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Abstract

Four problems of physical interest have been solved
in this thesis using the path integral foraalism.

Using the trigonometric expansion method of Burton
and de Borde (1955), we found the kernel for two interacting
one dimensional oscillators. The result is the same as
one would obtain using & normal coordinate transformation.

We next introduced the method of Papadopolous (1969),
which is a systematic perturbation type method specifically
geared to finding the partition function Z, or equivalently,
the Helmholtz free energy F, of a system of interacting
oscillators. We applied this method to the next three
problems considered.

First, by summning the perturbation expansion, we found
F for a system of N interacting Einstein oscillators. The
result obtained is the same as the usual result obtained
by Shukla and Muller (1972).

Next, we found F to OO, where A is the usual Van
Hove ordering parameter. The results obtained are the
same as those of 3hukla and Cowley (1971), who have used
a diagrammatic procedure, and did the necessary sums in
Fourier space. We performed the work in temperature space.

Pinally, slightly modifying the method of Papadopolous,
we found the finite temperature expressions for the Debye-

P
Waller factor in Bravais lattices, to OOV and OOK’*),



iy
e

where 'ﬁ is the scattering vector. The high temperature
limit of the expressions obtained here, are in complete
agreement with the classical results of Maradudin and

Flinn (1963).
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1. 1Introduction to the Path Integral Formulation

In the more well known formulations of non-relativistic
quantum mechanics, one is interested in studying the
Hamiltonian of a system. This fact is evident when one

writes down the time-dependent Schroedinger equation;
HY = ik j-lfﬁ (1.1)

where H 1s the Hamiltonian, ? is the wave function, and
h  is Planck's constant divided by 2m .

There are many reasons for the development of the
Schroedinger formulation of quantuam mechsnics. The main
one is that for most cases, one looks for a one-to-one
correspondence between the operators of quantum mechsanics
and the classical quantities. Tor example, one can
associate H with the energy of the systemx.

However, one can formulate classical mechanics in
terms of an action princinle, or as more commonly known,
Hawilton's principle, (Goldstein (1950)). When first
formulated, one was interested in the Lagrangian of the
system, and from the action principle, one obtained
Lagrange's ecuations of motion. Later on, the Hamiltonian
was related to the Lagrangian via a ceanonical transformation.
In some ways the Lagrangian may be a more fundamenteal
function describing a system.

Cne may then ask the following questions. TIs it
nossible to formulate quentum mechanics in terms of the

Lagrangian, and if so, how cen this be done?



The answer to the first question is yes. The second
question was partially answered by Dirac (1932) who ls2id
down the foundations of the path integral formilation of
quantum amechanics in his paper on the role of the
Lagrangien in quantum theory. Feynman (1948) proposed a
path integral formulation of gquantum theory in terms of
the Lagrangian as suggested by Dirac (1932).

As is shown in chapter 4 of the book by Feynmen and
LLibbs (1905), (from now on known as FH), the 3chroedinger
and peth integrel formalations are ecuivalent in the sense
that the basic equations in either formulation can be
derived from the other. What makes the »nath integral
formulation worth studying separately is that it exhibits
certain interesting features that are not evident in the
Schroedinger formulation. We indicate some of these
featares presently.

In the 3chroedinger formulation, there are basicslly
two postulates. OCne of the postulates involves the equetion
of motion and the other involves the commutation relations
emong ocuantum mechanical operators, especially the
canonically conJjugate operotors. This latter postulate
is a consequence of the use of the Hamiltonian to describe
a system, and hence the need for canonically conjugate
operators. If instead, we use the Lagrangian to describe
a system, then we avoid the necessity o“ introducing
canonically conjugate variables, and hence we may be able

to drop the postulate of the commutation relations. IHence



ve need only one postulate as Feynmen used in his path
integral formulation.

It is appropriate now to give a brief sketch of what
arguments Feynman used in develoning the path integral.
Juppose the Lagrangian of a system under consideretion is
given by

L= gmg’=V(gg.4d (1.2)

Here ¢ is the position coordinate of the system, (not
necessarily in one dimension), m is the mass, (not
necessarily a constant and could be a vector), and V(?’i‘{)
is the potentisl. Given the system starts at aE@vﬂ),
we want to find the probebility thet it will arrive near
bs%ﬂfﬂ) , 4,>t. + Arguing that, in gquantum mechanics,
probability is like intensity, one must find the sum of
the probability amplitudes of all possible paths from gq
to b that the system can take, and then take the sguare
of its modulus to get the probability. Formally, one
can write this as

K(bya) =2_ [ qe)] (1.3)

over all
P“"H"S From
a +O b

where @fgﬁﬂ =  probability amplitude of & path described
by ?ﬁH going from « to

Feynman nostulated the following form for <@B%Hl

3lgtt)] = exp {£ SLalf (1.4)



¢
where 5[%&3] - QLL(’?,%*) gt (1.5)

and the integral is evalaated along 3f0 . S is called
the action. 1In words, each path contributes ena2lly in
magnitude to K(b,a) but differs in phase.

If we consider a one dimensional particle with a
potential V=V(%) that 1s well behaved, then the mathematical
prescription for calculating the sum over paths (or also
sometimes known as kernel) as given by Feynman (1948) is

Kbg) = fim fH&' J%&N_ eXF{_z;gz”-_[_:l (%g,_.,)z_wﬁ)]f (1.6)

Nt 1‘:\ Jst

L1}

4
where €= {L‘%“ s A= (ME-)J ’ ?o

m

Joo fu= s

and the integration is Jdone over all possible values of 9
Feynman (1948) has also considered cases where the potential
is of a different form in the sense that V may Jdepend on
+ and ? . Then the expression in Egq. (1.6) becomes
more complicated.

In defining the kernel, K(ba), in Eq. (1.3), one observes
that the function @%&ﬂ(iepends on the action 3%@” which is
a claessical quantity. The h 1nskes the argument of the
exponential dimensionless, and brings in the acuantum
mechanical effects.

Intuitively, one can see that the nath integral
formulation has close ties with classical mechanics. This
can be shown using the following argaments. If one

formiletes the classical laws of physics asing Hamilton's



principle, the path teken by the system, that is, the so-
called classical path, will be the one that extremizes sugun
In the cases we consider, this extremum #ill be a minimum.
Cbserve that as we .ove away from the classical path, the
action will become larger, and because K is small, @%M}will
oscillete wildly. Hence all contributions to the kernel

for paths thet are not in the neighbourhood of the classical
path will cancel out, (‘unther and ¥Xalotas (1977)). Thus
the classical peth and the paths in the neighbourhood of

it will contribute most to the kernel.

In the Schroedinger formulation, the wave function of
a system associates a probability amplitude to the system
at a particular position and time. The wave function gives
a local description of the system. TFTurthermore, one must
impose certain restrictions on the wave function which may
be ad hoc or have a physically intuitive besis. While in
the path integral formulation, the kernel assoclates a
quantum mechanical amplitude to the motion of the system
as a fanction of space and time. This is more of a global
description. Also, the boundary conditions for the kernel
can be chosen a priori.

One of the more apnealing features of the path integral
formulation is that the arbitrary phase factor of the wave
function does not enter into the kernel because it is
already fixed.

Looking at the expression for the kernel given in Eq.

(1.6), one observes that one can perform the mathematical



manipulations as is done in classical mechanics. This is
also true for systeme with other types of potentials,
(Feynnan (1948)). IHence one avoids the troublesome task
of perforuing operator algebra. J3ince quantum mechanical
operators are still of importance because they are related
to physical quantities describing a system, one can use the
path integral formalism to define "matrix" elements of an
operator as was Jone by Feynman (1948), Davies (1963),
Cohen (1970), and Mandelstam and Yourgrau (1968).

Although the psth integral formulation is conceptually
elegant, there is a major shortcoming which is exnressed
in 2g. (1.6). First, one has to determine whether or not
Eq. (1.6) is well defined and second, one has to nerform
the integrations given in Eq. (1.6).

In fact, to obtein the kernel, one must perform a
functional integral which is formally written as,

9((,,)=$b 4,
Kiba) = [ &Tgt0] exp [§ [ 1tf (1.7)
ﬁ({ﬂ):}a *

The expression given in Bq. (1.6) is similar in foram to
the Riemeann sum definition of the Riemann integral.

wiener (1923) developed, in connection with Browniean
motion, what is now called the Wiener integral. The Jiener
integral has a striking resemblance to the nath integral
given in Eg. (1.6). There has been much theoretical work
done on the .iiener integcral and how it is related to the

path integral. This work is well covered in & review



article by Koval'chik (1963)., 1In fact, in develoning an
expression for the density matix, one can use the JViener
integral which is what will be done in section 3.

Vore recently, much theoretical work has been done on
the study of 2q. (1.7). There are two points of concern.
One is that the expression given in Ea. (1.8) usel in
defining the kerrel given in Ec. (1.7) was developed on an
intuitive basis and so should be nut on a firm mathemeticel
basis. Jecond, the convergence of the integrals in ZIg.
(1.6) must be handled carefully in & strict mathematical
sense. Fundamental work discussing these points inclule
Davison (1954), It0 (1961), Keller and NcLaughlin (1975),
De Witt (1972), Albeverio and Hoegh-Krohn (187¢6), and
Mizrahi (1978). Lhe latter three references give a definition
of the path integral in &q. (1.7) without recourse to the
liriting procedure as given in ig. (1l.9).

rrom & w@wore practical viewpoint, considerable effort
has been put in to evaluate the path integral in 2Za. (1.7).
Unfortunately, there are not too many ceses that can be
done exactly, hence some effort is needed in finding good
approximations to the path integral.

A class of path integrals that can be done exactly are
the so-called Gaussian path integrals, that is, psth integrals
with quadratic Lagrangians. Notable examples of physical
probleuns with quadratic Lagrangians include harmonic

oscillators, free particles, perticles in & constant magnetic



field, and particles subject to a constant force.
Papadopoloas (1975) has evaluated the general faussian
path integral, while examples of special cases can be
found in FH (Ch. 3).

Some of the work that has been done in evaluating
path integrals, either approximately or exactly, if possible,
vill be presently given.

The expression in i&g. (1.6) can be used, but is
extremely tedious as is shown in ¥H (Ch. 3) for the free
particle, and in Devreese and Panadopolous (1978), »ng. 123,
for the harmonic oscillator.

Davison (1954) developed the mathematics for evaluating
the path integral by expanding the paths in a complete set
of orthogonal functions. Davies (1957) and Glasser (1964)
expand the paths in a trigonometric series to evaluate
certain Gaussian path integrals. Durton and de Rorde (1955)
use a different expansion in trigonometric series and
evaluate some Gaussien peath integrals. This last method
will be discuassed in section 3.

The so-called semiclassicsl or WKD expansion has been
explored. The method as described by Morette (1951) will
be discussed in section 3 for non-relativistic quantum
mechanics. Lore recent work along these lines is thst of
Gatzwiller (1967) and Levit and Smilansky (1977).

Much work has becen done in expansion proceduares also.

This involves the expansion of the part of the exponential



term of 3Zg. (1.7) that includes the potential or part of

the potential, in a power series and term-by-term evaluation.
Yaglom (1956) has followed this procedure in connection

with the evaluation of the partition function. For further
work on expansion formulae we refer to the work of
Papadopolous (1969), Goovaerts and Devreese (1972 a,b),
Siegel and Burke (1972), Coovaerts and Zroeckx (1972),
Goovaerts, Dabenco, and Devreese (1973), and Maheshwari
(1975).

In some cases it may not be nossible to get a good
approximation to the path integsral. In those cases then,
one may be able to get some bounds on what it should be.
Specifically, these bounds are in terms of some nhysical
quantity describing a system. TFeynman, (FH (Ch. 11)),
developed a generalized variational method in which he
obtained an upper bound for the Helmholtz free energy of
a gystemn.

There are other methods for evaluating the path integr=l
but they will not be indicated here.

The Feynuwan formulation, and hence the use of the path
integral and siener integral, has been applied to solve or
at least partielly solve some important problems of physics.
The areas of physics where the path integral has been
applied include cuantum, statistical, and solid state
physics.

One of the most notable successes of the path integral
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formulation has been in the determination of certain
properties of the polaron as described by Frohlich (1954),
such as the effective mass. Some of the work done on the
polaron include Feynman (1855), Osaka (1959), Schultz (1960),
Feynman, Hellwarth, Iddings, and Platzman (1962), and
Thornber and Feynman (1970).

Feynman (1955) used the variational method, as noted
above, in determining the effective mass of the polaron.
This vaeriational method has recently been applied by Telman
and Spruch (1969) to problems in which the Hamiltonian of
the system being studied has a term containing angular
momentum. |

Pechukas (1969) has used the path integral to derive
the semiclassical theory of potential scattering.

Papadopolous (1971) has applied the path integral to
the problem of a harmonically bound charge in a uniform
magnetic field, from which he evaluated the partition
function and density of states.

Lam (1966), Meheshwari and Sharma (1973), and 3Seshadri
and Mathews (1975) have done some work on approximating
the kernel of a one dimensional anharmonic oscillator with
potential V(x) = ax?® +bx*

Khandekar and Lawande (1972) and Goovaerts (1975) have
applied the path integral formulation to a three body
problem considered by Calogero (1969).

There are many more applications of the path integral
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formulation, some of which are of far greater importance
than those mentioned. Many of these applications along
with some of the theory of path integrals and Wiener integrals
is given in the review articles of Cel'fand and Yaglom
(1960), Brush (1961), Barbashov and Blokhintsev (1972),

and Wiegel (1975). The standard text on path integrals is
FH which gives the path integral formulation as developed
by Feynmen along with many applicetions including Feynman's
work on quantum electrodynamics. More recently, the book
edited by Devreese and Papadopolous (1978) gives some of
the other developments of the path integral formulation and
the present status of the path integral.

Before we end this introduction to the path integral,
there are three points which should be noted.

First, Davies (1963) and Garrod (1966) have develoned
the path integral using the Hamiltonian. They showed that
their path integral is the same as that using the Lagrangian.

Second, iandelstam and Yourgrau (1968) have related
Schwinger's variational principle to the Feynman path
integral formulation.

Finally, work has been done in evaluating path integrals
in general curvilinear coordinate systems other than the
asual cartesian system. Nost of the work has been done in
polar or spherical coordinates; for example see (Edwards
and CGulysev (1964), Arthurs (1969), Peak and Inomata (1969),

and Arthurs (1970)).
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2. Outline of the Work done in the Thesis

Four problems of physical interest will be tackled
using the path integral.

As can be found in meny standard textbooks on solid
state physics (Kittel, for example), a model that is
freguently used in describing the dispersion forces of
condensed matter is a system of coupled oscillators. In
section 4, we use the expansion in trigonometric functions
as discussed in section 3 to evaluate the path integral
for two interacting one di.mensional oscillators without
using a normal coordinate transformation. This problem
has already been solved using the normal coordinate
trensformation as is shown in ¥FH (Ch. 8).

The partition function, or equivalently, the Helmholtz
free energy, F, is an extremely useful cuantity in describing
systems which are in thermodynamic ecuilibrium. However,
for a system of interacting oscillators, such as an
anharmonic crystal, it is difficult to find an exact
expression for F. Hence one must develop approximetion
methods to get F, one of which is a perturbation type
expansion. In section 6, we derive the method of
Papadopolous (1969). This is a perturbation method using
the path integral and functional differentiation. Using
this, we develop a systematic method of obtaining the isual
perturbation expansion of the partition function for a

system of interescting oscillators. This method is
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specifically geared for a system of interectings oscillators
and will be applied to the next three problems discussed.

In section 7, we find the free energy of N interacting
one dimensional Einstein oscillators. This oroblem hes
already been solved in the same vein by Jhukla and Muller
(1971) using a Creen function method and agsin by 3hukla
and Muller (1972) using a diagrammetic procedare. In
studying this problem, one is looking at the simplest
problem which exhibits certain features that occar in more
realistic models. To simplify greatly the calculations
needed, one transforms the problem to wave vector space.

In this space, one can use the symmetry of the system to
apply periodic boundary conditions and develop the dispersion
relationship. Also, when one is doing the perturbation
expansion, the expansion cannot be cat off anywhere to give
correct results because the interaction term is as strong

as the harmonic part of the potential. Hence, one must

sum the series to infinity.

The next two »roblems studied have to do with the
anharaonic crystal. The interaction or anharmonic parts
which are expanded oat, are gencrally mach smaller than the
harmonic narts in their contribution to certain nroperties
of a crystal, bat are still necessery to describe the
properties of a crystael such as thermsl expansion, specific
heat, etc. Perturbetion theory 1s & standard method used

in studying, theoretically, the properties of a crystal.
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In section 8, we find the free energy of an anharmonic
crystal, or system of anharmonic oscillators, as described
in section 5, to O(X) , where X 1is the usual Van [Pove
ordering psraueter. This is the second lowest order of
perturbation that gives a non-trivial contribution to the
free energy. It has been found that the lowest order of
pertarbation, that is O(V), is inedequete in describing
the temperature dependence of the heat capacity of certain
materials at high teaperatures, and hence, one must include
the next order of perturbation to account for some of the
discrepancy. oShukla and Cowley (1971) have done this
calculation by using a diagrammatic procedure, and evaluating
the necessary sums in Fourier space. We will perform the
calculations in temperature space. These calculations have
been done in temperature space to oMY , (Papadopolous (1969),
end Sarron and Klein (1974)), but to our knowledge have not
been done to O(*) . The results we obtain are equivalent
to those of Jhukla and Cowley. As a further sidelight, we
will indicate how one can draw Feynman diagrams from the
expressions we derive.

The decreasse in intensity of x-rays scattered from a
crystal occurs because of the thermel vibration of the atoms
of the crystal about their lattice sites, and is accounted
for, in theory, by using the Debye-Waller factor. In section
9, we determine the Debye-Waller factor for a monatomic

3ravais lattice, which is a special case of the system
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described in section 5 to O(® and OURY) | where K is
the scattering vector. Je do the calculation to O(¥) because
this is the lowest order of perturbetion that gives & non-
trivial contribution to the Debye-W¥aller factor. The reason
for doing the calculation to O(IRY is that if one were to
write out the full formal expression for the Debye-ialler
factor, one would find that the lowest order term is
proportional to R* and the next lowest order term is
proportional to IRI* | but both terms are of 009 in
anharmonicity. We then take the high tempersture limit to
show that our results coincide with those of Maradadin and
Flinn (1963). Current numerical technicues make the
calculation of the terms of the Debye-Waller factor extrenely
time consuming, even for the high temperature limit. However,
the finite temperature results are of some interest in
investigating the temperature dependence beyond the leading
temperature terms derived in the classical procedure of
Maradudin and Flinn (1963).

In section 10, we suuwmarize our findings and make our

conclusions.
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3. Mathematical Preliminsries

In this section, we present a mathematical formulation
of the path integral starting from the time dependent
Schroedinger equation and its general solution. We then
describe two methods for evaluating the path integral;

(a) the semiclassical or WKE expansion of Morette (1951)
for non-relativistic qguantum mechanics, and (b) the
expansion in trigonometric series as given by Rurton and
de Borde (1955). The trigonometric expsnsion method will
be used in section 4 to solve the problem of two interacting
one dimensional oscillators. The method of Yorette will
be used in section 6 in connection with the study of a
system of N interacting Einstein oscillators (Sec. 7), and
the anharmonic crystal (Sec,8, 9). Finally, we show how
the density matrix can be written in terms of a path
(Wiener) integral. The density matrix, and hence the
partition function, Z, or equivalently, the Helmholtz free

energy, F, will be employed in sections 7 and 8.

(A) The Path Integral

The time dependent Schroedinger equation is

-k 2% (1.1)
HY =ih g

where the symbols are defined in section 1. Suppose the
Hamiltonian is given by

H:i_’;]o2+V(§a) (3.1)

wvhere F,% are the usual momentum and position operators,



respectively, (not necessarily one dimensional), m is the
mass which is appropriate for the system considered, and
\V(%) is the potential which depends on position only.

The general solution of Eg. (1.1) is then separable
in the sense that it can be written as the product of two
functions, one depending on time and the other on position.
It then remains to find the energy eigenvalues and
eigenstates of the associated time-independent Schroedinger
equation. Let the stationary eigenstates be ¢%qﬂ and the
assocliated energy levels be E . As is well known, the
set f()s(g)} forms a complete, orthonormal set.

Using the notation of section 1, and following the

procedure of Jchiff (1968), the wave functionlgqg@f:>of the

system under consideration can be expanded in terms of the

energy eigenstates to give

@(Q) = @(gaa%q) = %— Qg (-éa.) (PE (gq> (3.2)
where aE(‘{a) = [d%a Qb;(gQ) @(ﬁa){a)

The wave function q}(%b)'(’[)where {b >ta is given by
D) =Wl t) = Zalt) )
T 0 () de () € FEEH

i

- ~LEG1, )
gty g
= f{g e"xz‘E(ﬂ{' “>¢E(;b>¢:(%a>} @(a) dia (3.3)

17
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Let

Z e¥Eht o () 620 4ok
Klba) ={ Pelp Bl (3.4)

O >‘éb<_£°-
Then, Eg. (3.3) becomes

V(b)) = JKUo,a) YSa) o[ga (3.5)

K(bﬁﬂ is often caelled the kernel, propageator, or ‘reen
function.

Bssentially, Eq. (3.5) is an integrated version of
the 3chroedinger equation, for given the wave function at
some point in space and time, and the kernel, one can find
the wave function at later times.

We note the following three important properties of

the kernel.

First, K(b}a) =K(%b,%aj{[,*{a) (3.6)
The kernel is a& function of the difference in time.

d
'{'L%{‘a*
where in taking the limit fy*{: , it is understood that

one approaches {Q from values greater than %q « The last

equality is Jjust the closure property, with g%ffJ denoting

the usual Dirac delta function.

Third, suppose that ‘:E(gc)é) is an intermediate point

such that %&<fc<%g . Then, by Zq. (3.5),
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Yle)
D(b)

[Klc,a) Wla) dg,  ,ana
[ Ktb,e) le) da. ,

3]

whence ’4’(5) = fd%a { fal%c /’((b,c) K(c,a)} ZP(Q)

Comparison of the above equation with Eq. (3.5) yields
K(ba) = fo/ﬁc K(bc) K(c,a) (3.8)

One can proceed along the same lines as above to

obtain the following;

K(ba) = fc{%c,--- fo/gcn K (be,) K(cﬂ,,cJ)---K(c,,a) (5.9)

where fb>+c">"‘>{c,>%a

In what is to follow, we shall restrict ourselves to
one dimensional cases. The extension to higher dimensions
is straightforward and follows along much the same lines
as the extension of the Riemann integral to higher dimensions.
Now we will show, in a sketchy manner, how to express
K(@a) in the form of the path integral.
It is well known that the energy eigenfunctions of a
free particle of mass m are given by ¢E(3)=8X/>(2'/<%) , and

the associated energy levels are Ex"r’\’“ka , where k is

L m
the wave number. The energy levels are not discrete, but
+el)
instead form a continuum, whence 2. —> 5%- f dk
E o0

For ’Q>fa , Eq. (3.4) becomes
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K(b,a) = 3;7 :J:ja(]( exp Z% *;‘21‘2 ({b-fa)}ex}a{ékgb} exp {~2'ng}

3[“52@,,- ] e"F{ 2 M} (3.10)

The Ilagrengian of the free nerticle is given by

.2 . .
='énn%,. Solving the corresponding Buler-lagrange

eqaatiop sabJject to %Hu)'-';a_ , and %({”):%1’ , and

substituting this into the action integral, we find that

the action S, is given by

+ _ 2
SES(b,a)=J"1_o(Jc=L2- M (3.11)
1, (4, ~t.)

Noting Eq. (3.11), we observe that Tg. (3.10) is

= m ?
K(b,a> = [m] EXF{ S(Ea (3.12)

¥e note that the form of l(Qaa) given in Eq. (3.12) is
similar in form to the kernel given in Zg. (1.6).
Suppose now that instead of a free particle, we

consider a particle whose Lagrangian is given by

| = émgz—\/(g) (3.13)

where V is the potential, depending only on the position
of the narticle.

Wwithout getting into the mathematical details, we
will derive an expression for the kernel of this particle

which is similer to Eq. (3.12).
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Suppose 'év {-q . Subdivide the interval [-éa,ﬁ] into
N subintervals, the J‘H“ sach interval having length eJ>O .
J
Put 4J={q+%€'¢ , with {‘°={-Q and 'sz'éL . With each
4+ , we associate the position coordinate %d . let Js(gj,é).

J
Noting Eq. (3.9),

K(ba) = jdg,...fozw_, KOb,N-1)-+ K(palg) - K(ba)  (3.14)

If the GJ are small and V(?_) is a fairly smooth
function, V(g)%V(?J) for fJﬁ’l"l};. The Lagrangian of the
particle in the interval fJ$‘£<‘£J+; is then approximately
given by L= ém?z - V(ij) ELJ .

If one were to picture the approximate motion of the
particle from @ to b , one could conceive of the particle
as moving like a free particle in the time intervals {"d(ﬁ*"
while the points (g,4) act as scattering centres of the
particle that change its energy by V(?J)-V(Z,_,), (see fig. 1).

Hence,

+

Kigrly) = T e %55 (g, 87G)
Iy

~ e %50y (3.15)

1
- JH
- m 2 . ( ! =f . . v
where /3”, —[mjﬂ_] , and 5J+,J) ] LJCH , with % satisfying
J
the corresponding Zuler-Lagrange equation for ‘%Iéf‘ﬁ; .

 k
Note that ¢E(z)=e7 % , t'.zlffz.?m(E—V(},)), and the eigenenergies

form a continuum Just as in the free particle case.



Figure 1:

22

Hypothetical motion of a particle, with its
Legrangian given by Eq. (3.13), from CZ=(%Q{QJ to
b:(?bﬂl). The scattering centres are the

dots and the straight lines indicate the free
particle motion between scattering centres.
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Further ¢E%b#)cb? because T ¢t<t, . sSubstitution of
BEqg. (3.15) into Eq. (3.14) yields

. N
K(b,a) =~ [ %% g f"fﬁ: + e L4 2, Sgu pf

' N

If we let max eJ-»O", or if all the €, are equal, we let N'hdo)
J

one observes that the approximation becomes better. Ience

we expect

: d, -
K(b,a) = %é?%-»()*j_f\—?‘ j%-— e ex}:{ﬁZS(ﬁ )} (3.16)

This is the sane as the expression given in Za. (1.6)

(B) Methods of Evaluation

(a) 3Jemiclassical or WK3 Expansion Method.

let us first consider the method of the semiclassical
or VKB expansion as given by lNorette (1951). We consider
the case for non-relativistic quantum mechanics instead

of for relativistic quantum mechanics as was done by Morette.
t
The action is given by S = f b (o o1
[%] L, - 3’3’)

Let x. () be the function which minimizes 5[37, that is,
x{#) is the classical path. Let ?({)= xc(+)+7(%) . Hence,

‘?({a) =% ({L) = O'

Expanding S about x, &) in a Taylor series, one has

5[%] c Slx ]+ 5’7 $*SIx. ]+ 3’7 §3S[x ]+ (3.17)

where & represents the variation of § and xc=x.® is
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defined by &S[x.1=0.
As an approximstion to S, we drop all terms higher

than second order in the expansion of Zg. (3.17).

Put S = Slx] + :21.,. $28lx. ] (3.18)

ST R R e
oot [T ] ]

+;2[
é? ég g% é; 53
and 2_ is the sum over the components of .

The kernel for the action 5% y, 1s then given by

K, (b) = fﬂ[;é{ﬂe fﬁ[g/%)]ex;s[ fslx, ]wgsw?] (3.19)
%a
We will give an intuitive argument for what follows
next, but the following can be done rigorously, (Koval'chik
(1983)).
Ne have written %{%)‘-‘xc(‘“v‘?(ﬁ . Now, %) is a fixed

path and hence cannot be varied. It follows that ?(0 is
the path to be varied with .?CQ)=7Jﬁ)=O. Essentially what
we have done is to perform a linear transformation. Turther,

since S[x.] is independent of Ayfﬂ , We can factor exFE&?Sf&J}

out of Eqg. (3.19) as though it was a constant. It follows
that 7({,,):0

K, (he) = 50 | BTy exp [ 4 87500 S
7(“,):0

The above path integral is not necessarily zero, but Jjust
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states that we must evaluate the »nath integrel for all peths
starting and ending at the same space coordinate, neamely O.
One can determine the path integral of Eq. (3.20)

using the methods of lorette, and is given by

e ' 3Six] ]?
L1 = I X, 2
g}(ﬁbo Oly®] exp L £ 38350=]f [a(efﬂy ik 3, %0, ] (3.21)

The above method is exact for Gaussian path integrals

because §"S[x]=0 for n=3,4,... . In fact, the second

factor on the right hand side of Eg. (3.20), for this case,

is independent of %aand ?b’ and depends only on'g_and %L'

(b) Trigonometric Expension Method.

de now wish to discuss the method of expanding the
paths in a trigonometric series as was done by Burton and
de Borde (1955). We will again Just discuss the one
dimensional case, but these results can be extended if so
desired. 1Instead of using the general time interval [4,4%]
we will use [0,T] . There is no loss of generality for the
cases we consider, since the kernel depends only on the
length of the time interval, as is observed in Eq. (3.6).

To evaluate the action integral, we exnand the velocity

term arising in L as follows;

g4 = ()3 ni; an 4, (F) (3.22)

where @ (2)=] ,%(z)‘-‘ﬁcos(nrrz),nzl , and the a,. are

independent of t. DPlainly, ?QJ%”.form a complete,
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orthonormal set of functions on [0,T] as they are the
functions used in Fourier cosine series expansions.

To find %ff), we integrate the expression for ?ﬁg,
noting that %(0) % and 3,(7) 9y . Integration of Za. (3.22)

yields

egue (4 g0 = (ZTRJEF o [ (2

(.‘ZTT‘K { .é +T\[_ Z anS,n(nTl't)I (3.23)

n=x)

Further, %(T) %L %a ZW* )%QOT'

' 2
2, e. a =

R 920

The beauty of the method can be seen from the above
expansions. One observes that the expansion coefficients
fan{ characterize the path. Intuitively, at least, if one
integrates over the @, , one would be summing over all
paths. The mathematical details involved are not trivial,
and will not be given here. However, if we substitute To.
(3.22), Eq. (3.23), and Eq. (3.24) in L, and then find the
action integrel in terms of the @, , the kernel, K(hal is

then given by

Kbsa)= (57 rr) fda .(a(a" "F{t\fLO(‘tf (8.25)

The integrals are over all possible values of the a, , hZL

s
Q, being fixed by Egq. (3.24). The factors V7 and (_22___)3
amisT

cen be obtained by comparison with the result for a free
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particle which can be done by first »rinciples, (FH (Zh. 3)).
The other kernel needed in this thesis is that of an
harmonic oscillator, the derivation of which will be given

in section 4.

(C) Density NMatrix

We now introduce the density matrix which is very
useful in statistical physics. Je then show how one can
write the density matrix as a path (¥iener) integral
following the method given in FH (Ch. 10).

#e know, from statistical physics, that for a system
in equilibrium and in thermal contact with a heat reservoir,
the partition function Z, or egaivalently, the Helmholtz
free energy F, is all one needs to deduce the average
properties of that system.

The partition function is defined as follows;

2 = 3 e FEr (3.26)
~

where E, energy of state r of the system,

ﬁ: A, kBE Boltzmann's constant,
ks T

T = absolute temperature,

and 2 1is the sum over all possible states of the system.
r

The Helmholtz free energy is given by
F=-kT Wh? (8.27)
In what is to follow, the system can be described

by the Hemiltonian given in Zq. (3.1). Je can obtain
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the following results for other types of potentials, but
the arguments needed must be changed.
If state r is defined by the normalized wave function

¢4($)’ the probability of finding the system in state r

"near" ﬁ} , that is, in the region [ﬁ,ﬁﬁaﬁl is given by

- l_ “ﬁEr X*
Pr(ﬁ,) 0(% - Z e C;br (3) (}"(5) 0[6" (3.28)
Here, we have also assumed that the system is in
ecuilibrium, and is in contact with a heat reservoir at

temperature T. Summing over all possible states, the

probability of observing the system "near" %,is given by
_ ) —RE,
Plg)dq = Z Pr(@)olg -4 Ze Cbr*(ﬁ) by (3-20)

If we are instead interested .in a quantity B , say,

where B is some property of the system, then
— - -BE,
B = —é z (B) e AEy =§lz,;f¢f(3) B(g)d{.(%)d% e? (3.30)

The ber denotes thermal average, and <: >r denotes cuentum
mechanical average with respect to state r.

If we know the quantity
~-RE
Q(%', %) = Z‘:_ Cb,«(%') (b}*@ e AEr (3.31)
we can evaluate —E , remembering that if B:B((j,') , it

acts on db(%9° e is called the density matrix.

We note the following;

£ = Je(%,%)alz, = Tr() ; (Tr = trace) (3.32)
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_?1: EJ(?,%) (3.33)

B = L Tr (B e-es)
-

Comparison of Iq. (3.31) with Zq. (3.4) yields,
formally at least,

i

K(%C?i—ﬁgﬁ)

‘o)
olg g/ =" Y
(¥ pralenp {3 | [ Vle]
g

it

["ptaey exp - [T o VI]
3/ o

(3.35)

The above integral is what is more commnonly associated
with the Wiener integral (Cel‘'fand and Yaglom (1960)).
Yaglom (1956) demonstrates how one can derive Eq. (3.35)

in & more rigorous fashion.



4, Two Interacting One Dimensional Oscillators

In this section, we use the method of expansion in
a trigonometric series, as explained in section 3, to find
the kernel of two interacting one dimensional oscillators.

Let the independent position coordinates of the
oscillators be given by X, and x, . We use a sabscript 1
to lebel the various quantities relevant to describe one
oscillator, and a suabscript 2 for the other oscillator.

Observe that two sets of coefficients will be needed
for the trigonometric series, one for each independent
coordinate. Thus, instead of integrating over one set of
coefficients, we must now integrate over two sets.

The Lagrangian of the system can be written in the

following form;

30

L=L, +L, = Koxx, (4.1)

-1 ‘2 2.2 - 2
where LJ-.ZmJ({CJ‘u:)/ ﬁ), J:I,Q . Let K,z—\/m,mlw .

Suppose the boundary conditions of the system are the

following;

J

As given in Eag. (3.22), let

, x(M=5b ; =2 (4.2)

) + &
%, (4 .—.(iﬁ})f 7_;an b (%) ; J=h2 (4.3)
J n=

where, now, the CU are the expansion coefficients.

According to 3Zg. (3.24),
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Cop = (b, - o) 21,2 (4.4)
J 2TT'F\T' J )J

and to Eq. (3.23),

g (IR P [ ts TEE ey snfmt] s o

Substituting the above expressions into L. and La
and doing the appropriate integrations, we have, (Burton

and de Dorde (1955), Brush (1961)), for le,.:z ,

T _ imT ¢ (b-a)?* - 2
.;.\[LJJ%_%LZ_%?Q L (b b +a)

.30 T2 T m \x n

#E -8 (e o

Finally, for(J=’,2v ,
T .
%—i KL‘LI')C.:LO(-£~ :—% K::z:g(’zblbz"' ta.z""b.zan""‘za'a:)
if (et 3 Loy C0kJew (4,
+ (“'T””i) [a -D"h )Cna (;ﬁf

ﬁ7‘
+ :UTZC,,, nz(“’T'z]

where, in obtaining Eq. (4.7), we have used

2
(4.7)

{4 sin (rmt)dt = (- /)"“'T* n=1,2,...
0
>
j‘.Sm n‘lT sm(ld‘rt)a({* = 3 g,,,k n,l< :),-'Z,...
[¢]

_ 5 I‘P h:l(
{O , otherwise

Using Egqs. (4.6) and (4.7), the action is given by

31
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. T
S = ’}{fo (L,+L2—K,2X,x_z)o('é

1§ mT (b—a. - w(b2iab+a’

{77 [ - (e ko]

+mT[(b ’*)_w(b-).ab-}a)]
TQ

“/"Tm.z w"I (25, b.z+al bz'*alb' +2a,@1)}

+ Z'Z: { ( sz Cm + 77(” Py z)c"l "‘UT( C,,,C,,z

- (2]) (‘”"")[ ~C)"h] e
() (R L

- (MT cmlrn) [ ~(~D"k,] Cna

nTr

(ﬂ ) (L;\Zm‘)l [ag ‘(—/)"IDJC.«,; (4.8)

Sabstituting Eg. (4.8) into Zg. (3.25), the kernel

is given by

K(B.L b 2, )= {zxi;r)i(zﬂzg-[ fdcmfdc“feig (4.9)

Since the coefficients C, and Cpy do not mix in
each term of the expression in Eq. (4.8), we can separate

Ba. (4.9) into a product of double integrals.

¥e introduce the following notation. Let

=(“’JT)2 , 4, zTT{I"’(':/)’ SJ = (“;_’”J)f

n =l y
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- (-1 = T2 =
En = 9 Db, (% , Y, = 2T,

Collecting all terms containing Cp in Ec. (4.8) yields

J—n = Z.an [C:| = {X"Clﬂl 4"’(;l&‘gm.""(l': gﬂ 6”2} Cn,] (4.10)
ni
Integrating over C, , we find
+00 4 . 4
j dcp, eJ" = (-}l)zex;:[”(x"c"l*:ns(&5nv+’("52£"“)] (4.11)
nit ni

7
Collecting all terms in the exponent of the exponential

containing Cnz in Eq. (4.11), and Zg. (4.8) gives

In = [ (_X Cna +L:(;|Sp£m +o( S Enz) ¥ X”QC,,Z (O(n_z Enz-}a{hg Em) nz]
h)

Integration over Cy; yields

T dens T (S, €31, + ln Sy €
:[o ‘)__27_ e \/’_(Xn:l qa,m eXP {ld ym « .

+ ("Z.) {dnzg-z gnz"'o(nglgm + g?;, ('(mg; em +°(*\8:1 Eﬂz)fzf
(4.12)
4 (¥, ':éZ.J:)

Employing Egs. (4.11), (4.12), and making use of the

following identities;

o1 -
(o - BT (- SL T~ 5
(i) T (Xm Ynz 'L'F‘ - ha? I n:ﬂz

where (,u; = 'sz {(w,‘1+ wf) + ,/(wﬁ-w:)”-k 4wt } (4.13)
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the kernel (Eq. (4.9)) can be expressed as

4 4
K(bz b,,al,a,,T) VenMa N omik sm(wT)) (o?TT > )3

ih sin(w.T
corp fE[mT] ool - L (birabeal)]
+ _-;—LI E.(b-'t__—_a_z_)z- %wf(bf-raz)oﬁa;)}

T.?
- fmm, w %(Zb,bz+a,51+aab,+2a.az)]+Q} (4.14)
where Q = '2%: Ean

2 & 2
Q - (a{m g’ Eh' +d,, 5:1 gnz) + ,{i(“z é; £n1+ O(ng, Ly ""‘{y':"(dmgp Em""O(.,\ngnz)j
" an ( Xn:z - ‘7—37” Xhz)

The above expression for Q, can be simplified to

l.;
Q, = z}’; [ (00 + 27, B, wi(wost) + B} (w¥+)] D,

+E~_)[A (w® —w,w, rwtw ‘4 3wie?)

28, B w (W + 2w + w))

2 4, .2 4
+B, (0w -ww, "'wf+3w:w")}f

where

A:: = L{-T['M, [ 2 Io,z_aza' E’ (_[)h]
2T 4T m 2

B., e L5272 [at+ l:» -2a, b, (-1)"]

AnB, *L“T%Tm“ [aa, + b, b, -(-1) "(a,b,+a.b)]
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htm?

-t
2 27l 2 22
h(h’“-—w*T) h(n:—— w.=T
p*Tr? n?m*

U

E = [(wr-w2)? + 4wi]?

Using the following identities,

+ o _ 2 -
(lli) Z _L_—_i = -Lz {L - —1—T—C0+(7T'Z) - __zf Z IS ho+

n=| h"‘(n‘—z) 2 2322 22 A o Fos,,_,_},vc
(iv) D"~ S I cse(me)+ 7 integer

LSt~ i e

and the expression for Qn , we find the following compliceted

form for Q@ ,

Lo

Q‘:--%:Qn

-ZT < [m' (al2+ L'Q) (wé_w2wq+ij4+3w2wq)
[(w ~w +‘}w"]

iy

+ m, (af-»—l::) (ce)‘zé -w'w,’ +wilw+ 3w w?)
[(w,z-»w:)l-}-‘r‘w"]é
+lumlm.1 (alal"‘b)ba) w‘z(w,q‘"wzq-l—-?wq) ]
X

[ (w?- w;)a +9dwi]3

x[ VLB { LLN A -2
o L g ot (0T) -




o,

—m?__] [mab(w -ww +w2w +3ww)
w, W) 4o

+mzazb(w -, w +w w* +3ww)

+m (a-b1+a'16¢) w? (w, "+w;‘+.?w") ] x

2 2 2
X [ il - _ 2 T+ T2
csele, I/+
W T* (2,2 20T ( 72 f

- T2 2 2 2
22 —lTTa 7T csc(wT) +7TF]
w=T Q2w T QwT

+ [m, (@24 5,) (i %+ ) + Almm, (a,a, + b, b,) w2 (w,*+ w,”)
t Mz(a:-i»b:) (w"t"‘w.zy) ]x

[T e T’ 2
- )
[ w?T* (2w2T* 2T cot (e, T) ?j

+- TT: { 73 _ Tra Co+ (w‘_T) _:gf}]

w3T? 2w3TY 20T

- [M,a, b, ((4)4 "'LU,") + mla_zb_z (wq_*wz‘f)
+ oy (wirw)w? (ab,+a,b)]x

x TR T2 -n~-2 T2
— - L cselw )+
[ w;lTa 2%471 2 W.,.T ( ’ ) 12 f

Vit T2 T2 2
+ — - A + I
waT 2w T T G, T €5€ (.T) /12 f ]

36
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Finally, substituting the above expression for (Q

into Eq. (4.14), and considerable maninulation, we find

the kernel to be

K(bz,\b!)aa)a»QT) = Vmym,
4
g ( ©s , )a exp {22‘0‘ [(u,J +a.}) coslw,T)- Quoa]]

2mih sinla,T) Ksin(w,T)
.;yz)cos(w'T) 2'7,,? ]f (4.15)

T
¥ - . ex
(ZTrzK sin{(w.T) P ,?{s,n(wT)

where

Hi

2 2.4\ 2_ 2\ L
w = -w w w_ =z
U, a, ym, (______..___' g )" + a, \)mz ( 2 )

2 2
w2 -

2 L a 2
~w —
7’0 =am (w: '2 P my (w+ w2 )2
W - w w? -w?
2 2 2 2,1
—W L w.. —w. 3
7' = B' ‘Im' (%l ' )-’l — b \’ May (__:_____,__'3-2)
Wy oL W-l»l—w‘

In fact, the expression in Eq. (4.15) is the product of
kernels of the two harmonic oscillators with freaquencies
W, and w._. , respectively. These frequencies have
been modified from the frequencies w, and w, because of

the interaction.
The author has tried to extend this path integral
method to the case of a linear chain of N interacting

oscillators, but the expressions soon became excessively
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complicated, hence the work was discontinued.
If we let K,, =0 , Bg. (4.1) reduces to the case

. . . 2
of two non-interacting oscilletors. If w,*zw

), » then from

Zg. (4.13), we have w,=w, , and w_=w,. In this case then,
Eq. (4.15) reduces to
Kk, b, ,a,,a;T)

4
Q

= [ _Mmuw, )
QAmih sin (w'T)

ex}o { Im,w, [(af*'b,:‘)cos(“'.—r) -.?a,b,]}

24 sin (w,T)

L
My W, )2 imy Wy (224 h2) cos(w,T) -2a, 5_2]
: ik sin(ew,T) exp gm [ f

which is nothing but the product of the kernels of the

individual oscillators of frequencies w, and w, ,
respectively.
For dispersion forces in condensed matter, as is given
in Kittel (1976), pg. 78, we set
2
K = —-QE%
where e is the charge of each oscillator, and R is the

interparticle separation. The zero point energy is then
- |
Uy = 14 (s, + )

where &, and w. are given in Eq. (4.13). Expanding w,
end w. for small interaction, we get the interaction

energy, which varies inversely as the sixth power of R.



39

5. Lagrangian for an Anharmonic Crystal

In this section, we set up the Lagrangian for an
anharmonic crystal, that is, a system of three dimensional
interacting anharmonic oscillators. The basic procedure
followed is that given by Born and Huang (1954). We
assume that we are dealing with a perfect crystal that
has N cells. e further assume that periodic boundary
conditions hold, and that the usual adiabstic or Zorn-
Cppenheimer approximation is valid.\

The Hamiltonian for the crystal is given by
H=T+8¢ (5.1)
kinetic energy

> BYR)
¥ 4.8 2’4K

where T

\

Here 2 cell index,

= index for different atoms in esach cell,

X X ™

= X,y,2 components,
Mk = mass of K™ atom, and

+h
p(f) «'" component of the momentum o the K
atom in cell £ .

@ = potential energy

& (3 (D)4 T s 2 (L) T (G 2 (k) )43 (4e)s-)

where i(ﬁ)

the equilibrium position of atom K in cell L.

——

x(f) + X (K)

i
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Here, %({)=43d +f351 +40, , X(K) = K& +Ka + K,d,, and
{a. ,a‘l,‘c‘g} is the set of fundamental lattice translation

vectors. {j|,125£3} 1s a set of integers, and {H“ K‘_“HJ
is a set of non-integer numbers such that (O¢ H},KZ,Hssl

-—

u(‘ﬁ) = the displacement of atom K in cell [ from
its equilibrium position.

: 2 (L
Assuming that the U(K) are small, we can expand @

in a Taylor series about its equilibrium position, whence

$= 8 + I b (Ruli) &3 il ubacly)

LK
LK
1 L4'2",, 1 ) ( )
3 S ‘P«,(w(,{ o ter) e () e () on ()
ﬁ’K‘O“
where @ = @ l = constant, and hence can be neglected
¢ in the following work,

3 (4 +u (4 PR
cPo((ﬁ) = aégu;(ﬁgk) (@--) l.,

since there is no net force on any atom, or K, in the

like,

oy & (a3 ulk).)
¢.,e (ﬁ K') - ga (1) aad (1)

,etec.

—

=0

Substitution of the above expressions for T and Zé

into Eq. (5.1) yields

H = H,+ Ha (5.2)



) ’ . (1 ) [) I
h U e U n)
A n=3 N I.M,x, fhk,\xn “ein Kn/ ¥ <K. - ( Ko
By translation symmetry of the crystal,

j.z“/g» ce ﬁn'ﬁ, .
cbat.'--a( (ﬂ ﬂ;;n) = Cb«,... S, K, oo K ) ;N2

#e define the dynamical matrix as follows;

Dy (« H) Z b (& 1) c_z‘?'iw (5.3)
/ M¢ My

where % = a vector in reciprocal space.

It turns out that we need to find the eigenvectors
and eigenvalues of the dynamical matrix, that is, we must

solve the following set of equations;
3 , ?)a( 1)
(K §)= 2 D (i) €0 (K] (5:4)

Here J : the branch index,

wz(f); the square of the eigenfrequency of vector ?,l
J° and brench index J and

g;‘(g 3)5 the o7 component of the corresponding

J eigenvector.

Note that w"(j)zwi(-f}, w(f)zO , and we use the

41
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convention Ej: (K ?) = £, (K ‘?)

We now introduce the normal coordinate transformastions.

'hese are given by

= 19X ) 2

p ()= L T VM, e (xF)e't “p(3)
4 VK N 3J o _.) (5.5,

. 15> L 7) 15T Q¢

Qd(x)"m%ﬁg"‘(“)e J

Note that p*(}“) - P<:?)’ ond Q*(zg‘): Q('j) ,

Then, substituting Eq. (5.5) into Eg. (5.2), and
performing the usual operations, (Born and Huang (1954)),

we get the following;

i - 7 PP (e o
HA:n=3 % '%V"@j.) »—gnjn>Q(Jl') Q( :) (5.7)
where n o N A
Vo)~ Nt 7{75—1 . Puer (e )

18,4t 1, v My o My,
e XK ) +<a -+ 39 5(4) - -
’ Gl )= Exn(K"Jz:)

- = . .
and {' 1, if %::O or is a vector of reciprocal
0

N Gg'.,, 4%:) e

lattice,

, otherwise.
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To apply the path integral formulation to the problems

to be considered, we will need the Lagrangian of the systemn.

Hamilton's equations yield

- -t

Q(%)=2H - p(¢
(- sk -7t

Here, we note that for every vector ? in the sum over

-~
? >
there is a corresponding vector -?g: .

The canonical relation between the lLagr=ngian and
Hamiltonien yields

L= Z Q) P(P-H

Lo —La

1z fa(pacg)-«afua9i,
La = F4A

]

15.8)
where

L

We introduce the symbol )\rs %,, , noting that ..Ar_: _ngr

Then, we write Q(j&:r);Q(,\)E Q)r} Q(‘J@ = Q—)r’and wl(@zwi(Azzwir

n
An important property to note is that \/ (Au-N)Ah)

is completely symmetric in its arguments X,V..,An

Thus, l-A is invariant under permutations of {)rz,

.
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6. The Method of Papadopolous

Ve now introduce the method of Papadopolous (1969),
which is used for evaluating the partition function Z, and
hence the Helmholtz free energy F, of an anharmonic crystal.
We have to change the derivation slightly from that of
Papadopolous, but the basie ideas used are the same.

The Lagrangian of an anharmonic crystal is given by,

-wy0,Q,]- L,
(3.1)

LA = Z. \/n(xlz"uA“)Q)"" Q)n

For this Lagrangian, the density matrix of the system

is given by, Eg. (3.39),

QQ”%@ . , .
e(§>g.) = g LH1Q()] GXPZ(‘;—Z 2;‘!6(9[(%—?“%\,@,\@,\]}@):?"({ LAo(s}
o Q(0)=§ ' (6.2)

where ﬂ[g&)};gﬂ[@\@ and 5, , and E"‘ are the boundary

coordinates. gﬂ and hence, Q is a vector with the
same number of components as there are different values
of Ar.

From Eq. (3.32),

£ = _(0(5,6(5,5) (6.3)

where G[EF 7,\70(5,,\ and the integral extends over all possible
~ r

-
values of g, .
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As it stands, the path integrel in IZg. (6.2) is not
known to have a neat closed form solution. Hence, to get
some meaningful results, an expansion (perturbation)

procedure is used on the term exp g- fﬁLAo(s}
o

Formally expanding exP {~IﬁLAd@}, we obtain the
)

following;
ex,.,g-f/”mg; -2 G [ L]
{’\Z} VS(A::Az:f\ f{@SQ,\.(S)Q&(S) Q)S(S)
T VA0 A f ols Q) G, (g)cp 6) @y, (s) ...

A,

SV Oudd) V300,A0 5
i {’\f\z&)r\y\e i

f“azs f% §,:)6,5)0,6)8,6)9,6)Q 6)x...]

(6.4)

Substituting Eq. (6.4) into 3a. (6.2), and then
substituting this into Eq. (6.3) yields a linear combination
of terms, a typical term of which that has to be evaluated,
neglecting its coefficient, is of the form

£
I,\(,'h-).,xm PSR fds £ 180 { ﬁs!ﬁ( e G (Sh)}w.s)

O)

where OD"B [ Q (s) ] ﬁ[Q(g)] ex};{ Jd Zfa(s [Q,\Q,\ +w ,\J}
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JZ?[QQIrepresents the measure used for the "averaging"

process. Here, we note that it is of the same form as the
Uhlenbeck-Ornstein measure, (Msheshwari (1975)). Turther,
we expect that the convergence behaviour of the above
expansion will be the same as that of ordinary perturbation
theory since we are developing the perturbation expansion
via this method.

From the Caussian character of the measure, it follows

n)
that any symbol I}--'A? with an odd number of indices

will contribute nothing to the expansion. That this is so
will be sketched out in aeppendix 1. The way to evaluate

the contributions from those terms with an even number

of indices will become clear later on, and will be evaluated
in later sections, (see secs. 7 and 8).

. (rn
We note an important property of the ];y..): « As

can be observed from Eq. (6.5), it follows that any
permutation of the indices for a given vearisble S, , say,

will leave ];:1); unchanged. This will be important in

(]

simplifying the various terms of the expansion for Z.

Combining the above results, we have

)
Z =2, {?—A VAR D,

T VL) T e f
Arde

@)
+ él‘,' {%évz(l\uA-‘Z)’\l)vg(A‘b’\fz AG) l;"\-ZAS;’\‘f’\SA(,-’..h } _— e (6.7)
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where

[dt fj‘ £ TQs)]

- -l
= 1T | 2 sinh (;?"ﬂ’r’\w,\)] (6.8)

= the partition function for a system of
non-interacting harmonic oscillators.

Instead of evaluating the separate terms of Eq. (6.7)
using Eq. (6.5), we can more easily generate these terms
employing a "source term"ﬁQ(Tarski (1967)). Although we
have followed Papadopolous (1969) and Tarski (1967) in the
work presented in this thesis, the idea of introducing a
"source term" in quantum statistical physics problems was
introduced as early as 1951 by J. Schwinger.

We will show a little later in this section that
obtaining Z is formally equivalent to the knowledge of
some generating functional. The procedure then is to

. (n) . .
evaluate the integrals I&--~A: arising in kq. (6.7), and

explicitly given by Eq. (6.5))by functional di“ferentiation

of the following generating functional, viz.,
£ £
G = fo(fj FL[Q ()] exp g?\'—rl‘/s 3:\,(3)@,\,(3>} (6.9)
£
Then BEg. (6.5) can be expressed in the form
(n) E ﬂ J#
I,\.‘---,\'M;A.z--)',: - Jdf f 0@&[9«(")][ 500 )l

S £
{gj G) g,j ) giz(% i n(gﬂ)}exF{Zfa/sJ()QA()}

(6.10)
J=0
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with the help of §— gﬁJ(s)Q(s)als _Ql)e SﬁJ'(S) 6?(5)6[5J Des 5/5.
$Jls)

Since it is possible to perform the functional
integrations over {Chgﬂ}, then the various functional
differentietions, and finelly the integrals over {ng,
(Papadopolous (1969)), Eq. (6.10) can be expressed in the

following form;

. A S 5§ S § l
( ) G
Vs, i I - (6.11

Jg=0

What remains left is to evaluate Eq. (6.9) which first

reqaires the evaluation of the following path integral;

JEOD;’@[Q(S)] exp { /\Z f/ga[s J;r(s)QAr(s)f
£ , 0

f SI06)exp T Jdg [36060+ 400, -3 6qs s 29

where in obtaining Eg. (6.12), we have used Zg. (6.6).

#e suppose the Atk comnonent of jg can be written as
. . A -
E\r:x,\:z%\r ; X’\"%\r are real. wusince Qx'gs)——Q_)‘{s), then f:: 5"»'

Since Eg. (6.12) is a Gaussian path integral, we use
the semiclassical or WKB method outlined in section 3 to

evaluate Eg. (6.12). Hence, we have the following;

\( [ T ZW—‘K Smk(ﬂ‘ﬁw ]%exlbg A/J’[Q(S]f (6.13)
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where,

A'@[Q ()] = Z fds {u\‘a Q A = Q er A,Q)\,.? (6.14)

This integral is to be evaluated along the path for which
(QNKQ is a solution of the following Euler-lLagrange

equation;

@)r(s) 4 w;r Q\r(s)r-'bﬁl\r(s) ; QA,.(O): QA,(/@’ EA,. (6.15)

Solving Egq. (6.15), we obtain

QL) = [cosh (shay )-tanh (485w, ) sink (she, )] €,

+ % fﬁo(s' J, () sinh] (8-stw, | sinh (shw, )

w © r " simh (% w, )

S
-ﬁ_ [dgl J-.A (3') sm)') [(S—S')%wA ]
W, ° - -
Substituting this expression into Eq. (6.14), and performing

an integration by parts on the first term in the integrend,

we obtain

Aff[@(s]-— Z{[Q_,\@Q(S]ﬂ ﬁfcr(sm(su

- [Q (0,0 -0 KQ ) +4°7 (1] ds |

Z {a,@d@-qudo-+ f 3,60 G, el f

.2%‘

= i" %\:' w/\,- 5\,. {,\r—}—a‘“l" (—%ﬂ%w/\r) -



S0

- Z &, J)@o(s J, (s) [ cosh (s‘thr)-‘fahl‘(?zLﬂ)"‘“’,\,)s"”h (SK“’A,.)]

f sml\(s‘r\w,\r in d
R T [ o 30 3,60 [ S0 s gt |

- @(5-—3) sinh 5(5'3’) ‘F‘aﬁ,ﬂ

T 5, B, danh (55

. 4 nh (she
-1 S Jﬁ < J,\ (s) fco_c,L(wArLs)-+aw)'1(z/§%wA,)9’ h(s /\r)]
2 Ar‘ (0] g
- Latw ) sinh(sha, )
"é 5,'\—: 5.,\, J/z S \I,\,(s) [cos%(s'h“’—,\,) fanh (2 “4\) > ,\,]
inh (shew,
2- w, g f/gs (s)J (s’)[ > (; Smlw Z((ﬁ S?Ka{\z
- @(S'S Sfy))r\ g(S—Sl)%MArf]
=1 anh (£ _ * .
a EA: A, Ffanh (7464, ) {xAr Ter Tanh ()

"J@S [COSA(S'K%V) ~tanh (Ea%r‘“i\r) sinh (S{ui\r)]x

X [J;Sg) +:[Ar (S’)] }'Z

# - T, danh (£65,) fop, - L/w,\ Tarh i)

e [cosh (stias,) - +ahh (4Akw, ) sinh (b )]s
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3 0T, (91}
b s [l 30 T coth (hh,) cosk 67k
e ~-20e(s-s') sih“[(f‘sl)&%p]z
where
o(x) = { C’)ij(OO
From Egs. (6.9), (6.12), (6.13), and the above result,

we have

G =[dEY =[1r[dg ]Y

-1 _ ,g 2
- [ 22 sinh eho T, g 5, 41590

“U

= zo exp ({ﬁ fs !As' ‘E,,(S)‘E; (<) K)'r«\l (S,s')}

(6.16)

where

Kas(sss?) = K, 5, (s-5)
= 5§ coth(4f%u) cosh[(s) bu]

Ar (6.17)

- 0(s-s) sinh [(s-sVku, 175, A

Note thsat

K (s,5') = Ky 3 (5,8



To further simplify the notation, let

R, (A, . ,
(TKJT) = )%-.-:\.;_l‘ s£ S J:\P(S) J;': (S) KA,.,\; (S,S)

Then,

G=2%,¢ =

n)

Cbserve that the above method is systematic in
evaluating the partition function because the problem is
reduced to tedious, but straightforward integration and
functional differentiation. Other consequences of this
method will be discussed in later sections, (see secs. 7,

8, and 9).

52

“+od ‘
(TKT) _ z, 5 (TKI))" (6.18)
Nn=o



53

7. Interacting Einstein Oscillators

Ve will apply the method of Papadopolous to determine
the free energy of the interacting Einstein oscillators,
(Shukla and Muller (1971, 1972)). The system to be
considered is a linesr chain of N interacting oscillators,
each of mass m, and frequency W . Periodic boundary

conditions will be assumed.

+h
Let Uy be the position coordinate of the f oscillator.

The Lagrangian of the system is then given by
| = Z_[ -w uﬂ]+-—w Z Uplyy) 5 4 =Uun  (7.1)

The normal coordinate transformation is given by

o
y = &= > fe ML e, (7.2

Here, d is the equilibrium separation of two successive

oscillators, and k is the wave number. Note that
N (k+ k') Ll !
7 62( ! =/\)A(1<+l<) (7.3)

1=
Substituting Eq. (7.2) into Zg. (7.1), and using Eq.

(7.3), we get
L =Lo -La (7.4)

G

k k"wzg EJ (7.5)

where Lo - T!,: %__l'
- ! , R
LA = ’5%: 2 lgkg;( y AU =W cos()w[)&;k,(”i.éi)

kk
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Performing the expansion of the term containing LA in

Eq. (6.2), which is given in Eq. (6.4), and using the

notation of Eq. (6.7), #e obtain

N
It
ON

1)
o ¥ 2 Y e T (
k! "

kkl '+

] / @
+——|Z' /U—' .zkz Ik‘(,,)'{z){; R

2z
)
+J—— Z_~Z_/U;k ltk I(:l) th(,:+.'. (7.7)

where ﬂ ﬁ
IO =2, e s, S & T
15" 3y K o (&) XJ’:,(S) SJ;"(S’.) g\));gh) gJ;;(sJ
J=0
Zo = [T 2sinh(3p54)]"
K,y (8= % i;’;cov‘% (2R8%w) cosh[(s-s")4w]
- e(svs') sinh [(S“SQf%w]z gk,-k'

Put C(S‘_,S') Sk_k, :Kkk' (S’SI)+[<I<'I< (SIJS) (7.8)

(n)

From the definition of ]: .. \,» observe that it is
+h
necessary to only keep the n

exp (TKT)

term in the expansion of

because all other terms will not contribute.

Here, we use the fact that

§* (TKT) = K G s) + Ky (s,8)
§3,6,) §3,(s)
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The following definitions will be of use;

(1) C, o(s, j”o(s., Clsy5.) -+ ClSmsSa) CGsyys)

(i1)  a,

n

2“ k 2"

2. C, [wzcos(ko()jnzzc 4);1
k =

~

(ii1) b, =L 5 Vpp! - V)

(n)
& f’; =z 2 I“« 4025 bk,

3

(n)
Substituting the expression for Ii l; , and Eqg.

(7.6) into Eq. (iii), we obtain

2
by __.__i_, ST Wi .../U;m L, C[S' ’f&n § 5’2 (JKp)"
n. keek, T3 = 0 s " SL6STL (S)SM) 8@@)8’%(3) n!

g T 0 [ &2

g-.-,'@‘_" [EJ r= r!
J'*‘")J“zb
n r-
= 2 L | 2= ar]‘jr} (7.9)
Zlijl=n =1 Jr, Yy
fﬂmJ 20
Note that 277 (1) = (2r-2)!1 ,r=hd,..

We now give the following intuitive argument as to
why Eq. (7.9) is true.

n
First note that the factor n! of (CTKJ7 cancels
hj

out for each particular sequence of functional



56

differentiation that is performed. For example, if in

. ) a
a given sequence, one performs the operation s

ngc,(Sf) § JLP(SP)

then
(TK)"

gx-l 7 J {;-' $3,65) | T Chshn &Wff wnsj o~

#op

Second, observe that bn will be some combination of the
n . . |
{CX"}r=t' In the middle equality of Eg. (7.9), the h.

in the numerator accounts for all possible permutations

2 n
of the operators {h E . This accounts for the

fact that all such operators contribute equally to kh

under J2__ . For a given seqguence of functional

ko K

differentiation, the condition 21 ﬁ_ﬁ must be satisfied.
Z=1

Here, Jl denotes the nuaber of closed cycles of‘f variables,

ggr} , formed. An example of a closed cycle of [ variables
y3
is CG,,8,) - C(s,8 :Ju - Cs ,;%>C(§ayﬂ) The variables {Sr}rﬂ

form a closed cycle because one starts at S, , goes through
S5 "ﬂzgl , and returns to S, . From the definition of
(;z , QI is independent of the particular labels of the

closed cycle of 17 variables. J3uppose for a given sequence

of functional differentiation, there are<Jr(ZC» of the a, .

For each factor of & , there are (2w40” ways of pairing
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the r variables in the closed cycle. Further, one must
divide by t”! to account for the degeneracies in the n!
permutations of the operators mentioned above. Hence,

from these Jr Qr, one gets a contribution (-2 11 a'}Jf
’
rl

This result must further be divided by J'! to account for
the degeneracy in selecting the Jr Q. . This contribution
is multiplied by the other factors in the particular
sequence of functional differentiation which leads to the
expression given in kg. (7.9).

Substituting Eq. (iii) into Eo. (7.9) yields
+a0
h=]
Hence, the Helmholtz free energy F, is given by
F - —kgT AnZ o,
= —-kBT«an Zc» - kBT ’anl-i.g-'—;‘, n}

(7.11)

Using Eq. (7.9)

Lo = > B (2 Jrf
— — Qa
b= s g, T ()
L=i
Jl)"‘)J”ZO
_ e +o0 s 2"“" N
= TL %E;O n,! ( r ar)

The second ecuality can be verified by multiplication and
rearrangement of the teras.

Using the above result, 3Ig. (7.11) becomes
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5_2)_::'61}) (7.12)

My

—kgT dn Z, - kT

v
Ll-

OQur task is now to evaluate CLP . trom the definition

in Eq. (ii), it follows that to get aF , CP must be

evaluated. In evaluating CF , the following integral must

be evaluated;
(7.13)

A = f'golu C(w,u) C(u,/v')
0

where, by Eq. (7.8),
C (a, A}') =5 [Coﬂ\ (%/fyw) cosh Z(aw—)%w;+ ?G(Af-u% G(uW’)fon)\ ?(a—v)ﬁwﬂ

Let 2=’r\w, a:ﬁz s X=w% , and 7=W—Z Then,

A= (£) ] [coh(D-1)£ cosh ()
* gz [eoth? (2)+1] [sinh (Qacay)r sink Gev)]

+ coth (%) f(U-W) sinh (/7 —x)
- :2-’—2— Ecos h (:c+7 -2a) +COSA(>H%)Z]

+ [G(U‘W) - Q(w—/zr)] (ﬂf—'W) Cosh (xy—x)}

45% "i Clv;w)

Let _ a : _ 2coth (2 Ly
D = coth (2) [(wrow) sinhly—]] + CSM(:)) £ cosh (y+)

—+ [e(ru**W> “6(w—/uﬂ (v—-w) cosh (/17»35,)

Then, b2 5 (Z( )
M w
’a—f) D+ w % Y

A =



a9

Note that é C_(/v’w) =-h D
dw

3z
Hence, A= .:r’-_(_l‘ ——i) C(/U’W) (7.14)
w V2 3= g
In general, for n2 4 , we have

- Jl@O(S, ees fﬁds" C(SUS.1> s C(S”JS')

(5 [ [, Clas) e Clirae) (3 -) Cas)

&) 3wl

and in particular

= Jﬁo(s, CGs,s) = ﬁ&% coth (éi)

P2,

Repeating the procedure as in Eg. (7.15), we obtain
-1
. __h,,j el )
C:“ (;ﬂu écr. Z n-4 55;](:,
= h \n nt I _l__.__C),_ C,O'}L‘ é,?.) (7.18)
ﬂ(ﬂ)—) E[i n-A 32] (2

Let I:o.—__kBTﬂm Zo , and %-‘-“%‘—‘-’Ces(l‘d)' Then Eq. (7.12)

becomes
F-=F -—kTZZ"'z‘;C [w2cos(kd)]”
° B h:ln 2}1
- n+) Pl n
= R +4 sz:z<Q (22)""C.

"Rty 3= (- z>"*’( V)" f P[4 -5 )] eoth(£2

nz=l
(7.17)
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For O<Ix|<TT | coth (x) = 2_ 22" B, x !
h=

Here, {IBn} is the set of Bernoulli numbers, (Arfken (1970)).
Substituting for coth(x) in terms of {E%} into Eq. (7.17),
and assuming that the interchaenge of summation and

differentiation is allowed, Eq. (7.17) becomes

+o0 o0 ! r
F=F +1z3 & O™ (2y)" 22
2 %k n=t reo 2rﬂ

- I r-
“Ba (g).? 'ﬁz, (éL'—EL—T;)';”%z ) (7.18)

Put (—“—hlai) « It can be shown in a

straightforward manner, using induction, that for y1=1;3,~')

Qh—‘
-l,n = 2” J
d n+|
= [ (a-1-0) ] 2 s e ST EIE R
Noting the above relastions, Eq. (7.18) becomes
n+l 2r-l
F:a+2kn1%<l) (\/k),lggrﬁ x
(2r~)|
7T (2,4 Qr
(n I)' [
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= F, + -B'— 'Zk__ﬂn 1+ 4_2\./1‘)%]
G i@ L ()N
Qr[(Qr).']
SR T [0
. +

r sz
Gr)lar Bsr

/M, (é_) 4 Z: [éf(lar‘“/kj ]
”Z_ (é?)zr H2r B,?,,}

el - % (2r)! (ar)

Z (42 + o [sinh (£2)]+dn sinh (58]t 2]

—

il
A
= BL 1[_ In [ 2 sinh (Qi/%wk)] (7.19)

where in obtaining Eq. (7.19), we have substituted explicitly
for Fé , (the free energy of the individual Einstein

oscillator), and the dispersion relation, cof = a)lljl—cos(kdﬂ’

There are two points to be made about Ec. (7.19).
First, this is the expression one exnects for the free

energy of the system ander consideration, (Shukla and
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Muller (1971, 1972)). Jecond, the expsnsion used in
expanding Co+¢\(éj) is valid for only a limited range
a
of Az . To extend this, one would have to find
po

exneansions for co‘H‘) (ﬁ_’;) that are valid in other ranges,

and then follow through with basically the same manipulations.

The final result obtained would however be the sane.
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8. Helmholtz Free Energy of an Anharmonic Crystal to C)(Xﬂ

In this section, we use the method of Papadopolous
to derive the Helmholtz free energy F, to ()(XW, for an
anharmonic crystal, where A is the usual Van Hove
ordering parameter. #e will also point out the close
relationship between the process of functional differentiation
and the corresponding Feynman diagrams. However, we note
that this procedure of evaluating F can be carried out
without a priori knowledge of any Féynman diagrams.
Another feature of this celculation is that the direct
temperature space integration procedure is used,
(Papadopolous (1969), Darron and Klein (1974)), as opposed
to performing the calculations in Fourier space, (Shukla
and Cowley (1971)).

It is useful to introduce the following notation.
Let

Q)
Z. X; AP I ! A )‘k (8.1)

m)
#here I: is defined in Egq. (6.5). The reason

b

we do this is that the generator C; , defined in Eq.
(6.18), contains a factor ;Eo .

Now we can enumerate "all" the contributions to Zz
of C)(X? . They arise from the combination of \é: VQ; V;
terms in the Lagrangien, and a separate term from Vz .
In incressing order of complexity, the various terms can

be symbolically written down as; VZ (1) s V;-'v; (2)
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v,_*"v:_' (3)} v3‘V3"Vq (7) 4 and vzpv3—\/3-v3 (8>’
where the numbers in the parantheses give the number of

terms in each combination. The evaluation of each of them

(n)
requires the knowledge of XA X; . Following the

Q)]
procedure of section 7, X):...)\; can be obtained.

From Eq. (6.7), to O(X‘), the partition function is

given by
Z - Z, {1- 7 VO,
L5 00 A ) Vi) X
2 o 2 2N 4,75 A""&;Aq“"\é
5OV, X”)
Ao @
+°2 Z_ VFO‘U oA % (/\G’A /\)X e Agsd Ay
WS
g Chgresde) Xoo
+1L 5 V‘*()\,,...)/\q)\/ (Agsmv % D
:2 Al"'Ay
— 3 T VI VG A VA (Agsey dio) x
3V A

(3
XA AzAgiAq"‘/\‘ 5 A7 ‘e 'A'O

=+ 'L’}w Z—_ V:‘O» A.uA ) VJ(/\M)\SJ)‘ ) Vj(’\ )A&’ ) S(A“”’\“)’\m)

2

(%) (8.2)
xX/\l"'A,;Aq'"AGBA’)‘"/\? :\/\,o"'A‘l }

. . . n .
Note that the anharmonic coefficient Vv ()‘,,...,Ay,) is of

n-2 . . . .
O()\ ). To avoid any confusion in the notation used here,
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we recall that >‘r = ?rJr

The following definition will be of use.

s as (s50) + K,\;,\,(S'JS) = D,\r (s,s’) S/\N—A'

r

- % 3(ArJS‘S ') SA“'); (8.3)

2w,

where, using the definition of K,\r);(S,S') given in ZIg.

(6.17),

9 (> s-s') = coth (:{-ﬂ‘r’\u);\r) cosk[(s—s')'ﬁw,\r]
- o(s-s’) sinh [(s—s'}%w(\r)
o (sts) sinh [(s'-s) by, ]

= 2= «N (x)exp[ls—s'ldﬁ“’,\,]
A= "

where NAr(o() = [ex}: (X/g%w,\,.) - )]’,

An important property of 30\"5"8') to note is that
gGe,Tp) = g0, T  , -L<7<0

In the following calculations, one can use the properties

of V") An) mentioned in section 5, and the properties
of 9(/\,.,8‘5') mentioned above, to make some simplifications.
To simplify the notation, 1let
= N =N N =n(i)=
J )U 3 5 Gﬁ) s {I(I) V7(J) Vh)

N,\J(*l) ="(VZ)-I-)> b (A)(AJ)E% 5 C{}EXJ(@‘% .



The three terms of (D(Aﬁ) are quite simple to generate.

They can be symbolically written down as; VQ (1) ,and
V;-\@ () . #e will write down their contributions to

Z first.

We will set up the evaluation of the various terms
in the following manner. e put down a heading to indicate
which symbolical terms are to be evaluated. Then, under
each heading we write Jdown the various terms to be
evaluated, and the final result whiéh is valid for all

temperatures.

(I) Contributions from VQ (l)

/QW‘ = AZ)"’ V4 ()c,,...,)g,_,) X)‘(li‘)"/\q

"

35 VIO, M) Eus Sy [ B.55) D55l
Y

l.'

i

l
W,

A
(o dmdo 2 3,0
3 T VIO (Bl [ 90,0900

_ 0N L [2n,+11{20a4]
36 (4] Jp v AN gl LTl

(1I) Contributions from Vg"\é (2)

@)
ﬂ [\,\./2 + W3] = Z_ \/3()\,,)54,)3)\/3(/\*»}':’)‘6) XA‘.Z)\ZAS;).‘,)SAQ
M A

@ gwp = T VA0 V0Ll 6 8,8 S

-8 36
A" . .>6

% gli[g, J\Ao(s_z D, (S,,SL) D.Z(S,}S_l) D3 (S,JS:)
I} (o]
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6 T VRO VLN (B)3(2)

A)z

4

Wy W, w,

(n,+ 1) (ng+ D) (n;+]) = nynyn,
W, + W, + Wy

N 3[}’1, (n,+1) (ng+ 1) = (n,+1) n, ngj}

+

(b)) BW, zvm,,x AW VEQLAGA) A 8,8« 8s 0 *
>'6

[, f/" s. D, (s,5) Dy(5,5.) D (s,3)

=g - VA VB0 As) (K1)

Adghs

< (&) (ane) (ans+1)

W, w, Wy

(III) Contributions from \/é(l)
(1)
BW, = Z. VeOu.ude) Xy,

Mg

A
= Z_;A Ve, A) 1581,—4 g:z,—.r gf»,—(, ids D, (S:S) Qz(SJS) Q(SJS)

II’KI\Z’\:;VL(AU/\»X A, /\3) (%)30; o, (—?n,ﬂ)@nﬁl)(.?nﬁl)

(IV) Contributions from \/3-\/5 (2)

)
BIWe W] = 2 VLAV G0 KT,
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(a) ,8\4\/5 = )‘Z:- VS(AN'"; A:) Vs(AL;’\‘I’A?) 48 &)-3 g.?,-'-l 86-,‘6 &;‘?K

s

M
A
¥ Jp 5, J'o[S‘z D, (S,,g|> D,z (S,)Sn) D: (Su S.z) D? (32452)
o (o]
= LfS/g E VS.<A“A2,—)‘U'A2)AS') V3(.)S‘JA7)-A7> (_‘5)* X
ddsh, 2

. (2n,+ 1) (2n+1) (,+1) <‘£2“>

w
W, w, wel, (Y

(b) AW, = I V) VI0LA,Y,) 60 8§, 8o §yop S *
JYRY

2
" J/gds; I/ZSQ DI(S;JS:Q) D&(S"S-?> D3 (S"S';) DQ(S“S')
0 (0]

=608 T VA d ) VIEL ) (B)7,

Ao

% / (,?V),_r{»[) (_i_) 2- (W:‘*D (”Q‘*D(ﬂ;'*))*”t Ny Ny .

W, w, % W, W) + Wy + w,

% EXCEDICRORCNIIND

If

(V) Contributions from Vy "\/4 (3)
BLW, + Wp 4w, ] = Az;) VA Xyeendy) Ve d) s
) 'TAg
Q)
XXy Ay 3 g Ay

(@ AW, = T V¥, 0) V0G4 28,8, 55,5 "

Arhg
X Iﬁ ds J"'g,,(s2 D G,,s) D,Gs,s.) Dels,s,) D, (s,,s,)
O o



i

VIO, 02 VA Ay, =),
p* E%; DV O de-Xe.-)) «

(%) (2, +1) (2n,+1) (Ang + D (Qné-p/)
6

-2 Ws

]

(BW,)*
(b) QW = Z,\_ VOt Vs, dg) 72 8 ¢ 8, 8’_4 87 b
Ay

xjﬂ S jﬁ S D.(S,,S:z> D (Sug-z)D (S g) D7 S5 )

=728 T VO MAA)V G (B)*

MndAzdy
X ________ (2n3+ D (2)’17-1-)) ( )
W, w, W, &,
) 1)
T = (n+ny+ n,-n
a Wy, + W, T w;—wj » W F,

g (ni+d) +ptn, (nel) , @iz

(c) BWy= Z_V“(A., W IRTACYRS WL YR SRR Y

51@ fds D (S,,Sa) D,z(s,,sa) 03(5,,5‘2) D,(s,s,)

_ Ay ) ok /B
2‘}ﬁ /\)‘As’\q (A,)’\z)AB)A‘J vV (’\u ’\2) A3 ’\4) (—-2—) ¥

x (=2) S~ o,y Ay Ay N, N, N; N,

W, w, w, W,y ol oy 0= 2 (a,+a2+a3+aq)
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(VI) Contributions from- V3 = V3 = Vq (7)

B[W.o + W+ W, + Wiy + Wy + Wl:’*WmJ

_ 30, 2 4 (3
%{o\/ ( )Aa)>3) V (/\Q)ASJ /\6> V (Ah-.-)Apo) >(A"\‘1A3;A")5A63A7“'/\lo

(a) A wlo = l Vs()‘r)z))‘s)vg()“")‘b&) V“(/\“..,)‘,o) *
)‘n“')‘lo

« 27 82 &5, g:,—e g?,—q ) )

&-lo

*® i[S, /25_1 J'/gdss D’ (S',S:) DB (S,,$2> DS (S_z,ga.) D? (83,33> Dg(i_‘,g_?)
o 0 A
22787 3 V30,3 VP Gkl V o dy k)

>‘4 )‘3A5 A7>g

< (Bys (2n, +1)(2ng+D) (ny+1) (Rng+)) ()
2 w,wswsagwg 5

= (,@Wn)"(ﬁwz)

by AWy = 2 Vi) V230udede) Vg, o) 2
H

Mo
« 216 g;,—.z gz,—q 85,-7 gc,-g gﬂ,—zo "

£
(g, (s [, D055 D055 0, (5,50 D, Goos,) By s
O (v}

O

= Q168 T V30,V D0 d )V Fde o)

'\u)‘s:\:kéA‘)
Y, | 2 ()
" ( 2 ) W, W, We W, (a?”'+l) (‘?”9 +) (:w_;) (5’%) 7;;6
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(C) B WIR = Z. V3()“>‘1)A3) \/3 (A'“ASJ AG) vq<’\71'“;’\10) ¥

1 Au>

* /Og 8')"2 5;)'7 gq.\"é 85)’3 g%')o )
¥ Jﬁo(s f/go[s fﬁa(s D (s,s) D,(s,s,) D, (5,5) Dc(s,,5)D,( )
J \ ' s iS5 Vg8, 8/ Ly h 2/ Ve bRty 933,33

=108 4 2 _— V3 (0,2 V3B s, ) V ¥ Chgsmdssdg o)
102 $£q

()5 (2n,+1) (:t’:%u?) (2ng+) (fzs)(,znq-n)

(d) \ 8 M3 - ),Z,\— VZ(AUAMA3) VB(A‘DASJAL) V‘I(/\‘l-’"" A")) ¥
« 144 gr,-.z g3,~7 g‘i,-g 853-9 SG,"" g

v ['@ 5 f’g S, Jﬂ"golsg D (s,s.) D, Gs,5,) 0,(s,,8) Dc(s,,5,) Dy (s,.5)
4 T VOV e NV e )

Mrsdghek
) (%)

¥ {(h.ﬂ- 1) (n$+})(né+l) —gNg Ny L3 hy (nf-f/) (n‘+l)-(n‘,+l)n5n‘]f

(A)q, +w: +w6 w.S"}'wé—w,_*

X(_f\.)f ) (.?n,-H) (ﬂi)s

27w wwywew,

(o) AW = T V200 Ay V30 Ae ) Vs, Ao x
A

g /8 gl,“l 82_\‘5 83,"6 57,"? gX,»lO -
y J‘ﬂ A Yf’(% f/gdss DG, ) D, (s,8,) D,(s,5) D, s, s,) Dg(sg’gs)
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= 18 8% T VRO VECN,270) VIO d ) «
A0

(5)F— (2ny+) (29g2D) (2).

27w, wyw w, wy

X {(n.ﬂ) (ny+)) (ny+) —nimyny 43 [h.(ngl)(wgﬂ)-(n.+l)n1n3]j

173 -
W, +w, +wy 2 F Wy W

:@M)" (ﬁ\"/z)
(£ BV = T V0dd) V(e ) Vi)
'...)'o

<216 §,-« g:c,—: g3;7 g@,-g §;q,-m -
* .[ﬂs j‘ﬂ S fésa D‘ (S,,Sz) DQ(S“S‘J Dx (31333) DG (Siés-?) Dﬁ (S.?:S.?)

C216 8 T VEOuAA) VAL VICA A

M D5 D6k
‘K s l (2” +’) ‘¥
X AN
(£) comraa @

L Ahhd P TE (N +N+)

‘%=t (a,+a, +a,)

+ (N,NQ~N,N6—N2NG—N6)E

(a(, —-aQ, ‘a.z)

) (Ng =Ng)
= a., +q
T‘g,é Zaé__""ag) > 3 ¢ (%%)

ﬂN:{ (Ng'”) 3 qg:aé
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(g) BW, = ;:_ VEOuh, 39) VIO A VIO,,00) «

e

216 gl,—«l 82;7 g3,~8 gf,-‘) SG,““’ "

' fﬂ Si Jﬂdgl fgs.? D'(S“SR) DZ(S”S3) D—’*(S“ SS) D.S'(g-uss) DG(S-z:Ss)
o °

(]

= o?lé ﬁ Z-—___. VS(A“AU k;) v3(‘Au){) Aé ) Vq(_.’\-t)—A_;)-AS')‘AG)'

A o
x(_ﬁ,)‘___i_____ > A\ Ay Ay oA oy,
2 W, Wy Oy W Q) ot ot oty oty =] p

(C’(;-l-qé—ql)

x E(N3+l) (N +1) (Ns+ Ny +1) = (Ng+1) (N +1) (N +N,+))
Q, +a, -a; -a, -

— (Ne +Ng+D) (N Ng = N, N, = Ny N, =N,)
a, +a, -q,
(V1I) Contributions from V3 - V3 - \/3 - \/3 (8)

/g[w,,+W.g +\/‘/l°1 + Wy, + Wzn"'W22+\A/-23+\A[24]

3 3 V2 )
= % V 3()") /\2,; As) V (I\Q ) AS) )L) V (/\7)/\3) ’\’) (/\la)A") xﬂ) X/\, &,\351\.,;\5)‘ 5 A7Aﬁ’\‘)4‘ ,\,o,\" )'&

(8) ﬁ\’\/,', = ;:; VJ(AI)A.?)A3> vg(’\‘b)\bxé> VJ(AD/\QJAQ) Vg(A,D)AIuAu,)‘V
1A

x 243 gfr.z 83,-4 gs,—c g7- g g“r'-? ’

-8 ©9,-10

4
/@ds' f 0[8-2- (/:/S-* f/gdsq D‘ (S"S“ ) D3 (S")S’_t) DS(S-ZJS-E) D 4 [S?) 83) D?&DS,,) Dn (%a-g/)
[ o] ° o
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= z V300, 008) V3, A6, )~
243 §° Mg g i

3 - 2. - f‘_ x
V70, AvA‘?) V (’\9”\"" A") 2 ) w, 603 W (0, Wy Wy

x (2n,+1) (}2:2;).) (2ns+1) (2ny+1) (T%iw‘) (20+1)
3 9

=3 (Bw,)”

(6) AW = Z V2000 V0w de) V0, 050) Vi, AL A,

12

x 324 S g ) & g, g‘i,—l: g

3,-4 ~$,~6 ~L,~I0

¥ y(@ ols, [/8 s 5% s fols‘, DG, D(S, s,) D.(5,%) D)(s,,8 )%(SJ,S‘,)Dq(sg,sq)
(o) o

= QL" 2 3/\ _ V3(")l3,,>' )-A )x
2 o o VA OR

V3O g 0e) VA ()¢ ] x

W, w3 Wew, W Wy

« (2n,+1) ( )(a?nﬁ/) (_— {(w,+l>(n3+1)(nq+)> Ny g,

Wy + Wy +w,

+3[n,(ng+l)(n.,+l - (n,+ )ngn%]

We +w W,

=6 (ﬂ\"/:z)"(fgws)
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() BWq = 2 V200,00 V2000600 VIO, ) VAL

* 108 g,,-q gz,—s 83,- 57,-10 gz,—u gq,-m )

<[P, [l fﬁ/ss ff/sq D (5,5.) D(5u5) B (5.5) Dy (5,59 0,65,5,) Dy (s,5,)
o o} 0

- Ioglgz 2 Vg(/\,))_z,As) V3(~AI)~AR;~A3> ¥

WAy dpdy

6
X V3(/\7))i2))q> Vg(‘A7J‘—A8)-A9) (%) w (j) W, W, (. x
Preatra Wy Ye 9

2 +
* (E) }'M Dlng+Dlngtl) = n, " 3n, (rh+l)(n,+l)—(n,+l)n2n3]fx

w, +
PO+ Wy Wy +tw, ~w,

. (_;}) ? (ny+D(ng41)(ng#)) -, ngn, .3 [ n, (n8+[)6qq+[)-(y,7+))nyn7]f

o, tugy+w, wg+wq -w,
2
= 3 (,5\'«/a )

(d) ﬂ W.zo = /\Z:-A_ VB(’\U’\.‘LAx) VZ(A%)'A')/\A) VB(’\U’\ngq) V3(AI0J/\U)A[.2) .
170N

X ]Q‘F"’ g;,-z g3,-¢+ gS,-? gé,"g g9‘,'10 g“:"’-‘? "

A, (B, B A
¥ SOIS.IO(S_Z fa[s, [a[gq D, (S,,S,) %(S,,SQ)D:(SQ,S;))%(%)%) Dq QB’gq)D”(gwgq)
c o o/

[+

=1944 R 2_ VE0,3, 0, Vs, )
MAgded A ),
X Vg(‘ASJ'Ae,)\?) VZ('AQ,/\M)—/\M) (g‘)é l X

W, W, W ), (W,
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0

x(?n,”)(-?n,,ﬂ) (_g_.) (—2—) (%) TS,é

fw, / \hay

(&) AW, =2 _ V3O 0005) V30,6 3V (3,54.34) V30, M)
A:""\u

AL gu,-.z 83,-4 gs)-'; gé,-lo ggj-q gu,—;:z *

xj'lgdg Pilf ff[sg [és Dp (Su s,) D, (Shs-z) Ds(Ssz) DG (S'US") DS (SJJS-?) D, (S‘HS'I)
] 2 q
0 o & o

= é 4p ,g 2; V3(’\“_AU,\3) V3 "\33A59/\6>x

MIAA g

. % 6 | M
v3(—A", AQ) */\8) V3(—/\G,/\\u,‘)u) (E’) w,w3 wga)‘a)ga)"

X (2n,+l) (2H3+I) (2”01"") %"2073) (,E%);) (f(;é’)

(f) B WRZL = E VB(/\,,A,_,AQ VS(/\q,A.;:AA) Vg(’\'l)’\g)Aq) V'?(/\IOJAII)/\IQ) x

Do a

x 3888 g:,—:z gz,-q gs,-7 gc,-zo gz,-u g%—t:z "

Y li(s' JQ& Ig%ﬁ(sq D« (s,,s,) D_?(s,,s_,) DS (S-v S5 ) DG (S-?’S‘#> Dg (53,s4) Dq (33’3“)
0 (o] c o

=3888 8 5 VO, VIERAK):
MA3de ) g
V2 (s 00) Vg, ()6 .

W, Wy We W, 1y Wy

« (2n,+1) (%Qw > x { 2 As do %5 g ’
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(om0 T+ Qlazlete Ny 1) o

(ag ’a —a

(g) (_)> W-'l3 = Z__ V3(>\ A ))VZ(A‘“ )‘_r)‘c)vz()‘?-‘ 3(/\00))“”)”)

)\',..)u

1999 S,y Sy Sarn Se0 S Sa.

¥ S\ﬁ fﬁalgg flg £ fﬁ[gq Dl (Su‘-z) DQ(S,,S_I) D3 (S"S3) DC (S-?:S"I)DX (53’3") D‘? (Szaj*!)
[ 0 )

&

. VO 30D VA, 0,)
M,

V00,00 Vi) (B) € ] ,(

x L\ dl da ds deo(g dq y

oy dydyol, oyl =
203 dg dyolg =2] (Cls—ae-a')(qe_ag-aq)

. { (Ng+Ng+1) [ (N, +D(Ny+l) Ny = Ny Ny (Ng+1) ]
+

(ac—a, —a_z)

+ N,NQ (Ng+') (Nq +1) - (N,‘”) (N-1+[>N8 Nq
+

+ (N +Ny# D) [NG(Ng +1) (Ng #1) = (N +1) NgNe |

+
(a,-ay-a,)

+ (N, +N,+ 1) (Ng +Ng +1) T;,(:Z f
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3 V3 )
(h) ﬁwﬂ"\' - )‘Z_;. V3<'\b)\a))\3) vz()\“’ks:)é)v ()‘7))‘3’>‘0) (AIOJAIU)‘ 2)

« 129 6 gg,—q gz,—? SBJ-/o g;,-g ge,»u gq;):z

X /2(5, r&sa fﬁ S5 fés., D,(S,,S‘.‘) Dz(suss) D3 (g"s“) DS(S-2533> D6 (S-b g‘l> Dq (Ss,S.,)
4 (o] (0]

(]

= I‘?qé/g L__ Vg()\u)‘z))‘a) Vg(»)‘n)‘5>>‘@,) x

A. Az A3 )\5)6 Aq
'4 3(- ~ \/3 Ay T - j_ ¢ ’ X
V ('\.za >‘$))‘9) ( Ag) ’\69 AQ) (2) w,wzwga)gwéwq
X oA, oy oly ol oy ol [Y»’“n"YﬁYn*Ys‘%],
olyolyoly Ao ol ofy =2 (aq"'aé‘ag)
Y = (N, +1) NyNg (Ny+]) = Ny (N3+1) (Ne+1) No
(a,+05-ay) (o, -a,-ag +a,)
Y, = (Ng=Ng) [ONFDNe N = py (Ng+1) ()]

(alms.-aq)(q,—a,-aé)

Y. = (Ng=Ng) [(N+D) () Ny = Ny Ny (Ny#D)]

(a2+a, -a,) (a,+a, -a;)

=<
L}

Ny Ny (Ng# D (Ng#t) = (N, +1) (Nt 1) Ny N

(a,+ a5 ~a,) (a,+a,-a, -a,)

Yo = (Ng=n,) [ (40 Ne N = Ny (Ng#1) (Ng+1)]

(a,—a;-ae) (a&‘a3+a.$' +q@)
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Y, = (Ng+Ngel) [ (N+ DN+ Ny = NNy (N3+1)]

(O, +Q_2—~a3) (az"ag*'as +aé)

The Helmholtz free energy F, is given by
F=-kTA?Z
If in Zq. (8.2), we write Z =ZO(I+Z,), where Z, is the

contribution to Z from the anharmonic terms, then
Fo-kTdn2, ~keT In(I+2) (8.4)

For perturbation theory to be of any use, ’Z.)< [ .
Hence, we can expand In (I+Z,) in a Taylor series and keep
all terms that contribute to F to O(X") . Substituting

. . n .
the above derived expressions for X/\,u. )\ into Zq.
! b

(8.2), we obtein

kT n(1+2) = ~keT Z (D™ 2
h=} n

T [2,-227 (4o OUY)

i

= fw =S [w W+ Wy = W+ w]-
"EI-?I-W?+\A/9+M/?]+
+é[Wpo+M1+W12*W;3+M4+M(+Mé]_

3!
- .q'.![\/\/,7 + W+ g + Woo + Wh, "‘V‘/.u*“és‘*%q]f +
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P fw - L [war W] ] (4o O()
=W, = LIw, +We] + W, = [We+ W] - F[wprwy]+

LW, + Wia + Wig # Wie Wi ] -

L L[ wyp + Way + Wag # Wag+ W ] (8.5)
2

From Eq. (6.8), - /p Z, =

L5 pn [2sinh (285 )] (8.5)

B

The free energy is given by Egs. (8.4), (8.5), and (8.6).
Observe that to (3(Af), there are no contributions

from the terms W, , Wy, Wi, W, Wy, and W because

of cancellation.

If every atom of the crystal is a centre of inversion
symmetry, the contributions from W3, Ws,Wi,W, Wiz, Wi, W,
and W,, are zero. This follows from the symmetry proverties
of V"(\,...,As) , (Shukla and Nuller (1970)).

Shukla and Cowley (1971) have evaluated the
contributions to F to O0Y from W, W,, W, , W, Wg, Wa 5 Ws
“46 5 13 , &nd Véq in Fourier space. To make a
comparison of the results obtained here with their results,

one has to try to match the various M symbols, and

remember that the coefficient vn<Au'”)Ah) does not

contain the factor [ "
i w

n

n
]2. We have made the
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comparisons for most terms and they agree. It should
also be noted that the results of Papadopolous (1969),
to(j(xv, appear quite different from the results obtained
here, but if one further simplifies his results they will
reduce to the results obtained here.

The various secuences of functional differentiations
arising in the evaluation of Mﬁ,“.,V%q can be described
in the form of Feynman diagrems. Recall from Zqgs. (6.11),

(6.18), and (8.1),

(n)
Xydmsdi=

S (TKJ)
= Sﬁds,--- f'i/sn _—g§'( ) 5§T (s) &gr‘") STy
) 0 s S 0yals, ApSn J=0

As can be observed from the above equation, there must be

k
an even number of AJS . Draw a dot for each of the

different variables of integration. The number of dots
equals the number of anharmonic coefficients. One must

perform the functional differentiations in pairs, since

<
S (TkD = Dyr(sy 5.) Sy
SSC\:(S,()XJ:\:-(SQ r

Draw a line Jjoining S) to S, . Continue in this manner

till al1l differentiations are done. For the diasgrams
representing W5, Véq , see fig. 2.

As a final note, we present some general methods of
evaluating certain types of integrals which arise in the

evaluation of Vﬁ>~~)V%q)in appendix 2. In apnendix 3,



we indicate some of the necessary steps to get the high
and zero temperature results without having to perform

a full calculation.
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Figure 2:

All diagrams relating to the functional
differentiation in the derivation of the
Helmholtz free energy to O(AY)
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FIG. 2
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9. The Debye-Waller Factor to Oo\a) and O(IR"’)

As a further example of the use of the method of
Papadopolous, we evaluate the anharmonic contributions
to the Debye-Waller factor to O()¥ ana O(IR‘I"), (this
will be defined later), for all temperatures.

For theoretical calculations of scattering intensities
from x-ray or neutron scattering, etc., the averages needed
differ from those of the free energy. Vhen one calculates
the intensities, the Debye-Waller factor enters. From the
viewpoint of perturbation theory, one must determine what
one wants to use as a perturbation parameter in the
evaluation of the Debye-Waller factor. One can use the
scattering vector .ﬁ , or the Van Hove ordering parameter
A s, or both. 1In the work presented in this thesis, we
do the expansions to O(®) vecause this gives the lowest

non-zero anharmonic contributions to the Debye-Jaller

factor, and to O(IR1Y pecsuse the terms of OURP ana O(R

are of OO . The terms of OUKP and O(IR\)*)provide
the temperature dependences of (3(T9 and C}CTQ R
respectively, in the high teaperature limit.

faradudin and Flinn (1963) have evaluated these
anharmonic contributions in the classical (high temperature)

limit. We will use their notation and evaluate the

84
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contributions that they evaluated to the Debye-¥aller factor.

We then show that in the high temperature limit, our results

reduce to their results.
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In evaluating the expression for the observed intensity
of x-rays scattered by the crystal, we must evaluate the

following thermal average, (Maradudin and Flinn (1963)),

< en?- Fulo)- wﬂ) =

, where K is the scattering vector, and

Zz(ﬁ); d(m are the usual displacements of the atoms from
their equilibrium positions in a monatomic lattice.
Introducing the eigenvector Fourier representation
of a(f) , and noting that 7,‘:277-2 , wWhere &k is the

same as in Maradudin and Flinn (1963), we have

X (1)
wl) = 2= 2 6, F) QG e’ g
T gy T
The Lagrangian to (3(X9 is given by
=Lo‘L—A (9.1)

where N o

Le =3 % [Q Gy QL5 ) -0 Grp) Q) 0]
= [ éxré—,\,”w;: %] (9.2)

Ly = 5, V0 kG808, + . VH(,-0)0,6,0,0
A A,Aakg A

T A“A(g +g1+gi) 00 ))&, 0, Q, +

+m % A(gwt +3 )@v(z\,,---)q)a,\, Q\&G)%QM (9.3)

Further, _Q.[a@)_a(gl)]zz_C(,\r)Q\ J(here Q/\r':-: QAr(o) ) (9.4)
A "
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where =P 3 .x(l) G- X (UL
C()\'-):: M[ez?—r ( _e?%r ]
JNM
Then, by arguments given in section 3,
%[ 0) - (2 1T COQy,
<€2K[a(ﬂ w( ]> - <€ = A>
1ZC008,

—_-_'Z_.folf €(§>§)€ 2r (9.5)

where e(g:gj is the density matrix and EE is the partition

function of the system.

In evaluating the partition function 25 , We are
essentially evaluating <I> , save for the normalizing
factor, which happens to be EZ « In the method of
Papadopolous, we used a source term in evaluating Z .
The source term was essentially an exponential function

whose argument was linear in Ghv . Now, we wish to calculate
iZC003,) | .

<€?*’ . The argument of the exponential function is

again linear in Gh,. Ne again will derive a generator

1T.C0,)
for calculating <€ E Q% but with some menipulations,

one can avoid extra work.

The generator we have found in this case is;

RQ)-§ {3 CO)E
Q=%

where
=% A . .
G, = j DRG] exp {—%\; lcfs [5'5 Q)V(S)Q’/\E-S) + _C;:\,: Q«\r@ Ry (5) -

Q@-=% =J,,6) @, G)] }
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The following operations performed will be purely
formal. The only Jjustification given will be that the
final results meke sense.

We make the following definition. Let

R(s) = 3(5) + i 86 COx)

where S(S) is the Dirac delta function. We use the

A
property that I S(S) O[S = ’ . To be more mathematically
o

precise, we should use 8(5"0() for o(_’>O+, O<0€<I5.

Then,

A ' .
E = Idg J’EUU[Q(S)] ex p {"%— £ S [G?'\r(s) O-A,(S)
f r
+ _‘f):\; Q)@ ) - P, G) Q,\,.(S )H
2 r r

=2, exp [T o [l B0R G K65
(see Tq. (6.16))
= 2, exp {2 [ [’ [3,045560COI N[5, i8EIC0 )
X ,\r,\; (S,S’) }
= 2, exp 1= T Ky QOCGICO)] -
S eX}p { /\Z’\_, ([IAC{S £/A;/SIJ;’“(S) J;;(S[) K,\r’\;<§_5$’)jx

¥ exp ?z‘ '%:A_’ Ygd§ [ J:\r(s) C@A)) K\,A; (5,0) *J;;(S) COIK,y (O,S)H
ror O (9.7)



A exp §- z K,\Ar(omcu,)co )]
= exp |- 2)'_ i coth (3 phw,) CONCE,)S
=exp§ QZM gi-—cm%(ﬂ%w [REON[R-EC)] =
,(1 -coﬂ?}(?(ﬂ)-i’(f'))])} (9.8)
= < e 1z Ca,) QAr>o . (the hermonic sversge)
A(T 1+2) = exp § -] P z LR e(:)){[u FE]

)"

“[1-cos G [:02) | |
which is the high temperature (classical) limit.

Further,

iz | s [3,6)C0) 6,350 + T, C0 K, (6]

Ardy O

il

{2 CO) [ds 3 Ky (50 + Ky, @9))
Ak

ZEL CO\. )é; J}%s J:_ (kC»

H

, (see Eq. (8.3))

Ard,
=7 % ,\)fﬂds (s) Dy, (s0) (9.9)
= X (DJ—) s ( X is the ordering parameter for ? )

88
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= :L 1 C(-)) (DT),

e (TKI) = T fozsf’izs L 6) T 6D K,y (5,

as in section 6.

Then, E - A Zc exF[é{(DJ‘)-}- (JKJ)] (9.10)

Observe that to generate the various terms in the
perturbation expansion of the numerator and denominator
of Eq. (9.5), we employ the method of functional
differentiation of the source term for the functionals
BE and G , respectively, and then set it equal to zero as
was done in section 6.

Hence, to O(A‘)

ReTan-a )] NOM
<C? Ta@-ul > DEN (9.11)

NOM = AZ, }1 -2 V0,0, Ry, & V<O d) R,

0.13

4 LT VLA VI0LAA) RE S f
R AT i

Z, §1 vmumﬁﬁﬁsz%&HNMAu%f

ZOEI-X-+éKf

(w
where X;ANA; is defined by Egq. (8.1), and l?
(n)

is obtained in the same manner as )( h , but we use

“Ap

DE N

n

i1

(m

E as & generator instead of G.
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In the following, we will indicate the various terms
to be evaluated in Zg. (9.11), evaluate them for the finite
temperature case, and then take the high temperature limit
of the various terms. We use the notation of section 8.

First, we examine the two terms in the denominator,

(see sec. 8), viz.,

(1) Yl = Z_ V(- ’\“)X/\('-)-v\

Aq 4 .
A s (TKJT)
= 5.0 i “S §3085 05T 08TE !
Ao Y, = 2 VO V0L ) XS hdeke
T
= Z‘_ VIO ) VEQsdss )

Ao
) fﬂd fﬂ § §° (TKT)®
) s, ) A% 84,6 8d, ()89, (S, 8 ()83,6)85, &) 3!

Now, we examine the numerator where we note that,

(
for example, RAAA& can be written in the following

functional differentiation and integration form.

(I) L, fﬂ $3 [ ¥(DJ)+ (TKI]

S e
) S{ G) SJ)Q(:) § ‘TAx“) 720

Expanding the exponential in & Taylor series, we find that

the terms that give a non-trivial contribution are

(TKT) Y (DT) + ¥*(p3)*
3
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Hence,

8 3
R(l) - d S X3 3
oy = ds ST fronarn+ X o2

(1) G = 7 viO,Au)

d DT) (T KJ)
Adghy f > SJ‘(s)&T &)SJ (s) ¥ (b3

A%W(A,,A,.,,A) 3[CEA S -3sz3 D, (s,5) D (5,0

=37 57 V3(Ouhh) CEN) () (2 )
A, huw,

255\_17?2- /\Zz.-. @3(5\/',)‘2)_,\2) ﬁzg(dj')] ("?na”) (i%.%

e ;B2 ez"&?w')]

=0
(i) § = 7 VE(A,) f@g 5 y*(pJ)*
Aidady v §J(s) 8§T,(s) §T,(s) 3!

= = Vi,A) [ICATCAITCO]

¢ fds D, (5,0 D, (5,0 Dy(5,0)
o

= ~7 20y ) e rma,

¢ M3 N2 %\3@ (/\n 2)/\3) A(?'J'%ﬁ?s)[? ¢ [ KECL)]
Lgae A iRE0_ G,

Loy [ P T [ BF - T

¥ [e-z‘?;ni(l) —zzsx[ﬁ)] ( «L’.)s

w,ww *
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X (%)2' (n, + l)(n,,-ﬂ) (n3+)) =N N, +3 [W,(ﬂ;"’ D (n_-,-i’)‘(nﬁl)”.zy’.z]}

W, + W, +w, Wy + Wy -y

S,(T1+0) = é; e f_; $1O0%) A(7+49.47,)«

FR-E(N] REDT[R-ECK)]
(w, w, w; ) *
y [e'i?: 34 _e—i?j.i‘(ﬂ')] I e~z’?}?(£)__ e—z‘gﬂ(f')]x

X

X

e ]

1D Ryoa, = f’g ds 8¢ [¥(0D)+ (TKD]

2 SIOSIESTEHSE 70

BExpanding the exponential in a Taylor series, we find that
the terms that give a non-trivial contribution are
(TKI® § ¥ (pp2(TKT) + L (D1
EY 2 ¥
Hence,
o fils & KD | ¥* (03 (gx3)+X5 (00)"f
ad 50 8§36 SEEEEM 846 ¢ T2 2 |

(i) = VO, )[4 §? (TKI)* _
DS fi) “l S SIOSIESIOSIE Y

(i1) C = ) (B —S° X* p7)3(TK
> fiav ( £ ds §36)81,6) §T,() 8% 2! (DD*(T19)

= T V0, h) CLICETICEN] S,y

A“Aq
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% J'gdg D,(s)(» DQ(S,O) D3 (S,S)
0

= =06 3 VHOLANR) CENCEY) ( % )3 ! x

o W, W, U,
< (ang+D(2) § h&zfi) r e }
St B R C AR AN, [%-8 (30 [RE (G~
ZNAM - Qhjads
[ 1 -cos 3 x0-207] (£)° = %}l e
x (an, +1) Téi,% <(3)
T/\:‘;r‘ 2: t:::' + V:r++na,1:1 , Wy # W, (%)
Wy = w,

ﬁﬁnr(m-ﬂ) + Zﬁ:(nﬁ;i;) 5

I

S (Th+e0) = =1L “(2),-2 -3,) [RECG,0]x
! N B %—JTJ;@ (§057F JasDsmty) TRECG)]

<[R-E )] 5|~ cos [;.{M-y(w}]f

[cu(%.)w(?j_/i)ws]z
(iii) §_ = Ve [ % I (b
) 5¢ ;ZT ids §3,(s) §3,6)§T,6) §I,6) ‘H( )
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=3 V4, A [iCE [ CEFCEITICEA
;\l.‘.Aq

(B, D,(5,0) Dy (6,0 Dy (5,0) D50
(o]

Z___ o (cg +. % ) @q()\‘,...,/\q) [TZ.E(-k.)][R'E(-AQ)]v

Y N IM2 e
REIR-ECA) [e
< [ e-iia X _ e~z'?'1-i'(£')] [e’ii”w)—e-

‘2'?:‘2(”)-6‘23"" (4 )] y
,*3-; 20 ] [e' z’*zj‘ X0 _ & z‘g‘, -z‘(z')]x

(&) ( 2> P A oGy da N N,N; Ny
Wy Wy ooty oyl =2 (q,+q_z+a3+a,,)
Se(Tt+w) = | > A(§+...+%) PO, )
A4 NTM2R3 A
, [B-20)7 [RECIR-EEIIK-EG]
“) aﬁ% a)‘ 602 "

. [e~i§,'f(1)~e—i§-2(ﬂ')] [ i _e—z;;.z(p)] ‘

o [e - G20 [ R _ iG]

$? $3
§76)836)556) SIEIILSR ¢

(11D) R;nz,,\gx fa(s, %

6[3’(03’)4- (TKT)] ]
J=0

Expanding the exponentisl in a Taylor series, we find that
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the terms that give a non-trivial contribution, to ()(Xﬁ,

are

(TKT)? L (PI)* (TKI)* , Y4« ____ “(TKT)
BEY ol T ‘i
Hence,
€)) - A ,@d $* §°
Radadsshded, ids'g  T556)5R6)556) $3,6)856)856)

(FkD® . ¥ (DD (IR, ;f"(w)“(g—m)f
ET 20 al

N
(4 [l =5 & (TKD)?
Ja5 1 %% 06)ST6)806) §%6)SIE)ELG) 3]
=Y,
(ii) S, +Sg+S8, = Z_) VA, A, d,) VO, A5, A )
&
ﬁ 3 g 3 XZ(D.T) (
(LI}
[d fda SJ(S,)SJ(S,)ST(S.) $3.(5,)53:(s,) §3,(5,) { Y1

(8) S =35 V20O, hA) Vi04LAsA,) 18 i [Fea)] §, Sw

1 Acedg

o [ s, ['ols, D, (5,0) Dy(5,0) Py (5,%) D (5,,5,)
o (]
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1

~1 ST B3(34,54,0p) B(OpiAe, ) =
NM iJ«JszS ?J ? . !

« [R-EG L K'?(?‘,Ja)] [ 1-cos %‘c‘é{&‘(l%i(l'ﬂﬂx

x ! n i—-—- (')
() e et () (T

w(g, 1) w(«;, J_t)w(o 13)
= 0 @3(%-:‘}';?4'12)5\}3) = (O since every
atom is a centre of inversion
symmetry.

() Sg = Z_ V30,000 VIO 18ECEAN] EERIS, (6, =
XJ"LZ(S‘:J‘ Dl (S”O) D‘-} (S-Uo) D2 (S"S“> DS(S“S-?)
(g +?g+gg @ (31.,’\ /\ )@ ( g'jq: Aan/] )"

“[R-E(- 2.1 J[R-E( ,Jq)) []-cos 5%*, 'SE(Z)*Y(I')JH x

<(B)r . 2 o) datts
2 w(?‘l,)w(i,‘/,,)w.z oy oy otyoly =% #? [o(w +o(w+x3u)3]
%(N +N;+1) T?J“%Jq +

+ [Na N3 - N, N?’,Jq(d«:) 3 cgjg(dq) Nj,J.,(dq)]f

[ w(Gju) =~y ~ Ly, ]
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N'r (“r) - Nr. (°‘r,)

()
.T/\",)" il An Wy ~ oy Wy > n B F ol (%%)
B A NL)IN () +1] 5 oty w0y, = ey
Sg (T'P+oo) = — | X Z___A(?“q&‘ﬁ%) S‘ng(%,,&,/\s)x

N leg FANILES

y @3(‘?‘]4:')‘»-')3) I K- 'g‘(-?“lj,)] Y_R\ E(?,Jq)] x

« {1 - cos [g-{z(f)~>’c‘@')f]§
[w, w(?‘,Jq) w, tw, ]2

(c) Sq = %6V3(z\,,,\1,/\3) V304, e,0,) ACANliCaA)]S, 8, <

B

A, F
) J’ 5 fc{gz D’(S’J‘O) D‘l (S.UO) DZ(S,,S,) DS(S,ebs.z)
o} °
= O (since Ti.,?‘q are each zero or a vector

of reciprocal lattice, whence C(A)=CEA)=0)

(111) S;p+ Sy o= T VEOLALN) VIO A Ag) ¢

A‘”‘AG
’@ /@ 83 g 3 q 4
X d ¥*(00)°s
(J;ds'i 2 §36.)8%,6)83,6)  $TE)EEE)SH) L ("’(‘Df

S,O = Z_S v3 <A“ARJA3) vg(f\q,\’\f) A;,) 6 [ZC(‘/\\\)] [?‘C['f\z)]x
Ardg

¢ [2CA)IT1CEAD] O
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X flg S, Pﬁlsz D, (sUO) DQ(SI’O) %(Sl’@ D’/(S'“O) Df(%’s")

=0 (since %‘,q is zero or a vector of reciprocal
lattice, whence C(),)=0)

() S, = 2 VLMD VIAG AL AL qL;CEAN]CEN)]
Aevdy

« [0 [1CEAD] &,

(s, [els, D (5,0 B6,0) D, (5,0) Dy (5,,0) D, s,,8)
(o]

°

- a@G+343)a3+7:-3,) BEAa),) *
vl ey A S T A

« O de,A) TRECAILD R-ZE))IIRZC]IR-EQ)] «
. [e_z‘?‘l 20 _ e-gi‘, .;(1’)} [ e—z‘?‘lvi(ﬁ) _,e—z‘?‘z»sz(ﬁ')] y

X [6‘27" X0 e—z‘?‘q,zwl)] [e-z'g"s.i‘(é)__ o z‘?"'x (1')] )

¥

(B T Amsss
20 W, W W, ddoksrqis=t]  (q,+ag-ay)

v gm,mmﬁ:) (Ny#Ne+1) = (N + 1) (Ng41) (N +Ng#1)
(a,+a, -4 ~ag)

_ (Ng+Ne+D) [N, N, = N, Ny =Ny Ny = N; ] f

(a,+a,-a;)
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S, (TH+e0) = T a(g+3.43,) oG+ G)

GNEMERZ  Aede
<33 -3
BN B340 [T T8

y [ e"'g‘*’w’— e—z‘?a.sz(g')] [ e-z‘?‘q&’w _e—z‘?‘q-i‘(f?] v

. [e—z'g}.i‘(l)- e*"‘?}‘i‘(@')] <

C[REGIIRZEIIR-EQVIRECK]

(cu,abtngUch;)z

Substituting the above expressions for S“uu,s, into

Eq. (9.11), we obtain
(e SR -] ) - AZ, {1-1 S48+ 5+, [+ ‘21![56+5+59+59+g01g,]{

Zo {1- Y Y]

=AFI=-8-Y -S,-Sg+ i”ﬁgg*g’]} (9.12)
=Y+ 2,

Since we essume the perturbation theory is valid, l%‘ﬁ\;)<L

Using _.1__:)+x+0(x2) for lxl<l , we find that to O@(Y,
I-x

Eq. (9.12) reduces to

<ez‘i‘<"mw-awﬂ> = A §1-5,-S, =S+ £[5+5]]

A exp {-S,-Su-Se+ L[Sy +S
= @“?M (9.13)

where the second equality in the above 1s only true to
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the order of perturbation we are considering here. XM
is the Debye-Waller factor. To evaluate the Debye-Waller
factor, we must find the part of Egq. (9.13) that is
independent of ,é and [, because the Debye-Waller

. '®B-[o ) -ule)
factor involves the zero phonon part of <e“< fad-d )>.

Using the notation of Maradudin end Tlinn,

aAM =2Mg+ AMy+ M+ AM; + LMy (9.14)

Since the term 5& depends on 4 ana A , that is,
there is no part independent of 2 ana lgl, it does not
contribute to the Debye-waller factor.

(1) “2’40 comes from the harmonic average of the quantity

defined in Egq. (9.5), that is, it equals the exponent

of AA .
oM, = b T - coth (44w, ) [K-EQIIIRER))

———

INM . 9,

AM (T 1+w) = kel > [R-Z0) TR (<))
NM A wy

r

(2) R2M, comes from the zero phonon part of *S#

M, = = =T s Agumhy) [REEGG )]
: ANAM ?J.Ju@ 07 "Gk

AREGR] (£)°

()
(2n3+/) (—g—) Z]v(ﬂ'

w(gj )“’(ijz)w

M, (T1eo)= = (ksT)? pall G317 Johds) [R-e5) IRE@ )]
ANAM G LA

[w(?u.) w@p) w,]?
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(3) .'ZMQ comes from the zero phonon part of.-lg

S aG.4,) 526 )00 8 G k)
3““#) L

AM, = ‘ZNQ

[R-EC IR EGI]-

X ( 7\)1* !
El wéij,)w@jq)wzws

+

oy 43 oo § (N, N )

Joo By
didy oy =21 L2 [, 00, + oty 0, +at, ;] a8

o TNy = N N o) = By N oa./\/w(m]f

[d" w(i&/"} Toly Wy T oty (1)3]

am, (Ttew) = (D 57 A(3+3.+73) G ) hh)"
20T N S, PrER

< 37(F pihomy) [R-BGIIR-Z(gy)]
[w, W j)e,w, ]2

(4) M, comes from the zero phonon part of S¢

= 0) ‘//\“ )
s = IQN3M2 Afz--lA(W AR

N [2? (_/\')] ['}?"g (‘)\;ﬂ [_Q 2(‘/\3)] [p‘—é("\‘l)]x

x(_‘r‘_)" (-=2) YO diddyd, N, Ny Ny Ny

=%
2 W, W, w; Wy o oty = 2] (a,+aa+a3+a4)
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M (T M4) = (ke T)° 5~ A G+ 4G,) B0 »
JaN*ME o,

L [REQ)) [REQ)[RECW] [R-EON)]

2 2 2 2
w, w, W, Wy,

(5) 2My comes from the zero phonon part of “-’,-'Z- S

My= =l T a@+3.43)2E45-F)x
e ALl

) [R-BENTREC)] ~
LB Ouidy) & (udeh) [REQIIRE ]

x[?.z‘(-xq)J[?-‘éHgnx(%)f )

W, W, W, W, e

« 2 o, Ay oy ol
0()0[20(3 o(q o(S':iI (aq+as__a3)

4

—

Y{(N.n) (Ny+1) (Ny + Ne#1) = (N +1) (Ng#1) (N, +Not])

(a, ra,-a, "c‘:r)

— (Ny +Ns +D [NN, =N, Ny - N N, =Ny ] {

(a,+ a,-a,)
My (Tt = = (ke 1)° 37 a(3,+2,49,)4(G,+9.-3,) *
) QNBBM‘ Are R

¢ B0 Ah) B (0, he,) [REC]
|

[LU, Wy w3 wy w{];z

TR EE) ]

JREOVI[RECD] -
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The high temperature expressions for the Debye~Waller
factor obtained here are the same as obtained by Maradudin
and Flinn.

Much work was saved in evaluating the necessary
integrals for the various expressions because these integrals
are similar to the ones evaluated in the derivation of the
free energy expressions. Je will use Feynman diagrams
to indicate the similarities between the two.

#e can draw the corresponding diasgrams for the various
terms of the Debye-Waller factor as was done for the free
energy, but with one difference. For the free energy,
we drew dots to represent the variables of the D functions,
or interaction centres which multiply the integral involved.
For the Debye-#Waller factor, we see that sometimes there
is a zero in the argument of D, for example, fafS,O) .

Wwe write down an extra dot ("x") for the zero argument

and then draw the diagrams as in the free energy. The
number of dots in each diagram for the Debye-Waller factor
equals the number of anharmonic coefficients (interaction
centres), and the "x" represents the scattering vertex.

The diagrams for the various terms of the Debye-W¥aller
factor and free energy which have the same temperature

space integrals are presented in Fig. 3.
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Figure 3: Correspondence among the diagrams of the
Debye~daller factor and the Helmholtz free
energy of O(XY)
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10. Summary and Conclusions

We have critically examined the applicability of the
path integral formalism in the study of four specific
problems. These problems are: (a) two interacting one
dimensional harmonic oscillators (sec. 4), (b) N interacting
Einstein oscillators (sec. 7), (c¢) Helmholtz free energy
of an anharmonic crystal to ()()4) (sec. 8), and (d) Debye-
Waller factor (sec. 9).

We have solved the problem of finding the kernel for
two interacting one dimensional oscillators and found the
algebra to be tedious and lengthy. An attempt was made
to solve the problem of N interacting Einstein oscillators
in real space, but the algebra became far too lengthy and
cumbersome to continue. This work was not presented.
Hence, the problem was investigated in k-space. The path
integration in complex space was studied, and finally,
the partition function and Helmholtz free energy F, was
obtained following the procedure outlined in section 6.

We applied the method of Papadopolous, outlined in
section 6, to the problem of N interacting Einstein
oscillators. We evaluated the integrals involved, in
temperature space instead of working with the sums in
Pourier space, (Shukle and Muller (1972)).

Our next application of the method of Papadopolous
was in finding the Helmholtz free energy, to ()CXO, of an

anharmonic crystal. The evaluations of the various terms
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were again done in temperature space instead of Fourier
space, (Shukla and Cowley (1971)). The calculations were
greatly simplified by a form of the propagator (D function)
suggested to the author by Dr. R. C. Shukla. We also
demonstrated that the Feynman diagrams can be drawn quite
naturally for various functional differentiation sequences.
It was found that in evsluating all the terms of F to C)CXﬂ
and the Debye-~Waller factor, only two non-trivial types

of integrals were central to the entire work.

We then modified the method of Papadopolous slightly,
and evaiuated the Debye-Waller factor, DWF, to OO‘Z)and O(’qu)
where K is the scattering vector. The high temperature
limit was taken and the results obtained agreed with those
of Maradudin and Flinn (1963). We also noted that the
expressions needed in calculating the various contributions
to DWF are similar to those needed in the evaluation of F.

Qur strong feeling is that the Feynman path integral
formulation should be studied on its own merit. In our
opinion, this formulation is both conceptually and formally
more elegant than the more well known formulations of
quantum mechanics.

From the conceptual viewpoint, as is observed in the
brief introduction, the arguments used in setting up the
Feynman formulation are of a physically intuitive nature,
the only ad hoc assumption being the introduction of K.

We would also stress that this formulation has a close
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connection with classical mechanics. The usual formulation

of quantum mechanics cannot be simply connected with classical
mechanics unless one goes through the Bohr's correspondence
principle.

rrom a formal standpoint, we need only one operational
hypothesis in the path integral formulation as opnosed to
the two (equation of motion, commutation relation) needed
in the more well known formulations.

Also, the kernel, which is central in the path integral
formulation, is a more useful quantity than the wave function
if one is interested in transition probability calculations
and the derivation of those physical quantities (F, DWF,
etc.) which require the sum over all energy levels of a
system.

Unfortunately, the application of the path integral
formulation to any physical problem is quite laborious as
can be seen from the work presented in this thesis. This is
so even for such simple systems as two interacting one
dimensional oscillators.

Hence, we cannot say in an absolute sense whether or
not this formulation is superior in solving simple problems

of quantum mechanics.
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Appendix 1

As we indicated in section 86, the "average" of an
odd number of normal coordinates, using a Gaussian measure,
is zero. We sketch a brief demonstration of this fact.

It suffices to consider the following path integral;

Q&ﬁ):%r
T <[] o1aw] o007 Q.6 - G, t,..) -
Q\a<§,
exp {_2 [f;& [@5@ NGRS QNGL)QA"H)J} d%, dE,
0 242 2 (Al.1)
where n is & non-negative integer, and C)Sfﬁ,.“)f§”+,é%?

We show that I=O .
The following argument is not a mathematically rigorous
argument. In the process, however, we will indicate how

the complex path integral in Eq. (Al.l) can be handled.
¥ - -
Observe that QA£%)=Q>"({) and Q).,(O) Q,»(ﬁ) Sr-
Suppose that 5&ﬁ9=%ﬁ%“4;af9; J%;ﬁh» are real.
The way in which we will demonstrate that T=0 is to
use the Riemann type definition of the path integral as
given in Eq. (3.16).
Expanding the part of the exponential of Eq. (Al.1)

that is independent of the derivatives, we obtain

3
T =[ (T #ra@lole,W] 6,0) =+ Gy lu) »
5

e
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e ) flo+ @, 9 <+)] 45, 4E,

r r

xexp {‘.‘_ 'KO{\‘ '; ({)QA({)} 2

il

> o) [ (] Tﬁ[QA,(%)] b6, w]-
0 o 5"

¢ Q1) - O, ) Q6IQE) - GG SNCYA

cexp ok [t OO WA, dE, (41.2

where in deriving Eq. (Al.2), we have assumed that the
Riemann and path integrations can be interchanged.

It suffices to show that Iﬂ =0 , where

HTm@ W]1JMQ, @] Q&) f,,) =
&,
Q60 Q, G) - Byl @ L) +

x ex};{ f/jo(%Q\ (f)@ (1‘; A€, o(f (A1.3)

To this end, subdivide the interval [Q”@] into m
subintervals with <£+2n+l of the partition points given
by {Q\V(é.),...)Q’\r({m“),QAY(S,),... Q’\r(ge)f . If some of the %J:Sk

coincide, the above set may have fewer than KL+ 2n+]
elements. We will assume that all the fj,~}=lr%r-'32”+‘1

% s = L..”.ﬂ , are distinct. The arguments for the case
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when the Ckr(fﬂ,Qéﬁbare not distinct is similar to the

I'4
one we use. For each partition point %J , J=[:~u m,
associate the special point %r(ﬁ%u’\ (é')+z}%{-§') with the above
r
restrictions. Suppose the f; are distinct. Let f; =
¢ {
..l:%Ll ;/9 , and %\r(fo') =%,\r(ém“):§r. If we use the approximation

given in Eg. (3.16), then

exp 3 “—;—‘3 i’ga(% Q).r“) C‘?_,\r(@}

Rexp %‘JZZ 6?,\(* )- ?A({)J[?A - ?({ &)

f

= exp - %, A | T ()~ (4) ] %+

J‘ J

* g/U-(J“ /Lf\,(é’))? ]_{
Hence

1, mﬁ'Tf,, Jr(”f {JTTI dﬁ/@)a’;)(f, )16) ) Q &, )Q(s @r( o)
[2m £ (+5,-177 [;m)ﬁ* 7

Texp {—J’ > - ) [ o, (500w, 607
+ far, () -5, @I § olE, AT,

where the integration is over the whole complex plane.

Transforming the integration variables to the real and
imaginary parts of the 3ar(67, Just as is usually done,

since the integrals are "ordinary" integrals, we obtain
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Lim r ,
To=Jine l-»gfL_&[ };20(“,\(1‘)0( H)]
AR )

N J QTfﬁz'é !

X [x)r({') + i%r ('én)] U [xAr H.?n-u) * j’?&“—?h*')] *

x [1,\:(5:) + /7'\i (s‘)] .o [X'\i (gﬂ) + 7; (Sj)] X

xexp SA‘%%‘}Z_B G- g,)[fa,‘(%“ =Yy ({')f +
o, 6 -, @] dE dE,

2
If we now multiply out f&!ﬂ3+i%4ﬁﬂ "'[%¢(¥)+7WK%)]

and do each integral individually, we observe that each

term will either contain an odd number of thﬂ) or '7)r65)

3ince the boundary points of the path integral are the

same it follows that li =0 , (Gel'fand and Yaglom (1960))*.
Observe further that this result is verified in Eq.

(6.18), for if the generating functional is functionally

differentiated an odd number of times and the "source term"

set equal to zero, then the result will be zero.

*
GEL'FAND, IoM., 81’1d YAC’LOM, A.).J.., Jo Math. Phys. !._’ 48
(1960)
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Appendix 2

While evaluating the various terms of the Helmholtz
free energy to (D(XQ, it is apparent that apart from a
trivial integral connected with the loop at any vertex of
the diagram, there are two basic types of integrals
required. All special cases needed in the expressions of
Vﬂ,”., M44 , and  S,,..., S, for the Debye-Waller

factor, can be obtained from the above two integrals.

Type 1: 1In this type, we have n dots, and suppose that
the number of lines connecting -% to %+, is M, , where

%l is the variable of integration and WDZ<D . Ne use
the convention § =S4, . Then, the integral that is

required is

A n K
In _ !f)c{s,"',.[dsh JE[;{?D/\ (SJ, J+l)]

- 5 0 J:I 5:] Qw/\g o(5=+i ]
m A 4
) A[ WW» -, 4 Ty 4 }U oo e byl
“ (A2.1)
o, B “he -] S L
where QA = oy %“-Af N,\ ("(r) [ ,:} » A= :)TI-'I]TI (»?i),\r)

and

ZE; (2r *

rk_!
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Note that if m,=0O , put TT( )Z_o(r ’\r( r)ea?lls,”-‘gﬂ'l_;l

K= aﬁ _t y *
/)

At once, it can be seen that the following integral

must be evaluated.

Jh-_-':Jn(b, b) j/eg fa/s,,ex]ogz";_ ‘S:Q.H)f (42.2)

Je perform the integral over SJ remembering that we
have to perform the integrals over the variables it is

connected to later. Hence, the integral to be evaluated is

S(b*l’ _I.dg GX}D { Z?JISJ‘SJﬂl}

= 9(5:]4-]-%") 7’-(}3’,” lj)-" @(%-:%r:)t(%-p%) (A2.3)
where 0O s X <O
(x) - | o = the Heaviside function
, X2

and 'T,,T:z are ordinary integrals because later integrations

are taken care of by the Heaviside function.

T, (b, ) I“ e A T



- GL"" S +by Sy “65*‘ (8,3~ §)-1)
by + by '
4 e b (s0-S) — SR80 %)
by, - by ’
b)) (5t
b+ b
b (5500 = by (5-54)

AN
- J-1
-+
j ds, +
S
. by, (5,750 + by (5-50)
+ fs a(sJ e
J—l
- el‘fj-ns:j-t+L’J3J+1 - el‘jﬂ(%q‘s}w)
-+
b+ by
+ eLJ—l (5-)'%-‘”) _ e‘{,(s_r-t'%«u)
+

l?l" '134
CL’J-I (B + by (B-50) _ ebj (51=5y1)

b, + b,

+
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Substituting these expressions into Eq. (A2.3) yields

‘S(sz-u L)J) = € Lh_' (ﬁ-sj-—y)""‘:[(/’)-%i-l) + eLf}-ls‘:}-)'*',DJ%ﬂ
EJ + ,oJ"

bls, =S b, 1S_~%4
M yedrinlop el lemlf
3

Finally, we consider the following integral, which arises

in the first term of Eq. (A2.4) and Zq. (A2.2);

/ b b, Is_, -5/ /
X (goty) = [P @ 23700500 (e )

-1
b S)y-1 by-1 -1 (b+b_)-b v
= e - € e/gJ IR L S
7 +
CRLTY b +by,

The other kind of integral that arises from the first

term of Zg. (A2.4) and Eq. (A2.2) is of a similar form
as that given in Eq. (A2.5), and has the same property
as that given in Eq. (A2.5), that we will use later on.

We want to simplify the expression for S  and hence,
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J; further, but to do this, we must again consider the
expression for I, .

First, note that the D functions are periodic, that
is,
= -~ < <
DA,,(S+/8) D,\r(s) , ~B<S O

#e now make the following change of variables;

U =5, , uJ.—.s,-sJ s J=4 3., n

Then, S}—-SP = aP-ar ,r;Pgl.”,r), and the Jacobian for

Employing

é(S“..., Sh) _ ’
O(Uyyuney thn)

the periodicity of the D functions so that the range of

the transformation is J‘:

integration does not change, we find that

J, = fﬁo(u,... f“ga(an exp gb,laz-»bn]ahhnz_é b,.’ar‘“r“']? (42.5)
o o -

We immediately observe that the integrand of Eg. (A2.6)
is independent of Y, , and hence the integral over
gives us a factor of /? . Since Eg. (A2.6) = Bg. (A2.2),
observe that the only way to get this factor of fg in
Eq. (A2.2) is if the last integral performed is a trivial

7
integral. We can see from the expression for )<(5ﬂ,%ﬂ,

that this will never be the case for the integrand
considered there. Hence, we can drop the first term in
expression for <Sa}u5>of Eq. (A2.4). WVhen these integrals

are explicitly evaluated and then substituted in the
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corresponding expressions of free energy and the summations
over 03 are carried out and the symmetry of the \/W(Anm)An)
coefficients is taken into account, a total of zero
contribution is obtained.

Hence,

(SJ_"‘S'JH} _ E

LJ-I ISJ—J ’SJ-H ’f
) € (A2.7)

Performing the integration over Sn first, and then using

\ 2
S(bJ_,,bJ) = 1?]2 )?]’:l g’?} 'e

BEq. (A2.7) in Eq. (A2 2), we have
J;\ (bnm) L’m) = bz {b J (bn n-2> bn) =
- baJp Cbyy ey ,,,,,)} ;nz

(A2.8)

and J-,(E,) —‘=/§
I'his can be substituted in the expression for lllto get

the final result.

The first four expressions for J; are given below.

(i) Jyb) = B

(11)  Tylb,by) = (FDA b'+

W

(ii1) Ty (b, by,by) = ()28 _ (b +b,+h)
(b +b,) Oo,+193) (bz-}-b})

B0 T, (b, kb, b) < (2P MO
E

p

NUM = (bbb, +b)(b+b) (b by) + b, b(b+by) +by by (byrb,)
DEN = (b+b) (b+by)(b+by,) (b by)(by1b,) (bytb,)
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Loops ere easily handled because they produce a factor

of coth (%ﬁﬁ“%) for each loop, where 4Xr is chosen

appropriately for the vertex in the diagram under
consideration.

¥ith the above considerations for loops and the
expressions given in zZgs. (i)-(iv), one can evaluate all
the contributions to the free energy to ()()ﬂ , except
for the terms \NG,) Mél;,véq. To evaluate these terms,

we require the following type 2 integral.

Type 2: It is apparent from the expressions of VéLJ“ézghéq

that the following integral must be evaluated;

L,= La(hso ba) = j'gds exp ?% Erls-srl} (42.9)
(o)

One must remember that the integration with resvect to
{s,,u-,sn? over the interval [C%/?] is done later.
The br are constants which are linear combinations of
the QU .

The evaluation of qu is extremely tedious for large
n. Je propose to do the integral of Eg. (A2.9) for a
fixed sequence of the §5r? , and from this, one can
evaluate the integral in general, using the Heaviside
functions as a bookkeeping technique to account for the
various terms. #e note that the case for n=2 1is the

type 1 integral, and to obtain W, MQQ, héq , 1t is



119

necessary to find L3 .

Suppose the ordering of the variables in Zq. (A2.9)

is as follows;

< S
S\j 5""

N 0, Srh‘H =/@

o

;3 J:Oﬁ,...,h;

Then, if Eq. (A2.9) is handled as an integral without

taking into consideration the other integrals, we obtain

A n
Yn = (J;C(S ex}; ngz:lb,J}S*S,:,}}

=§ Sr‘c[f*f ds+ oo 4 i/ga(sfex;;%j‘; L;,:’!s—sglf

"

:i r'ds exp g’% bg (5‘35)} +

+ ls‘&ols exp ibﬁ(s-sh) +JZ::_2 LG (55-5)} +

-+ . e+
S, Y
+ Ws exF{Zlo (s——s Z_la (S —S)}
J"‘G =4
S, J=L
2
+ s+ - 3+

A n
+ Sfrds exp fJZ:_’ b (s-s,) f
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= exp g\%b (Sr r‘,)}‘GX,o 5% bg (SG “S'B)}
._f: b, !
J= d

) . ]Eexip [é 135(5 Sr)"‘z_;@b <S B ’?l-n)] B

&y 2k

Zby~ 2y
*ex}:[Zb (5, sr)+%llo (5 =S W
+ +
+ exp Sij%—, Io,j<srm gf €X}D§Zb (sn,=5n)]
zb

o Pexp [ 2 b s, 503 byGo,)] -

Jstod e L e d

— exF [Zb (Sr Sr) Z_b (S, Sr ]}

J=f+

(A2.10)

To get the result for Eq. (A2.9), we use Heaviside
functions to account for all possible ordering schemes
of the Sy . There are nl different orderings.

We now write down the result for h=3.
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L, (b, b,,b,) = f’gds exp g b ls-sl+b, ls-sz)+b3ls~s3lf
0

= 9(3,—32) 9(31’33) 6(%—5‘3) YBI + 9(9,—8_2) 9(5,*5’3)6(33—5'2) Y32+
+ 6(s,~s) ©(ss,) 6(s-s) Y,; + © (s,-5,) 6 (s-8,) ©(s5) Yoy ?
+ o(srs) 0(5-3) 6(s,-5)) Yo + O(ss)e(5-s) €(5s)Yy,

where Y% is the same as in Eq. (A2.10), with the

Heaviside functions determining the order of fs,,sg)sé}»

Hence,
L - b (B-s,) +by (B-s,) + b (B-s;) \ b theSt b,
3 +
b, + b, + b,
+ Qb. e by 5=, ! +b3fs|'—53} " ‘gb:t eb' [SI—Szl+b3 [S.z°33} ,
(b by+ by) (byt by—b,) (by+by+by) (bg+b,-b)

+ 2h, 65:’3n"33’+’°.1’%‘331 2 b b, b

( ’ol+l‘:’2 + 193) ( b, + b.z "b3> ) ()o’+b"+L3) (bz+ LS' )‘")(by‘”bn' 173) (’3+L’2’b3)x

) 3 % (,—
{ ols-s)els;-s) e bS5, @(S;S,)é(s,—sg)eb‘(% ) byG ‘sl

b,(s-3, - ) .
s 0ls-s) 055 e T HBES o ai )bl bss),

+ 6(s-s)e(ss) eh G hls), e(s,-s,)0(s-s,) b lrs) *Q(Sﬁﬁ}
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Appendix 3

If one is interested in the high temperature expansion
of the Helmholtz function F, or the Debye-Waller factor
DWF, where the first term of the expansion gives the
classical limit, then the evaluation of the integrals
described in appendix 2 is not necessary. We give some
of the necessities for obtaining such expansions.

The two parts in the expressions for the various terms

in F and DWF that contain temperature dependence are

Ny (w) = [P 21]  a =2l

and the exponentials in the integrals, one of which would

have the following form exF [o(,'}f. Wy, I%-sﬂl] .

To get the above expansion in F and DWF, one can
expand N,\ (u,.) and exF [-o(,ﬁw,\r)fj‘sﬂﬂin terms of a Taylor
r
series and keep the necessary terms. For example, in the
. -l
classical limit, (/g +0) 5 N),rénlr)“[drlgﬁug\r], and exF[d,%%rlﬂ—&ljﬁ’,
(this is a good approximation since the interval of
integration is [C%/ﬁj ). The integrals, in this case,
become trivial, and in fact, the manipulations involving
the temperature factors simplifies.

For high temperature results, the useful expansions

are

Ny (4) = [e*F5nr]]" = 2= Ba [ prim ]

n=0 H!
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where the Bh are the DBernoulli numbers, and

exp [a,’hw,\rlsj )] Z. [0( 'th "z}]n

To get the results for low (zero) temperatures, that

,3 T+00 , one has to perform the integrations of the
exponential functions, and then use the low temperature
expansions of Pﬁr@ﬂ. The appropria?e expansions are

- Fes ~(n+ ‘%M)A
NAr(” - [e/%w"*~}] ,= Z e <V’ I)/g r

Nn=0

N),.(‘I) - [‘e-/@‘ﬁw,\r_)‘)-l - _%o e"'V‘/‘gﬁW/\r - __['N)r(})_'_]]

J

If one wants the zero temperature limit, one must set

—W&}«' . .
D/\(SS ,. , and then perform the necessary integrations.
w
A

There is no advantage in performing the zero temperature
calculation because the integrals are as complicated es
for the finite temperature case. Perheps the only
simplification over the finite temperature case lies in

performing a fewer sums over aﬁ.
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