1969), 

and Arthurs (1970))• 



2. Outline of the fork done in the Thesis 

Four problems of physical interest will be tackled 

using the path integral. 

As can be found in many standard textbooks on solid 

state physics (Kittel, for example), a model that is 

freauently used in describing the dispersion forces of 

condensed matter is a system of coupled oscillators. In 

section 4, we use the expansion in trigonometric functions 

as discussed in section 3 to evaluate the path integral 

for two interacting one dimensional oscillators without 

using a normal coordinate transformation. This problem 

has already been solved using the normal coordinate 

transformation as is shown in FH (Gh. 8). 

The partition function, or equivalently, the Helmholtz 

free energy, F, is an extremely useful ouantity in describing 

systems which are in thermodynamic eouilibrium. However, 

for a system of interacting oscillators, such as an 

anharmonic crystal, it is difficult to find an exact 

expression for F# Hence one must develop approximation 

methods to get F, one of which is a perturbation type 

expansion. In section 6, v̂e derive the method of 

Papadopolous (1969). This is a perturbation method using 

the path integral and functional differentiation. TJsing 

this, we develop a systematic method of obtaining the usual 

perturbation expansion of the partition function for a 

system of interacting oscillators* This method is 



specifically geared for a system of interacting oscillators 

and will be applied to the next three problems discussed. 

In section 7, we find the free energy of N interacting 

one dimensional Einstein oscillators. This oroblem has 

already been solved in the same vein by Shukla and Muller 

(1971) using a Green function method and again by Shukla 

and Muller (1972) using a diagrammatic procedure. In 

studying this problem, one is looking at the simplest 

problem which exhibits certain features that occur in more 

realistic models. To simplify greatly the calculations 

needed, one transforms the problem to wave vector space. 

In this space, one can use the symmetry of the system to 

apply periodic boundary conditions and develop the dispersion 

relationship. Also, when one is doing the perturbation 

expansion, the expansion cannot be cut off anywhere to give 

correct results because the interaction term is as strong 

as the harmonic part of the potential. Hence, one must 

sum the series to infinity. 

The next two oroblems studied have to do with the 

anharmonic crystal. The interaction or anharmonic parts 

which are expanded out, are generally much smaller than the 

harmonic oarts in their contribution to certain properties 

of a crystal, but are still necessary to describe the 

properties of a crystal such as thermal expansion, specific 

heat, etc. Perturbation theory is a standard method used 

in studying^ theoretically, the properties of a crystal. 



14 

In section 8, we find the free energy of an anharmonic 

crystal, or system of anharmonic oscillators, as described 

in section 5, to 0(\H) , where A is the usual Van Hove 

ordering parameter* This is the second lowest order of 

perturbation that gives a non-trivial contribution to the 

free energy. It has been found that the lowest order of 

perturbation, that is 0(Ay f is inadequate in describing 

the temperature dependence of the heat capacity of certain 

materials at high temperatures, and~hence, one must include 

the next order of perturbation to account for some of the 

discrepancy. Shukla and Cowley (1971) have done this 

calculation by using a diagrammatic procedure, and evaluating 

the necessary sums in Fourier space, rfe will perform the 

calculations in temperature space* These calculations have 

been done in temperature space to 0(XZ) } (Papadopolous (1969), 

and Barron and Klein (1974)), but to our knowledge have not 

been done to 0(A*) # The results we obtain are equivalent 

to those of Shukla and Cowley. As a further sidelight, we 

will indicate how one can draw Feynman diagrams from the 

expressions we derive. 

The decrease in intensity of x-rays scattered from a 

crystal occurs because of the thermal vibration of the atoms 

of the crystal about their lattice sites, and is accounted 

for, in theory, by using the Debye-Waller factor. In section 

9, we determine the Debye-Waller factor for a monatomic 

Bravais lattice, which is a special case of the system 
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described in section 5̂  to 0(f) and 0(/K/¥J y where K is 

the scattering vector. *Ve do the calculation to Off) because 

this is the lowest order of perturbation that gives a non-

trivial contribution to the Debye-Waller factor. The reason 

for doing the calculation to O(lK)1) is that if one were to 

write out the full formal expression for the Debye-tfaller 

factor, one "would find that the lowest order term is 

proportional to IW and the next lowest order term is 

proportional to lKl¥ f but both terms are of 0(f) in 

anharmonicIty. We then take the high temperature limit to 

show that our results coincide with those of Maradudin and 

Flinn (1968). Current numerical techniques make the 

calculation of the terms of the Debye-Waller factor extremely 

time consumingf even for the high temperature limit. However, 

the finite temperature results are of some interest in 

investigating the temperature dependence beyond the leading 

temperature terms derived in the classical procedure of 

Maradudin and Flinn (1968). 

In section 10, we summarize our findings and make our 

conclusions• 



3. Mathematical Preliminaries 

In this section, we present a mathematical formulation 

of the path integral starting from the time dependent 

Schroedinger equation and Its general solution. We then 

describe two methods for evaluating the path Integral; 

(a) the semiclassical or #KB expansion of Morette (1951) 

for non-relativistic quantum mechanics, and (b) the 

expansion in trigonometric series as given by Burton and 

de Borde (1955). The trigonometric expansion method will 

be used in section 4 to solve the problem of two interacting 

one dimensional oscillators. The method of yorette will 

be used in section 6 in connection with the study of a 

system of N interacting Einstein oscillators (Sec. 7), and 

the anharmonic crystal (Sec. 8, 9). Finally, we show how 

the density matrix can be written in terms of a path 

(Wiener) integral. The density matrix, and hence the 

partition function, Z, or equivalently, the Helmholtz free 

energy, F, will be employed in sections 7 and 8. 

(A) The Path Integral 

The time dependent Schroedinger equation is 

U W =il sL£ (1.1) 
H 

where the symbols are defined in section 1. Suppose the 

Hamiltonian is given by 

H=-Lf>* + Vfy) 13.1) 

where b,CL are the usual momentum and position operators, 



respectively, (not necessarily one dimensional), m is the 

mass which is appropriate for the system considered, and 

Vl^J is the potential which depends on position only. 

The general solution of Eq* (1.1) is then separable 

in the sense that It can be written as the product of two 

functions, one depending on time and the other on position. 

It then remains to find the energy eigenvalues and 

eigenstates of the associated time-independent Schroedinger 

equation. Let the stationary eigenstates be (pf(?j and the 

associated energy levels be E « As is well known, the 

set i^Jf)j forms a complete, orthonormal set^ 

Using the notation of section 1, and following the 

procedure of Schiff (1968), the wave function x(C^TJ of the 

system under consideration can be expanded in terms of the 

energy eigenstates to give 

^(a) = ̂ (^"U " T- Qs (W 4>B (fa) (3-2) 

The wave function xf^/ywhere ty ^ta is given by 



Let 

K(ka) -
o 

(3.4) 

Then, Eq. (3.3) becomes 

f 

W ) = J KCIo.a) 1PU) dj, (3.5) 

K(h}Gj is often called the kernel, propagator, or Hreen 

function. 

Essentially, Eq# (3*5) is an integrated version of 

the Schroedinger equation, for given the wave function at 

some point in space and time, and the kernel, one can find 

the wave function at later times. 

We note the following three important properties of 

the kernel* 

First, K (*>,*) s K ^ > f c i V O (3.6) 

The kernel Is a function of the difference in time* 

SeCOnd' ti»J(k*)* ^.\(f)^(jJ'S(p-f.) (3.7) 

where in taking the limit i^ia $ it is understood that 

one approaches {^ from values greater than 4^ * The last 

equality is just the closure property, with SOjbrfr) denoting 

the usual Dirac delta function. 

Third, suppose that C=((?04) ̂
s a n intermediate point 

such that 4<^c<^i * Then, by Sq. (3.5), 
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my) - J K(KC) wed dfc 

whence f ffc) = J V ? a [ JVj f t / < M K(c}a)] 9(a) 

Comparison of the above equation with Eq# (3.5) yields 

K(fc,a) = Ufc K(h,c) KCCA) (3.8) 

One can proceed along the same~ lines as above to 

obtain the following; 

where ^t> c >"*>^cl
>^a 

In what is to follow, we shall restrict ourselves to 

one dimensional cases* The extension to higher dimensions 

is straightforward and follows along much the same lines 

as the extension of the Riemann integral to higher dimensions. 

Now we will show, in a sketchy manner, how to express 

Kffcya) in the form of the path integral. 

It is well known that the energy eigenfunctions of a 

free particle of mass m are given by ^Blp~^f>ukp , and 

the associated energy levels are g >, &zk* , where k is 

the wave number* The energy levels are not discrete, but 

instead form a continuum, whence 21 —^ — J dk 
E "^ 

For \ ^ \ , Eq* (3.4) becomes 


