Kinetic and mechanistic studies
for the molybdenum-catalyzed oxidation
of organic sulfides and olefins by t-BuO₂H

by

A thesis
presented to the Department of Chemistry
in partial fulfilment of the requirements
for the degree of
Master of Science

May 1982
Brock University
St. Catharines, Ontario

© Ömer Refa Köseoğlu, 1982
To

İsmail, Handan and Sefa

Köseoğlu
ABSTRACT

This research was focused on the effects of light, solvent and substituents in the molybdenum-catalyzed oxidation of phenylmethyl sulfides with t-BuO₂H and on the effect of light in the molybdenum-catalyzed epoxidation of 1-octene with t-BuO₂H.

It was shown that the Mo(CO)₆-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H, at 35°C, proceeds 278 times faster under UV light than under laboratory lighting, whereas the MoO₂(acac)₂-catalyzed oxidation proceeds only 1.7 times faster under UV light than under normal laboratory lighting. The difference between the activities of both catalysts was explained by the formation of the catalytically active species, Mo(VI).

The formation of the Mo(VI) species, from Mo(CO)₆ was observed from the IR spectrum of Mo(CO)₆ in the carbonyl region.

The Mo(CO)₆-catalyzed epoxidation of 1-octene with t-BuO₂H showed that the reaction proceeded 4.6 times faster under UV light than in the dark or under normal laboratory lighting; the rates of epoxidations were found to be the same in the dark and under normal laboratory lighting.

The kinetics of the epoxidations of 1-octene with t-BuO₂H, catalyzed by MoO₂(acac)₂ were found to be complicated; after fast initial rates, the epoxidation rates decreased with time.

The effect of phenylmethyl sulfide on the Mo(CO)₆-catalyzed epoxidation of 1-octene was studied. It was shown that instead of phenylmethyl sulfide, phenylmethyl sulfone, which formed rapidly at 85°C, lowered the reaction
rate. The epoxidation of 1-octene was found to be 2.5 times faster in benzene than in ethanol.

The substituent effect on the MoO$_2$(acac)$_2$-catalyzed oxidations of p-OH, p-CH$_3$O, p-CH$_3$, p-H, p-Cl, p-Br, p-CH$_3$CO, p-HCO and p-NO$_2$ substituted phenylmethyl sulfides were studied. The oxidations followed second order kinetics for each case; first order dependency on catalyst concentration was also observed in the oxidation of p-CH$_3$OPhSMe and PhSMe.

It was found that electron-donating groups on the para position of phenylmethyl sulfide increased the rate of reaction, while electron-withdrawing groups caused the reaction rate to decrease. The reaction constants σ were determined by using σ, σ^- and σ^* constants. The rate effects were paralleled by the activation energies for oxidation.

The decomposition of t-BuO$_2$H in the presence of Mo(CO)$_6$, MoO$_2$(acac)$_2$ and VO(acac)$_2$ was studied. The rates of decomposition were found to be very small compared to the oxidation rates at high concentration of catalysis.

The relative rates of the MoO$_2$(acac)$_2$-catalyzed oxidation of p-NO$_2$PhSMe by t-BuO$_2$H in the presence of either p-CH$_3$OPhSMe or PhSMe clearly show that PhSMe and p-CH$_3$OPhSMe act as co-catalysts in the oxidation of p-NO$_2$PhSMe.

Benzene, mesitylene and cyclohexane were used to determine the effect of solvent in the MoO$_2$(acac)$_2$ and Mo(CO)$_6$-catalyzed oxidation of phenylmethyl sulfide. The results showed that in the absence of hydroxylic solvent, a second molecule of t-BuO$_2$H was involved in the transition state. The complexation of the solvent with the catalyst could not be explained.
The oxidations of diphenyl sulfoxide catalyzed by VO(acac)$_2$, Mo(CO)$_6$ and MoO$_2$(acac)$_2$ showed that VO(acac)$_2$ catalyzed the oxidation faster than Mo(CO)$_6$ and MoO$_2$(acac)$_2$. Moreover, the Mo(CO)$_6$-catalyzed oxidation of diphenyl sulfoxide proceeded under UV light at 35°C.
ACKNOWLEDGEMENTS

I gratefully appreciate and am indebted to Professor R. R. Hiatt for the helpful advice, encouragement and patience he has shown throughout this work.

I also wish to thank: Mr. S. S. Köseoglu, for starting this work and for his helpful discussions; Mr. T. R. B. Jones for his assistance in the mass spectral analysis; Mr. I. M. Carter for his valuable discussions and for his work on the synthesis of sulfoxides; and Miss J. M. Hastie for the typing of this thesis and for her great helpfulness.

I also would like to thank all the professors and staff members of the Department of Chemistry for their co-operation.
TABLE OF CONTENTS

Abstract 3
Acknowledgement 5
List of Tables 8
List of Figures 10
List of Appendices 14
List of Abbreviations 14a

Introduction 15
I. Catalysis in hydroperoxide reactions 15
II. Metal-catalyzed reactions of hydroperoxides 17
 (a) Homolytic mechanism in metal catalysis 19
 (b) Heterolytic mechanism in metal catalysis 23
III. Activation of catalyst 18
IV. Complexation of catalyst 19
V. Epoxidation of olefins in the presence of metal ion 19
 (a) Mechanism of the epoxidation 23
 in the presence of vanadium catalyst 23
 (b) Mechanism of the epoxidation 24
 in the presence of molybdenum catalyst 24
VI. Epoxidation of allyl alcohol 25
 in the presence of metal ion and mechanism of reaction 25
VII. Metal-catalyzed oxidation 30
 of phosphines, arsines and stibines 30
VIII. Metal-catalyzed oxidation of amines and anilines 30
IX. Metal-catalyzed oxidation of organic sulfides 32
Experimental

I. Apparatus

II. Reagents

III. Kinetic studies
 (a) Oxidation of organic sulfides
 1. Titrations
 2. Gas chromatographic analysis
 (b) Competition reactions
 1. Gas chromatographic studies
 2. UV spectral analysis
 (c) Oxidation of 1-octene
 (d) Preparation of IR samples

Results and Discussion

I. The light effect on reactions

II. The epoxidation of 1-octene

III. The Mo(CO)₆-catalyzed epoxidation of 1-octene in the presence of phenylmethyl sulfide

IV. The oxidation of phenylmethyl sulfide and substituted phenylmethyl sulfides

V. The decomposition of t-butyl hydroperoxide in the presence of transition metal complexes

VI. Competitive reactions of p-methoxy-, p-nitro- and unsubstituted phenylmethyl sulfides

VII. The solvent effect on the oxidation of phenylmethyl sulfide

VIII. The oxidation of diphenyl sulfoxide

Conclusion

References

Appendices
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Reagents purchased and used</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Mo(CO)$_6$-catalyzed oxidation of diphenyl sulfide with t-BuO$_2$H in ethanol</td>
<td>55</td>
</tr>
<tr>
<td>3.</td>
<td>The oxidation of phenylmethyl sulfide by t-BuO$_2$H in the presence of either Mo(CO)$_6$ or MoO$_2$(acac)$_2$ under various light conditions in ethanol</td>
<td>57</td>
</tr>
<tr>
<td>4.</td>
<td>The epoxidation of 1-octene by t-BuO$_2$H in the presence of Mo(CO)$_6$ and MoO$_2$(acac)$_2$ under various light conditions</td>
<td>66</td>
</tr>
<tr>
<td>5.</td>
<td>Carbonyl stretching frequencies of Mo(CO)$_6$ under different conditions</td>
<td>70</td>
</tr>
<tr>
<td>6.</td>
<td>Mo(CO)$_6$-catalyzed epoxidation of 1-octene by t-BuO$_2$H in the presence of phenylmethyl sulfide</td>
<td>76</td>
</tr>
<tr>
<td>7.</td>
<td>MoO$_2$(acac)$_2$-catalyzed oxidation of phenylmethyl sulfide with t-BuO$_2$H in ethanol</td>
<td>80</td>
</tr>
<tr>
<td>8.</td>
<td>MoO$_2$(acac)$_2$-catalyzed oxidation of p-methoxyphenylmethyl sulfide with t-BuO$_2$H in ethanol</td>
<td>84</td>
</tr>
<tr>
<td>9.</td>
<td>MoO$_2$(acac)$_2$-catalyzed oxidation of p-methylphenylmethyl sulfide with t-BuO$_2$H in ethanol</td>
<td>85</td>
</tr>
<tr>
<td>10.</td>
<td>MoO$_2$(acac)$_2$-catalyzed oxidation of p-nitro-, p-chloro-, p-bromo-, p-hydroxyphenylmethyl sulfides and p-methylthiobenzaldehyde with t-BuO$_2$H in ethanol</td>
<td>86</td>
</tr>
<tr>
<td>11.</td>
<td>Activation energies for the oxidation of phenylmethyl sulfide and p-methoxy-, p-methyl-, p-nitro- and p-acetylphenylmethyl sulfides</td>
<td>98</td>
</tr>
<tr>
<td>12.</td>
<td>Rates of the decomposition of t-BuO$_2$H in ethanol at 35°C</td>
<td>110</td>
</tr>
<tr>
<td>13.</td>
<td>The relative rate constants for the oxidation of phenylmethyl sulfide and p-nitrophenylmethyl sulfide and p-methoxyphenylmethyl sulfide and p-nitrophenoxyphenylmethyl sulfide by t-BuO$_2$H in the presence of MoO$_2$(acac)$_2$</td>
<td>114</td>
</tr>
</tbody>
</table>
14. The oxidation of phenylmethyl sulfide with t-BuO₂H in the presence of Mo(CO)₆ and MoO₂(acac)₂ in various solvents

15. The oxidation of diphenyl sulfoxide with t-BuO₂H in the presence of Mo(CO)₆, MoO₂(acac)₂ and WO(acac)₂ under various light conditions
LIST OF FIGURES

1. Second order rate plots for MoO₂(acac)₂-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H in ethanol at 35°C, in dark, under 175 W spotlight, and under UV light

2. Second order rate plot for Mo(CO)₆-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H in ethanol at 35°C under UV light

3. Second order rate plot for Mo(CO)₆-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H in ethanol at 35°C under normal light conditions

4. Absorbance versus time for the IR band of CO in Mo(CO)₆ (1.82 x 10⁻³ M) in the presence of 1.115 M t-BuO₂H under UV light

5. Concentration versus time for the epoxidation of l-octene with t-BuO₂H in benzene in the presence of Mo(CO)₆

6. First order rate plots for the epoxidation of l-octene with t-BuO₂H in benzene in the presence of Mo(CO)₆ at 85°C in dark, under normal light condition and under UV light

7. First order rate plot for the epoxidation of l-octene with t-BuO₂H in benzene in the presence of MoO₂(acac)₂ at 85°C in dark

8. First order rate plot for the epoxidation of l-octene with t-BuO₂H in benzene in the presence of MoO₂(acac)₂ at 85°C under normal light condition

9. First order rate plot for the epoxidation of l-octene with t-BuO₂H in benzene in the presence of MoO₂(acac)₂ at 85°C under UV light

10. Concentration versus time for the epoxidation of l-octene with t-BuO₂H in benzene in the presence of Mo(CO)₆ and phenylmethyl sulfide at 85°C
11. First order rate plot for the epoxidation of 1-octene with t-BuO₂H in benzene in the presence of Mo(CO)₆ and phenylmethyl sulfide at 85°C

12. Second order rate plot for the oxidation of phenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 27°C

13. The logarithm of the reaction rate versus the logarithm of the catalyst concentration in the MoO₂(acac)₂-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H in ethanol at 35°C

14. Second order rate plot for the oxidation of p-methylphenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 23°C

15. Second order rate plot for the oxidation of p-nitrophenylmethyl sulfide with t-BuO₂H in the presence of MoO₂(acac)₂ at 60°C

16. Second order rate plot for the oxidation of p-chlorophenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 35°C

17. Second order rate plot for the oxidation of p-bromophenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 35°C

18. Second order rate plot for the oxidation of p-hydroxyphenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 35°C

19. Second order rate plot for the oxidation of 4-methylthiobenzaldehyde with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 35°C

20. Second order rate plot for the oxidation of p-methoxyphenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 21°C

21. Second order rate plot for the oxidation of p-acetylphenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 60°C

22. The logarithm of the reaction rate versus the logarithm of the catalyst concentration in the MoO₂(acac)₂-catalyzed oxidation of p-methoxyphenylmethyl sulfide with t-BuO₂H in ethanol at 35°C
23. Arrhenius plot for the oxidation of phenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂

24. Arrhenius plot for the oxidation of p-methoxyphenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂

25. Arrhenius plot for the oxidation of p-methylphenylmethyl sulfide with t-BuO₂H in the presence of MoO₂(acac)₂

26. Arrhenius plot for the oxidation of p-nitrophenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂

27. Arrhenius plot for the oxidation of p-acetylphenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂

28. Arrhenius plot for the oxidation of phenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ under UV light

29. Arrhenius plot for the oxidation of phenylmethyl sulfide with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ under UV light

30. Hammett plot for the oxidation of arylmethyl sulfides with t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 35°C

31. First order rate plot for the decomposition of t-BuO₂H in ethanol in the presence of Mo(O)₆ at 35°C

32. First order rate plot for the decomposition of t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 35°C

33. First order rate plot for the decomposition of t-BuO₂H in ethanol in the presence of VO(acac)₂ at 35°C

34. Concentration versus time for the competitive oxidation of p-methoxyphenylmethyl sulfide and p-nitrophenylmethyl sulfide by t-BuO₂H in the presence of MoO₂(acac)₂ at 40°C
35. Concentration versus time for the competitive oxidation of phenylmethyl sulfide and p-nitrophenylmethyl sulfide by t-BuO₂H in ethanol in the presence of MoO₂(acac)₂ at 40°C

36. Rate plots for the competitive reactions

37. Second order rate plots for the Mo(CO)₆-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H at 35°C under normal light conditions, in mesitylene, in benzene, and in cyclohexane

38. Second order rate plots for the Mo(CO)₆-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H at 35°C under UV light in benzene, in mesitylene and in cyclohexane

39. Second order rate plots for the MoO₂(acac)₂-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H in mesitylene at 35°C under UV light and under normal light conditions

40. Second order rate plots for the MoO₂(acac)₂-catalyzed oxidation of phenylmethyl sulfide with t-BuO₂H in benzene at 35°C under UV light and under normal light conditions

41. Second order rate plots for the VO(acac)₂-catalyzed oxidation of diphenyl sulfoxide with t-BuO₂H in ethanol at 35°C under normal light conditions and under UV light

42. Second order rate plot for the MoO₆-catalyzed oxidation of diphenyl sulfoxide with t-BuO₂H in ethanol at 35°C under UV light

43. Second order rate plots for the MoO₂(acac)₂-catalyzed oxidation of diphenyl sulfoxide with t-BuO₂H in ethanol at 35°C in dark, under normal light conditions, and under UV light
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The chromatogram and the mass spectra of the mixture of ethanol, triethylphosphite, triethylphosphate, diphenyl sulfide and diphenyl sulfoxide</td>
<td>142</td>
</tr>
<tr>
<td>2</td>
<td>The chromatograms of the samples of the competitive reaction mixture</td>
<td>146</td>
</tr>
<tr>
<td>3</td>
<td>Extinction coefficients for methyl sulfoxide, p-nitrophenylmethyl sulfide and p-nitrophenylmethyl sulfoxide</td>
<td>149</td>
</tr>
<tr>
<td>4</td>
<td>IR spectrum of Mo(CO)$_6$ in ethanol at 20°C</td>
<td>152</td>
</tr>
<tr>
<td>5</td>
<td>IR spectra of Mo(CO)$_6$ in the presence of t-BuO$_2$H in ethanol at 20°C at 0-30 minutes</td>
<td>154</td>
</tr>
<tr>
<td>6</td>
<td>IR spectra of Mo(CO)$_x$-1-octene under various conditions and 1-octene in the region of 2100-1700 cm$^{-1}$</td>
<td>160</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

acac = acetylacetonate

dpm = dipivaloylmethide

hfac = hexafluoroacetylacetonate

HP = hydroperoxide

naph = naphthenate

hmpa = hexamethylphosphorous triamide

oct = octanate

dien = diethylene triamine
INTRODUCTION

I. Catalysis in hydroperoxide reactions

The catalytic activity of the transition metal acetylacetonates (Cr$^{3+}$, V$^{3+}$, V$^{2+}$, MoO$_2^{2+}$, Co$^{3+}$, Cu$^{2+}$, Co$^{2+}$, Mn$^{3+}$, Mn$^{2+}$, Al$^{3+}$, Fe$^{3+}$, Mg$^{2+}$, Ni$^{2+}$, TiO$_2^{2+}$, Zn$^{2+}$, Zr$^{4+}$) were investigated in the epoxidation of 2,4,4-trimethyl-1-pentene with t-BuO$_2$H (1). It was shown that Cr$^{3+}$, MoO$_2^{2+}$, V$^{2+}$, V$^{3+}$ compounds gave good yields of the epoxide. Other metals gave either poor or no yields of the epoxide, due to the decomposition of t-BuO$_2$H.

Sheng and Zajacek (2) have studied the effectiveness of the following transition metal complexes in the epoxidation of 2-methyl-2-pentene with t-BuO$_2$H:

Sodium molybdate, sodium tungstate, sodium vanadate, molybdenum sulfide, molybdenum dioxide, molybdenum trioxide, silicomolybdic acid, phosphomolybdic acid, phosphomolybdic acid + sodium molybdate, sodium silico-12-molybdate + sodium molybdate, sodium phospho-12-molybdate, sodium phospho-12-molybdate + sodium molybdate, sodium phospho-18-molybdate, sodium phospho-18-molybdate + sodium molybdate, ethylphosphomolybdate + sodium molybdate, monoethyl-dihydrophosphomolybdate + sodium molybdate, molybdenum dioxyacetylacetonate, molybdenum hexacarbonyl, molybdenum hexacarbonyl + sodium molybdate, molybdenum pentachloride, vanadium oxyacetylacetonate, manganous acetylacetonate, ferric acetylacetonate, cobaltic acetylacetonate, rhodium chloride, nickel acetylacetonate, potassium platinous chloride, tetrammine copper(II)
sulfate, potassium gold cyanide. Of these complexes, Mo(CO)₆ and MoO₂(acac)₂ were found to be the most effective catalysts.

Sheldon (3) has shown that Mo(CO)₆, W(CO)₆ and MoO₂(acac)₂ are the best homogeneous catalysts, and TiO₂ on SiO₂ the best heterogeneous catalysts among the following complexes in the epoxidation of cyclohexene with t-BuO₂H: Mo(CO)₆, MoO₂(acac)₂, W(CO)₆, WO(acac)₂, TiO₂ on SiO₂, Ti(OBu)₄, TiO(acac)₂, UO(acac)₂, UO₂Cl₂(hmpa)₂, UO₂(acac)₂, Cr(acac)₂, Nb(OBu)₅, Ta(OBu)₅, Zr(acac)₄, Th(acac)₄, Zr(OPr)₄, SeO₂ and SnO₂.

The role of the catalyst in the epoxidation reaction is explained by two factors. The first is the Lewis acidity of the catalyst, which withdraws electrons from the peroxodic oxygen of the hydroperoxide, making it more susceptible to attack by nucleophiles. Lewis acidity of metal complexes increases with increasing oxidation state of the metal. In agreement with this theory, catalytically active species were found to be Mo(VI), W(VI), V(V) and Ti(IV).

The second factor is the oxidation potential of the catalyst, i.e., if the metal is a strong oxidant, it will cause decomposition of the hydroperoxide. If it is a weak oxidant, it behaves as a catalyst.

On the basis of these two factors, the higher activity of Mo(VI) compared with Cr(VI) can be explained. Both are good Lewis acids, but Cr(VI) is also a strong oxidant, and causes decomposition of the hydroperoxide. Also, non-transition elements such as SeO₂, B₂O₃ and SnO₂ are as acidic as MoO₃, but their strong oxidative properties cause decomposition of the hydroperoxide.
II. Metal-catalyzed reaction of hydroperoxides

The metals which catalyze reactions of hydroperoxides can be divided into two groups. The first group, Co, Mn, Fe, Cu and Al, facilitates homolysis of the O-O bond by having close-lying oxidation states. The second group includes metals such Mo, V and W which, in their high oxidation states, can facilitate heterolysis of the O-O bond.

(a) Homolytic mechanism in metal catalysis

Homolytic decomposition of hydroperoxides by metal ions can be divided into three groups:

1. **Reductive cleavage** of hydroperoxide is depicted by the reaction

 \[\text{ROOH} + M^{n} \rightarrow \text{RO}^\cdot + \text{HO}^- + M^{n+1} \]

2. **Oxidative cleavage** is represented as

 \[\text{ROOH} + M^{n} \rightarrow \text{ROO}^\cdot + H^+ + M^{n-1} \]

3. **Catalytic redox cleavage** involves both oxidative and reductive cleavage

 \[\text{ROOH} + M^{n} \rightarrow \text{RO}^\cdot + M^{n+1} + \text{OH}^- \]

 \[\text{ROOH} + M^{n} \rightarrow \text{ROO}^\cdot + M^{n-1} + H^+ \]

Co and Mn are the most effective autoxidation catalysts.

(b) Heterolytic mechanism in metal catalysis

Metal catalyzed heterolytic reactions of hydroperoxides were studied for a wide range of organic substrates in the presence of active Mo(VI), V(V), Cr(VI) and W(VI) species. The active oxidizing agent is the complex of the hydroperoxide with the catalyst in its highest oxidation state. This means that complexes such as Mo(CO)_6, Mo_0, W(CO)_6, W_0, VO(acac)_2, V^{4+}, are oxidized by hydroperoxide to their
high oxidation states Mo(VI), W(VI) and V(V) respectively, and that these species form complexes with the hydroperoxide (2).

\[\begin{align*}
\text{catalyst activation} \\
\text{complex formation} \\
\text{heterolysis of O-O bond}
\end{align*} \]

III. Activation of catalyst

The conversion of Mo\(^{5+}\) oxidation state by ethylbenzene hydroperoxide to Mo\(^{6+}\) oxidation state was observed by ESR studies (4). ESR signals of the molybdenum resinate (Mo\(^{5+}\)) in ethyl benzene decreased with the addition of ethylbenzene hydroperoxide. This observed decrease was related to a redox process.

Similar studies were done with VO(acac)\(_2\) (5). The UV-visible spectrum of VO(acac)\(_2\) in ethanol gave maxima at 775 and 580 nm. These were attributed to d-d transition of this complex. After addition of excess t-BuO\(_2\)H to VO(acac)\(_2\) solution, both maxima disappeared. This clearly showed that V\(^{4+}\) was converted to V\(^{5+}\) by removing one electron from the d orbital.

Similarly, the ESR spectrum of VO(acac)\(_2\) in ethanol showed eight resonance lines which disappeared after addition of excess t-BuO\(_2\)H. The half-life of the V (IV) species was estimated to be 20 s.
IV. Complexation of catalyst

The formation of HP-metal complex was studied for MoO$_2^{2+}$, VO$_2^{2+}$ acetylacetonate and molybdenum(dioxo-bis-1,2-cyclohexanediolate) by Svitych (6, 7) and Skibida (8) in their NMR work.

In the presence of these complexes, the NMR signal of the protons of the OH group of t-BuO$_2$H is shifted and broadened because of complexation.

V. Epoxidation of olefins in the presence of metal ions

The kinetic and mechanistic studies of the epoxidation reactions of olefins with different hydroperoxides in the presence of molybdenum and vanadium catalysts have been reported (2, 9-23).

The epoxidation of 1- and 2-octene with t-BuO$_2$H in the presence of Mo(CO)$_6$ have been studied by Sheng and Zajacek (2). Kinetics of the reaction showed that the epoxidation reaction is first order in olefin, in t-BuO$_2$H, and in Mo(CO)$_6$. The rate expression is given by

$$\text{Rate} = k[\text{olefin}][\text{t-BuO}_2\text{H}][\text{Mo(CO)}_6]$$

The same reaction in different atmospheres showed that oxygen does not lower the reaction rate, but reduces the life of the catalyst, whereas carbon monoxide reduces the rate of reaction. The conversion of hydroperoxide was 54% and 31% in one hour at 90°C under nitrogen and carbon monoxide atmospheres, respectively.

Electron donating groups around the double bond and electron withdrawing groups on the para position of cumene hydroperoxide increased the rate of reaction.
The decomposition of hydroperoxide was insignificant when the reaction was run in a large excess of olefin. In the absence of olefin, 6.2% of hydroperoxide decomposed in one hour in benzene at 87°C.

The epoxidation of cis- and trans-2-butene with cumene hydroperoxide gave cis- and trans-epoxide, respectively. This shows that the reaction is stereospecific.

The same authors (9) have reported that the epoxidation of 1,4-hexadiene with t-BuO₂H in the presence of Mo(CO)₆ gave predominantly the internal epoxide. When the pure cis- and trans-1,4-hexadiene were reacted separately, the ratio of internal epoxide to external epoxide was 11:1 for the cis isomer and 6:1 for the trans isomer.

V(oct)₃, VO(acac)₂, V(acac)₃ were used as catalysts in the epoxidation of cyclohexene with t-BuO₂H by Gould et al. (10). They showed that the reaction is first order in catalyst in the range of 6 x 10⁻⁵ to 1.2 x 10⁻³ M of VO(acac)₂, also first order in cyclohexene within the range 0.0875 M to 1.795 M. Dependence of hydroperoxide concentration is analogous to Michaelis–Menten type enzyme catalysis. The co-product t-BuOH inhibits the reaction rate by forming V-alcohol and V-(alcohol)₂ complexes.

Kinetic and mechanistic studies of the epoxidation of cyclohexene and cyclooctene with t-BuO₂H in the presence of VO(acac)₂, VO(dpm)₂, VO(hfac)₂ and MoO₂(acac)₂ were reported in a work of E. S. Gould and coworkers (11). Their kinetic observations are consistent with the formation of the vanadium(V)-hydroperoxide complex in the vanadium catalyzed systems. In the molybdenum catalyzed systems, the formation of molybdenum-hydroperoxide, molybdenum-olefin and molybdenum-hydroperoxide-olefin complexes are also
consistent with the kinetic data. The association constants of these molybdenum complexes were found to be $K_{\text{Mo-HP}} = 21.3$, $K_{\text{Mo-ol}} = 6.22 \text{ M}^{-1}$ and $K_{\text{Mo-HP-ol}} = 0.26 \text{ M}^{-2}$. The existence of the ternary complex, Mo-HP-ol, does not mean that the epoxidations pass specifically through the Mo-HP-ol complex. There is a contribution of each complex to the rate determining step.

According to activation parameters for VO(acac)$_2$, VO(dpm)$_2$, VO(n-BuO)$_3$ and VO(hfac)$_2$, catalyzed epoxidation of cyclohexene indicates that these catalysts retain, at least in part, when their environment converted to catalytically active species V(V), although the rate constants are not greatly different. Furthermore, the V-HP complex is more stable with fluorinated complexes of vanadium acetylacetonate than VO(acac)$_2$ and VO(dpm)$_2$, in which the metal centers are less electrophilic.

Addition of t-BuOH reduced the epoxidation rate by half when the ratio of t-BuO$_2$H to t-BuOH was 1:10.

As in a previous study (10), the vanadium catalyzed reaction is first order in olefin and in catalyst, but showed a Michaelis-Menten type dependency on hydroperoxide concentration.

MoO$_2$(acac)$_2$ had a reaction rate of 100 times faster than the aforementioned vanadium complexes. The kinetics of the molybdenum-catalyzed reaction was found to be complicated.

Sheldon (12) had shown that the nature of the ligand has an effect on the catalytic activity of Mo(VI) complexes. The final epoxidation rates of cyclohexene with t-BuO$_2$H in the presence of Mo(CO)$_6$, MoO(acac)$_2$,
MoO₂(propane-1,2-diol)₂, MoO₂(trans-cyclohexane-1,2-diol)₂, MoO₂(cis-cyclohexane-1,2-diol)₂ are similar after different initial rates. These data indicate that the same catalytic species is forming after an initial period. MoO₂(trans-cyclohexane-1,2-diol)₂ complex (9) was isolated from the Mo(CO)₆ and MoO₂(acac)₂ catalyzed epoxidation of cyclohexene with t-BuO₂H (13). This complex did not form in the absence of hydroperoxide. The same complex was also obtained from the reaction of MoO₂(acac)₂ with epoxycyclohexane and t-BuO₂H in benzene or in methylcyclohexane.

![Diagram](9)

When equimolar quantities of hydroperoxide and olefin were used, the epoxidation reaction and hydroperoxide decomposition were competing processes. When 1-octene was used, equal amounts of epoxidation and decomposition products were obtained, whereas with reactive olefins, epoxidation was the main reaction path.

Substitution effects were studied in the Mo(naph) catalyzed epoxidation of styrene with t-BuO₂H by Hiatt (14). The kinetics of the reaction showed that the reaction is first order in hydroperoxide in the range of
0.1-0.41 M, 3/2 in catalyst at lower concentrations (0-0.2 x 10^-4 g-atom of Mo kg^-1), 1/2 at higher concentrations (0.2-5.5 x 10^-1 g atom of Mo kg^-1), but first order in catalyst when benzene was employed as the solvent.

m-Cl, p-Cl, m-Br, p-Br, m-NO_2 and p-Me substituted styrenes were used in the epoxidation, and second order rate constants were determined. The best correlation was obtained with logk/k_0 vs σ (ρ = -1.37).

The coproduct alcohol does not inhibit the reaction rate, but catalyst deactivation was observed. This could be due to complexation of the catalyst with further reaction products.

Sapunov et al. (15), in agreement with Gould (11), had shown the formation of molybdenum-olefin, molybdenum-hydroperoxide and molybdenum-olefin-hydroperoxide complexes when molybdenum caproate was used as catalyst, from their kinetic data.

The effect of solvent was also studied by Sapunov et al. (16). Solvents which have good capabilities for complex formation inhibited the reaction quite markedly. In THF and t-butyl acetate, the reaction does not proceed. Also, solvents with high di-electric constants, such as nitrobenzene and dichloroethane, lower the reaction rate.

(a) Mechanism of the epoxidation of olefins in the presence of vanadium catalyst (10)

\[
\text{V}^3+ + \text{t-BuO}_2\text{H} \rightleftharpoons \text{V}^5+ \quad \text{complex formation reversible} \quad (11)
\]

\[
\text{catalyst activation, rapid, irreversible} \quad (10)
\]
(b) Mechanism of the epoxidation of olefins in the presence of molybdenum catalyst (11)
VI. Epoxidation of allyl alcohols in the presence of metal ion

Mo(CO)$_6$ and VO(acac)$_2$ have been used as catalysts in the epoxidation of various allyl alcohols with t-BuO$_2$H in a work of Sheng and Zajacek (9). In contrast to olefinic compounds, VO(acac)$_2$ gave a higher yield of epoxide than did Mo(CO)$_6$ in the case of allyl alcohols. As noted earlier from the kinetic studies, coproduct alcohol forms complexes with vanadium better than with molybdenum; therefore, the higher activity of vanadium catalyst in the epoxidation of allyl alcohol was explained by the formation of vanadium-allyl alcohol complex.

Farberov et al. (29) had shown that the allyl alcohol-vanadium complex caused self-inhibition, and the rate of reaction decreased when the concentration of coproduct alcohol increased.

The stereoselectivity of the metal catalyzed epoxidation of olefinic alcohols was studied by Sharpless and coworkers (30).
The results of the VO(acac)$_2$ and Mo(CO)$_6$ catalyzed epoxidation of geraniol, linaleol, 4β-hydroxy-cholesterol and 3-cyclohexene-1-ol with t-BuO$_2$H indicate that the epoxidations are highly selective and yield only one of the possible isomeric epoxy alcohols (Eq. 22-25). The selectivities are much greater in metal-catalyzed systems than in the m-chloroperbenzoic acid system.

![Chemical structures and reactions](image)

* isomeric purity

The epoxidation of cyclic homoallyl alcohols is also selective and interesting. The epoxidations of 3-cyclohexene-1-ol and 2-cyclohexene-1-ol showed that homoallyl alcohols reacted faster than allyl alcohols in the Mo(CO)$_6$ catalyzed system, whereas the epoxidation of allyl alcohols is much faster in the VO(acac)$_2$-catalyzed system.

The different stereoselectivity of the epoxidations of acyclic allyl alcohols with t-BuO$_2$H, in the presence of VO(acac)$_2$ and Mo(CO)$_6$ complexes,
and with m-chloroperbenzoic acid were also observed (31-32). It was found that the selectivity of the epoxidation is dependent on the structure of the allyl alcohol and the oxidizing reagent.

Much work has been done on the epoxidations of allyl alcohols, homoallyl alcohols and bis-homoallyl alcohols; the results are summarized in a recent review article of Sharpless et al. (33).

Mechanism of the epoxidation of allyl alcohols

\[
\begin{align*}
V^4^+ & \rightarrow t-BuO_2H & \rightarrow t-BuO_2H & \rightarrow t-BuO_2H \\
& \rightarrow V^5^+ & \rightarrow V^5^+ & \rightarrow OH \\
& \rightarrow V^5^+ & \rightarrow 0 + CH_2=CHCH_2OH & \rightarrow t-BuO_2H \rightarrow OH & \rightarrow CH \\
\end{align*}
\]

According to the mechanism suggested by Sheng et al. (9), after conversion of \(V^4^+\) to \(V^5^+\), the \(t-BuO_2H-V^5^+\) complex forms first; this complex then has to complex with the allyl alcohol (or vice versa) before the double bond is epoxidized. This ternary complex is more stable than the hydroperoxide-vanadium complex. The geometry of this complex also makes the epoxidation favorable. Therefore, if the geometry of this complex was changed by the insertion of additional carbon atoms between the double bond and the hydroxyl group, a poor yield of epoxide was obtained. The reaction
of 1,5-hexadien-3-ol gave 1,2-epoxide-3-hydroxy-5-hexene as a major product and 5-hexene-2-ol gave a poor yield of the epoxide (9).

\[
\begin{align*}
\text{H}_2\text{C} &= \text{C} - \text{C} - \text{C} - \text{C} = \text{CH}_2 \\
&\xrightarrow{V-\text{HP}} \\
\text{H} &\quad \text{O} \\
\text{H}_2\text{C} &= \text{C} - \text{C} - \text{C} = \text{CH}_2 + \\
&\quad \text{OH} \\
\end{align*}
\]

1,5-hexadiene-3-ol \quad \text{major product 80%}

\[
\begin{align*}
\text{H}_2\text{C} &= \text{C} - \text{C} - \text{C} - \text{C} = \text{CH}_2 \\
&\xrightarrow{V-\text{HP}} \\
\text{H} &\quad \text{O} \\
\text{H}_2\text{C} &= \text{C} - \text{C} - \text{C} = \text{CH}_2 \\
&\quad \text{OH} \\
\end{align*}
\]

minor product 20%

\[
\begin{align*}
\text{H}_3\text{C} &= \text{C} - \text{C} - \text{C} = \text{CH}_2 \\
&\xrightarrow{V-\text{HP}} \\
\text{H}_3\text{C} &= \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{C} - \text{CH}_2 \\
&\quad \text{OH} \\
\end{align*}
\]

5-hexene-1-ol \quad 51%

\[
\begin{align*}
\text{CH}_2 &= \text{C} - \text{CH}_2 \\
&\xrightarrow{V-\text{HP}} \\
\text{CH}_2 &= \text{CH} - \text{CH}_2 \\
&\quad \text{OH} \\
\end{align*}
\]

allyl alcohol \quad 83%
A more detailed mechanism of the epoxidation, which is similar to that suggested by Sheng and Zajacek (9) is given by Sharpless (33). After formation of the V^{5+} alkoxide complexes, the V-t-BuO$_2$H and allyl alcohol complex forms. The slow step was thought to be the oxygen transfer step. The epoxidation processes involving the attack of olefins on peroxide reagents will be subject to fairly rigid stereoelectronic requirements. In particular, the displacement on the peroxide bond occurs from the back side and along the axis of the O-O bond being broken.

\[\begin{align*}
V & \rightarrow V^{5+} \rightarrow V \rightarrow VI \\
\text{slow step} & \rightarrow VII
\end{align*} \]
VII. Metal-catalyzed oxidation of phosphines, arsines and stibines

Metal catalyzed oxidation of triphenyl phosphines with t-BuO₂H gave reaction rates 10⁴ to 10⁵ times faster than the H⁺ catalyzed reaction (34).

The kinetic data indicate that the oxidation reaction proceeds according to the rate law:

\[
\text{Rate} = \frac{-3[\text{Ph}_3\text{M}]}{\partial t} = [\text{Ph}_3\text{M}][\text{HP}][k_2 + k_3[\text{cat}]]
\]

(36)

The oxidation of triphenyl arsine and stibine also follow the same rate law (35). Uncatalyzed and catalyzed reactions proceed together.

There is no effect of catalyst environment in the oxidation of Ph₃P. The catalytic effects of Mo(naph) and MoO₂(acac)₂ were found to be the same. Also, molybdenum catalysts gave reaction rates 10 times faster than the vanadium catalyst did.

The mechanism of the reaction is similar to that suggested for olefins.

VIII. Metal-catalyzed oxidation of amines and anilines

Various catalysts (Mo(CO)₆, Mo(naph), [Mo(cp)(CO)₃]₂, VO(acac)₂, V(naph), W(CO)₆, Co(naph) and Co(acac)₂) were tested in the oxidation of aniline. Among these complexes, VO(acac)₂ was found to be the most active catalyst. Mo(CO)₆ showed an induction period of 5-10 minutes, during which the catalyst became the active species. VO(acac)₂-catalyzed oxidation of aniline with t-BuO₂H gave nitrobenzene as the product (36). The loss of aniline and the formation of nitrobenzene showed a 1:1 stoichiometry. No reaction occurred in the absence of catalyst. Product analysis showed that no traces of intermediates phenylhydroxylamine, nitrosobenzene were
obtained even though the formation of 1 mole of nitrobenzene requires 3 moles of hydroperoxide.

Substituent effects were studied by a competitive method. The order of reactivity of substituted anilines is given below.

\[p-\text{Me} > m-\text{Me} > \text{aniline} > p-\text{Cl} > p-\text{Br} > m-\text{Cl} > m-\text{Br} \]

By using \(\sigma \) and \(\sigma^+ \) values versus \(\log k/k_0 \), good correlations were obtained in both cases with \(\rho = -1.42 \) and \(-1.97 \). These results indicate an electron deficient transition state.

The rate-determining step is first order in aniline within the range 0.4-2.1 M. Due to autoinhibition of t-BuOH and catalyst degradation, the order of reaction with respect to catalyst and t-BuO₂H could not be determined.

The mechanism of the aniline oxidation is the same as the epoxidation mechanism.

A series of tertiary amines were oxidized with different hydroperoxides to the corresponding oxides in the presence of Mo(CO)₆ and VO(acac)₂ (37). In the Mo(CO)₆ catalyzed oxidation of pyridine with t-BuO₂H, the rate of reaction was retarded by pyridine-N-oxide after an initial period, due to complexation of pyridine-N-oxide with molybdenum. A white solid which contained 1:2:4 ratio of molybdenum:pyridine-N-oxide:carbon monoxide, precipitated from the reaction solution.

VO(acac)₂ does not catalyze the pyridine oxidation due to strong complexation of vanadium with pyridine-N-oxide.

The greater reactivity of amines compared with olefins is related to the availability of unshared electrons on the nitrogen atom.
IX. Metal-catalyzed oxidation of organic sulfides

Kinetic and mechanistic studies of the metal-catalyzed oxidation of organic sulfides with hydroperoxides were reported by Modena et al. (5,38-45) and Köseoğlu (46).

MoO$_2$(acac)$_2$ and VO(acac)$_2$ were used as catalysts in the oxidation of di-n-butyl sulfide with t-BuO$_2$H (5, 38). Kinetic data shows that the reaction order is one with respect to hydroperoxide, sulfide and catalyst within the range of 1×10^{-4} to 2×10^{-3} M for VO(acac)$_2$ and $0-1 \times 10^{-5}$ M for MoO$_2$(acac)$_2$.

A general rate equation was given as stated below:

$$
\text{Rate} = -\frac{3[t-\text{BuO}_2\text{H}]}{3t} = k_2[\text{HP}]^m[S]^n + k_3[\text{cat}]^p[S]^q[\text{HP}]^r + k_{\text{dec}}[\text{cat}]^s[\text{HP}]^t
$$

(37)

When sulfide is in large excess and the ratio of hydroperoxide concentration to catalyst concentration is greater than 8, the uncatalyzed oxidation is much slower and insignificant. Also, the decomposition of hydroperoxide cannot compete with the oxidation reaction; hence, the rate equation becomes

$$
\text{Rate} = k_3[\text{cat}][S][\text{HP}] \quad \text{and} \quad k_{2\text{obs}} = k_3[\text{cat}]^p
$$

(38)

In the oxidation reaction, freshly prepared catalyst solution is required, because the rate constants were found to be 2-20\% lower when excess sulfide was added to solutions where a small amount of hydroperoxide had decomposed.
The molybdenum catalyst showed 80 times higher activity than the vanadium catalyst.

A Hammett plot was obtained from the VO(acac)_2 catalyzed oxidation of p-CH₃, Cl, H, NO₂ substituted phenylmethyl sulfide with hydrogen peroxide. The ρ value was estimated to be -0.5. This value is small compared to acid catalyzed reaction of arylmethyl sulfides with hydrogen peroxide (ρ = -1.13) (47), but the sign of the ρ value is as expected.

The effect of different alcohols (propanol, ethanol and methanol) was studied in the MoO₂(acac)_2 catalyzed oxidation of di-n-butyl sulfide with t-BuO₂H (43). The third order rate constants for isopropanol, ethanol and methanol were found to be 320, 160 and 6 mol⁻² s⁻¹ respectively. The reactivity of these systems gave opposite results to those expected on the basis of alcohol acidity. In the uncatalyzed oxidation, the rate constants, which are opposite to the rate constants of catalytic oxidation are 1, 1.4 and 4 for isopropanol, ethanol and methanol, respectively. Acetylacetone showed retardation of reaction similar to that of CO in the Mo(CO)₆ catalyzed reaction when MoO₂(acac)_2 was employed as the catalyst. The reaction in ethanol containing 2 x 10⁻³ M of acetylacetone gave a reaction four times faster than the uncatalyzed oxidation; in the absence of acetylacetone, it is 100 times faster. According to results which were obtained in different alcohols and acetylacetone, Modena (43) has shown that MoO₂(acac)_2 is in equilibrium with the solvent alcohol before peroxide containing catalytically active species forms. NMR experiments are also consistent with equilibration.
The importance of ligand displacement was shown for catalytic activity of complex. If ligands are tightly held around the metal ion, as in MoO$_3$(dien) and Na$_4$[Mo$_2$O$_6$(EDTA)], the complexes are poor catalysts; whereas MoO$_2$(quinolin-8-ol)$_2$ and MoO$_2$(acac)$_2$ are good catalysts in the epoxidation of cyclohexene by hydroperoxides (48).

Modena had shown that VO(OR)$_3$ or preferably VO(OR)$_2$OOR are the catalytically active species which form as in Equations 41 and 42 by ligand exchange in the VO(acac)$_2$ catalyzed oxidation reaction

$$2\text{VO}(\text{acac})_2 + t\text{-BuO}_2\text{H} + 6\text{ROH} \rightarrow 2\text{VO}(\text{OR})_3 + 4\text{acacH} + t\text{-BuOH} + \text{H}_2\text{O}$$

(41)

$$\text{VO}(\text{OR})_3 + t\text{-BuO}_2\text{H} \rightleftharpoons \text{VO}(\text{OR})_2\text{-OOR-Bu} + \text{ROH}$$

(42)

Their spectroscopic and potentiometric experiments showed that acetylacetonate was completely removed from the coordination sphere of the metal, and in alcoholic solution fast ligand exchange of the V(V) species occurs. An NMR study of ligand exchange of V(V) alkoxides is consistent with the above results (49).
The rates of oxidation of di-n-butyl sulfide with t-BuO$_2$H, catalyzed by MoO$_2$(acac)$_2$ in pure benzene and benzene-ROH mixtures (R = methyl, ethyl, isopropyl or t-butyl) were determined by Modena et al. (44). Addition of small amounts of alcohol up to a moderate concentration increased the oxidation rate to a maximum; afterwards rates decreased continuously with increasing alcohol concentration. The degree to which the reaction rate was depressed was observed to depend upon the type of alcohol; the effect of the alcohols tested was in the following order:

MeOH > EtOH > i-PrOH > t-BuOH

This was attributed to
(i) the capability of alcohols to displace the original ligands (acac),
(ii) involvement in the transition state,
(iii) competitive complexation of alcohols with hydroperoxides.

In contrast to Modena and coworkers, KÜseoğlu (46) has shown that sulfide plays an important role in the oxidation of sulfides and sulfoxides.

The oxidation of diphenyl sulfide with t-BuO$_2$H in the presence of Mo(CO)$_6$ gave diphenyl sulfoxide and diphenylsulfone. The rate equation was expressed by

$$\text{Rate} = k_3[\text{HP}][\text{S}][\text{cat}] + k_6^{\text{SO}}[\text{SO}][\text{cat}]$$ (43)

The third order rate constants were found to be 17.2 and 1.55 in ethanol at 35°C for the oxidation of diphenyl sulfide and diphenyl sulfoxide respectively. Diphenyl sulfoxide alone, under the same conditions showed no reactivity. Addition of small amounts of diphenyl sulfide did not change the reactivity. It was concluded that a large amount of diphenyl sulfide is required for the oxidation of diphenyl sulfoxide. Addition of diphenyl
sulfide did not inhibit the reaction. When VO(acac)$_2$ was used, diphenyl sulfoxide reacted with a rate constant $k_3 = 2.35 \text{ M}^{-2} \text{s}^{-1}$.

In the oxidation of phenylmethyl sulfide and substituted phenylmethyl sulfide, the following equation gave a good fit.

\[
\text{Rate} = k [\text{Mo(CO)}_6][\text{PhSMe}][\text{HP}]
\]

(44)

The order of reaction with respect to hydroperoxide, sulfide and catalyst in ethanol is first order; this is also true when Mo(CO)$_6$ in CHCl$_3$/CDCl$_3$ is employed.

Mechanism of the metal catalyzed sulfide oxidation

For vanadium and molybdenum catalyzed olefin epoxidation and amine oxidation, sulfide oxidation occurs by the nucleophilic attack of the sulfide at the O=O bond of the hydroperoxide-metal ion complex (5).
Coproduct alcohol did not inhibit the reaction in both vanadium and molybdenum catalyzed reactions. This was explained by the efficient regeneration of the active hydroperoxide-metal complex (Eq. 50).

The kinetic first order dependence on sulphide hydroperoxide and vanadium catalyst implies that one molecule of each reactant is involved in the transition state of the rate determining step. The picture of the transition state was drawn by Modena (5); hydrogen transfer was promoted by the intervention of one protic solvent or in its absence by a second molecule of hydroperoxide.

\[R S : \]
EXPERIMENTAL

I. Apparatus

IR spectra were recorded on either a Perkin Elmer 225 or a 710B grating infrared spectrometer. \(^1\)H NMR were obtained on a Varian A-60 nuclear magnetic resonance spectrometer with TMS as the internal standard and CDCl\(_3\) as the solvent. GC/Mass spectra were obtained on an AEI MS-30 double beam mass spectrometer which is interfaced to a Pye gas chromatograph. For UV analysis, either a Cary 14 or an Hitachi-Perkin Elmer 124 double beam spectrometer with ethanol as solvent was used. GC analyses were performed on either an F&M 700 laboratory gas chromatograph with thermal conductivity detector or a 5700A Hewlett Packard gas chromatograph with flame ionization detector. Calculations were done using a Wang 2200B calculator. A General Electric 275 W sun lamp was used as a light source.

II. Reagents

(a) The commercially available reagents which were used in this work are listed in Table I. They were used without further purification, except MoO\(_2\)(acac)\(_2\), VO(acac)\(_2\), 1-octene and ethanol. Their purification steps were as follows.

MoO\(_2\)(acac)\(_2\) was recrystallized by dissolving commercial product in warm acetylacetone. After ligroin was added, the protecting material was filtered off and pure yellow MoO\(_2\)(acac)\(_2\) precipitated on standing. The crystals were filtered off, washed with ligroin, dried and kept under nitrogen.
Table 1. Reagents purchased and used.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Source</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>thioanisole</td>
<td>Aldrich Chemical Company</td>
<td>99%</td>
</tr>
<tr>
<td>diphenyl sulfide</td>
<td>"</td>
<td>" 99%+ Gold Label</td>
</tr>
<tr>
<td>diphenyl sulfoxide</td>
<td>"</td>
<td>97%</td>
</tr>
<tr>
<td>diphenyl sulfone</td>
<td>"</td>
<td>97%</td>
</tr>
<tr>
<td>p-bromothioanisole</td>
<td>"</td>
<td>97%</td>
</tr>
<tr>
<td>p-chlorothioanisole</td>
<td>Columbia Organic Chemicals</td>
<td>--</td>
</tr>
<tr>
<td>p-methlythiophenol</td>
<td>Aldrich Chemical Company</td>
<td>98%</td>
</tr>
<tr>
<td>p-methoxyaniline</td>
<td>"</td>
<td>97%</td>
</tr>
<tr>
<td>p-chloronitrobenzene</td>
<td>"</td>
<td>--</td>
</tr>
<tr>
<td>4-(methylmercapto)phenol</td>
<td>"</td>
<td>--</td>
</tr>
<tr>
<td>t-butyl hydroperoxide</td>
<td>"</td>
<td>89.09% (checked by titration)</td>
</tr>
<tr>
<td>molybdenum hexacarbonyl</td>
<td>ROC/RIC Company</td>
<td>--</td>
</tr>
<tr>
<td>molybdenum dioxyacetylacetone</td>
<td>K & K</td>
<td></td>
</tr>
<tr>
<td>vanadium oxyacetylacetone</td>
<td>Alfa Inorganic Inc.</td>
<td></td>
</tr>
<tr>
<td>ethanol (absolute)</td>
<td>commercial</td>
<td></td>
</tr>
<tr>
<td>1-octene</td>
<td>Aldrich Chemical Company</td>
<td>97%</td>
</tr>
<tr>
<td>methyl iodide</td>
<td>"</td>
<td>99%</td>
</tr>
<tr>
<td>p-methlythiobenzaldehyde</td>
<td>Fairfield Chemical Company</td>
<td>--</td>
</tr>
<tr>
<td>sodium iodide</td>
<td>BDH Chemicals</td>
<td>99.5%</td>
</tr>
<tr>
<td>ethylxanthic acid potassium salt</td>
<td>Eastman Kodak</td>
<td>Technical</td>
</tr>
</tbody>
</table>
Table 1, p. 2

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Supplier</th>
<th>Purity</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-hydroxyacetophenone</td>
<td>BDH Chemicals</td>
<td>99%</td>
</tr>
<tr>
<td>dimethylthiocarbamoyl chloride</td>
<td>Aldrich Chemical Company</td>
<td>97%</td>
</tr>
<tr>
<td>ethylene glycol</td>
<td>J. T. Baker</td>
<td>--</td>
</tr>
<tr>
<td>potassium fluoride</td>
<td>Alfa Inorganic Inc.</td>
<td>99%</td>
</tr>
</tbody>
</table>
VO(acac)$_2$ was recrystallized from acetone.

Absolute ethanol was refluxed with MgO, and distilled. Ethanol was again refluxed with EDTA, and distilled, then kept over 4 Å molecular sieves.

1-Octene was purified by distillation.

(b) The commercially unavailable reagents were synthesized according to the following procedures.

1. **Preparation of methyl-p-methylphenyl sulfide**

 The p-methylthiophenol was methylated according to the adapted procedure of C. M. Suter et al. (50). 100 g (0.813 mole) of p-methylthiophenol and 115 g (excess) of methyl iodide were added to the solution of sodium ethylate which was prepared by dissolving 20 g (0.87 mole) of sodium in 400 mL absolute ethanol. The mixture was refluxed for an hour. After the alcohol was distilled, the residue was poured into water. The oily product was extracted with ether and dried using magnesium sulfate. The crude product was distilled under reduced pressure, producing 86.2 g (0.624 mole) 77% yield of a yellow liquid.

 The 1H NMR spectrum showed signals at $\delta = 2.2$ (3H, singlet), 2.4 (3H, singlet), 7.0 (4H, multiplet). GC/MS analysis showed that the product was pure.

2. **Preparation of p-nitrophenylmethyl sulfide**

 Initially, corresponding thiol was prepared following the method of C. C. Price et al. (51). The alcoholic solution of sodium disulfide which was prepared from 175 g (0.72 mole) of sodium sulfide nanohydrate and
23.4 g (0.729 mole) of sulfur in 95% ethanol was added to the solution of 157.5 g (1 mole) of p-nitrochlorobenzene in 250 mL of boiling ethanol over a period of 15 minutes. Then the solution of 40 g (1 mole) of sodium hydroxide in ethanol was added dropwise within a period of 20 minutes. After boiling the reaction mixture under reflux for 30 minutes, the mixture was cooled and poured into 1 kg of ice and 1500 mL of water. The precipitate was removed by filtration and the filtrate was acidified with concentrated hydrochloric acid until all p-nitrothiophenol precipitated. The yellow precipitate was filtered off and washed with 500 mL water, and then dissolved in 150 mL of 95% ethanol to which 40 g (1 mole) of sodium hydroxide in 1500 mL of water was added. The solution was filtered and p-nitrothiophenol was reprecipitated with concentrated hydrochloric acid from filtrate, and dried in a vacuum dessicator which contained P_2O_5. The yield of reaction was 51%, m.p. 76°C.

The ^1^H NMR of the p-nitrothiophenol showed signals at δ = 4.0 (1H, singlet), 7.2-8.4 (4H, multiplet). Also, the identity of product and its purity were checked by GC/MS.

Using the method of C. M. Suter et al. (50), p-nitrothiophenol was methylated to p-nitrophenylmethyl sulfide. 70 g (0.45 mole) of p-nitrothiophenol and 70 g (excess) of methyl iodide were added to the solution of sodium ethylate made by dissolving 12 g (0.52 mole) of sodium in 225 mL of absolute ethanol, and the mixture was refluxed for two hours. The ethanol was removed by distillation, and the reaction mixture poured into water. The crude product was extracted with ether, dried using sodium sulfate and ether was evaporated in steam bath. 60 g (78.8 % yield) of the pure
p-nitrophenylmethyl sulfide was obtained after recrystallizing the crude product from methanol.

The p-nitrophenylmethyl sulfide was further identified by 1H NMR and GC/MS analysis. The 1H NMR spectrum of the p-nitrophenylmethyl sulfide showed signals at $\delta = 2.5$ (3H, singlet), 7.1-8.2 (4H, multiplet). According to GC/MS analysis, the compound is pure.

3. Preparation of p-methoxyphenylmethyl sulfide

Initially, p-methoxyphenylmethyl sulfide was prepared following the method of C. M. Suter et al. (50). To a solution of 300 g (1.875 mole) of potassium ethyl xanthate in 700 mL of water, the cold solution of 120 g (1 mole) of diazotized p-methoxyaniline, in which the free acid was neutralized by the addition of sodium acetate, was added slowly at 70-80°C. The reaction mixture was refluxed and stirred for an hour. Then the mixture was cooled and the oil was extracted with ether. This oily material was then refluxed for three hours with a solution of 115 g of potassium hydroxide in 2 L of 95% ethanol containing 20 g of glucose. After the distillation of ethanol until the mixture volume was about 300 mL, the mixture was acidified with cold dilute sulfuric acid, and 2 g of zinc dust was added. The crude product was removed by steam distillation, extracted with ether and dried over calcium chloride. Finally, the p-methoxythiophenol was distilled under reduced pressure (108°C, 18 mm). The yield was 27.7 g (19.78%).

The 1H NMR spectrum showed signals at $\delta = 3.3$ (1H, singlet), 3.6 (3H, singlet), 6.7-7.4 (4H, multiplet). The purity of the product was checked by GC/MS.
p-Methoxythiophenol was methylated to produce the p-methoxyphenylmethyl sulfide by using the method of the same author (50). Starting from 18 g (0.128 mole) of p-methoxythiophenol, 17 g (excess) of methyl iodide and the solution of sodium ethylate, 15.5 g (78%) of pure p-methoxyphenylmethyl sulfide was obtained.

The 1H NMR analysis showed peaks at $\delta = 2.3$ (3H, singlet), 3.6 (3H, singlet), 6.6-7.4 (4H, multiplet). GC/MS analysis showed that p-methoxyphenylmethyl sulfide was pure.

4. A simpler way of preparing p-methoxyphenylmethyl sulfide

In the above synthesis, the yield of the title compound was low compared to the given value by C. M. Suter et al. (50). Therefore, the methylation of commercially available 4-(methylmercapto)phenol was found to be easy and efficient way. The methylation reaction was followed with the same procedure given by C. M. Suter et al. (50). Starting from 75 g (0.535 mole) of 4-(methylmercapto)phenol, 76.6 g (excess) of methyl iodide and the solution of sodium ethylate (13 g (0.595 mole) of sodium in 300 mL absolute ethanol), 61 g (74%) of p-methoxyphenylmethyl sulfide was obtained. The identity and purity of the sample were checked by 1H NMR, GC/MS and UV analysis.

The 1H NMR spectrum showed peaks at $\delta = 2.3$ (3H, singlet), 3.6 (3H, singlet), 6.6-7.4 (4H, multiplet). UV spectrum showed maximum at 258.4 nm (lit. value (52) 256 nm).

5. Preparation of p-acetylphenylmethyl sulfide

p-Acetylphenylmethyl sulfide was prepared from the corresponding thiophenol, which was prepared from p-hydroxyacetophenone by the method of Newman and Karnes (53).
46 g (0.338 mole) of p-hydroxyacetophenone was dissolved in 215 mL of water containing 19 g (0.338 mol) of potassium hydroxide. The solution was cooled below 10°C in a 500 mL three-necked flask. A solution of 51.5 g (0.42 mol) of dimethylthiocarbamyl chloride in dry dimethyl formamide was added over 30 minutes to the stirred solution; during this period the temperature did not exceed 12°C. After the addition was complete, the solution was warmed to room temperature. The reaction mixture was then made alkaline by the addition of 100 mL of 10% potassium hydroxide solution and was shaken three times with 100 mL portions of (dry purified) benzene. The organic layer was collected, washed with a saturated solution of sodium chloride, and dried with anhydrous sodium sulfate. 47.5 (0.213 mole; 64% yield) of 4-acetophenylthiocarbamate was obtained after distillation of the solvent.

The 1H NMR spectrum showed signals at $\delta = 2.60$ (3H, singlet), 3.35 (3H, singlet), 3.4 (3H, singlet), 7-8 (4H, multiplet).

According to Carter (54), a protecting group is necessary for the carbonyl group because of its reactivity in the pyrolysis reaction. The protecting group was therefore added to the p-acetophenylthiocarbamate by the following standard method (55): 46.5 g (0.21 mole) of thiocarbamate, 14 mL (0.214 mole) of ethylene glycol, 0.0613 g p-toluene sulfonic acid and 75 mL of benzene were refluxed in a 500 mL round-bottom flask (equipped with a water separator and condenser with drying tube) until 4 mL of water was collected in the separator trap. The reaction mixture was then washed with 25 mL of 10% sodium hydroperoxide solution, five 20 mL portions of water, and dried with anhydrous magnesium sulfate. The benzene was removed to yield the crude product, which was recrystallized from methanol (yield 21.9 g, 0.084 mole, 40%).
The 1H NMR spectrum of the ketal showed signals at $\delta = 1.60$ (3H, singlet), 3.3 (3H, singlet), 3.5 (3H, singlet), 3.75-4.05 (4H, multiplet), 7.0-6.7 (4H, multiplet).

The pyrolysis of the thiocarbamate was accomplished in a sand bath at 220°C over two hours. A solution of 12 g (0.214 mole) of potassium hydroxide in 20 mL of water and 140 mL of ethylene glycol was then added to the flask. After cooling, the mixture was refluxed for 2.5 hours. The cooled reaction mixture was then poured on to 300 g of ice. After the ice had melted, the mixture was shaken twice with 200 mL portions of chloroform. The organic layers were combined, dried over magnesium sulfate, and distilled. 15.4 g (0.101 mole) of 4-thioacetophenone was obtained.

The 1H NMR spectrum showed signals at $\delta = 2.50$ (3H, singlet), 3.75 (1H, singlet), 7.1-7.9 (4H, multiplet).

The method of C. M. Suter (50) could not be used in the methylation of 4-thioacetophenone, because of the condensation reaction which occurs in the presence of base; therefore, the procedure of Clark and Miller (56) was followed. 14.4 g (0.0947 mole) of 4-thioacetophenone, 7.511 g (0.13 mole) of potassium fluoride and 13 mL (excess) of iodomethane were refluxed in 60 mL of dry DMF for three hours. The mixture was then cooled to room temperature, shaken three times with diethyl ether, and the combined organic layers were washed with water to remove DMF. The ether layer was dried over anhydrous magnesium sulfate, and the solvent distilled. After recrystallization of the crude product, 6.64 g (0.04 mole, 42% yield) of p-acetylphenylmethyl sulfide was obtained.
The 1H NMR spectrum showed signals at $\delta = 2.5$ (3H, singlet), 2.60 (3H, singlet), 7.2-8.0 (4H, multiplet). GC/MS analysis showed that p-acetyl-phenylmethyl sulfide was sufficiently pure.

6. Preparation of phenylmethyl sulfoxide

The synthesis of phenylmethyl sulfoxide was accomplished by the method of C. R. Johnson (57). 3 g (0.024 mole) of phenylmethyl sulfide was added to the solution of 5.25 g (0.025 mole) of sodium metaperiodate in water. Enough methanol was added until the phenylmethyl sulfide dissolved. The mixture was stirred and kept in an ice bath overnight (approximately 12 hours). After removal of precipitated sodium iodate by filtration, the filtrate was extracted with chloroform. The extract was dried over anhydrous sodium sulfate, and the solvent was removed using a rotary evaporator. The pure sulfoxide was distilled under reduced pressure (18 mm Hg, 117°C). 2.5 g (0.0178 mole) 74% of phenylmethyl sulfoxide was isolated. The identity and purity were checked by 1H NMR and GC/MS analysis.

The 1H NMR spectrum showed signals at $\delta = 2.7$ (3H, singlet), 7.4-7.85 (5H, multiplet).
III. Kinetic Studies

(a) Oxidation of organic sulfides

Previously (46), it was found that premixing and preequilibration of solutions give reproducible reactions. Therefore the same procedure was followed.

The catalyst was dissolved in ethanol in a 25 mL volumetric flask and 500 μL of catalyst solution was added to the sulfide solution in a 10 mL volumetric flask which was then filled with ethanol. The solution of t-BuO₂H was prepared in a 10 mL volumetric flask. Both solutions then were pre-equilibrated for an hour at reaction temperature. Also for reactions under UV light, both solutions were irradiated before reaction. Reactions were accomplished under either argon or nitrogen atmosphere. Aliquots were taken at different time periods. The disappearance of t-BuO₂H was determined by iodometric titration. Also, attempts were made to determine the disappearance of sulfide and the formation of sulfoxide by gas chromatography.

1. Titrations

Iodine which was produced from the oxidation of iodide ion by t-BuO₂H (eq. 51) was titrated with sodium thiosulfate solution to produce iodide ion (eq. 52).

\[
\begin{align*}
\text{t-BuO}_2\text{H} + 2\text{I}^- + 2\text{H}^+ & \rightarrow \text{I}_2 + \text{t-BuOH} + \text{H}_2\text{O} \quad (51) \\
\text{I}_2 + 2\text{S}_2\text{O}_3^{2-} & \rightarrow \text{S}_4\text{O}_6^{2-} + 2\text{I}^- \quad (52)
\end{align*}
\]

500 μL of the sample and enough sodium iodide were added to 20/80 acetic acid/isopropanol solution and refluxed for four minutes then titrated.
2. Gas chromatographic analysis

An F&L 700 gas chromatograph which has a thermocouple detector was used with a ¼ inch x 6 feet copper column packed with 3% silicone rubber gum (SE-30) on Chromosorb W 80/100 mesh. Helium was used as the carrier gas. The calibration curves were prepared for phenylmethyl sulfide and phenylmethyl sulfoxide in ethanol which was used as an internal standard. 5 μl of sample was injected. GC conditions were

- oven = 160°C to 5°C/min until 280°C
- injection port = 295°C
- detector = 300°C
- helium flow = 150 mL/min.

S. S. Köseoglu (46) showed that it is not possible to analyze sulfide and sulfoxide in the presence of t-BuO₂H by gas chromatography. It is due to the reaction between unreacted sulfide and t-BuO₂H in the injection port. (EtO)₃P was used to reduce the unreacted t-BuO₂H to t-BuOH before injection. But E. Amonoo-Neizer et al. (58) showed that dimethyl sulfoxide oxidises phosphites to phosphates, forming dimethyl sulfide. Similar to this work, diphenyl sulfoxide and triethylphosphite were mixed at room temperature. 5 μL of sample was injected into the gas chromatograph. Results showed that diphenyl sulfide was formed as a product (App. 1). Therefore, gas chromatography could not be used to follow sulfide to sulfoxide conversion. It was used, however, to determine end-products after all of the t-BuO₂H was consumed.
(b) Competition reactions

The difference in these reactions was that two different sulfides were oxidized together in the same media.

1. Gas chromatographic studies

The F&M 700 Laboratory gas chromatograph was used with a ¼ inch x 6 feet copper column packed with 5%FFAP on Chromosorb G. The calibration curves were prepared for each sulfide in ethanol. The products and their concentrations were analyzed at the end of reaction. GC conditions for Run 141 were

oven = 175°C, 20°C/min to 250°C
detector = 310°C
injection port = 250°C
helium flow = 143 mL/min.

GC conditions for runs 132, 142 were

oven 175°C, 5°C/min to 200°C
20°C/min to 250°C
detector = 310°C
injection port = 300°C
helium flow = 150 mL/min.

Under the above conditions, good separation was observed in each case. The chromatographs for runs, 141 and 132 are in Appendix 2.

2. UV spectral analysis

The results obtained from gas chromatographic analysis are not able to show relative reaction rates. Therefore, analyses were performed using
an UV spectrophotometer. Extinction coefficients of phenylmethyl sulfide, phenylmethyl sulfoxide, p-methoxyphenylmethyl sulfide, p-methoxyphenylmethyl sulfoxide, p-nitrophenylmethyl sulfide and p-nitrophenylmethyl sulfoxide were determined at their maxima which are 254, 237, 257, 243, 340, 284 nm respectively. Concentrations were calculated according to the Beer Lambert Law. The equations are shown and the extinction coefficients are listed in Appendix 3.

For analysis, 10 μL of a sample was added to 50 mL volumetric flask with Eppendorf multi volume tip ejecting micropipet. The flask was then filled to the mark with ethanol.

(c) Oxidation of 1-octene

25 mL of catalysis solution in benzene and 28 mL of octene plus 15 mL of t-BuO₂H in benzene were pre-equilibrated at 85°C for an hour then mixed. Reaction temperatures were observed by inserting a thermometer in the reaction solution. Changes of ±1°C were observed due to temperature changes of the constant temperature bath at high temperatures. Reactions were done in an air atmosphere.

The disappearance of t-BuO₂H was analyzed by iodometric titration, and the formation of 1-epoxyoctane was followed by gas chromatography. GC conditions were

oven = 50°C , 20°C/min to 300°C
injection port = 200°C
detector = 300°C
helium flow = 150 mL/min
Since the reaction was run at 85°C, the influence of injection port temperature to reaction was negligible.

(d) Preparation of IR samples

Mo(CO)₆ was irradiated in cyclohexane, 1-octene and benzene separately in nitrogen atmosphere at different time periods. Spectra were performed in 0.2 mm thick KBr cells on a Perkin Elmer 225 grating infrared spectrometer.
RESULTS AND DISCUSSION

These are presented under two main headings: 1. The Effect of Light Intensity on the Rate of Reactions Catalyzed by Molybdenum Compounds, and 2. Substituent and Solvent Effects on the Molybdenum-Catalyzed Reaction of Hydroperoxides with Organic Sulfides.

Under Light Intensity Effects, both oxidation of sulfides and epoxidation of olefins are considered. A section on co-oxidation of sulfides and olefins is included, as seeming to fit best here although irradiation effects were not measured.

The reactions measuring substituent and solvent effects were carried out under "normal laboratory lighting" although effects of lighting level were known. The justification for this is that reactions catalyzed using MoO₂(acac)₂ could be accelerated only by very high light intensity. The results are thus comparable to those of Modena et al. (38), who are apparently ignorant of illumination effects.
I. The effect of light on reactions

The oxidation of diphenyl sulfide was accomplished by t-BuO₂H in the presence of Mo(CO)₆ in ethanol at 35°C. Table 2 lists the third order rate constants and the reaction conditions. Although the reactions were performed under the same conditions, the rate constants differed (Runs 11-15). However, straightforward reactions which are consistent with each other were observed in Runs 16 and 17. The only difference between those reactions was the preparation of the catalyst solution. The reproducible results were obtained when the catalyst solution was prepared in a large volume (500 mL) and accidentally exposed to daylight during its preparation. In Runs 16 and 17, the small amount of catalyst solution (50 mL) was prepared in the lab without any exposure to daylight. The effect of light could not be determined at that time; the only influencing factor was thought to be the large volume of catalyst solution and the catalyst itself. This factor was ruled out when MoO₂(acac)₂ was employed as catalyst (see Table 7 in the next section). The question behind the activity of Mo(CO)₆ was unanswered and left for the time being.

As mentioned previously, Kösuoğlu had shown that sulfide played an important role in the catalyst activation, i.e., that sulfide had an influence on the structure of the catalyst. The work was therefore continued in order to synthesize such a complex between sulfides or sulfoxides with Mo(CO)₆.
Table 2. Mo(CO)$_6$-catalyzed oxidation of diphenyl sulfide with t-BuO$_2$H in ethanol.a

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[Ph$_2$S]</th>
<th>[t-BuO$_2$H]</th>
<th>[Mo(CO)$_6$] x 105</th>
<th>k_3^b M$^{-2}$ min$^{-1}$</th>
<th>k_3^c M$^{-2}$ min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.406</td>
<td>0.800</td>
<td>100.21</td>
<td>8.59</td>
<td>--</td>
</tr>
<tr>
<td>12</td>
<td>0.406</td>
<td>0.799</td>
<td>100.03</td>
<td>6.13</td>
<td>--</td>
</tr>
<tr>
<td>13</td>
<td>0.406</td>
<td>0.799</td>
<td>100.20</td>
<td>11.94</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>0.406</td>
<td>0.799</td>
<td>100.20</td>
<td>15.15</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>0.406</td>
<td>0.799</td>
<td>100.42</td>
<td>6.30</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>0.408</td>
<td>0.799</td>
<td>98.10</td>
<td>9.83</td>
<td>8.91</td>
</tr>
<tr>
<td>17</td>
<td>0.406</td>
<td>0.800</td>
<td>93.56</td>
<td>9.83</td>
<td>8.26</td>
</tr>
</tbody>
</table>

a at 35°C in nitrogen atmosphere

b obtained from titrations and CSEFA/SEMIH program was used (Ref. 46).

c obtained from UV analysis and titrations/ CSEFA/SEMIH2 program was used for calculation (Ref. 46).
Syntheses of sulfide + Mo(CO)$_6$, Cr(CO)$_6$, W(CO)$_6$ complexes and sulfoxide + Mo(CO)$_6$, Cr(CO)$_6$, W(CO)$_6$ complexes were attempted by W. Strohmeier et al. (59) using thiophene, dimethyl sulfoxide, thiophene oxide, diphenyl sulfoxide, ethylene sulfide and sulfur dioxide. Complexes of W(CO)$_6$, Cr(CO)$_6$ with sulfides and sulfoxides, and Mo(CO)$_5$·S(CH$_2$)$_4$ Mo(CO)$_5$·SO(CH$_3$)$_2$ and Mo(CO)$_5$SO(CH$_2$)$_4$ were obtained, but Mo(CO)$_5$Ph$_2$SO and Mo(CO)$_5$SO(OCH$_2$)$_2$ complexes could not be obtained. They concluded that light had an influence on the formation of these sulfide and sulfoxide complexes with metal hexacarbonyls.

In order to study this idea further, an attempt was made to observe the physical changes of the solutions of Mo(CO)$_6$ plus Ph$_2$S in ethanol and Mo(CO)$_6$ plus Ph$_2$SO in ethanol in the dark and under the normal lab light conditions. Under normal light conditions, the colour of Mo(CO)$_6$ plus Ph$_2$SO solution changed from light yellow to blue in two days, whereas the colour changes took a week to occur in the dark. Similarly, the colour of Mo(CO)$_6$ plus Ph$_2$S changed from light yellow to dark green in two weeks under normal light conditions; this same change required a month in the dark. However, no (Ph$_2$SO)$_x$Mo(CO)$_{6-x}$ and (Ph$_2$S)$_x$Mo(CO)$_{6-x}$ complexes were obtained. These colour changes were due to the formation of new complexes. Therefore, attention was turned to kinetic reactions which would be done under dark and light conditions.

Reactions were carried out using phenylmethyl sulfide as a nucleophilic substrate, t-BuO$_2$H as an oxidant, and Mo(CO)$_6$, or MoO$_2$(acac)$_2$ as catalysts at 35°C in nitrogen atmosphere. The results are summarized in Table 3;
Table 3. The oxidation of phenylmethyl sulfide by t-BuO₂H in the presence of either Mo(CO)₆ or MoO₂(acac)₂, under various light conditions, in ethanol.

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[PhSMe]</th>
<th>[t-BuO₂H]</th>
<th>Catalyst</th>
<th>[cat] x 10⁵</th>
<th>Light Conditions</th>
<th>T°C</th>
<th>k₂ x 10² M⁻¹ min⁻¹</th>
<th>k₃ M⁻² min⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>1.009</td>
<td>0.202</td>
<td>MoO₂(acac)₂</td>
<td>2.503</td>
<td>dark</td>
<td>35</td>
<td>0.655</td>
<td>261.0</td>
</tr>
<tr>
<td>95</td>
<td>1.014</td>
<td>0.204</td>
<td>MoO₂(acac)₂</td>
<td>2.668</td>
<td>150 W spot light</td>
<td>35</td>
<td>8.31</td>
<td>3114</td>
</tr>
<tr>
<td>96</td>
<td>1.007</td>
<td>0.207</td>
<td>MoO₂(acac)₂</td>
<td>2.667</td>
<td>275 W UV light</td>
<td>35</td>
<td>10.2</td>
<td>3843</td>
</tr>
<tr>
<td>151</td>
<td>1.023</td>
<td>0.209</td>
<td>MoO₂(acac)₂</td>
<td>2.533</td>
<td>UV</td>
<td>30</td>
<td>6.17</td>
<td>2437</td>
</tr>
<tr>
<td>152</td>
<td>1.022</td>
<td>0.206</td>
<td>MoO₂(acac)₂</td>
<td>2.533</td>
<td>UV</td>
<td>25</td>
<td>3.79</td>
<td>1496</td>
</tr>
<tr>
<td>97</td>
<td>1.008</td>
<td>0.204</td>
<td>--</td>
<td>--</td>
<td>UV</td>
<td>35</td>
<td>no reaction</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>1.020</td>
<td>0.205</td>
<td>Mo(CO)₆</td>
<td>2.821</td>
<td>UV</td>
<td>35</td>
<td>10.11</td>
<td>3582</td>
</tr>
<tr>
<td>125</td>
<td>1.021</td>
<td>0.206</td>
<td>Mo(CO)₆</td>
<td>2.765</td>
<td>normal</td>
<td>35</td>
<td>0.0357</td>
<td>12.90</td>
</tr>
<tr>
<td>153</td>
<td>1.022</td>
<td>0.211</td>
<td>Mo(CO)₆</td>
<td>2.897</td>
<td>UV</td>
<td>31</td>
<td>7.84</td>
<td>2707</td>
</tr>
<tr>
<td>156</td>
<td>1.020</td>
<td>0.211</td>
<td>Mo(CO)₆</td>
<td>2.821</td>
<td>UV</td>
<td>19</td>
<td>3.17</td>
<td>1125</td>
</tr>
<tr>
<td>154</td>
<td>1.020</td>
<td>0.209</td>
<td>Mo(CO)₆</td>
<td>2.727</td>
<td>UV</td>
<td>25</td>
<td>5.26</td>
<td>1928</td>
</tr>
<tr>
<td>158</td>
<td>1.023</td>
<td>0.206</td>
<td>Mo(CO)₆</td>
<td>2.814</td>
<td>UV</td>
<td>39</td>
<td>2.87</td>
<td>4576</td>
</tr>
</tbody>
</table>

a under nitrogen atmosphere
the oxidations follow second order kinetics under all conditions (Figs. 1 and 2) except Mo(CO)₆-catalyzed phenylmethyl sulfide oxidation under normal light conditions at 35°C. This reaction showed reproducibility and an increase in rate with time (Fig. 3). An approximate rate was calculated using the first four points from the second order rate plot. No decomposition of t-BuO₂H in the presence of catalyst and no uncatalyzed oxidation of phenylmethyl sulfide was observed at 35°C under UV radiation in 35 minutes.

As is clearly seen from Table 3, the rate constants increase when the lighting conditions of the reaction environment change from dark to light. The UV light increased the oxidation rate to 1.7 times greater than that found under normal light conditions in MoO₂(acac)₂-catalyzed oxidation, whereas in Mo(CO)₆-catalyzed oxidation reaction proceeded 278 times faster under UV light than under normal light. No Mo(CO)₆-catalyzed oxidation reaction was done in the dark because it was not needed, and sufficient information was obtained. Interpretation of the results of either Mo(CO)₆- or MoO₂(acac)₂ catalyzed phenylmethyl sulfide oxidation with t-BuO₂H under different light conditions involves a number of general considerations:

(i) the formation of catalytically active molybdenum(VI) species,
(ii) the complexation of sulfides, alcohols and t-BuO₂H with the catalyst,
(iii) the effect of light on the nucleophilicity of sulfide.

The difference between the activity of Mo(CO)₆ and MoO₂(acac)₂ can be explained by the formation of catalytically active molybdenum(VI) species.
FIG-1 SECOND ORDER RATE PLOTS FOR MOO2(ACAC)2
CATALYZED OXIDATION OF PHENYL METHYL SULFIDE
WITH T-BUOOH IN ETHANOL AT 35 C

○ . IN DARK
X . UNDER 175 W SPOT LIGHT
Y . UNDER U.V LIGHT

LN(S)/(HP)
0 20 40 60 80 100 120
MINUTES
FIG-2 SECOND ORDER RATE PLOT FOR Mo(CO)6 CATALYZED OXIDATION OF PHENYL METHYL SULFIDE WITH T-BUOOH IN ETHOH AT 35 C UNDER U.V LIGHT
FIG-3 SECOND ORDER RATE PLOT FOR Mo(CO)6 CATALYZED
OXIDATION OF PHENYL METHYL SULFIDE WITH T-BUOOH
IN ETHANOL AT 35 C UNDER NORMAL LIGHT CONDITION
Kinetic reactions, in this work, indicate that molybdenum(0) in
Mo(CO)$_6$ is partially converted to the molybdenum(VI) oxidation
state with t-Bu$_2$O$_2$H at 35°C. As seen from Figure 3, the rate of reaction increases
with time. This clearly shows that oxidation of molybdenum(0) to
molybdenum(VI) occurs slowly. When the reaction was run under UV radiation,
t-Bu$_2$O$_2$H and UV radiation together cause the rapid conversion of molybdenum(0)
to molybdenum(VI).

The oxidation of Mo(0) to molybdenum(VI) occurs by removing six d
electrons from the metal ion. If these six electrons are removed, the
structure of Mo(CO)$_6$ is expected to change because of the poor donating and
good π acceptor ability of C=O ligand. By removing six d electrons,
molybdenum becomes a strong Lewis acid; in the presence of strong Lewis
bases (compared to carbon monoxide) such as R_2S, ROH and t-Bu$_2$O$_2$H, the
formation of molybdenum hydroperoxide, sulfide and alcohol complexes is
expected. No CO ligand is expected to be around the molybdenum, so the
stretching frequency of the CO group should disappear in the IR spectrum
of Mo(CO)$_6$. Experiments were done, therefore, to observe the CO band. The
IR spectrum of Mo(CO)$_6$ consists of one band at 1980 cm$^{-1}$ in ethanol
(Appendix 4). This band disappears slowly in the presence of t-Bu$_2$O$_2$H under
UV radiation in 30 minutes (Fig. 4, Appendix 5) when the molar ratio of
t-Bu$_2$O$_2$H to Mo(CO)$_6$ is 612/1. This ratio is very small compared to the
ratio in the kinetic reactions (8000/1). If the t-Bu$_2$O$_2$H/Mo(CO)$_6$ molar
ratio of 8000/1 is used in IR experiments, a rapid decrease of the intensity of C=O band should be observed. Since Mo(CO)₆ has very low absorption below 1.82 x 10⁻³ M, the t-BuO₂H/Mo(CO)₆ molar ratio of 8000/1 in ethanol could not be prepared, because Mo(CO)₆ has to be dissolved in concentrated t-BuO₂H. This was dangerous work which caused a fire and an explosion.

The same rapid conversion was also reported at high temperatures from the kinetic reactions by Sheng et al. (9) and Sheldon (3).

If the molybdenum(VI) species is rapidly formed with t-BuO₂H in the MoO₂(acac)₂ catalyzed oxidation, the reactivity difference of these systems in the dark and under light radiation can be explained by the nucleophilicity of the sulfide. The acceleration by the attack of sulfide under radiation caused the difference.

The third order rate constants (Table 7, Runs 43-47, 173) of the MoO₂(acac)₂-catalyzed oxidation of PhSMe with t-BuO₂H indicate that the oxidation reactions proceed smoothly under normal laboratory light conditions with any effect from the light which comes through the window.

But the irreproducibility of the Mo(CO)₆ catalyzed oxidation of PhSMe at 35°C under normal light conditions indicates that any slight changes in light conditions affect the rate of oxidation.
II. The epoxidation of 1-octene

The epoxidation of 1-octene was accomplished in the presence of either Mo(CO)₆ or MoO₂(acac)₂ at 85°C in benzene, under various light conditions. The primary reason for carrying out these reactions was to see the light effect on the reaction by changing the nucleophilic substrate. The system chosen was similar to that used by Sheng and Zajacek (2). The kinetic data were obtained by measurement of changes in t-BuO₂H concentration with iodometric titration, and changes in l-epoxyoctane by gas-liquid chromatography (Fig. 5). Reactions were carried out in a large excess of 1-octene. The decomposition of t-BuO₂H is assumed to be insignificant. The pseudo-first order kinetics were observed (Fig. 6) in Mo(CO)₆-catalyzed epoxidation. The kinetic data (Table 4) fit the following rate law which is shown in Equation 53.

\[
\text{Rate} = k[\text{1-octene}][\text{t-BuO}_2\text{H}][\text{Mo(CO)}_6]
\]

(First order dependency on each reactant was reported by Sheng (2).)

The reactions were done in the dark, under normal light conditions and under UV radiation. The third order rate constants indicate that the reactions proceed at the same rate either in the dark or under normal light, whereas under UV radiation, the reaction proceeds 4.6 times faster than in the dark and under normal light. These data show that the oxidation of molybdenum(0) to molybdenum(VI) with t-BuO₂H and the formation of hydroperoxide-olefin-molybdenum complexes occur at high temperatures. It seems to be the case that UV light accelerates the attack of the double bond to the electropositive oxygen on the hydroperoxide-containing complex.
Table 4. The epoxidation of 1-octene by t-BuO₂H in the presence of Mo(CO)₆ and MoO₂(acac)₂ under various light conditions.¹

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[1-octene]</th>
<th>[t-BuO₂H]</th>
<th>Catalyst</th>
<th>[cat] x 10⁻³</th>
<th>T°C</th>
<th>Light conditions</th>
<th>k₁ min⁻¹</th>
<th>k₂ M⁻¹ min⁻¹</th>
<th>k₃ M⁻² min⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>2.626</td>
<td>0.1820</td>
<td>Mo(CO)₆</td>
<td>12.68</td>
<td>85</td>
<td>UV</td>
<td>0.05164</td>
<td>0.0196</td>
<td>155.02</td>
</tr>
<tr>
<td>99</td>
<td>2.626</td>
<td>0.1813</td>
<td>Mo(CO)₆</td>
<td>11.89</td>
<td>82</td>
<td>UV</td>
<td>0.4650</td>
<td>0.0177</td>
<td>149.15</td>
</tr>
<tr>
<td>100</td>
<td>2.588</td>
<td>0.1773</td>
<td>Mo(CO)₆</td>
<td>11.89</td>
<td>85</td>
<td>normal</td>
<td>0.01035</td>
<td>0.00400</td>
<td>33.65</td>
</tr>
<tr>
<td>101</td>
<td>2.588</td>
<td>0.1785</td>
<td>Mo(CO)₆</td>
<td>12.41</td>
<td>85</td>
<td>dark</td>
<td>0.01130</td>
<td>0.00460</td>
<td>37.35</td>
</tr>
<tr>
<td>102</td>
<td>2.588</td>
<td>0.1776</td>
<td>Mo(CO)₆</td>
<td>11.79</td>
<td>85</td>
<td>normal</td>
<td>0.01147</td>
<td>0.00433</td>
<td>37.61</td>
</tr>
<tr>
<td>114</td>
<td>2.626</td>
<td>0.1816</td>
<td>MoO₂(acac)₂</td>
<td>11.75</td>
<td>85</td>
<td>UV</td>
<td>0.1543</td>
<td>0.0587</td>
<td>499.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04440</td>
<td>0.0169⁵</td>
<td>143.72⁵</td>
</tr>
<tr>
<td>115</td>
<td>2.626</td>
<td>0.1850</td>
<td>MoO₂(acac)₂</td>
<td>11.61</td>
<td>85</td>
<td>normal</td>
<td>0.1220</td>
<td>0.0464</td>
<td>399.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0374³</td>
<td>0.0142³</td>
<td>122.67³</td>
</tr>
<tr>
<td>161</td>
<td>2.512</td>
<td>0.1740</td>
<td>MoO₂(acac)₂</td>
<td>12.22</td>
<td>85</td>
<td>dark</td>
<td>0.1189</td>
<td>0.0473</td>
<td>387.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0345⁴</td>
<td>0.0138⁴</td>
<td>110.87⁴</td>
</tr>
</tbody>
</table>

¹ under air atmosphere

² final rates
FIG-5 CONCENTRATION VERSUS TIME FOR THE EPOXIDATION OF 1. OCTENE WITH T-BUOOH IN BENZENE IN THE PRESENCE OF Mo(CO)₆
O: T-BUOOH
X: 1. EPOXYOCTANE
FIG-6 FIRST ORDER RATE PLOTS FOR THE EPOXIDATION OF 1-OCTENE WITH T-BUOOH IN BENZENE IN THE PRESENCE OF Mo(CO)6 AT 65°C

- Y : IN DARK
- X : UNDER NORMAL LIGHT CONDITION
- O : UNDER U.V LIGHT

LN(HF) vs MINUTES
The difference between sulfide oxidation and olefin epoxidation were the reaction temperatures. At high temperatures, catalyst has enough energy to activate itself. But at low temperature, more energy (which comes from UV light) is required to activate the catalyst.

As mentioned earlier, the formation of molybdenum-olefin-hydroperoxide complexes occurs when the molybdenum is in the 6+ oxidation state. Since the molybdenum(VI) is a stronger Lewis acid than the molybdenum(0), the formation of such complexes must be in favour of the 6+ oxidation state of molybdenum. However, no such complexes could be obtained in this work.

Previously, the formation of the complexes between Mo(CO)$_6$ and either various olefins or alcohols under UV radiation were observed and characterized by their IR spectra by various authors (60-65). The formation of Mo(CO)$_5$SPh$_2$ and Mo(CO)$_5$S(CH$_3$)$_2$ complexes were also observed and characterized by their IR and NMR spectra by Herberhold et al. (66). It has been suggested that olefins or alcohols can replace only one carbonyl group due to back charge acceptor ability of these ligands. However, di- and tri-substituted complexes can be obtained, but they are very unstable and more energy is required. Experiments were therefore done to observe the complexation between Mo(CO)$_6$ and 1-octene by IR spectroscopy. The hypothesis was that if Mo(CO)$_{6-x}$-1-octene$_x$ complex could be obtained in the zero oxidation state of molybdenum, the formation of these complexes with molybdenum must be formed in the 6+ oxidation state.

Table 5 lists the conditions and IR stretching frequency of the CO group in molybdenum complexes. From spectral analysis, the Mo(CO)$_5$-1-octene complex could be obtained at either 85°C, or 85°C and under UV radiation
Table 5. Carbonyl stretching frequencies of Mo(CO)$_6$ under various conditions.

<table>
<thead>
<tr>
<th>Spectrum Number</th>
<th>Compounds</th>
<th>Light Condition</th>
<th>Heat Condition</th>
<th>ν cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1-octene + Mo(CO)$_6$</td>
<td>UV 10 min</td>
<td>85°C</td>
<td>1990(s) 1955(m) 1821(m)</td>
</tr>
<tr>
<td>8</td>
<td>1-octene + Mo(CO)$_6$</td>
<td>--</td>
<td>85°C 5 min</td>
<td>1987(s) 1955(m) 1820(m)</td>
</tr>
<tr>
<td>9</td>
<td>1-octene + Mo(CO)$_6$</td>
<td>--</td>
<td>--</td>
<td>1987(s)</td>
</tr>
<tr>
<td>10</td>
<td>1-octene</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
(Appendix 4). The spectrum in the carbonyl stretching region of the infrared for this type of monosubstituted complex is characteristic of the replacement of one CO group of an octahedral complex leaving a square pyramid carbonyl about the metal. Such a spectrum should contain three carbonyl stretching bands. The IR spectrum of Mo(CO)$_5$-1-octene (Appendix 6) consists of three bands at 1980 cm$^{-1}$ (s) (corresponding to an E band) and 1955, 1821 cm$^{-1}$ (m) corresponding to two A$_1$ bands). The IR spectrum of Mo(CO)$_6$ in 1-octene at room temperature gives one band at 1987 cm$^{-1}$ (s). This corresponds to the T$_{1u}$ band in Mo(CO)$_6$.

The formation of the same complex at either high temperatures or high temperatures and UV radiation indicates that heat is a sufficiently strong energy source to activate the catalyst. According to kinetic and IR experiments, it can be concluded that UV light has an accelerating effect on the attack of the double bond.

The epoxidation was also carried out in the presence of MoO$_2$(acac)$_2$ under different light conditions. Kinetic data (Figs. 7-9) show that MoO$_2$(acac)$_2$ behaves differently from Mo(CO)$_6$ in the epoxidation reaction. MoO$_2$(acac)$_2$ gave a higher rate of epoxidation initially, then the rate decreased with time. The same observation was made by Sheldon (12). The present results, however, are in contrast with his results; since it has been observed that after differing initial rates, the reactions proceed with the same rate in the presence of various molybdenum catalysts, including Mo(CO)$_6$ and MoO$_2$(acac)$_2$. In this work, the final rates of MoO$_2$(acac)$_2$-catalyzed epoxidations are not similar to those found in the Mo(CO)$_6$-catalyzed epoxidation under either dark or normal light conditions (except for the reaction done under UV radiation).
FIG-7 FIRST ORDER RATE PLOT FOR THE EPOXIDATION OF
1. OCTENE WITH T-BUOOH IN BENZENE IN THE PRESENCE
OF N002(ACAC)2 AT 86 C IN DARK

MINUTES

LN(NP)
FIG-8 FIRST ORDER RATE PLOT FOR THE EPOXIDATION OF 1-OCTENE WITH T-BUOOH IN BENZENE IN THE PRESENCE OF MOO2(ACAC)2 AT 85 °C UNDER NORMAL LIGHT CONDITION
FIG-9 FIRST ORDER RATE PLOT FOR THE EPoxidATION OF 1-Octene WITH T-BuOOH IN BENzENE IN THE PRESENCE OF M002(ACAC)2 AT 85 C UNDER U.V LIGHT
III. The Mo(CO)$_6$-catalyzed epoxidation of 1-octene in the presence of phenylmethyl sulfide

The effect of sulfide as a co-catalyst in the Mo(CO)$_6$-catalyzed epoxidation of 1-octene by t-BuO$_2$H in benzene and ethanol was studied. The reaction was followed by iodometric titration of t-BuO$_2$H and by gas-liquid chromatography analysis of 1-epoxyoctene (Fig. 10). A stoichiometry of 1:1 was obtained for each reaction and pseudo first order kinetics were observed for the epoxidation reaction (Fig. 11). On the assumption that sulfide is required to activate the catalyst, 0.1 M of phenylmethyl sulfide was added to the initial reaction mixture. In contrast to the expected result, kinetic data in Table 6 show that in the presence of sulfide, the rate of epoxidation in benzene decreased. The amount of phenylmethyl sulfide was lowered by 50% and the rate of epoxidation reaction showed an increase. It seemed that in spite of sulfide, sulfoxide or probably sulfone had an effect in these reactions, because sulfide was oxidized to sulfoxide very rapidly in this reaction system. The disappearance of sulfoxide was observed to occur in 20 minutes, after which epoxidation reaction started and continued in the presence of sulfone.

Changing the solvent from benzene to ethanol decreased the epoxidation rate by a factor of 2.5. The effect of alcoholic solvent can be ascribed to the following factors:

(i) competitive complexation of alcohols and t-BuO$_2$H with molybdenum,
(ii) involvement of ethanol in the transition state.

The solvent effect was reserved for later discussion.
Table 6. Mo(CO)$_6$-catalyzed epoxidation of l-octene by t-BuO$_2$H in the presence of phenylmethyl sulfide.a,b

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[l-octene]</th>
<th>[PhSMe]</th>
<th>[t-BuO$_2$H]</th>
<th>[Mo(CO)$_6$] x 105</th>
<th>Solvent</th>
<th>k_1 c M$^{-1}$ min$^{-1}$</th>
<th>k_2 c M$^{-1}$ min$^{-1}$</th>
<th>k_3 c M$^{-2}$ min$^{-1}$</th>
<th>k d M$^{-2}$ min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>2.375</td>
<td>0.101</td>
<td>0.500</td>
<td>10.917</td>
<td>benzene</td>
<td>0.00384</td>
<td>0.00162</td>
<td>14.84</td>
<td>3621</td>
</tr>
<tr>
<td>106</td>
<td>2.375</td>
<td>0.101</td>
<td>0.502</td>
<td>11.073</td>
<td>benzene</td>
<td>0.00380</td>
<td>0.00160</td>
<td>14.45</td>
<td>3061</td>
</tr>
<tr>
<td>107</td>
<td>2.375</td>
<td>0.0510</td>
<td>0.502</td>
<td>11.519</td>
<td>benzene</td>
<td>0.0515</td>
<td>0.00217</td>
<td>18.85</td>
<td>4779</td>
</tr>
<tr>
<td>108</td>
<td>2.375</td>
<td>0.101</td>
<td>0.504</td>
<td>11.480</td>
<td>ethanol</td>
<td>0.00155</td>
<td>0.000565</td>
<td>5.700</td>
<td>1353</td>
</tr>
</tbody>
</table>

a under normal light conditions.

b at 85°C under air atmosphere

c the rates of epoxidation

d the oxidation rate of sulfoxide
FIG-10 CONCENTRATION VERSUS TIME FOR THE EPOXIDATION OF 1.OCTENE WITH T-BUOOH IN BENZENE IN THE PRESENCE OF MO(CO)6 AND PHENYL METHYL SULFIDE AT 85°C

Y : PHENYL METHYL SULFOXIDE
X : PHENYL METHYL SULFONE
O : 1.EPOXYOCTANE

MOL/L

0.00 0.03 0.06 0.09 0.12

MINUTES

0 20 40 60 80 100 120
FIG-11
FIRST ORDER RATE PLOT FOR THE EPOXIDATION OF
1,4-DECENE WITH TBHOOH IN BENZENE IN THE
PRESENCE OF Mo(CO)6 AND PHENYL METHYL SULFIDE
AT 88 °C
IV. The oxidation of phenylmethyl sulfide and substituted phenylmethyl sulfides

The oxidations of phenylmethyl sulfide with t-BuO₂H were carried out over a temperature range of 27-45°C in ethanol in the presence of MoO₂(acac)₂. Phenylmethyl sulfoxide and t-butyl alcohol were obtained as products. Since the molar ratio of sulfide to hydroperoxide was 5:1, the oxidation of phenylmethyl sulfoxide to phenylmethyl sulfone did not proceed. The loss of sulfide and the formation of sulfoxide showed a 1:1 stoichiometric relationship. But, as observed by Köseoğlu (46), when the sulfide:hydroperoxide molar ratio of 1:1 or 1:2 was employed, both reactions, the oxidations of sulfide to sulfoxide, and the oxidations of sulfoxide to sulfone, were observed (Eqs. 54, 55).

\[
\phi\text{SMe} + \text{t-BuO}_2\text{H} \xrightarrow{\text{MoO}_2(\text{acac})_2} \phi\text{-S-Me} + \text{t-BuOH} \quad (54)
\]

\[
\phi\text{-S-Me} + \text{t-BuO}_2\text{H} \xrightarrow{\text{MoO}_2(\text{acac})_2} \phi\text{-S-Me} + \text{t-BuOH} \quad (55)
\]

In most cases, the sulfide:hydroperoxide molar ratio of 5:1 was employed in order to eliminate the sulfoxide oxidation.

The reaction was followed by monitoring the disappearance of t-butyl hydroperoxide by iodometric titration. The obtained data fit Figure 12, the second order rate law that is shown in Equation 5, since there is no decomposition of t-BuO₂H at the low concentration of catalyst, and there is no uncatalyzed oxidation of sulfide.
Table 7. MoO$_2$(acac)$_2$-catalyzed oxidation of phenylmethyl sulfide with t-BuO$_2$H in ethanol.\(^a\)

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[(\phi)SMe]</th>
<th>[t-BuO$_2$H]</th>
<th>[MoO$_2$(acac)$_2$] x 10^5</th>
<th>T$^\circ$C</th>
<th>k$_2$ M$^{-1}$ min$^{-1}$</th>
<th>k$_3$ M$^{-2}$ min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>1.005</td>
<td>0.205</td>
<td>2.407</td>
<td>35</td>
<td>0.05490</td>
<td>2279</td>
</tr>
<tr>
<td>56</td>
<td>1.003</td>
<td>0.204</td>
<td>2.638</td>
<td>27</td>
<td>0.02216</td>
<td>840</td>
</tr>
<tr>
<td>59</td>
<td>1.009</td>
<td>0.202</td>
<td>2.233</td>
<td>45</td>
<td>0.1096</td>
<td>4908</td>
</tr>
<tr>
<td>50</td>
<td>1.007</td>
<td>0.103</td>
<td>5.084</td>
<td>35</td>
<td>0.1205</td>
<td>2371</td>
</tr>
<tr>
<td>51</td>
<td>1.005</td>
<td>0.103</td>
<td>4.562</td>
<td>35</td>
<td>0.1035</td>
<td>2268</td>
</tr>
<tr>
<td>52</td>
<td>1.001</td>
<td>0.205</td>
<td>4.792</td>
<td>35</td>
<td>0.1131</td>
<td>2360</td>
</tr>
<tr>
<td>47</td>
<td>1.003</td>
<td>0.202</td>
<td>9.960</td>
<td>35</td>
<td>0.1650</td>
<td>1660</td>
</tr>
<tr>
<td>46</td>
<td>1.000</td>
<td>0.203</td>
<td>9.770</td>
<td>35</td>
<td>0.1680</td>
<td>1724</td>
</tr>
<tr>
<td>45</td>
<td>1.003</td>
<td>0.202</td>
<td>9.608</td>
<td>35</td>
<td>0.1640</td>
<td>1714</td>
</tr>
<tr>
<td>44</td>
<td>1.000</td>
<td>0.202</td>
<td>9.540</td>
<td>35</td>
<td>0.1630</td>
<td>1709</td>
</tr>
<tr>
<td>43</td>
<td>1.000</td>
<td>0.200</td>
<td>9.570</td>
<td>35</td>
<td>0.1550</td>
<td>1623</td>
</tr>
<tr>
<td>54</td>
<td>1.005</td>
<td>0.202</td>
<td>1.450</td>
<td>35</td>
<td>0.02450</td>
<td>1664</td>
</tr>
<tr>
<td>171</td>
<td>1.002</td>
<td>0.208</td>
<td>3.528</td>
<td>35</td>
<td>0.07419</td>
<td>2120</td>
</tr>
<tr>
<td>173b</td>
<td>1.022</td>
<td>0.209</td>
<td>3.396</td>
<td>35</td>
<td>0.07930</td>
<td>2335</td>
</tr>
</tbody>
</table>

\(^a\) under nitrogen atmosphere

\(^b\) run done at night
FIG. 12 SECOND ORDER RATE PLOT FOR THE OXIDATION OF
PHENYL METHYL SULFIDE WITH T-BUOOH IN ETHANOL
IN THE PRESENCE OF MoO2(ACAC)2 AT 27°C
FIG-13 THE LOGARITHM OF THE REACTION RATE VERSUS CATALYST CONCENTRATION IN THE MOO2(ACAC)2 CATALYZED OXIDATION OF PHENYL METHYL SULFIDE WITH T-BUOOH IN ETHANOL AT 35 C
The results of kinetic measurements are given in Table 7. The values at 35°C show that the reaction order with respect to the catalyst is approximately first order within the range $2.407 \times 10^{-5} - 4.792 \times 10^{-5}$ M (Fig. 13). Deviation was observed at a higher or lower concentration of the catalyst. Furthermore, the first order dependency on t-BuO₂H is observed.

The oxidations of p-CH₃O, p-CH₃, p-NO₂, p-H-C=O, p-CH₃C=O, p-Cl, p-Br and p-OH substituted phenylmethyl sulfide were also carried out using t-BuO₂H in the presence of MoO₂(acac)₂. The kinetic data are presented in Tables 8-10, and the oxidations follow second order kinetics for each of the substituted phenylmethyl sulfides (Figs. 14-21). The rate constants were calculated by using Equation 56.

Similar to phenylmethyl sulfide oxidation, the first order dependency on the catalyst is observed within the range of $1.29 \times 10^{-5} - 4.73 \times 10^{-5}$ M in the oxidation of p-methoxyphenylmethyl sulfide (Fig. 22).

The third order rate constants for the oxidation of the substituted phenylmethyl sulfides were determined, assuming the first order dependency on catalyst similar to phenylmethyl sulfide and p-methoxyphenylmethyl sulfide.

The oxidations of p-acetyl and p-nitrophenylnethyl sulfides could not be run at 35°C due to poor solubilities of these compounds in ethanol. The reactions were therefore accomplished at high temperatures and the relative rate constants at 35°C were calculated from their Arrhenius plots (Figs. 26, 27).
Table 8. MoO$_2$(acac)$_2$-catalyzed oxidation of p-methoxyphenylmethyl sulfide with t-BuO$_2$H in ethanol.a

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[CH$_3$O$_2$SMe]</th>
<th>[t-BuO$_2$H]</th>
<th>[MoO$_2$(acac)$_2$] $\times 10^5$</th>
<th>°C</th>
<th>k_2 M$^{-1}$ min$^{-1}$</th>
<th>k_3 M$^{-2}$ min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>1.004</td>
<td>0.2009</td>
<td>2.423</td>
<td>35</td>
<td>0.154</td>
<td>6357</td>
</tr>
<tr>
<td>41</td>
<td>1.000</td>
<td>0.2000</td>
<td>4.730</td>
<td>35</td>
<td>0.303</td>
<td>6424</td>
</tr>
<tr>
<td>63</td>
<td>1.003</td>
<td>0.2002</td>
<td>2.533</td>
<td>35</td>
<td>0.162</td>
<td>6409</td>
</tr>
<tr>
<td>65</td>
<td>1.004</td>
<td>0.2023</td>
<td>1.294</td>
<td>35</td>
<td>0.0780</td>
<td>6053</td>
</tr>
<tr>
<td>70</td>
<td>1.003</td>
<td>0.2016</td>
<td>2.742</td>
<td>26</td>
<td>0.0850</td>
<td>3101</td>
</tr>
<tr>
<td>71</td>
<td>1.004</td>
<td>0.2055</td>
<td>2.490</td>
<td>15</td>
<td>0.0290</td>
<td>1165</td>
</tr>
<tr>
<td>72</td>
<td>1.006</td>
<td>0.2044</td>
<td>2.490</td>
<td>30</td>
<td>0.107</td>
<td>4316</td>
</tr>
<tr>
<td>73</td>
<td>1.008</td>
<td>0.2078</td>
<td>2.435</td>
<td>21</td>
<td>0.0525</td>
<td>2158</td>
</tr>
</tbody>
</table>

a under nitrogen atmosphere
Table 9. MoO$_2$(acac)$_2$-catalyzed oxidation of p-methyphenylmethyl sulfide with t-BuO$_2$H in ethanol.a

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[CH$_3$SMe]</th>
<th>[t-BuO$_2$H]</th>
<th>[MoO$_2$(acac)$_2$] $\times 10^5$</th>
<th>T°C</th>
<th>k_2 M$^{-1}$ min$^{-1}$</th>
<th>k_3 M2 min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>1.005</td>
<td>0.2041</td>
<td>2.450</td>
<td>35</td>
<td>0.1151</td>
<td>4551</td>
</tr>
<tr>
<td>87</td>
<td>1.007</td>
<td>0.2071</td>
<td>2.380</td>
<td>30</td>
<td>0.06540</td>
<td>2750</td>
</tr>
<tr>
<td>89</td>
<td>1.006</td>
<td>0.2089</td>
<td>2.362</td>
<td>26</td>
<td>0.04170</td>
<td>1765</td>
</tr>
<tr>
<td>90</td>
<td>1.005</td>
<td>0.2034</td>
<td>2.600</td>
<td>15</td>
<td>0.01490</td>
<td>573.9</td>
</tr>
<tr>
<td>91</td>
<td>1.001</td>
<td>0.2097</td>
<td>2.549</td>
<td>23</td>
<td>0.03280</td>
<td>1523</td>
</tr>
</tbody>
</table>

a under nitrogen atmosphere
Table 10. MoO$_2$(acac)$_2$-catalyzed oxidation of p-nitro-, p-chloro-, p-bromo- and p-hydroxy-phenylmethylsulfides and p-methylthiobenzaldehyde with t-BuO$_2$H in ethanol.a

<table>
<thead>
<tr>
<th>Run Number</th>
<th>X</th>
<th>$[ext{SMe}]$</th>
<th>[t-BuO$_2$H]</th>
<th>$[\text{MoO}_2$(acac)$_2]$ x 10^5</th>
<th>T°C</th>
<th>k_2 M$^{-1}$min$^{-1}$</th>
<th>k_3 M$^{-2}$min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>NO$_2$</td>
<td>1.001</td>
<td>0.2063</td>
<td>2.463</td>
<td>70</td>
<td>0.05880</td>
<td>2387</td>
</tr>
<tr>
<td>136</td>
<td>"</td>
<td>1.001</td>
<td>0.2113</td>
<td>2.656</td>
<td>65</td>
<td>0.03875</td>
<td>1459</td>
</tr>
<tr>
<td>137</td>
<td>"</td>
<td>1.000</td>
<td>0.2096</td>
<td>2.619</td>
<td>75</td>
<td>0.08764</td>
<td>3346</td>
</tr>
<tr>
<td>139</td>
<td>Cl</td>
<td>1.000</td>
<td>0.2108</td>
<td>2.576</td>
<td>35</td>
<td>0.05970</td>
<td>2317</td>
</tr>
<tr>
<td>140</td>
<td>Br</td>
<td>1.002</td>
<td>0.2072</td>
<td>2.604</td>
<td>35</td>
<td>0.06470</td>
<td>2485</td>
</tr>
<tr>
<td>143</td>
<td>OH</td>
<td>1.002</td>
<td>0.2090</td>
<td>2.560</td>
<td>35</td>
<td>0.04260</td>
<td>1665</td>
</tr>
<tr>
<td>165</td>
<td>H-C=O</td>
<td>1.006</td>
<td>0.2031</td>
<td>2.607</td>
<td>35</td>
<td>0.007070</td>
<td>271</td>
</tr>
<tr>
<td>167</td>
<td>"</td>
<td>1.012</td>
<td>0.2035</td>
<td>2.776</td>
<td>35</td>
<td>0.007220</td>
<td>260</td>
</tr>
<tr>
<td>168</td>
<td>CH$_3$-C=O</td>
<td>1.006</td>
<td>0.2120</td>
<td>2.515</td>
<td>65</td>
<td>0.1262</td>
<td>5019</td>
</tr>
<tr>
<td>169</td>
<td>"</td>
<td>1.010</td>
<td>0.2085</td>
<td>2.546</td>
<td>70</td>
<td>0.2071</td>
<td>8134</td>
</tr>
<tr>
<td>170</td>
<td>"</td>
<td>1.002</td>
<td>0.2040</td>
<td>2.546</td>
<td>60</td>
<td>0.08085</td>
<td>3175</td>
</tr>
</tbody>
</table>

a under nitrogen atmosphere
FIG. 14
SECOND ORDER RATE ПLOT FOR THE OXIDATION OF
METHYLPHENYL METHYL SULFIDE WITH T-BUDO
IN ETHANOL IN THE PRESENCE OF NO2 (ARC)2
AT 23 °C.
FIG-15 SECOND ORDER RATE PLOT FOR THE OXIDATION OF P-NITROPHENYL METHYL SULFIDE WITH T-BUOH IN ETHANOL IN THE PRESENCE OF MOO2(ACAC)2 AT 60 C
FIG-16 SECOND ORDER RATE PLOT FOR THE OXIDATION OF P-CHLOROPHENYL METHYL SULFIDE WITH T-BUOOH IN ETHANOL IN THE PRESENCE OF MOO2(ACAC)2 AT 35°C
FIG-17 SECOND ORDER RATE PLOT FOR THE OXIDATION OF P-BROMOPHENYL METHYL SULFIDE WITH T-BUOOH IN ETHANOL IN THE PRESENCE OF MMO2(ACAC)2 AT 35 °C
Fig. 18
Second order rate plot for the oxidation of p-hydroxyphophenyl methyl sulfide with t-buOOH in ethanol in the presence of MoO2(ACAC)2 at 35 °C.
FIG-19 SECOND ORDER RATE PLOT FOR THE OXIDATION OF 4-METHYLTHIO BENZALDEHYDE WITH T-BUOOH IN ETHANOL IN THE PRESENCE OF MoO2(ACAC)2 AT 35 C
FIG-20 SECOND ORDER RATE PLOT FOR THE OXIDATION OF
P-METHOXYPHENYL METHYL SULFIDE WITH T-BUOOH
IN ETHANOL IN THE PRESENCE OF M002(ACAC)2
AT 21 °C
FIG-22 THE LOGARITHM OF THE REACTION RATE VERSUS CATALYST CONCENTRATION IN THE MOO2(ACAC)2 CATALYZED OXIDATION OF p-METHOXYPHENYL METHYL SULFIDE WITH T-BUOOH IN ETHANOL AT 35°C
The Arrhenius plots (Figs. 23-29) of $\ln k_3$ versus t/RT were linear and the activation energies were calculated from the slope of the straight lines. The intercept of these lines gives the $\ln A$ values. The activation energies of phenylmethyl sulfide, p-methoxy, p-methyl, p-nitro and p-acetyl phenylmethyl sulfides are summarized in Table 1. It is clearly seen that the activation energies are proportional to the substituent effects.

The electron donating groups, such as p-CH$_3$O and p-CH$_3$, increased the rate of reaction, while the electron attracting groups, such as p-NO$_2$, p-CH$_3$CO and p-HCO, retard the rate as expected. The substituent effect was studied by plotting the log of the relative rate constants versus the sigma constants (Fig. 30).

As it is known, the σ and σ^- constants were derived from the acidic ionization of the substituted benzoic acids and the substituted phenols. The σ^- constants are required when there is a direct conjugation between the reaction site and the substituent. However, in the case of the thiophenols, the special σ values for the electron attracting groups, such as p-NO$_2$, p-HCO and p-CH$_3$CO, are required in order to get a good correlation, since the SH group does not resonate as strongly with the benzene ring, although the SH group is electronically closely related to the OH group.

Bordwell et al. (67) and Schwarzenbach et al. (68-70) have derived the σ^* constants of 1.081 and 0.717 for the p-NO$_2$ and the p-CH$_3$CO groups respectively from the ionization of thiophenols in 48% ethanol. These values are approximately intermediary between the σ and the σ^- constants. No work was done to determine the σ^* value for the HCO group. The average value of the σ and the σ^- was calculated to be the σ^* (0.671) constant for the p-HCO,
because of the similarity between the calculated and the observed values of \(\sigma^* \) for p-NO\(_2\) and p-CH\(_3\)CO.

These special sigma values \(\sigma^* \) were used in order to get a good correlation, because of the similar electronic character of the sulfides.

The reaction constants (\(\rho \)) were calculated by using the third order rate constants of the oxidation of the phenylmethyl sulfide, p-methoxy, p-methyl, p-nitro, p-acetyl and p-formyl (in \(\sigma^* \) case) phenylmethyl sulfides. The \(\rho \) values are found to be -2.082, -1.57 and -1.374 when \(\sigma \), \(\sigma^* \) and \(\sigma^- \) constants are used respectively. The 4-methylthiobenzaldehyde showed a significant positive and negative deviation when \(\sigma \) and \(\sigma^- \) values were used, but a good correlation was obtained when the \(\sigma^* \) constant was used.

The correlation coefficients with the \(\sigma \), \(\sigma^* \), and the \(\sigma^- \) constants are similar: 0.99536, 0.99600, and 0.99544, respectively. However, the use of the \(\sigma^* \) constants seems to be reasonable due to the similar electronic structure of the sulfides and the thiols. However, these correlation constants and the \(\rho \) values -2.082, -1.57 and -1.374 indicate an electron rich transition state in the rate determining step. Because of the through conjugation, the equilibria are driven to the right by the contribution of the structure below.

\[\text{taken from Ref. 71.} \]
Table 11. Activation energies for the oxidation of phenylmethyl sulfide and p-methoxy-, p-methyl-, p-nitro- and p-acetyl-phenylmethyl sulfides.

<table>
<thead>
<tr>
<th>Sulfide</th>
<th>Catalyst</th>
<th>Radiation by</th>
<th>k_3 at 35°C ($M^{-2}min^{-1}$)</th>
<th>Temperature Range (°C)</th>
<th>E_a kcal mol$^{-1}$</th>
<th>$\ln A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕSMe1</td>
<td>MoO$_2$(acac)$_2$</td>
<td>--</td>
<td>2279</td>
<td>27-45</td>
<td>18,365</td>
<td>37.61</td>
</tr>
<tr>
<td>ϕSMe2</td>
<td>"</td>
<td>UV</td>
<td>3843</td>
<td>25-35</td>
<td>17,199</td>
<td>33.36</td>
</tr>
<tr>
<td>ϕSMe3</td>
<td>Mo(CO)$_6$</td>
<td>UV</td>
<td>3582</td>
<td>19-40</td>
<td>12.464</td>
<td>28.54</td>
</tr>
<tr>
<td>CH$_3$$\phi$SMe4</td>
<td>MoO$_2$(acac)$_2$</td>
<td>--</td>
<td>6396*</td>
<td>15-35</td>
<td>14.734</td>
<td>32.84</td>
</tr>
<tr>
<td>CH$_3$$\phi$SMe5</td>
<td>"</td>
<td>--</td>
<td>4551</td>
<td>15-35</td>
<td>16,417</td>
<td>35.22</td>
</tr>
<tr>
<td>NO$_2$$\phi$SMe6</td>
<td>"</td>
<td>--</td>
<td>38**</td>
<td>60-76</td>
<td>24,877</td>
<td>44.29</td>
</tr>
<tr>
<td>CH$_3$OϕSMe7</td>
<td>"</td>
<td>--</td>
<td>230**</td>
<td>60-70</td>
<td>21,346</td>
<td>40.31</td>
</tr>
</tbody>
</table>

* Average value of runs 41, 62, 63

** Calculated from Arrhenius plot

1 Data from Table 7, Figure 23
2 Data from Table 3, Figure 28
3 Data from Table 3, Figure 29
4 Data from Table 8, Figure 24
5 Data from Table 9, Figure 25
6 Data from Table 10, Figure 26
7 Data from Table 10, Figure 27
FIG-23

ARHENIUS PLOT FOR THE OXIDATION OF BENZALdehyde WITH TIN (II) ACETATE IN ETHANOL IN THE PRESENCE OF MOO2 (IAC-R2)
Fig. 24
Arrhenius plot for the oxidation of P•methoxyphenyl methyl sulfide with T-BuOH
in the presence of MoO2[(A)(A)2]2

\[\ln K = \frac{1}{RT} \cdot 10^3 \]
FIG-25
ARHENIUS PLOT FOR THE OXIDATION OF 3-METHYL-
PHENYL METHYL SULFIDE WITH 1-BUOOH IN ETHANOL
IN THE PRESENCE OF MoO3[AC]2
FIG-26 ARRHENIUS PLOT FOR THE OXIDATION OF 4-NITROPHENYL METHYL SULFIDE WITH T-BUOOH IN ETHANOL IN THE PRESENCE OF MoO2(ACAC)2
FIG-28 ARRHENIUS PLOT FOR THE OXIDATION OF PHENYL METHYL SULFIDE WITH T-BUOOH IN ETHANOL IN THE PRESENCE OF MOO2(ACAC)2 UNDER U.V LIGHT
FIG-29 ARRHENIUS PLOT FOR THE OXIDATION OF PHENYL METHYL SULFIDE WITH T-BUOOH IN ETHANOL IN THE PRESENCE OF Mo(CO)6 UNDER U.V LIGHT

\[
\ln K = \frac{1}{RT} \text{ KELVIN} \cdot 10^3
\]
FIG 30
HAMMETT PLOT FOR THE OXIDATION OF ARYL METHYL SULFIDES WITH T-BUOCH IN ETHANOL IN THE PRESENCE
OF N02(PC)2 AT 38°C.

$\sigma = 0$

$\sigma^* = X$

$\sigma = Y$

$\sigma^* = Z$

HCO

CH_3CO CH_3CO

0 HCO

CH_3CO NO_2

0 NO_2

0 OH

0 OH

0 NO_2

0 NO_2

0 OH

0 OH

0 NO_2

0 NO_2

0 OH

0 OH
The \(\rho \) values are larger than those found in the acid-catalyzed oxidation of the arylmethyl sulfides by hydrogen peroxide in ethanol (\(\rho = -1.13 \) (37)). Also, the \(\rho \) values are of the same order as found by Hiatt and Howe (14,36) for the VO(acac)\(_2\)-catalyzed oxidation of aniline by t-BuO\(_2\)H in benzene-chloroform at 60°C (\(\rho = -1.63 \)), and for molybdenum-catalyzed epoxidation of the substituted styrenes in benzene at 60°C (\(\rho = -1.37 \)). Modena et al. (41) had shown that the effect of substituents is smaller than expected in the VO(acac)\(_2\)-catalyzed oxidation of arylmethyl sulfides by hydrogen peroxide (\(\rho = -0.5 \)). Their results seem to be inconsistent with the above results.

The behaviour of the p-hydroxyphenylmethyl sulfide was surprising because it reacts more slowly than phenylmethyl sulfide and the rate of reaction decreases gradually as the concentrations of t-BuO\(_2\)H decreases (Fig. 19). The abnormal reactivity of this compound can be ascribed to the complex formation with the catalyst through the OH group. The decrease in rate clearly shows that p-hydroxylphenylmethyl sulfide can compete with t-BuO\(_2\)H (in low concentration) in complexing with the catalyst. The rate of this reaction was calculated from the first three points on the second order rate plot to obtain an approximate value.

The effect of halogens is also surprising. In agreement with Köseoğlu (46), p-Cl and p-Br phenylmethyl sulfides gave faster reactions than phenylmethyl sulfide. In the VO(acac)\(_2\) catalyzed oxidation of p-chlorophenylmethyl sulfide by hydrogen peroxide, however, the rates were found to be less than with phenylmethyl sulfide (41). It is difficult to compare these two
systems, since different catalysts and oxidants were used. However, Modena et al. (40) had shown that chloride ion acts as a co-catalyst in the oxidation of organic sulfides by t-BuO₂H in the presence of VOCl₃-EtO⁻,* VO(acac)₂, VO(OEt)₃. Second order rate constants for the oxidation of (n-Bu)₂S in ethanol at 25°C were found to be 15.4 x 10⁻³, 2.1 x 10⁻³, and 0.5 x 10⁻³, respectively in the presence of the above catalysts. The explanation was based on the formation of the same triethyl vanadate esters for each catalyst in the reaction. The higher reactivity of VOCl₃-EtO⁻ catalyst was linked to the chloride ion in solution.

Furthermore, initial addition of (n-Bu)₄N⁺Cl⁻ salt to the reaction in the VO(acac)₂-catalyzed oxidation of either (n-Bu)₂S or p-chlorophenylmethyl sulfide with t-BuO₂H increased the reaction rate. Observations showed that the rate increased gradually with increasing concentration of salt. The addition of (n-Bu)₄N⁺ClO₄⁻ showed no catalytic effect.

The greater reactivity of p-chlorophenylmethyl sulfide can be assumed to be similar to that observed by Modena (40). The chlorine-containing catalytically active species which forms between p-chlorophenylmethyl sulfide and molybdenum catalyst via the chlorine atom gives a fast reaction for this compound, as does p-bromophenylmethyl sulfide. Further studies, however, are needed to validate this assumption.

* Triethyl vanadate ester VO(OEt)₃ was prepared from VOCl₃, which was added to dry ethanol; excess acid was neutralized with sodium ethoxide. VOCl₃-EtO⁻ indicates that the above solution was used as a catalyst solution.
V. The decomposition of t-butyl hydroperoxide in the presence of TM complexes

In the absence of sulfide, no decomposition of t-BuO₂H was observed in the presence of 4.0 x 10⁻³ M of Mo(CO)₆ in ethanol at 35°C under UV radiation in 2.5 hours. The decompositions of t-BuO₂H were observed, however, at high concentrations of catalysts. The decompositions of t-BuO₂H (followed by iodometric titration, in the presence of the saturated solutions of Mo(CO)₆, MoO₂(acac)₂ and VO(acac)₂ in ethanol) were first order (Figs. 31-33). The results of the kinetic measurements are given in Table 12.

Relative rates are calculated by using Equation 57. First order dependency on the catalyst was assumed.

\[
\text{Rate} = k_1[\text{HP}] \quad k_1 = k_2[\text{cat}] \tag{57}
\]

The relative decomposition rates of t-BuO₂H in the presence of metal complexes are in the order

\[\text{VO(acac)}_2 > \text{Mo(CO)}_6 > \text{MoO}_2(\text{acac})_2\]

The products of decomposition were not analyzed as they were not needed.

The results clearly show that there is no significant decomposition of t-BuO₂H under the reaction conditions; although the decomposition of t-BuO₂H was observed at high concentration of catalyst, the rates were very small compared to those for the oxidation reactions.
Table 12. Rates of the decomposition of t-butyl hydroperoxide in ethanol at 35°C

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[t-BuO$_2$H]</th>
<th>Catalyst</th>
<th>[Cat] x 102</th>
<th>Radiation by</th>
<th>k_1 x 103 M$^{-1}$min$^{-1}$</th>
<th>k_2 x 102 M$^{-1}$min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>0.2068</td>
<td>Mo(CO)$_6$</td>
<td>2.084</td>
<td>--</td>
<td>0.6539</td>
<td>3.137</td>
</tr>
<tr>
<td>79</td>
<td>0.2051</td>
<td>VO(acac)$_2$</td>
<td>9.340</td>
<td>--</td>
<td>7.558</td>
<td>8.092</td>
</tr>
<tr>
<td>80</td>
<td>0.2069</td>
<td>MoO$_2$(acac)$_2$</td>
<td>13.51</td>
<td>--</td>
<td>2.947</td>
<td>2.181</td>
</tr>
<tr>
<td>146</td>
<td>0.2050</td>
<td>Mo(CO)$_6$</td>
<td>0.4083</td>
<td>UV</td>
<td>No decomposition in 2.5 hours</td>
<td></td>
</tr>
</tbody>
</table>

a under air atmosphere
FIRST ORDER RATE PLOT FOR THE DECOMPOSITION OF MOO₂(ClO₄)₂ IN THE PRESENCE OF ETHANOL AT 36 C

FIG-32
FIRST ORDER RATE PLOT FOR THE DECOMPOSITION OF WO(Acac)₂ IN ETHANOL IN THE PRESENCE OF T-BUOK AT 35°C

FIG. 33
VI. Competitive reactions of p-methoxy, p-nitro and unsubstituted phenylmethyl sulfides

In hope of observing the effect of sulfide as a co-catalyst, p-nitrophenylmethyl sulfide with phenylmethylsulfide, and with p-methoxyphenylmethyl sulfide were oxidized together by t-BuO₂H in the presence of MoO₂(acac)₂ at 40°C.

The aim of these reactions was to see the effect of either phenylmethyl sulfide or p-methoxyphenylmethyl sulfide in the oxidation of p-nitrophenylmethyl sulfide. If the sulfide acts as a co-catalyst, it would mean that it plays an important role in determining the structure of the catalyst, and the oxidation rate of p-nitrophenylmethyl sulfide will be higher than when it is reacted alone.

The reactions were followed by monitoring the disappearance of the sulfides and the formation of the sulfoxides by UV analysis (Figs. 34-35).

The kinetic treatment of this data is very simple; by assuming that both reactions follow second order kinetics (Eqs. 58, 59) as is the case when they are reacted alone.

\[
\begin{align*}
\text{PhSMe} + t-\text{BuO}_2\text{H} & \xrightarrow{\text{MoO}_2(\text{acac})_2} \text{PhSMe} + t-\text{BuOH} \\
\text{NO}_2\text{PhSMe} + t-\text{BuO}_2\text{H} & \xrightarrow{\text{MoO}_2(\text{acac})_2} \text{NO}_2\text{PhSMe} + t-\text{BuOH}
\end{align*}
\]

The rate Equations (60, 61) for the disappearance of both sulfides may be written as:
Table 13. The relative rate constants for the oxidation of phenylmethyl sulfide and p-nitrophenylmethyl sulfide, and p-methoxyphenylmethyl sulfoxide and p-nitrophenylmethyl sulfide by t-BuO₂H in the presence of MoO₂(acac)₂.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_3/k'_3)^a,c</th>
<th>(k_3/k'_3)^b,c</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhSMe</td>
<td>3.923</td>
<td>44.06</td>
</tr>
<tr>
<td>NO₂PhSMe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃OPhSMe</td>
<td>1.249</td>
<td>128.33</td>
</tr>
<tr>
<td>NO₂PhSMe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a From the competitive reaction

^b From the individual reactions

^c At 40°C, in ethanol, and under nitrogen atmosphere
FIG-34 CONCENTRATION VERSUS TIME FOR THE COMPETITIVE OXIDATION OF P-METHOXYPHENYL METHYL SULFIDE AND P-NITROPHENYL METHYL SULFIDE BY T-BUOOH IN THE PRESENCE OF MOO2(ACAC)2 AT 40 C
FIG-35 CONCENTRATION VERSUS TIME FOR THE COMPETITIVE
OXIDATION OF PHENYL METHYL SULFIDE AND P-NITRO-
PHENYL METHYL SULFIDE BY T-BUOOH IN ETHANOL IN
PRESENCE OF MOO2(ACAC)2 AT 40 °C

NO2PHSME

PHSME

PHSME

T-BUOOH

NO2PHSME

MINUTES
FIG-36 RATE PLOTS FOR THE COMPETITIVE REACTIONS

Y : CH3OPHSMME
X : PHSMME
Division of Equation 60 by Equation 61 and integration yields Equation 62.

\[
\frac{-3[\text{PhSMe}]}{\partial t} = k_2[\text{PhSMe}][\text{t-BuO}_2\text{H}] \quad k_2 = k_3[\text{cat}] \tag{60}
\]

\[
\frac{-3[\text{NO}_2\text{PhSMe}]}{\partial t} = k_2'[\text{NO}_2\text{PhSMe}][\text{t-BuO}_2\text{H}] \quad k_2' = k_4[\text{cat}] \tag{61}
\]

The logarithm of the concentration of p-nitrophenylmethyl sulfide was plotted against the logarithm of the concentration of phenylmethyl sulfide and relative rate constants were obtained from the slope of this line (Fig. 36). The relative rate constants obtained from the competition reactions and the individual reactions are listed in Table 13.

The values of \(k_3/k_3\) for the competition reactions between phenylmethyl sulfide and p-methoxyphenylmethyl sulfide could not be determined from the complicated UV data.

The value of \(k_3(\text{CH}_3\text{O})/k_4(\text{NO}_2)\) is higher when the sulfides are reacted together than when the sulfides are reacted individually. It is obvious that the p-nitrophenylmethyl sulfide is more reactive in the presence of p-methoxyphenylmethyl sulfide and phenylmethyl sulfide than when it is reacted alone. These results clearly indicate that both phenylmethyl sulfide and p-methoxyphenylmethyl sulfide behave as a co-catalyst in the oxidation of p-nitrophenylmethyl sulfide and their reactivities increase with the electron donating groups on the co-catalyst.
VII. The solvent effect on the oxidation of phenylmethyl sulfide

In addition to ethanol, cyclohexane, benzene and mesitylene were used as solvents in the Mo(CO)$_6$- and MoO$_2$(acac)$_2$-catalyzed oxidation of phenylmethyl sulfide by t-BuO$_2$H at 35°C, either under normal light conditions or under UV radiation. Cyclohexane could not be used in the MoO$_2$(acac)$_2$-catalyzed oxidation because of the poor solubility of the catalyst.

All the solvents except ethanol were chosen at the same polarity and according to their π donating ability. The assumption was to observe the complexation of the solvents with the catalyst under UV radiation.

The third order rate constants (Table 14) show that the behaviour of both catalysts depends upon both the solvent and the light conditions. The results obtained in the Mo(CO)$_6$-catalyzed oxidations under normal light conditions are not reliable due to lack of reproducibility of these systems, although straightforward reactions were observed. It is therefore very difficult to describe the effect of solvents in these systems.

The solvent effect on the oxidation reactions under UV radiation, however, can be explained by two factors:

(i) the formation of solvent-molybdenum complex, and
(ii) involvement in the transition state to assist the heterolysis of the peroxide O-O bond.

It is known that reactions are promoted by solvent capable of hydrogen bonding to t-BuO$_2$H (72) (or in its absence by a second hydroperoxide) as shown in Equation 50.
Table 14. The oxidation of phenylmethyl sulfide with t-BuO₂H in the presence of Mo(CO)₆ and MoO₂(acac)₂ in various solvents.²

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[PhSMe]</th>
<th>[t-BuO₂H]</th>
<th>Catalyst</th>
<th>[cat] x 10⁵</th>
<th>Light conditions</th>
<th>Solvent</th>
<th>k₂ x 10² M⁻¹ min⁻¹</th>
<th>k₃ M⁻² min⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>1.017</td>
<td>0.209</td>
<td>Mo(CO)₆</td>
<td>3.252</td>
<td>UV</td>
<td>benzene</td>
<td>14.37</td>
<td>4421</td>
</tr>
<tr>
<td>117</td>
<td>1.025</td>
<td>0.209</td>
<td>Mo(CO)₆</td>
<td>2.741</td>
<td>UV</td>
<td>c-hexane</td>
<td>8.480</td>
<td>3094</td>
</tr>
<tr>
<td>157</td>
<td>1.020</td>
<td>0.205</td>
<td>Mo(CO)₆</td>
<td>2.821</td>
<td>UV</td>
<td>ethanol</td>
<td>10.11</td>
<td>3582</td>
</tr>
<tr>
<td>120</td>
<td>1.022</td>
<td>0.211</td>
<td>Mo(CO)₆</td>
<td>2.655</td>
<td>UV</td>
<td>mesitylene</td>
<td>12.08</td>
<td>4526</td>
</tr>
<tr>
<td>123</td>
<td>1.023</td>
<td>0.211</td>
<td>Mo(CO)₆</td>
<td>2.682</td>
<td>normal</td>
<td>benzene</td>
<td>0.05700</td>
<td>21.27</td>
</tr>
<tr>
<td>126</td>
<td>1.020</td>
<td>0.211</td>
<td>Mo(CO)₆</td>
<td>2.613</td>
<td>normal</td>
<td>c-hexane</td>
<td>0.1221</td>
<td>46.74</td>
</tr>
<tr>
<td>125</td>
<td>1.021</td>
<td>0.206</td>
<td>Mo(CO)₆</td>
<td>2.765</td>
<td>normal</td>
<td>ethanol</td>
<td>0.03570</td>
<td>12.91</td>
</tr>
<tr>
<td>121</td>
<td>1.016</td>
<td>0.211</td>
<td>Mo(CO)₆</td>
<td>2.821</td>
<td>normal</td>
<td>mesitylene</td>
<td>0.1470</td>
<td>52.15</td>
</tr>
<tr>
<td>127</td>
<td>1.015</td>
<td>0.208</td>
<td>MoO₂(acac)₂</td>
<td>2.607</td>
<td>UV</td>
<td>benzene</td>
<td>4.109</td>
<td>1576</td>
</tr>
<tr>
<td>129</td>
<td>1.024</td>
<td>0.205</td>
<td>MoO₂(acac)₂</td>
<td>2.653</td>
<td>UV</td>
<td>mesitylene</td>
<td>3.477</td>
<td>1307</td>
</tr>
<tr>
<td>96</td>
<td>1.007</td>
<td>0.206</td>
<td>MoO₂(acac)₂</td>
<td>2.667</td>
<td>UV</td>
<td>ethanol</td>
<td>10.23</td>
<td>3843</td>
</tr>
<tr>
<td>128</td>
<td>1.017</td>
<td>0.211</td>
<td>MoO₂(acac)₂</td>
<td>2.883</td>
<td>normal</td>
<td>benzene</td>
<td>2.505</td>
<td>869.0</td>
</tr>
<tr>
<td>130</td>
<td>1.024</td>
<td>0.210</td>
<td>MoO₂(acac)₂</td>
<td>2.530</td>
<td>normal</td>
<td>mesitylene</td>
<td>3.457</td>
<td>1366</td>
</tr>
<tr>
<td>53</td>
<td>1.055</td>
<td>0.206</td>
<td>MoO₂(acac)₂</td>
<td>2.407</td>
<td>normal</td>
<td>ethanol</td>
<td>5.490</td>
<td>2279</td>
</tr>
</tbody>
</table>

² at 35°C under nitrogen atmosphere
As reported by Bateman and Hargrave (73), the reaction order was found to be second order in hydroperoxide and first order in sulfide in the oxidation of cyclohexylmethyl sulfide by t-BuO₂H in both benzene and cyclohexane. This indicates that the transition state contains two molecules of hydroperoxides.

Kinetic studies in this work showed that a deviation was observed from the second order rate plot (Fig. 38) of the Mo(CO)₆-catalyzed t-BuO₂H oxidation of phenylmethyl sulfide in cyclohexane; slight deviations were also observed for reactions in benzene and mesitylene. Detailed kinetic studies are needed to find the actual reaction orders. These deviations were actually due to the involvement of the second hydroperoxide molecule in the transition state. The rate constants were, however, calculated from the second order rate plot. In the case of cyclohexane, the first four points were used to calculate the rate constants.

If the hydrogen transfer in the transition state was promoted by the second molecule of t-BuO₂H, when cyclohexane, benzene and mesitylene were employed as solvents, the reactions should proceed at the same rate, but they do not. On the contrary, the reactions proceeded more slowly in cyclohexane than in benzene or mesitylene. This can be explained by the electrophilic nature of benzene and mesitylene. It is very difficult to ascribe the complexation of solvents with catalyst with these results.

Similar deviations from the second order rate plot (Figs. 39, 40) were also observed in the MoO₂(acac)₂-catalyzed systems under both light conditions. More deviations, however, were observed for the UV radiated reactions. The behaviour of the solvents can be best explained by the
FIG-37 SECOND ORDER RATE PLOTS FOR THE Mo(CO)6 CATALYZED OXIDATION OF PHENYL METHYL SULFIDE WITH T-BUOOH AT 36 °C UNDER NORMAL LIGHT CONDITION

O . IN MESITYLENE
Y . IN BENZENE
X . IN CYCLOHEXANE
FIG-39
SECOND ORDER RATE PLOTS FOR THE MONO(ACAC)2 CATALYZED OXIDATION OF PHENYL METHYL SULFIDE WITH T-BOOH IN MESITYLENE AT 35°C

O : UNDER U.V. LIGHT
X : UNDER NORMAL LIGHT CONDITION

MINUTES

LN(S) (FP)
FIG-40 SECOND ORDER RATE PLOTS FOR THE MoO2(ACAC)2
CATALYZED OXIDATION OF PHENYL METHYL SULFOXIDE
WITH T-BUOOH IN BENZENE AT 35°C
O : UNDER U. V LIGHT
X : UNDER NORMAL LIGHT CONDITION

\[\text{MINUTES} \]

\[\text{LN(S) / (1/HP)} \]

4.0
3.5
3.0
2.5
2.0
1.5
0 10 20 30 40 50 60 70
intervention of a second hydroperoxide molecule in the transition state and competition between the solvent, hydroperoxides and sulfides to complex with the catalyst because of more deviations from the second order rate plot on the UV radiated reactions.

As expected, the reactions in ethanol are straightforward. More detailed experiments are needed to find the actual reaction orders and to investigate the effect of solvents by using a number of solvents.

It can be concluded that ethanol is the best solvent in the MoO_2(acac)_2-catalyzed oxidation under both light conditions, as is benzene in the Mo(CO)_6-catalyzed oxidation under UV radiation.
VIII. The oxidation of diphenyl sulfoxide

Little work has been done on the metal-catalyzed oxidation of sulfoxides to sulfones by t-BuO₂H, even though detailed kinetic and mechanistic studies have been done on the oxidation of sulfides (5, 38-44, 46).

It is known that diphenyl sulfoxide is unreactive in the Mo(CO)₆-catalyzed t-BuO₂H oxidation at 35°C (46), whereas diphenyl sulfoxide showed reactivity with $k_3 = 1.55 \, M^{-2} \, \text{min}^{-1}$ in the presence of excess sulfide. The VO(acac)₂-catalyzed oxidation of diphenyl sulfoxide was also reported (46).

The oxidation of diphenyl sulfoxide was studied to explore its activity using Mo(CO)₆, MoO₂(acac)₂ and VO(acac)₂ as catalysts under various light conditions. Since there is no decomposition of t-BuO₂H, the reactions were followed by monitoring the disappearance of t-BuO₂H by iodometric titration. All reactions follow second order kinetics (Figs. 39-43); kinetic results are listed in Table 15.

It is difficult to say whether UV light has an influence on the MoO₂(acac)₂-catalyzed oxidation reactions since the rate constants do not differ greatly from each other under various light conditions. The differences between the rate constants may be due to experimental error.

Oxidations catalyzed by VO(acac)₂ proceed faster than those catalyzed by Mo(CO)₆ and MoO₂(acac)₂ complexes. Similar to MoO₂(acac)₂-catalyzed oxidations, UV light does not affect the rate of oxidation. However, UV light does affect the oxidation rate in the Mo(CO)₆-catalyzed oxidation. As in the sulfide oxidation, UV light and t-BuO₂H play an important role
Table 15. The oxidation of diphenyl sulfoxide with t-BuO$_2$H in the presence of Mo(CO)$_6$, MoO$_2$(acac)$_2$ and VO(acac)$_2$ under various light conditions.a

<table>
<thead>
<tr>
<th>Run Number</th>
<th>[Ph$_2$SO]</th>
<th>[t-BuO$_2$H]</th>
<th>Catalyst</th>
<th>[cat] x 105</th>
<th>Light Conditions</th>
<th>k$_2$ x 103 M$^{-1}$ min$^{-1}$</th>
<th>k$_3$ M$^{-2}$ min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>1.004</td>
<td>0.2094</td>
<td>MoO$_2$(acac)$_2$</td>
<td>402.7</td>
<td>dark</td>
<td>1.57</td>
<td>0.391</td>
</tr>
<tr>
<td>61</td>
<td>1.004</td>
<td>0.2024</td>
<td>MoO$_2$(acac)$_2$</td>
<td>402.3</td>
<td>normal</td>
<td>1.35</td>
<td>0.337</td>
</tr>
<tr>
<td>159</td>
<td>0.9992</td>
<td>0.2066</td>
<td>MoO$_2$(acac)$_2$</td>
<td>407.2</td>
<td>UV</td>
<td>2.04</td>
<td>0.499</td>
</tr>
<tr>
<td>82</td>
<td>1.006</td>
<td>0.2070</td>
<td>VO(acac)$_2$</td>
<td>409.8</td>
<td>normal</td>
<td>6.63</td>
<td>1.62</td>
</tr>
<tr>
<td>160</td>
<td>1.000</td>
<td>0.2066</td>
<td>VO(acac)$_2$</td>
<td>409.4</td>
<td>UV</td>
<td>6.65</td>
<td>1.62</td>
</tr>
<tr>
<td>145</td>
<td>1.005</td>
<td>0.2050</td>
<td>Mo(CO)$_6$</td>
<td>401.0</td>
<td>UV</td>
<td>3.80</td>
<td>0.953</td>
</tr>
</tbody>
</table>

a at 35°C, under air atmosphere, in ethanol.
FIG-41 SECOND ORDER RATE PLOTS FOR THE VO(ACAC)_2 CATALYZED OXIDATION OF DIPHENYL SULFOXIDE WITH T-BUOOH IN ETHANOL AT 35 °C

O . UNDER NORMAL LIGHT CONDITION
X . UNDER U.V LIGHT
FIG-43 SECOND ORDER RATE PLOTS FOR THE MOO2(ACHC)2
CATALYZED OXIDATION OF DIPHENYL SULFOXIDE
WITH T-BUOOH IN ETHANOL AT 35 C
O . IN DARK
X . UNDER NORMAL LIGHT CONDITION
Y . UNDER U.V LIGHT

\[\text{MINUTES} \]

\[\text{LN}(SO)/(HP) \]

0 20 40 60 80 100 120 140 160 180
in the activation of the catalyst. The smaller value of k_3 in the absence of diphenyl sulfide indicates that sulfide is the second factor in the oxidation reactions as a co-catalyst.
CONCLUSION

From the kinetic and spectroscopic evidence, it appears that the catalytic activities of Mo(CO)$_6$ and MoO$_2$(acac)$_2$, in the reaction of t-BuO$_2$H with organic sulfides and olefins are best explained by the formation of the Mo(VI) species.

The discovery of the light effect on the oxidation reaction provides another tool for investigating the formation of the Mo(VI) species. In the Mo(CO)$_6$-catalyzed oxidation, hydroperoxide and radiation, or hydroperoxide and heat are required to activate the catalyst, whereas, at low temperatures and under normal laboratory lighting, hydroperoxide alone is able to partially convert Mo(CO)$_6$ to Mo(VI). Any slight changes in the lighting conditions of the reaction environment adversely affect the reproducibility, due to partial conversion of Mo(CO)$_6$.

The kinetic data indicate that hydroperoxide itself is sufficient to convert MoO$_2$(acac)$_2$ to a catalytically active species.

The substituent effect on the MoO$_2$(acac)$_2$-catalyzed oxidation is as expected. Three values of the reaction constant (ρ) gave the same correlation by using σ, σ^- and σ^* constants. The use of σ^* constants is reasonable due to the similar electronic structures of sulfides and thiols.

The competitive reactions are indicative of co-catalytic activity of sulfides in the molybdenum-catalyzed reactions.

The solvent effect on the oxidation reaction is explained by the involvement of the second hydroperoxide molecule in the transition state.
The complexation of solvents with the catalyst through π systems, however, could not be explained.

The reactivity of diphenyl sulfoxide, in the VO(acac)$_2$ and MoO$_2$(acac)$_2$ catalyzed systems, under UV light or normal laboratory lighting, showed that catalytically active species can form with hydroperoxide; however, the reactivity of diphenyl sulfoxide under UV light and the non-reactivity of diphenyl sulfoxide under normal laboratory lighting is additional evidence of the catalyst activation.

Finally, it can be concluded that the effect of light on the molybdenum-catalyzed oxidations is an important factor, and the co-catalytic activity of sulfide is interesting.
REFERENCES

Appendix 1

The chromatogram and the mass spectra of the mixture of ethanol, triethylphosphite, triethylphosphate, diphenyl sulfide and diphenyl sulfoxide.
CC-55 CROSS SCAN REPORT, RUN: 25REFA 50C/2MIN., 20C/MIN.-180C
+ TIC

CC-55 MASS INTENSITY REPORT: 25RF05.1 [TIC=2434752, 100%=836224] EI
DS-55 MASS INTENSITY REPORT:
25RF14.1 [TIC=2437504, 100%=323680] EI

DS-55 MASS INTENSITY REPORT:
25RF31.1 [TIC=170192, 100%=30519] EI
DS-55 MASS INTENSITY REPORT:
25RF86.1 [TIC=343024, 100%=45945] E1

DS-55 MASS INTENSITY REPORT:
25RF92.1 [TIC=77048, 100%=12941] E1
APPENDIX 2

The chromatograms of the samples of the competitive reaction mixtures
EtOH,

PhSMe,

PhSOMe

NO₂PhSMe
Appendix 3

Extinction coefficients for methyl sulfoxide, p-nitrophenylmethyl sulfide and p-nitrophenylmethyl sulfoxide
Extinction coefficients for:

<table>
<thead>
<tr>
<th>Compound</th>
<th>ε_{237}</th>
<th>ε_{254}</th>
<th>ε_{257}</th>
<th>ε_{284}</th>
<th>ε_{243}</th>
<th>ε_{340}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhSMe</td>
<td>5306</td>
<td>10514</td>
<td>9737</td>
<td>1271.91</td>
<td>6461.40</td>
<td>5254.35</td>
</tr>
<tr>
<td>PhSOMe</td>
<td>4119</td>
<td>1922</td>
<td>2859</td>
<td>86.35</td>
<td>9244.17</td>
<td>5254.35</td>
</tr>
<tr>
<td>MeOPhSMe</td>
<td>9737</td>
<td>6461.40</td>
<td>2859</td>
<td>86.35</td>
<td>9244.17</td>
<td>5254.35</td>
</tr>
<tr>
<td>MeOPhSOMe</td>
<td>2531.58</td>
<td>1929.91</td>
<td>2531.58</td>
<td>1643.89</td>
<td>1929.91</td>
<td>5254.35</td>
</tr>
<tr>
<td>NO$_2$PhSMe</td>
<td>5266.73</td>
<td>13842.12</td>
<td>5583.17</td>
<td>495.12</td>
<td>5254.35</td>
<td>5911</td>
</tr>
<tr>
<td>NO$_2$PhSOMe</td>
<td>5680.65</td>
<td>5254.35</td>
<td>5680.65</td>
<td>5911</td>
<td>5583.17</td>
<td>5911</td>
</tr>
</tbody>
</table>
Concentrations

\[c_1 = [\text{PhSMe}] \quad c_3 = [\text{MeOPhSMe}] \quad c_5 = [\text{NO}_2\text{PhSMe}] \]
\[c_2 = [\text{PhSOMe}] \quad c_4 = [\text{MeOPhSOMe}] \quad c_6 = [\text{NO}_2\text{PhSOMe}] \]

Equations

\(\text{e.g., For H and NO}_2\text{-substituted sulfides and sulfoxides,} \)

\[OD_{254} = c_1 \varepsilon_{\text{PhSMe}} + c_2 \varepsilon_{\text{PhSOMe}} + c_5 \varepsilon_{\text{NO}_2\text{PhSMe}} + c_6 \varepsilon_{\text{NO}_2\text{PhSOMe}} \]
\[OD_{340} = c_1 \varepsilon_{\text{PhSMe}} + c_2 \varepsilon_{\text{PhSOMe}} + c_5 \varepsilon_{\text{NO}_2\text{PhSMe}} + c_6 \varepsilon_{\text{NO}_2\text{PhSOMe}} \]

Since \(c_1 + c_2 = [\text{PhSMe}]_{\text{initial}} \)
\[c_5 + c_6 = [\text{NO}_2\text{PhSMe}]_{\text{initial}} \]

The unknowns can be reduced to two from four.
Appendix 4

IR spectrum of Mo(CO)$_6$ in ethanol at 20°C
Appendix 5

IR spectra of Mo(CO)$_6$ in the presence of t-BuO$_2$H in ethanol at 20°C at 0–30 minutes
Spectrum 5 at 20 minutes
Appendix 6

IR spectra of Mo(CO)$_x$-l-octene under various conditions and l-octene in the region of 2100-1700 cm$^{-1}$