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Abstract

Software efficiency has taken a toll in recent times and code quality and optimization

is often an afterthought nowadays. Also there exists no standard operating system

support or unified tooling to gather fine grained energy consumption data about

source code. Current tooling that exist tackles this problem by running the entire

process/application as a whole, therefore localizing the exact part in source code is a

blind endeavour. It is also time consuming and expensive to improve such efficiency

concerns during the development phase. Coupled with the fact that recent hardware

leaps has made it possible to write non-performant software to run relatively fast

without much regards to code efficiency. The downside to this phenomenon is that,

the hardware compensates for bad code quality by using far more resources increasing

energy usage.

In this thesis, we focus on an energy centric view of running applications and

devise tooling to assist the software developer when choosing libraries, frameworks,

programming languages and critical architecture designs. We propose a standard

unified way of gathering energy consumption data from the operating system kernel

and propose two solutions: a kernel energy module and associated energy reading

libraries. The objective is to introspect process/applications without massively alter-

ing source code. The idea is to probe into source code and gather energy data for

comparison against different implementations to create awareness amongst software

developers.

The tooling is designed to be application and programming language agnostic

so that it can infer runtime metrics without much assumption of the underlying

software. This allows to gather virtually any scenario and compare software models

with different versions, environments and systems. The thesis also does extensive

machine-learning tests using different libraries and synthetic datasets to shed light on

ML experiments and their energy consumption. Together with these approaches, the



developers can make informed decisions about which part to prioritize improvement

and achieve greener software.
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Chapter 1

Introduction

With recent advances in technology, the marriage of hardware and software has seen

an unprecedented growth in the past few decades. The use of technology has seen

such a massive growth and the staggering numbers are only increasing. This techno-

logical shift has garnered the attention of virtually every industry, but this has also

impacted the resource consumption of the world in a negative way. As more and

more industries increase their digital footprint, the hardware usage must accommo-

date to meet these increased demands. We now live in a world where our lives are

intertwined with some form of technology: from healthcare to scienti�c communities,

banks, �nancial institutions, educational institutions, biomedical life-sciences, mis-

sion critical systems: driving satellites, aviation �ight-systems, arti�cial intelligence,

machine-learning, stock-exchange, self-driving cars, autonomous-machines, embedded

systems.

Software development in the recent decades has also seen one of the most radical

changes, with today's software being so complex it is generally accepted that special-

ized teams are required to build even the most simplest systems. With the recent

growth of hardware and complex software - we have inde�nitely increased the energy

footprint of the whole planet. Since the world is moving forward at unparalleled

speeds, the likes of giants: Facebook, Amazon, Apple, Net�ix and Google and other

sophisticated companies need dedicated software solutions to cater to the needs sheer

number of users around the globe. Current generation of developers are mostly con-

cerned with pushing semantically correct software catering to business needs that is

performant/acceptable whilst not alwayse�cient with regards to energy consump-

tion.

1
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1.1 Motivation

The ultimate goal of this thesis is to bring awareness to the software developers,

engineers, architects, and to the general mass of people devoting their time to the

craft of software engineering optimization and e�ciency. Illuminating the underlying

cost of creating software and how it can generally be improved. This is directly inline

with energy-saving practices that most companies adhere to but only in hardware.

We show that not only is it possible to apply energy-saving practices when developing

software, but certain choices and decisions during development can have a massive

impact on the resource consumption years down the road. Another important aspect

of the evaluation methods is that it does not require any additional hardware to

execute these experiments other than the test-machine.

1.2 Problem Statement

Today's software developers and architects are facing harsh deadlines to meet the

demands of the growing number of online services, and the very nature of software

optimization is tricky and time intensive. As a result, there is almost zero incentive

to optimizing software e�ciency to reduce the overall resource footprint of running

these systems. There is also a lack of uni�ed developer friendly tooling that can

assist with extraction of energy related information about their software/application.

The current approaches to measuring energy often requires changing source code

by including external libraries or dynamic linking of external binaries which is very

intrusive. Other non-intrusive solutions does not o�er �ne granular measurements

and pin-pointing energy hot-spots within millions of lines of source code is akin to

�nding a needle in a haystack.

1.3 Research Idea

Our goal mainly comprises of building a uni�ed tool that is not dependent on the

programming language to infer energy consumption data using performance monitor-

ing counters (PMCs) from the kernel-level. Most of the work we will be referring to

in the following excerpts is from software energy research from di�erent perspectives.

Most of these studies use a pure hardware based approach which is very accurate but

cannot really o�er very �ne grained results due to limitations. Other studies include

pure software based modelling and prediction approaches, which is likely not always
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accurate and close dependent on the actual test machine con�guration. We also un-

cover research based on hardware and software combination using CPU registers, and

other counters but show that these methods are cumbersome to implement and test

as it requires heavily modifying the software.

Also the software based approaches assume that source code can be modi�ed by

integrating external libraries or relying on dynamic linking. So that is another crucial

factor in our work where we take the opposite approach relying on a lower kernel

abstraction layer to gather our energy data instead of every instrumenting the target

application in an intrusive manner. In theory, there still has to be some form of

modi�cation to the actual software to gain �ner insight about energy consumption

data. However, we strive to use less invasive procedures like runtime injection in order

to achieve the objective. We research about the various ways that are available and

how they can o�er insight in gaining application execution so that we can use the

available data to build a stable energy reading framework.

1.4 Research Questions

The research questions in undertaking this thesis is outlined below, with each asking

a fundamental part about the assumptions and the framework we are devising:

1.4.1 Versatile Software Energy Readings

ˆ RQ 1: Viability of software based energy consumption of a process/application?

ˆ RQ 2: Is it possible to accurately extract energy consumption data during

process/application execution?

ˆ RQ 3: What is the overhead cost of inferring such metrics?

1.4.2 Unavailability of Source Code

ˆ RQ 1: Can we extract �ne-grained energy consumption data from blackbox

systems?

ˆ RQ 2: Can we postulate a programming language agnostic architecture to

gather this data?
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1.5 Research Objective

We would like to propose a minimal software based solution to instrument applica-

tions and software processes which is developer-friendly and o�er the least invasive

procedure to instrumenting source code. Furthermore, we would like to propose a

runtime injection mechanism for JVM based languages to extract energy consump-

tion data during program execution without source code availability. The connection

to improving software performance and e�ciency correlates to improving software

energy consumption. [109]

In this research, we tackle the question of resolving performance problems and

consequently energy consumption of bad software implementations. The idea is to

shed light on how much a particular software project consumes energy in terms of

implementation and design choices and present this as an easy to gather metric for the

software developer. Creating this awareness by designing such a framework/tooling

is the ultimate goal of this thesis.

1.6 Research Contributions

To summarize, the main objectives of this thesis is outlined below:

1.6.1 Language agnostic kernel-level energy measurement frame-

work.

We propose a light-weight architecture framework purely utilizing kernel-space tech-

nologies to probe into high level user-space applications for inferring energy consump-

tion data. The main motive is to remain programming language agnostic and assume

very little about the high level software. The user-space application and process also

remains relatively identical to the original binary by virtue of the framework being

entirely in kernel-space allowing the introspection to be least invasive compared to

other methods.

1.6.2 Applications/Languages implementation energy evalua-

tion.

We use our proposed energy-reading framework to gather insight and knowledge about

di�erent implementations of software, application, processes using a variety of pro-

gramming languages, frameworks and statistical-tooling comprising machine-learning
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libraries. We pit popular libraries and frameworks against each other to derive the

most energy e�cient implementations with similar performance metrics. This sheds

light on a completely new metric, one which is often overlooked in terms of a deciding

factor but can contribute largely to resource usage in the context of energy.



Chapter 2

Literature Review

2.1 Introduction

The focus of this chapter is to look at the papers and studies done by researchers

delving into software energy consumption from various levels and the tools and tech-

niques involved. Looking at di�erent styles of measuring software energy consumption

data and tracking the various ways that can uncover about software behavior when

analysing this data. Discussion about the types of approaches available in discerning

software performance and how it relates to software energy consumption in the con-

text of bugs and problems in source code. The thesis will also focus on the techniques

that are available today that measure software energy consumption and why there are

not many standardized tools to extract such a metric. Various methodologies exist

for diagnosing performance problems, the main goal is to research about the diverse

ways to uncover energy consumption data and correlate them to performance issues

in software.

In order to do this, this chapter focuses on the research using both hardware and

software based techniques and how it a�ects software design and architecture from

the energy execution context.

Common approaches catering to software performance analysis are listed below:

ˆ Pro�ling [50]

ˆ Logging [50]

ˆ Static Instrumentation [50]

ˆ Dynamic Binary Translators [50] [67]

6
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ˆ Kernel Tracing [50]

ˆ Calling Context Analysis[67]

Software pro�ling is a form of dynamic program analysis which measures the time

and or latency of the execution of a piece of code or the software in general. The

prerequisites to pro�ling is the need for instrumenting source code and or modifying

the binary so that pro�ling code is injected during execution. In the context of

this thesis, the reviewed papers are researched in how software is instrumented when

source code is available and for blackbox systems.

Software Logging is keeping the record of logs of system events (kernel) or software

events (functions invoked). The general idea is that an infrequent summary of all the

transactions happening during executions is logged (written) and kept track o� in

a �le usually in textual human-readable format. Here, the thesis aligns its work

with functions invoked and keeping a summary of log statements related to energy

measurements during runtime.

Static instrumentation refers to hard-coded software instrumentation points added

to the source code. [50] This enables the instrumented software to report and log more

details during execution. Such instrumentation points are commonly known a trace-

points, where execution can halt to inspect the current state of the system or pass

execution to a di�erent handler. Software pro�ling commonly uses this approach to

gather and report its metrics. The software energy reading library generates instru-

mentation code which is language agnostic in order to remove dependency from the

high-level language.

Dynamic Binary Translators [83] [90], works on the basis of not requiring source

code but can inject and modify the resulting binary code with pro�ling code during

runtime, but this poses a very high overhead in certain circumstances which prohibits

the usage such techniques for performance analysis of critical software. [67] Here,

the thesis focuses on JVM based languages and runtime injection using bytecode

modi�cations which is a form of dynamic binary translation.

Kernel Tracing is the process of logging the lowest level of details the OS emits

during execution of a system call or kernel trace-point. It is similar to software logging

in the sense that, these lower level details are logged and saved typically in what is

called a trace �le. Kernel tracing is used for detecting and tracking the usage of

certain APIs (system calls) when interacting with a hardware resource. This is also

the usually the lowest level of logging for any computing system as the kernel is at

a much lower level of operation the the higher level abstractions from programming
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languages and or user-space libraries. As the framework is developed in kernel-space,

it leverages on kernel-tracing [107], for aggressive analysis of context-switches for

multi-threaded execution context energy reading.

Calling Context Analysis [67] [17] [18] [118], refers to the study of function chain

invocations and analysing their contexts. In layman's terms, piecing together the

chain of functions invoked (parent-child relationship) in single or multi-threaded ap-

plications with multiple call-stacks. Representing this calling-context information is

usually done with the help of a Calling Context Tree (CCT) [12]. Further o�ine

analysis can then be done using this CCT to uncover details about performance char-

acteristics of the software/source code from function-level perspective. Finally the

thesis borrows idea about stack-level observation to create e dependency graph of

functions and their execution overhead in terms of energy for JVM based languages.

The methods of deriving energy cost information about applications, process are

listed below:

ˆ Hardware based methods (energy/power meters).

ˆ Software based methods (power-modelling, prediction, rapl-counters).

2.2 Software Performance Based

2.2.1 Inference of program behavior through kernel tracing

In this paper, the authors proposed a system called AppDi� [104], which is able

to infer application level semantic information through OS level events. The main

idea behind this approach is that OS level kernel tracers can gather all information

about OS events during runtime. These events are the result of implicit requests

from user-level applications/library which leaves a footprint when a kernel trace is in

progress. AppDi� is therefore able to distinguish between di�erent application logic

triggering di�erent events in the collected trace, the underlying implication being

a semantic behavior of the application can be recognized without having access to

the application's source code. AppDi� is then able to resolve the lower level events

and generate a runtime statistics for the software that is in scrutiny. This allows

for performance anomalies to be detected by analyzing the information about the

software generated by AppDi� through runtime kernel trace data.

The fundamental approach taken by AppDi� [104] can be explained using the

two key ideas mentioned in the paper:System Resource Features and "Program
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Figure 2.1: AppDi�: Resource Transfer Function

[43]

Figure 2.2: AppDi�: Program Behavior Features

Behavior Features . In the �rst approach, the authors imply that kernel level events

directly equate to the requests made by the underlying software/application in ques-

tion. Any deviation from normal usage statistics of events suggests an erroneous

execution or path taken by the software and will be re�ected in the trace data. A

transaction unit (TU) which is one full activity interacting withe software recorded

from the trace information is then used to convert these kernel events into speci�c

statistics such as idle-time, network activity, etc using resource transfer functions.

In the second approach, program behavior is inferred using the pragmatic def-

inition of the same user-level code is likely to trigger the same set of kernel level

functions and events when a similar or comparable workload is applied to the soft-

ware/program in general when external factors are constant. These approaches then
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generates a statistic of data which can be grouped together using clustering techniques

which then paves the way for performance and fault diagnosis. AppDi� generates the

probable program behavior features from the traced information and gathering the

amount of system calls which in turn gives the kernel events. These events are also

used in the resource transfer functions in the previous approach to calculate the met-

rics observed in a single Transaction Unit (TU). Once this system call categorization

from the kernel events are completed by the Program Behavior Features component,

an overview of which TU deviates from normal course of events can easily be observed

once clustering is applied.

In [133], CLUE the system proposed by the authors primarily deals with pro-

duction cloud computing systems which is essentially multi-tiered systems dealing

with service transactions. CLUE is mainly developed with hopes to uncover perfor-

mance problems in a post production system with black-box using kernel traces with

know internal knowledge of the application internals. The main contributing factor

of this paper relies upon the fact that causality between kernel events spanning across

service transactions can be structured and analyzed in an o�ine manner to detect

performance issues. It is very similar to AppDi� [104], where the authors argue that

application level semantic information is often not apparent when analysing OS kernel

level traces.

CLUE, primarily a trace analytic tool extrapolates application semantics which

enables it to report performance problems in the manner of reducing the massive OS

kernel trace into a subset of events. In the literature surrounding performance analysis

using OS kernel level traces, the consensus is that trace information is massive and

often times unmanageable without reduction e�orts. CLUE approaches this problem

of reducing the trace content by constructing what is known as event slices and

event sketches. An event slice in essence is a subset of kernel events from the trace

information that is identi�ed on a process to be related to a speci�c sequence related to

a transaction request which can be a singular activity within an application. An event

sketch on the other hand is an aggregation of event slices which are related to each

other in a causal-relationship pattern for a complete transaction request captured.

An overview can be seen in Figure-1.3.

The authors employ multiple techniques to precisely capture the boundaries of

these event slices using what are known as markers of implicit and explicit types. The

explicit markers are strong indication of a kernel activity completion such as a success-

ful network request, whereas an implicit marker deals with vague but related commu-

nications between internal components such as using Inter-Process-Communication
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[43]

Figure 2.3: CLUE: Event Sketch Modelling

(IPC). After the crux of generating these event sketches are complete, event sketch

analysis is performed by applying clustering techniques. The program behavior fea-

tures also used in AppDi� [104] is inferred here using the set of markers which denote

the start and end of an event sketch. The set of markers convey application logic and

behavior in the sense that these low level kernel events conceptually marks the indi-

cation of a speci�c request or transaction within the software/code such as network

activity (TCP events), futex events (thread synchronization/scheduling), �le-I/O ac-

tivity (I/O events).

2.2.2 Anomaly Classi�cation using Machine Learning

In the Paypal [36] paper, the authors employ Machine Learning (ML) techniques to a

stream of system call data to get insight about a software/process runtime behavior.

The main idea behind this approach is that the stream of system call data will have a

somewhat unique sequence for each individual process under the trace data collected.

This sequence can then be used a signature to uniquely identify the process. Any

anomalous activity or performance deviations will be re�ected in this stream of system

call data from the information and can be compared against normal execution for said

process.

In [36], authors propose to quantify the stream of system call data using an integer

representation for compactness. This ensures that sequence related ML models can

infer the temporal dynamics between the system call sequence allowing it to identify

a process more accurately just from trace information. The dataset representation is:

exit(1) fork(0) read(1) write(2) open(0) close(1) over a time window of a

particular second. The authors experimented with LSTM [117], and employed two

versions uni-directional (simple-net) and bi-directional (bidirectional-net) outlined in

Figure-1.4 and Figure-1.5.

The reasoning behind two di�erent variations stems from the fact that any tem-
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[43]

Figure 2.4: Uni-directional LSTM (uni-directional net)

[43]

Figure 2.5: Bi-directional LSTM (bi-directional net)
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poral dependency between system calls can be very important in identifying a process

signature. With the later (bidirectional-net), the ML model has a chance of identify-

ing these sequences in reverse to identify such a relationship among system calls. The

macro-average precision and recall for the simple-net and bidirectional-net is outlined

below:

Model Precision Recall

Simple-net 0.916 (0.01) 0.922 (0.003)

Bidirectional-net 0.923 (0.01) 0.923 (0.003)

In [28], the authors explore Host Based Intrusion Detection (HIDS) systems and

use the renowned ADFA-LD dataset which was prepared in lieu of these experiments.

The ADFA-LD dataset is regarded very highly in the research area of intrusion de-

tection. This had a profound impact upon the research community because previous

approaches and well known datasets such as UNM dataset [42] does not mimic a

modern a system anymore. The ADFA-LD dataset was created using a modern day

Ubuntu OS (Linux), the test-bed con�guration of which is listed below:

Software Version

Ubuntu 11.04

Apache 2.2.17

PHP 5.3.5

TikiWiki 8.1

The above con�guration was then well suited to mimic a more recent and modern

web-backend system which could theoretically be studied when subjected to external

attacks. A wide range of attack vectors were applied constituting from web-based

exploitation to remote executions and external system manipulation. The system

was traced during these external attacks and the resulting experiments generated 833

normal traces for training an Intrusion Detection System (IDS), 4373 normal traces

for evaluating False Alarm Rate (FAR) with 60 di�erent attack sets each constituting

of multiple traces. The generation of this kind of dataset was profound in the sense

that, all previously conducted experiments by researchers relied upon the UNM [60]

and KDD98 [77] datasets.

The core idea behind [28], is the introduction of a semantic application di�erenti-

ating kernel traces where the authors argue about semantic hypothesis about the data

contained in these traces. In essence, an anomalous trace and a normal trace will have

very similar syntactic patterns which are not distinguishable but will vary largely in
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Figure 2.6: Trace events as interpreted by Babeltrace []

their semantic patterns. This suggests that during training a Decision Engine (DE),

the datasets comprising of normal traces will largely embed "phrases or units" that

a normal system under execution is expected to perform, whereas as a�ected system

will have these same embedded meanings but with completely di�erent units which

alter the traces signi�cantly. The DEs then can learn to classify from such deviations

within the dataset to learn anomalous behavior which is the result of a non-standard

path of execution.

In [43], the authors propose the usage of system call arguments in their analysis.

Most of the research undertaken related to �nding system anomaly and performance

problems with kernel trace data makes use of the system call events inherently em-

bedded within these trace �les. The system call events from these trace �les are then

extracted to be used by statistical methods using Machine Learning (ML) techniques,

but often times the dataset is mostly comprised of the event names as they occur in

the sequence of the traced execution excluding system call arguments and return

values.

In Figure 1.1, the structure of a trace �le is displayed as interpreted by a tool

called Babeltrace. [] Kernel traces usually include the default �elds:timestamp,

hostname, event name, stream context, event context, event fields . The

authors point out that kernel trace data can be massively complex and usually only

a subset of information is chosen for Machine Learning (ML) especially in the Deep

Learning (DL) �eld. The most preferred DL techniques [114] [36] [68] [89] [38] using

trace data is an ensemble of Recurrent Neural Networks (RNNs), a variation of which

is Long-Short-Term-Memory (LSTM) [59]. The main contribution of [43], therefore

is the inclusion of system call arguments to make a unidirectional LSTM model and

a vanilla Transformer [122] for classi�cation of anomalous behavior.

2.2.3 Calling Context Analysis using Stacktraces

The following papers discuss about the potential of using stack-trace information from

kernel and user-space traces for debugging application performance problems. This

is a variant of the calling context analysis where performance problems are viewed
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from the function invocation levels when a program is in execution and their resulting

function latency and context is analysed.

In [67] IntroPerf, the authors propose the use of stacktrace as input leveraging from

OS level kernel traces. The main goal of this approach is that OS level kernel tracers

can gather much more information about the state of the system during operation

and that it is also independent from any application or libraries. The authors point

out that in a post production system, the likelihood of obtaining source code is very

rare and most of the times only a binary format is what is available for debugging.

However, using OS level kernel tracers the footprint of the execution of any system can

be thoroughly analyzed often times which is not possible using pro�lers or debuggers

due to the unavailability of source code and as such instrumentation of a particular

software/code is not always possible.

IntroPerf [67] focuses on utilizing stacktrace information from kernel trace data to

predict user-level function latency through interpolation of kernel events as recorded

in the trace data which is an implicit result of a user level request trickling down to

the kernel. The main contribution of IntroPerf is two folds: implicit conversion of

�nding user-level function latency from multiple layers using system-level stack traces

i.e. kernel events, and localization of internal and external performance bottlenecks

via context sensitive performance analysis across multiple system layers.

Since IntroPerf is only limited to system level information such as system stack

traces from the kernel trace information, it is only privy to functions that were invoked

due to a system call being executed by the kernel upon receiving a request from

user level application or library. Due to this phenomenon, IntroPerf cannot directly

calculate or assume the latency of the user-level function as the recorded system

calls (kernel events) has a wider boundary and is much more coarse grained. This

is what lead the authors to approach the application of context sensitive function

latency inference using these kernel events based on the idea of the continuity of

calling context. This is one of the fundamental problems of OS level tracers due

to their location and only recording information in a coarse granular fashion losing

track of program internals and context which in turn is an impediment to localizing

performance issues in root cause functions.

In Figure-1.4, the latency inference mechanism of IntroPerf is outlined using a high

level overview. Because these are system level stack traces, the timestamps of these

events do not necessarily correlate to the user-level functions that initiated the chain

of these events in the �rst place. The idea of the continuity of the calling context

takes a holistic approach of taking multiple system level stacks and observing the
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Figure 2.7: Latency inference from system stack traces

chain of functions on each layer of the stack in progressing time slices. In layman's

terms the continuity of calling context simply means the time-period a function lives

at a particular level on the stack frame which denotes the current execution state.

Therefore, as IntroPerf analyzes these system level stack traces, if a single function

instance at a particular level on the stack is not disrupted and continues to be visible

as the time progresses allows the inference or "estimation" of the function latency

from invocation on to the stack frame to getting popped o� from that same frame.

However, the same function can be invoked from a di�erent chain of invocations

altogether due to di�erent system calls comprising of similar kernel events, this ne-

cessitates a context-switch which is the key di�erentiating factor separating the chain

of invocations of function call paths during system execution of a particular request

from a user-level application or library. IntroPerf scans the stack traces in the tem-

poral order of the time sequence keeping track of context switches and building an

estimation of the function latency's. If a function is subject to a context switch as

precisely observed in Figure-1.5 betweent2 and t3 which is: A - B - D versus A -

C - D , they are analyzed separately with distinct calculations for function latency.

In Figure-1.5, outlines the approach to keep track of all the internal and external

function latency incurred by using a Calling Context Tree (CCT). [12]. A combination

of a Hashmap, using a unique integer ID representing each distinct dynamic function

call sequences are stored. The unique integer ID marks the end of a distinct call

sequence which forms a branch in the CCT. IntroPerf uses this form of storage as

the basis for analysis and quick retrieval for latency calculation. This variant of CCT

allows IntroPerf to apply o�ine analysis to these system level stack traces without



CHAPTER 2. LITERATURE REVIEW 17

[43]

Figure 2.8: Latency inference from system stack traces

runtime code instrumentation or modi�cation.

In [35], the authors proposed a framework called TraceCompare which is able to

identify the di�erent groups of executions while performing the same set of transac-

tions within a system spanning across both user-space and kernel-space. The authors

emphasize that since tracing records a massive amounts of information in a very short

time, it is often infeasible to analyze this overwhelming amount of information un-

less very good knowledge about the system is known in advance. Also like the other

works mentioned so far, namely AppDi� [104], CLUE[133], IntroPerf [67], relating

low level events from trace information which was triggered by the higher level logic

is a daunting task unless the system/source code is carefully instrumented and often

times that luxury is not available.

TraceCompare approaches the problem of performance analysis by assuming no

previous knowledge about the system currently under observation. It does this by

building a variant of the CCT [12] just like IntroPerf [67] but is called Enhanced

CCT (ECCT). For single threaded application, the ECCT behaves just like a normal

CCT without any inter-dependency between multiple di�erent threads. However, for

multi-threaded workloads, the ECCT can record the dependency between threads

and their interactions as they collaborate and �nish the task at service request of

the application/software. This key information is computed by analyzing the critical
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Figure 2.9: TraceCompare: ECCT Task Execution with non-parallel work

path [47] events on the call stack that actually contributed to the overall execution of

the task. Any other events not directly related to the critical path for that execution

is discarded and not used to calculate the overall latency of that execution.

In Figure-1.9 and Figure-1.10, outlines the di�erence between task executions that

comprises of parallel and non-parallel work. In Figure-1.9, Thread-1 and Thread-2

are independent and thus does not a�ect the overall latency incurred to �nish the

task and as such calls to Thread-2 is not represented within the ECCT. On the other

hand, Figure-1.10, the threads are collaborating with each other to �nish the task

at hand, and as such the incurred latency or the individual units of work done by

the threads must be taken into account, but also do note that since Thread-2 does

not serve any place in the critical path of that execution, it is again left out in the

calculation for the ECCT generation.

TraceCompare infers application logic or behavior by capturing call-stacks in two

di�erent contexts. The �rst context in which TraceCompare enables this observation
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Figure 2.10: TraceCompare: ECCT Task Execution with parallel work

is very similar to statistical pro�lers in which the expiration of a timer hints the

capturing mechanism to activate as the timer is decremented when a thread is running.

However, the authors points out that this method does not provide useful information

when a thread blocking scenario presents itself. Therefore, TraceCompare diligently

also captures call-stacks related to system calls and in-evidently capturing the full

call-stack history related to both on-CPU and o�-CPU time. The mechanism in

which TraceCompare captures both of these stacks is through the use of LTTng-UST

(Linux Trace Toolkit next generation-User Space Trace) event that is emitted each

time a call-stack is captured. This is necessary in order to co-relate the lower level

kernel events to multiple user-space stacks and to also keep track of the di�erent

user-space stacks invoked by functions on multiple di�erent threads simultaneously.

The usage of LTTng-UST acts as instrumentation for detecting the user-level

functions and ergo the system calls generated due to those functions being invoked.

This is very expensive since massive amounts of system calls are generated in a very

short span of time if function invocations are very frequent, also the instrumented

application takes a direct hit in terms of execution performance due to this added

overhead. The authors chose to limit the capture of those events only which exceeded

a certain thresh-hold (100 micro-seconds). The rational behind this approach is that,

very short lived but frequent invocations of system call functions does not a�ect

the overall latency of a program . These set of short-lived function sequences and

their resulting call-stacks is inherently not the problem when it comes to performance

analysis compared to problematic longer latency functions which are more interesting
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and might require deeper analysis to �nd the root cause of this large latency.

TraceCompare was able gain perspective on four real world case studies:

ˆ CPU contention in a real-time application.

ˆ Disk contention in a server application.

ˆ Lock contention in MongoDB.

ˆ Sleep in MongoDB.

in which it was successfully able to determine the causes of these performance

problems.

In [56], StackMine is the culmination of a two year e�ort from Microsoft in what

they achieved can be described as performance debugging in the large. This project

can be compared to approaches related to mass debugging which became possible

due to the infrastructure support built into Microsoft's OS namely Windows 7 and

prior called Windows Error Reporting (WER). Leveraging trace information for per-

formance/bug �nding is an arduous task in the sense that the target system has to

enable tracing infrastructure before hand and coordinate with the software/code in

question to apply a series of successive deductions for �nding that bug through the

trace data.

The authors argue that this is time consuming and that di�erent user/usage sce-

narios of post production software behaves uniquely on di�erent con�gurations/setups

and as such the underlying trace information also changes. StackMine's greatest ad-

vantage in this regard is leveraging millions of debugging information i.e. trace �les

from users spread across a wider scope. StackMine primarily deals with call-stack

information from these trace �les and apply mining and pattern matching techniques

to locate and pin-point the sequence of call-paths which greatly contributes to the

performance problem of the software under scrutiny.

StackMine works in a two-fold fashion simply due to the sheer number of trace

information it has to deal with compared to other traditional methods of just tracing

a single application/source code. The two phases are list below:

ˆ Phase One: Costly Pattern Mining (Sub-sequence Mining)

ˆ Phase Two: Clustering on the mined costly patterns.

In phase-one, the costly pattern mining algorithm deals with three fundamental

problems.
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Since StackMine deals with call-stack patterns and leveraging from a multitude

of trace �les from varied sites of deployment, this poses the problem of performance

issue exhibiting features which appears in the trace �les but comes from two di�erent

scenarios of execution. The two di�erent call-stacks of a waiting nature (thread-

blocked) can emerge from actually performance issue exhibiting executions and also

normal executions but blocked on user-input. This would largely undermine the

pattern-matching phase, as these two similar groups of execution but due to wildly

di�erent causes would be matched together. StackMine uses the Wait-Graph model

to address this issue.

Secondly, due to the nature of billions of call-stack information being gathered

from this approach, it is simply infeasible for any analyst or machine to e�ciently

use all this information to quickly identify performance problems. The sheer number

of trace data and subsequently the immense number of call-stacks quickly explodes

even just from couple of traces. To address this challenge, StackMine puts its e�ort

in reducing the dataset based on sub-sequence mining on these traces to extract the

highly impactful call-stacks based on a some performance metrics (latency), which

can ideally locate the root cause and origin of the performance problem, this is very

similar to [67] where it discards the sequence of function invocations which does not

a�ect the overall latency of the program, when building its CCT.

The third problem arises due to the nature of the trace collection mechanism

from varying con�gurations and architectures, in that the underlying trace �les with

the problem data embedded would have slight di�erences which could be related to

the same problem. This would setback the investigations because the costly-pattern

mining algorithm might group these executions separately when infact they belong

to the same group and also increasing manual investigations from analysts because of

the di�erentiation among these trace �les. This is addressed by applying a clustering

algorithm which groups together multiple mined costly patterns slight variations in

function call-stacks.

In Figure-1.11, shows the execution of two di�erent threads with both running

and blocked states. StackMine di�erentiates these two states as running-stacks (R.S)

and waiting-stacks (W.S). Once the execution is observed from the trace information,

if this particular run exceeded a certain latency threshold of completing the task,

StackMine digs deeper and extracts the relevant call-stacks for further investigation.

From the point of view of thread execution, a running stack is simply on-CPU execu-

tion and a waiting-stack is when the thread is blocked and switched out of the CPU

(not running).



CHAPTER 2. LITERATURE REVIEW 22

[43]

Figure 2.11: StackMine: Time Window Program Execution Call-Stack view

From Figure-1.11, the authors deduce that most performance problems falls into

two categories: CPU-consumption and wait bugs. Once groups of execution are mined

together by StackMine, the resulting running and waiting stacks can be analyzed too

see if a certain sequence of function invocations is spending too much time on the

CPU (running-stack) or a thread is being blocked for too long (waiting-stack). This

inference enables to localization the performance problem in a speci�c region of the

program, where further investigations can be directed to diagnose the issue.

In Figure-1.12, shows the call-stack similarity model. To aid in the clustering

mechanism, this similarity model which is a variant of the edit-distance model is used

to di�erentiate between observed call-stacks in two steps:

ˆ Alignment of the two patterns.

ˆ Calculate the similarity of the two patterns.

2.3 Software Energy Based

2.3.1 Performance Monitoring Counters

In [58] the authors discuss about the performance overhead and consequently energy

expenditure during application execution. The implication of this paper has substan-



CHAPTER 2. LITERATURE REVIEW 23

[43]

Figure 2.12: StackMine: Call-Stack similarity model

tial e�ects in uncovering energy expenditure after applying CPU hardware mitigation

against Spectre and Meltdown. The authors' �ndings suggests that72% overhead

is incurred when these software mitigation(s) are applied:no-kpti, no-spectre-v1,

no-spectre-v2, all-mitigation . The bulk of the overhead is observed whenkernel-kpti

[125] is enabled and application is highly dependent on OS interactivity (context-switches .

The underlying cause of additional energy usage is due to maintaining two page-

tables whenkpti is enabled to isolate processes and stop malicious processes recre-

ating memory contents. The paper adds on and uses Linear Regression, an ML tech-

nique to generate an energy prediction model [72] using features PMC features:ipc,

bpc, scpmc, cspmc(Instructions Per Cycle, Branches Per Cycle, System-Calls Per

Million Cycles, Process Context Switches Per Million Cycles). The dataset generated

utilized Intel RAPL counters [66] usingperf for extracting the energy consumption,

and was limited to only the whole application. It was also evident from the results

that, total execution time was more or less una�ected even with mitigations enabled.

The authors' also suggest that �ne-grained analysis at the instruction level can

be bene�cial to �nding why performance overhead sometimes does not correlate to

energy overhead. Using the framework developed in this thesis, function and even

line-level analysis can now be done to answer questions from this work.

In [113], the authors talk about performance counters, more generally known as

PMCs in this thesis and if they are setup correctly can be very accurately used to

measure processor performance metrics at theclock-cycle granularity. The authors

�nd that majority of the processor hardware counters have a positive correlation with

power (energy consumption). Only theFPand MMXinstructions have less correlation
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due to having higher instruction execution latencies. The authors then delve into

using ML techniques to derive power models to predict energy consumption based on

these performance monitoring counters running micro benchmark experiments. This

paper ends with building a tuned process-scheduler in user-space to suspend processes

if the power usage of an application exceeds a certain threshold. In this thesis, the

PMCs are setup in relation to the energy registers and also establishing hooks to

the scheduler-preemption mechanism to facilitate a kernel based multi-threaded

supported energy reading framework.

In [46], the authors try to correlate various processor performance events with

power consumption. A key part of the paper discusses about Dynamic Voltage and

Frequency Scaling (DVFS) [62] and how C and P states can be altered to have re-

duced energy consumption from the OS-level. The authors discuss about �ne tun-

ing these adjustments to a�ect energy consumption of the application software with

CPU-governor settings. The CPU-governor can be used to choose di�erent pro-

cessor frequencies based on apolicy . Commonly available governors on Linux are:

ondemandx, performance, powersave, conservative, userspace, min-max, interactive ,

and depending on the chosengovernor , the processor frequency is selected based on

execution load of the system. The authors suggest a high correlation metric PMC:

stall-cycles for power consumption andfirst-load-instruction-misses-llc

and all the PMC data was collected using theSPEC CPU 2006benchmark [57]. The

authors also try to model the performance events and energy consumption from a ker-

nel module in order to �ne tuneDVFSand sleep states. In this thesis, theondemandx-

governor is used instead ofperformance or min/max as discussed previously so that

the processor is not restricted to certain con�gurations and works naturally like any

other production system. The rational for this choice is to exercise the framework

under real-world conditions and not constricted environments like test-beds.

In [109], the authors employ performance oriented changes for mobile apps and ac-

counts for change in energy expenditure after applying these changes. Their �ndings

suggest that, even though refactors deem signi�cant improvements in performance,

they rarely re�ect on batter savings. The authors conduct experiments using a cap-

ture replay tool to reduce human errors from manual input and timing bias. The

performance improvements are done by transforming the source code by changing to

static final variables, avoiding accessor/mutator methods, avoiding array length

checks in looping structures. In their work, they used a hardware power-meter (EMP)

device to gather energy consumption data. The concluding remarks from this paper

suggests that the processor is rarely a power hog in mobile devices, and most energy
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Figure 2.13: Software Energy Measurement at Di�erent Levels
[45]

consuming devices are from di�erent sub-systems.

In [45], the authors research about the di�erent kinds of mechanisms available to

extract energy expenditure based on granularity levels. This paper is profound in rela-

tion to the thesis as it sheds light on the di�erent options to read energy consumption

using di�erent paradigms: software, hardware, and combination. The authors list the

di�erent levels of granularity of measuring energy consumption:OS, application,

control-flow, system-calls, methods, line-of-code, machine-instructions

depicted in the following table:

The authors di�erentiate measurement methods based on sampling frequency and

method type. In this thesis, the sampling frequency is limited to the energy counter's

hardware refresh delay which is reported to be1ms[27]. However, this di�ers between

speci�c family of processors and the actual refresh rate can be lower than1ms. This

is evident from the tests conducted in this thesis, as the system-call tests �nish in

less than1ms, but an accurate count of energy expenditure is still reported by the

framework. The authors �nd that only program analysis methods are able to provide

energy consumption estimation readings at the lowest levels (instruction-level of

granularity.

The authors also suggest that a higher level of sampling frequency is needed both

in hardware and software to delve into the lowest level of granularity and maintain

good accuracy. The framework developed in this thesis is not able to extract energy
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information at the instruction-level . The same is also needed for correlating

certain lines of code or block within a function/method. The thesis takes a more

direct approach of reporting line-level energy by discerning the time di�erence between

start and stop when the line is �rst executed within the application. The authors talk

about architecture simulators which can provide CPU-speci�c sub-unit information

and discern the energy consumption from:L1-cache, ALU, registers, decoders,

multiplexers . The authors suggest that it is specially di�cult for software based

energy measurement mechanisms to provide accurate readings. The framework in this

thesis usingmsr mode andprocess-affinity can accurately read line-level energy

consumption using a software based approach.

In [76], the authors devise a solution for inferring source line-level energy con-

sumption for Android applications based on hardware power-monitoring, program

analysis, and statistical modelling. The biggest hurdle in such methods when com-

bining hardware and software methods to extract energy consumption metrics is the

sampling frequency di�erence (KHz vs GHz) of most power-meters and the frequency

of modern processors. In this paper, the authors mention about source line-level

energy consumption readings su�ering from OS threadcontext-switch ing. In the

thesis, the framework solves this major problem using thepreemption module and a

combination of pmcstart-stop mechanism depending onon-cpu process time. In this

paper, the authors actively talk about their solution might plagued by energy con-

sumption reading from processes other than thetarget process. The paper reports

that languages with GC such as Java in the Android platform will report higher en-

ergy values for lines invoked when GC is active than without. They resort to building

a Linear Regression Model based on data collected about line-level energy consump-

tion, the features were considered to be function path invocations, constituents like

lines and bytecode executed.

In [44], the authors survey di�erent paradigms to measure energy consumption

and talk about tuning machine-learning parameters to observe the changes in energy

expenditure. The authors discuss the main di�erent ways energy information can be

inferred:

1. Performance monitoring counters + Regression techniques.

2. Simulation data to obtain activity factors.

3. Architecture and instruction-level information.

4. Real-time power/energy measurements.
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The ML models created in these papers employ various di�erent techniques to

infer energy consumption of applications:

1. Assigning di�erent weights to PMC counters with highest correlation to energy

in LR models.

2. Using piece-wise functions to these LR models.

3. Using clustering approaches to �nd PMCs with high correlation.

One of the survey papers discusses about the signi�cant overhead incurred us-

ing simulation approaches which are able to provide extensive information about

energy consumption. One of the survey papers mention about correlating energy-

consumption to capacitance instead of the traditional voltage-frequency correlation

to energy expenditure due to di�erent processorC-states . One of the authors men-

tion about using an intrusive approach of measuring current and voltage the processor

level executingmicro-instructions in tight loop. This can be bene�cial to corre-

late energy information at the instruction-level for a particular processor with high

accuracy.

Other case studies fall in the group of software refactoring and involveloop-unrolling,

memoization and varying cache-sizes to observe the di�erence in energy expendi-

ture. The authors also build LR models based on these performance counter reg-

isters and found out that decoded-instructions-per-cycle correlates highly to

power consumption. Other highly correlated counters include:L2-cache-miss,

retired-uops, retired-mmx, df-instructions, df-stalls .

In [64], the authors discuss about Android Activity life-cycles and how it a�ects

energy consumption apps in di�erent life-cycle states. The paper discusses about

Android speci�c onPause() and onStop() life-cycles which suspendsActivity on

Android and discusses about potential leaks in the app due to these life-cycle tran-

sitions. They suggest putting sensor related con�gurations and update frequency

changes inonResume()instead of otheron*() methods to reduce energy leaks. Using

a combination of static and dynamic analysis, energy leaks are pinpointed in source

code and executions paths are checked to match against these resource leaks. These

execution paths are mapped using call-graphs and the matched paths are generated as

test cases for the test-harness. This paper does not consider �nding the actual energy

consumption values, but rather focus on �nding energy leaks within the applications

as it provides a provision for �xing these leaks. They brie�y talk about tail-energy

problem phenomenon as well, were a hardware resource (e.g. network) remains in a

high-powered state even after the request is satis�ed.
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In [55], in this paper the authors use RAPL [66] to measure energy consumption in

short-code paths which is very similar to how the frame in this thesis extracts energy

data. Here the authors, discuss about the drawbacks to using RAPL for energy mea-

surements which is limited to1msin most modern family of processors from Intel and

AMD. [27]. The authors �nd that RAPL measurements are usually expected around

� 250, 000 cycles but jitters around +/- 50, 000 making very micro/instruction-

level measuring inaccurate. In most AMD platforms, the RAPL domain also does

not account for DRAM power consumption as depicted in Figure-3.3.

The authors suggest that there are three problems when measuring energy con-

sumption using RAPL:

1. Overestimation (RAPL update before function)

2. Underestimation (RAPL update after function)

3. Null-result (RAPL update rate and function execution time exactly1ms)

However, when developing the framework and cross-checking the results against

perf [124], it is generally found that even really small micro workloads such as invok-

ing system-calls, the correct result is obtained. This suggests that the reported1ms

hardware refresh rate is not consistent among processors and actual refresh rates vary.

The authors suggest that a tight delay loop is used to ensure that results to account

for this hardware refresh update interval. The overhead introduced by this delay-loop

is known and is calibrated against the �nal result. In some cases, the authors report

that RAPL reads missing the1msmark can be attributed to System Management

Mode (SMM) of the processor which occurred every16msfor the particular test-bed

in this paper.

2.3.2 System-call based Modelling

In [9], the authors take on the task of uncovering if system-call invocations have a

direct connection to energy consumption of an application. This work focuses on

creating models from datasets derived from application execution recording system-

calls over di�erent versions of the software. The same models are used to con�rm if

it holds in the Android platform, that a software version with a speci�c system-call

pro�le a�ects total energy consumption of the application. They develop di�erent

paradigms of models based on: utilization, instruction, and system-calls. In the An-

droid platform, some devices can exhibit tail-energy phenomenon (NIC, SD-card, 3G,

etc.) may remain in a high-powered state even after app execution is �nished. The
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models using utilization based approaches fails to take this into account and fails to

generalize results for mobile platforms. This paper talks about three di�erent tech-

nologies: ECalc (CPU-power consumption model for Android: process vs method),

ELens(program analysis combined with instruction-based power modelling which can

derive power models for auxiliary components of a mobile device attaining �ne grained

energy pro�ling on multiple levels), VLens(pro�ling bytecode instructions with the

ability to infer single-line energy expenditure).

The authors also discuss abouteProf which generates models based on di�erent

sub-systems of a smartphone and using those individual model builds all ensemble

model for the entire smartphone which can predict energy consumption. The theme

the paper then moves on to build Linear Regression models using system-call count

invocations and tracking changes across multiple software versions. A Logistic Re-

gression model is also built to provide a binary answer to see if it warrants developer

attention if the software changed drastically in terms of source code. Memory manage-

ment system-calls (sbrk ), idle system-calls (epollwait ) and I/O system-calls (write )

correlate to energy expenditure due to side-e�ects in the execution context and has

a positive correlation to power consumption.

In [23], the authors estimate energy consumption using system-call count invo-

cations and discuss that it is di�cult to model situations of idle and cpu-bound

situations using this approach. Using utilization based approaches, the other spec-

trum of tail-energy usage is missed even after the request is satis�ed, also mentioned

in [64]. The authors also discuss about instruction based modelling mapping energy

consumption to individual instructions execution but this approach is not platform

agnostic. This follows the same principle as the papers discussed previously where the

authors build LR models with system-calls as feature input and energy consumption

as output (predicted value). These models are compared across di�erent versions of

the software and also on unseen applications. The evaluations are based on compar-

ing the mean-squared-error between actual and predicted across 1000 runs. Some

of the applications tested adds a bias to the model which might be detrimental to

applications without a static bias. Some applications in the training set also exhibit

a unique set of system-calls which might not be present for a test application, the

authors mitigated this problem by grouping the system-calls based on similarity (i.e.

network, memory, etc.).
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2.3.3 Energy Saving Practices

In [111], the authors discuss about the hardware and software point-of-view regarding

energy saving practices. In hindsight, within the high-level language program control-

�ow and algorithms used have direct in�uence on energy consumption as one of the

critical non-functional requirements (NFR). From the hardware perspective, dynamic

components are devices with a clock frequency and static components are devices (e.g.

sensors) with a constant (voltage * current) over a certain period. The authors suggest

that static components such in mobile devices can be managed more e�ciently by

keeping track of their active states (e.g. using them sparingly, proper shutdown after

usage).

Application parameters that can in�uence energy consumption include: reducing

total execution time, using more better language constructs, e�cient use of algo-

rithms. If there is necessary hardware support is available, the application can also

control individual components within the system: managevoltage, frequency,

capacity . DVFS techniques can be employed to reduce energy consumption, how-

ever low-cost IOT devices does not expose direct control over �ne-grained hardware

assisted frequency changes from applications.

Adaptive sampling techniques can be used to vary sensor update frequencies (con-

trolling update-rate) to reduce energy consumption in embedded devices with battery

powered sources. Reducing duty-cycle has a positive on latency during application

execution. Using periodic-latencies (delaying updates) can from sensor based appa-

ratuses can improve energy consumption a large margin.

Other techniques include race-to-idle, where an application is speed-up temporar-

ily in the beginning phase to increase compute power to execution reducing total

execution time. Afterwards the system switches to a low-powered state to conserve

energy. However, this approach is not universal as energy consumption is increased

in the starting phase of execution and might contribute to more usage in the overall

execution even after powering down.

In [121], the authors take a systems-centric approach from the OS-level for energy

saving practices. The paper talks about OS design principles and policy making to

reduce energy consumption of the entire system:

1. Conserving energy by powering down unneeded sub-systems and components.

2. Reducing service quality to conserve battery resources (e.g. lowering video

playback bitrate)
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3. Taking advantage of power-aware memory chips (data-access patterns)

When data is e�ectively placed together with frequent access patterns (place-

ment polices prioritizing virtual page-mappings to physical-pages), on-chip auxiliary

DRAMs can be powered down reducing energy footprint. Even though the temporal

e�ect of data access can reduce power consumption, performance (latency) might be

a�ected. This power-aware allocation policy improves energy consumption by 6-50%

as reported in the paper over traditional sleep states.

In mobile platforms with AD-HOC capabilities can improve energy consumption

by:

1. Limiting transmission frequency if the distance between sender and receiver is

too large.

2. Choosing a di�erent communication path (i.e. discovering more e�cient net-

works)

3. Balancing latency and hops in response to conserving energy (battery).

4. Choosing routes to fairly distribute AD-HOC process to nearby nodes.

In mobile communication networks, OS policies can improve energy e�ciency by

adopting:

1. More frequent shorter hops (communication distance).

2. Time sensitive communication (UDP-protocols) might favor minimum latency

(more energy) as opposed to optimized paths (more latency).

Computationally intensive tasks can be o�oaded by the OS to external remote

machines to conserve battery power. This incurs the overhead of transmitting the

data over the network and bad network communication can compromise the overall

savings. This can be mitigated by setting a policy to check network conditions and

paths before transmission by the OS. Periodic maintenance features of the OS can

be deferred until the device is plugged-in or otherwise not experiencing heavy load.

The OS also considers situations where disk de-fragmentation (a periodic task) will

enable more energy to be conserved as access patterns improve (reduced) across the

entire system for all applications.
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2.3.4 Multi-threaded Energy Introspection

In [98], the authors discuss about threading constructs:explicit-threading, thread-pooling,

fork-join-pool in Java and their usage implications regarding energy consumption.

The thread con�gurations were tuned in the manner:

1. Number of threads.

2. Unit of work.

3. Task-division strategies.

4. Task-granularity.

The �ndings from this paper suggests: as the number of threads increases, the

energy consumption increases but falls shortly after. In multi-threaded contexts using

Java, a faster execution time does not correlate to a greener application. The method

used to derive results extracts the actual energy consumption modulo base energy

consumption of the system. An interesting phenomenon observed from this study is

that energy consumption increases as the number of threads increases but gradually

decreases as this number reaches the number of hardware cores available. The reason

for this phenomenon is that most unused cores under theondemand-governor will be

in standby (idle ) mode consuming less energy, and quickly adapt to a higher load.

Here,Energy = Power * Time, when the number of threads increases, the operating

power of the whole system in e�ect increases, but the total execution time is reduced

decreasing energy consumption.

From the same paper, it can be observed that some of the parallel-benchmarks

peaks early on (linear performance increase) exhibiting an "A-curve". This is in line

with the previous energy equation, as the tasks race to completion, it o�sets the

additional energy usage as the total execution time is reduced due to spreading the

workload among di�erent cores. The same phenomenon (A-curve) is not observed for

other parallel-benchmarks and is observed to be steeper curve with overall increased

energy usage due to additional threads employed without reduction in execution time.

In concurrent execution contexts, the authors found that the threading constructs

used plays an important role depending on speci�c workloads. ExplicitJava-threads

outperforms other threading constructs in I/O bound situations as the request/response

context-switch is deferred to the OS as each Java-thread is mapped to a core.

The Java-ForkJoin construct in this situation is an inferior choice because of

decision making baked into the construct and might not agree with OS policies ulti-

mately hurting e�ciency. ForkJoin also su�ers in serial workloads, as the underlying
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work-stealing algorithm is oblivious to intra-task synchronizations with thread-

barriers. Long intra-task synchronized workloads are largely a�ected when the algo-

rithm cannot proceed to completion in a parallel manner waiting for previous tasks

to complete. Java-Executors are slightly better in this regard but still tied to client

update synchronizations.

The authors found it counter productive to overpopulate threads in the JVM, as

these benchmarks show no signi�cant performance increase but increase overall en-

ergy for no net bene�t. This phenomenon is caused due to exhausting the system with

unnecessarycontext-switch overhead incurred by the OS. In the task-granularity

with task centric divisions benchmarks, there is no discernible energy consumption

di�erence among the di�erent threading constructs. There is also no observable over-

head in scheduling a large number of tasks. If tasks are more coarse, usingForkJoin

there is a tendency for cores to remain idle, as the the task size is larger and cannot

be put on an execution unit by the OS. The work-stealing algorithm therefore has

less number of tasks to juggle resulting in decreased energy consumption as well as

decreased throughput. In task-centric divisions, granularity of task does not correlate

highly to energy consumption, however in data-centric based divisions asymmetric

workloads is energy friendly and increasing fork-width increases energy usage.

In scenarios where there is a signi�cant amount of data copying, energy consump-

tion increases profoundly due to delayed memory requests a�ecting total throughput

negatively more so than resources used. Another factor that heavily in�uences energy

usage is data-locality, sparse data organization within the application degrades both

performance and energy in a negative way due to frequent cache-misses and increased

main-memory accesses.

In [97] is a continuation of [98] where the authors extend the work to comparisons

between the di�erent threading constructs:ForkJoin, Executors, Threads . This

work sheds light on how these constructs behave according to di�erent intensity of

workloads and come to the conclusion that it is better than the defaultThreads

in Java. In I/O bound situations, as discussed in the previous paper the default

Threadconstruct is the most e�cient because the overhead of creating pools of threads

actually increase energy consumption as a whole inForkJoin, Executors . In I/O

bound situations, the core speed can also be decreased by a large margin in order to

save energy as it is mostly waiting for disk without sacri�cing performance.

In [79] and [78], the theme of these works thread synchronization and �ne-tune

energy manipulation using core frequency control. Using DVFS [62] techniques, a

concurrent application can be controlled to have lower energy footprint based on
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parent-child relationship in threads. The core idea is to increase the clock speed of

the core assigned to the worker (child) threads to speed up task execution, while

reducing the speed of the parent thread relatively. This is implemented usingJava

Futures , where work (task) is deferred to the future. There are di�erent implications

however as synchronization patterns might a�ect the performance of the critical region

when the parent thread is slowed down.

Synchronization between threads is usually done by either spinning or blocking

with di�erent implications on energy footprint. Spin-locks consume processor time

without achieving throughput. Blocking mechanisms increase cpu utilization and is

a�ected by context-switch and is very expensive in terms of energy usage. When

the parent thread is slowed down and is e�ectively in a blocked state, it executes

less instructions by virtue of relatively lower core speed compared to child threads

having higher speed through DVFS. Determining these synchronization points and

the exact time of thread-contention within the application through both static or

dynamic analysis is notoriously hard.

In [78], the authors propose four mechanisms for thread synchronization:dependent-join,

counted-sync, declarative-sync, critical-path, symmetric-join . In dependent-

join, as discussed previously the parent thread is slowed down in favor of worker (child)

threads. Counted-sync, all threads from application execution starts with a relatively

low core speed. As the application progresses toward completion, the counter de-

creases and each decrement increases the speed of threads still in execution. This

favors newly created threads as latecomer threads receive a higher speed during from

the get-go allowing faster progress. Declarative-sync allows the parent thread to be

noti�ed by a child thread in the form of send and acknowledge. The parent thread

cannot terminate without receiving con�rmation from a child thread, allowing the

worker threads with lazy speed scaling for faster progress to completion. The ap-

proach to handling critical sections within code is restricted to serial execution by

all threads within that section. Since waiting threads must be in either blocking or

spinning states, the proposed solution is to increase the threads with active execution

context. The speed-up factor is proportionately scaled to the number of threads in

the waiting state for access to the critical section.

In [39], the authors research about thread-contention and locking techniques to

reduce energy footprint. Here, the paper comparesmutex and spin-locks for han-

dling thread-contention which uses sleeping and interval based polling (busy-waiting)

as locking strategies respectively. The authors �nd that even though the sleeping

mechanism should be more power-e�cient than busy-waiting, in terms of actual en-
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ergy usage it is less e�cient. Spin-locks with busy waiting strategy inherently hurts

power consumption due high core utilization. The paper deems that energy e�ciency

and throughput goes hand in hand in the context of locking algorithms (strategy).

In terms of actual hardware implementation, there is no conventional energy e�cient

pause instruction in x86 Intel platforms. The authors also discuss aboutmonitor,

mwait instructions and that their usage is sub-optimal requiring superuser privileges

su�ering from context-switch overhead. Here, the authors claim that DFVS [62] tech-

niques are coarse and not performant in high-throughput applications. Thefutex

system-call o�sets the energy savings from mutex (sleeps) hurting overall energy ef-

�ciency. Mutex solves thread contention using aspin-wait-loop mechanism which

tries busy-waiting for a limited time and resorting to thread suspension after failing

to acquire locks. The paper also �nds that sleeping threads are e�cient as there is

virtually no core activity during that period.

2.3.5 Software Refactoring

In [61], the authors propose source code transformations in theC programming lan-

guage with the goal of reducing energy consumption. They use the tool:SimpleScalar ,

a virtual CPU evaluation tool based on the Linux platform. SimpleScalar is used as

a cycle-level performance simulator and can keep track of the units that are accessed

per processor cycle, this mechanism allows it to record the total energy consumed for

an application. Each unit is assigned a �xed quanta of energy (J), and total number of

units exhausted while the application was running gives the total energy expenditure.

The series of transformations that were experimented:

1. Loop transformation

2. Data Structure transformation

3. Subroutine transformation

4. Control Structure transformation

The authors applied each of these transformations separately and in combination

in order to derive the best possible energy pro�le of the benchmark application. The

idea for loop-transformation falls in the category of software re-transformation, where

the source code in this case the looping structure is transformed in favor of multiple

smaller loops in place of a big loop. This favors the instruction-cache (i-cache )

minimizing fetch and decode instructions for the underlying CPU. This also favors
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the data-cache (d-cache) if the operation data resides in a global array. The authors

also resort to changing the data structures while keeping the semantics of the program

the same and perceive the di�erence: if there are frequently accessed arrays, they can

be made a global variable so that they reside in the.data section memory rather

than on the stack. In subroutine-transformations, changing function signatures to

accept a pointer to a variable (i.e. references) instead of passing (copying) the

variable itself can have major implications on energy usage. A large structure with

numerous embedded elements can have a large overhead when the variable type is

passed around in function calls. Using control-structure-transformations, a complex

predicate can be changed in ordershort-circuit the statement o�oading the CPU

from executing additional unneeded instructions by virtue of skipping unnecessary

conditional expressions, this can also result in less memory usage.

The conclusion from this paper is that a tightly cohesive program, without much

indirection leads to less energy usage suggesting that good code design in terms of

architecture can have a noticeable impact.

In [13], three Android apps were chosen as test applications for code refactors to

observe changes to energy consumption after applying these transformations. The

authors discuss about "code-smells" or more aptly known as code anti-patterns [63].

The anti-patterns analyzed were:Long Method, Feature Envy, Type Checking,

Duplicated Code, God Class.

These anti-patterns were refactored either in isolation and also in combination

to see the net e�ects on app performance and energy usage. The �ndings from the

authors suggest that a single isolated anti-pattern refactor does not account for much

di�erence in terms of energy usage. However, a combination of multiple refactorings

lead to a substantial energy footprint di�erence (upto 7.9%). The idea is that over-

time, multiple refactors and subsequently removal of anti-patterns a�ect the app in

di�erent parts of the application (cpu, memory, network) leading to e�cient execution

pro�les saving battery resources. Since apps are developed usingJava on the Android

platform, JDeodorant is used to scan the app codebase to suggest refactorings for

Java sources.

Here the authors to using an external power-meter (Monsoon) to gather energy

consumption data keeping track of base consumption and app execution load. The

drawback to using this method is that the power-meter is measuring the entire de-

vice consumption with the foreground (benchmark app) and also all services and

background apps as well. This adds considerable noise to the data, but also allows

hardware such as sensors (3G/4G, WiFi) to be measured as well.
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In [91], the authors develop a framework calledE-Surgeon for Java applications

for �ne grained power analysis. TheE-Surgeon framework consists of two major

components:PowerAPIand Jalen (JMX bytecode instrumentation). The PowerAPI

component is responsible for gathering metrics from the OS/system, very similar to

how the framework in this thesis is used to gather energy consumption metrics from

the kernel-level. The combination of these components allowsE-Surgeontime of pro-

gram execution and resource (CPU, memory, network) utilization of the application.

The benchmark application tested against theE-Surgeon framework is aJetty web-

server usingTomcatas the implementation using a varying number of web-requests

(Java-threads ) to exercise the framework.

The E-Surgeon framework allows for �ne grained energy consumption analysis

at the thread and method-level but has a substantial overhead (>40%), the authors

deem that the overhead is acceptable because similar energy-pro�lers also have com-

parable overheads.E-Surgeon accounts for total energy consumption of a running

Java program by aggregating each individual method invocation in the call-chain.

The authors also cross check these energy measurements using a Bluetooth hard-

ware power monitor to validate thePowerAPIcomponent reading energy from the

OS/system. In this thesis, the idea is very similar for application introspection for

energy consumption, however the key di�erence is that theenergy-framework is lan-

guage agnostic and not limited to only Java likeE-Surgeon and has considerable less

overhead (2-3%).

In [40], the authors develop a statistical energy pro�ling tool calledPowerScope

for extracting energy consumption data of mobile applications. It uses a two-phase

process to generate this energy pro�le of application execution. The generation of

the energy pro�le of the application is done o�ine and incurs zero overhead. The

data collection phase consists of extracting system activity and associated energy

consumption. The authors resort to a hardware power-meter (digital-multimeter) to

record the power consumption of the pro�ling computer. PowerScopeis designed

as a sampling based energy pro�ler, and uses timings as the premise for correlating

di�erent entities of execution under application load.

PowerScopeuses symbol tables of executables on disk to map samples to speci�c

procedures (functions) of the underlying process. These data samples are written to

a circular-kernel-bu�er which is periodically �ushed by a user-daemon process. The

key idea from this paper is that the samples taken byPowerScopeis synchronized

while it is being saved to the bu�er. An o�ine phase is then carried out using these

synchronization points to correlate the energy consumption by looking up the memory
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