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Abstract 

Four problems of physical interest have been solved 

in this thesis using the path integral formalism. 

Using the trigonometric expansion method of Burton 

and de Borde (1955), we found the kernel for two interacting 

one dimensional oscillators• The result is the same as 

one would obtain using a normal coordinate transformation, 

We next introduced the method of Papadopolous (1969), 

which is a systematic perturbation type method specifically 

geared to finding the partition function Z, or equivalently, 

the Helmholtz free energy F, of a system of interacting 

oscillators. We applied this method to the next three 

problems considered• 

First, by summing the perturbation expansion, we found 

F for a system of N interacting Einstein oscillators^ The 

result obtained is the same as the usual result obtained 

by Shukla and Muller (1972) • 

Next, we found F to 0(Xi)f where A is the usual Tan 

Hove ordering parameter* The results obtained are the 

same as those of Shukla and Oowley (1971), who have used 

a diagrammatic procedure, and did the necessary sums in 

Fourier space* We performed the work in temperature space• 

Finally, slightly modifying the method of Papadopolous, 

we found the finite temperature expressions for the Debye-

caller factor in Bravais lattices, to 0(AZ) and u(/K/ j, 
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where K is the scattering vector* The high temperature 

limit of the expressions obtained here, are in complete 

agreement with the classical results of Maradudin and 

Flinn (1963) . 
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1. Introduction to the Path Integral Formulation 

In the more well known formulations of non-relativistic 

quantum mechanics, one is interested in studying the 

Hamiltonian of a system. This fact is evident when one 

writes down the time-dependent Schroedinger equation; 

where H is the Hamiltonian, 1P is the wave function, and 

P\ is Planck's constant divided by S.Tf 

There are many reasons for the development of the 

Schroedinger formulation of quantum mechanics• The main 

one is that for most cases, one looks for a one-to-one 

correspondence bet¥vTeen the operators of quantum mechanics 

and the classical quantities^ For example, one can 

associate H aith the energy of the system. 

However, one can formulate classical mechanics in 

terms of an action principle, or as more commonly known, 

Hamilton's principle, (Goldstein (1950)). .Vhen first 

formulated, one was interested in the Lagrangian of the 

system, and from the action principle, one obtained 

Lagrange's eouations of motion. Later on, the Hamiltonian 

was related to the Lagrangian via a canonical transformation. 

In some ways the Lagrangian may be a more fundamental 

function describing a system* 

One may then ask the following questions* Is it 

possible to formulate quantum mechanics in terms of the 

Lagrangian, and if so, how can this be done? 
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The answer to the first question is yes. The second 

question was partially answered by Dirac (1932) who laid 

down the foundations of the path integral formulation of 

quantum mechanics in his paper on the role of the 

Lagrangian in quantum theory. Feynman (1948) proposed a 

path integral formulation of quantum theory in terms of 

the Lagrangian as suggested by Dirac (1932). 

As is shown in chapter 4 of the book by Feynman and 

Libbs (19o5), (from no* on known as FH), the Schroedinger 

and path integral formulations are eauivalent in the sense 

that the basic equations in either formulation can be 

derived from the other, fhat makes the path integral 

formulation worth studying separately is that it exhibits 

certain interesting features that are not evident in the 

Schroedinger formulation* vVe indicate some of these 

features presently. 

In the Schroedinger formulation, there are basically 

two postulates. One of the oostulates involves the equation 

of motion and the other involves the commutation relations 

among ouantum mechanical operators, especially the 

canonically conjugate operators. This latter postulate 

is a consequence of the use of the Hamiltonian to describe 

a system, and hence the need for canonically conjugate 

operators. If instead, we use the Lagrangian to describe 

a system, then we avoid the necessity o^ introducing 

canonically conjugate variables, and hence we may be able 

to drop the postulate of the commutation relations* Hence 
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we need only one postulate as Feynman used in his path 

integral formulation. 

It is appropriate now to give a brief sketch of what 

arguments Feynman used in developing the path integral* 

Suppose the Lagrangian of a system under consideration is 

given by 

L = irf- V(^p4) (1.2; 

Here CL is the position coordinate of the system, (not 

necessarily in one dimension), m is the mass, (not 

necessarily a constant and could be a vector) , and V(%>i>A) 

is the potential. Given the system starts at Q^lf^^J , 

we want to find the probability that it will arrive near 

k£(fo»̂ i) > ̂ >4* * Arguing that, in quantum mechanics, 

probability is like intensity, one must find the sum of 

the probability amplitudes of all possible paths from a 

to b that the system can take, and then take the square 

of its modulus to get the probability. Formally, one 

can write this as 

U.3) 

where $fe#£J s probability amplitude of a path described 
by fM going from ct to b 

Feynman postulated the following form for $[(l(i% 

i>r<^)] = *«!> [jrStfWil ( 1*4) 
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"here sr^)] = f ' u ^ p i ) ^ (1*5) 

anl the integral is evaluated along ad) . 3 is called 

the action. In words, each path contributes eoualiy in 

magnitude to K(fc,a) but differs in phase. 

If we consider a one dimensional particle with a 

potential V-V(o) that is well behaved, then the mathematical 

prescription for calculating the sum over paths (or also 

sometimes known as kernel) as given by Feynman (1948) is 

6) 

.vhere t. <£*. , A - ( ^ - ^ , f. -J. , f. • ?. . 

and the integration is done over all possible values of Qj . 

Feynman (1948) has also considered cases where the potential 

is of a different form in the sense that V may depend on 

f and 6 . Then the expression in Eq. (1.6) becomes 

more complicated. 

In defining the kernel, KOyO, in Eq. (1.3), one observes 

that the function $[Q$] depends on the action st0l which is 

a classical quantity. The £ makes the argument of the 

exponential dimensionless, and brings in the nuantum 

mechanical effects. 

Intuitively, one can see that the oath integral 

formulation has close ties ^ith classical mechanics. This 

can be shown using the following arguments. If one 

formulates the classical laws of physics using Hamilton!s 
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principle, the path taken by the system, that is, the so-

called classical path, will be the one that extremizes S[o(i)]. 

In the cases we consider, this extremum will be a minimum. 

Observe that as we move away from the classical path, the 

action will become larger, and because £ is small, $&$] will 

oscillate wildly. Hence all contributions to the kernel 

for paths that are not in the neighbourhood of the classical 

path will cancel out, (Hunther and Kalotas (1977)). Thus 

the classical path and the paths in the neighbourhood of 

it will contribute most to the kernel* 

In the Schroedinger formulation, the wave function of 

a system associates a probability amplitude to the system 

at a particular position and time. The wave function gives 

a local description of the system. Furthermore, one must 

impose certain restrictions on the wave function which may 

be ad hoc or have a physically intuitive basis• fhile in 

the path integral formulation, the kernel associates a 

quantum mechanical amplitude to the motion of the system 

as a function of space and time. This is more of a global 

description. Also, the boundary conditions for the kernel 

can be chosen a priori. 

One of the more apoealing features of the path integral 

formulation is that the arbitrary phase factor of the wave 

function does not enter into the kernel because it is 

already fixed. 

Looking at the expression for the kernel given in Eq. 

(1.6), one observes that one can perform the mathematical 
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manipulations as is done in classical mechanics. This is 

also true for systems with other types of potentials,-

(Feynman (,1948)). Hence one avoids the troublesome task 

of performing operator algebra. Since quantum mechanical 

operators are still of importance because they are related 

to physical quantities describing a system, one can use the 

path integral formalism to define "matrix" elements of an 

operator as was done by Feynman (1948), Davies (1963), 

Cohen (1970), and Mandelstam and Yourgrau (1968). 

Although the path integral formulation is conceptually 

elegant, there is a major shortcoming which is expressed 

in 3q. (1.6). First, one has to determine whether or not 

Eq# (1.6) is well defined and second, one has to perform 

the integrations given in Eq. (1.6). 

In fact, to obtain the kernel, one must perform a 

functional integral which is formally written as, 

K(ka) * J MfM] exj, f| I LeflJ (1.7) 

The expression given in Eq. (1.6) is similar in form to 

the Riemann sum definition of the Riemann integral. 

wiener (1923) developed, in connection with lirownian 

motion, what is now called the wiener integral. The wiener 

integral has a striking resemblance to the path integral 

given in Eq. (1.6 J. There has been much theoretical work 

done on the wiener integral and how it is related to the 

path integral. This work is well covered in a review 
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article by Kovalfchik (1963). In fact, in developing an 

expression for the density matix, one can use the .Viener 

integral which is what will be done in section 3# 

llore recently, much theoretical work has been done on 

the study of Eq. (1.7). There are two points of concern. 

One is that the expression given in Ea. (1.6) used in 

defining the kernel given in Eq. (1.7) was developed on an 

intuitive basis and so should be nut on a firm mathematical 

basis. Second, the convergence of the integrals in 3q. 

(1.6) must be handled carefully in a strict mathematical 

sense. Fundamental work discussing these points include 

Davison (1954), I to (1961), Keller and McLaughlin (1975), 

De Witt (1972), Albeverio and Hoegh-Krohn (1976), and 

Llizrahi (197?). The latter three references give a definition 

of the path integral in Eq. (1.7) without recourse to the 

limiting procedure as given in Eq. (1.6). 

From a more practical viewpoint, considerable effort 

has been put in to evaluate the path integral in EQ. (1.7). 

Unfortunately, there are not too many cases that can be 

done exactly, hence some effort is needed in finding good 

approximations to the path integral. 

A class of path integrals that can be done exactly are 

the so-called Gaussian path integrals, that is, path integrals 

with quadratic Lagrangians. Notable examples of physical 

problems with quadratic Lagrangians include harmonic 

oscillators, free particles, particles in a constant magnetic 
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field, and particles subject to a constant force. 

Papadopolous (1975) has evaluated the general Gaussian 

path integral, while examples of special cases can be 

found in FH (Gh. 8). 

Some of the work that has been done in evaluating 

path integrals, either approximately or exactly, if possible, 

will be presently given. 

The expression in Eq. (1.6) can be used, but is 

extremely tedious as is shown in FH (Ch. 3) for the free 

particle, and in Devreese and Paoadopolous (1978), og. 123, 

for the harmonic oscillator. 

Davison (1954) developed the mathematics for evaluating 

the path integral by expanding the paths in a complete set 

of orthogonal functions• Davies (1957) and Glasser (1964) 

expand the paths in a trigonometric series to evaluate 

certain Gaussian path integrals. Burton and de Borde (1955) 

use a different expansion in trigonometric series and 

evaluate some Gaussian path integrals* This last method 

will be discussed in section 3. 

The so-called semiclassical or WKD expansion has been 

explored* The method as described by Morette (1951) will 

be discussed in section 3 for non-relativistic quantum 

mechanics^ More recent work along these lines is that of 

Gutzwiller (1967) and Levit and Smilansky (1977). 

Much work has been done in expansion procedures also. 

This involves the expansion of the part of the exponential 
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term of Eq. (1*7) that includes the potential or part of 

the potential, in a power series and term-by-term evaluation. 

Yaglom (1956) has followed this procedure in connection 

with the evaluation of the partition function. For further 

work on expansion formulae we refer to the work of 

Papadopolous (1969), Goovaerts and Devreese (1972 a,b), 

Siegel and Burke (1972), Goovaerts and Broeckx (1972), 

Goovaerts, Dabenco, and Devreese (1973), and Maheshwa'ri 

(1975). 

In some cases it may not be possible to get a good 

approximation to the path integral. In those cases then, 

one may be able to get some bounds on what it should be. 

Specifically, these bounds are in terms of some physical 

quantity describing a system. Feynman^(FH (Oh. 11)) 

developed a generalized variational method In which he 

obtained an upper bound for the Helmholtz free energy of 

a system. 

There are other methods for evaluating the path integral 

but they will not be indicated here. 

The Feynman formulation, and hence the use of the path 

integral and wiener integral^ has been applied to solve or 

at least partially solve some important problems of physics* 

The areas of physics where the path integral has been 

applied include cuantum, statistical, and solid state 

physics. 

One of the most notable successes of the path integral 



formulation has been in the determination of certain 

properties of the polaron as described by Frohlich (1954), 

such as the effective mass* Some of the work done on the 

polaron include Feynman (1955), Osaka (1959), Schultz (1960), 

Feynman, Hellwarth, Iddings, and Platzman (1962), and 

Thornber and Feynman (1970). 

Feynman (1955) used the variational method, as noted 

above, in determining the effective mass of the polaron^ 

This variational method has recently been applied by Celman 

and Spruch (1969) to problems in which the Hamiltonian of 

the system being studied has a term containing angular 

momentum. 

Pechukas (1969) has used the path integral to derive 

the semiclassical theory of potential scattering* 

Papadopolous (1971) has applied the path integral to 

the problem of a harmonically bound charge in a uniform 

magnetic field, from which he evaluated the partition 

function and density of states* 

Lam (1966), Maheshwari and Sharma (1978), and Seshadri 

and Mathews (1975) have done some work on approximating 

the kernel of a one dimensional anharmonic oscillator with 

potential V(*) = <*** + *>***• 

Khandekar and Lawande (1972) and Goovaerts (1975) have 

applied the path integral formulation to a three body 

problem considered by Calogero (1969)* 

There are many more applications of the path integral 
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formulation, some of which are of far greater importance 

than those mentioned. Many of these applications along 

with some of the theory of path integrals and Wiener Integrals 

is given in the review articles of Gelffand and Yaglom 

(1960), Brush (1961), Barbashov and Blokhintsev (1972), 

and rfiegel (1975;- The standard text on path integrals is 

FH which gives the path integral formulation as developed 

by Feynman along with many applications including Feynman1s 

work on quantum electrodynamics. More recently, the book 

edited by Devreese and Papadopolous (1978) gives some of 

the other developments of the path integral formulation and 

the present status of the path Integral. 

Before we end this introduction to the path integral, 

there are three points which should be noted. 

First, Davies (1968) and Garrod (1966) have develooed 

the path integral using the Hamiltonian. They showed that 

their path integral is the same as that using the Lagrangian. 

Second, Eandelstam and Yourgrau (1968) have related 

Schwingerfs variational principle to the Feynman path 

integral formulation. 

Finally, work has been done in evaluating path integrals 

in general curvilinear coordinate systems other than the 

usual cartesian system. ?,Iost of the work has been done in 

polar or spherical coordinates; for example see (Edwards 

and Gulyaev (1964), Arthurs (1969), Peak and Inomata (1969), 

and Arthurs (1970))• 



2. Outline of the fork done in the Thesis 

Four problems of physical interest will be tackled 

using the path integral. 

As can be found in many standard textbooks on solid 

state physics (Kittel, for example), a model that is 

freauently used in describing the dispersion forces of 

condensed matter is a system of coupled oscillators. In 

section 4, we use the expansion in trigonometric functions 

as discussed in section 3 to evaluate the path integral 

for two interacting one dimensional oscillators without 

using a normal coordinate transformation. This problem 

has already been solved using the normal coordinate 

transformation as is shown in FH (Gh. 8). 

The partition function, or equivalently, the Helmholtz 

free energy, F, is an extremely useful ouantity in describing 

systems which are in thermodynamic eouilibrium. However, 

for a system of interacting oscillators, such as an 

anharmonic crystal, it is difficult to find an exact 

expression for F# Hence one must develop approximation 

methods to get F, one of which is a perturbation type 

expansion. In section 6, v̂e derive the method of 

Papadopolous (1969). This is a perturbation method using 

the path integral and functional differentiation. TJsing 

this, we develop a systematic method of obtaining the usual 

perturbation expansion of the partition function for a 

system of interacting oscillators* This method is 



specifically geared for a system of interacting oscillators 

and will be applied to the next three problems discussed. 

In section 7, we find the free energy of N interacting 

one dimensional Einstein oscillators. This oroblem has 

already been solved in the same vein by Shukla and Muller 

(1971) using a Green function method and again by Shukla 

and Muller (1972) using a diagrammatic procedure. In 

studying this problem, one is looking at the simplest 

problem which exhibits certain features that occur in more 

realistic models. To simplify greatly the calculations 

needed, one transforms the problem to wave vector space. 

In this space, one can use the symmetry of the system to 

apply periodic boundary conditions and develop the dispersion 

relationship. Also, when one is doing the perturbation 

expansion, the expansion cannot be cut off anywhere to give 

correct results because the interaction term is as strong 

as the harmonic part of the potential. Hence, one must 

sum the series to infinity. 

The next two oroblems studied have to do with the 

anharmonic crystal. The interaction or anharmonic parts 

which are expanded out, are generally much smaller than the 

harmonic oarts in their contribution to certain properties 

of a crystal, but are still necessary to describe the 

properties of a crystal such as thermal expansion, specific 

heat, etc. Perturbation theory is a standard method used 

in studying^ theoretically, the properties of a crystal. 
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In section 8, we find the free energy of an anharmonic 

crystal, or system of anharmonic oscillators, as described 

in section 5, to 0(\H) , where A is the usual Van Hove 

ordering parameter* This is the second lowest order of 

perturbation that gives a non-trivial contribution to the 

free energy. It has been found that the lowest order of 

perturbation, that is 0(Ay f is inadequate in describing 

the temperature dependence of the heat capacity of certain 

materials at high temperatures, and~hence, one must include 

the next order of perturbation to account for some of the 

discrepancy. Shukla and Cowley (1971) have done this 

calculation by using a diagrammatic procedure, and evaluating 

the necessary sums in Fourier space, rfe will perform the 

calculations in temperature space* These calculations have 

been done in temperature space to 0(XZ) } (Papadopolous (1969), 

and Barron and Klein (1974)), but to our knowledge have not 

been done to 0(A*) # The results we obtain are equivalent 

to those of Shukla and Cowley. As a further sidelight, we 

will indicate how one can draw Feynman diagrams from the 

expressions we derive. 

The decrease in intensity of x-rays scattered from a 

crystal occurs because of the thermal vibration of the atoms 

of the crystal about their lattice sites, and is accounted 

for, in theory, by using the Debye-Waller factor. In section 

9, we determine the Debye-Waller factor for a monatomic 

Bravais lattice, which is a special case of the system 
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described in section 5̂  to 0(f) and 0(/K/¥J y where K is 

the scattering vector. *Ve do the calculation to Off) because 

this is the lowest order of perturbation that gives a non-

trivial contribution to the Debye-Waller factor. The reason 

for doing the calculation to O(lK)1) is that if one were to 

write out the full formal expression for the Debye-tfaller 

factor, one "would find that the lowest order term is 

proportional to IW and the next lowest order term is 

proportional to lKl¥ f but both terms are of 0(f) in 

anharmonicIty. We then take the high temperature limit to 

show that our results coincide with those of Maradudin and 

Flinn (1968). Current numerical techniques make the 

calculation of the terms of the Debye-Waller factor extremely 

time consumingf even for the high temperature limit. However, 

the finite temperature results are of some interest in 

investigating the temperature dependence beyond the leading 

temperature terms derived in the classical procedure of 

Maradudin and Flinn (1968). 

In section 10, we summarize our findings and make our 

conclusions• 



3. Mathematical Preliminaries 

In this section, we present a mathematical formulation 

of the path integral starting from the time dependent 

Schroedinger equation and Its general solution. We then 

describe two methods for evaluating the path Integral; 

(a) the semiclassical or #KB expansion of Morette (1951) 

for non-relativistic quantum mechanics, and (b) the 

expansion in trigonometric series as given by Burton and 

de Borde (1955). The trigonometric expansion method will 

be used in section 4 to solve the problem of two interacting 

one dimensional oscillators. The method of yorette will 

be used in section 6 in connection with the study of a 

system of N interacting Einstein oscillators (Sec. 7), and 

the anharmonic crystal (Sec. 8, 9). Finally, we show how 

the density matrix can be written in terms of a path 

(Wiener) integral. The density matrix, and hence the 

partition function, Z, or equivalently, the Helmholtz free 

energy, F, will be employed in sections 7 and 8. 

(A) The Path Integral 

The time dependent Schroedinger equation is 

U W =il sL£ (1.1) 
H 

where the symbols are defined in section 1. Suppose the 

Hamiltonian is given by 

H=-Lf>* + Vfy) 13.1) 

where b,CL are the usual momentum and position operators, 



respectively, (not necessarily one dimensional), m is the 

mass which is appropriate for the system considered, and 

Vl^J is the potential which depends on position only. 

The general solution of Eq* (1.1) is then separable 

in the sense that It can be written as the product of two 

functions, one depending on time and the other on position. 

It then remains to find the energy eigenvalues and 

eigenstates of the associated time-independent Schroedinger 

equation. Let the stationary eigenstates be (pf(?j and the 

associated energy levels be E « As is well known, the 

set i^Jf)j forms a complete, orthonormal set^ 

Using the notation of section 1, and following the 

procedure of Schiff (1968), the wave function x(C^TJ of the 

system under consideration can be expanded in terms of the 

energy eigenstates to give 

^(a) = ̂ (^"U " T- Qs (W 4>B (fa) (3-2) 

The wave function xf^/ywhere ty ^ta is given by 



Let 

K(ka) -
o 

(3.4) 

Then, Eq. (3.3) becomes 

f 

W ) = J KCIo.a) 1PU) dj, (3.5) 

K(h}Gj is often called the kernel, propagator, or Hreen 

function. 

Essentially, Eq# (3*5) is an integrated version of 

the Schroedinger equation, for given the wave function at 

some point in space and time, and the kernel, one can find 

the wave function at later times. 

We note the following three important properties of 

the kernel* 

First, K (*>,*) s K ^ > f c i V O (3.6) 

The kernel Is a function of the difference in time* 

SeCOnd' ti»J(k*)* ^.\(f)^(jJ'S(p-f.) (3.7) 

where in taking the limit i^ia $ it is understood that 

one approaches {^ from values greater than 4^ * The last 

equality is just the closure property, with SOjbrfr) denoting 

the usual Dirac delta function. 

Third, suppose that C=((?04) ̂
s a n intermediate point 

such that 4<^c<^i * Then, by Sq. (3.5), 
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my) - J K(KC) wed dfc 

whence f ffc) = J V ? a [ JVj f t / < M K(c}a)] 9(a) 

Comparison of the above equation with Eq# (3.5) yields 

K(fc,a) = Ufc K(h,c) KCCA) (3.8) 

One can proceed along the same~ lines as above to 

obtain the following; 

where ^t> c >"*>^cl
>^a 

In what is to follow, we shall restrict ourselves to 

one dimensional cases* The extension to higher dimensions 

is straightforward and follows along much the same lines 

as the extension of the Riemann integral to higher dimensions. 

Now we will show, in a sketchy manner, how to express 

Kffcya) in the form of the path integral. 

It is well known that the energy eigenfunctions of a 

free particle of mass m are given by ^Blp~^f>ukp , and 

the associated energy levels are g >, &zk* , where k is 

the wave number* The energy levels are not discrete, but 

instead form a continuum, whence 21 —^ — J dk 
E "^ 

For \ ^ \ , Eq* (3.4) becomes 



The Lagrangian of the free oarticle is given by 

L = j[m % • Solving the corresponding Euler-Iagrange 

equation subject to ($'^*)~%<L > and fy^v ~ %l> > and 

substituting this into the action integral, #e find that 

the action S , is given by 

SsS(k,a) . f \ ^ = ffi (3£l^ (3.11) 

Noting Eq. (8.11), we observe that Eq* (3.10) is 

MJ--lApsl* "M5^ (3-12) 

He note that the form of KCb^o.) given in Eq* (3.12) is 

similar in form to the kernel given In EQ. (1.6)* 

Suppose now that instead of a free particle, we 

consider a particle whose Lagrangian is given by 

L - ^ r ^ (3-is) 

where V is the potential, depending only on the position 

of the narticle* 

Without getting into the mathematical details, we 

will derive an expression for the kernel of this particle 

which is similar to Eq. (3.12). 



Suppose H ? ^<i • Subdivide the interval F̂ «>"̂ J into 

N subintervals, the j such interval having length £ >0 . 

J 

Put •£, = "ca
 + 21 G» t with -^=^4 and iN

 = ̂i>* With each 

-t , we associate the position coordinate Q.. . Let j=(olX 

Noting Eq. (3.9), 

K M = jdf)-'SclfN., K(KN-l)"K(j+Lj)-KO><0 (3.i4) 

If the 6. are small and Via/ is a fairly smooth 

function, V(j)^Y(fj) for * j ^ **(*/• The Lagrangian of the 

particle in the interval ^j^*\/+) is then approximately 

given by L ** ^tn 6 - V(fJ s l~., . 

If one wvere to picture the approximate motion of the 

particle from a to b , one could conceive of the particle 

as moving like a free particle In the time Intervals "d-̂ L̂j 

while the points ^fjjjt^ a c t a s scattering centres of the 

particle that change its energy by V'fj'-V(frX (see fig. 1). 

Hence, • 

„ AJt\ JS<J+>'J> (3.15) 

where AJt, - F *? j , arid 5(/+/,j)=J i-jc/4 , with J satisfying 
fc^ J 

the corresponding Euler-Lagrange equation for -Ls^^ij^. 

Note that 4EU)-€ J > k2k%2m(E^)/(iJl and the eigenenergies 

form a continuum just as in the free particle case* 
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Figure 1: Hypothetical motion of a particle, with its 

Lagrangian given by Eq^ (3.13), from Q-fa^a) to 

b« fafc/k'* The scattering centres are the 

dots and the straight lines indicate the free 

particle motion between scattering centres* 
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Further ^ A , , ) ^ ' ^ because t3^i<^, . Substitution of 

Sq. (3.15) into Eq. (3.14) yields 

K(M * J & ... I^E | e*J- H f= W / 

If we let r*ax€-*0*, or if all the 6. are eaual^ we let A) ?+*> 
j J J i 

one observes that the approximation becomes better. Hence 

we expect 

K(b,«) « "" J $1 - i lp -jr ext.Htstj.l.j)] (3.16) 
nK y max€^0^J Ai J AN-» ^W

 r(<j=0 J J J 

J J 

This is the same as the expression given in Ecu (1.6) 

(B) Methods of Evaluation 

(a) 3emiclassical or WK3 Expansion Method* 

Let us first consider the method of the semiclassical 

or 1KB expansion as given by Morette (1951). ;/e consider 

the case for non-relativistic quantum mechanics instead 

of for relativistic quantum mechanics as was done by Korette. 

is given by ^ - ^ U ^ f i The action 

Let xcW be the function which minimizes StaJ f that is, 

zt(i) is the classical path* Let Q(4)~ xcd)+/u(4) . Hence^ 

Expanding S about xcU) in a Taylor series, one has 

sl}l - SU1 * i, fsH'jfS'JUt- (3.i7) 

where 8 represents the variation of S and xc=~xc(i) is 



defined by S$fxe3 = 0. 

As an approximation to S , we drop all terms higher 

than second order in the expansion of Eq# (3*17). 

P^ SA = SfxJ +±S*SL*J (3.18) 

where s ^ w . ^ ^ff^] f^>^ + 

and ZL is the sum over the components of Q,. 

The kernel for the action S^ , is then given by 

K , M « / j ^ e * 4 = ymtNhrtfr&H&Ml (3.19) 

We will give an intuitive argument for what follows 

next, but the following can be done rigorously, (Kovalfchik 

(1953)). 

•Ve have written oU)^xc(i)f^(i) . Now, Xcli) is a fixed 

path and hence cannot be varied. It follows that m(i) is 

the path to be varied with mrliJ^^H'^-O m Essentially what 

we have done is to perform a linear transformation* Further, 

since S[xcJ is independent of Attt) , we can factor exb{4-5feci] 

out of Eq# (3.19) as though it was a constant* It follows 

that y(ti)*0 

KA M = e***3 J M7M1 ̂  [i i W ? (3.20) 

The above path integral is not necessarily zero, but just 



states that we must evaluate the oath integral for all paths 

starting and ending at the same space coordinate, namely 0. 

One can determine the path integral of Eq* (3*20) 

using the methods of Lforette, and is given by 

I. mym^U^shjj.j^ ' | s w y (3.21) 

The above method Is exact for Gaussian path integrals 

because $nS[xcJ^0 for n=3,4,.*. . In fact, the second 

factor on the right hand side of Eq. (3*20), for this case, 

is independent of oaand o^, and depends only on iA and ̂  # 

(b) Trigonometric Expansion Method. 

He now wish to discuss the method of expanding the 

paths in a trigonometric series as was done by Burton and 

de Borde (1955)* We will again just discuss the one 

dimensional case, but these results can be extended If so 

desired. Instead of using the general time interval r̂ ,̂ j>J> 

we will use ft̂ T] m There is no loss of generality for the 

cases we consider^ since the kernel depends only on the 

length of the time interval^ as is observed in Eq. (8*6)* 

To evaluate the action integral, we exoand the velocity 

term arising in L as follows; 

^-(^ga^Jd (3. 2 2, 

where ^fz) = / $ ^m(^-{2tos>(nwit)>n>l , and the tf» are 

independent of t. Plainly, \%(^)f form a complete, 



orthonormal set of functions on lO^T] as they are the 

functions used in Fourier cosine series expansions* 

To find <LU) , we integrate the expression for w , 

noting that a(0)s«Al and <^
T) = | t • Integration of Eq. (3.22) 

H^fa+^h^Ml^ 
Further, %(T) -^ = £k-f<t « ($-)** J 

<V>) i t Q a = *»» ^ _„ ^ ( 3 . 2 4 ) 
0 STiKT 

The beauty of the method can be seen from the above 

expansions. One observes that the expansion coefficients 

[a*] characterize the path. Intuitively, at least, if one 

integrates over the Qn > one would be summing over all 

paths. The mathematical details involved are not trivial, 

and will not be given here. However, if we substitute "̂ o. 

(3.22), Eq. (3.23), and Eq. (3.24) in L, and then find the 

action integral in terms of the a„ , the kernel, K(h}a), is 

then given by 

The integrals are over all possible values of the dH , ft*(, 

Oft being fixed by Eq. (3.24). The factors Z7 and /_!22__-)* 

can be obtained by comparison with the result for a free 



particle which can be done by first orinciples, (FH (Ch. 3)). 

The other kernel needed in this thesis is that of an 

harmonic oscillator, the derivation of which will be given 

in section 4. 

(0) Density Matrix 

We now introduce the density matrix which is very 

useful in statistical physics, rfe then show how one can 

write the density matrix as a path (wiener) Integral 

following the method given In FH (CJh. 10). 

Are know? from statistical physics, that for a system 

in equilibrium and in thermal contact with a heat reservoir, 

the partition function Z, or equivalently, the Helmholtz 

free energy F? is all one needs to deduce the average 

properties of that system. 

The partition function is defined as follows; 

Z = H e ^ £ r 13.26) 
v 

where E r energy of state r of the system, 

A= -J— , kB 2 Boltzmann
fs constant, 

B T s absolute temperature, 

and JL is the sum. over all possible states of the system. 
r 

The Helmholtz free energy Is given by 

F= ^k8T Ai2 (3.2?) 

In what is to follow, the system can be described 

by the Hamiltonian given in 3q. (3.1). Je can obtain 
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the following results for other types of potentials, but 

the arguments needed must be changed* 

If state r is defined by the normalized wave function 

fy (q) , the probability of finding the system in state r 

"near" CL , that is, in the region 'ftj£*0J» is given by 

Pr(f) df = £ e ^ tfty 4rty) ctfr (3.28) 
Here, we have also assumed that the system is in 

eouilibrium, and is in contact with_a heat reservoir at 

temperature "T . Summing over all possible states, the 

probability of observing the system "near11 O is given by 

P(f) dt-Z. Pr(f)^ - ± z. *& tffy Utfdfr <3 •29 > 
If we are instead interested .in a quantity u , say, 

where & is some property of the system, then 

B =^Z.<B>re-
v4E"-^r/^)5<|)<(^)^e^E'- 0.30, 

The bar denotes thermal average, and \ /r denotes quantum 

mechanical average with respect to state r@ 

If we know the quantity 

e (f <£> = T. britf &(f) £~^r (3.31) 

we can evaluate 3 , remembering that if B-B(G) f it 

acts on <f>r(fly. O is called the density matrix. 

We note the following; 

2 = [p^f^i s Tr p ; (Tr = trace) (3.32) 



PCJ) - ^ e ( ? * r (3*33) 

8 = J-Tr (8p) (3*34) 

Comparison of Sq. (3.31) with 3q. (3.4) yields, 

formally at least, 

i 

- J*/rr«&3 «/> [- j f e "^ + V^)]] (3-35, 

The above integral is what is more commonly associated 

with the Wiener integral (Oel1fand and Yaglom (I960)). 

Yaglom (1956) demonstrates how one can derive Eq. (3.35) 

in a more rigorous fashion. 



4. Two Interacting One Dimensional Oscillators 

In this section, we use the method of expansion in 

a trigonometric series, as explained in section 3, to find 

the kernel of two interacting one dimensional oscillators. 

Let the independent position coordinates of the 

oscillators be given by X, and x2 . We use a subscript 1 

to label the various quantities relevant to describe one 

oscillator and a subscript 2 for the other oscillator. 

Observe that two sets of coefficients will be needed 

for the trigonometric series, one for each Independent 

coordinate. Thus, instead of integrating over one set of 

coefficients, we must now integrate over two sets. 

The Lagrangian of the system can be written in the 

folloT#Ing form; 

where ^j^Jmj (^^^/xfh J-M • Let K u * yjf^mx U)1
0 

Suppose the boundary conditions of the system are the 

following; 

XJ(0)^QJ , * y f D = ^ i j = / > 2 (4.2) 

As given in Eq. (3 .22) , l e t 

£ (i) = (Mk)* H C*, k (r) ; r]>2 (4 .3) 

where, now, the Cni are the expansion coefficients. 

According to 3q. (3.24), 



°J 
m LL_ (t,-«i) ; j=/,2 (4.4) 

and to Eq. (3.23J, 

Substituting the above expressions into H and L, , 

and doing the appropriate integrations, we have, (Burton 

and de Borde (1955), Brush (1961)), for 1=1,3. , 

5 ) 

J. I V -^[^-iW+to+tf 
+e0 

T 

r»s/I jnzTf:i/ J KnTr/\-hT ' J -J J J ( 4 ' 6) 

Finally, for » = '»*̂  , 

T 

>TY-

where, in obtaining Eq. (4.7), we have used 

U.7) 

r> + /-r-.a. 

*7T o 
T 

rvVMe 

Us ing Eqs» ( 4 . 6 ) and ( 4 * 7 ) , t h e a c t i o n i s g i v e n by 



2 L j* 3 

Substituting Eq* t4.8) into Eq. (3.25), the kernel 

is given by 

Kcu.̂ -T) - (^THi^ntmdw (4 

Since the coefficients Cwi and cn^ do not mix In 

each term of the expression in Eq. (4.8J, we can separate 

Eo. (4.9) into a product of double integrals. 

Me Introduce the following notation. Let 



Collecting all terms containing Ch| In Eq. (4.8) yields 

Jw - * °nl I C m — — • — — — CM| 

t y j 

(4*10) 

mi 

Integrating over Cnl , #e find 

Collecting all terms in the exponent of the exponential 

containing Cn2 in Eq. (4.11), and 3q. (4.8) gives 

(4.11) 

I»= I 

Integration over Cm2 yields 
a. 

--o JT * & , 

c y 

(4.12J 

Employing Eqs. (4.11), (4.12;, and making use of the 

following identities; 

(i) Tr(^,VMa - h) = (/- ^qfj[l- T^FV 

where ĉ * = 1 [ ((»?+«>?) ± J C^-co^ + W } (4.13) 
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the kernel (Eq. (4.9)) can be expressed as 

« 
^¥?i zin(u>jT)' 

T: 

14) 

r̂ 6 

where Q = 'i^Qh 

Q W *»' C ̂,2 - vk, O 

lit' 

The above expression for Q w can be simplified to 

+ ̂  [A; (V-^V^%3^»j 

where 

a. ^rr^ r , 
/>*-«?<>, t , ( - / n 

B* ^ ^ U ^ I - ^ A ^ J 
KT 
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ha7Ta/ I h*W 

Dn -

Using the following identities, 

(iii) T - J _ _ = £ [-L - JL Coi(^) - f 7 / ** /s »°+ 

(iv) f (-/)" =J_ o . ir c s c f r t ; + 2 ?? l W e * e r 

and the expression for Qn , we find the following complicated 

form for Q , 

•*• *»a ( « > 0 (*>/ " ^ > / +^>"+ 3 " > ^ 

fJll f-ILL - "^ /̂, -r) id ? 



"ILL [ H i - J£ cot (a, T)-g II 

~ r - , w(&, k (^t
i-Ojfcol

Hi-cofco,i-h Sto^a)") 

- 7 7 * C 7TX 

CSC 

+ fm, (afi-k*) (co^-hw1') ^ / m ^ (a, ̂  + b, ba ) (A> z (ui*+ cv*) 

' ^ ( i ^T 2 ~ 2^rCoi ^ r ; " T ~ 7 

+ 7 T 77a 

&L 
a-ra ^ T 1 ( Zoo.T 

-ELcoHu>„T) -J?]] 
2to_T *> J 1 

* f TT* r TT3 77* / T ) 7T-2 ? 



Finally, substituting the above expression for Q 

into Eq. (4.14;, and considerable manipulation we find 

the kernel to be 

*u 
y 

where 
a. 

V to*-or1/ \ Ui*-tu*/ 

In fact, the expression in Eq. (4.15) is the product of 

kernels of the two harmonic oscillators with frequencies 

u)± and OL , respectively* These frequencies have 

been modified from the frequencies tv% and u)x because of 

the interaction. 

The author has tried to extend this path integral 

method to the case of a linear chain of N interacting 

oscillators, but the expressions soon became excessively 



complicated, hence the work was discontinued. 

If we let K,a =0 , Eq. (4.1) reduces to the case 

of two non-interacting oscillators. If oo*Zu)z , then from 

3q. (4*13), we have «o+-u)t , and u)_~t»A. In this case then, 

Eq. (4.15) reduces to 

i kVik Sln(toj) / ' ̂ ^SlMTfc^) 

which is nothing but the product of the kernels of the 

individual oscillators of frequencies &>, and coz , 

respectively. 

For dispersion forces in condensed matter, as is given 

in Kittel (1976), pg. 78, we set 

K'3 R 3 

where e is the charge of each oscillator, and R is the 

interparticle separation. The zero point energy is then 

where CV+ and w^ are given in Eq. (4.13). Expanding U)^ 

and u;. for small interaction, we get the interaction 

energy, which varies inversely as the sixth power of R. 



5. Lagrangian for an inharmonic Crystal 

In this section, we set up the Lagrangian for an 

anharmonic crystal, that is, a system of three dimensional 

interacting anharmonic oscillators. The basic procedure 

followed is that given by Born and Huang (1954). We 

assume that we are dealing with a perfect crystal that 

has N cells. tfe further assume that periodic boundary 

conditions hold, and that the usual adiabatic or Born-

Oppenheimer approximation is valid. 

The Hamiltonian for the crystal is given by 

M = T + $ ( 5 . i ) 

where "J" = kinetic energy 

Here Jt s cell index, 

K - index for different atoms in each cell, 

rf. a x,y,z components, 

Mg H mass of K atom, and 

f£(v)s *C component of the momentum of the K 

atom in cell Jt . 

<p H potential energy 

where %( ) = the equilibrium position of atom H in cell / 

= x(£) + *(#) 



Here, t fi) *i,(*. + i a % + i 5 % , £M = l<A + Ki^+ K,% , and 

l^ij^2j^3j is the set of fundamental lattice translation 

vectors• \JL\ > ̂ 2 > ̂ 3 J is a set of integers, and fK^K- W3J 

is a set of non-integer numbers such that O ^ K,, Ĥ  > M 3 ̂  I 

^M tf) s "t^le displacement °^ Qtom K in cell Jt from 
its equilibrium position* 

Assuming that the ^(gj are small, we can expand (g 

in a Taylor series about its equilibrium position, whence 

£K* 

3l Ŝ TTw' t^(Jj5- £»)^(.i)«*'($)«*'(** 
JL'K'd' 

whe re d) = 0 j - constant, and hence can be neglected 
-̂6 jj_0 in the following work, 

t(i) = = c, 
z*=o 

since there is no net force on any atom, I or K , in the 

like, 

d«<(i)K($ 
f etc* 

tt=0 

Substitution of the above expressions for T and $ 

into Eq. (5.1) yields 

H = H0 + HA (5.2; 



where 

H = Zl P ^K) +-LZ. &Ju')uJ*)iu-(£)''aa 

" " *M* ;<*v 

H*= £, i fc-fc.^ft""-iK^)-^(iJ 
By translation symmetry of the crystal, 

le define the dynamical matrix as follows; 

z D-y (K?K'J = ^ ^ ^ ^ e"'* (5-3) 

where 4 = a vector in reciprocal space* 

It turns out that we need to find the eigenvectors 

and eigenvalues of the dynamical matrix, that is, we must 

solve the following set of equations; 

KW 

Here j s the branch index, 

U)*(f)s the square of the eigenfrequency of vector o 
J and branch index « , and 

^f-B the ̂  component of the corresponding 

eigenvector* 

Note that (*)*(%) = (***("$, (A)(i)lQ , and we use the 
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convention t* (K ?) = £^ ( K ~|) 

We now introduce the normal coordinate transformations. 

These are given by 

Note that r(t).P($ and Q*(J)"= 0("jfj • 

Then, substituting Eq* (5.5; into Eq* (5*2), and 

performing the usual operations, (Born and Huang (1954)), 

we get the following; 

f J 

H,--Z ^ - ^ ^ J » - 4 J " ) ^ ^ - W I D (5.7) 

where 

I 11 ecu J*/ 

and f 1, if <7=tO or Is a vector of reciprocal 

A(o)= ] lattice, 

0, otherwise• 



To apply the path integral formulation to the problems 

to be considered, we will need the Lagrangian of the system* 

Hamilton fs equations yield A / f 1 « ^ H _ D/~?1 • 

Here, we note that for every vector o in the sum over Q, , 

there is a corresponding vector -"<£ . 

The canonical relation between the Lagrangian and 

Hamiltonian yields 

= L 0 - U ^5-8> 

where ^ = i JL [fi(/JQ^J-^Q(j)^-J) J , 
V 

LA = HI 

We introduce the symbol A ̂  cLlr , noting that -~\~ ~9rW 

Then, we write Q(%r)=Q(^ Q^ Q f ?j = Q ^ ,and ^(|) = ^ = ^ 

An important property to note is that V \AD**<J **' 

is completely symmetric in its arguments A|,...jA* 

Thus, L^ is invariant under permutations of Pv J « 



6. The Method of Papadopolous 

tfe now introduce the method of Papadopolous (1969), 

which is used for evaluating the partition function z, and 

hence the Helmholtz free energy F, of an anharmonic crystal• 

We have to change the derivation slightly from that of 

Papadopolous, but the basic ideas used are the same* 

The Lagrangian of an anharmonic crystal is given by, 

Eq. (5.8), 

L A . £ ZLV"(X„..A)QV-QV 

(5.1) 
+ 00 

»«3 VOU 

For this Lagrangianf the density matrix of the system 

is given by, Eq* 13*35), 

Q(o>£ (6.?) 

where Jft [Q(s)}-WSt^(^ ®n& zi > a n d fa a r e t h e boundary 

coordinates* x# and hence, Q is a vector with the 

same number of components as there are different values 

of Ar . 

Jj'rom fiq. (3.32; , 

z= f^Xe^S) (6.3) 

where d%t-Tfo(f,^ and the i n t e g r a l extends over a l l possible 

values of A 
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As it stands, the path integral in Eq# (6#2) is not 

known to have a neat closed form solution* Hence, to get 

some meaningful results, an expansion (perturbation) 

procedure is used on the term exfe f - y L //q 

Formally expanding exb £-J L a n ? we obtain the 
o 

following; 

o 

A^A^A,, 0 

AA2A3 A¥AjA^ 

0 0 7 

- . . . (6.4) 

Substituting Eq# (6*4) into 3q* (6*2;, and then 

substituting this into Eq# (6*8) yields a linear combination 

of terms, a typical term of which that has to be evaluated% 

neglecting its coefficient, is of the form 

where fl^gfc,] = ̂ fgfc)] exj, [-!£ fh&&"#&]? ( 6 ' 5 > 



Js IQl^u represents the measure used for the "averaging*1 

process. Here, we note that it is of the same form as the 

Uhlenbeck-Ornstein measure, (Maheshwari (1975)). Further, 

we expect that the convergence behaviour of the above 

expansion will be the same as that of ordinary perturbation 

theory since we are developing the perturbation expansion 

via this method. 

From the Gaussian character of the measure, it follows 

\f...y* with an odd number of indices 

will contribute nothing to the expansion. That this is so 

will be sketched out in appendix 1. The way to evaluate 

the contributions from those terms with an even number 

of indices will become clear later on, and will be evaluated 

in later sections, (see sees* 7 and 8). 

He note an important property of the Ĵ i..,̂ * • As 

can be observed from Eq. (6.5), it follows that any 

permutation of the indices for a given variable Sc , say, 

will leave X** .\* unchanged. This will be important in 

simplifying the various terms of the expansion for Z. 

Combining the above results, we have 

(0 

X [Zl V Y U * A J W \ ^ V T ; , A ; J M + - " ]-••• (5.7) 



where 

-j 
(6.8) 

g the partition function for a system of 

non-interacting harmonic oscillators^ 

Instead of evaluating the separate terms of Eq. (6.7) 

using Eq. (6.5), we can more easily generate these terms 

employing a "source term"/^(Tarski ("1967)). Although we 

have followed Papadopolous (1969) and Tarski (1967) in the 

work presented in this thesis, the idea of introducing a 

"source term11 in quantum statistical physics problems was 

Introduced as early as 1951 by J. Schwinger. 

We will show a little later in this section that 

obtaining Z is formally equivalent to the knowledge of 

some generating functional. The procedure then is to 
— (n) 

evaluate the integrals L,. m . ̂  arising in Eq. (6.7), and 
A, * ̂  

explicitly given by Eq. (6.5j^by functional differentiation 

of the following generating functional, viz*, 

A 
G = jVj r#rgfc)W ^ lJsWQ4*>} (8.9) 

Then Eq. (6.5J can be expressed in the form 

At Am j A! Ap C ° £ 0 

s s s 
) SJ^(s)S^k) "si^J 

?«/>fffH*)<$ (6.10) 

J=0 
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with the help of r yj($)Q(s)cl$ ^ . > fj(s)Q(s)ds 

OTs) e J ' 

Since it is possible to perform the functional 

integrations over IQ^x^S > then the various functional 

differentiations, and finally the integrals over £scj f 

(Papadopolous (1969;), Eq. (6.10) can be expressed in the 

following form; 

_ G 

J=0 

(6.11) 

What remains left is to evaluate Eq. (6.9; which first 

requires the evaluation of the following path integral; 

=?w® ̂  f-# l&w^+*%c Wj< 6. 
where in obtaining Eq. (6.12), we have used Eq. (6.6). 

He suppose the Ar comoonent of ji can be written as 

fx-Xx^iMA ; JfAi/%A a r e r e a l # i^ince &(s)-Qjs), then §̂  - f̂  . 

Since Eq. (6.12) is a Gaussian path integral, we use 

the semiclassical or WKB method outlined in section 3 to 

evaluate Eq.. (6.12) T Hence, we have the following; 

y = f TV **LS\»\>{£**$*exp {-fClQjs)]} (6.13) 
\ w ; A Y 



where, 

This integral is to be evaluated along the path for which 

GL(s) is a solution of the following Euler-Lagrange 

equation; 

Solving Eq. (6.15), we obtain 

,S 

Substituting this expression into Eq. (6.14), and performing 

an integration by parts on the first term in the integrand, 

we obtain 

- JVs)ftL(s) -<*,£?i^ ^ J ^ W 

X^ r ^ ^ *r Q 

^ f ^rCrCv^Ui^^J-
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Ar 0 r ^ 

O o 

0 SL ^ ^r 

_ & 

~ 0&-s') smk [&~s'M^J 

* 

o 

' J4 fees*. &*«i,) - •f«h'1 (i/**«>JSihU&ujJ], 
o 
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° -2Q(s-s')si»l*[ts-s')K,%}'l 

where 

(*) = [ 5> 

From Eqs . ( 6 . 9 ) , ( 6 . 1 2 ) , ( 6 . 1 3 ) , and the above r e s u l t , 

we have 

(6 .16 ) 

vvhere 

2<v 
** ( 6 17 ) 

Note t h a t . , / i\ V / *\ 
> r - V 
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To further simplify the notation, let 

f 
*mmmm , j 

A 

Then, 

G 

(JXJ) = n Jk \Ad,> J 6) J . 6'; K» i' 6,s') 

= 2 e ( J l < J ) = 2 0 2 1 f j y j r (6.i8) 

Observe that the above method is systematic in 

evaluating the partition function because the problem is 

reduced to tedious, but straightforward integration and 

functional differentiation. Other consequences of this 

method will be discussed in later sections, (see sees* 7t 

8, and 9)* 



7. Interacting Einstein Oscillators 

•Ye will apply the method of Papadopolous to determine 

the free energy of the interacting Einstein oscillators, 

(Shukla and Muller (1971, 1972)). The system to be 

considered is a linear chain of N Interacting oscillators, 

each of mass m, and frequency CO m Periodic boundary 

conditions will be assumed• 

Let Up be the position coordinate of the ! oscillator* 

The Lagrangian of the system is then given by 

L = **•£. lit->»'<$)+ f«>*Lut%i > uj-v <7-u 
The normal coordinate transformation is given by 

I 
u» - — 2L. Tke ; f - ¥ , (7.2) 

Heret a is the equilibrium separation of two successive 

oscillators, and K is the wave number* Note that 

£ e « • » • " " . A u a + w 

Substituting Eq. (7.2) into Eq. (.7.1), and using Eq. 

(7.3), we get 

L = L 0 - L/j 
(7.4) 

where L6 =iiliku-^^Ul (7.5) 

) 



Performing the expansion of the term containing L^ in 

Eq. (6.2), which is given in Eq. (6.4), and using the 

notation of Eq. (6.7), #e obtain 

where 

ir ^ = z.&••• A.-£ ^ — c C J K 0 

( 7 . 7 ) 

Put Cfes'J£ v l / = Kkk'fes'^ fyk ^ s ) <7-8> 

(n) 
From the definition of JL. \J . observe that it is 

J & i — * n * 

necessary to only keep the Y\ term in the expansion of 

exb (̂ ^̂ / because all other terms will not contribute. 

Heref we use the fact that 
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The following definitions will be of use; 

'(• (i) Cn •=• fdsr- Î s» C(s„sJ<- C(s»-l9sJ CCs^s,) 

(ii) <!» = H C„ Lco2Cos(kd)T^r, C rf-k 
k 2n k 2" 

Substituting the expression for J-j,... f/ > a n d Eq. 

(7.6) into Eq. U i i ) , we obtain 

, _x r ^-* - ^ * (4 (4 g* ^ 6W 

1=1 
Ji.-vJ >6 

Note that 5r"'(r-/)! =(.2r-Z)\\ 3r*),2,... . 

We now give the following intuitive argument as to 

why Eq. (7.9) is true. 

First note that the factor JO! of (<TKJ/ cancels 

out for each particular sequence of functional 



differentiation that is performed* For example, if in 

a given sequence, one performs the operation o 

then 

Second, observe that on will be some combination of the 

f a r} r^ t . In the middle equality of Eq. (7*9), the H! 

of the operators j 6 I 

in the numerator accounts for all possible permutations 

_ This accounts for the 

fact that all such operators contribute equally to bm 

under £L_ • For a given sequence of functional 

differentiation^ the condition ZL-c/g-ft must be satisfied 
/=! J 

Here? U denotes the number of closed cycles of £ variables 

Tsr] > formed. An example of a closed cycle of x variable 

is CCS^J-'CCSJ^JJ- * C(s^IJ^)CGj^)m The variables [sr]r^ 

form a closed cycle because one starts at Sg $ goes through 

s %. #. % , and returns to Sf . From the definition of 

C ^ , Of is independent of the particular labels of the 

closed cycle of £ variables• Suppose for a given sequence 

of functional differentiation there are \r(zO) of the tfr . 

For each factor of (2r , there are (2r-2)ll #ays of pairing 



the r variables in the closed cycle. Further, one must 

divide by r{ to account for the degeneracies in the tnl 

permutations of the operators mentioned above. Hence, 

from these Jr Ctr, one gets a contribution (2r-2)!' j 

' 4 

This result must further be divided by Jr ! to account for 

the degeneracy in selecting the Jr ̂ r • This contribution 

is multiplied by the other factors in the particular 

sequence of functional differentiation which leads to the 

expression given in Eq. (7.9) • 

Substituting Eq* (iii; into Ea# (7.9; yields 

Hence, the Helmholtz free energy F, is given by 

1 B +*L ? (?• 

Using Eq. (7.9) Using Eq. (7.9) 

\r=) Y)r-0 "r- r 

= exf £ £ V a' 
The second equality can be verified by multiplication and 

rearrangement of the terms• 

Using the above result, Eq* (7*11) becomes 
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F = - k 8 T ^ Z 0 - f c g T Z I ?^Qh (7.12) 

Our task is now to evaluate Qu . From the definition 

in Eq. (ii;, it follows that to get Q^ , Cb must be 

evaluated. In evaluating CK , the following integral must 

be evaluated; 

A = | du C(w,u) Cia./ir) (7.13; 

where, by Eq. t7.8), 

Let °Z = ̂ a ^ a ^ jr X= / t r^ f and /u-WZ . Then, 

- - J - [c©3k (x +^ -2A) +cosk(*+f)]j 

* [©6tr-w) - Q(W-AT)] (AT-W) Cosk (f-*) ] 

+ £ - 4 - CGî */) 
Let 

Then, 

SIVIJI (a) •? ^ 
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Note that _̂_ £ (#- w) = -JL D 

In general, for n i 2 , we have 

(7.14) 

= a ) ft,... fJLc(spsj...c6^U(^ -A)c^s.) 

(7.15) 

and in particular 

C, =ps,C&0s.) = ^-Lc^(%-) 
to 

Repeating the procedure as in Eq. (7.15), we obtain 

'"' n-l 
Cn (to) JI i * n-lJ^J0* 

Let F 0 ^ - k 6 T i K , 2 0 , and \ {= ~ ^ C 6 s W - Then Eq. (7 .12 ) 

(7 .16) 

becomes 

F = 

(7 .17 ) 



-foO 

For 0<lxl<TT , Con (x) = n j L l B^X*""' 

Here, L^hj is the set of Bernoulli numbers, (Arfken (1970)). 

Substituting for co+k(x) ±n terms of [SWJ into Eq. (7.17), 

and assuming that the interchange of summation and 

differentiation is allowed, Eq. (7.17) becomes 

k hsM r=o h (yr)i ^ !• IA — i **• — /»* lO 

(7.18) 

H-l 

Put ~" X , - M (- ~r-?-}'2 • It can be shown in a 

straightforward manner, using induction, that for jo='>S«-*^ 

Noting the above relations, Eq* (7.18) becomes 

F = F 0 + ̂  z £ 2- HT' (avi)" 2 &- /S*-*. 

(n-l)! L*=' 
[JT- w-a.)] 

£ i / .XM-I = F0 + -Lz:z:(ii)r7^)" 

+ 
/? T M r«M 2r v n / (2 
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= F0 . - L l l i . r O ^ ^ J 

1 0 

" -i„ (£) + Z [^ (/^^J^j^^L- g. 

£ &•) 
2r o5i^ 

(2r)[(2r) 
E. ̂
r 

J-z [ i^2 +j?»fsfa(4p;j+i»f»mfc('^/-Aff,«i^J 

j TL4nl2z;»u(±/g*ujk)] (7*19) 

where in obtaining Eq* (7.19), we have substituted explicitly 

for Hb $ (the free energy of the individual Einstein 

oscillator), and the dispersion relation CO. = co Z [ I - cos (kd)J* 

There are two points to be made about Eq# 17.19). 

First, this is the expression one exoects for the free 

energy of the system under consideration, (Shukla and 
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Muller (1971, 1972))* Second, the expansion used In 

expanding COiK (§3) ^s valid for only a limited range 

°^ ^g • To extend this, one #ould have to find 
2 

expansions for COTH |E5) that are valid in other ranges, 

and then follow through with basically the same manipulations, 

The final result obtained #ould however be the same. 
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8. Helmholtz Free Energy of an Anharmonic Crystal to 0{\) 

In this section, we use the method of Papadopolous 

to derive the Helmholtz free energy F, to 0(A ), for an 

anharmonic crystal, where A is the usual Van Hove 

ordering parameter* rfe will also point out the close 

relationship between the process of functional differentiation 

and the corresponding Feynman diagrams* However, we note 

that this procedure of evaluating F can be carried out 

without a priori knowledge of any Feynman diagrams. 

Another feature of this calculation is that the direct 

temperature space integration procedure is used, 

(Papadopolous (1969), Barron and Klein (1974)), as opposed 

to performing the calculations in Fourier space, (Shukla 

and Cowley (1971)). 

It is useful to introduce the following notation* 

L e t .(*> -,-(*> 

Z0XX;..X;V-X? - ^ ^ . . ^ A ? - - ^ (8.1) 

,(w) 
#here X y .. . \" is defined in Eq# (6.5). The reason 

we do this Is that the generator G? , defined in Eq^ 

(6.18), contains a factor 2:0 

Now we can enumerate "all11 the contributions to JL 

of 0(A) . They arise from the combination of Vj 5 /^Vr 

terms in the Lagrangian, and a separate term from V^ 

In increasing order of complexity, the various terms can 

be symbolically written down as; VQ (I) s *3 "~ vr ^ ^ 



V V , (3), V3-VS-VM ("7) . and 1/3"V3-V3-V3 (8), 

#here the numbers in the parantheses give the number of 

terms in each combination. The evaluation of each of them 

requires the knowledge of Xy...,\E m Following the 

procedure of section 7, Xy«..^£ can be obtained^ 

From Eq* (6.7), to 0(X)$ the partition function is 

given by 

2 = 2 0 [ I - 2 L . V«(A„...,A,)C.A, 

A***AG 

+4 ]T_ Vr(V.-A) v ^ A A ) ^ . . . ^ . . . * , 

Note that the anharmonic coefficient V (AM.»vAi/ is of 

0(Xn ) . To avoid any confusion in the notation used here, 
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ve recall that A r s frjr 

The following definition will be of use. 

« 3 ^ , 
( 8 . 3 ) 

X 

where 

where, using the de f in i t i on of K^ ' ( s , s9 g-iven in Sq. 

( 6 . 1 7 ) , 

q (Ar> s-s') = cciU (i/BK^Ar) CosU[(s-s')K<%} 

-e(s-s') sinWl(s-s')kc*>irj 

- © (s-s ) si» k [&'-s) £ " A J 

= ZL <*NA («*) exf> [ Is-s 'U £*%] 

An important property of QiXr^^) to note is that 

g(Ao T+^) =g(Ar, T) ^ - / < T < 0 

In the following calculations, one can use the properties 

of v (Xn-')Am) mentioned in section 5, and the properties 

of o(Ar3s-~s/ mentioned above, to make some simplifications. 

To simplify the notation, let 



The three terms of 0(\) are quite simple to generate., 

They can be symbolically written down as; Vq 0/ ,and 

V%~ Mi (̂' m ^e w i H write down their contributions to 

Z first. 

We will set up the evaluation of the various terms 

in the following manner. He put down a heading to indicate 

#hich symbolical terms are to be evaluated. Then, under 

each heading #e write down the various terms to be 

evaluated, and the final result which is valid for all 

temperatures. 

(1) Contributions from % (l) 

= 3 ^/"(>AAA> (*)1J_ f ^ M j M 

(II) Contributions from V3 - Vj (2J 

fit*,***! -J-VUU,>VUAA)CAJ;A,AA 

(a) ^wa= z : v3a,AA) ^ ( A ^ A J ^ K«K*h-<>' 

* J 
O O 

J"&, fd^ P A , 0 D*CS,A) %(*.,*») 
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= <o£7L VHWA) VH-\„-kr^) (f)3(f-) 
OOt^iOj. 

(n^l)(^+OC^) - ^ , ^ ^ 3 
I CO. + CO, + 

•4-

A ' ^ 3 

+ * 
A (Kia+D(w3+!) - (w.+Ow^^ 

6 0 ^ +• OJ>3 - C O , 

(b) fi\J? 

K-\ 
VHXXX) VH\HXAJ q £.,&_< £ 

w ^ v * w^-t 

ps.f^D.a.sJD.^sJq.^sj 
O O 

= <ty? ZL m , - U 3 ) ^ A A ^ ( | ) 2 I 

W f 
6t>, 6C3 C0r 

(III) Contributions from V ^ O 

CO *V/q - 2L V(A ; t ) ^ 

A 

\ - \ 

VH\,...X) ^K, §.-r *U J A D.^s) ZĴ s) Z^J 

- m ZL V 4 A,AVAA-\ ) (§)3_L__ ^ M ^ n ^ f r , , ^ 

(IV) C o n t r i b u t i o n s from V3 — V̂ r (*0 

a) 
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(a) /?ws- = ZL Vr(A()...,v) vn\AAg) H<T ^ g ^ £ ^ , 

" J e/s, J </s, 0,&UO D ^ s . ) £6, ,^) ^7(s,^) 
o o 

(b) 0W6 = ZL \/r(A,,..,V) V3(A,AA) 60 S,„6 S^7 ^ ^ 
A,"*^o 

* A , J ^ Qfc,A> D«A>SJ 036(J5j ^ r ^ s j 
0 o 

U)iWiCC^U)H to, + coz + cos 

+ 
"O ' ti*<^''3 "~" ^ -^ i 

(V) C o n t r i b u t i o n s from V^ - V ^ ( 5 ) 

V-A, 

A,-Aj 

A fVs4 °i k,*.) Djs0st) Qr^sJ D4^,sJ 
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°lf? ZL__ V(U,rVAJ WA^A^-Ar,-^) 
AtA^A^A^ 

I 
to, to4 tO j - t^ 

(<2»,4l) (L?na+0 ft«r+l) l2*L+0 

(b) ^W3 = Z L V«(A,,-A)VYA^A,) 72 ^ . r S ^ ^ ^ 

fc/s, /Vs. D/s,̂ ) Q^VJ 0,6,,*,) V ^ j 
o o 

0>, dUj OL ^ 

"T 0 ) 
+• * > w} ±coz 

UJX +(X>± « * - * > / 
( * ) 

f n i 4 i ) •+/* "i (*, + /) , "i="* 

ic) /*W, = 2L„ V"(A,,-A) VYA„..,A,) ^ *,,.*• S * - A A * 

- fas, fan DAO ££fe,o DAA) a.6.^ 

(-a) * ^ * a . ^ 3 ^ 

o;f a^ tu34/^ €£,^^=±1 (al + o^ -f # j + ^ J 
NtN2N3N, 
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) C o n t r i b u t i o n s from- V3 - V3 V«j { 1) 

fi [ w l o 4 wtl + w(a 4 w n 4 wIH 4 w ^ + y / 6 J 

= ZL VH\X\) va-xx) vva7,~AJ x£\ 
A,-A,e

 A"H;>A\;A7-A,6 

£ W10 = ZL V5(A,AA> V*(A„A^AJ VYV. .AJ * 
A,* - A , 6 

" j 4 , f 4 f V D, Cs,^,) D3 6,,%) DS^A) 0,6,%) D / V J ) 
O O 0 

\)*2*5'"l\ 

( * ) ' O^O^O^^ &£ 
f 5n, + 0 ^ r - f 0 O»7 + 0 C^WJ (LL-) 

/SWH = VUAA) V3&*AA) va7J-.AJ 
A,-> to 

2\(o %lrZ £3>-^ *Sri \ r s \-<o 

cf, rA //. 
_ ^ , ( 4 | 4 Dl(s135I)D36l,^)£!r^A)066i,s>)^rj,J^J 
O O O 

= < 2 / 6 / ? Z _ V3(A0-A„A5) V Y - A ^ A ) ^ K r A , A A > 

fi)r / 

^ tu3 a; rto6o4 
(*..+/;^+O(4)^JT^ 
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(c) /2wu = ZL VH\xx) V'O^XxW&t-X.)' 
A|"*% A | 5 

- 108 ^i^Z <^~7 ^ - 6 ^*W ^"iO " 

* fcfc j^s, fdh PMA) 03(SlJs3) D^s,) D^Cs^D^) 
O o o 

= /O £/? r V3(^X^)^(^s>X) V(Xr>*Xr>,)< 
^l^tAti^A ^ / v f ^ k j 

* > ^ I (I) 60,0^64,0^61^ 
^ ' ^ K ^ f e j M 

( d ) 
Ar**A|0 

* W*4 St>-z £3,-7 ^ - * ^ - 1 \~'a * 

fas, fdh ph 0AA> D A 0 ^ - ^ ^ ^ 3 D* ^ 

VHXh~\X vsX X> A*) vH(X>XXX> 

o o o 

= ntp 
A i A-. A41 AcAi 

M5" I (I) 2 7 60, 6U3 WHW^O)^ (>«"> ( £ ) (*) 

(e) /sw* - ZL V 3 ( \ A ^ ) l/30,,A^AJ VYA„...J,J* 
A"'Ai0 

O 0 
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n^ ^ _ V3CU„ A3) V
3(~KXX) V&XXV; 

•K\jr (I) ^ w£ W3 6t>7 6Uf 

Ĉ n7 + / K ^ + ' ) (-

( ^ 4 L L 7 ^ I L « f c + " * - " . J 
^ r w 3 

(f) ,8 W,r = ZL. V'(KK,^ V!(A„AA) v ! a„- , -U ' 

A,—A # 0 

' .2/C £,,-., ^ - . r K-7 &<>,-) %1,-IC " 

o o o 

= 5/6/? ZI V20,AA) v ^ A „ A A ) ^ A A A r V 
A ^ A J \ \ 

(ir ' te»vl) » 
£0,0^ COs 6t^ O^ 

*WH (O, + <L+Q3) I hC-

4 (^N^N.N^N^-NJ 
(a,-a, -a J 

T, eo 
3,6 > a 3 «± * 4 ( * * ) 
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(g ) |gwl6 = Z L V*U,A,A3) VYA^A.AJ V«ftw...,A,J* 

A«-At0 

* 2/6 ^ ^_7 SM ^ - A - ' * * 

O O 0 

,2 / 
o{, d^ d^ eCg- ol^ 

UJ.W^CV^ ^ ^ ^ ± 1 (as. + q - q ) 

* J (H3+0 (^ + 0(Ns + Nc+\) ~ (Nf + 0 (NG+)) (N3+N,+)) 

(VII) C o n t r i b u t i o n s from V3 - V3 - V3 - V3 I # ) 

= XL. V'UAA^UA) VU^V VUAO <C , n n n n 
1 " a 

( a ) /?wj7 = IL. vaxx) v3XXX) v3(\,xx> *3&»XX)* 

x IHI Slri Sh^ SSr& S7r8 £Vlo ?„,.« 
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2 4 3 Bx ?~ - V3(A„A>j) V'(XX>X)* 

V2(A7A>V^V«A) (~) ~ 603 O^ to? CO* W,t 

( b ) ^^ 8 = H _ VVAXW VU,^A) VYA„VV VY-WUj* 

A^** A J a 

» 3 ^ S,,.., ^ .„ ^,-4 S7,-/0 ^«,-» V " ' 

o O 

ztogW^toq 

\ f t « , / \ f t / 6 77;—rr:—~~~: + 

4 3 [n7 fag + l)(».+!) -(n7+l)n8ni 
* UJQ +• CO* - tV7 •}} 

- £^HH^1A/ 3) 
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£ W „ « Z L . V3(A1,AajA3)V3(A,>A^Afe)V3(A7A,\)V3a/aMA,a)» 

• 108 &,,.«£i,-s K-X-«> &*,->< K->*" 

= 102/g* Z VttAA) VY-A,,-^,)* 
A|A4AjA7A^A^ 

V3(A7>A„A,)l/8f-A7ArA,) ( f 
6 / 

to,&9(V3u>7cqu> 

y) J ( M , + 0 ^ 4 / ) ^ , 4 / ) - M | ^ , « , , T / ,,V A / A 1 

* / / — - __!_!_? 4 3 h» (wlm+v--(n,+uw31 
i*4?, -a;, 

^7 ^ ^ 46Ĉ  *• (*%+(*)- -co7 •* J 

= 3 (^Wa)' 

£wao = ZL. v3aAA)yYA,AA)vUAA}^aa,)* 
' A * A 

* 194^ £fj_x S3rH SSrl Sc_2 ^rl0 £ilt„u * 

rfi rf «/3 ffi 

* j ds,) d^ld^jds, 0, fr„0/UW^^6*$) QG^fc,** 
o o 0 O 

= mip I L _ _ WVAoA3) vH:V;6) * 
AiA3 A^A^ AQ An 

UJlV0i(X>s00i>COClO)i) 
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( > " » < " * » & : ) & ) ( $ ) < 

CO 

( e ) SW„ - ZL- V3(A,AA)VYA„As>\)V3(A7JAfA^3^ ĴA)a)^ 

A — A 

' 6 ^ K-* k-H SS,-1 K->0 ̂ ,- , $•.-« * 

#1 S» 4 i O 0 o o 

= (o12 p z 
l*3*S /fc *g*H 

V3fA,rA,A) VY-A3 AA> 

VY-Ar>W v3(xXA,)( *\<° —1 
. 2 / colco3CA)s.co6(vga)„ 

(2*.+Ol*v»(>*.+0(*)(£.t 
i€V* 

(f) £Waa= EL„ V3(AAA^ V3(A,AAJ V ^ A A ^ f t u A A ) ' 

* 3282 S,,-j, S3,-* ̂ ,-7 ^,-.o K- K-» " 

fa, fa fa.fa 0, (s„s.) 46,A) 0. (h,',) D« &, A> D,(s^) D<,(s„s«) 
0 o o o 

= 3282 fi TL 
A| ^3 A^ A^ Aft AQ 

V 3 ( A „ - U 3 ) ^ K A A ) * 

—. X 

^•+ , ) (£ •fE. 5" * & J? ^ ^ 

•a' l i^^i/ (̂ 4^4 )̂ 
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[(N,+N,• i) T £ - (jVV^7i!i/V^ /1 

(g) $*& = ZL- VYA.A.^V'^A^V'^^rV^^AA,-)* 

* W £, ., ^ V̂7 ̂ T'« V " V« X 

Jl f<4 U> f̂  « W'& '*} ^ > ^ w v ^ ^ * ; 
/n A -^ -< 
0 o o o 

= i<^/si: 
^'A^AjA^AjA^ 

V3a,AaA,) VYA.AA*)* 

^ , W ^-WA,) ^ j * i 6 i 
W, ^ 6 0 3 ^ 6 ^ ^ 

rf, ofa ^ ^ ^ ^ 

f (Nt + N1l + 0[(Nl + ))(NJL+ONi-N,HJi(N(t + ))'] 

(«i-Q>-<*J 
__ 4 

+ N ; A / a ( ^ 4 l ) ( A i 9 4 / ) - ( 'A / l 4 / ) (A i i 4 / )^M < ? 

. . ,—____ _ + 

+ (N,4N^/)CA/3^4/)(A/<?4Q-(AI34/)^^] 

4 ^ , 4 ^ 4 0 ( ^ 4 ^ 4 / ) T3^ J 

4-
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V3(A,)Aa,X3) V
3 (^AA)V J (U>V ^YA.OA.AJ* 

x \2<=\(o £,,-« £,,-7 £3,-/0 £$>* ^6,-1/ &%-ia 

fds, fds, fdh |4« P / W P/sM%) D,60S,; £6,,*) (* (%,*») D^s,) 
o o o 0 

tt?£/3ZL. vs(\xx)y'(xxx)' 
A ^ 3̂ 5~\ Â  

z: ^ ^ ^ [Y+Y^Y+Y^Y^YJ 

*î 9 

"1 ' "% "3 

X = (N^O ^Ns(N^j) - Nl(i4z + ))(Ns-+l)N<i 

yA - (N^-N^) [(N. + DNrNi -N, (Ns + I)(fil6+I)] 

Cfl 44Q f-Q 9)fQ,-O r-0 6) 

y = (XE-N5) £(N,+I)(NA+I) n3 - /v, w / ) ] 

Y, = niH,(N,+0(H„ + i)-(N]+i)(H:i+i)N,N< ,tuu^+iy / v 4 / v 9 

fa f % ~a9 ) fa + V^ ~ V 



X, = (^+^+0 [(M, + /)(Al1+l)M3-A/IAlâ j+l)] 

fa+^-QaK^-^a^aJ 

The Helmholtz free energy F, is given by 

F = - kj Jn i. 
If in 2q.- (8*2), we write Z = ^ o W + v , where 2ij is the 

contribution to zfL from the anharmonic terms, then 

p = -kBTAZ.0 - kBT A( 1+1,) (8.4) 

For perturbation theory to be of any use, Iz:,/* I . 

Hence? we can expand In (/-H2^ in a Taylor series and keep 

all terms that contribute to F to 0(X*) . Substituting 

the above derived expressions for Xv« \n into 3q# 
A, - • Ap 

( 8 * 2 ) , we o b t a i n 

-k,T A 0*2,) = - ^ 2 tiT'zr 

- J . [ w,7 +K, + W, + ^+v^, ^ „ f ^ 3 4 ^ j ? + 



+ f [w, - ^ r w a + w 3 7 f (*> OM) 

= v̂  - j-rwa+vi/3] 4-wH-fwr4wj -irwg4u/?]4 

-± [WA0 + Wai +W^4V^J4-^] (8.5) 
a* 

From JJq. (6.8), - J_ ̂ M £ 0 = -L £ in [^^ (*/**%)] <8*6> 
Is r K 

The free energy is given by Eqs. (8.4), (8.5), and (8.6). 

Observe that to 0 (A**) , there are no contributions 

from the terms W 7 , W/0 3 W,H > Wn, W,g , and WJ9 because 

of cancellation. 

If every atom of the crystal is a centre of inversion 

symmetry, the contributions from W3, Ws, W„ PWl:i} Wl%> Wi0} W2lf 

and Wj a are zero. This follows from the symmetry prooerties 

of V"(A„... ,AJ » (Shukla and Kuller (1970)). 

Shukla and Cowley (1971) have evaluated the 

contributions to F to 00?) from W,, W,, W ^ Wfe , WgiWq,W,s, 

W|fe > W?3 ' &n^ ^-*t ^n Fourier space. To make a 

comparison of the results obtained here with their results, 

one has to try to match the various Ai symbols, and 

remember that the coefficient W A o - - >X) does not 

:tor F ft" lz. 
LJ»LD. •- • CO* J 

contain the factor F ft Ja. We have made the 



comparisons for most terms and they agree• It should 

also be noted that the results of Papadopolous (1969), 

to OlA/, appear quite different from the results obtained 

here? but if one further simplifies his results they will 

reduce to the results obtained here* 

The various seouences of functional differentiations 

arising in the evaluation of Wp-^H«# can be described 

in the form of Feynman diagrams* Recall from Eqs* (6.11) , 

(6.18), and (8*1)f 

%X;A^; 
ft A _£_ . . J _ J _ J _ e

OTJJ| 

As can be observed from the above equation there must be 

an even number of A»S # Draw a dot for each of the 

different variables of integration* The number of dots 

equals the number of anharmonic coefficients* One must 

perform-the functional differentiations in pairs, since 

SJx*(h)£fy($ 
Draw a line joining \ to Sk) • Continue in this manner 

till all differentiations are done* For the diagrams 

representing W, ^^3 Wj M $ 3ee fig# 2^ 

As a final note, we present some general methods of 

evaluating certain types of integrals which arise in the 

evaluation of W|>~v^w^in appendix 2* In apoendix 3, 
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we indicate some of the necessary steps to get the high 

and zero temperature results without having to perform 

a full calculation* 
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Figure 2: All diagrams relating to the functional 

differentiation in the derivation of the 

Helmholtz free energy to OiX4) 
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9. The Debye-«teller Factor to 0(Aa) and Off!<f¥) 

As a further example of the use of the method of 

Papadopolous, we evaluate the enharmonic contributions 

to the Debye-Waller factor to 0(\z) and OClKl^), (this 

will be defined later), for all temperatures* 

For theoretical calculations of scattering intensities 

from x-ray or neutron scattering, etc., the averages needed 

differ from those of the free energy* //hen one calculates 

the intensities, the Debye-Waller factor enters• From the 

viewpoint of perturbation theory, one must determine what 

one wants to use as a perturbation parameter in the 

evaluation of the Debye-Waller factor* One can use the 

scattering vector K , or the Yan Hove ordering parameter 

A f or both. In the work presented in this thesis, we 

do the expansions to OQfy because this gives the lowest 

non-zero anharmonic contributions to the Debye-tfaller 

factor, and to 0(lM because the terms of O O K F ) and O(iHP) 

are of 0(Aa) • The terms of 0(1*1*) and 0 ( l ^ provide 

the temperature dependences of 0{Ta) and O O v , 

respectively, in the high temperature limit. 

Maradudin and Flinn (1963) have evaluated these 

anharmonic contributions in the classical (high temperature) 

limit. We will use their notation and evaluate the 

contributions that they evaluated to the Debye-Waller factor* 

We then show that in the high temperature limit, our results 

reduce to their results* 



In evaluating the expression for the observed intensity 

of x-rays scattered by the crystal, we must evaluate the 

following thermal average, (Maradudin and Flinn (1963)), 

/ ilt-ruW-ulfil) -rt 
\ g /, where K is the scattering vector, and 

UiMjj UiMJ are the usual displacements of the atoms from 

their equilibrium positions in a monatomic lattice. 

Introducing the eigenvector Fourier representation 

of iX(Jc) , and noting that GL =7TFU $ where K is the 

same as in Maradudin and Flinn (1963), we have 

uji) = rLr ZL ejfrjr) Q(tjr) e'^W 

Jim fa ' fJ 

The Lagrangian to OCA/ is given by 

where 

A r 

^ (fx+p§%--X)Qx, Q>A3Q>, (9.3) + ' 
jWM x-X 7 ^ H 

Further, K - f ^ - S ^ J ^ Z l W ^ 5<here ^=Q A /0) ) (9-4) 



where CO) = rk'ml \e^®-SrXU,)] 

Then, by arguments given in section 3, 

/ iK>im)-um\ a / e ^x-c(Ar)Qv\ 

=iR?e^I)e^cw^ (9.5) 

where Pljf>?) is the density matrix and z: is the partition 

function of the system. 

In evaluating the partition function 2L , we are 

essentially evaluating \ I / , save for the normalizing 

factor, which happens to be *£. *• In the method of 

Papadopolous, we used a source term in evaluating 2f- * 

The source term was essentially an exponential function 

whose argument was linear in Q\ • Now, we wish to calculate 

\€ ** /• The argument of the exponential function is 

again linear in ^Ar• fe again will derive a generator 

for calculating \€ /s but with some manipulations, 

one can avoid extra work* 

The generator we have found in this case is; 

E = J die ^ v Gr (9.6) 

where 

sffl=i "a - l a s , (s)]] 



8? 

The following operations performed will be purely 

formal. The only justification given will be that the 

final results make sense. 

fe make the following definition. Let 

Px(s) = Jv(s) + i S(s)C(Xr) 

where oCS; is the Dirac delta function. We use the 

property that J c(s) <xS ~ I m To be more mathematically 
0 

precise, we should use 0(^~~d) for d —•> 0 > O^^^p. 

Then, 

~ ? 

Zc exf> [ I I fa J&' P^Py/s') KXX(V') 
A^A^ O 0 

v A r Ar 0 O 

*ex̂  [21 f^f^6)^69Kw ;^ ' ) ] . 

x ex b fz ZL ]% [ j ; (s)C(X'r) KxXUp) +<£«C A) ^ & , ) # 
( 9 . 7 ) 
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Let 

= ex^ [ - Z. ±- c©+>. (a/**«%) CO>rK(X)} 
r Ar 

= e*b [-_*_ ZL_L c o + ^ i ^ ^ ) mMUii-UVl-

<(l-C0s[j.(5tW~x(f))])] (9.8) 

-. / /zccyQ \ . 
~" \ C / ' (^tie harmonic average) 

r L fim K ^ * 
Ar 

*[/- cos Ofcttw -tern)}} 
which is the high temperature (classical) limit. 

Furtherf 

; L fds [JArfe)Ca;) KxXU,o) + M C W t<KK(o,s)] 
XK ° 

- i ZL C(K) fds JKU) K A M + K^fes)] 
AX o 

= ? z: c (x) fds J^s) DV&O; ( 9 .9) 
Ar o 

S j (I/J/ , ( 0 is the ordering parameter for K ) 
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= ZL ?C(A) (0J)A 

Let (JKT) - IL fa fds'JAG)JK0 «xX(sX) 
AA ° ° r 

as in sect ion 6. 

Then> £ = A 2 . o ex^[K^+(Cr/<JjJ (9.10) 

Observe that to generate the various terms in the 

perturbation expansion of the numerator and denominator 

of Eq. (9.5), we employ the method of functional 

differentiation of the source term for the functionals 

E and G , respectively, and then set it equal to zero as 

was done in section 6. 

Hence, to 0(X ) , 

\ 6 / ~ DEN ( 9 .1D 

NUM = AZ0V ~{Y, V ^ w C - f / ^ W C ^ 

4 J. ZL V'XKXJV^-XX) C>3^AA i 
^' A,—A^ J 

PEN =ZC I I - Z l V U . V X ^ ^ ^ V U ^ p m A V X ^ f 

where fy...^* is defined by Eq. (8.1), and r\̂ «.~)& 

is obtained in the same manner as Ay_\ri
 f but we use 

E as a generator instead of G. 
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In the following, we will indicate the various terms 

to be evaluated in 3q. (9.11), evaluate them for the finite 

temperature case, and then take the high temperature limit 

of the various terms. We use the notation of section 8. 

First, we examine the two terms in the denominator, 

(see s e c . 8 ) , v i z . , 
0) 

(i) Y, = ZL v M \ , , - A ) > C a , 
^\,<r_ Â  fa—Si— &£? 

(ii) \ = ZL r(KKX)VKKXX^Kt3^x 

= ix vsa,xK)v3(x^^ * 
ArA 

A rA S3 S2 (JKT)* ( ds, jd$z 
o r'H,(s,)Hfi)SW s-j,«o^)S\w 3 

Now, we examine the numerator where we note that, 
n(0 

for example, K^ \ x can be written in the following 

functional differentiation and integration form. 

(i) (o . rf, s* zxuxn+vnet)-} 
W A " i S Hi)SJxjs)Ssij(s)

 e JO 

Expanding the exponential in a Taylor series, we find that 

the terms that give a non-trivial contribution are 

(JKJ)X(DJ) + I3 CD J)3 

31 
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Hence, 

til - f* crmr ,crn hDr)(J^X^(^3j 

( i ) S, = ZL VGAA.) Pys _£ 
A A A J ^~" Sl(s)Slx(s)SJx($) 

A Az 4 j 

X(DJ)(CTK3) 
V * ' ovyA3 

A/h^fi. 
yHKKX) 3[iC(Xl^-3 j ds Djsts) D,(s,o) 

3? Zl VH\XX)C(X Pn,4l) ( 2 ) 

2NJM Aaj 

- 0 

^ 3(DJ-; : 

^ I A J A ^ o ^ & ) SJlk)STs(s) 3! 

= Z7 VVU,A) r»'Cf-Ajjr»Cftl)]riCfV]" 

= - J ZL §* (>.,,KX) Afy+pp n?-«-vj rK-t<-v) 

[lee-Vile ?' -e '* lie ' e ' J 

£M*AP A.AA 

£ )s l r -«?_*<« -i'f_*ff>7 f ^ ) 3 —L_ 
6tL 
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Expanding the exponential in a Taylor series, we find that 

the terms that give a non-trivial contribution are 

(I!LLL? + £(DT)*(J'K?) + -faW 
-2! 21 ^' 

Hence, 

ID 5 =ZL V"a A) f̂ c —Si <£H25= Y 

( i i ' S, = ZL V(X-X)fas crnlrnrmw | W » w ) 
A,--A^ o dJjXsJ^ l6J£56)aJ4|W 5{ 

A,-AM 
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fdsD^O) PAfeO) D.C^s) 

i I = - 6 IL. VAAAA) cr-Af>c^ (A)1 ^ u>, 

I • '^^73 . W A 

r a) + 
nr4K)r ; 4 ) 

wr +cor 
> tvr±U)ri ^ ( # ) 

/^n r6v4l) + ^ ( » r + i:) ' U)r-tVr J 

Su CT*+-o) = n_L 

( i i i ) S r = 
A , - A , 

v^A.-A) | ^ ^ * • 

o sa;(s)^)^6)H^ w 
L*(M>' 
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= Z7 v a . - . A J tiC<-x.)l[iC(-\i)]UC(-X,tiUC(-U]* 
Ai* **At| 

X 

0 

(p...*pr(K>Mtr<-m')]I*'m>)]' 
2^HlMz A,-As 

$S-(TT+.©) = i ZL *&+.••+&) $¥(V~A)* 

~ ^ " « * * 6 0 / ^ ^ 

* [ e " ^ ~ e"**^ f^'m ~e'f-ml 

( I I I ) RA1>3AAA " I ^ M 

TXCDT) + (JKV] j 

Expanding the exponential in a Taylor series, we find that 
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the terms that give a non-trivial contribution, to Ouj, 

are . , 
( J K J T ^ y^(D£)a (£H; a 4- r (211* (J«J) 

3! 21 zl. ^ 

Hence, 

Kx^iKXX 30
as-J0 * SWSTjsJSJA') &X^WR& 

k f {JKJ)3
 + y* (PT)A(J-KJ-)A 1T'(DJ),,(JKT)1 

6 VA, 
(i) S, = ZL V 3 a , A A ^ s ^ A A ^ * 

J «fe, ] dh 

(ii) s 7 4S ? +S. = ZL v*a,X*3) v3XXX>* 
A ~ . \ 

v r^s r^s — £ i __ - A ! — _ _ frbxn'aiaft 

(a) s7 = IL_ V3AAA) V*AAA) /* faCCAJr̂ A)] S ^ - 6 
Ar**A^ 

A A p - ( s » o ) D*(s»o) Ds(s,'Si) Dr<s»Si) X 

O o 
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--L ZL_ f 3ff.J.,-|,>>%) r^A.-A,) • 

C« r ' (*t+o /-2 ) (£)"if -, 

= o i*ty..-?jA) = ° since every 

atom is a centre of inversion 
symmetry• 

it) S, = ZL VH\XX)V3(KXX)is[!C(X]UaX]£^t* 

o o 

= -_i 
/4 4 &+£+£) SYfrAA) ^f-f^ArU 

[V. •e(-y,)llH-t(fM)] [ j - cos fyfSW-tWlfl 

y a ' v(f,i, 
°*\ ^ A ^ 3 ^H 

X 

4 

— - — — _ , X Z>— —. — — ~ ~ r ^ ^ ^ ^ X 

U„ <^f,jJ - < " i - <*,">, 7 J 
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(A) 

Ar X 
Nr X) - Nr)A,) 

j * n 6CU £ ^ r ^ 
( * * ) 

^Nr^)[NXr)+0 XrX^^Wr 

N * r £j'><A 

Sq = IX VHxxX)V3XXX)^bm)]Uc(xl^ Ac 
A,-A J~* 

1&, # * ^ i f t ^ ^ ^ o j q^s . ) DsX>sJ 
o o 

- 0 (since <£i > £<* a r e @ a c h zero or a vector 
of reciprocal lattice, whence C&X^-CH^^O) 

> S l o + S „ = Z L v ' a , A A ) v 3 A A A ) * 

S A \d 'XH(®HCM 

Slo = ZL- V2(>XX) V 3 A A A ) 6 [iCC-XJlbCtyh 

JV^AW'^-VJ ^ * 
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^,fdsa D.6,,0) DJs„0) %(s„0) D^Xfi) Or(^sJ 
o o 

(b) 

(since CL, is zero or a vector of reciprocal 
lattice, whence C(r\4)*Q) 

S„ = IL. V3aA.A,)VJAA-,AJ °l[iC(X)]\iC(X^< 

*[iC(X)niC(X)l s3j.c-

x fas, A Q ^ 0 ) °^>0) °«(s»0) D^'0) D>(,»0 
o o 

=Ar, FT
 ACPvP*(f*+f*-p £2^AA)-

«<?AA,A) n?-?a)]ri?'?cA)]ri?-?A)]r»?-?A)> 

*, i f i E < « ^ 3 0̂ 4 ^ r 

x f i l l 

* f P**0 f 'VO ^ A f A - (A/., 4 Q fo/f 4J) (N,+NA+I) 

- CA/^^4QCN,/M^- N,/M3-NaA/3-Ai3] ? 

(a, 4 a , - a , ) J I ' «^i ^ 3 
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* $'(A,AA)§J(A,A;A> l> ? ~ e * J* 

, rg-e(x)i r?• ?<A)] n?-tf-yjn?-zfA)j 
( ^ i ^ ^ 3 ^ ^S') ^ 

Substituting the above expressions for SlI^«JSli into 

Eq. (9.11), we obtain 

^[ i - ; -Y, -s , -Vi^ + V4]J (9.12) 

I-WY, 
Since we assume the perturbation theory is valid, I V A ^ J ^ ' -

Using -JL_ - J + x -t-0&2)for /*/*/ , we find that to OGt), 
\-x 

Eq. (9.12) reduces to 

<e,•*•««>-aw) sA f 1-5,-s,-5,-^rv^I 

X^exj^-VWfVSJJ 
^ e (9-13) 

where the second equality in the above is only true to 
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the order of perturbation we are considering here* «? M 

is the Debye-tfaller factor® To evaluate the De bye-Waller 

factor, we must find the part of Eq. (9.13) that is 

independent of £ and £ because the Debye-laller 

factor involves the zero phonon part of V P /. 

Using the notation of Maradudin and Flinn, 

AM - ^ M 0 ^ 5 M j + 5M^4^M3-f 2MH (9#14) 

Since the term S2 depends on JL and £ , that is, 

there is no part independent of Jc and x , it does not 

contribute to the Debye-rfaller factor* 

(1) °m~2M,0 comes from the harmonic average of the quantity 

defined in Eq* (9*5), that is, it equals the exponent 

of A . 

2M = _A™ Z — co+A (ifi*«\ ) [K'tCXXlN-tiX)] 
° 2NrA Xr

 WK 

A/M Ah cv*-r 

(2) 5M f comes from the zero phonon part of + 0 ^ 

3M, = -JL_ ZL^$' ,^J. . - f . j» ,V*») f^^> 

2N*M f,J,X r ,_ , A . =S~ 
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) *2Aia comes from the zero phonon part of ^^g 

2MZ = LL- I L _ _ ^^+y l
+ f , ) f 5 ^ j . J ^A)$^KV^-

$'J'jA*3 

(D * I 
^ p ^ j j ^ ^ 

[ K ^ ^ J J I T K - ^ ) ] 

w 

(A fc><jf,jj -e^O), -^Wj J 

2M,(TnJ = faT>' Z7 ^fa+f/ jp ?3^,j,AA)' 

) 3M 3 comes from the zero phonon part of *>s 

,[t-t(xn^--i(X)itt-t(xi^(-^' 

w (-•2) 
*ltLdxd» N,NaN3tt, 

w.o^a^o^ d,^^H = ±i (ai + aa+az+aH) 
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2M3 (T t+rf) = (^BY* Z L * fe + -+?^ $ fA-A) * 
UN3MA Xr\> 

v j > m ) i fg-^-Ajj rg-tr-y] fg-*wj 
~~uv* ^/ a// "C 

(5) 2/% comes from the zero phonon part of ~~ SM 

aM, = _J 27_ aft+?,+pA$+jH^x 

d, ̂  <̂  < <r= ± / ( A + Qs-- a?) 

A(N, + I)(NA+I)(NH+NS-+))- (N« + Q XtQX+Mi+l) 

t fa, +• ^ - ^ - a r ) 

- ^ 4Nx A [N,NZ - /VA3 ~ ^ A/3 - A/3 j 7 

Co, 4 ^ - ^ ) ^ 

5M,fTM= -liVLl3 ZL ^(9Xf^pA^VVX 

, ra,A,A)r^A^A)^- t^)KK^K)]^ 



The high temperature expressions for the Debye-Waller 

factor obtained here are the same as obtained by Maradudin 

and Flinn* 

Much work was saved in evaluating the necessary 

integrals for the various expressions because these integrals 

are similar to the ones evaluated in the derivation of the 

free energy expressions, rfe will use Feynman diagrams 

to indicate the similarities between the two* 

tVe can draw the corresponding diagrams for the various 

terms of the Debye^rfaller factor as was done for the free 

energy, but with one difference* For the free energy, 

we drew dots to represent the variables of the D functions, 

or interaction centres which multiply the integral involved. 

For the Debye-//aller factor, we see that sometimes there 

is a zero in the argument of D, for example, D. Cs, 0) . 

rfe write down an extra dot (,fx") for the zero argument 

and then draw the diagrams as in the free energy* The 

number of dots in each diagram for the Debye-faller factor 

equals the number of anharmonic coefficients (interaction 

centres), and the "x" represents the scattering vertex* 

The diagrams for the various terms of the Debye-Waller 

factor and free energy which have the same temperature 

space integrals are presented in Fig. 3. 
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Figure 3: Correspondence among the diagrams of the 

Debye-rfaller factor and the Helmholtz free 

energy of 0(\V 
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10• Summary and Conclusions 

TWe have critically examined the applicability of the 

path integral formalism in the study of four specific 

problems* These problems are: (a) two interacting one 

dimensional harmonic oscillators (sec* 4), (b) N interacting 

Einstein oscillators (sec* 7), (c) Helmholtz free energy 

of an anharmonic crystal to 0(\ ) (sec* 8), and (d) Debye-

Waller factor (sec* 9)* 

We have solved the problem of finding the kernel for 

two interacting one dimensional oscillators and found the 

algebra to be tedious and lengthy* An attempt was made 

to solve the problem of N interacting Einstein oscillators 

in real space, but the algebra became far too lengthy and 

cumbersome to continue* This work was not presented* 

Hence, the problem was investigated in k-space* The path 

integration in complex space was studied, and finally, 

the partition function and Helmholtz free energy F, was 

obtained following the procedure outlined in section 6. 

tfe applied the method of Papadopolous, outlined in 

section 6, to the problem of N interacting Einstein 

oscillators* We evaluated the integrals involved, in 

temperature space instead of working with the sums in 

Fourier space, (Shukla and Muller (1972)). 

Our next application of the method of Papadopolous 

was in finding the Helmholtz free energy, to 0(X)% of an 

anharmonic crystal* The evaluations of the various terms 
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were again done in temperature space instead of Fourier 

space, (Shukla and Cowley (1971)). The calculations were 

greatly simplified by a form of the propagator (D function) 

suggested to the author by Dr. IU 0* Shukla. We also 

demonstrated that the Feynman diagrams can be drawn quite 

naturally for various functional differentiation sequences* 

It was found that in evaluating all the terms of F to 0(XH) 

and the Debye-Waller factor, only two non-trivial types 

of integrals were central to the entire work. 

We then modified the method of Papadopolous slightly, 

and evaluated the Debye-faller factor, DWF, to 000and 0(1 Kl / 

where K is the scattering vector* The high temperature 

limit was taken and the results obtained agreed with those 

of Maradudin and Flinn (1963)• We also noted that the 

expressions needed in calculating the various contributions 

to DWF are similar to those needed in the evaluation of F* 

Our strong feeling is that the Feynman path integral 

formulation should be studied on its own merit* In our 

opinion, this formulation is both conceptually and formally 

more elegant than the more well known formulations of 

quantum mechanics* 

From the conceptual viewpointf as is observed in the 

brief introduction, the arguments used in setting up the 

Feynman formulation are of a physically intuitive nature, 

the only ad hoc assumption being the introduction of *h • 

We would also stress that this formulation has a close 
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connection with classical mechanics* The usual formulation 

of quantum mechanics cannot be simply connected with classical 

mechanics unless one goes through the Bohr's correspondence 

principle* 

From a formal standpoint, we need only one operational 

hypothesis in the path integral formulation as opoosed to 

the two (equation of motion, commutation relation) needed 

in the more well known formulations» 

Also, the kernel, which is central in the path integral 

formulation, is a more useful quantity than the wave function 

if one is interested in transition probability calculations 

and the derivation of those physical quantities (F, DWF, 

etc*) which require the sum over all energy levels of a 

systenu 

Unfortunately, the application of the path integral 

formulation to any physical problem is quite laborious as 

can be seen from the work presented in this thesis. This is 

so even for such simple systems as two interacting one 

dimensional oscillators• 

Hence! we cannot say in an absolute sense whether or 

not this formulation is superior in solving simple problems 

of quantum mechanics-
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Appendix 1 

As we indicated in section 6, the "average" of an 

odd number of normal coordinates, using a Gaussian measure, 

is zero. We sketch a brief demonstration of this fact* 

It suffices to consider the following path integral; 

I =10 [ fitQ&lMQ+p] Oxp ... Q v ( 0 < 

Y l o L j±* Z (Al.l) * ex 
'2& 

where n is a non-negative integer, and 0-Xj ^..^T^+, ̂ /> 

We show that 1= 0 . 

The following argument is not a mathematically rigorous 

argument* In the process, however, we will indicate how 

the complex path integral in Eq* (Al*l) can be handled* 

Observe that (3^NQ*ft) and Q^CO) - Q^fi) = £ r * 

Suppose that QJ()^XUi)+2MA(i) ; ^}}Mi a r e r e a l # 

The way in which we will demonstrate that X = 0 is to 

use the Riemann type definition of the path integral as 

given in Eq* (3*16)* 

Expanding the part of the exponential of Eq* (Al.l) 

that is independent of the derivatives, we obtain 
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+«0 % 

Qv(i) - o>AJ <yoov&> -W W * ^ A r 

where in deriving Eq* (Al*2), we have assumed that the 

Riemann and path integrations can be interchanged* 

It suffices to show that JU = 0 , where 

(A1.2) 

e^l~^ydiQKh)QxM} diKdtK (A1.3: 

To this end, subdivide the interval i0}^J into m 

subintervals with 2i^2n^l of the partition points given 

by (QA^^ \^ }J * If 30me of the "*J'5fc 

coincide, the above set may have fewer than ^-£4"<^*+' 

elements* We will assume that all the ^j JJ-'^>* 4 9J J 

S \=\}..,y£ i are distinct* The arguments for the case 
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when the Q^'xAv^vsJ are not distinct is similar to the 

one we use* For each partition point X , J= />*••> ̂ 3 

associate the special point ?A(i%WA^^
 t h e a b o v^ 

restrictions* Suppose the i' are distinct* Let x0 = 03 

given in Eq* (3*16), then 

* ex ̂[ -|o W&-0WV-01 ^XJ ] 

+ 

Hence 

* A, 

where the integration is over the #hole complex plane* 

Transforming the integration variables to the real and 

imaginary parts of the 4| (̂ '), just as is usually done, 

since the integrals are "ordinary" integrals, we obtain 



Ill 

T = i.v, 
•̂  May i 

'4 
4 

+ k fp-v^r.AiA 
If we now multiply out [^(ij + iyfi)] * * ° I^xl^ *fArVl 

and do each integral individually^ we observe that each 

term will either contain an odd number of X^ (i) or H^ (ij) 

Since the boundary points of the path integral are the 

same it follows that Xa-0 , (Gelffand and Yaglom (I960)) * 

Observe further that this result is verified in Eq* 

(6*18)% for if the generating functional is functionally 

differentiated an odd number of times and the "source term" 

set equal to zero, then the result will be zero. 

^GEL'FAND, I.K., and YAGLOM, A.M., J* Math. Phys* 1, 48 

(1960) 



Appendix 2 

While evaluating the various terms of the Helmholtz 

free energy to OCX1), it is apparent that apart from a 

trivial integral connected with the loop at any vertex of 

the diagram, there are two basic types of integrals 

required* All special cases needed in the expressions of 

W|J....J W 2 4 , and 5)5aeB> Sjj for the Debye-Waller 

factor, can be obtained from the above two integrals* 

Type 1: In this type, we have n dots, and suppose that 

the number of lines connecting S. to S.+J is W, , where 

Sj is the variable of integration and m, 2 0 . We use 

the convention Sj£Sn+| . Then, the integral that is 

required is 

I n = ( A, - - j " </s„ frlfrDx(<is)] 

Yd^YYYSi^hX^'Y 
o o J-' 0 = l A*j 5 

(A2 .1 ) 

*here ar =<*. fcia , NA k ) = j V 0 ^ - 1 J"' , A = IT ft (AX) 

and ^ 
0 £z*m==mmm» J m 

r^i 
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•"It 
Note that if m^O , put 7T (-*-) Z L <4 ̂ A J e ^ H ) 

At once, it can be seen that the following integral 

must be evaluated. 

J h*Jn(^.o^)
BI^V»f^eXf,[z.l i/%-W/ <A2*2> 

0 

We perform the integral over S. remembering that we 

have to perform the integrals over the variables it is 

connected to later* Hence, the integral to be evaluated is 

S(b,.„bj) = f dsj ex), [b^lsj.rsjhbjlsj-sjj] 

= ©6rJ+f IM) 1 ^ > ^ (A2.3) 

^/ \ _ ) f s the Heaviside function 

and 11 ̂  '2 a r @ ordinary integrals because later integrations 

are taken care of by the Heaviside function. 

T.(^) = p-'Xe^'^-1^-^ 
o J 

^Xe1^'^'^'^'^ 
5-

f ds e
l'J"'&J"Sj",, + fcj^J"Sj"'> 

+ 
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= e •j-,s,-,+l>jSj+i _X(*j+rSjY 

+ e
l^^xY _e^v»-sj-.> 

^ — _ + 

*7J-« J 

+ fJ" ^ e 
+ 

4 f ^ e J 

SJ 

I > J . . S J - + ,9JSJ+» _ X->(sj-rsX 

4-

bJ-»- kj 

4-

b J + k J - l 



Substituting these expressions into Eq. (A2.3) yields 

-> *. D j - . » °J I - . 4 

w lX
ArSjJ~hekr,>Sj'rSjJl (A2.4) 

Finally, we consider the following integral, which arises 

in the first term of Eq* (A2*4) and~Sq* (A2*2); 

4<i n 
7J'» 

I 

(A2.5) 

The other kind of integral that arises from the first 

term of Sq. (A2.4) and Eq. (.A2.2) is of a similar form 

as that given in Eq. (A2.5), and has the same property 

as that given in Eq. (A2.5)., that we will use later on. 

Afe want to simplify the expression for o and hence, 



Jn further, but to do this, we must again consider the 

expression for Tn . 

First, note that the D functions are periodic, that 

is, 
Dx (s^) = ftr(s) , - / < s < 

We now make the following change of variables; 

a, = s, , UJ-S^SJ i j = 2J3;..,J n 

Then, S r- S L = 6<L — & r j l^jb^..^ fl >
 s n d t h e Jacobian for 

the transformation is J*= g lsi'"'-> "*' _, ] . Employing 

the periodicity of the D functions so that the range of 

integration does not change, we find that 

r/ >, .... , ... ,. j -
j ; = J^aI...J

,'^«w eX^> [^(6^+^^*-^: ly/cv-CVi)/ <A2.6) 

We immediately observe that the integrand of Eq* (A2.6) 

is independent of W( f and hence the integral over Ut 

gives us a factor of p * Since Eq* IA2*6) = Eq. (A2.2), 

observe that the only way to get this factor of B in 

Eq* (A2.2) is if the last integral performed is a trivial 

integral* We can see from the expression for K(h ^bj f 

that this will never be the case for the integrand 

considered there* Hence, we can drop the first term in 

expression for SC^jOj) of Eq* lA2*4)* When these integrals 

are explicitly evaluated and then substituted in the 
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corresponding expressions of free energy and the summations 

over ot* are carried out and the symmetry of the V (A,,-., A*/ 

coefficients is taken into account, a total of zero 

contribution is obtained* 

Hence, 

S(bj.,>j) = t^/^'e J J ^ 2 * 7 ) 

Performing the integration over S^ first, and then using 

Eq* (A2*7) in Eq* (A2.2), we have 

, , o o (A2.8) 
bMA 

and Ĵ  (£>,) -/ 

This can be substituted in the expression for -Ln to get 

the final result. 

The first four expressions for JM are given below. 

(i) j ;a t ) = /2 

(ii) J.a.A) = (~2Y r1 
b,x 

PEN - & + y ( ^ v ( v y t y ( v M ^ w 



Loops are easily handled because they produce a factor 

of cork (xfik*^) for each loop, where Ar is chosen 

appropriately for the vertex in the diagram under 

consideration* 

With the above considerations for loops and the 

expressions given in Eqs* (i)-(iv), one can evaluate all 

the contributions to the free energy to OCA j , except 

for the terms W2f > Vv^^W^ ̂
 ff0 evaluate these terms, 

we require the following type 2 integral* 

Type 2: It is apparent from the expressions of HsjiHa;^ 

that the following integral must be evaluated; 

O 
L„S L n(^-;U - Jĉ seX(3 f|^Ms-Sr)J (A2.9) 

One must remember that the integration with respect to 

\$i>-' jS*} over the interval lO>& J is done later* 

The «V are constants which are linear combinations of 

the Q r 
VJ 

The evaluation of Ln is extremely tedious for large 

n. ile propose to do the integral of Eq* (A2*9) for a 

fixed sequence of the iSrJ , and from this, one can 

evaluate the integral in general, using the Heaviside 

functions as a bookkeeping technique to account for the 

various terms* We note that the case for in-2 is the 

type 1 integral, and to obtain ^|j W;t2 } W ^ , it is 



necessary to find L 3 

Suppose the ordering of the variables in Eq. (A2*9) 

is as follows; 

Srj < S J M } j,0,l,~.,n ; S^OXr^r/S 

Then, if Eq* (A2.9) is handled as an integral without 

taking into consideration the other integrals, we obtain 

Yn - \fids exf \tbrJs-srj] 

- [ (% * [% . . . . 4 fdsj e*b \t tD \s-stj\] 
' * 

"J "Vs exb [~Z br(s-sr)j + 

+ I Vs exjb UnCs-5n) + Z. L f s ^ j 

.+ . • • 4-

i + J *</s exb j Z L. fs"Srh 2L. tv (sr-s) f + 

+ j ds ext> | Z bn(s-s )/ 
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= eX^|S^n)]-ex |5[|rt0(sr j-s^ 

-IK 
J." 5 

L̂ * • * + 

- O] ) ) r -̂  M 

+ ^ - J — ^ j e^u 2: br (sr -sJ + I L br (s. 

- exk f Z L (SL.-s.) + ZL br & - s^)J 

-f 

+ 

-f 

e ^ [ 2L k(*r-s'j]-e*pl% S(Sr»~Sr^ 
1 "*- I w 

n i 

Z kr 

10 r J0 

- z: t 
ho [ l b r -2L b j 

ex 1= 
h 

2L t r fsr - O + Z Lfer-s* ) 

e^[Xh-s'?XXi~Srti 
(A2.10) 

To get the result for Eq* (A2.9), we use Heaviside 

functions to account for all possible ordering schemes 

of the Sr . There are nl different orderings. 

We now write down the result for h s 3 . 
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1-3 (b. A A ) = yJs exy [ b, ls-s,l +fcJs-sJ + b3/s-s,Jj 

= 0(%-Y eC^rh^ e(£2~s3^%i + ©^r^)©fe-%^fv^Y3i + 

4 QX~S) © XX eCsrsJ Y33 + o (h-s,) o ( « ) oCh-tf Y^ * 

where '3. is the same as in Eq. (A2.10), with the 

Heaviside functions determining the "order of £S, >S^S3J' 

Hence, 

t, if-**) X (XY+kWX t,S, +^S^4b3S3 

L3
 = t-_ + 

k, 4- bA 4 b3 

+ 2 ^ ' f * " * / A l v * f . . ^YX3 x 

} 0(s,-sjecs3-sj e * 3 4-9csfs,;ocvsJ^e +. 
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Appendix 3 

If one is interested in the high temperature expansion 

of the Helmholtz function F, or the Debye-Waller factor 

DWF, where the first term of the expansion gives the 

classical limit, then the evaluation of the integrals 

described in appendix 2 is not necessary* We give some 

of the necessities for obtaining such expansions* 

The two parts in the expressions for the various terms 

in F and DWF that contain temperature dependence are 

and the exponentials in the integrals, one of which would 

have the following form e X b £ 4r r\ t^\ Is.^SflJ * 

To get the above expansion in F and DWF, one can 

expand N^ (*r) and exb L < ^ ^ js-SjIJin terms of a Taylor 

series and keep the necessary terms* For example, in the 

classical limit, (ft 4+0) > U^{dT) # Urfiu^, and exh^%^fs/l^[ 

(this is a good approximation since the interval of 

integration is lOj&l ). The integrals, in this case, 

become trivial, and in fact, the manipulations involving 

the temperature factors simplifies* 

For high temperature results, the useful expansions 

are 

NArA)= fe - ' ^ - i r = £ | M H ] " " 



where the P n are the Bernoulli numbers, and 

•+*6 

To get the results for low (zero) temperatures, that 

is, p f+oO , one has to perform the integrations of the 

exponential functions, and then use the low temperature 

expansions of N^ (<)• The appropriate expansions are 

_1 +<* 

HO) =[ e ^v.)J- =Z e 

If one wants the zero temperature limit, one must set 

V fs sO = C ^ » an(^ ^h011 perform the necessary integrations* 
Ar * *?oĵ  

There is no advantage in performing the zero temperature 

calculation because the integrals are as complicated as 

for the finite temperature case. Perhaps the only 

simplification over the finite temperature case lies in 

performing a fewer sums over ot. . 
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