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ABSTRACT

For certain applications, the correctness of software involved is crucial, particularly if

human life is in danger. In order to achieve correctness, common practice is to gather

evidence for program correctness by testing the system. Even though testing may find

certain errors in the code, it cannot guarantee that the program is error-free. The program

of formal verification is the act of proving or disproving the correctness of the system with

respect to a formal specification. A logic for program verification is the so-called Hoare

Logic. Hoare Logic can deal with programs that do not utilize pointers, i.e., it allows

reasoning about programs that do not use shared mutable data structures. Separation Logic

extends Hoare logic that allows pointers, including pointer arithmetic, in the programming

language. It has four-pointer manipulating commands which perform the heap operations

such as lookup, allocation, deallocation, and mutation. We introduce an implementation of

separation logic in the interactive proof system Coq. Besides verifying that separation logic

is correct, we will provide several examples of programs and their correctness proof.
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1 INTRODUCTION

This thesis introduces Separation Logic and the implementation of separation logic in Coq,

where CoqIDE is a formal proof management system [1]. In the introduction for Coq Proof

Assistant, This system provides "a formal language to write mathematical definitions, exe-

cutable algorithms." According to John Done, those theorems together with an environment

"for semi-interactive development of machine-checked proofs." If such logic is used in the

system, it will help avoid human errors. People can always make mistakes whether it is

separation logic or any other kind of proof on a piece of paper. A formal proof management

system will not let it happened.

The implementation of separation logic in Coq is the extension of Hoare logic. However,

the Separation Logic extended the predicate calculus with the separation operators. Separa-

tion Logic is a Program Logic that can help develop logically correct programs without the

need for debugging. For the implementation, the Separation Logic is verified formally for

correctness. In this thesis, we presented some proof rules in separation logic and correctness

proof [2]. In Chapter two defines the syntax and semantics of the programming language

and introduce the Hoare Logic [3]. Chapter three introduces the new forms of assertions

and their inference rules in Separation Logic and the specifications and inference rules. The

final chapter describes the idea of annotated proofs and presents the proof of Rules [4]. The

whole logic is written in the style of the software foundations series, where every definition,

lemma, and example is formalized using the Coq proof system.

For the language of Coq, it can be sorted into two categories: the Prop and Type. Prop is

1



the sort for propositions which are the type of Prop, and the new predicates can be defined

inductively called inductive type. By abstracting over other existing propositions we can

have its Definistion. Type is for the datatypes and mathematical structures. Types can

be inductive structures, for tuples or a form of subset types. Coq implements a functional

programming language supporting these types. Then, functions over inductive types are

expressed using a case analysis called Fixpoint. Proof development in Coq is done through

a language of tactics that allows a user-guided proof process to finish the goal.
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2 BACKGROUND

Programming verification uses formal, mathematical techniques to debug software and soft-

ware specifications to avoid any serious consequences. In any application, the program always

act in a conscionable manner. We will show that the program behaves correctly in all pos-

sible situations. Hoare Logic can be used but does not allow pointers. By using separation

logic which can be a compelling program logic for proving programs that involve pointers.

The basic idea of Hoare Logic and Separation Logic will be introduced in this chapter.

2.1 The Programming Language

In this chapter, we first define the syntax and a partial function on states that specify the

operational semantics of programs. Since the separation logic has been built upon it, we

will review the basis of Hoare Logic. In Hoare Logic, we have a rule for reasoning about

the different syntactic forms of commands. Those are skip, assignment, sequencing, and

conditionals.

In separation logic, it is extended with new commands for the manipulation of mutable

shared data structures. It will be able to prove programs correct using these proof rules.

2.1.1 Syntax

An arithmetic expression and Boolean expression is needed to provide a suitable language.

Starting with the arithmetic expression, we have variables, and certain operations apply
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to already existing expressions. Suppose X is a set of variables, then the set of the AExp

arithmetic expression is recursively defined by the following rules:

1. Every variable is an arithmetic expression, i.e., X⊆ AExp.

2. Every integer constant is an arithmetic expression.

3. If t1, t2∈ AExpr, then t1 + t2∈ AExp

4. If t1, t2∈ AExpr, then t1 − t2∈ AExp

5. If t1, t2∈ AExpr, then t1 ∗ t2∈ AExp

For expression, we have the basic datatype for variables and constant numbers. Then,

numerical expression is included by introducing notation for addition, multiplication, and

subtraction. Here x is a variable in Var, n an integer and an operator in (Val × Val)→ Val.

Such as Plus : (Int × Int) → Int, etc,.

Boolean Expression could be basically True or False. Then there are several comparison

operations apply to arithmetic expression like:

1. Boolean Expression for simply true or false

2. If t1, t2∈ Expr, then t1 =?t2∈ Exp

3. If t1, t2∈ Expr, then t1 <=?t2∈ Exp

4. If b∈ BExpr, then ∼ (b)∈ BExp

5. If b1, b2∈ BExpr, then b1 =?b2∈ BExp

6. If b1, b2∈ BExpr, then b1 <=?b2∈ BExp

The Boolean expression simplifies members true and false, in which it also has Boolean

equal, Boolean less equal, Boolean not, Boolean and and Boolean or. Using & as example

(Bool × Bool) → Boolean.

The programming language has the introductory statement with the programming language

like Skip, Assignment, Sequence, If, While, Lookup, Mutation, Allocation, and Deallocation.

The syntax as data type had defined in the implementation. For arithmetic expression and

Boolean expression, we have a command. These are the exact data types and which is why

we want to define mathematically first [4]. The set of commands COM is recursively defined
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by:

1. Skip∈ COM.

There will be no effect on the state of computation for the execution. Since the command

Skip does not change the state, it will preserve any property P.

2. If x∈ COM and t∈ AExp, then the assignment statement x:=t∈ COM.

Assigning the value of the term t of expression to the variable x (x:=t) will change the state

for this command.

3. If x∈ COM and t∈ AExp, then the lookup statement x:=[t]∈ COM.

The value we got is stored at location t in the variable x. For the execution of this com-

mand, location t must initialize by the previous command of this program. Otherwise, the

execution will abort.

4. If t1, t2∈ AExp, then the mutation statement [t1]:=t2∈ COM.

The command [t1]:= t2, stores the value of expression t2 at the location t1. The location t1

must be an active cell of the addressable memory to make it happened.

5. If x∈ COM t∈ cons(AExp), then the allocation statement x:=cons(t)∈ COM.

The command says x:=cons(t), the values of t1,...tn for n consecutive cells in the memory

will be saved in x. The execution of this command expects that the addressable memory has

n consecutive cells and the uninitialized cells available. And then, it will create a new cons

cell in a heap and places a pointer to it in x.

6. If t∈ AExp, then the deallocation statement dispose(t)∈ COM.

The instruction dispose(t) says that deallocate the cell at the address t. The execution of

this command will abort if t is not an active cell location.
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7. If c1, c2 ∈ COM, then the sequence statement (c1;c2)∈ COM.

The commands c1, c2 are executed in that order. If the command c1 takes any state where

P holds to a state where Q holds, and if c2 takes any state where Q holds to one where R

holds,then doing c1 followed by c2 will take any state where P holds to one where R holds:

P c1 Q ; Q c2 R, we get P c1;;c2 R.

8. If b∈ BExp, c1, c2 ∈ COM, then the conditional statement if b then c1 else c2 fi∈

COM.

In this command, if the Boolean expression b evaluates to true statement, then c1 is exe-

cuted. Else if b evaluates to false, then c2 is executed. It is a simple conditional statement.

9. If b∈ BExp, c∈ COM, then the while statement while b do c end ∈ COM.

If b is a Boolean expression been evaluated to false then there is nothing done. However, if

b evaluates to true, then c is executed, and this while command will be repeated. In other

words, the command c will be repeated for execution until b becomes false.

2.1.2 Formal Semantics

The formal semantics can be specified to its commands in programming languages. On the

state of the computation, two component is extent: a store and a heap.

The store is just the primary function from variable to values as in the semantics of the

unextended simple imperative language. It contains the values of local variables. Further-

more, the heap is a partial function from the variable to the allocation storage, and (mapping

addresses) into values represents the mutable structures. We can say both of them can be
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viewed as partial functions showing below:

Heaps ∆
= Location → Int Stores

∆
= V ariables → Int

For the semantic domains we have:

V al = Int ∪Bool ∪ Atoms ∪ Loc

S = V ar ⇀ V al

H = Loc ⇀ V al× Val

The Loc = { l1,l2,...} presents an infinite set of locations. An infinite set of variables showing

as Var ={x,y,...}. In addition, Atoms = {nil,a,...} is a set of atoms. Furthermore, ⇀ is for

partial functions. An element S is referred to s ∈ S which is a store, h ∈ H is referred to as

a heap, and then the pair (s,h) ∈ S × H is referred to as a state.

The dom(h) is used to denote the domain of definition of a heap h ∈ H, and dom(s) to

denote the domain of a store s ∈ S.

For t∈ AExp, the semantics: Store→ Values is recursively defined by:

1) [ x ] (σ) = σ(x)

2) [ c ] (σ) = c

3) [ t1 + t2 ] (σ) = [ t1 ] (σ) + [ t2 ] (σ)

4) [ t1 - t2 ] (σ) = [ t1 ] (σ) - [ t2 ] (σ)

5) [ t1 * t2 ] (σ) = [ t1 ] (σ) * [ t2 ] (σ)

We have the type expression and the store and the result values. The constructor for variable

x would be σ (store) of x. If it is a constant c, then is value c. And then, we have the Plus

expression t1 and t2, then would be the value of the expression t1 with it store plus the value

of the t2 with it store. Same idea for the multiplication and subtraction.

For t∈ BExp, the semantics e: Store→ Bool is recursively defined by:

1) BTrue = true
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2) BFalse = false

3) [ t1 , t2 ] (σ) =? [ t1 ] (σ) , [ t2 ] (σ)

4) [ t1 , t2 ] (σ) <=? [ t1 ] (σ) , [ t2 ] (σ)

5) [ b ]=∼(b)

6) [ b1 && b2 ] (σ)=[ b1 ] (σ) && [ b2 ](σ)

7) [ b1 | | b2 ] (σ)=[ b1 ] (σ) || [ b2 ] (σ)

We simply have BTrue for returning ture in Boolean expression, BFalse for rerturning false.

Same idea we have the Boolean euqal, less equal, not, and and or for the expressions.

Operational Semantics (Commands without pointers):

• The semantics of the commands, from the original environment σ.

• Returning the modified environment σ’.

• The fact will be denoted by <c,σ> → σ’.

• The evaluation relation is called → symbol. This relation is defined by the following

rules:

(Skip) <skip, σ> → σ

(Assignment) <x := a,σ> → σ[σ(a)/x]

(Sequencing)

<c0,σ> → σ” <c1,σ”> → σ’

<c0; c1,σ> → σ’

(Conditional 1)

<c0,σ> → σ’

<if b then c0 else c1 fi, σ> → σ’

iff |= Z b[σ]
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(Conditional 2)

<c1,σ> → σ’

<if b then c0 else c1 fi, σ> → σ’

iff |= Z ¬ b[σ]

(Loop 1)

<while b do c od, σ> → σ iff |= Z ¬ b[σ]

(Loop 2)

<c,σ> → σ” <while b do c od, σ”> → σ’

<while b do c od, σ> → σ’

iff |= Z b[σ]

Operational Semantics (Commands with pointers):

• The notation, cons and [-] which refer to the heap memory.

• f [x : v] represents a function whic maps x to v and all other argument y in the domain

of f to fy.

(Allocation)

s |= e1 ⇓ v1,..., s |= en ⇓ vn l,..., l + n - 1 ∈ locations - dom h

<x := cons (e1 ,..., en), (s,h)> → (s[x :l], h[ l : v1 ,..., l+n -1 : vn])

(Lookup)

s |= e ⇓ v v ∈ dom h

<x := [e], (s,h)> → (s[x:h(v)],h)

s |= e ⇓ v v /∈ dom h

<x := [e], (s,h)> → abort

(Mutation)

s |= e ⇓ v v ∈ dom h s |= e’ ⇓ v’

< [e] := e’, (s,h)> → (s , h[v : v’])

s |= e ⇓ v v /∈ dom h

<[e] := e’, (s,h)> → abort
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(Dispose)

s |= e ⇓ v v ∈ dom h

<dispose (e), (s,h)> → (s, h e (dom h - {v}))

s |= e ⇓ v v /∈ dom h

< dispose (e), (s,h)> → abort

The new command perform the usual heap operations, which shows the manipulation of

mutable shared data structures in separation logic shows below:

< comm >::= . . .

| < var >:= cons(< exp >, . . . , < exp >) allocation

| < var >:= [< exp >] lookup

|[< exp >] :=< exp > mutation

|dispose < exp > deallocation

An essential feature of the language is that any attempt to refer to an unallocated address

causes the program execution to abort. The semantics of the following sequence of new

commands showing as an example below:

Allocation x:= cons(1,2); Store: x:4,y:5 Heap: empty ⇓

Lookup y:=[x]; Store: x:25,y:5 Heap: 25:1,26:2 ⇓

Mutation [x+1]:= 3; Store: x:25,y:1 Heap: 25:1,26:2 ⇓

Deallocation dispose(x+1) Store: x:25,y:1 Heap: 25:1,26:3 ⇓
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| Store: x:25,y:1 Heap: 25:1

The example says, begin with a state where the store maps the variable x with 3 and y

with 4, and the heap is empty. Then the typical effect of each kind of heap-manipulating

command showing above. All operations, including lookup, mutation, and deallocation,

would cause memory faults which will abort for the execution if an inactive address is

deallocated.

2.2 Hoare Logic

Hoare logic originated in the 1960s. It lies "at the core of a multitude of tolls that are being

used in academia and industry to specify" and "verifis real software systems [3]." Hoare logic

is a formal system with a set of logical rules for reasoning about the correctness of computer

programs [3]." In Hoare Logic, first we need to show that a partial correctness statement

{P} c {Q} holds. If it holds for all stores and interpretations, the statement will be valid.

The set of rules in Hoare logic shows below:

Skip rule:

{Q} SKIP {Q}

Assignment rule:

{{ Q [t /x] }} (x ::= t) {{ Q }}

Sequence rule:

{ P } c1 { Q } { Q } c2 { R }

{ P } c1;c2 { R }

If rule:

{ P ∧ b } c1 {Q} { P ∧ ∼ b} c2 {Q}

{ P } if b then c1 else c2 end { Q }
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While rule:

{ P ∧ b } c { P }

{ P } while b do c end { P ∧ ∼ b}

Consequence rule:

{ P’ } c { Q’ } P⇒ P’ Q’⇒ Q

{ P } c { Q }

2.2.1 Hoare Triples

For every Logic has notation of formulas. The formulas in Hoare Logic are Hoare Triples.

In Hoare Triples, the way of making formal claims, in terms of the behavior of commands

are needed. Transform one state to another is the behavior of a command. The commands

in terms of assertions need to be true before and after the command executes. A standard

notation is {P} c {Q} meaning:

"If command c is started in a state satisfying assertion P, and if c eventually terminates

in some final state, then this final state will satisfy the assertion Q [3]." This claim is called

a Hoare Triple. In other words, if the precondition is true and the program terminates,

then the postcondition is true, which is partial correctness. Partial correctness means in

Hoare logic that an algorithm never terminates with an incorrect result. However, there is

a problem with Hoare logic, and it does not cover if we have pointers. in other words, the

regular Hoare Logic does not work if pointers are pointing to the same address. If we have

pointers pointing to the same location of heap and assignment will change one of them, the

precondition will not work because the modification in the regular assertion rule cannot be

sharing different values. In order to verify certain programs, it needs to be able to state that

two-pointer structures do not share common parts. Therefore, we want to use separation

logic.
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2.3 Separation Logic

O’Hearn and Reynolds [5] [6] [7] are the first ones who developed separation Logic, which was

introduced in the early 2000s. Since then, it has worked perfectly at program verification.

It is an extension of standard Hoare Logic with the help of programming language [8]. It

addresses reasoning about programs that shared mutable data structures. It was created to

reason about pointer manipulating programs of various types.

Separation Logic extended operations for expressing program specification, they are sep-

arating conjunction (*) and implication (-*). In Hoare Logic, assertions describe states, but

now states contain heaps as well as stores. Store is a function mapping variable to values.

Heap is a partial function mapping memory addresses to values. The separation condition

is true for a heap if there exist two heaps and they are disjoint, which means they do not

share a common address. Furthermore, the original heap was made of these two. In the first

part of the first heap, if the first property is true, the second property would be true for the

second heap. Additional rules from Hoare Logic is Frame rule which is very important in

Separation logic:

{ p } c { q }

{ p ∗ r } c { q ∗ r }

The Frame Rule says if a program executes in a small state that satisfies p, it will also

satisfy with p * r in a bigger state, which means that the additional part of the state will

not be affected by the execution. Meanwhile, in the postcondition, r will keep in true. For

more implementation, we will introduce them in the later chapter. The rest of the rules for

separation logic are allocation, lookup, mutation and deallocation:

Allocation {x = X ∧ emp} x:= cons (e1,...,ek){x7→ e1 [X/x],...,ek [X/x] }

Lookup { e 7→ v ∧ x = X } x:= [ e ] { x= v ∧ e [X/x] 7→ v }

mutation {(e 7→ - )} [ e ] := e’{ e 7→ e’ }

deallocation {( e 7→ - )} dispose e { emp }
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The Allocation says it will end with k contiguous heap cells from e1 until ek to have appro-

priate values since the execution begins with a store with x = X and an empty heap. The

variable X to store the value of x before the execution in Lookup same as allocation. It

asserts that the content of the heap is unchanged; the only difference is in the store. The

new value x modify to the value v at the old location e. Mutation says that if e points

to something before, it points to e’ afterward. This rule matches the natural semantics of

Mutation. Finally, Deallocation says that there will be no active cells in a final state if e

is the only allocated memory cell pointing to something before the execution of the command.
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3 Implementation of Separation Logic

All of the described mathematical definitions from previous sections in Coq. The first step we

have to implement is the Expressions. The expression contains the arithmetic and Boolean

expression, which is one to one translation of the mathematics definition. Next, we imple-

mented the basic data type for Command, and we also defined the syntax of Command. We

extend the states to contain two components: the store maps variables into values, and the

heap maps addresses into values. In our implementation, we have a file called BasicTypes

which models Values, Atoms, and Addresses. Values are integers, Address are positive num-

bers, and Atoms consists only if nil stands for 0. Also, we add coercions from Atoms and

Addresses so that they can automatically see as Value [6]. We assume all values are integers.

There are all positive integers in Addresses. The Atoms are integers that not addresses and

then heaps map addresses into single values:

Values = Integers

Addresses = Positive Integers

Atoms = { nil }

nil seen as an integer nil=0

where Atoms and Addresses are disjoint

Heaps =
⋃

fin (A→ Values).
A⊆ Addresses

This will occur if only a finite number of positive integers are not addresses. In this logic we

also can get:

15



nil ∈ Atoms

StoreX = X → V alues

StatesX = StoresX ×Heaps.

In the above function, X is a finite set of variables. The definition of the state is store *

heap. The store is from variables to values. We also define an empty heap as emp in Coq,

which contains no memory cells.

The implementation of the basic data type, expressions, commands, assertions, finite set,

finite partial function, and the proving rules for separation logic will be introduced with

more details in the following chapters.

3.1 Commands and Expressions

First, the syntax of the language in Coq is defined by reusing aexp and bexp defined for

Imp. It is changed into an inductive definition and redefine the basic data type of commands

and expression in the following way:

Inductive Command : Type :=
| SKIP : Command
| Ass : Vars -> Expr -> Command
| Lookup : Vars -> Expr -> Command
| Mutation : Expr -> Expr -> Command
| Allocation: Vars -> list Expr -> Command
| Dispose : Expr -> Command
| Seq : Command -> Command -> Command
| If : BExpr -> Command -> Command -> Command
| While : BExpr -> Command -> Command.

Next, we defined the operational semantics for commands in Coq. We are changing it into

an inductive definition as well called ceval semantics. The ceval is the relation that gives

us a new store and new heap if that command executes successfully in the system. More
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details can be checked in the implementation files.

The data type of expressions and boolean expressions:

Inductive Expr : Type :=
| Var : Vars -> Expr
| Const : Values -> Expr
| Plus : Expr -> Expr -> Expr
| Minus : Expr -> Expr -> Expr
| Mult : Expr -> Expr -> Expr.

Inductive BExpr : Type :=
| BTrue : BExpr
| BFalse : BExpr
| BEq : Expr -> Expr -> BExpr
| BLeq : Expr -> Expr -> BExpr
| BNot : BExpr -> BExpr
| BAnd : BExpr -> BExpr -> BExpr
| BOr : BExpr -> BExpr -> BExpr.

3.2 Partial Function

As we already know that in separation logic, states now contain heaps as well as stores.

Store is a function mapping variable to values. Heap is a partial function mapping memory

addresses to values. The value, and the address exist in pairs. For the heap, we need

partial functions, so that we have implemented a finite partial function simply because we

are starting with the program with an empty heap and only allocating finite many storage

cells in one program. For example, we store something in the partial function, the argument

value pairs in the list. In this function, we need to make sure the first argument is mapped

to something unique. In other words, a finite partial function F from A to B is a partial

function, the set where F is defined is finite. They are implemented by using a list of pairs

and proof that a list of arguments contains no duplicates. Those are the operations we use:

PFunc: l: list(A * B), NoDup (map fst l) → PFunc A B.

Before we implemented the partial functions, we have implemented the FiniteSet in Coq.
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For the implementation, we have a set which contains a list of A elements that the list does

not have any duplicates.

Inductive set (A: Type):= mk_set: forall (l : list A), NoDup l → set A.

And then, the global instance for set Setoid means a Setoid to have equality on sets is used.

Because two lists containing certain elements may represent the same set even if they do

not contain duplicates, it can be avoided if the list is just reordered. A set is a list together

with proof that there are no duplicates, and we consider two sets to be equal if the two lists

contain the same elements. The rest of the implementation for Set are the definition of the

empty_set, singleton_set, disjoint and some proven properties in a sets.

Definition Empty : set A := mk_set [ ] (NoDup_nil A).

Definition singleton_set (x : A) : set A := mk_set [x] (NoDup_singleton x).

Definition disjoint (s1 s2 : set A) : Prop := disjoint_list (asList s1) (asList s2).

The singleton list does not contain duplicates and then constructs the set. We also define the

singleton heap in assertions as in the next chapter. The implementation of Finite Partial

Function is very similar to the Finite Set. From the definition below, we have a list of A B

pairs list(A*B), but with these properties that the A part cannot occur twice which has no

duplicates in the map of the first of the list. Because it has to be a function, meaning that

if A is map to B, it can not map to C. This is what the partial function is.

Inductive PFunc: (A B : Type) := mk_pfunc: forall ( l : list(A * B), NoDup (map fst l) → PFunc A B.

Then we have equivalence on those two partial functions if they are the same as sets. The

set definition asSet is if this is the list of pairs, and if you have no duplicate in the first

component, a partial function can always be seen as a set. Moreover, now we consider two

partial functions to be equal if they are equal as sets. That is the Setoid on partial function.

Global Instance pfunc_Setoid: Setoid (A p→ B) := {|

equal := fun f1 f2 ⇒ asSet f1 == asSet f2;

setoid_equiv := pfunc_equiv_prop |}
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3.3 Assertions

As in Hoare Logic, assertions describe states, but now states contain heaps as well as stores.

The usual operations and quantifiers of predicate logic [9]. First, we defined the data type

for assertions in Coq file Assertions:

Inductive Assertion : Type :=
| AEmp : Assertion
| ATrue : Assertion
| Anot : Assertion → Assertion
| AEqExpr : Expr → Expr → Assertion
| ALeqExpr : Expr → Expr → Assertion
| ASingleBlock_heap : Expr → list Expr → Assertion
| Aand : Assertion → Assertion → Assertion
| Aor : Assertion → Assertion → Assertion
| Aimpl : Assertion → Assertion → Assertion
| Aiff : Assertion → Assertion → Assertion
| Asep : Assertion → Assertion → Assertion
| Asepimp : Assertion → Assertion → Assertion
| AForall : Vars → Assertion → Assertion
| AExists : Vars → Assertion → Assertion.

The set of assertion, goes beyond the predicates used in the Hoare Logic. Following is

the syntax of the new assertions,

< assert > :== . . .

|emp

| < exp > | →< exp >

| < assert > ∗ < assert >

| < assert > −∗ < assert >

It is important to note that the meaning of these new assertions depends on both the store

and the heap.
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1. Empty heap

The heap is empty.

emp

2. Singleton heap

The heap contains one cell, at address e with contents e’.

e| → e′

3. Separating conjunction

It is also called star operations, and the heap can split into two disjoint parts that p1

holds for the first part and p2 holds for the other. p1 star p2 means some memory

satisfies p1 and then separately forms that memory is some heap that satisfies p2.

p1 ∗ p2

4. Separating implication

For the Separating implication, if the heap is entended with a disjoint part that p1

holds, p2 will hold for the extended heap.

p1− ∗p2

• The emp asserts that the heap is empty:

[emp] assert s h iff dom h = { }

• e| → e
′ assert that the heap contains one cell, at address e with contents e’ :

[e | → e
′
] assert s h iff dom h = [e] exp s and h ( [e] exp s ) = [e

′
] exp s

In the implementation, the singleton heap is defined as two expressions e and e’. To

make the assertion, such assertion is a function that takes in a store and heap and
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gets the property. The heap contains exactly one element. And then, the domain of

the heap is equal to the singleton set, which contains the value of e. If it takes what

is stored for the value of e for the apply. The singleton set will return value e if it is

equal to some value e’ :

Definition singleton (e e’ : Expr): Assertion := mk_Assertion (fun s h → dom h == sing ( value e

s ) ∧ apply h ( value e s) = some (value e’ s) pr.

• For the separating conjunction, we also call it Star operation (p1 ∗ p2). One part

satisfied the first property, and the second part satisfied the second property. And

these two parts are disjoint:

h| = p1 ∗ p2 iff exits h1, h2 : h = h1 + h2
∧

h1 | = p1
∧

h2 | = p2

H is a heap, and for that heap p1 ∗ p2 is true if and only if there exist h1 and h2

so the following thing is h is equal to h1 + h2, The symbol + meaning disjoint union.

h1 and h2 are heaps partial functions, which do not share the common address, and

h1 makes p1 true, h2 makes p2 true. This star operation allows us to split the heap

into smaller parts and reason locally. The overall property p1 ∗ p2 the whole heap

you want to reason about them locally, you just looking at one part where p1 is true,

and local other part p2 is true, so that is why we have this operation to work with

pointers.

• Here is the example to explain -* implication. Suppose the property P is defined as:

P = x 7→ 3, 4 ** y 7→ x

says that x points to a record containing 3,4 and y points to a cell containing x,

left part right part

y → | . | x → | 3 | | 4 |

Now, x 7→ 3,4 -* P says something about the left part of the heap for y. It says that if

one part of the heap is like the right part of the heap above, the whole heap (left and
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right together) is the one above. However, this does not say it is like the one above

only if the right part is exist.

Now, x 7→ 1,2 ** (x 7→ 3,4 -* P) says that x points 1,2 and the stuff from above.

This is equivalent to just x 7→ 1,2 since the left-hand side of the implication is false.

However, as a precondition to the program [x] := 3; [x+1] := 4 it is relevant since that

program changes the x part of the heap into one that satisfies the left-hand side of the

implication. Therefore, we got P afterward. With other words, { x 7→ 1,2 ** (x 7→ 3,4

-* P) } [x] := 3; [x+1] := 4 {P}. This can be read as before the program x points to

1,2 and after the program x points to 3,4 and y points to x.

In general, { x 7→ _ ** (x 7→ a -* P) } [x] := a {P} is a valid triple in Separation

logic. In fact the left-hand side is the weakest precondition for the program [x] := a

and postcondition P, i.e., if {Q} [x]:= 3 {P} is true, then Q → (x 7→ _ ** (x 7→ a -*

P)).

The condition for separation implication is:

Forall (h’: Heap), dom h’ dom h ∧ Assertion_map s h’ a1 → Assertion_map s (h+h+h’) a2.

3.3.1 New Variable

In assertions, the new variable is needed, which does not appear in certain formulas or terms.

For instance, if we want to substitute, it could be that the term is not substitutable for the

variables in that formula because the term contains a variable free which would become

bound by the quantifier. In order to do so, solving that problem in the implementation

we would rename this bounded variable y to z. The new variable z we are using is a new

variable. It cannot occur in the term. That is the reason why we need this new variable.

Before we do that, we need to do the reading and writing numbers in Coq. The definition of

strings in the standard library of Coq has its definition, but it is defined as an inductive type.

Because Coq has a good notation for strings and ASCII, they are much like built-in notation
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for numbers. Then we can have a function for string-processing. To read the numbers, we

first need to convert asciiS to natS which means if the character is a digit, we return that

number. Otherwise, the whole parsing should fail. It defined as digitToNat in Coq. Now

we can use the function to read numbers.

Fixpoint readNatAux (s : string) (acc : nat) : option nat :=
match s with
| "" ⇒ Some acc
| String c s’ ⇒
match digitToNat c with
| Some n ⇒ readNatAux s’ (10 * acc + n)
| None ⇒ None
end
end.
Definition readNat (s : string) : option nat :=
readNatAux s 0.

After we have a function to read a function, now we need a function to converts natS to

their corresponding digits which means we need to write one for printing. Then we defined

natToDigit in the system. and then we have our printing function as well.

Fixpoint writeNatAux (time n : nat) (acc : string) : string :=
let acc’ := String (natToDigit (n mod 10)) acc in
match time with
| 0 ⇒ acc’
| S time’ ⇒
match n / 10 with
| 0 ⇒ acc’
| n’ ⇒ writeNatAux time’ n’ acc’
end
end.
Definition writeNat (n : nat) : string :=
writeNatAux n n "".

We can finish the rest of the proofs to clear that the readNat is indeed the inverse of the

writeNat since we have those functions. After that we do the converting of nat to string
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and string to nat. And then we can get the new variables we want [10].

The implementation for the new variables we have:

Fixpoint newVarRec (s : set Vars) (n : nat) : Vars :=
let v := ("z" ++ writeNat n)%string in
match n with
| 0 ⇒ v
| S m ⇒ if (elem string_dec v s) then newVarRec (rem string_dec s v) m else v
end.
Definition newVar (s : set Vars) : Vars := newVarRec s (size s).

First, we need a recursion to get the new variables. Starting with 0 and check if it is in the

set, if not returns if it is in there do the recursive call, and we do this until the number of

iterations is one bigger than the number of elements in the original set.

In other words, we generate a number of variables x0....xn, so the number is one bigger than

the elements in our set, so among those, there must be one not in the set that’s the one we

need. First, we have a given set of variables, and we want a distinct variable from those.

We need this because when we rename the bounded variable, we usually want a completely

new fresh variable that does not occur in the formula or the term anywhere. Then, we can

finish the proof for our new variables.

Lemma newVarRecProp : forall n s, size s = n → ∼ Elem (newVarRec s n) s.

Lemma newVarProp : forall s, ∼ Elem (newVar s) s.

3.3.2 Examples

After we have the given axiom schemata for the predicate symbols like asingleblock heap and

some other notations. With those new assertion like conjunction and implication to proof

those propertity as examples. At the end of Assertion file we also proved some property from

the book [7] for predicate 7→. The three lemmata are:

Lemma Page15Th1 (e1 e1’ e2 e2’: Expr): AValid (e1 7→ e1’ ∧ e2 7→ e2’ ↔ e1 7→ e1’ ∧ e1 = e2 ∧ e1’=e2’)
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Lemma Page15Th2 (e1 e1’ e2 e2’: Expr): AValid (e1 (→ e1’ ** e2’ → e1 <> e2)

Lemma Page15Th4 (e e’: Expr)(a : Assertion): AValid (e (→ e1’ ∧ a → e 7→ e’ ** (e 7→ e’ -* a))

To prove those we first add the data type in Assertion for ATrue and Anot. We need those

in Assertion_map and Assertion_FV. Then we extend the proof of Assertion_map being

a parametric morphism and Assertion_coincidence as well. And we add the notation as

following:

Notation "True" := (Atrue).

Notation "e1 <> e2" := (ANot (AEqExpr e1 e2)).

Notation "e1 (→ e2" := (Asep (ASingleton_heap e1 e2)True)(at level 40).

Notation " a" := (Anot a).

Furthermore, we also add the Lemmata nonempty_notdisjoint, singleton_nonempty, and

pfunc_extensional in FiniteSet and FiniteParialFunction files to finish the proof.

3.4 Assertions and their inference rules

The inference rules for predicate calculus remain sound in this enriched setting. Additional

axiom schemata for separating conjunction include empty, commutative and associative laws.

And we already prove those properties correct in our system. The notation for separating

conjunction is defined as one star <*> in mathematical way, and the implementation part

we use the notation <**> in Coq.

Commutative:

P1 ∗ P2 ⇐⇒ P2 ∗ P1

Associative:

( P1 ∗ P2) ∗ P3 ⇐⇒ P1 ∗ (P2 ∗ P3 )
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Emp:

P ∗ emp ⇐⇒ P

Separating conjunction is a commutative and associative operator with emp as a neutral

element.

Distributive_Or:

( P1 ∨ P2) ∗ Q ⇐⇒ ( P1 ∗ Q ) ∨ ( P2 ∗ Q )

Separating conjunction distributes over disjunction.

Subdistributive_And:

( P1 ∧ P2) ∗ Q ⇐⇒ ( P1 ∗ Q ) ∧ ( P2 ∗ Q )

Separating conjunction semi-distributes over conjunction but not the other direction in gen-

eral.

Distributive_Exists:

(∃ x. P ) ∗ Q ⇐⇒ ∃ x. ( P ∗ Q ) where x not free in Q

Distributive_Forall:

(∀ x. P ) ∗Q ⇐⇒ ∀ x. ( P ∗ Q ) where x not free in Q

There is also an inference rule showing that separating conjunction is monotone concern-

ing to implication.

Separation Monotonicity:

P1 ⇒ P2 Q1 ⇒ Q2

P1 * Q1 ⇒ P2 * Q2

Separating conjunction is monotone to implication. In our implementation:
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AValid (P1 → P2) → AValid (Q1 → Q2) → AValid (P1 ** Q1 → P2 ** Q2).

AValid is for s and h, which is store and heap. All of those above and below the line should

be valid.

Separation Modusponens:

(A1 ∗ (A1 − ∗ A2)) → A2

Furthermore, two rules, currying and decurrying, capture the adjunctive relationship between

separating conjunction and separating implication showing below:

Currying:

P1 * P2⇒ P3

P1 ⇒ (P2 -∗ P3)

Decurrying:

P1⇒ (P2 -∗ P3)

P1 * P2 ⇒ P3

3.5 Specifications and their Inference rules

In specification logic, specifications are Hoare triples, and they describe commands. The

notion of program speciation with variants for both partial and total correctness [11]. Our

project will be focusing on partial correctness.

〈 specification〉 ::=

{ 〈 assertion〉 } 〈 command〉 { 〈 assertion〉 } (partial correctness)

| [ 〈 assertion〉 ] | 〈command〉 [ 〈 assertion〉 ] (total correctness)
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The initial assertion is called the precondition for these two flavors, and the last assertion is

called the postcondition. The partial correctness specification {p} c {q} is true iff, starting

in any state in which p holds:

• No execution of c abort

• Some execution of c terminates in a final state, q holds in the final state.

3.5.1 Substitution

In our system, the command- specific inference rules of Hoare logic remain sound, so we do

such structural rule as Substitution.

{ P } c { Q }

{ P / δ } ( c / δ ) { Q / δ }

Where δ is the substitution v1 →e1, . . . ., vn →en, v1,. . . ..,vn are the variables occurring

free in p, c, or q, and, if vi is modified by c, then ei is a variable that does not occur free in

any other ej.

We defined the substitution for expression in the Expression file as well. The substitution

in t1 we want to replace for variable Vars is the term t2. If y is variable and if x and y are

the same, the result will be t2 or y. If it is the constant n, then the result is constant n. If it

is plus, we have expression t3 and t4, then we want to plus the subst in t3 t2 for the variable

then same as the second one subst in t4 t2 for var. And we got the same idea in Mult and

Minus as following in Coq:

Fixpoint substExpr (t1 t2 : Expr) (x : Vars) : Expr :=
match t1 with | Var y =⇒ if eqb x y then t2 elas Var y
| Const n =⇒ Const n
| Plus t3 t4 =⇒ Plus (substExpr t3 t2 x) (substExpr t4 t2 x)
| Mult t3 t4 =⇒ Mult (substExpr t3 t2 x) (substExpr t4 t2 x)
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| Miuns t3 t4 =⇒ Minus (substExpr t3 t2 x) (substExpr t4 t2 x)
end.

Then we have the lemma to proof the substitution:

Lemma Expr_substitution : forall (t1 t2 : Expr) x s, value (t1[t2/x] ) s = value t1 (update s x (value t2

s)).

The value of subst t1 t2 have the same value of t1 to update the value of t2 for store s and

then for the variables of x.

After we have the expressions for substitution which is for a expression to be substitutable

for a variable in a formula. we also need the substitution for assertions. For all the properties

we need to let them to be substitutiable and for all the variables as well. We have the lemma:

Lemma SubstitutableVar : forall x y a, ∼Elem y (Assertion_AllVar a) → Substitutiable (Var y) x a.

After the proof of substitution for assertion for all properties from lemma Assertion_substitution,

the Assertion_Subst_Rename says that given for every formula expression and variable we

have an for every formula an equivalent formula so that the expression is substitutable.

Lemma Assertion_Subst_Rename : forall e x a, exists a’, Substitutiable e x a’ ∧ forall st,

Assertion_map st a ↔ Assertion_map st a’.

3.5.2 Frame Rule

{ p } c { q }

{ p ∗ r } c { q ∗ r }

Where no variable occurring free in r is modified by c. The frame rule was named in

"homage to the frame problem from artificial intelligence, which concerns axiomatizing state

changes without enumerating all the things that do not change [12] [7]." The Frame Rule

allows you to place a property into a larger context or heap. If the precondition p is true and
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the program terminates, then the postcondition q is true. Furthermore, if r says something

about the heap outside of what is being affected by c, then c will not change the value of r

(or we can say r is invariant for c). Here is a simple example for the frame rule:

{ x 7→ _ } [x] := 3 { x 7→ _ }

{ y 7→ 42 ∗ x 7→ _} [x] := 3 { y 7→ 42 ∗ x 7→ _ }

If x has some value, then we have x becomes 3, which x has some value. This statement is

obviously true. X has some value; it has been allocated and changed and has some value

afterward. Then we can use the frame rule. The precondition is 42, which is y. x has

something. The heap is separated into two parts, and the first is only defined for y. The

second is for x, they will not affect each other. Then the x becomes 3. The postcondition

is the same. So, separating things allows them to say that x and y and they do not share

anything.

3.6 List Example

We specify the list-reversal program as example in our thesis. It can be says that " If i is

a list before execution, then j will be a list afterwards". On the other words " If i is a list

representing the sequence α before execution, then afterwards j will be a list representing

the sequence that is the reflection of α". In order to implement that, first is to define the

set of abstract values, and with its primitive operations, and then to define predicates on

the abstract values by structural induction. For the primitive operations, we have ε for the

empty sequence. The α · β for the composition of α followed by β, α † for the reflection of

α, and αi for the ith component of α. And we used singly-linked list to represent sequences.

The list α i when i is a list representing the sequence α. The following example shows that

the program for reversing in list:

{ list α0 i }
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{ list α0 i * (emp ∧nil = nil)}
j:=nil;
{ list α0 i * (emp ∧ j = nil)}
{ list α0 i * list ε j}
{ ∃ α,β. (list a i * list β j) ∧ α†

0 = α† · β}
while i 6= nil do
({ ∃a, α,β. (list (a· α) i * list β j) ∧ α†

0 = (a· α)†· β}
{ ∃a, α,β,k. (i 7→ a,k * list α k * list β j) ∧ α†

0 = (a· α)†· β}
k:=[i+1];
{ ∃a, α,β. (i 7→ a,k * list α k * list β j) ∧ α†

0 = (a· α)†· β}
[i+ 1]:=j;
{ ∃a, α,β. (i 7→ a,j * list α k * list β j) ∧ α†

0 = (a· α)†· β}
{ ∃a, α,β. (list α k * list(a· β) i) ∧ α†

0 = α† · a · β}
{ ∃ α,β. (list α k * listβ i) ∧ α†

0 = α† · β}
j:=i ; i:= k
{ ∃ α,β. (list α i * listβ j) ∧ α†

0 = α† · β})
{ ∃ α,β. list β j ∧ α†

0 = α† · β ∧ α = ε}
{ list α†

0 j}

This is the program reversing a list annotated with all intermediate assertions. The pre-

condition is that i implements a list α0. For example, in line six says that there are two

sequences α, β, implemented by the pointers i and j on separated sections of the heap, so

that the reverse α†
0 of the original sequence α0 is equal to the reverse of α followed by β. This

property is the invariant of the loop and implies the post-condition of the program saying

that j implements the reverse of α0.

3.7 Proof Rules

For the proofing rules, we first define the separation triples and its notation. Similar to

Hoare triples except it contains the store and the heap. The definition show below:

Definition sep_triple (P : Assertion) (c : Command) (Q : Assertion) : Prop :=

forall st1 st2, Assertion_map st1 P → ∼(c / st1 ⇒ abort) ∧ (c / st1 ⇒ st2 → Assertion_map st2 Q).

Then we have the notation {{ P }} c {{ Q }}.

If the precondition is true, the program will not abort. This definition says that if the
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precondition is true and the program terminates, it will not abort. There will be no error in

operations, and what the postcondition says is accurate because it is partially correct. It can

avoid the error get into the operations because people can not recognize the terminations. A

specific example of deallocation may work on a whole heap because that address is in there

and will be deallocation, but it will not work on both parts if you separate these into two

parts because one of these two parts will not have that address.

3.7.1 Skip Rule

The Skip rule will preserves any assertion Q since the skip does not change the state.

{Q} SKIP {Q}

The Skip rule shows:

Lemma Skip_rule : forall Q, {{Q}} SKIP {{Q}}.

3.7.2 Assignment Rule

Sometimes, the postcondition can be any assertion Q ; the precondition would be Q while the

x is replaced by t. The notation Q [ t / x ] means Q where t is substituted in place of x. By

using the substitution, we can give the proof for assignment rule. Because every time we al-

ways assume that the terms are substitutable and we have the Assertion_Subst_Rename

so we can first replace the formula by the equivalent one and then apply the assignment rule.

{{ Q [t /x] }} (x ::= t) {{ Q }}

The Assignment rule shows:

Lemma Assignment_rule : forall Q x t , Substitutiable t x Q→ {{Q[t/x]}} (x::=t) {{Q}}.
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3.7.3 Sequence Rule

{ P } c1 { Q }

{ Q } c2 { R }

{ P } c1;c2 { R }

The line above says the percondition P holds by command c1 takes any state where Q

holds, and then the command c2 takes any state where R holds. In the sequence rule, the

premises are given in backwards order with command c2 before the command c1. It will

push the postconditions backwards through commands until we reach the beginning to get

the Sequence Rule.The Sequence rule shows:

Lemma seq_rule : forall P Q R c1 c2, {{Q}} c2 {{R}} → {{P}} c1 {{Q}} → {{P}}

(c1;c2){{R}}.

3.7.4 If Rule

{ P ∧ b } c1 {Q}

{ P ∧ ∼ b} c2 {Q}

{ P } if b then c1 else c2 end { Q }

The Boolean expression called b evaluates to True at the beginning of the if conditions

else will be evaluated as False. In this rule the line above tells us the premises of the rule to

work with the behavior of c1 and c2. Now we can formalize the proof rule for conditionals

and prove it correct. The If rule shows:

Lemma if_rule: forall P Q b c1 c2,{{P ∧ convertBExpr b}} c1 {{Q}} → {{P ∧ convertBExpr b}} c2

{{Q}} → {{P}} (IFB b THEN c1 ELSE c2 FI) {{Q}}.
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3.7.5 While Rule

{ P ∧ b } c { P }

{ P } while b do c end { P ∧ ∼ b}

The While rule is based on the idea of invariant, an assertion whose truth can sure that

before and after executing a command. Assertion P is an invariant of c, for this invariant

property, if p is true, before one execution of the body, it will also be true afterward. So, no

matter how many times the loop body executes, p will be true when the loop finally finishes.

To get the complete statement by adding the loop terminates when b becomes false. And

then add the loop body will be executed only if b is true. So, we need to strengthen the

postcondition in the conclusion and the precondition in the premise. Then we can get the

final version of the rule and proof it corrects. The While rule shows:

Lemma while_rule: forall P b c, {{P ∧ convertBExpr b}} c {{P}} → {{P}} (WHILE

b DO c OD) {{P ∧ convertBExpr b}}.

3.7.6 Consequence Rule

{ P’ } c { Q’ }

P⇒ P’

Q’⇒ Q

{ P } c { Q }

We can see the strengthening the precondition or weakening the postcondition of a valid

triple. This observation is captured by two rules of consequence: consequence_pre (P⇒ P’)

and consequence_post (Q′⇒ Q). The combined rule of consequence allows us to vary both

the precondition and the postcondition, which showing proofing correct. The Consequence

rule shows:
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Lemma consequence_rule : forall P P’ Q Q’ c, AValid (P → P’) → AValid (Q’ → Q) → {{P’}} c

{{Q’}} → {{P}}c{{Q}}.

3.7.7 Frame Rule

{ P } c { Q }

{ P * r } c { Q * r }

The frame rule says that one can extend local specifications to include any arbitrary

claims about variables and heap segments that are not modified or mutated by c. The

frame rule can be thought of as a replacement for the constancy rule when pointers are

involved. Where c is a program, P, Q and r are separation logic formulas, and symbol *

is the separating conjunction in separation logic. Intuitively, P*r states that P and r hold

in disjoint heaps. This conjunction allows the frame rule to guarantee that r is unchanged

under the action of c. This feature of separation logic is essential for scalability as it allows

the proof of a program to be decomposed into smaller ones.

The last rule among the structural rules, called a frame rule, says that one can extend local

specifications to include any arbitrary claims about variables and heap segments that are

not modified or mutated by c. The Frame Rule can be thought of as a replacement for to

constancy rule when pointers are involved. The notation <#> means disjoint.The Frame

Rule shows:

Lemma frame_rule : forall c P Q R, Assertion_FV R # EV c → {{P}} c {{Q}} → {{P ** R}} c {{Q

** R}}.

As mentioned, the sep_triple has to use as an assumption that the program does not abort.

There are two properties needed to prove the frame rule. The restricted execution will abort

if the restriction removes an address that is dereferenced by the command. The property

h0 ⊥ h1 says these two heaps h0 and h1 have disjoint domains. The union of such heaps

indicate as h0 · h1.
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• If <c,(s,h)> → * abort, then <c,(s,h0)> → * abort

• If <c,(s,h)> → * (s’,h’) then <c,(s,h0)> → * abort or <c,(s,h0)> → * (s’,h0’), where

h0’ ⊥ h1 and h’= h0’ · h1.

These two properties used to prove the frame rule in Coq showing as:

Lemma Prop1 : forall c s h1 h2, c / (s,h1 +h+ h2) ⇒ abort → c / (s,h1) ⇒ abort.

Lemma Prop2 : forall c s s’ h1 h2 h’, c / (s,h1 +h+ h2) ⇒ (s’,h’) → c / (s,h1) ⇒ abort ∨ exists h1’, c /

(s,h1) ⇒ (s’,h1’) ∧ dom h1’ # dom h2 ∧ h’ == h1’ +h+ h2.

3.7.8 Rule for Mutation

By use the frame rule, one can move from local versions of inference rules for the primitive

heap-manipulating commands to equivalent global version. For mutation shows below

• Mutation(local)

{(e 7→ −)}[e] := e′{e 7→ e′}

• Mutation(global)

{(e 7→ −) ∗ r)}[e] := e′{(e 7→ e′) ∗ r}

• Mutation(backwards reasoning)

{(e 7→ −) ∗ ((e 7→ e′)− ∗p)}[e] := e′{p}

The mutation says that if e points to something before, then it points to e’ afterward by

local reasoning. This resembles the natural semantics of Mutation. Taking r from global to

be (e 7→ e’) - ∗ p and using the valid implication q ∗ (q -∗ p)⇒ p, the third rule for Mutation

is suitable for backward reasoning, as one can substitute any assertion for the postcondition

p. The Mutation shows:

Lemma mutation: forall e e’ P, {{(e 7→ -) ** ((e 7→ e’) -* P) }} ([e] ::= e’){{P}}.
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3.7.9 Rule for deallocation

• Deallocation(local)

{(e 7→ −)} dispose e{emp}

• deallocation(global, backwards reasoning)

{(e 7→ −) ∗ r} dispose e{r}

A similar development from mutation works for Deallocation. One of these differences is

that the global form is itself suitable for backward reasoning as well. By local reasoning, the

singleton heap assertion is necessary for the precondition to assure emp in the postcondition.

It says that if e is the only allocated memory cell before execution of the command, there

will be no active cell in the resulting state for postcondition. The Deallocation shows:

Lemma deallocation: forall e P, {{e 7→ - ** P }} (Dispose e) {{P}}.

3.7.10 Rule for Allocation

• Allocation(local)

{v = v′ ∧ emp}v := cons(e){v 7→ e′}

where v’ is distinct from v.

• Allocation(global)

{r}v := cons(e){∃v′.(v 7→ e′) ∗ r′}

where v’ is distinct from v, and is not free in e or r.

• Allocation(backwards reasoning)

{∀v′.(v′ 7→ e)− ∗p′}v := cons(e){p}

where v’ is distinct from v, and is not free in e or p.
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In the rule of allocation we indicate substitution by priming metavariables denoting expres-

sions and assertions. The abbreviate e1,...,en is by e same as e′. ei’ for ei/v 7→ v’ and r’ for

r/v 7→ v’. The Allocation shows:

Lemma allocation :forall x y e p, Substitutiable (Var x) y p → x <> y → ∼Elem x (Expr_FV e) →

∼Elem x (Assertion_FV p) → {{ All x, (Var x 7→ e) -* p[(Var x)/y] }} (Allocation y (e::List.nil)) {{ p }}.

This lemma says that the first properity has to be substitutiable and then we havs x is not

equal to y which is v’ distinct from v. And next we have the property x does not appear free

in e and p. And finally we have the precondition forall x, implication p’ for new variable x

place for y.

3.7.11 Rule for Lookup

• Lookup(local)

{v = v′ ∧ (e 7→ v′′)}v := [e]{v = v′′ ∧ (e′ 7→ v′′)}

where v, v’ and v” are distinct.

• Lookup(global)

{∃v′′.(e 7→ v′′) ∗ (r/v′ → v)}v := [e]{∃v′.(e′ 7→ v) ∗ (r/v′′ → v)}

where v,v’ and v” are distinct, v’ and v” do not occur free in e, and v is not free in r.

• Lookup(backwards reasoning)

{∃v′(e 7→ v′) ∗ ((e 7→ v′)− ∗p′)}v := [e]{p}

where v’ is not free in e, nor free in p unless it is v.

In Lookup we uses Var x to refer to the value of x before execution. It asserts that the

content of the heap is unchanged. The only change is in the store where the new value of x

is modified to the value at the old location e. The lemma for Lookup is very similar from

allocation shows below:
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Lemma lookup :forall x y e p, Substitutiable (Var x) y p → ∼Elem x (Expr_FV e) → ∼Elem x

(Assertion_FV p) ∨ x=y → {{ Any x, (e 7→ Var x) ** (e 7→ Var x -* p[(Var x)/y]) }} (Lookup y e) {{ p }}.
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4 Discussion

The objective of this project is to implement the Separation Logic in the Coq system. Fur-

thermore, building up a library of examples of a simple program that has been verified. As

discussed previously, the goal of the logic was to facilitate reasoning about shared mutable

data structures. The implementation of separation logic in Coq system can be used to verify

the program; Coq system will not allow people to apply the wrong program. Our system

works much better than the other existing implementation of separation logic in Coq. It

has cleaner logic and definitions, fewer lemmas, and more precise proofs. There are a few

things can be improved for the system. The syntax and semantics can be improved in the

future. By using the system or logic, for some examples can be verified programs. That will

be the next thing which can be done. In those packages, the implementation of FiniteSet

and FinitePartialFunction can be improved as well.

The purpose of this package only covers the needs described in this thesis. Further work

is needed when considering repurpose the package.
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APPENDIX



Appendix I: Packages

Figure 1 Packages for Separation Logic

Figure 2 The Basictypes for Separation Logic
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