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Abstract

The objective of this thesis is to find suboptimal and optimal parameters from classical
codes and import them into entanglement-assisted quantum codes. The thesis begins
by introducing classical error correction, followed by a detailed introduction to quantum
computing. Topics that are discussed in the introduction include qubits, quantum
phenomena, such as superposition and entanglement, and quantum gates/circuits.
The thesis then reviews the basics of quantum error correction and provides Shor’s
code to reinforce the reader’s understanding. Subsequently, the formalism of stabilizer
codes is thoroughly examined. We then explain the generalized concept of stabilizer
codes which is entanglement-assisted quantum codes. They do not require generators
to satisfy the commutativity property. Rather, they utilize the usage of ebits to resolve
the anti-commutativity constraint.

Next, the thesis explains quaternary field and then the Java program implemented
to find the optimal parameters. Lastly, the thesis concludes with presenting the
parameters of the new codes that were obtained throughout the research. We have
found the suboptimal largest distance for quaternary hermitian linear complementary
dual codes that can be imported as entanglement-assisted quantum error correc-
tion for parameters [22, 9, 9 or 10]4, [22, 12, 7 or 8]4, [23, 8, 11 or 12]4, [23, 10, 9 or 10]4,
[23, 13, 7 or 8]4, [24, 10, 10 or 11]4, [24, 11, 9 or 10]4, [24, 14, 7 or 8]4, [25, 12, 9 or 10]4,
[25, 13, 8 or 9]4, as well as the optimal largest distance for [17, 11, 5]4 and [17, 13, 3]4.
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Chapter 1

Introduction

In 1948, Claude Shannon published the pioneer paper “A Mathematical Theory of
Communication” of information theory and coding theory. It showed that data can
be encoded before transmission over a noisy channel as well as then decoded and
corrected to some degree of accuracy [29, pg. 1, 52]. Later, in 1950, Richard Hamming
published “Error Correcting and Error Correcting Codes” which established the first
error correcting code [26]. It is now known as the Hamming Code and can correct a
single error.

In 1965, Gordon Moore, the co-founder of Intel Corporation, published a paper
describing a pattern regarding the number of components (consisting of transistors,
resistors, capacitors, and inductors) inside of a chip with respect to time [44]. The
paper believed that as techniques and technology evolves, the number of components
inside the same chip size doubles roughly every two years and that the pattern would
continue. Later, that trend became known as Moore’s Law. After some years, the era
of miniaturization permitted the production of personal computers [41] as well as the
development of the Internet.

The Internet has revolutionized the way the world communicate. Essentially, the
Internet is a collection of links that allows packets to tunnel through arriving from
a sender to a receiver. These packets contain the data the receiver requested from
the sender. During the transmission phase, noise is generated by an electrical impulse
which can affect the data being transmitted. The data, which is a string of 0’s and 1’s,
can be arbitrarily inverted from 0→ 1 or 1→ 0 due to noise in the transmission channel.
To ensure the transferred and received data are the same, a mechanism needs to be
established to preserve the consistency of data transmission. Error-Correcting Codes,
from Coding Theory, help to ensure the transmission of data arrive to the receiver
without alteration. This is done by adding redundancy bits to the data at the sender’s
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side during the encoding phase. At the receiver’s end, a decoder is used to decode
the data and check for consistency. In the case where data is corrupted, the original
data can be retrieved with the assistance of the redundancy bits added previously.
For many decades, Moore’s law continued through its predicted pattern until recently.
Today’s best microprocessors are occupied densely with billions of transistors with 7
nanometer gap between transistors [61]. Dealing with such nanoscopic scale allows for
strange quantum effects to occur such as quantum tunnelling which marks the end
of Moore’s law. Quantum tunnelling is the behaviour where a particle can randomly
penetrate through a physical barrier and land on the other side [43, pg xix]. Put
in other words, the electrons passing through transistors can jump from one place
to another which can yield to inaccurate computation and even corrupt the data.
Quantum Mechanics is the framework for describing the behaviour of matter and
light in meticulous detail on an atomic level [49, pg 1]. The world at an atomic
level behaves unexpectedly, hence, we will be discussing the quantum phenomena
of superposition and entanglement (which will be important concepts throughout
the thesis) as well as decoherence which is the essence of quantum error correction.
In quantum mechanics, particles are described by a wave function [54, chap 2]. A
wave function is a mathematical description of the quantum state within its quantum
system [21]. A quantum system is any collection of physical objects that is represented
by a wave function [16, pg 173]. Quantum computing is idea of developing a computer
which uses these quantum phenomena. In this thesis, a quantum system will be the
collection of a qubit(s) whereas the quantum state will be represented as a vector(s).
A qubit in a quantum computer is the equivalent of a bit in a classical one and will
be further discussed in Chapter 3. In quantum computing, a quantum register of size
n is a collection of n qubits [18]. Decoherence is the loss of information from a system
in superposition into the environment [54, pg 63]. Superposition is a non-existence
classical phenomenon where a qubit can be a classical 0 or classical 1 or in a combined
0/1 state (in superposition). As long as the qubit is not being observed or measured,
the state will continue in superposition. Once the qubit is measured, the qubit will
have to collapse (with some probability) to the classical state 0 or classical state 1.
Hence, performing a measurement on the qubit will cause it to lose information and
destroy the superposition. Quantum Entanglement is a term used by Schrödinger
which expresses that a quantum state of one particle depends on some details of the
quantum state of the other particle by interacting with each other [16, pg 173]. In other
words, the wave function of two entangled qubits cannot be described independently
of each other. Both qubits are required in order to describe the system. Furthermore,
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when two particles (or qubits) are entangled, they will be correlated in a peculiar
fashion. The measurement/alternating of one particle would instantaneously affect the
other particle, regardless the spatial distance separating them throughout the universe.
Einstein described this behaviour as “spooky action at a distance” [00, pg 122]. In
the recent times, entanglement is being studied comprehensively from the perspective
of quantum computation and quantum communication [55]. Quantum computation
requires the creation and maintenance of highly complex quantum states which is a
complicated mission due to decoherence. Noise and decoherence are some of the biggest
obstacles to overcome in order to successfully construct a quantum computer [07,
pg 133]. A quantum system will interact with its surroundings (environment) which
will cause the quantum system to entangle with its environment, hence, reducing the
entanglement within the system itself [55]. Such interaction will cause errors and
our quantum information needs to be protected against them [07, pg 133]. Quantum
error correction is the process of encoding quantum states into qubits so that errors
or decoherence in a small number of individual qubits will have little or no effect on
the encoded data [14]. The field of quantum computing gained lots of attention when
Peter Shor published “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring” in 1994 [53] to which is now known as Shor’s algorithm. The paper
describes a polynomial-time algorithm for prime factorization and discrete logarithms
on a quantum computer. This will break public-key cryptography schemes such as
RSA encryption algorithm, ElGamal encryption, Digital Signature Algorithm and
Diffie-Hellman key exchange as their security depends on the difficulty of computing
prime factorization and the discrete logarithm problem. Fortunately, post-quantum
cryptography, a new branch of cryptographic algorithms has been developed to ensure
secure cryptosystems can be used reliably against quantum computer attacks. Later,
Shor published yet another powerful paper titled “Scheme for reducing decoherence in
quantum computer memory”, which proposed a quantum error correction scheme that
corrects a quantum error on a single qubit using nine qubits. This is known as Shor’s
Code. Gottesman in 1997 established the formalism of stabilizer codes which allow us
to import classical dual codes and transform them to quantum codes [23]. In 2006,
Brun, Devetak and Hsieh established the formalism of entanglement-assisted quantum
error correction [12] that uses entanglement to give the ability to important non-dual
containing codes. The objective of this thesis is to find optimal entanglement-assisted
quantum error correcting codes.

This thesis consists of ten chapters. The second chapter will introduce the essence
of Coding Theory. We will examine linear binary codes and see how we can represent a



CHAPTER 1. INTRODUCTION 4

code using a generator matrix. Then, we discuss the process of encoding and decoding
of linear codes. Next, the thesis explains self-dual codes, equivalent codes and the
weight enumerator of a linear code. The third chapter focuses on the introduction
to quantum computing starting with the definition of Hilbert space and Kronecker
(tensor) product. Next, we rigorously define a qubit followed by a quantum system
of n qubits. Quantum phenomena such as superposition and entanglement will be
discussed afterwards. We then continue with quantum gates and finish the chapter
with quantum circuits. The fourth chapter is dedicated to quantum error correction.
We discuss how errors on a single qubit can be broken down to a specific form. We
then introduce the three-qubit code and give a circuit that correct a bit-flip and
another circuit to correct a phase-flip. We end the chapter with Shor’s code which
protects a qubit against a bit-flip or a phase-flip or a combination of both. The
fifth chapter is centered around stabilizer codes. It will show how we can use the
idea of commuting generators to detect errors. The sixth chapter is a generalized
version of stabilizer codes that allows the generators to anticommute. It uses ebits to
resolve the anticommutativity dilemma. The idea is to start with an anticommuting
generators and find a new set of extended generators that commute. This is achieved
with the usage of ebits. The seventh chapter gives an introduction to the quaternary
field as well as Hermitian linear complementary dual codes. The latter will be the
focus of this thesis. The next chapter, chapter eight, discusses the programming
implementation and the usage of Bariess algorithm for finding the determinant of a
quaternary matrix. Next, will discuss the new optimal and suboptimal quaternary
hermitian linear complementary dual codes found. Lastly, we will give our thoughts
for future work.
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Chapter 2

Classical Error Correction

The essence of electronic communication is the ability to send and receive data through
a physical medium such as a fiber optic cable or wirelessly such as WiFi. During
the transmission phase, noise generated from an electrical impulse or environmental
factors such as rain, cold, etc. can affect the data being transmitted. The data, which
is a string of 0’s and 1’s, can be arbitrarily changed from 0 → 1 or 1 → 0 due to
the noise encountered. Shannon’s work shows that data can first be encoded before
transmission then decoded at the receiver side to correct errors that might occur, to a
certain degree [29, pg. 1, 52]. The objective of Coding Theory is to ensure the message
received is the one that was sent. The operation of sending a message is [29, chap 1]:

1) A sender starts with a plain message to send. They use an encoder to encode
the message. The output from the encoder is called a codeword.

2) The codeword is sent through a channel which is subject to noise that can cause
errors.

3) The corrupted codeword arrives at the receiver’s end.
4) The receiver uses a correction scheme to correct the data.
5) Once the corrupted codeword is corrected, a decoder is used which outputs the

plain message sent by the sender.
An illustration of the entire operation is found in Figure 2.1. The responsibility of
an encoder is to transform plain text to a codeword. A codeword is a vector, or a
word, that belongs to a code. A code is a set C of codewords. A linear code C satisfies
the condition that any linear combination of codewords in C is also a codeword in C.
Furthermore, any linear code can be described by a generator matrix G, where its
rows are linearly independent and form a basis for the linear code1. All codewords in
a linear code C are generated by linear combinations of the rows in G.

1The all-zero vector cannot be a row in G.
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Plain
message Encoder Codeword Erroneous

channel

Corruption
corrector

Corrected
codewordDecoder

Plain
message

Figure 2.1: A diagram illustrating the journey a message takes when being transmitted
through an erroneous medium

Definition 1. A linear code C is described as [n, k, d]-code, and is a subset of Fn
q

vector space that encodes k logical bits into n physical bits where
q is the number of symbols (q = 2 is binary and q = 4 is quaternary) and must be

a prime or a power of prime.
n is the length of each vector/codeword and n ≥ k.
k is the dimension of the vector space formed by the codewords in C, which generates
qk codewords.

d is the minimum hamming distance between any pair of arbitrary but distinct
codewords in C.

Definition 2. The weight function, wt(·), returns the number of nonzero symbols in
a vector v ∈ Fn

q .

Definition 3. The Hamming distance is the number of positions in which two distinct
codewords (equal in length) differ. It is defined as dist(v1, v2) where v1 and v2 are
vectors in Fn

q . The Hamming distance also satisfies the following properties [29, sec
1.4]

1) dist(v1, v2) ≥ 0 ∀v1,v2 ∈ Fn
q (non-negativity).

2) dist(v1, v2) = 0 if and only if v1 = v2 (identity of indiscernibles).
3) dist(v1, v2) = dist(v2, v1) ∀v1,v2 ∈ Fn

q (symmetry).
4) dist(v1, v3) ≤ dist(v1, v2) + dist(v2, v3) ∀v1,v2,v3 ∈ Fn

q (triangle inequal-
ity).

Definition 4. The minimum distance of a code C is the minimum Hamming distance
between any two distinct codewords in C.

Theorem 1. Let v1 and v2 be two vectors in Fn
q , then

dist(v1, v2) = wt(v1 − v2).
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Proof of Theorem 1. Let v1 and v2 are two distinct vectors in Fn
q and dist(v1, v2) is

x. Then v ′ = v1 − v2 will have x non-zero symbols, or equivalently,

wt(v ′) = x = wt(v1 − v2) = dist(v1, v2).

■

A generator matrix G is said to be in standard form if

G =
[
Ik×k | Pk×(n−k)

]
k×n

, (2.1)

where I is the identity matrix and P is a k × (n − k) matrix. Another important
matrix to consider is the parity check matrix. Assuming the generator matrix is in
standard form, the parity check matrix H is given as

H =
[−P T

(n−k)×k | I(n−k)×(n−k)

]
(n−k)×n

, (2.2)

where P T is the transpose of P . The relationship between the generator matrix and
parity check matrix is that

HGT =
[
0
]
(n−k)×k

GHT =
[
0
]
k×(n−k)

,

which results in the null matrix.

Theorem 2. An [n, k, d]-code can correct up to and including t errors if d ≥ 2t+ 1

(proof can be found in [06, thm 2.2]).

Lemma 1. A linear code C will correct at most t =
⌊
d−1
2

⌋
errors.

In Lemma 1, we used the floor function in the case where t is an odd number,
dividing by 2 gives us 2m+ 1

2
, for some positive integer m. Since Hamming weight

and Hamming distance are integers, we truncate the remaining 1
2
. We can see this

geometrically in Figure 2.2. In sphere packing, all spheres are disjoint from each other
within the space. A sphere contains a codeword at the center and all other vectors in
green will be mapped to that codeword during the correction phase. Vectors in red
cannot be corrected to the codewords in the center of the spheres because they are
closer to that codeword than any other. In the example, that each ring represents
one error from the codeword pinned in the center. The illustration shows that in this
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d

t

ci

t

cj

Figure 2.2: The geometric representation of sphere packing where two codewords (blue
points) ci and cj exactly d = 2t+ 1 distance apart. The t represents the Hamming
distance between the codeword at the center of the sphere and other vectors (green
and red points). The vectors in red are not correctable whereas the green vectors are

example, we can correct at most three errors, hence, t = 3. Furthermore, the distance
d from ci to cj is 2t+ 1 = 7. Consider Figure 2.3 where d = 2t and d = 2t− 1. The

d = 2t

t

ci

t

cj

d = 2t− 1

t

ci

t

cj

Figure 2.3: We can see that having a distance less than 2t+ 1 yields to ambiguities.
In the left portion of the figure, we have a vector that lies exactly at the intersection
of two spheres. Moreover, the right side shows two vectors that can be mapped to two
different codewords. In both cases, there are vectors that cannot be uniquely decoded

simplest of linear codes is the [3, 1, 3] repetition code that encodes one logical bit into
three physical bits. It allows the transmission of the messages 0 or 1 and is assumed
to encounter a single bit flip at most. The encoder will encode 0 → 0 = 000 and
1→ 1 = 111. The total number of vectors of length 3 is 2n = 23 = 8 and there are
2k = 21 = 2 codewords, namely, 000 and 111. We correct received codewords 001, 010

and 100 to 000 and correct 011, 101 and 110 to 111. The quantum version of this code
will be discussed extensively in Section 4.2.1.

2.1 Encoding and Decoding of Linear Codes

In this section, we will elaborate further on how the encoding and decoding processes
are performed. We will use the [7, 4, 3] Hamming code [25] as an example to illustrate
practically.
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2.1.1 Encoding Process

Let C be an [n, k, d] code over Fn
q with a generator matrix G in standard form and a

parity check matrix H. The code C will have qk possible codewords which yields to a
one-to-one correspondence with qk different messages. Let

x =
[
x1 x2 . . . xk

]
1×k

be a message to be encoded. The codeword c associated with x is c = xG, which is a
1×n vector. Using this method, the codeword c generated and the logical (information
bits) it holds are shown in Equation 2.3.

c1 = x1 c2 = x2 · · · ck = xk ck+1 · · · cn−1 cn
[ ]Information bits x

Redundancy/parity
check bits

c = (2.3)

The redundancy bits are added to assist in the recovery process in the case where
errors might occur during transmission phase. Another standard way to do encoding
is by using the parity check matrix H. We know that any codeword cT multiplied
by H (i.e., HcT ) gives us the all-zero vector. We follow the same pattern found
in Equation 2.3. We can use the parity check matrix, more precisely, the submatrix
P T in Equation 2.2 to extract the redundancy/parity check symbols,

P TxT =
[
ck+1 ck+2 . . . cn−1 cn

]T
. (2.4)

Consider the example of a [7, 4, 3] Hamming code which encodes four logical bits into
seven physical bits and corrects t = ⌊d−1

2
⌋ = ⌊3−1

2
⌋ = 1 error2. It is given with the

following generator matrix and corresponding parity check matrix:

G =




1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1




1
2
3
4

, H =



0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1




The all-zero vector in a linear code will always be a valid codeword. The list of
all codewords with their weights are shown in Table 2.1. For example, suppose the
message x =

[
0 1 1 0

]
needs to be sent over a channel. The first way of encoding is

2In general, binary Hamming codes are given in the form of [2a − 1, 2a − a− 1, 3] for some a ≥ 2
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# Linear combinations Codeword Weight

00 None 0000000 0
01 1 in G 1000011 3
02 2 in G 0100101 3
03 1 + 2 1100110 4
04 3 in G 0010110 3
05 1 + 3 1010101 4
06 2 + 3 0110011 4
07 1 + 2 + 3 1110000 3
08 4 in G 0001111 4
09 1 + 4 1001100 3
10 2 + 4 0101010 3
11 1 + 2 + 4 1101001 4
12 3 + 4 0011001 3
13 1 + 3 + 4 1011010 4
14 2 + 3 + 4 0111100 4
15 1 + 2 + 3 + 4 1111111 7

Table 2.1: All of the 2k = 24 = 16 codewords of the [7, 4, 3] Hamming code with their
weights

to have c = xG =
[
0 1 1 0 0 1 1

]
. The second way is P TxT =

[
0 1 1

]
. Hence, the

codeword c =
[
0 1 1 0 0 1 1

]
will be sent over.

2.1.2 Decoding Process

This subsection is primarily based on [29, sec. 1.11.2]. The decoding process takes
care of receiving a (possible) erroneous vector y ∈ Fn

q and mapping it to the original
codeword c. Asymptotically speaking, decoding is more difficult than encoding for
large codes. We will introduce two decoding methods: maximum likelihood decoding
and syndrome decoding.

Maximum likelihood decoding is a probabilistic method that maps an erroneous
codeword y that was received after transmission to a codeword. This is done by
comparing y to all the codewords and mapping it to the codeword with the highest
probability, which is the codeword closest to y. We can use the concept of sphere as
shown in Figure 2.2. A sphere S with radius t centered around some codeword c ∈ Fn

q

is given as
St(c) = {v ∈ Fn

q |dist(c, v) ≤ t}, (2.5)

which are the vectors that are at Hamming distance less than or equal to t from c.
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The total possible vectors in a sphere St(c) is

S =

(
n

0

)
(q − 1)0 +

(
n

1

)
(q − 1)1 + · · ·+

(
n

t− 1

)
(q − 1)t−1 +

(
n

t

)
(q − 1)t, (2.6)

where q is the cardinality of the alphabet in the code. For the first term, we have
the codeword itself. For the second term, we are choosing all the vectors that differs
by one position from the codeword and multiply by the possible different symbols
that position can take. The last term is choosing possible vectors that differ from
the codeword by at most t positions. Each different position can have q − 1 different
symbols. Since we have 2k different codewords, the total possible combinations Sall of
vectors satisfying all disjoint spheres is

Sall = 2k ·
((

n
0

)
(q − 1)0 +

(
n
1

)
(q − 1)1 + · · ·+

(
n

t−1

)
(q − 1)t−1 +

(
n
t

)
(q − 1)t

)
. (2.7)

Another way to decode is by using Syndrome decoding. Let C be an [n, k, d] code over
Fn
q which corrects at most t = ⌊d−1

2
⌋ errors with parity check matrix H. Assume the

codeword c ∈ C was sent through an erroneous channel and was received as y ∈ Fn
q .

Suppose that e ∈ Fn
q is the error encountered, i.e., y = c+ e. Using the parity check

matrix H, we know any codeword y received without errors gives HyT =
[
0 0 . . . 0 0

]
.

In the case where y encountered an error e, then

HyT = H(c+ e)T = HcT +HeT =
[
0 0 . . . 0 0

]
+HeT = HeT . (2.8)

In the case where x errors occur, then wt(e) = x. Moreover, this suggests that if the
codeword length is n and can correct t = 1 errors at most, then there are

(
n
t

)
=

(
n
1

)
= n

coset leaders. In the case where we are in Fn
q and the code C corrects t errors at most,

then we will have the same number of coset leaders as given in Equation 2.6. With
that said, the idea is to then construct a lookup table where each of the coset leader
and its syndrome, given as

syn(y) = HyT . (2.9)

Let us continue the [7, 4, 3] Hamming code example we introduced in the previous
section. Recall that we wanted to send the message x =

[
0 1 1 0

]
over the channel.

We encoded it to c =
[
0 1 1 0 0 1 1

]
and we sent c over. This code will correct

at most t = ⌊d−1
2
⌋ = ⌊3−1

2
⌋ = 1 error. Suppose that through the transmission an

error occurred and we received y =
[
0 1 0 0 0 1 1

]
. Our lookup table will include all

possible errors that can occur and corrected by the code which is given by Table 2.2.
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We can compute the syndrome of the error we received:

# Coset Leader (e) Syndrome (HyT )

00 0000000 000
01 1000000 011
02 0100000 101
03 0010000 110
04 0001000 111
05 0000100 100
06 0000010 010
07 0000001 001

Table 2.2: All possible coset leaders and their syndromes for the [7, 4, 3] Hamming
code

syn(y) = HyT = H
[
0 1 0 0 0 1 1

]T
=

[
1 1 0

]T
. (2.10)

Using Table 2.2, we conclude that e =
[
0 0 1 0 0 0 0

]
is the error occurred. We can

simply xor e with y to get the original codeword:

c = y ⊕ e =
[
0 1 1 0 0 1 1

]
. (2.11)

2.1.3 Self-(Dual/Orthogonal) and Equivalent Codes

Let C be a linear code over Fn
q with a generator matrix G. Since all rows in G are

linearly independent and span the entire space of C, they form a basis for C. The
subspace of C has a dual subspace.

Definition 5. Let C⊥ be the dual subspace of C given as

C⊥ =
{
x ∈ Fn

q |x · c = 0 ∀c ∈ C
}
, (2.12)

where x · c =
∑n

i=1 xici∀x =
[
x1 x2 . . . xn

]
and y =

[
y1 y2 . . . yn

]
in Fn

q .

Definition 6. A binary linear code C is said to be self-orthogonal if C ⊆ C⊥.

The [7, 4, 3] Hamming code is self-orthogonal. Let C be the set of words that is
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generated by H and C⊥ be the set of words that is generated by G, then

C = {0000000, 0111100, 1011010, 1100110,
1101001, 1010101, 0110011, 0001111}

C⊥ = {0000000, 1000011, 0100101, 1100110,
0010110, 1010101, 0110011, 1110000,

0001111, 1001100, 0101010, 1101001,

0011001, 1011010, 0111100, 1111111}.

Lemma 2. A [n, k, d] binary linear code C is said to be self-dual if C = C⊥. The
dual code C⊥ will be a [n, n− k, d] binary linear code implies that dim(C) = dim(C⊥)

deducing that k = n− k.

An example of a self-dual code is the [8, 4, 4] extended Hamming code with the
following generator matrix and parity check matrix:

G =




1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0



, H =




0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1



.

The generator and parity check matrices of [8, 4, 4] code generates the following
codewords:

C = C⊥ = {00000000, 10000111, 01001011, 11001100,
00101101, 10101010, 01100110, 11100001,

00011110, 10011001, 01010101, 11010010,

00110011, 10110100, 01111000, 11111111}.

Theorem 3. A self-dual linear code C will have G as the generator matrix and H as
the parity check matrix. C⊥ will have H as the generator matrix and G as the parity
check matrix.

Proof of Theorem 3. By definition, C⊥ is the set that contains all codewords y such
that y · c = 0 for all c ∈ C. Given that C = C⊥, then c · c = 0 ∀c ∈ C. Furthermore,
let x1×k and x ′

1×(n−k)
3 be two non-encoded messages which will be encoded by C and

3The dimension of x ′ is 1× (n− k) and not 1× k since x ′ will be transposed and multiplied by
the H and the dimensions need to match.
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C⊥, respectively. It is sufficient to show that HcT = 0 for all codewords c ∈ C and
c ′G = 0 for all c ′ ∈ C⊥. The message x is encoded as xG implying that c = xG.
The message x ′ is encoded as x ′H implying that c ′ = x ′H. We now need to show
that c and c ′T are orthogonal:

c · c ′T = (xG) · (x ′H)T

= (xG) · (HTx ′T )

= x(GHT )x ′T

= x1×k

[
0
]
k×(n−k)

x ′T
(n−k)×1

= 0.

■

Self-dual and self-orthogonal classical codes can be transformed into quantum
stabilizer codes. Further on that in Chapter 5. Throughout this chapter, we assumed
that all generator matrices of linear codes are in standard form, as shown in Equa-
tion 2.1. However, generator matrices do not have to be in standard form. We can
apply Gaussian elimination to produce a matrix G in the same form as Equation 2.1.

Moreover, we can have two different codes that are equivalent to one another.

Definition 7. Let C1 and C2 be two binary linear codes. The two codes are said to be
equivalent if there exists some permutation of coordinates which maps C1 to C2 [29,
sec 1.6].

A permutation matrix, which is a square binary matrix with each row and column
containing a single 1 and 0’s everywhere else, can be used to permute the coordinates.

Definition 8. Let C1 and C2 be two binary linear codes with G1 and G2 as generator
matrices, respectively. Let M be a permutation matrix such that G1 ·M = G2, then C1

and C2 are permutation equivalent.

2.2 Weight enumerator

The weight enumerator is a polynomial function which contains the Hamming weights
of all possible codeword in a linear code C.

Definition 9. The weight enumerator of a linear code C over Fn
q is given by

w(x)C = A0 + A1x+ A2x
2 + . . .+ An−2x

n−2 + An−1x
n−1 + Anx

n,
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where Ai is the number of codewords of C whose Hamming weight is i.

From Table 2.1, the [7, 4, 3] Hamming code will its weight enumerator function
given as Equation 2.13.

w(x)[7,4,3] = 1 + 7x3 + 7x4 + x7. (2.13)
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Chapter 3

Introduction to Quantum Computing

In this chapter, we will begin with covering all of the required mathematical knowledge
required for quantum computing. We will then introduce the mathematical description
of a qubit, quantum phenomena, quantum gates and conclude with quantum circuits.

3.1 Hilbert Space

In this section, we will introduce the definition of dot product, norm and distance
of an Euclidean space [03, chap. 3.2]. We will then provide the definitions of inner
product, norm and distance of a Hilbert space. Given two vectors in an Euclidean
space of Rn,

a =




a1

a2
...
an




and b =




b1

b2
...
bn



,

the dot product is defined as

a · b =




a1

a2
...
an



·




b1

b2
...
bn



= a1 · b1 + a2 · b2 + · · ·+ an · bn,

the norm (magnitude or length) of a, denoted as ∥·∥, is

∥a∥ =
√
a21 + a22 + . . .+ a2n,
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and the Euclidean distance between a and b, denoted as dist(·, ·), is

dist(a, b) = ∥a− b∥ =
√
(a1 − b1)2 + (a2 − b2)2 + . . .+ (an − bn)2.

The inner (equivalent to dot) product in a Hilbert space, H, is defined as

⟨a|b⟩ =
n∑

k=1

a∗kbk,

where

⟨a| =
[
a∗1 a∗2 . . . a∗n

]
1×n

, |b⟩ =




b1

b2
...
bn




n×1

,

a∗k is the complex conjugate of ak

Here are some useful properties [37, chap. 4.3]

1. ⟨a|b⟩∗ = ⟨b|a⟩.

2. The inner product is not necessarily commutative, i.e., there exist a and b for
which ⟨a|b⟩ ≠ ⟨b|a⟩.

3. For a given c ∈ C:

(a) The inner product is linear in the second position

c ⟨a|b⟩ = ⟨a|cb⟩ .

(b) The inner product is anti-linear in the first position

c ⟨a|b⟩ = ⟨c∗a|b⟩ .

In Hilbert space, the norm of a vector a is defined as

∥a∥ =

√√√√
n∑

k=1

|ak|2 =

√√√√
n∑

k=1

a∗kak,
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and the distance between vectors a and b is defined as

dist(a, b) = ∥b− a∥ =

√√√√
n∑

k=1

|bk − ak|2.

We now can provide a rigorous definition of a Hilbert space [37, chap. 4.4].

Definition 10. A Hilbert space is a complete real or complex (finite or infinite) vector
space where the inner product is defined. The completeness property is defined as any
Cauchy Sequence of vectors in the space converges to some vector which is also in the
space.

A Cauchy Sequence is rigorously defined as [50, chap. 1]:

Definition 11. Let (X, d) be a metric space where X is a set and d is the metric
(distance) function acting on X defined as

d : X ×X → R.

A sequence x1, x2, ... ∈ X is a Cauchy Sequence if for every ε ∈ R and ε > 0, there
exists a k ∈ Z+ such that for i, j ∈ Z+ and i, j > k, dist(xi, xj) < ε.

Throughout the thesis, we will not use bold kets or bras and adapt to the convention
that they are vectors by default.

3.2 Mathematical Preliminaries

In this section, we will be discussing the required mathematical concepts for this thesis.
Specifically, we will introduce the tensor (Kronecker) product, kets, bras, and brakets
as well as Hilbert space. The tensor product, denoted as ⊗, is applied to two matrices
of arbitrary size.1 Given two matrices A and B,

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn




m×n

, B =




b11 b12 · · · b1q

b21 b22 · · · b2q
...

... . . . ...
bp1 bp2 · · · bpq




p×q

,

1By matrices, row vectors column and vectors are also valid.
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then, the tensor product of A⊗B is:

A⊗B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... . . . ...
am1B am2B · · · amnB




(mp)×(nq)

,

where the resulting matrix is an mp by nq matrix [45, chap. 1.2]. For example, the
tensor of A and B matrices is:

A =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



, B =

[
1 0

0 −1

]
,

A⊗B =




1

[
1 0

0 −1

]
0

[
1 0

0 −1

]
0

[
1 0

0 −1

]
0

[
1 0

0 −1

]

0

[
1 0

0 −1

]
1

[
1 0

0 −1

]
0

[
1 0

0 −1

]
0

[
1 0

0 −1

]

0

[
1 0

0 −1

]
0

[
1 0

0 −1

]
0

[
1 0

0 −1

]
1

[
1 0

0 −1

]

0

[
1 0

0 −1

]
0

[
1 0

0 −1

]
1

[
1 0

0 −1

]
0

[
1 0

0 −1

]




=




1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0




.

It is worth mentioning that the tensor product is not necessarily commutative, i.e.,
A⊗B ̸= B⊗A. A useful notation when it comes to applying multiple tensor products
in Hilbert space H is to use H⊗n = H⊗H⊗ · · · ⊗ H︸ ︷︷ ︸

n times

∈ Hn. Kets, bras, and brakets

are Dirac’s notation, named after the famous physicist, Paul Dirac. Kets, which are
denoted by |·⟩, are a compact form of a column vector in H whereas bras are denoted
as ⟨·| and represents a row vector in the dual Hilbert space, H∗. The bra is the
Hermitian conjugate of a ket. The braket, denoted by ⟨a|b⟩, is the inner product of
⟨a| with |b⟩ resulting in a scalar in C. For example, let ⟨a| ∈ H∗ and |b⟩ ∈ H,

⟨a|b⟩ = b1a
∗
1 + b2a

∗
2 + · · ·+ bna

∗
n.
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In this thesis, we will be dealing with tensoring column vectors frequently. The next
notations will all be equivalent to each other:

|a1⟩ ⊗ |a2⟩ ⊗ · · · ⊗ |an⟩︸ ︷︷ ︸
Tensoring n times

= |a1⟩ |a2⟩ · · · |an⟩︸ ︷︷ ︸
Tensoring n times
without ⊗ symbol

= |a1a2 . . . an⟩︸ ︷︷ ︸
A compact notation
of tensoring n times

. (3.1)

3.3 An Overview of a Qubit

A quantum binary digit (qubit) is the atomic unit of a quantum computer for storing
quantum information. It is the equivalent of a bit in a classical computer. A qubit
can represent the value “0” as the |0⟩ quantum state or the value of “1” as the |1⟩
quantum state. Moreover, a qubit can in a superposition of |0⟩ and |1⟩. This means
that a qubit can simultaneously occur in the |0⟩ state and the |1⟩ state. Rigorously, a
qubit |ψ⟩ is defined as

|ψ⟩ = α |0⟩+ β |1⟩ , (3.2)

where α, β ∈ C and |α|2+|β|2= 1. The |α|2 denotes the probability of the qubit |ψ⟩
evaluating to |0⟩ whereas |β|2 is the probability of the qubit |ψ⟩ evaluating to |1⟩. The
coefficients α and β are referred to as probability amplitudes (or complex amplitudes)
whereas |0⟩ and |1⟩ are known as computational basis vectors (or basis states) and
Equation 3.2 is a quantum state. Similar to a classical bit, once a qubit is measured,
it will collapse to a “0” (|0⟩) with probability of |α2| or “1” (|1⟩) with probability of
|β2| [45, chap. 1.2, 60, chap. 5.1]. In general, measuring a qubit will cause it to collapse
only one of its computational basis vectors. This means the qubit will no longer be
in superposition and will act like a classical bit after measurement. This is a crucial
point to keep in mind, as the measurement of a qubit will disturb its state. The kets
|0⟩ and |1⟩ are a compacted form of two different column vectors. They are equivalent
to

|0⟩ =
[
1

0

]
, |1⟩ =

[
0

1

]
.
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With that being said, we can rewrite |ψ⟩ as

|ψ⟩ = α

[
1

0

]
+ β

[
0

1

]

=

[
α

0

]
+

[
0

β

]

=

[
α

β

]
.

A simple way to understand how the values of the column vector are obtained is
through the following: the label inside |·⟩ denotes the zero-based column in binary
system. So, |0⟩ will have a “1” in the zeroth cell whereas |1⟩ will have a “1” in the
subsequent cell. The same kets are now associated with labels (in base 2):

1

0





02

12

|0⟩ = ,
0

1





02

12

|1⟩ = .

These labels will help us understand how multiqubits are represented further in this
section. Visualizing a single bit is something very trivial and simple. Before we begin,
it is worth noting that a bit can be expressed using the same notation as a qubit,
since a bit is a special case of a qubit. For example, we can express the “0” bit by the
qubit state:

|ψ⟩ = 1 · |0⟩+ 0 · |1⟩
0

.

Similarly, we can express the “1” bit by the qubit state:

|ψ⟩ = 0 · |0⟩
0

+ 1 · |1⟩ .

With that, we have established a way to represent a bit in a 2D plane in R2. A simple
visualization is shown in Figure 3.1. It is important to notice that the unit vectors
(with a scalar of 1) are the only two valid vectors here. The |0⟩ ket denotes a bit with
a value of 0 and the |1⟩ vector denotes a bit with a value of 1. The visualization of a
single qubit is far more complex than a bit. The state of a qubit can be expressed in
a Bloch sphere. A Bloch sphere (also known as Poincaré sphere) is a visualization
of a single qubit in 3D space [45, chap. 1.2].2 It is assumed to have a radius of 1
and the qubit is denoted as a unit vector of length 1. The Bloch sphere is shown

2For two or more qubits, it is exponentially difficult to visualize as the dimension increases.
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x

y

|1〉

|0〉1

1

Figure 3.1: The visualization of a bit in a 2D plane

in Figure 3.2. In a Bloch sphere, a qubit in the form of Equation 3.2 can be described

|ψ〉

θ

ϕ
x y

z
|0〉

|1〉

Figure 3.2: The Bloch sphere representation with the equatorial plane passing through
the origin. The red vector is the qubit state |ψ⟩

in the equation:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ , (3.3)

where 0 ≤ θ < π and 0 ≤ φ < 2π [48, chap. 2.1]. Note that we simply substituted
α with cos

(
θ
2

)
and β with eiϕ sin

(
θ
2

)
. The two angles are sufficient to define a point

on the Bloch sphere. A qubit can lie along the z-axis denoting |0⟩ or straight down
denoting |1⟩. Figure 3.3 depicts the two states visually. Moreover, there are infinitely
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x y

z
|0〉

|1〉

|ψ〉 = |0〉
θ = 0◦, ϕ = 0◦

(a) The |0⟩ state

x y

z
|0〉

|1〉

|ψ〉 = |1〉
θ = 180◦, ϕ = 0◦

(b) The |1⟩ state

Figure 3.3: The two main states, |0⟩ on the left side and |1⟩ on the right side

many states that can be represented as α and β have an infinite range of values. The
most common states are:

|ψ⟩ = |+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ , |ψ⟩ = |−⟩ = 1√

2
|0⟩ − 1√

2
|1⟩

|ψ⟩ = |i+⟩ = 1√
2
|0⟩+ i√

2
|1⟩ , |ψ⟩ = |i−⟩ = 1√

2
|0⟩ − i√

2
|1⟩ .

(3.4)

They all lie on the axes of the Bloch sphere as shown in Figure 3.4. The more
generalized qubits states of Equation 3.4 are:

|ψ⟩ = α |0⟩+ β |1⟩ , |ψ⟩ = α |0⟩ − β |1⟩
|ψ⟩ = α |0⟩+ iβ |1⟩ , |ψ⟩ = α |0⟩ − iβ |1⟩ .

(3.5)

So far, we have only discussed the characteristics of a single qubit. Let’s extend
our definition to include a two-qubit system. A two-qubit system, which lies in
H⊗H ∈ H2, will be in the form of

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ . (3.6)

where α, β, γ, δ ∈ C and |α|2+|β|2+|γ|2+|δ|2= 1. In this system, |α|2, |β|2, |γ|2, |δ|2
denote the probability of the qubit |ψ⟩ evaluating to |00⟩, |01⟩, |10⟩, |11⟩, respectively.
The kets |ij⟩ are the basis in this system. They represent a compact form of a column
vector obtained via tensor product of smaller column vectors. The four bases can be
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x y

z
|0〉

|1〉

|ψ〉=|+〉= |0〉√
2
+
|1〉√

2

θ = 90◦, ϕ = 0◦

(a) The |+⟩ state

x y

z
|0〉

|1〉

|ψ〉=|−〉= |0〉√
2
− |1〉√

2

θ = 90◦, ϕ = 180◦

(b) The |−⟩ state

x y

z
|0〉

|1〉

|ψ〉=|i+〉= |0〉√
2
+

i|1〉√
2

θ = 90◦, ϕ = 90◦

(c) The |i+⟩ state

x y

z
|0〉

|1〉

|ψ〉=|i−〉= |0〉√
2
− i|1〉√

2

θ = 90◦, ϕ = 270◦

(d) The |i−⟩ state

Figure 3.4: The four common states other than |0⟩ and |1⟩

written as

|00⟩ =
[
1

0

]
⊗

[
1

0

]
=



1

0

0

0


, |01⟩ =

[
1

0

]
⊗

[
0

1

]
=



0

1

0

0


, |10⟩ =

[
0

1

]
⊗

[
1

0

]
=



0

0

1

0


, |11⟩ =

[
0

1

]
⊗

[
0

1

]
=



0

0

0

1


.

In terms of the column vectors obtained, we can simply label them as follows to see a
clear pattern:

α

0

0

0







002

012

102

112

|00⟩ = ,

0

β

0

0







002

012

102

112

|01⟩ = ,

0

0

γ

0







002

012

102

112

|10⟩ = ,

0

0

0

δ







002

012

102

112

|11⟩ = .

We will now expand our definition to generalize an n-qubit system. A system of n
qubits lies in H⊗H⊗ · · · ⊗ H︸ ︷︷ ︸

n times

∈ Hn, will have a basis of with a dimension of 2n. Its
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qubit state will be given as

|ψ⟩ = α 00...01︸︷︷︸
length n

length n︷ ︸︸ ︷
|00 . . . 01⟩+α 00...10︸︷︷︸

length n

length n︷ ︸︸ ︷
|00 . . . 10⟩+ · · ·+ α 11...11︸︷︷︸

length n

length n︷ ︸︸ ︷
|11 . . . 11⟩, (3.7)

where |α00...01|2 + |α00...10|2 + · · ·+ |α11...11|2 = 1.

3.4 Global Phase versus Relative Phase

A phase is in the form of reiθ or eiθ where r = 1 when dealing with normalization
constraint setting. A qubit can encounter two types of phases: global phase and
relative phase. A global phase factor is a complex number of unit modulus multiplying
the state (i.e., |z|2 = 1). In quantum computing, two qubits that differ by a global
phase from each other are considered equivalent. This is because a global phase is
physically indistinguishable [19]. A qubit is represented as vector of norm 1, i.e.,
⟨ψ|ψ⟩ = 1 [19]. Consider the following two arbitrary qubits:

|ψ⟩ = α |0⟩+ β |1⟩ (3.8)

|ϕ⟩ = eiθ |ψ⟩ = eiθα |0⟩+ eiθβ |1⟩ . (3.9)

For Equation 3.8, let

α = a1 + ib1 α∗ = a1 − ib1 β = a2 + ib2 β∗ = a2 − ib2. (3.10)

Then,

|α|2 = αα∗

= (a1 + ib1)(a1 − ib1)
= a21 − ia1b1 + ia1b1 − i2b21
= a21 + b21.

|β|2 = ββ∗

= (a2 + ib2)(a2 − ib2)
= a22 − ia2b2 + ia2b2 − i2b22
= a22 + b22.

Hence, in Equation 3.8, the probability of measuring |0⟩ is a21 + b21 and the proba-
bility of measuring |1⟩ is a22+ b22, provided that a21+ b21+ a22+ b22 = 1. For Equation 3.9,
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we can use Equation 3.10 to calculate the probability amplitudes:

|eiθα|2 = (eiθα)(eiθα)∗

= (eiθα)(e−iθα∗)

= (eiθ(a1 + ib1))(e
−iθ(a1 − ib1))

= eiθa1 · e−iθa1 − ieiθa1 · e−iθb1 + ieiθa1 · e−iθb1 − i2eiθ · e−iθb21

= a21 + b21.

|eiθβ|2 = (eiθβ)(eiθβ)∗

= (eiθβ)(e−iθβ∗)

= (eiθ(a2 + ib2))(e
−iθ(a2 − ib2))

= eiθa2 · e−iθa2 − ieiθa2 · e−iθb2 + ieiθa2 · e−iθb2 − i2eiθ · e−iθb22

= a22 + b22.

We can see that both calculations yield the same results with or without a global
phase, i.e., a21 + b21 and a22 + b22. On the other hand, relative phase occurs when some
of the basis states are affected by some phase eiθ. Consider the case of |+⟩ and |−⟩:

|+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ |−⟩ = 1√

2
|0⟩ − 1√

2
|1⟩ = 1√

2︸︷︷︸
α

|0⟩+ eiπ
1√
2︸ ︷︷ ︸

β

|1⟩ ,

in |−⟩, β is affected by eiπ whereas α is not. Hence, they differ by a relative phase.
Furthermore, two probability amplitudes α and β are said to differ by a relative
phase if there exists a real non-zero number θ such that α = eiθ [45, sec. 2.2.7]. It
is important to note that |+⟩ and |−⟩ do not differ by a global phase even though
calculating the probability amplitudes yield the same magnitude. This is because
relative phase targets basis-state level [45, sec. 2.2.7]. Unlike global phase, relative
phase can be observed physically. In Section 4.2.2, we will see how relative phase in
the form of a sign flip plays a significant role in quantum error correction.
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3.5 Quantum Phenomena

Superposition is a non-existence classical phenomenon where a qubit can be a classical
“0” or a classical “1” or in a combined “0” and “1” state (in a superposition). The
caveat is that once the qubit is measured, it will be seen/read as a classical 0 or
classical 1. As long as the qubit is not measured, the superposition state will not be
disrupted.3 Entanglement is a physical phenomenon where qubits cannot be described
independently of each other.

Definition 12. A state |ψ⟩ is said to be entangled if it cannot be expressed as the
tensor product of smaller states.

In other words, entangled qubits will always have some sort of a relationship
with one another, regardless of the physical distance between them. Furthermore,
manipulating one qubit will spontaneously alter the state of the other qubit. This is
the essence of entanglement-assisted quantum error correction codes (EAQECC). To
mathematically prove this, consider the following the state

|ψ⟩ = 1√
2
|00⟩+ 1√

2
|11⟩ .

We can use proof by contradiction to show it is in the entangled state and cannot be
expressed as the tensor product of two single-qubits in the form of

|ϕ1⟩ = α1 |0⟩+ β1 |1⟩ and |ϕ2⟩ = α2 |0⟩+ β2 |1⟩ .

Assume |ψ⟩ can be written as the tensor product of |ψ1⟩ with |ψ2⟩, then

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩
= (α1 |0⟩+ β1 |1⟩)⊗ (α2 |0⟩+ β2 |1⟩)
= (α1 |0⟩ ⊗ α2 |0⟩) + (α1 |0⟩ ⊗ β2 |1⟩) + (β1 |1⟩ ⊗ α2 |0⟩) + (β1 |1⟩ ⊗ β2 |1⟩)
= α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |10⟩+ β1β2 |11⟩

Since |α1α2|2+|α1β2|2+|β1α2|2+|β1β2|2= 1, α1 or β2 and β1 or α2 must be 0, which
is a contradiction. On the other hand, a non-entangled state (also called separable
state) is a quantum state which can be expressed as the tensor of two or more states.
For example, |10⟩ is a separable state, as it is the tensor of |1⟩ with |0⟩.

3By saying “not being disrupted”, we are assuming the hardware of the quantum computer and
qubits are perfect and without any noise.
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Definition 13. A quantum state |ψ⟩ ∈ H1⊗H2 is separable if and only if there exists
a state |ϕ1⟩ ∈ H1 and |ϕ2⟩ ∈ H2 such that

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ∈ H1 ⊗H2.

Otherwise, |ψ⟩ is entangled [51, thm. 4.2].

The No-Cloning Theorem is an important principle in the quantum error correction
field. It simply states that we cannot clone an arbitrary unknown quantum state. A
simple proof by contradiction suffices [23, pg. 7]. Suppose we have a way to clone our
qubit |ψ⟩ to

|ψ⟩ → |ψ⟩ ⊗ |ψ⟩ ,

then, we can also clone some other qubit |ϕ⟩ to

|ϕ⟩ → |ϕ⟩ ⊗ |ϕ⟩ .

Since the mathematical structures of quantum mechanics are based on linear spaces,
the transformation of states must be linear [30, pg. 1],

|ψ⟩+ |ϕ⟩ → (|ψ⟩ ⊗ |ψ⟩) + (|ϕ⟩ ⊗ |ϕ⟩).

Since our definition requires

|ψ⟩+ |ϕ⟩ → (|ψ⟩+ |ϕ⟩)⊗ (|ψ⟩+ |ϕ⟩),

hence,
(|ψ⟩ ⊗ |ψ⟩) + (|ϕ⟩ ⊗ |ϕ⟩) ̸= (|ψ⟩+ |ϕ⟩)⊗ (|ψ⟩+ |ϕ⟩),

we arrive at a contradiction.

3.6 Quantum Gates

This section begins by giving us an intuition of how classical gates can be represented
as matrices. We will then dive deeper into single-qubit gates and finish the section
with two-qubit gates. All classical gates can be represented as matrices. We can
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represent the NOT gate as the matrix:

0 1

1 0







0 1

0

1

{Input





O
ut

pu
t

NOT =

.

Applying NOT on |0⟩ gives us

NOT |0⟩ =
[
0 1

1 0

][
1

0

]
=

[
0

1

]
= |1⟩ .

Applying it on |1⟩ will result in |0⟩. Moreover, we can represent the AND gate as

1 1 1 0

0 0 0 1







00 01 10 11

0

1

 Input





O
ut

pu
t

AND =

.

Applying AND on |00⟩, |10⟩, |10⟩ gives us |0⟩ while applying it on |11⟩ outputs |1⟩.
The following matrices represent the OR, XOR, NAND and XOR gates, respectively:

OR =

[
1 0 0 0

0 1 1 1

]
, XOR =

[
0 1 1 0

1 0 0 1

]
, NAND =

[
0 0 0 1

1 1 1 0

]
.

Similar to classical computing, quantum computing also requires logical gates to
manipulate qubits. The restriction here is that a quantum logical gate must be unitary
(i.e., UU † = U †U = I). It means that all quantum gates must be reversible. Classically,
the NOT gate is the only reversible gate since we can map the obtained output to its
input (i.e., output = 0→ input = 1 and vice versa). On the other hand, the OR gate,
for example, isn’t reversible since receiving the output 1 implies the input could have
been 01, 10, or 11. The identity gate is the simplest single-qubit gate, which doesn’t
change the state of the basis states. Its matrix is given by:

I =

[
1 0

0 1

]
(3.11)



CHAPTER 3: INTRODUCTION TO QUANTUM COMPUTING 30

The Pauli Gates are three quantum gates that operate on a single qubit. The first
gate, denoted as X, is the equivalent of a NOT gate. The second and third gates are Y

and Z. The three gates are associated with the following matrices:

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
. (3.12)

Given our qubit state |ψ⟩ = α |0⟩+ β |1⟩, applying the Pauli Gates gives us:

X |ψ⟩ = X(α |0⟩+ β |1⟩) = α |1⟩+ β |0⟩ (3.13)

Y |ψ⟩ = Y(α |0⟩+ β |1⟩) = iα |1⟩ − iβ |0⟩ = i(α |1⟩ − β |0⟩) (3.14)

Z |ψ⟩ = Z(α |0⟩+ β |1⟩) = α |0⟩ − β |1⟩ . (3.15)

We can think about X as a bit flip, Z as a phase shift and Y as a combination of both.4

Moreover, here are some useful algebraic relations between the gates:

X2 = I , Y2 = I , Z2 = I

XY = iZ , YX = −iZ , YZ = iX

ZY = −iX , ZX = −iY , XZ = −iY
. (3.16)

The Hadamard Gate, H, is the only gate that converts a quantum basis state into a
superposition of |0⟩ and |1⟩. It is given by the matrix:

H =
1√
2

[
1 1

1 −1

]
. (3.17)

Given our qubit states |ψ⟩ = |0⟩ and |ϕ⟩ = |1⟩, applying the Hadamard gate gives us:

H |ψ⟩ = H |0⟩ = |+⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ (3.18)

H |ϕ⟩ = H |1⟩ = |−⟩ = 1√
2
|0⟩ − 1√

2
|1⟩ . (3.19)

The last gate we will present is the P gate, which is also known as the phase gate. It
affects the |1⟩ state by multiplying it by a factor of i. The P gate will map |0⟩, |1⟩

4We exclude the global phase factor i in the subsequent chapters of the thesis as it doesn’t have
any observable effect, as discussed in Section 3.4.
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and states in Equation 3.4 to:

P |0⟩ → |0⟩ , P |1⟩ → i |1⟩ , P |+⟩ → |i+⟩ ,
P |−⟩ → |i−⟩ , P |i+⟩ → |−⟩ , P |i−⟩ → |+⟩ .

(3.20)

Each gate we have discussed has its own circuit representation. Table 3.1 lists each
gate with its corresponding circuit. We will now introduce a couple of two-qubit gates.

Gate
Name Circuit Representation

I I

X X or

Y Y

Z Z

H H

P P

Table 3.1: All single-qubit gates associated with their circuit representation

A Two-qubit gate requires two input qubits and yields two outputs. The most common
gate is the CNOT gate. It flips the second qubit if the first (control bit) is true. In
other words, it leaves the first qubit unchanged and xors the second qubit with the
first. It has a circuit symbol and matrix representation, which are given below:

Q1 |ψ〉 |ψ ′〉 = |ψ〉

Q2 |φ〉 |φ ′〉 = |ψ ⊕ φ〉
,

Figure 3.5: CNOT gate circuit representa-
tion

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



. (3.21)

The CNOT gate can also be represented as a truth table: The second two-qubit gate
is the CZ (controlled-Z) gate. It will act similar to a CNOT gate but will apply a Z

gate to the target qubit if the control qubit is |1⟩. The circuit representation of a CZ



CHAPTER 3: INTRODUCTION TO QUANTUM COMPUTING 32

Control
Qubit

Target
Qubit

|ψ⟩ |ϕ⟩ |ψ ′⟩ |ϕ ′⟩
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 3.2: The truth table for CNOT gate

is

Q1 |ψ〉 |ψ ′〉 = |ψ〉

Q2 |φ〉 Z

if(ψ ∧ φ){
|φ ′〉 = −|φ〉

} else {
|φ ′〉 = |φ〉

}

,

Figure 3.6: CZ gate circuit representation

CZ =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



. (3.22)

The CZ gate can also be represented as a truth table, as shown in Table 3.3. The

Control
Qubit

Target
Qubit

|ψ⟩ |ϕ⟩ |ψ ′⟩ |ϕ ′⟩
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 −1

Table 3.3: The truth table for CZ gate

last two-qubit gate is the SWAP gate. It simply swaps the two inputs given, (i.e.,
|ψ⟩ 7→ |ϕ⟩ and |ϕ⟩ 7→ |ψ⟩). The circuit and matrix representation are given as:
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Q1 |ψ〉 |ψ ′〉 = |φ〉

Q2 |φ〉 |φ ′〉 = |ψ〉
,

Figure 3.7: SWAP gate circuit representa-
tion

SWAP =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



. (3.23)

The truth table for the SWAP is described in Table 3.4.

|ψ⟩ |ϕ⟩ |ψ ′⟩ |ϕ ′⟩
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

Table 3.4: The truth table for SWAP gate

3.7 Introduction to Quantum Circuits

In this section, we will be introducing the basics of designing quantum circuits. We
will then discuss their mathematical representation as matrices. The previous section
explained how basic quantum gates manipulate qubits in the state |0⟩ or |1⟩, making
it simple to form truth tables. However, it neglected to show how multigate matrices
were established and how qubits in the state of superposition are affected. Hence, we
will be giving some insight on how gate matrices are formed and exploring how the
gates affect qubits in superposition.

Throughout the thesis, the convention of combining qubits is from top to bottom
where the topmost qubit in the circuit will be represented as the far-left digit in the
ket and the bottom most qubit will be represented as the far-right digit in the ket.
This is illustrated in Figure 3.8.

We will be eliminating the I gates from quantum circuits as they will be assumed
to be there. For example, Figure 3.9 shows two equivalent circuits where the left
circuit contains I and the right circuit assumes I exists without explicitly including it.

Another point to consider is the representation of a multiqubit gate. We can
construct our customized multiqubit gate, which acts on some or all of the qubits
in the circuit. A multigate itself is a compact form of a quantum circuit, where
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Q1 |0〉 X |1〉

Q2 |0〉 I |0〉

Q3 |0〉 X |1〉

Figure 3.8: A quantum circuit that flips the first and last qubits. It starts with
|ψ⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ = |000⟩ and outputs |101⟩ after applying the gates

Q1 |ψ〉 X

≡
|ψ〉 X

Q2 |φ〉 I |φ〉

Figure 3.9: The left circuit contains the I gate for completeness whereas the right
circuit doesn’t because it is assumed to be implied

the number of inputs and outputs must be equal. This is due to the condition that
quantum gates are reversible. An example of a gate that flips three qubits is illustrated
in Figure 3.10. We can now use our bit-flipper gate in other quantum circuits as

Q1 X

Q2 X

Q3 X

bit-flipper

Figure 3.10: Creating a customized gate which has three inputs and three. The matrix
of U is U = X⊗ X⊗ X

shown in Figure 3.11. Any quantum gate U applied twice consecutively will cancel
itself because UU = I, which is equivalent to applying the I gate.

Furthermore, the order of applying gates is applied inside-out. For example, the
circuit in Figure 3.12 will (in order) apply X, Y and lastly Z on Q1. Mathematically,
we will need to first apply X on Q1 to get Q ′

1, then apply Y on Q ′
1 to get Q ′ ′

1 and
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Q1 |0〉

U

|1〉

Q2 |0〉

U

|0〉

Q3 |0〉 |0〉

Q4 |0〉 |1〉

Figure 3.11: Using the customized gate U created in Figure 3.10

Q1 |ψ〉 X Y Z |ψ ′〉

Figure 3.12: The order of applying gates is done following a left-to-right fashion

lastly, apply Z on Q ′ ′
1 , as such:

(Z (Y (X |Q1⟩)︸ ︷︷ ︸
Evaluated 1st

)

︸ ︷︷ ︸
Evaluated 2nd

)

︸ ︷︷ ︸
Evaluated 3rd

.

Another point to mention is the way we can read/translate the tensor products of
some operations to circuits (and vice-versa). For example, the circuit in Figure 3.13
has three qubits and the operations applied on each qubit are found in Equation 3.24.

Q1 |ψ1〉 X Y Z

Q2 |ψ2〉 Y Z X

Q3 |ψ3〉 Z

t0 t1 t2 t3 t4

Figure 3.13: The order of applying gates on each qubit is done in a left-to-right fashion
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Q1 = X Y I Z

Q2 = Y Z X I

Q3 = Z I I I

t0 − t1 t1 − t2 t2 − t3 t3 − t4

. (3.24)

Each row in Equation 3.24 shows the gates applied on each individual qubit, where the
columns show the unitary gate that is applied on all qubits at the specific snapshot.
For example, Q1 in Figure 3.13 will have X, Y, I and Z (in order) applied on it whereas
from t0 to t1, we can represent the matrix applied on all the qubits as X⊗ Y ⊗ Z.

Throughout this chapter, we used the control element ( ) without explicitly
explaining what it is. A control element will simply execute its associated gate if
the wire (input) is |1⟩ or a superposition of |1⟩. Another element to discuss is the
anticontrol ( ). An anticontrol element will execute its associated gate if
the input wire (input) is |0⟩ or a superposition of |0⟩.5 The anti-CNOT gate is the
equivalent of leaving the anticontrol qubit unchanged and set the target qubit to the
XNOR of both qubits. The circuit is shown in Figure 3.14. The truth table of the

Q1 |ψ〉 |ψ ′〉 = |ψ〉

Q2 |φ〉 |φ ′〉 = |ψ XNORφ〉 .

Figure 3.14: Q1 (the anticontrol qubit) will perform an XNOR operation on Q2 (the
target qubit) with Q1 if Q1 is |0⟩ or a superposition of |0⟩

anti-CNOT is given in Table 3.5.

|ψ⟩ |ϕ⟩ |ψ ′⟩ |ϕ ′⟩
0 0 0 1
0 1 0 0
1 0 1 0
1 1 1 1

Table 3.5: The truth table for anti-CNOT

We know that, for example, applying CNOT on |10⟩ gives |11⟩. The logic might not
be clear when we are dealing with qubits in superposition as we have only discussed
qubits being only |0⟩ or only |1⟩. Consider the circuit in Figure 3.15. The first qubit

5For both control and anti control elements, the classical wire only works for qubits that are |0⟩
only or |1⟩ only and not in superposition. A quantum wire will work with |0⟩, |1⟩ or superposition of
both.
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will be in a superposition state after the H gate gets applied. Let us explain the steps
of how the CNOT gate will be applied.

Q1 |0〉 H

Q2 |0〉

t0 t1 t2

Figure 3.15: A qubit in superposition acting as the control qubit in a CNOT gate

1. We start with |00⟩.

2. Q1 gets mapped to 1√
2
|0⟩ + 1√

2
|1⟩ and Q2 is left untouched by the following

unitary matrix:

(H⊗ I) |00⟩ = 1√
2
|00⟩+ 1√

2
|10⟩ .

3. We need to perform CNOT operation where Q1 is the control qubit and is in
superposition. It is important to note that Q1 is in the |1⟩ state only 50% of
the time. In the case where a flip happens, only 50% of a flip will occur. We
can apply CNOT operation on |ψ⟩ = 1√

2
|00⟩+ 1√

2
|10⟩ to obtain:

CNOT |ψ⟩ = 1√
2
|00⟩+ 1√

2
|11⟩ .

Generally, when we have the control qubit in superposition, we will obtain the following
states when using the CNOT gate:

|00⟩ → 1√
2
|00⟩+ 1√

2
|11⟩

|01⟩ → 1√
2
|01⟩+ 1√

2
|10⟩

|10⟩ → 1√
2
|00⟩ − 1√

2
|11⟩

|11⟩ → 1√
2
|01⟩ − 1√

2
|10⟩ .

(3.25)

On the other hand, the CZ gate will affect the phase (sign) of the target qubit if the
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control qubit is |1⟩ or superposition of |1⟩ and will leave |0⟩ unchanged. More precisely,
the control qubit produces a phase flip on the target qubit if the control qubit is |1⟩ or
a superposition of |1⟩, as shown Figure 3.6. There will be no row swaps in the matrix
but a sign change. In other words, the affected rows in the column representation of
the vector will be multiplied by −1. We can rewrite Table 3.3 as Table 3.6. The CZ

|ψϕ⟩ → |ψ ′ϕ ′⟩
|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |10⟩
|11⟩ → − |11⟩

Table 3.6: An equivalent representation of the truth table for CZ gate

gate will keep |00⟩, |01⟩ and |10⟩ unchanged but will map |11⟩ to − |11⟩ and vice-versa.
When Q1 is in superposition, a similar approach will occur as the one encountered
earlier in Figure 3.15. We will discuss the procedure found in Figure 3.16.

Q1 |0〉 H

Q2 |1〉 Z

t0 t1 t2

Figure 3.16: A qubit in superposition acting as the control qubit in a CZ gate

1. We start with |10⟩.

2. Q1 gets mapped to 1√
2
|0⟩ − 1√

2
|1⟩ and Q2 is left untouched by the following

unitary matrix:

(H⊗ I) |01⟩ = 1√
2
|01⟩+ 1√

2
|11⟩ .

3. We need to perform CZ operation where Q1 is the control qubit and is in
superposition. It is important to note that Q1 is in the |1⟩ state only 50% of
the time. In the case where a phase-flip happens, only 50% of a phase-flip will
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occur. We can apply CZ operation on 1√
2
|01⟩+ 1√

2
|11⟩ to obtain:




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1







0
1√
2

0
1√
2



=

1√
2
|01⟩ − 1√

2
|11⟩ .

Generally, when we have the control qubit in superposition, we will obtain these states
when using the CZ gate:

|00⟩ → 1√
2
|00⟩+ 1√

2
|01⟩

|01⟩ → 1√
2
|01⟩ − 1√

2
|11⟩

|10⟩ → 1√
2
|00⟩ − 1√

2
|10⟩

|11⟩ → 1√
2
|01⟩+ 1√

2
|11⟩ .

(3.26)

We can further expand our logic of using CZ gate, which contains one control qubit
and two target qubits as shown in Figure 3.17.

Q1 |ψ1〉

≡

|ψ1〉

≡

|ψ1〉 Z

Q2 |ψ2〉 |ψ2〉 Z |ψ2〉

Q3 |φ〉 Z |φ〉 |φ〉

Figure 3.17: Equivalent CZ circuits with two control qubits and one target qubit

In Figure 3.17, the control qubits are Q1 and Q2 in the first circuit, Q1 and Q3 in
the second circuit gate and Q2 and Q3 in the third circuit. They are all equivalent
and yield the same matrix representation. The first circuit requires that Q1 and
Q2 to be |1⟩ or superposition of |1⟩. Q3 must also be |1⟩ or a superposition to be
affected as the Z gate doesn’t affect |0⟩. Hence, all of Q1, Q2 and Q3 must be |1⟩
or superposition of |1⟩. The same explanation is valid to justify the two remaining
circuits. The conclusion is that only |111⟩ will be mapped to − |111⟩, whereas the
other states are left unchanged.

Lastly, the SWAP gate represents a compact circuit consisting of three CNOTs as
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shown in Figure 3.18.

Q1 |ψ〉 |φ〉
≡
|ψ〉 |φ〉

≡
|ψ〉 |φ〉

Q2 |φ〉 |ψ〉 |φ〉 |ψ〉 |φ〉 |ψ〉

Figure 3.18: The SWAP gate represented as three CNOT gates
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Chapter 4

Introduction to Quantum Error
Correction

This chapter will discuss how errors affect quantum states. We will first see how we
can represent any error as a combination of the Pauli gates. Then, we introduce the
three-bit quantum repetition code we discuss and how to detect as well as correct
a single bit-flip. Moreover, we will show a similar technique to detect and correct a
single phase-flip as well. Lastly, we will introduce Shor’s code, which can correct a
bit-flip and/or a phase-flip.

4.1 Digitalizing Environment Noise on a Qubit

Qubits are prone to the noise of the surrounding environment. Furthermore, errors
affecting qubits are continuous (i.e., qubits do not directly encounter a bit-flip or
phase-flips). Qubits would instead experience some angular shift by some arbitrary
angle [17, sec. 2.2]. It is possible to prove that any continuous evolution of a single
qubit coupled throughout time with the environment can be discretely represented
as a linear combination of X, Y and Z operators. This is a requirement for quantum
error correction theory [01, sec. 4.1]. The angular shift may occur due to inaccurate
control over the qubits or by the interaction of the qubits with the environment. An
environment is defined as everything other than the physical premise of the qubit.
A quantum channel describes how qubits in a given setting are affected by their
environment [31, sec. 10.4]. Over some time, a qubit |ψ⟩ = |0⟩ can evolve due to its
interaction with an environment in the state |E⟩, which leads to a superposition state
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in the form of [59, sec 2.2.2]:

|0⟩ ⊗ |E⟩ → γ1 (|0⟩ ⊗ |E1⟩) + γ2 (|1⟩ ⊗ |E2⟩) ,

where γ1 is the probability that the qubit will remain in the basis state |0⟩ and some
state |E1⟩, whereas γ2 is the probability that the qubit will remain in the basis state
|1⟩ and some state |E2⟩. This generic definition also applies for the qubit |ψ⟩ = |1⟩
and its interaction with an environment in the state |E⟩:

|1⟩ ⊗ |E⟩ → γ3(|0⟩ ⊗ |E3⟩) + γ4(|1⟩ ⊗ |E4⟩).

In general, a qubit |ψ⟩ = α |0⟩+β |1⟩ will interact with the environment |E⟩ yielding [59,
sec 2.2.2]:

|ψ⟩ ⊗ |E⟩ → (α |0⟩+ β |1⟩)⊗ |E⟩
→ α

(
γ1(|0⟩ ⊗ |E1⟩) + γ2(|1⟩ ⊗ |E2⟩)

)
+ β

(
γ3(|0⟩ ⊗ |E3⟩) + γ4(|1⟩ ⊗ |E4⟩)

)

→ αγ1(|0⟩ ⊗ |E1⟩) + αγ2(|1⟩ ⊗ |E2⟩) + βγ3(|0⟩ ⊗ |E3⟩) + βγ4(|1⟩ ⊗ |E4⟩).
(4.1)

Let’s see how the Pauli gates will affect an arbitrary qubit |ψ⟩ = α |0⟩+ β |1⟩ (which
doesn’t contain any errors) [59, sec 2.2.2]:

I |ψ⟩ = α |0⟩+ β |1⟩
X |ψ⟩ = α |1⟩+ β |0⟩
Y |ψ⟩ = α |1⟩ − β |0⟩
Z |ψ⟩ = α |0⟩ − β |1⟩ .

We can generate a set of orthonormal states, B, that can represent the result of the
Pauli gates when acted on |ψ⟩, i.e.,

B = {α |0⟩+ β |1⟩ , α |1⟩+ β |0⟩ , α |1⟩ − β |0⟩ , α |0⟩ − β |1⟩}.
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With the usage of the elements in set B, Equation 4.1 can be rewritten as [31, sec.
10.4]:

1

2
[(α |0⟩+ β |1⟩)× (γ1 |E1⟩+ γ3 |E3⟩)+

(α |0⟩ − β |1⟩)× (γ1 |E1⟩ − γ3 |E3⟩)+
(α |1⟩+ β |0⟩)× (γ2 |E2⟩+ γ4 |E4⟩)+
(α |1⟩ − β |0⟩)× (γ2 |E2⟩ − γ4 |E4⟩)].

(4.2)

Furthermore, Equation 4.2 can be written using the Pauli gates:

1

2
[(I |ψ⟩)× (γ1 |E1⟩+ γ3 |E3⟩)+

(Z |ψ⟩)× (γ1 |E1⟩ − γ3 |E3⟩)+
(X |ψ⟩)× (γ2 |E2⟩+ γ4 |E4⟩)+
(Y |ψ⟩)× (γ2 |E2⟩ − γ4 |E4⟩)].

(4.3)

Hence, the interaction between a qubit and an environment can be written as a linear
combination of Pauli gates, as shown in Equation 4.3.

4.2 Three-Qubit Quantum Repetition Code

We will now discuss how the quantum repetition code is derived. First, we will
discuss how to correct a bit-flip. Secondly, we will examine the process of correcting a
phase-flip. Lastly, we will introduce Shor’s Code, which corrects a single arbitrary
error.

4.2.1 Bit-flip Correction Code

A quantum circuit can be constructed to represent the correction of a single bit-flip at
most. First, we will explain the process behind the creation of such circuit. Assume
that |ψ⟩ = α |0⟩+ β |1⟩ needs to be sent over an error prone channel, which may cause
the qubit to experience one bit-flip at most. In the encoding stage, we transform |ψ⟩
as such [59, sec 2.2.3]:

|ψ⟩ = α |0⟩+ β |1⟩ encoded−−−−−→ |ψ⟩ = α |000⟩+ β |111⟩ . (4.4)

In the case where no error occurs, |ψ⟩ will stay unchanged. If an error occurs on the
first qubit, |ψ⟩ will be transformed to α |100⟩+β |011⟩. If an error occurs on the second
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qubit, |ψ⟩ becomes α |010⟩+ β |101⟩. Lastly, if an error occurs on the third qubit, |ψ⟩
becomes α |001⟩+β |110⟩. The circuit will have five stages: encoding, transmitting data
through erroneous channel, syndrome extraction, syndrome correction and decoding.
The quantum circuit in Figure 4.1 can be analyzed further using the timestamps

Encoding
Erroneous
channel Syndrome extraction Syndrome correction Decoding

Q1 |ψ〉 X1? X1? |ψ〉

Q2 |0〉 X2? X2? |0〉

Q3 |0〉 X3? X3? |0〉

A1 |0〉

A2 |0〉

t0 t1 t2 t3 t4 t5 t6

Figure 4.1: Repetition code single bit-flip correction circuit using CNOT gates to find
the syndromes

t0, . . . , t6.

1. We start the encoding process by preparing three qubits. Q1 is in superposition,
and both Q2 and Q3 are zeros. We transform |ψ⟩ to |ψ⟩:

|ψ⟩ → |ψ⟩ = |ψ⟩ ⊗ |0⟩ ⊗ |0⟩
= (α |0⟩+ β |1⟩)⊗ |0⟩ ⊗ |0⟩
= (α |00⟩+ β |10⟩)⊗ |0⟩
= α |000⟩+ β |100⟩ .

It is important to keep in mind that the wire of Q1 will manipulate the left-most
digit in the kets (i.e., α |000⟩+ β |100⟩). Similarly, Q2 and Q3 will manipulate
the middle digit (α |000⟩+ β |100⟩) and right-most digit (α |000⟩+ β |100⟩) in
the kets, respectively.
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2. We applied U1 = CNOT⊗ I on |ψ⟩.

U1 |ψ⟩ = α |000⟩+ β |110⟩ .

3. We applied U2 = I⊗ CNOT on |ψ⟩.

U2 |ψ⟩ = α |000⟩+ β |111⟩ .

The encoding procedure is complete and the qubit |ψ⟩ can be send over.

4. Our qubit was sent through an erroneous channel where a single bit-flip (at
most) can occur. In the case where a bit-flip error occurred randomly and
independently from each qubit. The qubit can be received as one of [59, sec
2.2.3]:

α |000⟩+ β |111⟩ (4.5)

α |100⟩+ β |011⟩ (4.6)

α |010⟩+ β |101⟩ (4.7)

α |001⟩+ β |110⟩ (4.8)

α |110⟩+ β |001⟩ (4.9)

α |101⟩+ β |010⟩ (4.10)

α |011⟩+ β |100⟩ (4.11)

α |111⟩+ β |000⟩ (4.12)

Only four states can be corrected, namely, Equations (4.5) to (4.8) as we can
correct one error at most.

5. We start with the syndrome extraction procedure. Two ancilla (temporary)
qubits A1 and A2 were prepared as A1 ⊗ A2 = |0⟩ ⊗ |0⟩ for detecting and
correcting the error. The four CNOT operation will act on the ancilla qubits to
obtain the syndrome. We can think of these CNOT operations as an operator S.
Given

|ψ⟩ = α |x1x2x3⟩+ β |x1 x2 x3⟩ ,where xi = xi + 1 (mod 2),
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we can define the operator S as:

S : α |x1x2x3⟩+ β |x1 x2 x3⟩ → |x1 ⊕ x2⟩︸ ︷︷ ︸
A1

⊗ |x2 ⊕ x3⟩︸ ︷︷ ︸
A2

,

or equivalently as:

S : α |x1x2x3⟩+ β |x1 x2 x3⟩ → |x1 ⊕ x2⟩︸ ︷︷ ︸
A1

⊗ |x2 ⊕ x3⟩︸ ︷︷ ︸
A2

.

The syndromes are listed in Table 4.1 with the operation needed to be correct
the error.

Syndrome (|A1⟩ ⊗ |A2⟩) Error Operation

|0⟩ ⊗ |0⟩ No error encountered Nothing
|0⟩ ⊗ |1⟩ Bit-flip on third qubit Apply X3

|1⟩ ⊗ |0⟩ Bit-flip on first qubit Apply X1

|1⟩ ⊗ |1⟩ Bit-flip on second qubit Apply X2

Table 4.1: Showing possible syndromes and with the error caused on the |ψ⟩ and the
operation needed to correct it

6. We have now entered the recovery stage. We can use the error syndrome to
correct an error occurred using only one of X1? ,X2? or X3?. The operators are
given as:

US00 = I⊗ I⊗ I

US01 = I⊗ I⊗ X

US10 = X⊗ I⊗ I

US11 = I⊗ X⊗ I,

where USij
corresponds to the syndrome ij. Applying the appropriate USij

on
|ψ⟩ will correct the error. For example, if i = 1 and j = 0, then S yields |1⟩⊗ |0⟩,
hence, X1 is applied.

7. After the correction, we should have |ψ⟩ = α |000⟩ + β |111⟩. Our goal is to
have |ψ⟩ = α |000⟩+ β |100⟩ which is achieved by applying U1(U2 |ψ⟩), i.e., first
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applying U2 on |ψ⟩ resulting

|ψ⟩ = α |000⟩+ β |110⟩ ,

then, applying U1 on |ψ⟩ resulting

|ψ⟩ = α |000⟩+ β |100⟩ ,

or equivalently as
|ψ⟩ = |ψ⟩ ⊗ |0⟩ ⊗ |0⟩ .

4.2.2 Phase-flip Correction Code

The phase-flip, on the other hand, is dealt with differently. This is because a phase
flip changes the sign rather than the bit itself. More specifically, a phase-flip will only
affect |1⟩. Applying Z on |ψ⟩ = α |0⟩+ β |1⟩ gives:

Z |ψ⟩ = α |0⟩ − β |1⟩ .

We are more interested in the sign of the qubit rather than the bit value (0 or 1). We
can fundamentally change the basis states of {|0⟩ , |1⟩} to something more suitable.
Consider the Hadamard gate, which transform the basis states of |ψ⟩ (i.e., |0⟩ and
|1⟩) to

H |0⟩ = |+⟩
H |1⟩ = |−⟩ .

The relationship between |+⟩ and |−⟩ can be seen using the Z operator:

Z |+⟩ = |−⟩
Z |−⟩ = |+⟩ .

Hence, it is more suitable to use {|+⟩ , |−⟩} as the basis when correcting phase flips.
Furthermore, it is important to see how a phase-flip can be turned into a bit flip

using the Hadamard gate. Let’s say we have our qubit as |ψ⟩ = α |0⟩ + β |1⟩. The
first step is to write the state in terms of the basis {|+⟩ , |−⟩}. We can apply the
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Hadamard gate on our qubit |ψ⟩:

H |ψ⟩ = |ψ⟩ = α√
2
|0⟩+ β√

2
|1⟩ . (4.13)

Assume the qubit encountered a phase-flip, i.e., the Z gate was applied on |ψ⟩:

Z|ψ⟩ = α√
2
|0⟩ − β√

2
|1⟩ . (4.14)

Note that Equation 4.13 and Equation 4.14 are almost the states |+⟩ and |−⟩,
respectively, but differ in the amplitudes. The next step is to apply the Hadamard
gate on |ψ⟩:

H|ψ⟩ = β |0⟩+ α |1⟩

We can see that our qubit is almost the same as what we started with except that it
now has a bit-flip applied on it. The last step is to correct the bit-flip by applying
X on |ψ⟩ to obtain our original qubit |ψ⟩. So far, we have explained the process
of a single qubit encountering a phase-flip. We can extend our approach to using
three qubits. Moreover, we are able to use the decoding logic given in Figure 4.1 to
correct what started as a phase-flip then turned into a bit flip. Assume that the qubit
|ψ⟩ = α |0⟩+ β |1⟩ needs to be sent over an erroneous channel, where one phase flip
(at most) can occur. We transform |ψ⟩ to α |000⟩+ β |111⟩ and then perform three
Hadamard operations:

|ψ⟩ → |ψ⟩ = (H⊗ H⊗ H) |ψ⟩
= α ′ |+++⟩+ β ′ |− − −⟩ ,

where α ′ =
α

2
√
2

and β ′ =
β

2
√
2
. The circuit in Figure 4.2 can be further explained

with the timestamps t0, . . . , t4.

1. Similar to the bit-flip encoding circuit, we start the encoding process by preparing
three qubits. Q1 is in superposition, and both Q2 and Q3 are zeros. We start
with |ψ⟩ and encode the state by performing CNOT operations to obtain

|ψ⟩ = α |000⟩+ β |111⟩ .
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Encoding
Erroneous
channel Syndrome extraction Syndrome correction Decoding

Q1 |ψ〉 H Z1? H X1? |ψ〉

Q2 |0〉 H Z2? H X2? |0〉

Q3 |0〉 H Z3? H X3? |0〉

A1 |0〉

A2 |0〉

t0 t1 t2 t3 t4

Figure 4.2: The phase-flip circuit correction for the three-qubit repetition code using
CNOT gates for syndrome correction

2. We applied U1 = H⊗ H⊗ H on |ψ⟩ to obtain [59, sec 2.2.4]

α

2
√
2
|+++⟩+ β

2
√
2
|− − −⟩ .

3. Our qubit was sent through an erroneous channel where a single phase flip (at
most) can occur. In the case where a phase-flip error occurred, it is assumed to
change the basis (+/− signs in the kets) independently from each qubit. The
qubit can be received as one of:

α |+++⟩+ β |− − −⟩ (4.15)

α |−++⟩+ β |+−−⟩ (4.16)

α |+−+⟩+ β |−+−⟩ (4.17)

α |++−⟩+ β |− −+⟩ (4.18)

α |− −+⟩+ β |++−⟩ (4.19)

α |−+−⟩+ β |+−+⟩ (4.20)

α |+−−⟩+ β |−++⟩ (4.21)

α |− − −⟩+ β |+++⟩ (4.22)

Note that Equations (4.15) to (4.18) are the only states that can be corrected.
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4. Applying the Hadamard gate on each of the three qubits will cancel the first
Hadamard gate applied in t2 if a phase-flip did not occur. Rather, it will
transform the error that occurred to a bit-flip, as explained earlier.

5. After extracting the syndrome, we are able to correct the bit-flip. This step is
equivalent to the syndrome extraction process that was seen when correcting
the bit-flip error in Figure 4.1.

In Figure 4.1 and Figure 4.2, the syndrome extraction component treated as
a “0” and as a “1” to which the syndrome was derived from. Another useful
approach is to use CZ gates in the syndrome extraction segment instead of CNOTs.
The syndrome produced and operations required to correct the phase flip error are
the same in Table 4.1. In addition to using CZ gates, the ancilla qubits will have H

as the first and last gate in order to detect if a bit-flip occurred (as discussed in the
beginning of Section 4.2.2). The complete circuit is shown in Figure 4.3.

Encoding
Erroneous
channel Syndrome extraction Syndrome correction Decoding

Q1 |ψ〉 H Z1? H Z X1? |ψ〉

Q2 |0〉 H Z2? H Z Z X2? |0〉

Q3 |0〉 H Z3? H Z X3? |0〉

A1 |0〉 H H

A2 |0〉 H H

t0 t1 t2 t3 t4

Figure 4.3: The phase-flip circuit correction for the three-qubit repetition code using
CZ gates for syndrome correction

To further explain the syndrome segment in Figure 4.3, we will focus on Q1, Q2

and A1. The two CZ gates will not affect Q1 and Q2 if both qubits are in: the |0⟩
state (due to the nature of the gate), the state of |1⟩ or a superposition of |1⟩ (as
applying two CZ gates on the state of |1⟩ or a superposition of |1⟩ will cancel one
another). However, if Q1 differs from Q2, then the CZ gates will not cancel each other
and will result in |A1⟩ to flip to |1⟩. This syndrome circuit can be replaced with the
syndrome circuit in Figure 4.1 and still yield the same result. The complete circuit is
found in Figure A.1.1 under Section A.1.
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4.2.3 Shor’s Code

Shor’s Code is a quantum error correction code that encodes one logical qubit in nine
physical qubits to correct a single error E ∈ {X,Y,Z} at most. This code concatenates
the three-qubit repetition code three times. The states |0⟩ and |1⟩ are encoded as:

|0⟩ → |0⟩ =
(

1√
2

)3

((|000⟩+ |111⟩)⊗3)

|1⟩ → |1⟩ =
(

1√
2

)3

((|000⟩ − |111⟩)⊗3),

(4.23)

which is equivalent to

|0⟩ → |0⟩ = 1

2
√
2
((|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩))

=
1

2
√
2
( |000000000⟩+ |000000111⟩+ |000111000⟩+ |000111111⟩

+ |111000000⟩+ |111000111⟩+ |111111000⟩+ |111111111⟩ )

|1⟩ → |1⟩ = 1

2
√
2
((|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)),

=
1

2
√
2
( |000000000⟩ − |000000111⟩ − |000111000⟩+ |000111111⟩

− |111000000⟩+ |111000111⟩+ |111111000⟩ − |111111111⟩ ).
(4.24)

To send a qubit |ψ⟩ = α |0⟩ + β |1⟩, we encode it as |ψ⟩ = α|0⟩ + β |1⟩. In order to
correct a bit-flip error, the nine qubits are divided into three equal groups:

{Q1, Q2, Q3}, {Q4, Q5, Q6}, {Q7, Q8, Q9},

where each group detects and corrects the bit-flip that may occur within the group.
For example, if a bit-flip occurred on any of Q1, Q2 or Q3, then the first group will
correct it. This is done using the same syndrome extraction circuit and syndrome
correction used in Figure 4.3. Similarly, correcting a bit-flip error in Q4, Q5 or Q6 will
use the same approach as well as correcting a bit-flip error in Q7, Q8 or Q9. The total
syndromes that must be checked are:

{Z1Z2,Z2Z3︸ ︷︷ ︸
group 1

,Z4Z5,Z5Z6︸ ︷︷ ︸
group 2

,Z7Z8,Z8Z9︸ ︷︷ ︸
group 3

}.
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On the other hand, a phase-flip error is detected by all nine qubits but corrected using
Q1, Q4 and Q7. Similar to a bit-flip, the nine qubits are divided into the same three
groups to identify the error. Let us focus on the first group (i.e., Q1, Q2 and Q3).
Any of Z1, Z2 or Z3 errors will transform

1√
2
(|000⟩+ |111⟩)Q1,Q2,Q3 to 1√

2
(|000⟩ − |111⟩)Q1,Q2,Q3

1,

Similarly, a Z4, Z5 or Z6 error maps

1√
2
(|000⟩+ |111⟩)Q4,Q5,Q6 to 1√

2
(|000⟩ − |111⟩)Q4,Q5,Q6 .

Lastly, a Z7, Z8 or Z9 error transforms

1√
2
(|000⟩ − |111⟩)Q7,Q8,Q9 to 1√

2
(|000⟩ − |111⟩)Q7,Q8,Q9 .

We can use the two following syndromes:

Q1, Q2, Q3︸ ︷︷ ︸
group 1

Q4, Q5, Q6︸ ︷︷ ︸
group 2

and Q4, Q5, Q6︸ ︷︷ ︸
group 2

Q7, Q8, Q9︸ ︷︷ ︸
group 3

,

to find which group contains the phase error. More precisely,

{X1X2X3X4X5X6, X4X5X6X7X8X9}

are the operators needed to extract these syndromes. For example, the syndrome
|0⟩⊗ |1⟩ implies that X1X2X3X4X5X6 did not detect an error, while X4X5X6X7X8X9

did, hence, the error occurred in group 3. The complete circuit for Shor code is
given by Figure 4.4. Furthermore, Table 4.2 shows the output of all ancilla qubits
in Figure 4.4.

1The subscript Q1, Q2, Q3 represents the qubits we are focusing on.
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Ancilla Qubits Syndrome Error Operation

|A1⟩ ⊗ |A2⟩
|0⟩ ⊗ |0⟩ No bit-flip error in Group 1 Nothing
|0⟩ ⊗ |1⟩ Bit-flip on Q3 Apply X3

|1⟩ ⊗ |0⟩ Bit-flip on Q1 Apply X1

|1⟩ ⊗ |1⟩ Bit-flip on Q2 Apply X2

|A3⟩ ⊗ |A4⟩
|0⟩ ⊗ |0⟩ No bit-flip error in Group 2 Nothing
|0⟩ ⊗ |1⟩ Bit-flip on Q6 Apply X6

|1⟩ ⊗ |0⟩ Bit-flip on Q4 Apply X4

|1⟩ ⊗ |1⟩ Bit-flip on Q5 Apply X5

|A5⟩ ⊗ |A6⟩
|0⟩ ⊗ |0⟩ No bit-flip error in Group 3 Nothing
|0⟩ ⊗ |1⟩ Bit-flip on Q9 Apply X9

|1⟩ ⊗ |0⟩ Bit-flip on Q7 Apply X7

|1⟩ ⊗ |1⟩ Bit-flip on Q8 Apply X8

|A7⟩ ⊗ |A8⟩
|0⟩ ⊗ |0⟩ No phase-flip error occurred Nothing
|0⟩ ⊗ |1⟩ Phase-flip in Q6Q7Q8 Apply X7

|1⟩ ⊗ |0⟩ Phase-flip in Q1Q2Q3 Apply X1

|1⟩ ⊗ |1⟩ Phase-flip in Q4Q5Q6 Apply X4

Table 4.2: All possible syndromes for Shor’s Code with their effect on the encoded
qubit |ψ⟩ = α|0⟩ + β |1⟩ and the operation needed to correct it
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Encoding
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Figure 4.4: Nine-qubit Shor Code circuit which corrects at most one of E ∈ {X,Y,Z}
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Chapter 5

Introduction to Stabilizer Codes

5.1 Repetition Bit-flip Code Revisited

In the previous chapter, we thoroughly explained how the repetition code works.
The error-correcting concept depended on the qubit states themselves. Stabilizer
codes, however, depend on the operator rather than the states of the qubits. We will
start with informally introducing the concept of stabilizer codes using the repetition
bit-flip code and then rigorously establish the formalism of stabilizer codes. Recall
the encoding given in Equation 4.4 is

|ψ⟩ = α |0⟩+ β |1⟩ → |ψ⟩ = α |000⟩+ β |111⟩ . (5.1)

The syndrome extraction circuit in Figure A.1.1 used the two following operators to
detect a bit-flip error:

S =
[
Z1Z2 Z2Z3

]
. (5.2)

We can use these syndrome operators to detect a bit-flip error. These operators are
equivalent to

Z1 ⊗ Z2 ⊗ I3 ≡ Z1 ⊗ Z2 ≡ Z1Z2,

I1 ⊗ Z2 ⊗ Z3 ≡ Z2 ⊗ Z3 ≡ Z2Z3,
(5.3)
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where Ui is applying the U gate on the ith qubit. Expanding the unitary matrices
given in Equation 5.3 and |ψ⟩ yields

Z1Z2 = U1 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




,Z2Z3 = U2 =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1




, |ψ⟩ =




α

0

0

0

0

0

0

β




. (5.4)

In the case where there are no errors, then applying both syndromes on |ψ⟩ gives:

U1 |ψ⟩ = |ψ⟩, U2 |ψ⟩ = |ψ⟩.

The possible errors that can occur are

X1 ⊗ I2 ⊗ I3 ≡ X1,

I1 ⊗ X2 ⊗ I3 ≡ X2,

I1 ⊗ I2 ⊗ X3 ≡ X3.

(5.5)

For the sake of argument, let us assume X1 occurred during transmission, hence

X1 |ψ⟩ = |ψ⟩X1
=

[
0 0 0 β α 0 0 0

]T
(5.6)

Applying U1 and U2 from Equation 5.4 on |ψ⟩X1
yields:

U1 |ψ⟩X1
=

[
0 0 0 −β −α 0 0 0

]T
= −|ψ⟩X1

(5.7)

U2 |ψ⟩X1
=

[
0 0 0 β α 0 0 0

]T
= |ψ⟩X1

(5.8)

We can see the eigenvalues of U1 |ψ⟩X1
and U2 |ψ⟩X1

are −1 and +1, respectively. We
can use the eigenvalue mechanism to detect an error. We can append a new column
to Table 4.1 regarding eigenvalue, as given by Table 5.1, which maps

|0⟩ → +1 and |1⟩ → −1. (5.9)

It is important to note that when no errors are encountered there is an all +1 syndrome
vector.
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Syndrome Eigenvalue Error Operation

|0⟩ ⊗ |0⟩ [+1 +1] No error encountered Nothing
|0⟩ ⊗ |1⟩ [+1 −1] Bit-flip on third qubit Apply X3 on Q3

|1⟩ ⊗ |0⟩ [−1 +1] Bit-flip on first qubit Apply X1 on Q1

|1⟩ ⊗ |1⟩ [−1 −1] Bit-flip on second qubit Apply X2 on Q2

Table 5.1: Showing possible syndromes for quantum repetition code as eigenvalues,
with the error caused on the |ψ⟩ and the operation needed to correct it

5.2 Stabilizer Codes

Stabilizer Codes were discovered by Daniel Gottesman in 1997. Gottesman’s Ph.D.
thesis [23] was dedicated to this topic which is where this chapter is inspired from.
An operator that acts on a code and yields +1 as the eigenvalue has no effect on the
qubit state and is said to stabilize or fix 1 the code. For example, the two operators
in Equation 5.3 stabilize the repetition bit-flip code, provided there was no error
encountered. Recall that the Pauli operators in Equation 3.16 form a group under
multiplication with ±1 and ±i as overall phases and including I. Let

P⊗1 = {±1,±i} × {I,X,Y,Z}
= {I,−I, iI,−iI,X,−X, iX,−iX,Y,−Y, iY,−iY,Z,−Z, iZ,−iZ},

(5.10)

be a Pauli group acting on a single qubit. Let

P⊗n = {±1,±i} × {I,X,Y,Z}⊗n (5.11)

be an n-fold Pauli group of P⊗1 under matrix multiplication acting on n qubits. An
element A ∈ P⊗n is of the form

A = cA1 ⊗ A2 ⊗ · · · ⊗ An−1 ⊗ An, where Ai ∈ {I,X,Y,Z} and c ∈ {±1,±i}. (5.12)

The cardinality of P⊗n without global phases is 4n elements and with overall phases is
4× 4n = 4n+1 elements. Let us define the commutator and anti-commutator relations
between elements in P⊗n as follows:

Commutator [A,B] = +1 if AB= +BA, for A,B ∈ P⊗n,

Anti-commutator {A,B}= −1 if AB= −BA, for A,B ∈ P⊗n.
(5.13)

1The word fix doesn’t mean to correct, rather, “holds in place”.
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Some of the properties P⊗n include:

1) For any A ∈ P⊗n:

I) the square of A yields ±I⊗n.

II) A is Hermitian or anti-Hermitian. A Hermitian matrix is (A∗)T = A† = A,
i.e., taking the complex conjugate of A and transposing it yields A. An
example of an anti-Hermitian element in P⊗n is (iI⊗n)† = −iI⊗n.

III) A is always a unitary matrix, i.e., A†A = AA† = I⊗n.

2) For any A,B ∈ P⊗n, either [A,B] = +1 or {A,B} = −1, i.e., either commute
or anti-commute.

Squaring any element from P⊗n yields an eigenvalue of +1. These elements are
composed of ±I,±X,±Y and ±Z. We include the global phase ±i in the definition of
P⊗n but don’t use it in our formalism as it makes P⊗n a group under multiplication [22,
sec. 1]. The commutator and anti-commutator relation of P⊗1 elements are given
by Table 5.2. Let S be an Abelian subgroup under multiplication of P⊗n with the

A
B

I X Y Z

I +1 +1 +1 +1
X +1 +1 −1 −1
Y +1 −1 +1 −1
Z +1 −1 −1 +1

Table 5.2: The commutation relation of Pauli elements with themselves

following definition

S = {M1,M2, . . . ,M2n−k−1,M2n−k | ∀Mi,Mj : [Mi,Mj] = +1 ∧ ∀Mi : Mi ̸= −I⊗n}.
(5.14)

We can see that S must be a commutative subgroup of P⊗n and the element −I⊗n

cannot be in the set. This is because −I⊗n yields a syndrome with an eigenvalue of
−1, which doesn’t stabilize any state. We can see that I, X, Y and Z with +1 or −1
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as global phase stabilizes |0⟩, |1⟩ and the main states mentioned in Equation 3.4:

Z |0⟩ = |0⟩ , − Z |1⟩ = |1⟩ ,
X |+⟩ = |+⟩ , − X |−⟩ = |−⟩ ,
Y |i+⟩ = |i+⟩, − Y |i−⟩= |i−⟩ ,

I stabilizes |0⟩ , |1⟩ , |+⟩ , |−⟩ , |i+⟩ and |i−⟩ ,
− I stabilizes none.

(5.15)

Definition 14. Let CS ⊆ H⊗n be the coding space. The stabilizer S that is associated
with the codespace CS is given as

S(CS) = {M ∈ P⊗n |M |ψ⟩ = |ψ⟩ , ∀ |ψ⟩ ∈ CS}, (5.16)

where |ψ⟩ is an arbitrary codeword in the codespace CS.

It should be noted that Definition 14 describes that given a code CS, there might
exist some set of Mi that stabilizes the codespace. We can define the other direction
such that given a stabilizer set, that set will stabilize some codewords which will
define/create the codespace [56, sec. 2.2.2]. We can define C as a coding subspace of
H⊗n where all states in C are stabilized by all elements in the set S [56, sec. 2.2.2].

Definition 15. Let S ⊆ P⊗n be an Abelian subgroup under multiplication of P⊗n. Let
C(S) ⊆ H⊗n be the coding space associated with S such that

C(S) = {|ψ⟩ |M |ψ⟩ = |ψ⟩ , ∀M ∈ S}, (5.17)

where |ψ⟩ is a codeword in the coding subspace C(S).

A stabilizer code ensures the stabilizer set S that fixes some subspace C is the
codespace CS, which is the same codespace C(S(CS)) generates [56, sec. 2.2.2]. Through-
out this chapter, we will use the notation C to describe a stabilizer code that is stabilized
by some S ⊆ P⊗n , which is Abelian subgroup under multiplication of P⊗n. We can
discuss some properties of the stabilizer set S:

1) As mentioned above, the operator −I is not a part of S. This means that all
other Pauli operators cannot have the negative phase in S, i.e., −X,−Y,−Z /∈ S.
This ensures that S is a group.

2) Since S is an Abelian group under multiplication, for M1,M2 ∈ S, then
M1M2,M2M1 ∈ S.
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3) Since S stabilizes all codewords |ψ⟩ ∈ C, then

M1M2 |ψ⟩ =M2M1 |ψ⟩ = |ψ⟩ . (5.18)

From the stabilizer set S given by Equation 5.14, there exist a subset of S that generates
all the elements in the set [56, sec. 2.2.2].

Definition 16. Let S be a stabilizer set, as defined in Equation 5.14. There exist
a generator set G = ⟨g1, g2, . . . , gn−k−1, gn−k⟩ that generates the set S such that any
element M ∈ S can be written as the product of some elements in G.

The elements in the generator set G are independent in the sense that an element
gi ∈G cannot be expressed as the product of elements in G. It should be noted that
if the cardinality of G is n− k, then this means the cardinality of S will be 2n−k. We
can represent the elements in the generator set as a binary string where “0” denotes it
is not included and “1” denote it is included. This is because an element M ∈ S can
be written in the form of

M = gc11 × gc22 × · · · × g
cn−k−1

n−k−1 × g
cn−k

n−k , for gi ∈G and ci ∈ {0, 1}. (5.19)

The codewords in the codespace can be generated by a basis of k independent
codewords, giving us a total 2k codewords in the codespace [56, sec. 2.1.3]. Next, we
can define the centralizer of a stabilizer set S.

Definition 17. The set of elements in P⊗n that commute with all of S is the centralizer
Z(S) of S [12].

We are ready to give the characteristics of a stabilizer code.

Definition 18. Let S be a stabilizer set, as defined in Equation 5.14 and CS ⊆ H⊗n be
the codespace stabilized by S. A stabilizer code encodes k logical qubits into n physical
qubits of information will have a dimension of 2k with the cardinality of S as 2n−k

elements and the cardinality of G is n− k [22, thm. 5].

Definition 19. The weight of some element A ∈ P⊗n, denoted as wt(A), is the
number of tensor elements that is not the identity I [23, sec. 2.3].

Definition 20. The distance d of a stabilizer code is the minimum weight of any
operator in [23, sec. 3.2, 32]

N(S)\S = {A|A ∈ N(S) ∧ A /∈ S}, (5.20)
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where N(S) is the normalizer of S.

We will use the notation of [[n, k, d]] to denote a quantum code that encodes k
logical qubits into n physical qubits with d being the minimum distance of the code.
Such code can correct up to t = ⌊d−1

2
⌋ errors [23, sec. 3.2].

5.2.1 Syndrome Extraction Procedure

Let E ⊆ P⊗n be a set E = {E1, E2, . . . , Ef−1, Ef} denoting all correctable errors. An
error E ∈ E will anticommute with any element M ∈ S, i.e.,

ME |ψ⟩ = −EM |ψ⟩ = −E |ψ⟩ . (5.21)

In this case, the error syndrome of a stabilizer code will be n− k binary row vector in
the following form2

[
M1 ◦ E M2 ◦ E · · · Mn−k−1 ◦ E Mn−k ◦ E

]
, (5.22)

where

Mi ◦ E =




0, if [Mi, E]

1, if {Mi, E}.

5.3 Criteria for Quantum Error Correction

The codespace C can be described by a basis Cbasis = {|ψ1⟩ , |ψ2⟩ , . . . , |ψk−1⟩ , |ψk⟩}. A
quantum code can correct two errors Ei and Ej if we can distinguish the two errors
that are acting on two basis |ψx⟩ and |ψy⟩ [23, sec. 3.2]. This condition is satisfied if
and only if Ei |ψx⟩ is orthogonal to Ej |ψy⟩ [23, sec. 3.2], i.e.,

⟨ψx|E†
iEj |ψy⟩ = 0, ∀i ̸= j. (5.23)

Such distinguishable errors are correctable.3 When performing a measurement on the
error, we cannot know anything about the state of the code as this will destroy the
superposition of the basis states. we can use the following measurement instead [23,
sec. 3.2]:

⟨ψx|E†
iEj |ψx⟩ = 0, ∀Ei, Ej ∈ E . (5.24)

2We can map the eigenvalues −1 to 0 and +1 to 1 to resort to binary setting.
3In the case where only a single error occurs, we can simply let E†

i or Ej to be I.
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Furthermore, Equation 5.24 should also hold true for all codewords in the basis,

⟨ψx|E†
iEj |ψx⟩ = ⟨ψy|E†

iEj |ψy⟩ , ∀Ei, Ej ∈ E ∧ |ψx⟩ , |ψy⟩ ∈ Cbasis. (5.25)

We are able to combine Equations (5.24) and (5.25) to obtain [23, sec. 3.2]

⟨ψx|E†
iEj |ψy⟩ = Cijδxy, (5.26)

where Cij ∈ C and δxy ∈ {0, 1} is the Kronecker delta function defined as:

δxy =




1, if x = y,

0, if x ̸= y.

It is important to mention that Cij is independent of |ψx⟩ and |ψy⟩ [23, sec. 3.2]. All
in all, a stabilizer code will correct a set of errors E = {E1, E2, . . . , Ef−1, Ef} if [22,
thm. 5, 12]

E†
iEj ∈ S ∪ (G−Z(S)), ∀EiEj. (5.27)

5.3.1 Examples of Stabilizer Codes

The first example of a stabilizer code is the [[9, 1, 3]] Shor’s Code. The subgroup S will
have n− k = 9− 1 = 8 elements,

S = {M1,M2, . . . ,M8}. (5.28)

They are given in Equation 5.29.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

M1 = Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

M2 = I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

M3 = I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I

M4 = I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I

M5 = I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I

M6 = I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z

M7 = X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ I ⊗ I ⊗ I

M8 = I ⊗ I ⊗ I ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X ⊗ X

. (5.29)
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The syndrome S will be

S =
[
M1 M2 M3 M4 M5 M6 M7 M8

]
. (5.30)

In the case where no error occurs, the syndrome vector will be

S =
[
+1 +1 +1 +1 +1 +1 +1 +1

]
. (5.31)

Assume there was a phase flip occurred on Q2, then the syndrome vector will be:

S =
[
−1 −1 +1 +1 +1 +1 +1 +1

]
. (5.32)
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Chapter 6

Entanglement-Assisted QECC

Stabilizer codes allows us to import certain classical linear codes and turn them
into quantum codes. The limitation here is that the classical code must be self-
dual. Entanglement-assisted quantum error correction codes are the generalization
of stabilizer codes, established by Todd Brun, Igor Devetak and Min-hsiu Hsieh [12].
The self-duality condition is not required and binary as well as quaternary linear
codes can be constructed. Furthermore, the set of generators can contain anti-
commuting elements. This is achieved by the usage of bipartite entanglement. Bipartite
entanglement is the idea of having an entangled qubit (ebit) shared between the sender
Alice and the receiver Bob. The ebit is given as

∣∣Φ+
〉
=
|00⟩AB + |11⟩AB

√
2

. (6.1)

The red portion of the ebit is controlled by Alice whereas the blue portion is controlled
by Bob. The two operators that stabilizes |Φ+⟩ are:

XA1 ⊗ XB1

∣∣Φ+
〉
=

∣∣Φ+
〉

ZA1 ⊗ ZB1

∣∣Φ+
〉
=

∣∣Φ+
〉, (6.2)

where XA1 and ZA1 are X1 and Z1 applied on Alice’s portion and XB1 and ZB1 are X1

and Z1 applied on Bob’s portion. Furthermore, the two operators commute with each
other:

[XA1 ⊗ XB1 ,ZA1 ⊗ ZB1 ] = 0. (6.3)



CHAPTER 6: EAQECC 65

Moreover, having Alice and Bob individually apply operators on their portion of the
ebit gives:

XA1 ⊗ I
∣∣Φ+

〉
=

∣∣Ψ+
〉

ZA1 ⊗ I
∣∣Φ+

〉
=

∣∣Φ−〉

I⊗ XB1

∣∣Φ+
〉
=

∣∣Ψ+
〉

I⊗ ZB1

∣∣Φ+
〉
=

∣∣Φ−〉
, (6.4)

where,

∣∣Ψ+
〉
=
|01⟩AB + |10⟩AB

√
2

and
∣∣Φ−〉 =

|00⟩AB − |11⟩AB

√
2

.

Our interest is that the four operators anticommute as follows:

{XA1 ⊗ I,ZA1 ⊗ I} = 0

{I⊗ XB2 , I⊗ ZB2} = 0
(6.5)

We can use the notation • • to denote the pair operators that stabilizes the
ebit shared between both parties. The left cell denotes Alice’s portion and the right
denotes Bob’s. We can represent the operations acted on Equation 6.2 as Z1 Z1 and

X1 X1 . The relation above can help us to bypass the commutativity constraint by
allowing our set of generators to contain anticommutative elements and use ebits to
resolve the anticommutativity. An entanglement-assisted code [[n, k, d; c]] of distance d
encodes k logical qubits into n physical qubits with the help of c ebits and a ancilla
qubits. Let S be arbitrary subgroup of P⊗n with 22a+c distinct elements up to overall
phase, then there exists a generator set

G = ⟨Z a+1, . . . , Z a+c, X a+1, . . . , X a+c, Z 1, . . . , Z a︸ ︷︷ ︸
2a+ c elements

⟩, (6.6)

to generate S with the following commutation characteristics:

[Z i, Z j] = 0, ∀i, j
[X i, X j] = 0, ∀i, j
[X i, Z j] = 0, ∀i ̸= j

{X i, Z j} = 0, ∀i

. (6.7)
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The elements Z i and X i are the equivalent form of 2a+ c elements in S. They are
the Z gate and X gate being applied on the i qubit. The generator set G determines
the number of a ancilla qubits and c ebits qubits required for the code which is
obtained from the symplectic Gram-Schmidt orthogonalization algorithm [57, pg. 23].
This algorithm performs row operations on the generators in the code to output an
equivalent code. The algorithm is optimized in the sense that it will find the minimal
number of ebits required for the code. The nonabelian group S can be split into two
subgroups which are the isotropic subgroup GI and entanglement subgroup GE:

GI = ⟨Z 1, . . . , Z a⟩
GE = ⟨Z a+1, . . . , Z a+c, X a+1, . . . , X a+c⟩

(6.8)

The isotropic group is the commuting subgroup and the entanglement group is the one
with anti-commuting pairs. Let E ⊆ P⊗n be a set E = {E1, E2, . . . , Ef−1, Ef} denoting
all correctable errors, then an entanglement-assisted quantum error correction code
can correct

E†
iEj ∈GI or E†

iEj ∈ P⊗n −Z(⟨GI ,GS⟩) ∀Ei, Ej ∈ E . (6.9)

The practical approach to using this quantum communication system is by starting
with:

1. Having Alice and Bob share c ebits prior to the beginning of the communication.

2. Alice would also have a ancilla qubits.

3. The unencoded state is a simultaneous +1-eigenstate of the following operators:

{
Za+1 Z1 , . . . , Za+c Zc , Xa+1 X1 , . . . , Xa+c Xc , Z1, . . . , Za

}
. (6.10)

The operators Z1, . . . , Za are used for the ancilla qubits on Alice’s side. We have
a +1-eigenstate because applying the c-pair operators on c ebits in the state
|Φ+⟩⊗c leaves all c ebits unchanged, as discussed in Equation 6.2. We stated
that the unencoded state is a simultaneous +1-eigenvalue, by that, we mean the
operators can be applied on the quantum state in any order and will still give
+1-eigenvalue.

4. Alice encodes her k information qubits with a ancilla qubits and her half of the



CHAPTER 6: EAQECC 67

c ebits. This will transform the operators from Equation 6.10 to Equation 6.11:

{
Z a+1 Z1 , . . . , Z a+c Zc , X a+1 X1 , . . . , X a+c Xc , Z 1, . . . , Z a

}
. (6.11)

The operators in Equation 6.11 are mathematically equivalent operators to the
ones in Equation 6.10. They are obtained from the symplectic Gram-Schmidt
orthogonalization algorithm. The algorithm minimizes the number of ebits
required which in turn yield the optimal number of ebits.

5. The encoding step has been completed now. Alice will send her n qubits which
consists of k = n− a− c logical qubits, a ancilla qubits and her portion of the c
ebits. It is important to note that the erroneous channel is assumed to affect
only the n qubits Alice has sent. Bob’s portion of the c ebits is assumed to be
perfect and immune to errors.

6. Bob receives the n qubits Alice has sent. Along with his c ebits, Bob has n+ c

qubits and will measure all of them to detect the errors that may occur.

7. Bob then performs the necessary correction to obtain the original message sent.

Entanglement-assisted quantum error correction tends to focus on the parity check
matrix of the code rather than the generator matrix. This is because there is a clever
isomorphism between Pauli Gates and binary strings. The rest of this section is
influenced by [57, sec 2.4]. A string in the form of Zn

2 is a binary string of length n.
Consider [A] as the set of equivalence classes of some operator A of the same phase:

[A] = {αA |α ∈ C ∧ |α|= 1}. (6.12)

Let [P⊗1] be the equivalence set of all Pauli operators in P⊗1 defined as

[P⊗1] = {[A] |A ∈ P⊗1}. (6.13)

We can now define N as the map

N : Z2
2 7→ P⊗1 (6.14)
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with the following mapping:
Z2

2 P⊗1

00 7→ I

01 7→ X

10 7→ Z

11 7→ Y

. (6.15)

To see how this is useful, let us use the following notation to denote a binary string
in Z2

2: for u, v ∈ Z2
2 = {[0|0], [0|1], [1|0], [1|1]}, let u = [zu|xu] and v = [zv|xv] where

zu, xu, zv, xv ∈ {0, 1}. For example, if u = [0|1] and v = [1|1], then N(u) = X and N(v)

= Y, respectively. Moreover, the xor of vectors in Z2
2 is equivalent to the multiplication

of Pauli operators up to a global phase:

N [(u⊕ v)] = [N(u)][N(v)]. (6.16)

Let ⊙ denote the symplectic product between two vectors u, v ∈ Z2
2 as

u⊙ v = uzvx − vzux, (6.17)

which yields the following output: The symplectic product yields the commutation

⊙ 00 01 10 11
00 0 0 0 0
01 0 0 1 1
10 0 1 0 1
11 0 1 1 0

Table 6.1: The symplectic product of two binary vectors

relations of gates in P⊗1:

N(u)N(v) = (−1)u⊙vN(v)N(u). (6.18)

We discussed the map between Pauli gates in P⊗1 and binary strings of length 2. We
can generalize this map isomorphism to describe Pauli gates in P⊗n and binary strings
of length 2n. Let

A = A1 ⊗ A2 ⊗ · · · ⊗ An (6.19)
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be an arbitrary gate in P⊗n. Consider [A] as the set of equivalence classes of some
operator A of the same phase:

[A] = {αA |α ∈ C ∧ |α|= 1}. (6.20)

Let [P⊗n] be the equivalence set of all Pauli operators in P⊗n defined as

[P⊗n] = {[A] |A ∈ P⊗n}. (6.21)

In this case, [P⊗n] is an equivalence class which forms a commutative group under the
⋆ operation because for any A,B ∈ [P⊗n],

[A] ⋆ [B] = [AB] = [A1] ⋆ [B1]⊗ [A2] ⋆ [B2]⊗ · · · ⊗ [An] ⋆ [Bn]. (6.22)

The binary string of length 2n is a 2n-dimensional vector space of the form

Z2n
2 = {(z,x) | z,x ∈ Zn

2}, (6.23)

forms a commutative group under the xor operator⊕. Let u = [zu|xu] and v = [zv|xv]

be two vectors in Z2n
n and each of zu, xu, zv, xv as a binary vector of length n of the

form (b1, b2, . . . , bn):

zu = (zu1, zu2, . . . , zun)

xu = (xu1, xu2, . . . , xun)

zv = (zv1, zv2, . . . , zvn)

xv = (xv1, xv2, . . . , xvn)

(6.24)

The symplectic product of u⊙ v is given as

u⊙ v =
n∑

i=1

uzivxi − vziuxi =
n∑

i=1

ui ⊙ vi, (6.25)

where ui = [uzi|uxi] and vi = [vzi|vxi]. Let the map N as

N : Z2n
2 7→ P⊗n (6.26)
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be the isomorphism from binary vectors to Pauli gates.

N (u) = N(u1)⊗N(u2)⊗ · · · ⊗N(un), (6.27)

where u = [zu1 , zu2 , . . . , zun |xu1 , xu2 , . . . , xun ] ∈ Z2n
n . Furthermore, define

Z(z) = Zz1 ⊗ Zz2 ⊗ · · · ⊗ Zzn

X(x) = Xx1 ⊗ Xx2 ⊗ · · · ⊗ Xxn
(6.28)

where zi and xi are the values of a vector

v = [z1, z2, . . . , zn |x1, x2, . . . , xn] ∈ Z2n
n . (6.29)

With that, N (u) and Z(z)X(x) are a part of the same equivalence class

[N (u)] = [Z(z)X(x)]. (6.30)

Hence,

[N (u⊕ v)] = [N (u)][N (v)], ∀u,v ∈ Z2n
2 . (6.31)

Furthermore, for any operator N (u) and N (v), the symplectic product preserves the
following commutation:

N (u)N (v) = (−1)u⊙vN (v)N (u). (6.32)

We will later see how we can import a classical linear quaternary codes as an
entanglement-assisted quantum code.

6.1 The Encoding/Decoding Algorithm

The algorithm in [58] determines the encoding and decoding circuits for the set of
Pauli generators. The perk of this algorithm is that we do not need to know the
number of ebits required and it also finds the optimal (least) number of ebits needed.
Suppose there are r generators to generate our nonabelian subgroup S. We need to
convert these generators to the binary form using our Pauli to binary mapping. Our
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parity check matrix H will be of the form

H =




Z1,1 Z1,2 . . . Z1,n X1,1 X1,2 . . . X1,n

Z2,1 Z2,2 . . . Z2,n X2,1 X2,2 . . . X1,n

...
... . . . ...

...
... . . . ...

Zb,1 Zb,2 . . . Zb,n Xb,1 Xb,2 . . . Xb,n



, (6.33)

where n is the length of the code, b is the dimension of the code which is 2k − n+ c,
the entries Zi,j ∈ {0, 1} and Xi,j ∈ {0, 1} represent if Z or X operator should be placed,
respectively. Let us use the same example used in [12, 57]. Let S be a nonabelian
subgroup of P⊗4 with the following generators:

Q1 Q2 Q3 Q4

M1 = Z ⊗ X ⊗ Z ⊗ I

M2 = Z ⊗ Z ⊗ I ⊗ Z

M3 = X ⊗ Y ⊗ X ⊗ I

M4 = X ⊗ X ⊗ I ⊗ X

. (6.34)

We need to find an equivalent set of generators that satisfy the commutation relation
in Equation 6.7. The modified set is

Q1 Q2 Q3 Q4

M1 = Z ⊗ X ⊗ Z ⊗ I

M2 = Z ⊗ Z ⊗ I ⊗ Z

M ′
3 = Y ⊗ X ⊗ X ⊗ Z

M ′
4 = Z ⊗ Y ⊗ Y ⊗ X

. (6.35)

The generators Mi are obtained by:
- Leaving M1 unchanged
- Leaving M2 unchanged
- M3 changed to M ′

3 =M2 ×M3

- M4 changed to M ′
4 =M1 ×M2 ×M ′

3 ×M4
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We now have the following commutation relations:

{M1,M2} = 0

[M1,M
′
3 ] = 0

[M1,M
′
4 ] = 0

[M2,M
′
3 ] = 0

[M2,M
′
4 ] = 0

[M ′
3 ,M

′
4 ] = 0

. (6.36)

After applying the encoding algorithm, we obtain a unitarily equivalent set of generators
in Equation 6.35.

Q1 Q2 Q3 Q4

M ′ ′
1 = X ⊗ I ⊗ I ⊗ I

M ′ ′
2 = Z ⊗ I ⊗ I ⊗ I

M ′ ′
3 = I ⊗ Z ⊗ I ⊗ I

M ′ ′
4 = I ⊗ I ⊗ Z ⊗ I

. (6.37)

We can expand the number of qubits and add one ebit (c1) to resolve the anticommu-
tativity between M ′ ′

1 and M ′ ′
2 :

Q1 Q2 Q3 Q4 c1

M ′ ′
1 = X ⊗ I ⊗ I ⊗ I ⊗ X

M ′ ′
2 = Z ⊗ I ⊗ I ⊗ I ⊗ Z

M ′ ′
3 = I ⊗ Z ⊗ I ⊗ I ⊗ I

M ′ ′
4 = I ⊗ I ⊗ Z ⊗ I ⊗ I

. (6.38)

The generators in Equation 6.38 stabilize the encoded system |ψ⟩:

|ψ⟩ =
∣∣Φ+

〉
⊗ |0⟩ ⊗ |0⟩ ⊗ |ψ⟩ , (6.39)

where |ψ⟩ = α |0⟩ + β |1⟩ is the qubit to be transmitted. The encoding algorithm
will apply row and column operations on the parity check matrix H in the form
of Equation 6.33 to obtain the reduction. This reduction yields an equivalent code.
The column operation uses P, H, CNOT and SWAP gates with the following effect
on the binary matrix H (using Hz as the left part of the matrix and Hx as the right
part):

- P on qubit i: adds column i in Hx to column i in Hz.
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- H on qubit i: swap column i in Hz with column i in Hx.
- CNOT from qubit i to j: add column j to column i in Hz and add column i to

column j in Hx.
- SWAP on qubit i and j: swap column i with column j in Hz as well as swap

column i with column j in Hx.
As for the decoding algorithm, the exact steps of the encoding algorithm are applied in
the reverse order since applying some unitary gate U twice is mathematically equivalent
of applying the I gate.
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Chapter 7

Introduction to Quaternary Fields and
Codes

Let Fq denote the finite (Galois) field of order q where q = pk for some prime number
p and k is a positive integer. A quaternary field is in the form F22 = F4

1 of order 4

with the following elements: {0, 1, ω, ω}, where ω = ω + 1 = ω2 and ω3 = 1. For any
finite field of the form Fp2 , the complex conjugation of an element x ∈ Fp2 is defined
as x

√
q ∈ Fp2 [47, chap. 1.2]. We will use the notation x† to denote an element that is

complex conjugated. In the quaternary field, the conjugation is defined as x2 ∈ F22 .
The addition, multiplication and conjugation of elements in F4 are given in Table 7.1.

+ 0 1 ω ω

0 0 1 ω ω

1 1 0 ω ω

ω ω ω 0 1

ω ω ω 1 0

× 0 1 ω ω

0 0 0 0 0

1 0 1 ω ω

ω 0 ω ω 1

ω 0 ω 1 ω

x x†

0 0

1 1

ω ω

ω ω

Table 7.1: The addition table (left), multiplication (middle) and conjugation (right)
of elements in F4

Denote a quaternary code [n, k, d]4 with n, k and d as length, dimension and
minimum distance, respectively. For example, consider the following generator matrix
of the [6, 2, 4]4 code:

G =

[
1 0 0 1 1 1

0 1 0 1 ω ω

]
1
2

, (7.1)

this will generate 4k = 42 = 16 codewords. That is because we also take the multiple
1the notation GF (4) is frequently used.
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of each codeword which is something we didn’t do in binary codes. The first row in
the generator matrix

[
1 0 0 1 1 1

]
is a codeword and so are the following two vectors:

ω
[
1 0 0 1 1 1

]
=

[
ω 0 0 ω ω ω

]

ω
[
1 0 0 1 1 1

]
=

[
ω 0 0 ω ω ω

]. (7.2)

The 16 codewords are shown in Table 7.2.

# Linear combinations

00 None
01 1 in G
02 ω 1
03 ω 1
04 2 in G
05 ω 2
06 ω 2
07 1 + 2
08 ω 1 + 2
09 ω 1 + 2
10 1 + ω 2
11 ω 1 + ω 2
12 ω 1 + ω 2
13 1 + ω 2
14 ω 1 + ω 2
15 ω 1 + ω 2

Table 7.2: All of the 4k = 42 = 16 codewords of the [6, 2, 4]4 code

Definition 21. The Euclidean dual code of a quaternary code C is defined as [47,
chap. 1.3]

C⊥ = {x ∈ Fn
4 | ⟨x,y⟩ = 0, ∀y ∈ C}, (7.3)

where ⟨x,y⟩ = ∑n
i=1 xiyi for vectors x,y ∈ Fn

4 .

We are also interested in the Hermitian dual code of a code. A Hermitian dual
code is defined over some [n, k, d]q2 code. In our case, q = 2 so we can define it as the
following:

Definition 22. The Hermitian dual code of a quaternary code C = [n, k, d]4 is defined
as [47, chap. 1.2]

C⊥H = {x ∈ Fn
4 | ⟨x,y⟩H = 0, ∀y ∈ C}, (7.4)

where ⟨x,y⟩H =
∑n

i=1 xiy
†
i for vectors x,y ∈ Fn

4 .
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We are able to give the definitions for Euclidean linear complementary dual (LCD)
and Hermitian LCD.

Definition 23. A code C over Fq is called LCD if C ∩ C⊥ = {0} [40].

Definition 24. A code C over Fq with a generator matrix G is Euclidean LCD if
GGT is nonsingular [15].

For example, consider the following generator matrix of the [6, 3, 3]4 code:

G =



1 0 0 0 1 1

0 1 0 0 1 ω

0 0 1 1 0 1


 . (7.5)

Since det
(
GGT

)
= 1 not 0, GGT is invertible, hence nonsingular.

Definition 25. A code C over Fq2 is Hermitian LCD if and only if GG† is nonsingular
for a generator matrix G of the code C [15].

For example, consider the following generator matrix of the [7, 4, 3]4 code:

G =




1 0 0 0 0 1 1

0 1 0 0 0 1 ω

0 0 1 0 1 0 1

0 0 0 1 1 0 ω



. (7.6)

Since det
(
GG†) = 1 not 0, GG† is invertible, hence nonsingular.

In this thesis, the objective is to find Hermitian LCD codes. The Entanglement-
assisted quantum error correction code formalism opens the door to the construction
of entanglement assisted quantum codes from F4 classical codes. Let us mention
Corollary 3.6.2 from [57, pg. 37]:

Lemma 3. Given a classical [n, k, d]4 code with a parity check matrix H, we can import
it as a [[n, 2k−n+ c, d; c]] entanglement-assisted quantum code where c = rank(HH†).

The operation H† is the conjugate transpose of the matrix H. The proof of the
lemma can be found in [57, pg. 38].

Definition 26. A Hermitian LCD code [n, k, d]4 is said to be optimal if there doesn’t
exist some other Hermitian linear complementary code dual [n, k, d ′]4 where d ′ > d [28].



CHAPTER 7. INTRODUCTION TO QUATERNARY FIELDS AND CODES 77

Definition 27. An entanglement-assisted quantum code [[n, 2k − n + c, d; c]] im-
ported from a classical [n, k, d]4 is said to be optimal if there doesn’t exist some other
entanglement-assisted quantum code [[n, 2k − n+ c, d ′; c]] where d ′ > d [28].

The field F4 is used as an entanglement-assisted quantum code because there is an
isomorphism between the quaternary elements and the binary strings used to represent
Pauli gates:

x ∈ F4 Z2
2 P1

0 7→ 00 7→ I

ω 7→ 01 7→ X

ω 7→ 10 7→ Z

1 7→ 11 7→ Y

. (7.7)

The sole purpose of this thesis is to find the optimal Hermitian LCD codes.
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Chapter 8

Programming Implementation of
Thesis

In this chapter, we will share the construction method for finding optimal and non-
optimal Hermitian linear complementary dual codes, the implementation of the Java
code and the binary manipulation used to manipulate the quaternary vector. There are
multiple parts to this program: vector generator, storage of all 4k linear combination
of the codewords generated by the [n, k, d]4 code, determining whether or not GG† is
nonsingular and the actual engine that pieces everything together. Furthermore, we will
add the Bitwise operations used to achieve fast calculations for vector multiplication
and the dot product of two vectors in F4.

8.1 Construction Method for Finding Optimal Her-

mitian Linear Complementary Codes

This thesis uses a similar construction to the one found in [28]. All [n, k, d]4 codes
are equivalent in the sense that they all can be generated using a generator matrix in
standard form [28]. Recall from Chapter 2 that a generator matrix G is said to be in
standard form if

G =
[
Ik×k | Pk×(n−k)

]
k×n

, (8.1)

where I is the identity matrix and P is a k × (n− k) matrix. We are able to assume
the following characteristics for the submatrix P with that notation ri as the ith row
in P :

• The top row of G is a fixed row vector of the form
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[1 0 . . . 0︸ ︷︷ ︸
n−k−d+1

1 1 . . . 1︸ ︷︷ ︸
d−1

] . (8.2)

• The first nonzero digit from the left is 1 for all vectors in the generator matrix
(i.e., neither ω nor ω).

• ∀ri : wt(ri) ⩾ d − 1. Note that these weights don’t have to be equal to
d because the identity portion of the matrix includes a 1 making the overall
minimum weight of the generator matrix vectors d.

• We use a lexicographic ordering so that the vectors are sorted in an ascending
order when d ≥ 3:

r1 < r2 < . . . < rk, (8.3)

or the following lexicographic ordering if d ≱ 3:

r1 ≤ r2 ≤ · · · ≤ rk. (8.4)

The types of codes obtained in this approach contains a set of all inequivalent
codes [28]. This restriction will ensure that we only visit the unique possible
combinations of vectors in the generator matrix because the generator matrix
will generate the same codewords regardless of the ordering of the rows. Having
this will significantly cut down the search space.

8.1.1 Comparing our Modified Method to the Original Proce-

dure

The original construction was provided by Masaaki Harada in [28]. The approach was
to construct the submatrix P and the generator matrix G dynamically in terms of the
rows and columns. It will start with having the top row fixed. Then, for each iteration
m = 2, . . . , k − 1, the number of rows increases as well as the columns, appropriately.
The generator matrix will be constructed as follows:




r1

Im×m
...
rm


 . (8.5)

Furthermore, at each step, the constructed code will be in the form of [n+m− k,m]4

and the minimum distance of the set of codewords is at least d. Our construction is
slightly different in the sense that the length (i.e., n) of the code is constant and the
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generator matrix will dynamically add rows that satisfy the orthogonality constraint.
Also, each row that is added with its linear combinations must have a minimum weight
of least d.

Chapter 9 of this thesis discusses the parameters [28] found along with other
parameters obtained from other papers. Our contributions are found in Section 9.1.

8.2 The Programming Implementation of the Thesis

This thesis uses Java as the only programming language to implement an efficient
approach to find optimal quaternary Hermitian linear complementary dual codes.
MATLAB R2021a is used for the sake of confirming the matrices found are indeed
invertible and have full rank. Furthermore, the programming code implemented
doesn’t rely on any external packages, just Java’s standard libraries. Version 8 of
Java is used but Java 7 can also be used with minor changes to the code. The
program is designed to use a long to represent the codewords in the generator matrix
G which is of length 64-bits. Since each quaternary value requires two bits to be
represented, the maximum value for n, the length of the code, is 32. The quaternary
values are mapped using the same mapping we have seen to the 2-bit binary values:
04 7→ 002, 14 7→ 012, ω4 7→ 102 and ω4 7→ 112.

8.2.1 Vector Generator

The vector generator focuses on generating the rows of the submatrix P of G and
appending the appropriate row of the identity matrix to obtain a vector of length n.
All vectors generated here ensure that the minimum distance requirement is met. All
the vectors of the submatrix P will have weight of at least d− 1, which ensures that
all rows of the G have weight of at least d. It has the option to generate all possible
vectors without restriction or to ensure that all generated vectors have a 1 as the first
nonzero digit.

8.2.2 Storing Linear Combinations

In addition to storing the generator matrix itself, all 4k linear combinations of the rows
of the generator matrix must also be stored. The storage of these linear combination
of the vectors in the generator matrix requires its own logic. This is because, in Java,
a 1-Dimensional array uses an int as its index which is 32-bits. This is sufficient
when k ≤ 15. When k is larger than 15, we cannot store all linear combination due to
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the maximum index constraint. To overcome this, a 2-Dimensional array is used to
mimic multiple 1-Dimensional arrays stitched together. It is worth mentioning that
the amount of RAM memory needed for mid-range k values is immense. For example,
if k = 15, then 415 × 64bits ≈ 8.5GB. Furthermore, 8.8TB of memory is required
when k = 20 and 9PB1 when k = 25.

8.2.3 Determining Whether if a Matrix is Invertible

To test if a matrix is nonsingular, it suffices to find whether it is invertible or not. A
matrix is invertible if its determinant is not equal to 0. To do that, this thesis used
Bareiss algorithm [04] which is named after Erwin H. Bareiss. This algorithm is a
fraction-free method for computing the determinant of a matrix. Since our domain of
values is the quaternary digits, i.e., 0, 1, ω and ω , we are able to use it. The issue
with this algorithm is that it has the potential to encounter division by zero. In [36],
the proposed a simple solution to overcome this which is to swap the current row
which causes the issue with the row below it. In the case where swapping with all
the rows still yield division by zero, then the matrix is not invertible. Furthermore,
it is done with O(n3) operations [36]. The pseudocode of the algorithm is given
in Algorithm 1. All the elementary operators on the elements in the matrix such as
addition, multiplication and division are done in F4.

8.2.4 The Weight of a Quaternary Vector

One of the most frequent operations used in this thesis is finding the weight of a
quaternary vector. Java 8’s implementation for finding the number of 1’s in a 64-bit
long value is found in Listing 8.1 [46].2

i = i - ((i >>> 1) & 0x5555555555555555L );
i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L );
i = (i + (i >>> 4)) & 0x0F0F0F0F0F0F0F0FL;
i = i + (i >>> 8);
i = i + (i >>> 16);
i = i + (i >>> 32);
return (int)i & 0x7F;

Listing 8.1: Java 8’s implementation for finding the number of 1’s in a 64-bit long

value

19PB is 9000TB.
2The operator >>> is used instead of >> because we need to ensure that the new bit value of the

far-left digit is set to 0 after the shifting.
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It accepts long i and returns the weight of i. To find the weight of a quaternary
vector, the standard approach doesn’t work. For example, the quaternary vector[
ω ω 1 0

]
has a weight of 3. The binary representation is

[
11 10 01 00

]
which gives a

weight of 4 with the standard approach. The focus is on ω which contains two 1’s in
its binary representation. The solution is to use the mask

[
01 01 01 01

]
. First, shift

v once to the right to obtain v ′ then logical-and it with the mask to get x1. This
will accurately capture how many ω and ω present in the original vector v. Next,
logical-and v with the mask to get x2. This will capture how many 1 and ω in the
original vector v. Lastly, logical-or x1 with x2 to get x which contains the correct
number of 1’s. Apply Java’s implementation to obtain the weight of the vector v. This
is shown in Equation 8.6.

v ′ 01 11 00 10

mask 01 01 01 01 ∧
01 01 00 00 x1

v 11 10 01 00

mask 01 01 01 01 ∧
01 00 01 00 x2

wt(v) = wt(x1∨x2) = 3. (8.6)

For an arbitrary quaternary vector v, we can use the approach in Listing 8.2 which
requires 21 operations to find the weight.

i = ((i >>> 1) & 0x5555555555555555L) | (i & 0x5555555555555555L );
i = i - ((i >>> 1) & 0x5555555555555555L );
i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L );
i = (i + (i >>> 4)) & 0x0F0F0F0F0F0F0F0FL;
i = i + (i >>> 8);
i = i + (i >>> 16);
i = i + (i >>> 32);
return (int)i & 0x7F;

Listing 8.2: Our implementation for finding the number of 1’s in a quaternary value
of length 32

8.2.5 The Core Engine of the Program

The core engine that starts the search is done recursively. It will accept the current
row index to be populated in the generator matrix as well as a vector generator to
be associated with the current run. The pseudocode is found in Algorithm 2. The
basic idea is to use backtracking when trying to choose the vectors. We first start
with placing smallest valid vector which contains d − 1 1’s on the right side in the
first row of the generator matrix. We also store the linear combinations of the vector.
Next, generate the next potential vector which is the next lexicographical vector. We
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Algorithm 1: Bareiss Algorithm which takes in a quaternary n×n matrix
represented by binary values and return its determinant which can either
be 0, 1, ω or ω or 002, 012, 102 and 112 in binary, respectively

Input : Mn×n – A square matrix to find the determinant of.
Output : det (Mn×n) ∈ {0, 1, 2, 3}

1 Function bareissAlgorithm(Mn×n):
2 pivot← 1
3 for k ← 0 to n− 2 do
4 if M [k][k] = 0 then // Division-by-zero encountered
5 Avoid division-by-zero by swapping current row with another one
6 isF ixed← false
7 for r ← k + 1 to n− 1 do
8 if M [r][k] ̸= 0 then
9 swap row k with r

10 isF ixed← true
11 break
12 end
13 end
14 end
15 if isF ixed = false then // We still have division-by-zero
16 matrix is not invertible
17 return 0

18 end
19 for i← k + 1 to n− 1 do
20 for j ← k + 1 to n− 1 do

21 result← M [i][j]×M [k][k]−M [i][k]×M [k][j]

pivot
22 M [i][j]← result

23 end
24 end
25 pivot←M [k][k]

26 end
27 return M [n− 1][n− 1] ∈ {1, 2, 3}
28 End Function
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check if it is orthogonal to all the linear combinations found. In the case where it
is, then we add it to the generator matrix in the second row along with the new
linear combinations. We need to populate the third row in the matrix. It will be the
next vector lexicography. In the case where it doesn’t satisfy the minimum weight
requirement or it is not orthogonal with at least one of the combinations, it will be
skipped and we check the next vector. Assume we checked all possible vectors until we
reached the vector

[
1 ω ω . . . ω ω

]
3. Since there are no more other vectors to check,

we realize that we cannot have three vectors that satisfy the code requirement. We
then backtrack to the second row and change it by choosing the next lexicographical
vector.

8.2.6 Verifying Results with MATLAB

MATLAB supports Galois fields of the form 2q where 1 ≤ q ≤ 16. In our case,
q = 2. It also has a method ctranspose(A) (or equivalently A’) which computes the
conjugate transpose of the matrix A. Unfortunately, these methods work for matrices
that are not Galois field matrices. In the case where A is a Galois field matrix, then
applying ctranspose(A) will result in A unmodified [42]. To overcome this, we need to
manually take the complex conjugation of each element in the matrix then transpose
the matrix. An example of finding the complex conjugate transpose of the generator
matrix is found in Listing 8.3.

% An example of how to check the conjugate transpose of [12, 6, 5]
% generator matrix code.
q = 2;
A = gf([

1 0 0 0 0 0 0 0 1 1 1 1;
0 1 0 0 0 0 0 1 0 1 1 2;
0 0 1 0 0 0 0 1 1 0 2 1;
0 0 0 1 0 0 0 1 1 2 1 0;
0 0 0 0 1 0 0 1 2 1 0 1;
0 0 0 0 0 1 1 0 0 1 1 3

], q);
APrime = transpose(A.^2); % The conjugate transpose of A.
det (A * APrime) % Outputs 1
rank(A * APrime) % Outputs 6

Listing 8.3: A simple MATLAB script for testing the conjugate transpose of the
generator matrix A

3This is the row of the submatrix of G, i.e., without the identity portion
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Algorithm 2: The main engine of the program that starts the search to
conclude whether or not a [n, k, d]4 exists

Data : n, k, d, Gk×n

Input : r – The current row of G being filled and it is
zero-based, 0 ≤ r ≤ k.

vectorGenerator – The vector generator that generates po-
tential codewords to insert in G.

Output : true if [n, k, d]4 code exists, false otherwise

1 Function isCodeValid(r, vectorGenerator):
2 if r ≥ k then // Base case

3 if det (G×G†) ̸= 0 then // Valid generator matrix

4 return true
5 else
6 G[r − 1]← 0

7 return false

8 end

9 end
10 while true do
11 vector ← vectorGenerator.nextV ector()

12 // Check if vector generator cannot generate new vectors

13 if ! vectorGenerator.isV alid() then
14 return false
15 end
16 // Check if vector is orthogonal to 4r codewords found

17 if isOrthogonal(vector) then
18 G[r]← vector

19 // Create a new instance of the vector generator and

start at the value of vector + 1

20 x← new vectorGenerator(vector + 1)

21 if isCodeValid (r + 1, x) then // Recursive call

22 return true
23 end

24 end

25 end

26 End Function
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Chapter 9

Previous work and new Results

Recently, there has been an increase in focus on Hermitian linear complementary
dual codes because they can be converted to an entanglement-assisted quantum code.
Hence, we will review relevant literature regarding optimal Hermitian LCD codes:

Year Paper Description
February 2004 [10] Determined the upper and lower bounds of optimal

quaternary codes but not Hermitian LCD codes for
n ≤ 12

October 2006 [13] The establishment of the entanglement-assisted
quantum error correction formalism

March 2009 [09] Determined all optimal quaternary codes but not
Hermitian LCD codes for n ≤ 13 except one param-
eter

January 2011 [34] Determined suboptimal and optimal quaternary Her-
mitian LCD codes for n ≤ 15. About 50% of the
parameters are optimal

February 2013 [35] Contributed a few more suboptimal and optimal qua-
ternary Hermitian LCD codes parameters compared
to [34] for n ≤ 15. The parameters are: [9, 4, 5]4,
[9, 5, 4]4, [10, 4, 6]4, [11, 5, 6]4, [11, 6, 5]4, [12, 2, 9]4,
[12, 8, 4]4, [13, 2, 10]4 and [15, 13, 2]4.

August 2013 [05] Similar to [09] but now the length is extended to
n ≤ 15

March 2014 [20] Focused on optimal quaternary Hermitian LCD
codes with k = 4 and large n values

June 2015 [38] A significant improvement for optimal quaternary
Hermitian LCD codes and almost all optimal pa-
rameters for n ≤ 15 are found. Also, the range was
extended up to n ≤ 20.
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April 2018 [08] Proved some quaternary codes (not Hermitian LCD)
do not exist as well as showed that a [12, 6, 6]4 qua-
ternary code exists

June 2018 [33] Contributed a few more suboptimal and optimal
quaternary Hermitian LCD codes parameters com-
pared to [38] for n ≤ 15.

December 2019 [28] Showed six quaternary Hermitian LCD codes param-
eters exist: [14, 6, 7]4, [15, 7, 7]4, [17, 6, 9]4, [17, 7, 8]4,
[19, 7, 9]4 and [20, 7, 10]4. Also, it was mentioned
that a quaternary Hermitian LCD code [12, 6, 6]4
doesn’t exist.

October 2020 [39] A significant improvement for extending optimal
quaternary Hermitian LCD codes to n ≤ 25 with
the following optimal codes: [18, 7, 9]4, [19, 7, 9]4 and
[20, 7, 10]4

January 2021 [27] Found these suboptimal quaternary Hermitian
LCD codes parameters: [21, 8, 9]4, [21, 10, 8]4 and
[21, 11, 7]4 as well as the following optimal parame-
ter: [22, 8, 10]4. The paper also found other subop-
timal parameters for n ≥ 26.

June 2021 [02] Found the following optimal quaternary Hermitian
LCD codes parameters: [19, 9, 8]4, [20, 7, 10]4 and
[23, 7, 12]4

All the above papers either www.codetables.de and/or Magma to obtain their
results. Code tables is a collection of largest known distance for various types of
codes [24]. Magma is a well-trusted package designed for coding theory and other
mathematical branches that use finite fields [11]. It contains a colossal database of
codes and parameters as well as offers clever support for building codes from already
existing ones found. In this thesis, we will focus on the optimal parameters found
from [02, 27, 28, 33, 34, 38, 39]. We ran the optimal parameters found for 2 ≤ k ≤ 14

and 2 ≤ n ≤ 14 using our implementation and matched almost all of the parameters
found. There seems to be some typos and inaccuracies we will also mention as well as
the accurate optimal parameters found. The parameters:

[12, 7, 5]4 from [38] should be [12, 7, 4]4 because of [33] ,
[13, 11, 3]4 from [39] should be [13, 11, 2]4 because of [33, 38] ,
[14, 10, 4]4 from [33, 38, 39] should be [14, 10, 3]4 we will explain next ,
[14, 11, 4]4 from [39] should be [14, 11, 3]4 because of [34, 38] .

The parameter [12, 7, 5]4 should have 4 as its largest distance because [33] stated

www.codetables.de
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that the maximum distance is 4. The parameter [13, 11, 3]4 has a large distance of
2 and both [33, 38] concluded this. Moreover, [14, 11, 4]4 should have 3 for largest
distance because [34, 38] established this fact. Our program also matched the modified
largest distance for these three parameters. The optimal distance of [14, 10, 4]4 was
first mentioned in [38]. It didn’t include a generator matrix nor the other papers it
cited. Paper [33] also has the same parameter without a generator matrix. There
exists a [14, 10, 4]4 quaternary code which is given in Equation 9.1 with its weight
enumerator in Equation 9.2.

G[14, 10, 4]4
=




1 0 0 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 0 0 0 0 0 0 1 ω ω

0 0 1 0 0 0 0 0 0 0 0 1 ω ω

0 0 0 1 0 0 0 0 0 0 1 0 1 1

0 0 0 0 1 0 0 0 0 0 1 0 ω ω

0 0 0 0 0 1 0 0 0 0 1 0 ω ω

0 0 0 0 0 0 1 0 0 0 1 1 0 1

0 0 0 0 0 0 0 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 1 0 1 1 ω ω

0 0 0 0 0 0 0 0 0 1 1 1 ω ω




(9.1)

wt(x)[14, 10, 4]4 = 1 + 483x4 + 1,680x5 + 8,526x6 + 29,568x7 + 77,511x8 + 151,200x9

+ 235,620x10 + 247,296x11 + 191,541x12 + 86,352x13 + 18,798x14

(9.2)

However, G[14,10,4]4 is not a Hermitian LCD because det
(
G[14,10,4]4G

†
[14,10,4]4

)
= 0. Our

program brute-forced through all the possible combinations based on the construction
we mentioned in the previous chapter and found 7995 generator matrices, all of which
had determinant of 0.

9.1 New Suboptimal and Optimal Parameters

Our program was able to conclude there were nine suboptimal parameters found.
Furthermore, we brute-forced through the possibility of obtaining [17, 11, 6]4 and
[17, 13, 4]4 but concluded the known largest distances (which are 5 and 3, respectively)
are the optimal distances. They are found in Table 9.2. We also included the generator
matrices and weight enumerators of the codes mentioned.
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n
k 8 9 10 11 12 13 14

17 5 3

22
9

10

8

9

7

8

23
11

12

9

10

7

8

24
10

11

9

10

7

8

25
9

10

8

9

Table 9.2: Suboptimal and optimal parameters we have found. The notation
x

y
is the

lower bound (x) and upper bound y (both inclusive) of the largest distance of the code

G[22, 9, 9]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 1 ω 1 ω 0 1 ω 0 1 ω

0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 ω 1 ω ω

0 0 0 0 1 0 0 0 0 0 0 1 0 ω 1 0 ω ω ω ω 1 1

0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 ω ω ω 1 0 ω

0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 ω ω 1 ω

0 0 0 0 0 0 0 1 0 0 1 0 1 0 ω 1 ω ω ω 1 1 0

0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 ω 0 ω ω 1




(9.3)

wt(x)[22, 9, 9]4 = 1 + 414x9 + 954x10 + 2,334x11 + 5,781x12 + 12,483x13

+ 22,920x14 + 35,016x15 + 45,801x16 + 48,888x17

+ 41,622x18 + 28,194x19 + 13,161x20 + 3,999x21 + 576x22

(9.4)
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G[22, 12, 7]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 ω ω ω

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 ω

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 ω 1 0 ω ω 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 ω ω ω

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 ω 1 ω ω

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 ω ω 1 ω ω ω ω

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 ω 0 0 ω ω

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 ω ω ω

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 ω 0 1 ω

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 ω 1 ω 0 ω 0 1




(9.5)

(9.6)

wt(x)[22, 12, 7]4 = 1 + 708x7 + 2,451x8 + 9,780x9 + 36,516x10 + 118,212x11

+ 325,431x12 + 751,740x13 + 1,459,158x14 + 2,340,300x15

+ 3,071,796x16 + 3,240,684x17 + 2,695,512x18

+ 1,704,300x19 + 769,377x20 + 220,836x21 + 30,414x22

G[23, 8, 11]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 ω ω ω ω ω

0 0 1 0 0 0 0 0 0 0 0 1 ω 1 ω 1 ω ω 0 1 ω 0 ω

0 0 0 1 0 0 0 0 0 0 0 1 ω 1 ω ω 1 ω ω ω 0 1 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 ω ω ω ω 1 ω

0 0 0 0 0 1 0 0 0 1 ω 0 0 1 ω ω 1 ω 1 ω 0 ω 0

0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 ω ω 1 ω 0 ω ω

0 0 0 0 0 0 0 1 1 0 ω 1 ω ω 1 ω 0 ω 1 ω 1 ω 0




(9.7)

(9.8)
wt(x)[23, 8, 11]4 = 1 + 486x11 + 741x12 + 1,560x13 + 3,423x14

+ 6,375x15 + 9,813x16 + 12,300x17 + 12,366x18

+ 9,480x19 + 5,925x20 + 2,388x21 + 627x22 + 51x23
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G[23, 10, 9]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 0 1 ω 1 ω 0 1 ω 0 1 ω

0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 ω 1 ω ω

0 0 0 0 1 0 0 0 0 0 0 0 1 0 ω 1 0 ω ω ω ω 1 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 ω ω ω 1 0 ω

0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 ω ω 1 ω

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 ω 1 ω ω ω 1 1 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 ω 0 ω ω 1

0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 ω 1 1 ω 1 1 0




(9.9)

wt(x)[23, 10, 9]4 = 1 + 540x9 + 1,398x10 + 4,032x11 + 11,040x12 + 27,237x13

+ 57,126x14 + 102,417x15 + 155,403x16 + 193,542x17 + 197,562x18

+ 156,714x19 + 92,772x20 + 38,169x21 + 9,498x22 + 1,125x23

(9.10)

G[23, 13, 7]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 ω ω ω

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 ω

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 ω 1 0 ω ω 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 ω ω ω

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 ω 1 ω ω

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 ω ω 1 ω ω ω ω

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 ω 0 0 ω ω

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 ω ω ω

0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 ω 0 1 ω

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 ω 1 ω 0 ω 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 ω ω 1 0 0 0 ω




(9.11)

wt(x)[23, 13, 7]4 = 1 + 891x7 + 3,606x8 + 15,609x9 + 64,101x10 + 225,780x11

+ 683,346x12 + 1,737,903x13 + 3,727,791x14 + 6,722,268x15

+ 10,072,965x16 + 12,424,119x17 + 12,411,699x18 + 9,816,240x19

+ 5,900,466x20 + 2,527,809x21 + 686,361x22 + 87,909x23

(9.12)
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G[24, 10, 10]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 ω ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 0 1 ω 1 ω 0 1 ω 1 ω ω 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 ω 1 ω ω ω

0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 ω ω 0 1 ω 1 ω

0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 ω ω 1 ω ω

0 0 0 0 0 0 1 0 0 0 0 1 0 ω 0 ω ω ω 1 0 0 ω ω ω

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 ω ω ω 1 ω 0 ω

0 0 0 0 0 0 0 0 1 0 1 0 1 1 ω ω ω ω 1 0 0 0 ω 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 ω 1 0 1 0 ω ω 1 0




(9.13)

wt(x)[24, 10, 10]4 = 1 + 798x10 + 1,704x11 + 5,280x12 + 14,445x13 + 34,560x14

+ 69,357x15 + 118,953x16 + 166,746x17 + 194,886x18 + 184,170x19

+ 136,896x20 + 78,681x21 + 32,364x22 + 8,673x23 + 1,062x24

(9.14)

G[24, 11, 9]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 ω 1 ω 0 1 ω 0 1 ω

0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 ω 1 ω ω

0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 ω 1 0 ω ω ω ω 1 1

0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 ω ω ω 1 0 ω

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 1 0 ω ω 1 ω

0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 ω 1 ω ω ω 1 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 ω 0 ω ω 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 ω ω 0 ω 1 ω 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 ω ω 0 ω ω ω




(9.15)

(9.16)

wt(x)[24, 11, 9]4 = 1 + 708x9 + 2,085x10 + 6,795x11 + 20,880x12

+ 58,257x13 + 139,062x14 + 278,934x15 + 471,624x16

+ 669,798x17 + 778,473x18 + 735,975x19 + 549,438x20

+ 313,653x21 + 130,092x22 + 34,056x23 + 4,473x24
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G[24, 14, 7]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 ω ω ω

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 ω

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 ω 1 0 ω ω 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 ω ω ω

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 ω 1 ω ω

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 ω ω 1 ω ω ω ω

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 ω 0 0 ω ω

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 ω ω ω

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 ω 0 1 ω

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 ω 1 ω 0 ω 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 ω ω 1 0 0 0 ω

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 ω 0 ω 0 0 ω 1 ω




(9.17)

wt(x)[24, 14, 7]4 = 1 + 1,221x7 + 5,235x8 + 24,924x9 + 110,649x10

+ 419,610x11 + 1,366,875x12 + 3,792,384x13 + 8,939,793x14

+ 17,903,688x15 + 30,219,498x16 + 42,626,604x17

+ 49,701,315x18 + 47,088,942x19 + 35,350,713x20

+ 20,199,864x21 + 8,265,459x22 + 2,152,299x23 + 266,382x24

(9.18)

G[25, 12, 9]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 ω 1 ω 0 1 ω 0 1 ω

0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 ω 1 ω ω

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 ω 1 0 ω ω ω ω 1 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 ω ω ω 1 0 ω

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 0 ω ω 1 ω

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 ω 1 ω ω ω 1 1 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 ω 0 ω ω 1

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 ω ω 0 ω 1 ω 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 ω ω 0 ω ω ω

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ω 1 0 ω 0 1 0 1 0 0




(9.19)
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wt(x)[25, 12, 9]4 = 1 + 942x9 + 3,174x10 + 11,715x11 + 40,401x12 + 122,373x13

+ 317,172x14 + 701,367x15 + 1,310,532x16 + 2,083,821x17

+ 2,775,750x18 + 3,060,105x19 + 2,761,647x20 + 1,973,343x21

+ 1,076,928x22 + 420,477x23 + 105,051x24 + 12,417x25

(9.20)

G[25, 13, 8]4
=




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 ω ω ω ω

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 ω ω ω ω

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 ω ω

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 ω 1 ω ω ω

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 ω 1 1 0 1 ω

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 ω ω 1 ω ω ω ω

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 ω 0 ω ω ω

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 ω ω ω ω 0 ω

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 ω ω 1 0 ω ω 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 ω ω 0 ω 1 ω ω

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 ω 0 ω ω 1 ω

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 ω 0 ω ω ω 1 ω ω




(9.21)

wt(x)[25, 13, 8]4 = 1 + 1,050x8 + 3,408x9 + 14,523x10 + 53,154x11

+ 177,600x12 + 510,885x13 + 1,276,797x14 + 2,776,260x15

+ 5,186,355x16 + 8,260,923x17 + 11,074,101x18

+ 12,301,794x19 + 11,124,636x20 + 7,959,195x21

+ 4,300,659x22 + 1,649,304x23 + 394,614x24 + 43,605x25

(9.22)

To the best of our knowledge, the tightest suboptimal and optimal largest distances
for n ≤ 25 are found in Table 9.3.
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n

k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

3 3 2

4 3 2 1

5 5 3 2 2

6 5 4 3 2 1

7 7 5 4 3 2 2

8 7 6 5 4 3 2 1

9 9 6 6 5 4 3 2 2

10 9 7 6 6 5 4 3 2 1 1

11 11 8 7 6 6 5 4 3 2 2 1

12 11 9 8 7 6 5 4∗ 4 3 2 2 1

13 13 10 9 8 7 6 5 4 4 3 2∗ 2

14 13 10 9 8
7

8
7 6 5 4 3∗ 3∗ 2 1

15 15 11 10 9 8 7 7 6 5 4 4 3 2 2

16 15 12 11 10 9 8
7

8

6

7
6 5 5 4 3 2 1

17 17 13 12 11
9

10
9 8

7

8

6

7
6 5 4 3 3 2 2

18 17 14 13
11

12

10

11

9

10
9

8

9

7

8

6

7

5

6
5 4 3 3 2 1

19 19 14 13
12

13
11

10

11
9

8

9
8 7

6

7

5

6
5 4 3 3 2 2

20 19 15 14 13 12
11

12
10

8

9

8

9

7

8

6

7

6

7

5

6
5 4 3 2 2 1 1

21 21 16 15 14 12 12
10

11

9

10

8

9

8

9

7

8

6

7
6

5

6
5 4 3 2 2 2 1

22 22 17 15 14 13
12

13

11

12
10

9

10

8

9

7

9

7

8

6

7
6

5

6

4

5
4 3 2 2 2 1

23 23 18 16 15 14 13 12
11

12

9

11

9

10

8

9

7

9

7

8

6

7
6

5

6

4

5
4 3 2 2 2 1

24 24 18 17 16 15 14
12

13

11

13

10

12

10

11

9

10

8

9

7

9

7

8

6

7
6

5

6

4

5
4 3 2 2 2 1

25 25 19 18 17 15
14

15

13

14

12

13

11

13

10

12

9

11

9

10

8

9

7

9

6

8

6

7
6

5

6

4

5
4 3 2 2 2

Table 9.3: The updated table for optimal values for n ≤ 25 all along with the results
found in this thesis in bold. The values with an asterisk denotes the accurate largest
distances
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Chapter 10

Thesis Conclusion and Future Work

This thesis started with discussing the basics of classical linear binary codes error
correction. Then, we discussed the essence of quantum computing by going over the
fundamental mathematics required as well as quantum circuits. Quantum phenomena
such as superposition and entanglement were discussed next. The subsequent chapter
examined quantum error correction and explained Shor’s code in-depth. The next one
was dedicated to entanglement-assisted quantum error correction which introduced
the formalism of using ebits to resolve the anticommutativity constraint. We then
discussed the implementation of the program that was created to search through
possible quaternary code parameters. The results chapter shed light on previous works
as well as the new suboptimal and optimal entanglement-assisted quantum codes from
quaternary Hermitian linear complementary dual codes obtained through the program
implemented in this thesis.

10.1 Summary of Contribution

One of the main contributions of this thesis is creating a Java program specifically
designed for finding optimal quaternary Hermitian linear complementary dual codes
based on the n, k and d values of the code to be examined. The program will give the
matrix if the parameters exist or displays that the code doesn’t exist. Furthermore,
the implementation is hosted on GitHub and can be accessed through
https://github.com/Aljumaily/MScThesis.

We used the above program to contribute the following suboptimal parameters:
[22, 9, 9 or 10]4, [22, 12, 7 or 8]4, [23, 8, 11 or 12]4, [23, 10, 9 or 10]4, [23, 13, 7 or 8]4,
[24, 10, 10 or 11]4, [24, 11, 9 or 10]4, [24, 14, 7 or 8]4, [25, 12, 9 or 10]4, [25, 13, 8 or 9]4,
as well as the optimal parameters for [17, 11, 5]4 and [17, 13, 3]4.

https://github.com/Aljumaily/MScThesis
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10.2 Future Work

As for future work, we believe that using C as the main programming language would
allow for larger lengths of n to tested. This is because the GNU Compiler Collections
(GCC) complier supports 128-bit values since version 4.7.2.

There should be the functionality of having the program to start with pre-populated
rows in the generator matrix and continuing the search from there. This will be useful
for two reasons: the first is that we can concurrently run multiple instances of the
same program and give each process different starting point(s) for some rows to speed
up the overall time required. Also, it will aid in having the ability to save the current
state of the program and run it again at a later time.

Another point to keep in mind is to improve the bit manipulation used when
multiplying matrices and finding the determinant. It could be optimized further.
Also, there isn’t a method for finding the parity check matrix for some generator
matrix. Such addition will smoothen the transition from the classical quaternary
form to the set of generators used in an entanglement-assisted quantum code. The
implementation can be modified to also include the option of finding quaternary codes,
not just hermitian quaternary LCD codes.

Lastly, there could be the ability to not store the linear combinations in RAM but
recalculate them every time they are needed. Although it will increase the time, it
will not require petabytes of RAM when n is 25 or larger.
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Appendices

A.1 Repetition Code-bit Flip Circuit Using CZ Gates

Encoding
Erroneous
channel Syndrome extraction Syndrome correction Decoding

Q1 |ψ〉 X1? Z X1? |ψ〉

Q2 |0〉 X2? Z Z X2? |0〉

Q3 |0〉 X3? Z X3? |0〉

A1 |0〉 H H

A2 |0〉 H H

t0 t2 t4

Figure A.1.1: Repetition code single bit-flip correction circuit using CZ gates to find
the syndromes
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