
Analysis of the Niching Particle Swarm
Optimization Algorithm

Tyler Crane

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Department of Computer Science

Faculty of Mathematics and Science

Brock University
St. Catharines, Ontario

c© 2021

Abstract

Multimodal optimization (MMO) techniques have been researched and developed

over the years to track multiple global optima concurrently. MMO algorithms ex-

tend traditional unimodal optimization algorithms by using search strategies built

around forming niches for multiple possible solutions. NichePSO was one of the first

approaches to utilize particle swarm optimization (PSO) for MMO problems, using

several small subswarms of agents working concurrently to form niches within the

search space. Despite its promising performance NichePSO does suffer from some

problems, and very little research has been done to study and improve upon the algo-

rithm over the years. A main goal of this thesis is to analyze the NichePSO algorithm,

gaining insight into the strengths and weaknesses of the algorithm. Empirical analyses

were performed to study the NichePSO’s ability to maintain niches within complex

problem domains, as well as methods for improving the overall performance and ef-

fectiveness of the algorithm. Two variants of the NichePSO algorithm are proposed,

and experimental results show that they both significantly improve the performance

of the NichePSO algorithm across several benchmark functions.

Acknowledgements

I would like to thank my supervisor Dr. Ombuki-Berman for her help and guidance

in both my graduate and undergraduate education. I would like to thank Dr. Engel-

brecht for his invaluable feedback and direction throughout my research. Thank you

to my parents for their unending love and support, and to my loving girlfriend for

always making me smile.

Contents

1 Introduction 1

1.1 Objectives and Contributions . 4

1.2 Thesis Structure . 5

2 Background Information 6

2.1 Particle Swarm Optimization . 6

2.1.1 Guaranteed Convergence PSO 7

2.2 The NichePSO Algorithm . 8

2.2.1 Initialization . 8

2.2.2 Main swarm velocity update 9

2.2.3 Partitioning Criteria . 10

2.2.4 Subswarm velocity update . 10

2.2.5 Subswarm radius calculation 10

2.2.6 Subswarm particle absorption 10

2.2.7 Subswarm intersection . 11

2.3 Experimental Analysis . 11

3 The Merging Subswarm Problem 14

3.1 Analysis on Maintaining Niches . 14

3.2 Analyzing the Problem Further . 14

3.3 Alternative Merging Strategies . 22

3.3.1 No Merge Approach . 22

3.3.2 Direction Merge . 22

3.3.3 Diversity Merge . 22

3.3.4 Scatter Merge . 23

3.3.5 Modified Scatter Merge . 23

3.4 Merging Strategies Experiment Results 24

3.4.1 Strategy Analysis . 24

4 Modifications and Analysis 27

4.1 Impact of Parameter Values . 27

4.1.1 Analysis of the Inertia Parameter 27

4.1.2 Particle Absorption Analysis 29

4.1.3 Optima Located Over Time 31

4.1.4 Analysis of the Number of Particles 33

4.2 Subswarm Modifications . 36

4.2.1 Alternative Subswarm Creation Method 36

4.2.2 Radius Out of Bounds Approach 38

4.3 Alternative Velocity Update Formulas 43

4.3.1 Vanilla PSO . 43

4.3.2 Fast Convergence PSO . 43

4.3.3 Predator-Prey PSO . 44

4.3.4 Experimental Results . 45

4.4 Reinitialization . 46

4.4.1 Implementation . 47

4.4.2 Improving Reintroduction . 48

4.4.3 Modifying the Convergence Test 48

4.4.4 Initial Experiments . 49

4.4.5 A Trivial Convergence Test 51

5 Modified NichePSO Algorithms 53

5.1 NichePSO-R Algorithm . 53

5.2 NichePSO-S Algorithm . 55

5.3 Experimental Setup . 57

5.3.1 Performance Measures . 58

5.4 Experimental Results . 59

6 Conclusions and Future Work 65

Bibliography 70

List of Tables

2.1 A summary of the 20 benchmark functions used in this thesis. 12

3.1 The average number of optima located for the NichePSO algorithm

after 100 iterations. 15

3.2 Average optima found (A) and standard deviation (S) for the proposed

merging strategies. 24

4.1 The average number of optima located for each inertia value tested

with a linear decrease each iteration. 28

4.2 The average number of optima located for each inertia value tested

with no decrease. 28

4.3 Average number of optima tracked for the different merging strategies

with and without the use of particle absorption. 30

4.4 Ratios of the number of particles absorbed by subswarms to the number

of particles creating new subswarms. 30

4.5 Number of global optima found over a period of 2000 iterations. . . . 32

4.6 The average number of optima located for various number of particles

initialized over 1000 iterations. 34

4.7 The average number of optima located using diversity merge for var-

ious number of particles initialized using function evaluations as the

stopping criteria. 35

4.8 The average number of optima found for the alternative creation method

with varying values for κ. 37

4.9 Performance results comparing previously viewed methods to the Ra-

diusOOB method. 39

4.10 Performance results comparing different methods for calculating a sub-

swarms radius. 41

4.11 The average number of optima located for each velocity update formula

tested. 46

4.12 A performance comparison of combining the alternative creation method

with reinitialization. 49

4.13 A comparison of performance for the different reinitialization methods

presented. 50

4.14 Total number of subswarms created with and without the use of reini-

tialization. 50

4.15 A comparison of performance for the existence reinitialization method. 52

5.1 The average (A) and standard deviation (S) comparing the NichePSO

algorithm to the modified versions proposed. 60

5.2 The peak ratio of each algorithm across all benchmark functions. . . . 61

5.3 P-values comparing each algorithms results using Mann-Whitney U

Tests. 62

5.4 The success rate of each algorithm across all benchmark functions. . . 63

5.5 The average run time in milliseconds for each algorithm across all

benchmark functions. 63

5.6 The relative time values of each algorithm across all benchmark functions. 64

List of Figures

1.1 The modified Rastrigin function, containing 12 global optima. 2

3.1 The size of the largest radius over time (Shubert 3D, 50 particles). . . 16

3.2 The total number of subswarms over time (Shubert 3D, 50 particles). 16

3.3 The number of particles within the largest subswarm over time (Shu-

bert 3D, 50 particles). 17

3.4 The radius size of newly created subswarms throughout a run (Shubert

3D, 50 particles). 17

3.5 The size of the largest radius over time (CF3 3D, 200 particles). . . . 18

3.6 The total number of subswarms over time (CF3 3D, 200 particles). . 18

3.7 The number of particles within the largest subswarm over time (CF3

3D, 200 particles). 19

3.8 The radius size of newly created subswarms throughout a run (CF3

3D, 200 particles). 19

3.9 If one of the main swarm particles converged, the resulting subswarm

would encompass the existing subswarm. 21

4.1 Comparison of how many optima are tracked as a run progresses for

several benchmark functions. 32

4.2 Trend lines showing relative number of optima tracked with respect to

the number of particles used. 35

4.3 A depiction of a false optimum shown with subswarm 1, and a depiction

of an ideal radius shown with subswarm 2. 42

List of Algorithms

1 The Particle Swarm Optimization Algorithm 7

2 The NichePSO Algorithm . 9

3 The NichePSO-R Algorithm . 54

4 The NichePSO-S Algorithm . 56

1

Chapter 1

Introduction

When presented with a problem in a real world situation, it is often not enough to

simply propose a single solution and hope for the best. Sometimes solutions just

don’t work out, and when they fail we rely on alternative solutions that we prepare

as a backup. Despite this common occurrence, many optimization algorithms are

designed to only find a single best solution to a problem. While this behaviour is

sufficient in a lot of cases, in the real world we want to consider multiple options to a

problem, whether they be multiple strong solutions or simply backup solutions just

in case.

Optimization problems are problems that contain a vast set of possible solutions,

with a single or small set of global best solutions existing within the set. Finding

such global best solutions are often non-trivial, and can be very computationally

expensive to find using traditional search algorithms. While finding a solution is

easy, it is often extremely difficult to prove whether the found solution is optimal or

not. In order to guarantee an optimal solution, all other solutions must be considered

and evaluated. This process is not only time consuming, it is impractical for most

real world optimization problems we face.

Over the past several decades new approaches have been developed and researched

that tackle such complex optimization problems. Since the major complexity of op-

timization problems stems from proving whether a solution is optimal or not, several

metaheuristics have been developed that do not guarantee optimal solutions, but give

practical answers in feasible time [3] [9]. While these algorithms cannot guarantee

that the solutions returned are optimal, they often present solutions that are sufficient

to solve the problems we face.

Traditional optimization algorithms within the domain of artificial intelligence

generally deal with finding a single best solution to a given problem, known as uni-

CHAPTER 1. INTRODUCTION 2

Figure 1.1: The modified Rastrigin function, containing 12 global optima.

modal optimization. While this approach is effective for many different scenarios, for

many real world problems finding a single optimum is insufficient [35]. Fields such

as engineering face problems with many different unique constraints, and often the

optimal solution may not meet all required conditions that are needed to be met [36]

[18]. Multimodal functions are those that contain multiple global optima, and instead

of a single best solution, these problems contain a set of optimal solutions (see Figure

1.1). A unimodal approach may be able to find one of these global optima, but there

may exist many more that should not be ignored.

A trivial solution would be to use a unimodal optimizer and perform multiple runs

on the same problem, recording all unique solutions returned. This approach however

is very inefficient, as there is no guarantee that a different initialization would lead to

a different solution. Multimodal optimization functions take this into consideration,

and are designed to return a set of strong solutions while keeping track of other optima

found to increase efficiency.

Research into niching methods began back in the 70’s and 80’s and primarily fo-

cused on evolutionary algorithms (EA) for their ability to effectively adapt to complex

landscapes [12]. One of the earliest proposed niching techniques was deterministic

crowding [16], where offspring are compared to a sample of the current population for

diversity and similarity. With this technique, the most similar offspring are replaced

with new ones to promote population diversity. Crowding found several applications

amongst various algorithms and lead to further research being conducted on addi-

CHAPTER 1. INTRODUCTION 3

tional niching techniques. These techniques include fitness sharing [13], restricted

tournament selection [15], derating [1], clustering [37] and many more.

Around the early 2000’s researchers began utilizing alternative meta-heuristic op-

timization algorithms for multimodal optimization. Several techniques were applied

to particle swarm optimization (PSO) due to its unique ability to maintain memory

through its use of particles [21]. The traditional PSO algorithm was shown in [10]

to be unable to maintain niches, and if one wanted to utilize PSO for multimodal

functions then such specialized algorithms and techniques were needed.

The concepts of objective function stretching [28] and derating [1] were applied

where the problem landscape is modified to isolate particles that are searching promis-

ing areas of the search space. If a particle was to locate a global maximum, then the

landscape is stretched so that this location is viewed as a local minimum, making it

an unfavourable position for other particles and causing them to search other areas

of the search space. This method was a significant improvement over the traditional

PSO niching methods, however it was shown in [4] that it had the potential to create

false optima. Improvements to this method were proposed in [27] where the concepts

of deflection and repulsion were used to mitigate this problem.

Speciation was another idea implemented as the speciation-based PSO (SPSO)

[19] [26]. Speciation is where different subswarms are treated as species and clustered

together based on distance to their nearest neighbours. Particles that are not nearby

any others are isolated and create their own species. A similar method was used in

[6] by defining the n-best topological neighbourhoods and clustering particles with

their closest neighbours.

The first PSO algorithm to utilize parallel niching methods was the NichePSO

algorithm proposed in [5]. The NichePSO algorithm utilizes multiple subswarms of

particles that search the problem landscape in parallel, which is more efficient than

using the sequential methods previously proposed. The NichePSO algorithm showed

promising results, detecting all optima across multiple benchmark functions. A follow

up scalability study was performed in [7] which showed strong results for benchmark

functions up to four dimensions. Another analysis was done in [11], and multiple

subswarm merging and absorption strategies were proposed to mitigate premature

convergence and increase landscape exploration.

A common problem prevalent to many niching algorithms is that a radius pa-

rameter needs to be defined in order to run the algorithm. The need for such a

parameter means that many algorithms rely heavily on a strong parameter values

being set, which requires time and resources to properly tune. To overcome this issue

CHAPTER 1. INTRODUCTION 4

and remove the need for such a parameter, the adaptive niching PSO (ANPSO) was

proposed in [2]. The ANPSO uses statistics involving the swarm population in order

to adaptively decide the radius size each iteration. A similar approach was utilized by

the vector-based PSO [30] [31], where vector operations are applied to the particles to

identify niches. Once the niches are defined, particles that lie within each individual

niche are clustered and assigned to the same subswarm.

Recent advancements in niching methods for MMO problems include the HillVal-

lEA algorithm [24] [23] which uses hill-valley clustering to create niches, and an evo-

lutionary algorithm for each cluster to perform a search of its defined area. Another

technique is proposed in [38], where a PSO utilizing ring neighbourhood topology is

described, referred to as a close neighbour mobility optimization algorithm. A hybrid

approach combining PSO and evolutionary algorithms is proposed in [22] using near-

est best neighbour clustering. Another recent PSO niching algorithm was proposed

in [8], where a hybrid ring topology is applied where a sparse topology is used to

maximize exploration, and then a dense topology is applied to improve convergence.

1.1 Objectives and Contributions

This thesis proposes several objectives aimed at analyzing and improving the perfor-

mance of the NichePSO algorithm. Despite its strong results, little research has been

done since its proposal to analyze and improve the algorithm. The focus of this work

is to study the NichePSO algorithm in detail, and perform several analyses aimed

to solve many of the questions still unanswered since its proposal. The goals and

objectives of this thesis are as follows:

• Explore and analyze the strengths and weaknesses of the NichePSO algorithm,

providing further insight into the inner mechanisms of the algorithm.

• Determine the causes behind the NichePSO’s inability to maintain niches, and

propose solutions to mitigate the problem.

• Experiment with the NichePSO’s sensitivity to the various parameters used to

provide further insight into the optimal parameter values.

• Explore alternative velocity update formulas and swarm merging strategies, and

analyze the changes in performance using the different techniques.

CHAPTER 1. INTRODUCTION 5

• Propose a modified version of the NichePSO algorithm with improved perfor-

mance over the original, and compare the algorithms using several benchmark

functions and performance measures.

1.2 Thesis Structure

The structure for this thesis is as follows:

Chapter 2 contains relevant background information on PSO’s, and describes

the NichePSO algorithm in detail.

Chapter 3 describes in detail the subswarm merging problem, and shows evidence

of its existence and prevalence in the NichePSO algorithm. Several solutions are also

presented and analyzed to address and overcome this issue.

Chapter 4 presents and analyzes several proposed modifications to the NichePSO

algorithm. Modifications are described in detail, and studied for impact on the per-

formance and efficiency of the algorithm.

Chapter 5 Proposes two modified NichePSO algorithms that each utilize different

proposed modifications. A detailed description of the modified algorithms are given,

as well as a comparison between the proposed algorithms and the original NichePSO

algorithm.

Chapter 5 provides concluding remarks and presents possible directions for future

work.

6

Chapter 2

Background Information

This chapter covers the relevant background for this research. An introduction to par-

ticle swarm optimization is given, along with a detailed description of the NichePSO

and GCPSO algorithms.

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic population based optimization

algorithm. Proposed by Kennedy and Eberhart [17] in 1995, PSO is inspired by

the natural flocking of birds as they search for food. We can consider the optimal

value of a function some amount of food, and we use particles as agents to mimic the

flocking behaviour as they search for the optimal location within the search space.

PSO has received lots of interest over the past several decades due to its simplicity in

implementation, while also proving to be a highly effective continuous optimization

tool [32].

The PSO algorithm revolves around a set of agents known as particles that are

initialized randomly throughout the search space. Several iterations are run until some

stopping criteria is met, such as a maximum number of iterations or time elapsed.

Each iteration, the particles update their current velocity vi and position xi using

vi(t+ 1) = vi(t) ∗ w + C1 ∗ rand ∗ (x̄i − xi) + C2 ∗ rand ∗ (Ḡ− xi) (2.1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2.2)

In the above equations, the terms w, C1 and C2 are all parameters to the algorithm.

CHAPTER 2. BACKGROUND INFORMATION 7

w is the inertia factor, C1 is the cognitive term and C2 is the social term. The two

remaining terms are x̄i and Ḡ. The x̄i variable represents the personal best position

found so far in the run by the individual particle, and the term C1 ∗ rand ∗ (x̄i − xi)
causes the particle to be drawn towards its personal best found so far. The Ḡ variable

represents the global best found among all particles in the swarm, and the term

C2 ∗ rand ∗ (Ḡ − xi) causes all particles in the swarm be drawn towards the global

best position found throughout the search space.

Once the velocity of a particle is calculated, the particle’s position is updated using

Equation 2.2. If the new position is more favourable than the personal best of the

particle, than this position becomes the particle’s new personal best. If this position

is more favourable than the global best position Ḡ, the global best is updated to this

position. This continues over several iterations. Eventually all particles will converge

to the global best found throughout the entire run, and this value is returned as the

optimum.

Randomly initialize particles in search space;
while stopping criteria not met do

foreach particle in swarm do
Calculate particles new velocity;
Update particles position;
Evaluate the new position of the particle;

end

end
Algorithm 1: The Particle Swarm Optimization Algorithm

2.1.1 Guaranteed Convergence PSO

It has been observed that the using the vanilla PSO velocity update formula can

exhibit unwanted behaviour. When all particles in a swarm converge to a single

value Ḡ, then the velocity of vi(t + 1) will consist purely of the term vi(t) ∗ w. As

particles approach the global best found the velocity of each particle will approach

0, and eventually all particles will converge and stop moving. At this point no more

searching will take place, and there is no guarantee that the particles have converged

to a global optimum.

To address this behaviour, the guaranteed convergence PSO (GCPSO) was pro-

posed [34] to provide movement even when all particles have converged to a single

value. Each particle will use the same velocity update formula as before, except for

CHAPTER 2. BACKGROUND INFORMATION 8

the global best particle in the swarm. The global best particle will update its velocity

and position using

v̄i(t+ 1) = −xi(t) + Ḡ+ v̄i(t) ∗ w + ρ(t) ∗ (1− 2 ∗ rand) (2.3)

xi(t+ 1) = Ḡ+ v̄i(t+ 1) ∗ w + ρ(t) ∗ (1− 2 ∗ rand) (2.4)

The term −xi(t) + Ḡ resets the particle’s position to that of the global best found Ḡ.

The term v̄i(t) ∗ w determines the direction of the search, and the term ρ(t) ∗ (1 −
2 ∗ rand) adds a random search to the formula. The function ρ(t) acts as a scaling

function to control the magnitude of the random search, and is defined by

ρ(t+ 1) =


0.5 ∗ ρ(t) if #successes > sc

2.0 ∗ ρ(t) if #failures > fc

ρ(t) otherwise

(2.5)

where #success and #failures represent the consecutive number of successes or

failures for the particle. A failure is counted when f(x̄i(t + 1)) = f(x̄i(t)), and a

success is counted otherwise. The terms sc and fc are threshold parameters, and

optimal values are dependant on the objective function. The values sc = 15 and

fc = 5 are used for all experiments, as per the recommendation of [34]. A starting

value of ρ(0) = 1.0 is also used to match the original paper.

2.2 The NichePSO Algorithm

The NichePSO algorithm proposed in [5] was the first application of particle swarm

optimization to apply parallel swarms to multimodal optimization problems. Instead

of a single swarm of particles traversing the search space, several subswarms are cre-

ated dynamically throughout a run. Each subswarm is formed around unique niches,

so every time a new niche is detected a new subswarm will be created. Algorithm

2 presents an overview of the NichePSO algorithm, and individual sections of the

algorithm are described in greater detail below.

2.2.1 Initialization

The success of the NichePSO algorithm relies on particles being spread evenly through-

out the problem space. This is done using a lattice initialization where particles are

CHAPTER 2. BACKGROUND INFORMATION 9

Initialize particles in main swarm;
while stopping criteria not met do

Update position of all particles in main swarm;
Evaluate fitness of particles in main swarm;
for each subswarm S do

Update position of all particles within S;
Evaluate fitness of all particles within S;
Recalculate the radius of S;

end
if any subswarms intersect then

Merge subswarms;
end
for each particle p in the main swarm do

if p intersects with radius of a subswarm S then
Particle p is absorbed by subswarm S;

end
if partitioning criteria for p is met then

Create new subswarm from particle p;
end

end

end
Algorithm 2: The NichePSO Algorithm

spread equidistantly throughout the search space, creating an n-dimensional lattice

that spans each dimension.

The velocity for each particle is also initialized randomly, within the range of

vi ∈ [−0.5, 0.5], vi 6= 0. We force the constraint that vi 6= 0 due to the velocity update

for the particles within the main swarm (see Equation 2.6). Since upon initialization

x̄i = xi, the second term of the formula would equal 0, which means that the velocity

update for vi(1) would rely entirely on the value of vi(0). If Vi(0) = 0, then vi(1) = 0,

and so on until every particle was partitioned into a subswarm of its own, and a social

factor was applied to the velocity update formula.

2.2.2 Main swarm velocity update

The particles in the main swarm are updated using a cognitive velocity update for-

mula, shown with Equations 2.6 and 2.7. The formula is based off the velocity update

formula for traditional PSO particles (see Equation 2.1), however no social aspect is

used. This allows the particles in the main swarm to do a local search of their imme-

diate area, with the goal of detecting local optima.

CHAPTER 2. BACKGROUND INFORMATION 10

vi(t+ 1) = vi(t) ∗ w + C1 ∗ rand ∗ (x̄i − xi) (2.6)

xi(t+ 1) = xi(t) + vi(t+ 1) (2.7)

2.2.3 Partitioning Criteria

A particle is removed from the main swarm and forms a subswarm when the particle

has converged to some value. Each particle has its fitness monitored, and the changes

in fitness are tracked each iteration. A particle is considered to be converged when

the variance of the changes σi < δ calculated over some number of iterations e. In all

experiments the values e = 3 and δ = 0.0001 were used to match that of [5].

When a particle pi converges, it is removed from the main swarm and a new

subswarm is created. This new subswarm will consist of two particles: pi, and the

closest neighbour to pi within the main swarm.

2.2.4 Subswarm velocity update

Particles that are no longer in the main swarm, but rather a part of an individual

subswarm will use the velocity update formula used by the guaranteed convergence

PSO (GCPSO). The formula incorporates both a personal and social aspect, where

information about the different particles are shared throughout the individual sub-

swarm.

2.2.5 Subswarm radius calculation

Each individual subswarm maintains a radius to ensure that they are searching a

unique area within the search space. The radius of a subswarm is calculated using

the max distance between the subswarm best and every particle within the subswarm.

The formula for this calculation is

Ri = Max{|Sxj ,i − Sx̄,i|} (2.8)

where Sx̄,i is the subswarm best.

2.2.6 Subswarm particle absorption

A particle xj in the main swarm is absorbed by a subswarm if its position falls within

the radius of a subswarm Si, calculated by

CHAPTER 2. BACKGROUND INFORMATION 11

|xj − Sx̄,i| < Ri (2.9)

2.2.7 Subswarm intersection

Two subswarms Si and Sj intersect when the radii of each subswarm intersects,

calculated with

|Sx̄,i − Sx̄,j| < Ri +Rj (2.10)

2.3 Experimental Analysis

All experiments performed were done so using several benchmark functions outlined

for the Congress of Evolutionary Computation conference in 2013 [20]. These consist

of 20 functions ranging from varying degrees of dimensions, complexity and bounds.

A detailed description of each of the functions can be found in [20], along with links

to source code for function implementation in Matlab, Python, Java and C++. A

summary of the functions is shown in Table 2.1.

Among the 20 functions mentioned above, 7 of them were selected to be used

for the majority of intermediary experiments discussed within this thesis. These

functions are:

• Five uneven peak trap function

• Himmelblau function

• Shubert function (2D)

• Shubert function (3D)

• Composite function CF3 (2D)

• Composite function CF3 (3D)

• Composite function CF3 (5D)

The first two functions selected are small and simple functions with a small number

of global optima. The two Shubert functions used are more complex than the first two,

and contain a relatively large number of optima. The final three composite functions

do not contain many optima, but do contain complex landscapes with many local

CHAPTER 2. BACKGROUND INFORMATION 12

Function
of

Dimensions
of Global

Optima
Total Function

Evaluations
Global Peak

Fitness
Five Uneven Peak Trap 1 2 50K 200
Equal Maxima 1 5 50K 1
Uneven Decreasing Maxima 1 1 50K 1
Himmelblau 2 4 50K 200
Six-Hump Camel Back 2 2 50K 1.031628453
Shubert 2 18 200K 186.7309088
Vincent 2 36 200K 1
Shubert 3 81 400K 2709.093505
Vincent 3 216 400K 1
Modified Rastrigin 2 12 200K -2
Composite Function 1 2 6 200K 0
Composite Function 2 2 8 200K 0
Composite Function 3 2 6 200K 0
Composite Function 3 3 6 400K 0
Composite Function 4 3 8 400K 0
Composite Function 3 5 6 400K 0
Composite Function 4 5 8 400K 0
Composite Function 3 10 6 400K 0
Composite Function 4 10 8 400K 0
Composite Function 4 20 8 400K 0

Table 2.1: A summary of the 20 benchmark functions used in this thesis.

optima that an algorithm could become trapped in. These 7 functions were chosen

as a subset of the original 20 to reduce experimental time and complexity, while still

providing a sufficient overview of how the algorithms and modifications perform on

different functions of various complexity levels.

The stopping criteria used for each run is a maximum number of function evalua-

tions, which differs per function. Limiting the number of function evaluations creates

a fair environment for testing an algorithm or modification opposed to using a max-

imum time or number of iterations. One could simply add additional resources to a

search, which is bound to lead to an increase in performance if not monitored. Limit-

ing the number of function evaluations allows one to better study whether the results

obtained are due to the algorithm itself performing well as opposed to performing

well due to additional resources.

In order to effectively test whether a global optimum has been detected or not, an

accuracy threshold is used. Each benchmark function has a global best score known

beforehand, shown in Table 2.1. At the end of a run, a set of solutions is returned,

one for each existing subswarm. A global optimum is considered located if the fitness

CHAPTER 2. BACKGROUND INFORMATION 13

evaluation of a subswarms best position is greater than the global best score minus

the accuracy threshold. A smaller accuracy threshold means that the subswarms will

need to be closer to the global best score in order to have the optimum counted and

located. For each experiment, the accuracy threshold used will be listed among the

other parameters selected.

14

Chapter 3

The Merging Subswarm Problem

This chapter covers all information regarding the merging subswarm problem and the

analyses done to address it. The problem is described in detail, and is shown to have

a large impact on the performance of the NichePSO algorithm. Possible causes and

solutions are also discussed.

3.1 Analysis on Maintaining Niches

A problem with the NichePSO algorithm that was observed during preliminary testing

was that in many instances, only one subswarm exists by the end of the run. Further

inspection reveals that many different subswarms are created throughout a run, but

they all end up merging together into one large subswarm after several iterations. This

behaviour is unwanted as each subswarm should be tracking a separate optimum, and

merging two subswarms within different optima will cause one to no longer be tracked.

Table 3.1 shows preliminary performance results of the original NichePSO algo-

rithm on seven benchmark functions. Each run contained 100 iterations using 50

particles, with parameters w = 0.7 and c1 = c2 = 1.2. It can be seen that, for almost

every function, the NichePSO algorithm was only able to track a single optimum for

each run.

3.2 Analyzing the Problem Further

Two independent runs were selected for analysis, and were analyzed in-depth to try

and pinpoint the cause of the merging subswarm problem. The following information

was collected for each run:

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 15

Function Dimensions
Global
Optima

Budget
Optima
Found

Five Uneven Peak Trap 1 2 50K 1.0333
Himmelblau 2 4 50K 1
Shubert 2 18 200K 1
Shubert 3 81 400K 1
Composite function CF3 2 6 200K 1
Composite function CF3 3 6 400K 1
Composite function CF3 5 6 400K 1

Table 3.1: The average number of optima located for the NichePSO algorithm after
100 iterations.

• Largest radius over time: This shows changes in the largest radius, as well

as patterns where the largest radius quickly grows or shrinks.

• Number of subswarms over time: This helps to determine whether sev-

eral subswarms are being created and merged, or if only a small number of

subswarms are created during a run.

• Largest subswarm over time: This tracks the subswarm with the largest

number of particles, to see if a single subswarm is absorbing all the other par-

ticles or if the largest subswarm is staying relatively small.

• Radius of newly created subswarms: This checks the initial radii of created

subswarms, to see whether subswarms with large radii are being created and

potentially causing the issue.

The information discussed was collected and plotted for each run in Figures 3.1

to 3.8. Figures 3.1 to 3.4 were taken from a run done on the Shubert 3D function,

and Figures 3.5 to 3.8 were taken from a run done on the CF3 function. The number

of particles was reduced from 100 to 50 for each run to help the data to be more

readable and manageable.

It can be seen in Figure 3.2 that many subswarms are created throughout the run,

which means that the results are not an issue of only one subswarm being created. At

iteration 35 the graph peaks at 18 subswarms, and after this the number of subswarms

quickly drop down to two subswarms, which is a single subswarm and the main swarm.

This pattern shows that many subswarms are being created and are merging together

into a single subswarm, confirming that the problem does exist. Further evidence

can be seen in Figure 3.3, where at iteration 35 a sharp increase is seen in the size

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 16

Figure 3.1: The size of the largest radius over time (Shubert 3D, 50 particles).

Figure 3.2: The total number of subswarms over time (Shubert 3D, 50 particles).

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 17

Figure 3.3: The number of particles within the largest subswarm over time (Shubert
3D, 50 particles).

Figure 3.4: The radius size of newly created subswarms throughout a run (Shubert
3D, 50 particles).

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 18

Figure 3.5: The size of the largest radius over time (CF3 3D, 200 particles).

Figure 3.6: The total number of subswarms over time (CF3 3D, 200 particles).

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 19

Figure 3.7: The number of particles within the largest subswarm over time (CF3 3D,
200 particles).

Figure 3.8: The radius size of newly created subswarms throughout a run (CF3 3D,
200 particles).

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 20

of the largest subswarm. This shows that as the number of subswarms shrink, the

remaining subswarms grow large as expected as they absorb other subswarms. Figure

3.1 shows a similar trend in the maximum radius size, though its pattern is not as

clear cut as the other plots.

The patterns seen in Figures 3.2 and 3.3 for the Shubert function are also visible

in Figures 3.6 and 3.7 for the CF3 function. While the patterns are not as prominent

as the previous Figures, a similar decrease can be seen in Figure 3.6 beginning in

iteration 70. At the same time, both the largest subswarm size and largest radius

increase in Figures 3.5 and 3.7.

It is clear from these observations that the merging subswarm problem does exist,

and is a major issue for the NichePSO algorithm. While there is no guarantee that

each subswarm has found an optimum when they merge, an effect of all subswarms

merging is the inability to explore new areas of the search space and detect more than

a single optimum.

One possible cause for the subswarms merging is that subswarms are being cre-

ated with large radii around the same time that the merging occurs. When a particle

in the main swarm converges, a new subswarm is created that consists of two par-

ticles: the particle that converged and its closest neighbour within the main swarm.

However, the closest neighbour within the main swarm may not actually be close to

the converged particle. Such a situation could happen if there were only two particles

remaining in the main swarm, as they both could be far away but still considered the

closest neighbours. If this happens, the resulting subswarm created would have a large

radius that would intersect with the radii of several other subswarms, thus merging

them all into a single subswarm. An illustration of this is shown in Figure 3.9. If

one of the orange particles was to converge in Figure 3.9, then the subswarm created

would consist of the converged particle and the orange particle on the other side of

the search space. The subswarm created would then have a radius that completely

covers the existing blue subswarm in between, causing an unwanted intersection.

To determine whether this is the cause of the problem, the size of every subswarm

created each iteration was recorded (no more than one subswarm is created per iter-

ation). This data is shown in Figure 3.4 for the Shubert function, and in Figure 3.8

for the CF3 function. Should the hypothesis be true, it is expected that a subswarm

with a large radius will be created around the time all the subswarms merge.

Figure 3.4 shows a subswarm created on iteration 36 with a large radius, created

just before all the other subswarm start to merge. In order to provide further sup-

porting evidence, the exact subswarm created was analyzed for this run to see if this

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 21

Figure 3.9: If one of the main swarm particles converged, the resulting subswarm
would encompass the existing subswarm.

created subswarm absorbed many other subswarms the iteration after it was created.

However, when looking at the subswarm in question in greater detail it was found

that while it was created with a large radius, in the next iteration it quickly shrunk

in size as the two particles moved towards each other. The subswarm in question

was created on iteration 36 with a radius of 10.331, and on iteration 37 the radius

had shrunk to a size of 3.112. Due to the order of the methods in the algorithm, this

takes place before the subswarm is able to absorb any other particles or subswarms.

Figure 3.8 also shows evidence that created subswarms are not the cause of the

merging subswarm problem. It can be seen that the size of each created subswarm

around iteration 70 is relatively small. A larger subswarm can be seen at iteration

64, but the same behaviour as seen previously emerges where the subswarm shrinks

the next iteration before absorbing any particles. The subswarm created on iteration

64 had a radius of 2.046, and on iteration 65 shrunk to a size of 1.703. This provides

further supporting evidence that newly created subswarms are not the cause of the

rapid merging of the subswarms. Even when subswarms are created with particles

far apart, they quickly converge together in the next iteration before absorbing or

merging with any other subswarms. This suggests that instead the issue lies within

the merging procedure used for the NichePSO algorithm.

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 22

3.3 Alternative Merging Strategies

There are two possible areas to modify when considering an alternative merging

strategy; How the radii for each subswarm is calculated, and the behaviour for what

happens when two subswarms intersect. Several alternative merging approaches were

proposed in [11], and were used as a starting point for the experiments.

3.3.1 No Merge Approach

A trivial solution to the merging subswarm problem is to completely remove the

NichePSO’s ability to merge subswarms. All subswarms cannot merge if there is no

merging strategy used. There are some drawbacks to this approach. The NichePSO

algorithm loses its ability to prevent multiple subswarms from searching the same

area of the problem space. As well, without any subswarms merging, the majority

of subswarms will remain relatively small, weakening their ability to perform local

searches of the immediate neighbourhood. Despite these drawbacks, the approach is

still used to analyze its effect on the merging subswarm problem.

3.3.2 Direction Merge

The direction merge approach was proposed in [11] as a stricter condition for sub-

swarms to merge. Instead of only merging subswarms that intersect, direction merge

proposes that the subswarms must intersect and be travelling in the same direction.

The idea is that two subswarms can intersect but be travelling towards different

niches. Two subswarms intersecting and moving in the same direction are likely to

converge to the same optimum, and thus are merged together. The direction of sub-

swarms are compared using the dot product of the two subswarm best particles. If

the dot product of the velocity of the subswarm best particles is less than zero, the

subswarms are moving towards the same optimum and merge. If the dot product is

greater than zero, they are moving in different directions and are not merged.

3.3.3 Diversity Merge

A merging approach was proposed in [11] where subswarms are only merged if the

diversity of both swarms is sufficiently low. Within a subswarm, if one particle trails

off from the rest of the swarm, then this one particle will greatly increase the radius.

This was calculated by computing the average distance each particle is away from

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 23

the swarm best, and only merging if this average was smaller than some diversity

threshold ε.

An undesirable effect of this approach is that it introduces a new parameter to

the algorithm. In order to remove the need for a new parameter, a modified diversity

merge approach is proposed that factors in the diversity of a subswarm. Instead of

calculating the radius by determining the particle in the subswarm that is furthest

away from the swarm best, the radius for a subswarm will be equal to the median

distance of all the particles in the subswarm. Using the median distance requires

no additional parameters, and is much more robust towards particles travelling away

from the subswarm. Should one particle travel far away from the rest of the swarm,

the radius will not increase as the majority of particles will still be located around

the swarm best.

3.3.4 Scatter Merge

The scatter merge appraoch was proposed in [11] as a way to improve the NichePSO’s

exploration ability. Instead of combining all particles into a single swarm on inter-

section, the approach is to take the particles of one swarm and reinitialize them back

into the main swarm. The subswarm that is reinitialized out of the two is the sub-

swarm with the smaller best fitness. All particles within that subswarm are relocated

randomly throughout the search space.

3.3.5 Modified Scatter Merge

During testing an observation was made regarding the scatter merge approach de-

scribed above. It was observed that runs would often end with a large number of

subswarms that contain two particles, the minimum a subswarm can contain. Having

many small subswarms can impact the algorithms ability to perform local searches

once a subswarm is created, as these subswarms often converge prematurely to sub-

optimal values. To address this issue, a modified scatter merge approach is proposed.

When two subswarms intersect, instead of all particles from one swarm being reinitial-

ized in the main swarm, a single particle from that swarm is added to the other. The

remaining particles in the subswarm are reinitialized back into the main swarm. This

allows subswarms that have strong personal bests to grow and improve exploitation,

while still improving the exploration ability of the original NichePSO algorithm.

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 24

Function Dimensions
Global
Optima

Budget
No

Merge
Direction Diversity Scatter

Modified
Scatter

Diversity and
Mod Scatter

Five Uneven Peak Trap 1 2 50K
A: 2
S: 0

A: 2
S: 0

A: 2
S: 0

A: 2
S: 0

A: 2
S: 0

A: 2
S: 0

Himmelblau 2 4 50K
A: 4
S: 0

A: 3.4667
S: 1.1366

A: 4
S: 0

A: 4
S: 0

A: 3.9
S: 0.3051

A: 4
S: 0

Shubert 2 18 200K
A: 15.7667
S: 1.2229

A: 4.8
S: 4.0548

A: 15.8
S: 1.3235

A: 16.6
S: 1.9931

A: 6.8333
S: 2.9837

A: 17.7667
S: 0.504

Shubert 3 81 400K
A: 30.6667
S: 4.1384

A: 3.0333
S: 5.3594

A: 35.6667
S: 2.2024

A: 28.1333
S: 5.9291

A: 9.7333
S: 9.8609

A: 38.8667
S: 2.5829

Composite function CF3 2 6 200K
A: 4.7

S: 0.7944
A: 2.5

S: 1.6557
A: 5.1

S: 0.6618
A: 5

S: 0.6948
A: 4.2333
S: 1.2229

A: 5.4667
S: 0.6288

Composite function CF3 3 6 400K
A: 4

S: 0.2626
A: 2.6

S: 1.4527
A: 4
S: 0

A: 4
S: 0

A: 4.0333
S: 0.1826

A: 4
S: 0

Composite function CF3 5 6 400K
A: 3.8667
S: 0.4342

A: 3.2667
S: 1.1725

A: 4
S: 0

A: 3.9
S: 0.4026

A: 4
S: 0

A: 4
S: 0

Table 3.2: Average optima found (A) and standard deviation (S) for the proposed
merging strategies.

3.4 Merging Strategies Experiment Results

Each merging strategy discussed was tested for performance using the same bench-

mark functions as Table 3.1. To recap, the original NichePSO merging strategy was

only able to detect on average a single optimum for each tested function. Experi-

mental results are shown in Table 3.2. It should be noted that the goal for these

tests are to compare relative performance given the provided parameter set. As such,

all parameters will remain static and will not be tuned for each individual function

or merging strategy. Each strategy was tested over 30 runs, and used the following

parameters:

• Number of particles: 100

• Accuracy threshold: 0.01

• Inertia: 0.7

• C1 and C2: 1.2

3.4.1 Strategy Analysis

The motivation behind studying alternative merging strategies is to overcome the

subswarm merging problem discussed previously. If a strategy has overcome the

issue, then the results will show on average at least two optima being detected for

each function. As seen in Table 3.2, each discussed strategy is able to properly track

multiple optima on average for each function tested.

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 25

No merge

Despite the drawbacks of removing subswarm merging altogether, the no merge strat-

egy shows relatively strong results compared to the other strategies. This provides

more evidence that the subswarm merging problem was being caused by the merging

strategy, as removing merging from the algorithm shows to no longer suffer from the

problem.

Another benefit of the no merge strategy is that there is room to improve further.

As discussed previously, removing subswarm merging altogether has some negative

effects such as less subswarm diversity and reduced exploitation in each subswarm.

Later in the thesis these drawbacks will be addressed, and it is expected that perfor-

mance will improve even more.

Direction merge

Out of all the alternative merging strategies examined, the direction merge on average

performed the worst. The average number of optima found was generally lower than

the other strategies, and the standard deviation was also much higher, showing less

consistent results. It was also observed that there were several runs using direction

merge that still resulted in a single optimum being detected, showing that while it

is an improvement over the traditional merging strategy, it still can suffer from the

subswarm merging problem.

It is hypothesized that the reason for the weaker performance from the direction

merge strategy has to do with the use of the GCPSO velocity update formulas (see

Equations 2.3 and 2.4). Using GCPSO, the best particles for each subswarm are

updated differently than the rest of the particles. The subswarm best formula gives

the particle a random direction each update, which means that the global best particle

could be travelling a different direction each iteration irrespective of the direction the

remaining particles are travelling. This means that at any given iteration, there is no

way of knowing which direction the rest of the subswarm is moving just by checking

the direction of the subswarm best particle.

This strategy could be improved in two ways. The first improvement would be

if the GCPSO update formulas are replaced with update formulas that do not have

the subswarm best particles traveling in random directions. The second improvement

would be if an alternative way of calculating subswarm direction was used that better

estimates the direction the swarm is travelling. One possibility could be to track the

change in subswarm best position as opposed to the velocity at a given point in time.

CHAPTER 3. THE MERGING SUBSWARM PROBLEM 26

In other words, when a global best particle moves to a position that is more fit, the

direction it moved in that instance is recorded and used to compare whether two

subswarms are travelling in the same direction. Further work involving this strategy

will not be included in this thesis.

Diversity merge

The diversity merge strategy takes a different approach than the other strategies dis-

cussed in that it does not modify the behaviour of what happens when two subswarms

intersect, but instead only modifies the radius size of each subswarm. Despite this

difference, this strategy shows relatively strong results across all functions used.

The strength of this approach is that it acts as a natural filter for outlier particles.

In the traditional NichePSO algorithm, if a single particle within a subswarm is to

travel away from the rest of the swarm, the radius would grow to encapsulate this

particle. With the diversity merge approach, a swarms radius is unaffected by a single

particle travelling far away from the rest of the swarm. Another strength is that this

approach can be easily combined with other strategies without causing any conflicts,

as shown by combining it with the modified scatter merge approach.

Scatter and modified scatter merge

The scatter merge approach shows slightly weaker results than the other strategies,

but still shows to overcome the merging subswarm problem. As mentioned previ-

ously, it was observed that the scatter merge approach ended most runs with many

small subswarms that were unable to grow during the run. Looking at the modified

scatter merge results, alone it fails to obtain the same level of results as the scatter

merge approach. However, when combined with the diversity merge strategy, the two

approaches work very well together and return the highest results for most functions

used.

Moving forward, tests done on the NichePSO algorithm will be done so with

the diversity merge modification. This approach is selected because out of all the

strategies discussed it modifies the behaviour of the original algorithm the least,

while also showing to overcome the subswarm merging problem. Tests involving this

approach will therefore not be affected by the subswarm merging problem, allowing

the results to more accurately evaluate the performance of the algorithm.

27

Chapter 4

Modifications and Analysis

This chapter explores several of the procedures and parameters that the NichePSO

algorithm utilizes for strengths and weaknesses. Several potential modifications to the

algorithm are proposed and analyzed with the goal of improving overall performance

and efficiency.

4.1 Impact of Parameter Values

This section looks at several parameters that the NichePSO algorithm utilizes through-

out a run. Parameter values are adjusted and analyzed for their impact on a run,

and the algorithm’s sensitivity to the values is explored.

4.1.1 Analysis of the Inertia Parameter

This section explores how the inertia value used affects the performance of the

NichePSO algorithm. Motivation to explore this parameter arose when an obser-

vation was made that changing how quickly the inertia decreases throughout a run

can greatly change the outcome of a run.

Each iteration, the inertia value decreases by an amount of

w(t+ 1) = w(t)− ((w(0)− 0.2)/Max Iterations) (4.1)

Whatever the beginning value set is, over the course of the run the inertia is decreased

linearly each iteration until it settles on a value of 0.2. This value was chosen as it

is the smallest value that would maintain parameter stability between the inertia

value, the cognitive term and the social term. Stability of PSO parameters was

studied in [14], where it was shown that algorithm stability can be obtained if the

CHAPTER 4. MODIFICATIONS AND ANALYSIS 28

Function Dimensions
Global
Optima

Budget 0.3 0.5 0.7 0.9

Five Uneven Peak Trap 1 2 50K 2 2 2 2
Himmelblau 2 4 50K 4 4 4 3.3667
Shubert 2 18 200K 16.6 16.3667 15.8 8.7667
Shubert 3 81 400K 34.1 35.4667 35.6667 21.6333
Composite function CF3 2 6 200K 4.9333 4.8333 5.1 4.8667
Composite function CF3 3 6 400K 4 4 4 4
Composite function CF3 5 6 400K 4 4 4 4

Table 4.1: The average number of optima located for each inertia value tested with
a linear decrease each iteration.

Function Dimensions
Global
Optima

Budget 0.3 0.5 0.7 0.9

Five Uneven Peak Trap 1 2 50K 2 2 2 2
Himmelblau 2 4 50K 4 4 4 2.9667
Shubert 2 18 200K 16.6667 16.6333 15.8667 4.9
Shubert 3 81 400K 35.3333 35 34.1667 20.1333
Composite function CF3 2 6 200K 4.6667 4.7333 5.1667 3.9333
Composite function CF3 3 6 400K 4 4 4 3.8333
Composite function CF3 5 6 400K 4 4 3.9333 3.9667

Table 4.2: The average number of optima located for each inertia value tested with
no decrease.

parameters w, C1 and C2 satisfy the equation 0 ≤ (C1 + C2) ≤ 2(1 + w). If we

use a constant C1 = C2 = 1.2 value for both the cognitive and social terms, than by

substituting them into the above equation and solving for w, stability can be achieved

with w ≥ 0.2.

Experimental results are shown in Tables 4.1 and 4.2. Each run recorded the total

number of unique global optima tracked, and every recorded value was averaged over

30 runs. The inertia values in Table 4.1 all began at the values shown and decreased

linearly to a value of 0.2 throughout each run. Inertia values in Table 4.2 remained the

same throughout each run. To mitigate the effect of the merging subswarm problem,

all runs were done using the diversity merge modification. Parameters for each run

as as follows:

• Number of particles: 100

• Accuracy Threshold: 0.01

• C1 and C2: 1.2

CHAPTER 4. MODIFICATIONS AND ANALYSIS 29

A few observations can be made from the data reported. The most notable in-

formation is that changing the inertia value from the originally proposed value of 0.7

did not improve performance for almost every run performed. One clear observa-

tion is that increasing the inertia to a value of 0.9 showed worse performance across

most functions tested. Decreasing the inertia had very little effect, as no changes in

performance for 0.3 or 0.5 were statistically significant.

Similar observations can be made when analyzing the effect that removing the

linear decrease has on performance. While the averages were close to the original,

the fact that none showed any improvement is evidence enough that an inertia of

0.7 is sufficient when paired with a cognitive and social term of 1.2. The use of a

linear decrease with the inertia parameter is favourable, but good results can still be

found without one. If one removes the linear decrease, then the results suggest that

a smaller inertia value is preferred in this scenario.

4.1.2 Particle Absorption Analysis

The next set of tests explore the impact that particle absorption has on the NichePSO

algorithm. Particle absorption applies when particles from the main swarm intersect

with the radius of a subswarm. The subswarm absorbs the particle, and that particle

becomes a part of the subswarm it intersected with. To evaluate the impact of

particle absorption, several merging strategies were run without the use of absorption

to compare the performance of the runs to the results with the use of absorption.

Experiments were averaged over 30 runs, and were done on the Shubert 3D function

and the composite function CF3 benchmark function. Results can be found in Table

4.3.

Along with performance results, the number of times that the absorption process

takes place during a run is recorded. In order to see how often particles join a

subswarm through absorption as opposed to creation, both procedures were counted

and recorded as ratios. There are only two ways a particle can leave the main swarm:

they can be absorbed by a subswarm, or they can converge and form a new subswarm.

Strategies where absorption plays a larger role will see a higher absorption count

compared to the creation count, and strategies where absorption plays a smaller role

will thus see a smaller ratio. For each run, a ratio of absorption : creation counts was

recorded, and these ratios are averaged over the 30 runs. Results are shown in Table

4.4.

As can be seen in Table 4.3, the inclusion of absorption did not have a signifi-

CHAPTER 4. MODIFICATIONS AND ANALYSIS 30

With Absorption Without Absorption
Shubert CF3 Shubert CF3

Vanilla 1 1.1 1 1
No Merge 30.6667 4 35.8333 4
Diversity 35.6667 4 35.2 4
Scatter 28.1333 4 30.4667 4
Modified Scatter 9.7333 4.0333 13.9667 4
Diversity and
Modified Scatter

38.8667 4 37.8667 4

Table 4.3: Average number of optima tracked for the different merging strategies with
and without the use of particle absorption.

Strategy Shubert CF3

Vanilla 27 : 73 40 : 59
No Merge 19 : 80 33 : 66
Diversity 0 : 99 1 : 99
Scatter 67 : 1342 134 : 1257
Modified Scatter 331 : 546 129 : 439
Diversity and
Modified Scatter

0 : 130 1 : 208

Table 4.4: Ratios of the number of particles absorbed by subswarms to the number
of particles creating new subswarms.

cant impact on the overall performance of any strategy. Removing absorption does

show a slightly higher number of optima found on average, but few experiments are

statistically significant.

Looking at Table 4.4 it can be seen that aside from the vanilla NichePSO merging

strategy, all strategies tested have a much higher creation rate than absorption rate

on average. What this suggests is that absorption is used very little throughout a

run, and the majority of particles leave the main swarm by converging and creating

new subswarms of their own.

Taking the results on these experiments into consideration, it can be concluded

that removing particle absorption is beneficial to the NichePSO algorithm. While

the increase in performance is not a significant increase, the alternative conclusion

is that absorption impacts the algorithm very little. If this conclusion is true, then

it is still beneficial to remove absorption to reduce the computational cost of the

algorithm. This conclusion is further supported by the results of Table 4.4, which

show that for all merging strategies tested, absorption occurs very little during a run.

All experiments performed following this conclusion will be done without the use of

CHAPTER 4. MODIFICATIONS AND ANALYSIS 31

particle absorption, unless otherwise stated.

4.1.3 Optima Located Over Time

This subsection will explore the relationship between the number of iterations a run

has progressed and the number of unique global optima that has been found. It is

clear that allowing a run to progress for more iterations will result in an increased

performance, as each subswarm and particle is allowed more time and resources to

explore the search space. The purpose of this experiment is to analyze the correlation

between iterations and optima found. As more and more optima are located, it

becomes more difficult to find the remaining optima and thus more resources are

required for a smaller increase in performance.

Experiments were performed using the traditional NichePSO algorithm with the

diversity merge modification. The diversity merge is used so that the results are not

muddled by the subswarm merging problem. Each result was averaged over 30 runs,

and for each run the number of unique global optima found is recorded every 100

iterations. Results can be found in Table 4.5. Parameters for all experiments are as

follows:

• Total Iterations: 2000

• Number of Particles: 100

• Inertia: 0.7

• C1 and C2: 1.2

• Accuracy Threshold: 0.01

As expected, at the start of a run the number of optima found starts off small

and quickly increases. As the run progresses, the speed of increase slows down as

the algorithm has less and less optima to locate. It can be observed that for each

function, the number of dimensions plays a large role in the number of iterations

required for the data to begin to plateau.

To better highlight this observation, the data shown in Table 4.5 was plotted on a

stacked area chart shown in Figure 4.1. When interpreting this plot, the magnitude

of the y-axis does not matter. What is important is the slope of the lines, as the

y-axis plots the relative number of optima that has been located at a given iteration

with respect to the total number of optima located by the end of the run.

CHAPTER 4. MODIFICATIONS AND ANALYSIS 32

Function Dimensions
Global
Optima

100 200 300 400 500 600 700 800 900 1000

Five Uneven Peak Trap 1 2 1.7 2 2 2 2 2 2 2 2 2
Himmelblau 2 4 4 4 4 4 4 4 4 4 4 4
Shubert 2 18 3.7333 12.1 13.733 14.767 15.0667 15.733 15.733 15.833 15.833 15.8333
Shubert 3 81 0.0333 1.2 2.7 4.2667 6.0667 8.6 10.9 14.1 16.9 20.2667
Composite Function CF3 2 6 0.7667 3.8333 4.2333 4.5333 4.6333 4.7 4.7333 4.7667 4.7667 4.8
Composite Function CF3 3 6 0.0333 3.5667 3.9 3.9 3.9667 3.9667 4 3.9667 4 4
Composite Function CF3 5 6 0 0.3 0.7 0.8333 1 1.1667 1.2333 1.4667 1.9667 2.3

Function Dimensions
Global
Optima

1100 1200 1300 1400 1500 160 1700 1800 1900 2000

Five Uneven Peak Trap 1 2 2 2 2 2 2 2 2 2 2 2
Himmelblau 2 4 4 4 4 4 4 4 4 4 4 4
Shubert 2 18 15.8333 15.8333 15.8333 15.8333 15.8333 15.8333 15.8333 15.8333 15.8333 15.8333
Shubert 3 81 23.2 26.2 28.2333 29.6333 30.7667 31.9 32.7333 33.5333 34.0667 34.3
Composite Function CF3 2 6 4.8 4.8 4.8 4.8 4.8 4.8333 4.8333 4.8333 4.8333 4.8667
Composite Function CF3 3 6 4 3.9667 4 4 4 4 4 4 4 4
Composite Function CF3 5 6 2.7 3.0333 3.2667 3.5333 3.8333 3.9333 3.9667 3.9667 4 4

Table 4.5: Number of global optima found over a period of 2000 iterations.

Figure 4.1: Comparison of how many optima are tracked as a run progresses for
several benchmark functions.

CHAPTER 4. MODIFICATIONS AND ANALYSIS 33

What can be observed is that the functions that have two dimensions all show a

very similar line throughout the 2000 iterations. Likewise, the functions used that

have three dimensions also show similar trends as the runs progress. While it is

clear that increasing the number of iterations will lead to an increase in performance,

this plot shows relatively how many iterations are needed for functions of various

dimensions. This information can be used to determine a strong value for the max

number of iterations that balances out performance and computational cost.

4.1.4 Analysis of the Number of Particles

The final parameter that will be studied is the number of particles that the main

swarm should be initialized with at the start of a run. It is clear that increasing the

number of particles will lead to more optima being located and tracked. This however

is not a feasible course of action, as more particles being used means an increase in

computational cost and a decrease in algorithm efficiency. As well, as the number of

optima located grow larger and larger, it will require exponentially more particles to

continue to increase performance at the same rate.

The goal of the first experiment performed is to analyze the correlation between

the number of particles and number of optima tracked. Runs were averaged over 30

runs on several benchmark functions with a varying number of optima and dimensions.

All experiments used the diversity merge modification to mitigate the impact of the

merging subswarm problem. Results are shown in Table 4.6. Parameters used for

each run are as follows:

• Number of iterations: 1000

• Inertia: 0.7

• C1 and C2: 1.2

• Accuracy threshold: 0.01

As expected, as the number of particles increase the number of optima tracked

also increases. As well, the results provide evidence that as the number of optima

tracked approaches the maximum number that a function contains, more and more

resources are needed to maintain the improvement. When looking at the Shubert

3D function, the difference between using 100 particles and 250 particles resulted in

an increase in roughly 17 global optima tracked. The difference between using 250

particles and 500 particles is also roughly 17 global optima tracked. The increase

CHAPTER 4. MODIFICATIONS AND ANALYSIS 34

in performance remains the same for these three data points, but the increase in

particles from 100 to 250 is only 150 particles, whereas the increase from 250 to 500

is a 250 particle increase. If total resources is not a factor to consider, then it is clear

that more particles results is better performance. However this is rarely the case, and

one must find a balance between resources allocated and performance.

The goal of the next experiment is to try and find an optimal balance between

cost and performance. Instead of using a maximum number of iterations for each

run, a maximum number of function evaluations will be allowed. The same functions

and parameters used in the previous experiment will be used again. The goal of

this second experiment is to try and find a balance between number of particles and

computational cost that would maximize performance. Results are shown in Table

4.7.

A visualization of Table 4.7 is shown in Figure 4.2. When interpreting this graph,

the magnitude of the y-axis is not important between the functions. Each line is

relative to the maximum number of optima found per function, and roughly shows

how the performance changes as the number of particles increase.

Figure 4.2 shows a similar trend among each function used, however the impact

is much more noticeable with the Shubert 3D function. This makes sense as this

function contains the highest number of optima out of the functions used, and the

gaps between each number of particles used is much greater. What the results show

is that the optimal number of particles to use that would balance out performance

and computational cost is around 250. If less particles are used, then less optima are

able to be tracked and less of the search space can be explored. As more particles are

added, the amount of resources allocated for each particle decreases, which leads to

subswarms being unable to effectively search their local neighbourhoods and find the

global peaks. This correlation is less noticeable for functions with a smaller number

of global optima, and one can use less particles then to reduce the computational

Function Dimensions
Global
Optima

20 50 100 250 500 1000

Five Uneven Peak Trap 1 2 1.6333 2 2 2 2 2
Himmelblau 2 4 4 4 4 4 4 4
Shubert 2 18 8.1 14.0333 16.6333 17.5333 17.8333 17.6667
Shubert 3 81 5.2 15.9 26.6 43.0333 60.5667 69.3
Composite Function CF3 2 6 3.3 4.1333 4.6 5.6667 5.9333 5.9333
Composite Function CF3 3 6 3.5667 4 4 4 4 4
Composite Function CF3 5 6 1.9 3.0667 3.8 3.9667 4 4

Table 4.6: The average number of optima located for various number of particles
initialized over 1000 iterations.

CHAPTER 4. MODIFICATIONS AND ANALYSIS 35

Function Dimensions
Global
Optima

Budget 20 50 100 250 500 1000

Five Uneven Peak Trap 1 2 50K 1.6 2 2 2 2 1.1
Himmelblau 2 4 50K 5 4 3.9667 4 4 3.7667
Shubert 2 18 200K 7.9 13.3 15.6667 14.8333 13.4667 11.2
Shubert 3 81 400K 8.3667 20.7 35.3 55.3667 49.9667 13.6667
Composite Function CF3 2 6 200K 3.5333 4.5 4.8667 5.4 5.7333 4.4
Composite Function CF3 3 6 400K 3.7333 4 4 4 4 3.7333
Composite Function CF3 5 6 400K 3.3 4 4 4 3.9667 1.2667

Table 4.7: The average number of optima located using diversity merge for various
number of particles initialized using function evaluations as the stopping criteria.

Figure 4.2: Trend lines showing relative number of optima tracked with respect to
the number of particles used.

CHAPTER 4. MODIFICATIONS AND ANALYSIS 36

cost.

4.2 Subswarm Modifications

This section proposes several possible modifications to how subswarms are utilized

during a run. This includes modifying how they are created, how they interact with

each other, and how their radii are calculated. Experiments are performed that ana-

lyze each modification against the traditional NichePSO algorithm using the diversity

merge modification for impact on performance.

4.2.1 Alternative Subswarm Creation Method

An observation was made when exploring possible causes of the merging subswarm

problem in Chapter 3. It was hypothesized that the way subswarms are created

could be causing undesirable effects within the algorithm. To recap, when a particle

within the main swarm converges it creates a new subswarm by combining with the

closest neighbouring particle within the main swarm. This behaviour was shown to

not be the cause of the merging subswarm problem, but the issues it creates are still

prevalent and should be addressed.

The first major issue is that when a particle converges and forms a subswarm,

there is no guarantee that the closest neighbouring particle is actually nearby. If

the closest neighbour happens to be far away in the search space, then the resulting

subswarm will have a very large radius and poorly define the area it is currently

searching (see Figure 3.9). As well, the particle far away may be tracking a unique

optimum of its own, but by merging it into the created subswarm it then loses this

optimum and instead converges to an optimum already located by another particle.

To address these problems that the traditional subswarm creation method poses,

a new creation method is proposed that is designed to mitigate these issues. When

a particle in the main swarm converges, κ particles are created at that moment and

positioned near the converged particle. Particles are positioned at the location of

the converged particle, and then each dimension is slightly modified at random to

position the new particles nearby. The converged particle and these created particles

then form the new subswarm.

The main strength of this approach is that it allows particles in the main swarm

to search their own unique areas of the search space without being affected by other

particles. As well, since the created particles are positioned near the original con-

CHAPTER 4. MODIFICATIONS AND ANALYSIS 37

verged particle, created subswarms will not have a large radius defined that might

intersect with other subswarms searching their own unique optimum.

A downside to this approach is that the maximum number of particles used during

a run increases to a maximum of κ multiplied by the number of initial particles in

the main swarm. These additional particles will increase the computational cost,

and if one is running the algorithm with a maximum number of function evaluations

then each created particle lowers the number of function evaluations allotted for the

others. Therefore it is important to select a κ value that balances out performance

and computational cost.

Experiments were run to study how the alternative creation method compares to

the traditional closest neighbour creation method. The parameter κ is also modified

to try and determine the optimal value to maximize performance with respect to

function computational cost. Each result was averaged over 30 runs, and all runs

used the diversity merge modification to mitigate the merging subswarm problem.

Results are shown in Table 4.8. Constant parameters used for each run are as follows:

• Number of particles: 100

• Inertia: 0.7

• C1 and C2: 1.2

• Accuracy threshold: 0.01

The first observation to be made is that using a smaller number of particles per

subswarm results on average in better performance. The most notable increase in

performance happens on the Shubert functions that contains a relatively large number

of optima. This increase in performance despite the smaller number of particles

is most likely attributed to an increase in total function evaluations per particle.

Function Dimensions
Global
Optima

Budget
Closest

Neighbour
Alternative (Created Particles)
1 2 3 4

Five Uneven Peak Trap 1 2 50K 2 2 2 2 2
Himmelblau 2 4 50K 3.9667 4 4 3.9667 3.8667
Shubert 2 18 200K 15.6667 17.9667 15.6333 12.2 11.2
Shubert 3 81 400K 35.3 52.6 46.8 38.8 34.0333
Composite function CF3 2 6 200K 4.8667 5.1333 5.3667 5.2333 5.3
Composite function CF3 3 6 400K 4 4 4 3.9667 4
Composite function CF3 5 6 400K 4 4 4 4 4

Table 4.8: The average number of optima found for the alternative creation method
with varying values for κ.

CHAPTER 4. MODIFICATIONS AND ANALYSIS 38

Creating only a single particle per subswarm allows each particle to have roughly

twice as many function evaluations as creating two particles per subswarm. This

provides evidence that when selecting parameters for the NichePSO algorithm, one

should consider using less particles to allow them more time to converge, as opposed

to using many particles with less time to converge.

Another observation that can be made is that using this alternative method to

create subswarms on average results in a better performance than the original closest

neighbour method. This difference in performance is a lot more clear in the Shubert

functions used with many more optima than the other functions. Even though creat-

ing new particles for each subswarm causes an increase in the total number of particles

used throughout a run, by limiting the number of function evaluations allowed this

bias is mitigated. While the results show that using less particles with more function

evaluations is preferred, even with this increase in particles, an general increase in

performance is observed.

4.2.2 Radius Out of Bounds Approach

When exploring alternative merging strategies earlier in the thesis, it was observed

that removing subswarm merging completely can lead to strong results despite the

few issues created. Subswarms are merged when they intersect as a response to two

subswarms exploring the same area of the search space. By removing subswarm merg-

ing, the NichePSO algorithm has no methods for ensuring population diversity among

the subswarms. The only thing that would prevent subswarms from all converging

to the same location is the initial location of the particles selected when the main

swarm is initialized.

To prevent subswarms from searching the same areas of the search space, a mod-

ification to the no merge strategy is implemented. Each subswarm has a radius that

defines the area that it is currently searching. The modification treats these areas

as an out of bounds region for every particle not within the subswarm. When a

particle travels out of bounds in a PSO, it is not allowed to update its personal best

or the global best position found. Essentially, out of bounds regions are treated as

unfavourable positions for the particles to be in, and the particle will naturally travel

back within the search space as it converges towards its personal best position and

the global best position.

This method of treating a subswarms radius as an out of bound area is referred

to in this thesis as the radius out of bounds method (radiusOOB). This technique

CHAPTER 4. MODIFICATIONS AND ANALYSIS 39

Function Dimensions
Global
Optima

Budget Diversity
No

Merge
RadiusOOB

Alt
Creation

RadiusOOB with
alt creation

Five Uneven Peak Trap 1 2 50K 2 2 2 2 2
Himmelblau 2 4 50K 3.9667 4 4 4 4
Shubert 2 18 200K 15.6667 17.3 17.1333 17.9667 17.9333
Shubert 3 81 400K 35.3 35.8333 35.6333 52.6 53.1667
Composite function CF3 2 6 200K 4.8667 4.8 4.6667 5.1333 4.93333333
Composite function CF3 3 6 400K 4 4 4 4 4
Composite function CF3 5 6 400K 4 4 4 4 4

Table 4.9: Performance results comparing previously viewed methods to the Radiu-
sOOB method.

prevents subswarms from converging to the same location by treating areas of the

search space already being searched as unfavourable areas in terms of fitness. When

a particle then enters such an area, it will leave naturally as it converges to the better

positions already located.

The advantage of this approach is that when two subswarms intersect, there is

no immediate event that takes place. The subswarm merging approaches looked at

earlier in the thesis all force some event to happen when an intersection occurs, where

the action depends on the strategy currently being used. These events are completely

artificial, which takes away from the nature inspired algorithm that PSO is. By

removing such an event and instead subtly modifying the behaviour of the particles,

it allows the particles to behave much more naturally.

Experiments were performed to compare how implementing the radiusOOB method

impacted the performance compare to the no merge method previously discussed. The

method was also paired with the alternative subswarm creation method previously

described to investigate how the two modifications work together. For the alternative

creation method, one particle is created for each subswarm that is created. All results

were averaged over 30 runs, and for each run the total number of optima located was

recorded. Results are shown in Table 4.9. Parameters used for each run are as follows:

• Number of particles: 100

• Inertia: 0.7

• C1 and C2: 1.2

• Accuracy threshold: 0.01

It can be seen in Table 4.9 that applying the radiusOOB method shows little

change in performance. This lack of impact is most likely attributed to particles and

subswarms intersecting very little throughout a run. Since the radius of a subswarm

CHAPTER 4. MODIFICATIONS AND ANALYSIS 40

is calculated using the distance of the particles within the subswarm, as a subswarm

converges towards a single point, the radius of the subswarm converges towards 0. The

impact that this has is that nearby subswarms may search very close to the subswarm

without intersecting, as their radii are relatively small and would not overlap.

To address this problem and try to improve the impact that the radiusOOB

method has on the algorithm, experiments were done to modify the subswarm ra-

dius formula to prevent them from shrinking to a very small size. Earlier experiments

proposed the diversity merge strategy, which limited the growth of a radius with re-

gards to outlier particles. The following experiments aim to limit convergence of a

radius so that the area of effect for a subswarm is maximized without becoming too

large.

Static Radius

A trivial approach to this problem is to set the radii of all subswarms to the same

static size for each iteration. A constant radius would not shrink to a relatively small

size as the particles converge, thus decreasing the possibility of multiple subswarms

tracking the same niche within the search space. The downside of this method is that

it adds a new parameter that requires tuning for each specific function to optimize.

Minimum Sized Radius

Another simple approach is to use a dynamic radius calculation method, but enforce

that every radii has a minimum size that must be maintained. Like the static ap-

proach, this method is a trivial implementation and would still address the issue of

converging radii. This method also allows subswarms with a larger radius to grow

in size without constricting it like the static approach would. The downside of this

method remains the same, where a new parameter is added that requires tuning for

each problem.

Experimental results are shown in Table 4.10. Each result was averaged over

30 runs, and used the radiusOOB method with the alternative subswarm creation

method modification. Parameters used for each run are as follows:

• Number of particles: 100

• Particles created per subswarm: 1

• Inertia: 0.7

CHAPTER 4. MODIFICATIONS AND ANALYSIS 41

Function Dimensions
Global
Optima

Budget RadiusOOB
Static radius

of 0.1
Static radius

of 0.5
Minimum

radius of 0.1
Minimum

radius of 0.5

Five Uneven Peak Trap 1 2 50K 2 2 2 2 2
Himmelblau 2 4 50K 4 4 4 4 4
Shubert 2 18 200K 17.9333 17.8 17.4667 17.5333 17.2333
Shubert 3 81 400K 53.1667 50.0333 50.1667 51.2 50.9
Composite function CF3 2 6 200K 4.9333 4.0667 4.1 4.1 4.1667
Composite function CF3 3 6 400K 4 4 4 4 4
Composite function CF3 5 6 400K 4 4 3.9667 4 3.9333

Table 4.10: Performance results comparing different methods for calculating a sub-
swarms radius.

• C1 and C2: 1.2

• Accuracy threshold: 0.01

It can be seen in Table 4.10 that for most functions, not using a minimum sized

or static radii results in on average higher performance. While the changes in perfor-

mance are not large, the small decrease in performance provides enough evidence to

suggest that these simple approaches are not the correct approach to overcoming the

issues with the radiusOOB method.

The decrease in performance for these approaches is likely caused by subswarms

that are located in sub-optimal locations. These subswarms would maintain a radius

along with the other subswarms, but if they converge to a weak location in the search

space then nearby positions that are stronger would be overlapped by the radius.

If this is the case, then the method for calculating a subswarms radius would need

to both prevent the subswarms radius from converging and also limit the size and

impact that weaker subswarms have on stronger subswarms.

Ideal Radius Calculation Formula

The goal of a subswarm’s radius is to denote an area of the search space that the

subswarm is currently searching. If two radii intersect, an assumption is made that

these two subswarms are searching and converging towards the same optimum. In

this situation, action is taken to prevent this through the use of a merging strategy. It

is ideal that within the bounds of any radius, only a single optimum exists (perhaps

yet to be located). Should a radius contain multiple optimum, only a single one would

be tracked by the end of the run. Another consideration is that it is undesirable for

a radius to be relatively small. If a radius is too small, then it is easy for another

subswarm to exist close by and converge towards the same location. One final con-

sideration is that if one treats the radius as off limits to other subswarms, then this

would create “false optima” located around the edges of the radius. A subswarm

CHAPTER 4. MODIFICATIONS AND ANALYSIS 42

Figure 4.3: A depiction of a false optimum shown with subswarm 1, and a depiction
of an ideal radius shown with subswarm 2.

could converge to a location just outside of the radius of another subswarm, as the

converging subswarm may not have been able to find a stronger position elsewhere in

the function (see Figure 4.3).

Taking these factors into consideration, an ideal radius size would be the size of

the current hill that the subswarm is converging within. This guarantees that only

a single optimum would exist within the radius, being the peak of the hill. As well,

it mitigates the unwanted consequence of creating false optima around the edges of

the radius. If these false optima are located close to a local minimum in the problem

space, then it is likely that a nearby subswarm would converge to the neighbouring

hill instead of the suboptimal location.

Another attribute of an ideal radius would be that it is asymmetric depending

on the location of the subswarm and shape of the problem landscape. One could

calculate the size of a hill, and the radius of a subswarm could be set to that value

and not change. This however would not work entirely, as the radius is centered

around the subswarm global best. If the global best is not located near the peak of

the hill it is searching, then the radius would not cover the entire hill and would cover

an area outside of the current hill. Covering an area outside of the current hill should

be avoided, as it is possible that optima may exist within the area and the algorithm

CHAPTER 4. MODIFICATIONS AND ANALYSIS 43

would be unable to locate it.

By allowing a radius to be asymmetric, for each dimension the distance from the

subswarm best to the nearest minimum peak can be stored and used as a much more

accurate way of assigning an area in the search space to be searched. This approach

would overcome the issues previously described, where radii either cover too much

area and overlap other peaks, or cover too little and form false optima within the hills.

A formula to calculate a subswarm radius that would meet all these requirements is

unknown at this time, and the development of one is left as future work.

4.3 Alternative Velocity Update Formulas

The NichePSO algorithm uses a cognitive velocity update formula to update the

velocity and position of all particles in the main swarm. Particles that have been

assigned to a subswarm have their velocities and positions updated using the GCPSO

update formulas. This section looks at several alternative velocity update formulas

for both the main swarm particles and those within a subswarm. Details describing

each modified formula are provided, along with experiments and results comparing

each modified formula to the original formulas.

4.3.1 Vanilla PSO

The first tests done are to test whether the use of the GCPSO social update formula

is beneficial to the NichePSO algorithm. This is tested by removing the updates for

the global best particles and instead using the tradition PSO update formula for every

particle. A description of the vanilla PSO algorithm and formulas can be found in

Chapter 2.

4.3.2 Fast Convergence PSO

The Fast Convergence PSO (FCPSO) was proposed in [29], and is experimented with

to try and improve the convergence speed of the subswarms. The FCPSO formula

uses the traditional PSO social update velocity formula, and adds a new term referred

to as the particle mean dimension (Pmd) of the subswarm particles. Particles within

a subswarm S are updated using

CHAPTER 4. MODIFICATIONS AND ANALYSIS 44

vi(t+1) = vi(t)∗W+C1∗rand∗(x̄i−xi)+C2∗rand∗(Ḡ−xi)+C3∗rand∗(PmdS(t)−xi)
(4.2)

In the above equation, the Pmd of a subswarm is calculated by averaging for

each dimension the position of every particle within the subswarm using PmdS =

(xi1 + xi2 + ...+ xiD)/D, where D is the number of dimensions in the problem space.

For all experiments performed with this update formula, a value of c3 = 1.6 was used

to satisfy the equation c1 + c2 + c3 ≥ 4 given in the original paper [29].

4.3.3 Predator-Prey PSO

The Predator-Prey PSO (PPPSO) was proposed in [33], and is experimented with to

improve particle diversity and exploration in the main swarm. The PPPSO is based on

the interactions in nature between predators and prey, where prey will explore and

search for food while simultaneously avoiding predators searching for food of their

own. Simulating this scenario causes prey to explore new areas that they otherwise

would not have searched to both avoid predators and find food or shelter.

In implementation, the PPPSO algorithm is designed to promote swarm diversity

during a run and help particles break free of local optima when trapped. During a

run, prey particles are updated using the traditional PSO velocity and position update

formulas described in Chapter 2. The difference is that each particle is influenced by a

fear factor Pf , which is the probability of the particles direction being adjusted when

influenced by a predator. If a particles fear probability is met, then the particles

velocity and position are updated using

vi(t+ 1) = vi(t) ∗W + C1 ∗ rand ∗ (x̄i − xi) + C2 ∗ rand ∗ (Ḡ− xi) + C3D(d) (4.3)

xi(t+ 1) = xi(t) + vi(t+ 1) (4.4)

In the above equations, the term D(d) calculates how strongly the predator effects

the particle in the current dimension. The variable d is the distance between the

particle and the predator, and the function D(x) is an exponential decreasing function

D(x) = ae−bx. The values of a and b are changeable parameters, where a represents

the maximum strength of the predators influence on a particle, and b represents the

distance between the predator and particle that the effect is significant. Finally,

predator particles are updated using the equation

CHAPTER 4. MODIFICATIONS AND ANALYSIS 45

vi(t+ 1) = c4(Ḡ− x̄i) (4.5)

The PPPSO algorithm can be integrated with the NichePSO algorithm by treat-

ing the main swarm as a set of prey, and the subswarm best particles are treated as

predators. The update formula for the prey particles is modified by removing the

social term from the equation so that particles in the main swarm do a local search

instead of converging to an already discovered location. As well, preliminary experi-

ments showed that removing the predator update formula shown in Equation 4.5 and

instead updating predator particles using the GCPSO formula improved results.

In all PPPSO runs, the parameter values of a and b are set to match the values

used in the original paper [33]. The values set are a = 0.1Xmax, b = 10/Xmax, and a

fear factor of Pf = 0.01. The value of Xmax refers to the upper bound of the current

function being optimized. Finally, a value of C3 = 2 is used for the fear term to match

the original paper.

4.3.4 Experimental Results

Experiments were conducted to compare the impact on performance between the

various velocity update formulas discussed. For each test, the total number of optima

located was recorded, and each result was averaged over 30 iterations. Velocity specific

parameters were set to match the values mentioned previously in their respective

subsections. For each run, the NichePSO algorithm used the radiusOOB modification

and the alternative subswarm creation method modification. Results are shown in

Table 4.11. Constant parameters used for each run are as follows:

• Number of particles: 100

• Particles created per subswarm: 1

• Inertia: 0.7

• C1 and C2: 1.2

• Accuracy threshold: 0.01

Looking at Table 4.11, the first observation to be made is that using the vanilla

PSO update formula results in significantly worse performance, with the algorithm

failing to find a single optimum for several of the problems. This decrease in per-

formance is likely due to subswarms converging to suboptimal values, and then they

CHAPTER 4. MODIFICATIONS AND ANALYSIS 46

Function Dimensions
Global
Optima

Budget GCPSO Vanilla FCPSO PPPSO

Five Uneven Peak Trap 1 2 50K 2 1.3 2 2
Himmelblau 2 4 50K 4 0.2333 4 4
Shubert 2 18 200K 17.9667 0.0667 17.8667 17.8667
Shubert 3 81 400K 52.6 0 53 53.6667
Composite function CF3 2 6 200K 5.1333 0.0333 5.3667 5.3
Composite function CF3 3 6 400K 4 0 4 4
Composite function CF3 5 6 400K 4 0 4 4

Table 4.11: The average number of optima located for each velocity update formula
tested.

are unable to continue searching without the use of the GCPSO formulas. One could

argue that this decrease in performance is due to each subswarm only containing two

particles, which would greatly impact the vanilla formulas as the subswarms would

converge very quickly. However, follow up tests found that even with each subswarm

containing five particles each, there is no significant change in performance with the

vanilla PSO formulas.

When looking at the results of the FCPSO and PPPSO formulas, there are slight

variations in results compared to the original GCPSO formula. Since the particles

within a subswarm continue to use the GCPSO update formula with these modifica-

tions, the use of these formulas only impacts the exploration and convergence speed of

the subswarms. For the FCPSO formula it is likely that even though subswarms are

converging faster, whether a subswarm is detected or not comes down to the GCPSO

formula thoroughly searching the local neighbourhood. For the PPPSO formula, the

results suggest that the increase in exploration is not enough to make a significant

difference. Additional tests with the PPPSO formula showed a similar lack of results

when the parameters were modified to try and increase its effect on the particles.

While neither of these two formulas performed poorly, the downside is that they have

a slight increase in computational cost and complexity, which one should consider

when trying to decide which formula to proceed with.

4.4 Reinitialization

A drawback of the NichePSO algorithm is that there is a natural limitation to

the number of optima that can be tracked during a single run. In the traditional

NichePSO algorithm, a subswarm is created by merging a converged particle with

its closest neighbour in the main swarm. This means that each time a subswarm is

CHAPTER 4. MODIFICATIONS AND ANALYSIS 47

created, a minimum of two particles are removed from the main swarm. With that

in mind, if a run begins with 100 particles in the main swarm, the most amount of

optima that could be tracked in a perfect scenario would be 50. Even if the alterna-

tive subswarm creation method is used, the algorithm is still limited to one optimum

tracked per initial particle. This is also assuming every subswarm is able to detect a

unique optimum and sufficiently search the local neighbourhood and converge to the

peak, which is difficult to ensure.

In order to improve performance of the NichePSO algorithm in such a scenario,

there are two options. The first is that the number of particles used in the main

swarm could be increased. While this is a simple solution to the issue, it is not an

efficient or scalable solution. As the number of particles increase the computational

speed decreases, and it becomes more and more difficult to prevent the subswarms

from searching the same areas of the search space.

The second option is to increase the number of optima that can be tracked by a sin-

gle subswarm. This is done by using a reinitialization method, where subswarms are

reintroduced back into the main swarm once the subswarm has fully converged. This

approach has the benefit of overcoming the limitations of the traditional NichePSO

algorithm without needing to increase the number of particles used.

4.4.1 Implementation

For a reinitialization method to work, a method of determining whether a subswarm

has converged or not is needed. It is important that this method allows subswarms a

sufficient amount of time to search their local neighbourhood before reinitialization.

Once a subswarm is reintroduced back into the main swarm, no more searching will

occur in that neighbourhood.

To achieve this, the partitioning criteria procedure from the traditional NichePSO

algorithm is leveraged. To recap, a particle in the main swarm is said to have con-

verged if the variance of its fitness value σi < δ over three iterations. This procedure

is utilized again by checking whether the particles within a subswarm have a fitness

variance smaller than δ. If every particle in a subswarm meets this criteria, then

the subswarm is considered converged. At this point, the subswarms best location is

recorded and the particles are reintroduced back into the main swarm at a random

location. The radius of the subswarm remains in the same location, that way other

particles and subswarms in the area are discouraged from searching the same location

multiple times.

CHAPTER 4. MODIFICATIONS AND ANALYSIS 48

4.4.2 Improving Reintroduction

A problem that can be observed with relocating particles randomly is that these

particles may be located within an area of the search space that has already been

searched. As a run progresses this becomes more and more likely as the search space

is further explored. To maximize the potential of a reinitialization method, particles

should be placed in areas of the search space that have not been searched yet. This

would maximize exploration and reduce the chance of particles converging to an

optimum already located.

To address this problem a modification is proposed that places particles between

existing subswarms. Two random subswarms are selected (including subswarms that

have already converged), and the middle location for each dimension is calculated. A

particle is then placed in a location close to this determined point. By placing particles

in the locations between subswarms, the chance of a particle being reintroduced into

an already searched area is reduced.

A negative aspect to this approach is that particles are unable to reinitialize into

a location in the search space outside of every existing subswarm towards the edges of

the search space. To increase exploration under this method, particles are reinitialized

in between subswarms 50% of the time, and the other 50% are reinitialized randomly.

4.4.3 Modifying the Convergence Test

It was observed in preliminary experiments that many subswarms were reinitialized

before fully converging to the peak of the optimum they were tracking. If a sub-

swarm has not fully explored the local neighbourhood they are searching when they

are considered converged, then there is no way for the algorithm to return to this

neighbourhood later on and finish this search. Since the radii of converged sub-

swarms remain in place after reinitialization, any particles that try to search this

area later on will be unable to explore the area.

This issue was found to be caused by the alternative subswarm creation method

used. As per the results of previous experiments, the alternative creation method

performs better when less particles are created for each subswarm. This observation

however has a negative effect when combined with reinitialization. If only a single

particle is created for each subswarm, then the two particles within each subswarm

will converge quickly. The convergence test will then determine that the subswarm

has converged and reinitialize the particles before they are finished exploring the

neighbourhood. Evidence of this can be seen in Table 4.12.

CHAPTER 4. MODIFICATIONS AND ANALYSIS 49

Function Dimensions
Global
Optima

Budget
Particles created

1 2 3 4

Five Uneven Peak Trap 1 2 50K 2 2 2 2
Himmelblau 2 4 50K 4 4 4 4
Shubert 2 18 200K 16.1333 18 18 17.9667
Shubert 3 81 400K 1 11 33.8333 49.5
Composite function CF3 2 6 200K 4 4.1 5.2 5.2667
Composite function CF3 3 6 400K 2.4 4 4 4
Composite function CF3 5 6 400K 0.0333 0 0.5333 3.6333

Table 4.12: A performance comparison of combining the alternative creation method
with reinitialization.

Along with the original convergence test proposed, a stricter convergence test is

tested alongside the original convergence test. Instead of utilizing the partitioning

criteria test used for particles in the main swarm, a more specialized convergence

test will be used. A subswarm is considered converged if the distance between the

subswarm best location and every particle within the subswarm is less than some

distance value d = 0.001. By using distance instead of fitness variance, it can be

ensured that all particles are located in almost identical locations before a subswarm

is reinitialized.

4.4.4 Initial Experiments

The first experiments performed compare the results of the original reinitialization

method, a reinitialization method using the stricter position based convergence test,

and a reinitialization method utilizing the pseudo-random positioning technique that

positions particles between subswarms. All techniques were run 30 times, and each

run recorded the total number of unique global optima detected for the various bench-

mark functions. Every run also uses the radiusOOB modification and alternative sub-

swarm creation method both proposed previously. Using the results of Table 4.12,

each reinitialization method uses four created particles per subswarm. The original

method without reinitialization uses one created particle per subswarm. Results are

shown in Table 4.13. Parameters for each run are as follows:

• Number of particles: 100

• Inertia: 0.7

• C1 and C2: 1.2

• Accuracy threshold: 0.01

CHAPTER 4. MODIFICATIONS AND ANALYSIS 50

Function Dimensions
Global
Optima

Budget
No

Reinitialize
Basic

Reinitialize
Middle

Reinitialize
Position

Reinitialize

Five Uneven Peak Trap 1 2 50K 2 2 2 2
Himmelblau 2 4 50K 4 4 4 4
Shubert 2 18 200K 17.9667 18 18 18
Shubert 3 81 400K 52.6 52.2667 52.3 48.8
Composite function CF3 2 6 200K 5.1333 5.8333 5.8333 4.0667
Composite function CF3 3 6 400K 4 4 4 4
Composite function CF3 5 6 400K 4 3.1333 2.9333 3.5667

Table 4.13: A comparison of performance for the different reinitialization methods
presented.

Function
No

Reinitialization
Using

Reinitialization

Five Uneven Peak Trap 100 100.6667
Himmelblau 100 100.8
Shubert 100 274.8
Shubert 100 760.2667
Composite function CF3 100 136.3333
Composite function CF3 100 170
Composite function CF3 100 313.9667

Table 4.14: Total number of subswarms created with and without the use of reini-
tialization.

The first observation is that incorporating reinitialization seemed to have changed

the performance very little. One might see these results and think that this is because

very few subswarms are reinitializing, thus acting similarly to the original algorithm

without the use of reinitialization. A quick experiment was done to test this idea,

where the total number of subswarms created were counted. Results are shown in

Table 4.14.

It can be seen in Table 4.14 that reinitialization does create on average more

subswarms than without using reinitialization. This means that the similarities in

performance are likely due to coincidence as opposed to the reinitialization approach

not having an impact on the algorithm. Functions with a larger number of global

optima are shown to be impacted a lot more by reinitialization, as seen with the

Shubert functions used.

The use of the middle reinitialize method and the position convergence test does

not have a positive impact on the reinitialization approach. The pseudorandom mid-

dle method shows results suggesting that using a completely random location for new

particles is just as effective. The position convergence test shows a decrease in perfor-

mance for multiple functions used, suggesting that the original test proposed works

CHAPTER 4. MODIFICATIONS AND ANALYSIS 51

better with the NichePSO algorithm and the modifications utilized.

4.4.5 A Trivial Convergence Test

As previously discussed, the use of a convergence test relies on subswarms contain-

ing multiple particles, as using fewer particles per subswarm causes the subswarm to

be reinitialized prematurely. It would be beneficial to instead use a convergence test

that would work if subswarms used only a couple particles each. Previous experiments

showed that when using the alternative creation method, creating less particles corre-

lated to a stronger performance. If a convergence test was implemented that was able

to combine the strong results of using less particles with the enhanced exploration

abilities of reinitialization, then the resulting algorithm would likely perform better

than its counterparts.

While experimenting with different convergence tests, a trivial test was imple-

mented to test the theory. Instead of testing for convergence each iteration, a

subswarm is allowed to exist for only a certain number of iterations ι before be-

ing reinitialized. Empirical testing and observations made from Table 4.5 (cor-

relation between performance and number of iterations) has determined that ι =

number of dimensions ∗ 300 iterations for each subswarm provides sufficient time for

subswarms to converge fully.

A downside of this method is that a lot more iterations are required to provide the

subswarms a sufficient amount of time to form, converge and reinitialize successfully.

While this approach does allow the number of particles used to remain small, the

number of function evaluations needed to complete a run remains roughly the same

as increasing the number of particles and shortening the number of iterations.

Experimental results comparing this existence method to the standard reinitializa-

tion methods are shown in Table 4.15. Parameters all remain the same as the previous

experiment, except that for the existence reinitialization method only a single particle

is created per subswarm as opposed to four.

It can be seen in Table 4.15 that allowing subswarms to exist for some number

of iterations does show signs of improved performance over the use of a convergence

test. While this reinitialization approach does show a worse performance for the

2D composite function, all other functions show either an increase or even levels of

performance despite the simple nature of the existence approach. If this approach

is replaced by a convergence test that successfully allows all subswarms to converge

sufficiently, while also reinitializing subswarms that converge to their peak quickly,

CHAPTER 4. MODIFICATIONS AND ANALYSIS 52

Function Dimensions
Global
Optima

Budget
No

Reinitialize
Basic

Reinitialize
Existence

Reinitialize

Five Uneven Peak Trap 1 2 50K 2 2 2
Himmelblau 2 4 50K 4 4 4
Shubert 2 18 200K 17.9667 18 18
Shubert 3 81 400K 52.6 52.2667 59.2667
Composite function CF3 2 6 200K 5.1333 5.8333 4.3333
Composite function CF3 3 6 400K 4 4 4
Composite function CF3 5 6 400K 4 3.1333 4

Table 4.15: A comparison of performance for the existence reinitialization method.

one would expect an even greater increase in performance. Finding such a convergence

test is left as future work for the NichePSO algorithm.

53

Chapter 5

Modified NichePSO Algorithms

This chapter proposes two modified NichePSO algorithms utilizing the modifica-

tions and experiments performed in the previous chapters. Experimental results

are included that compare these modified algorithms to each other and the origi-

nal NichePSO algorithm. Each of the proposed algorithms is described in complete

detail below.

5.1 NichePSO-R Algorithm

The NichePSO-R algorithm is similar to the original NichePSO algorithm with only

a few modifications to its behaviour. It utilizes the no merge and radiusOOB modifi-

cations to overcome the merging subswarm problem, while also modifying the alter-

native subswarm creation strategy to boost performance. A large number of particles

are used which are initialized across the search space, and each one forms its own

subswarm and converges to the nearest optimum. The NichePSO-R algorithm is

described in Algorithm 3.

Particles are initialized in a lattice formation across the search space to spread

out each particles area of effect. Initial velocities are initialized randomly within the

range of vi ∈ [−0.5, 0.5], vi 6= 0.

Particles in the main swarm are updated using a cognitive only update formula,

described in Chapter 2 Equations 2.6 and 2.7. Particles within a subswarm are

updated using the GCPSO update formulas described in Chapter 2 Equations 2.3

and 2.4. The radius of each subswarm is calculated by taking the maximum distance

between the subswarm best and each particle within the subswarm, using Equation

2.8.

If a particle intersects with the radius of a subswarm, and that particle is not a

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 54

Initialize particles in main swarm;
while stopping criteria not met do

Update position of all particles in main swarm;
Evaluate fitness of particles in main swarm;
foreach subswarm S do

Update position of all particles within S;
Evaluate fitness of all particles within S;
Recalculate the radius of S;

end
foreach particle P do

foreach subswarm S do
if P intersects with S & P is not a subset of S then

Flag P as out of bounds;
end

end
if P is not within any subswarm radius then

Remove out of bounds flag from P;
end

end
foreach particle P in the main swarm do

if partitioning criteria for P is met then
Create new subswarm from particle P;

end

end

end
Algorithm 3: The NichePSO-R Algorithm

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 55

member of the subswarm, then a flag is set for that particle. If a particle has this

flag set, then it is considered to be travelling in an out of bounds area of the search

space, and is unable to update its personal best fitness. If a particle has this flag

set and is no longer intersecting with the radius of another subswarm, then the flag

is removed and the particle is free to update its personal best fitness again. This

behaviour applies to all particles, whether they be in the main swarm or within a

created subswarm.

A particle in the main swarm is considered converged if after e = 3 iterations,

its variance in fitness σ < δ = 0.0001. Values for e and δ may be changed, but for

the experiments performed in this thesis these values were set to match the original

NichePSO algorithm [5]. Once a particle in the main swarm converges, it is removed

from the main swarm and creates its own subswarm. κ new particles are created and

positioned near the converged particle, and a subswarm is formed with the original

particle that converged and these created particles. For the experiments performed

in this chapter, a value of κ = 1 is used.

5.2 NichePSO-S Algorithm

The NichePSO-S algorithm uses a smaller number of particles that are frequently

reinitialized randomly throughout the search space. This approach gives the algorithm

a high exploration ability, while also allowing particles that find favourable positions

sufficient time to explore their local neighbourhood before being moved to a new area

of the search space. The NichePSO-S algorithm is described in Algorithm 4.

Particles are initialized in a lattice formation across the search space to spread

out each particles area of effect. Initial velocities are initialized randomly within the

range of vi ∈ [−0.5, 0.5], vi 6= 0.

Particles in the main swarm are updated using a cognitive only update formula,

described in Chapter 2 Equations 2.6 and 2.7. Particles within a subswarm are

updated using the GCPSO update formulas described in Chapter 2 Equations 2.3

and 2.4. The radius of each subswarm is calculated by taking the median distance

between the subswarm best and each particle within the subswarm, using Equation

5.1.

Ri = Median{|Sxj ,i − Sx̄,i|} (5.1)

A particle in the main swarm is considered converged if after e = 3 iterations,

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 56

Initialize particles in main swarm;
while stopping criteria not met do

Update position of all particles in main swarm;
Evaluate fitness of particles in main swarm;
foreach subswarm S do

Update position of all particles within S;
Evaluate fitness of all particles within S;
Recalculate the radius of S;

end
foreach subswarm S do

if subswarm S meets convergence test then
Reinitialize particles in subswarm S;

end
foreach subswarm T do

if S and T intersect then
Reinitialize particles in weaker subswarm;

end

end

end
foreach particle P in the main swarm do

if partitioning criteria for P is met then
Create new subswarm from particle P;

end

end

end
Algorithm 4: The NichePSO-S Algorithm

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 57

its variance in fitness σ < δ = 0.0001. Values for e and δ may be changed, but for

the experiments performed in this thesis these values were set to match the original

NichePSO algorithm [5]. If a particle in the main swarm converges, it is removed

from the main swarm and creates its own subswarm. κ new particles are created,

and a subswarm is formed with the original particle that converged and these created

particles. For the experiments performed in this chapter, a value of κ = 1 is used.

A subswarm is considered converged once it has existed for ι iterations. For the

experiments in this chapter, the value ι = number of dimensions∗300 was used. When

a subswarm has existed for ι iterations, its best location is recorded and its original

particle is reinitialized back into the main swarm with a new random location. The

additional κ particles created from the creation strategy are removed, so that more

and more particles are not created exponentially as the run progresses.

When two subswarms intersect, both subswarms are checked for which subswarm

best has a stronger fitness. The original particle that created this subswarm with the

weaker fitness is reinitialized back into the main swarm with a new random location.

The additional κ particles created when the subswarm was created are removed.

5.3 Experimental Setup

To thoroughly compare the results of the original NichePSO, the NichePSO-R and

the NichePSO-S algorithms, all 20 benchmark functions from the CEC’2013 niching

competition are used [20]. As well, the smallest accuracy threshold of 0.0001 that the

competition uses is also used. This setup compares the performance of each proposed

NichePSO algorithms along with the original in a strict competition environment. All

results are averaged over 30 individual runs.

Results for the original NichePSO algorithm were collected using the diversity

merge modification described in Chapter 3. This is done to keep the algorithm as close

to the original as possible, while also mitigating the effect of the merging subswarm

problem. The NichePSO and NichePSO-R algorithms use 250 particles for each run.

This number was chosen based off of experimental results shown in Table 4.6. The

NichePSO-S algorithm uses 80 particles per run, as its use of reinitialization allows

it to perform well using less particles than the others. The inertia value for each run

is set to W = 0.7, and the cognitive and social components are set to c1 = c2 = 1.2.

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 58

5.3.1 Performance Measures

To better compare each proposed algorithm, multiple performance measures are used

based off of measures described in [25]. The first measure is the average number of

global optima located. This measure has been used regularly throughout this thesis,

and will serve as a strong baseline for measuring the performance for each algorithm.

Along with the average global optima found, the average peak ratio for each

algorithm is recorded for each function. The peak ratio is calculated by global optima

found / total global optima, and represents the percentage of global optima located

for each run.

The next performance measure is the success rate of each run. A success is

recorded if all global optima are located within a single run. The success rate is

calculated by # of successes / # of runs, and represents the percentage of individual

runs that are able to locate all global optima within the function. An algorithm may

outperform another for average number of optima found, but the success rate of the

algorithm may be lower. If one prioritizes finding all optima as opposed to finding

the most on average, then this measure will show which algorithm is a better choice

for the task.

Finally for each run the total amount of time needed to perform the run is

recorded. This measure compares the computational time of each algorithm, and

compares whether one algorithm takes significantly longer to run than another. One

algorithm may outperform another across all functions, however if the same algorithm

takes significantly longer to complete for only a small increase in performance, one

may consider using the weaker algorithm to save time and resources. All tests are

performed on the same machine environment. Since execution time is dependant on

the machine environment that the tests are being run on, all time results will be

normalized and displayed as relative speeds as well as absolute times.

The original NichePSO algorithm is given a relative speed of 1. The NichePSO-R

and NichePSO-S algorithms are given a unit speed that is relative to the run time of

the original algorithm. For example, a relative speed of 2 means that the run took

twice as long to complete as the original algorithm. A relative speed of 0.5 means

that the run completed in half the time as the original algorithm. This relative speed

measurement allows the time results to be valid across all machine environments, and

provides an easy measure for comparing additional algorithms to the three discussed.

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 59

5.4 Experimental Results

Results comparing the average number of global optima detected are shown in Table

5.1. As well, the peak ratio for each function is shown in Table 5.2. For most

functions used, the NichePSO-R and NichePSO-S algorithms found as many or more

optima than the original NichePSO algorithm. The only functions where the proposed

algorithms lost were composite function 3 (2D) and composite function 4 (3D). For all

other functions, the NichePSO-R and NichePSO-S showed either an equal or greater

performance.

To validate the results shown in Tables 5.1 and 5.2, Mann-Whitney U tests were

performed to compare each individual performance across all functions. The p-values

for each test are shown in Table 5.3. All p-values that are considered statistically

significant with a confidence level of p < 0.05 are shown in bold.

The NichePSO-R algorithm outperformed the original NichePSO algorithm on

nine out of the twenty benchmark functions used. Out of those nine functions, eight

performances were statistically significant improvements over the original algorithm.

The original NichePSO algorithm outperformed the NichePSO-R algorithm on two

benchmark functions, but only one was statistically significant. All remaining results

for both algorithms are either equal, or too similar to be considered a significant

difference.

The NichePSO-S algorithm outperformed the original NichePSO algorithm on

eleven out of twenty benchmark functions. Out of these eleven functions, nine showed

an improvement that was statistically significant. The original NichePSO algorithm

outperformed the NichePSO-S algorithm on three functions, two of which were sta-

tistically significant. All remaining results are either equal, or too similar to be

considered a significant difference.

Overall both the NichePSO-R and NichePSO-S algorithm show a considerable

improvement over the NichePSO algorithm. This improvement becomes more pro-

nounced when one considers that the NichePSO algorithm being tested uses the di-

versity merge modification to mitigate the impact of the merging subswarm problem.

Compared to the vanilla NichePSO algorithm proposed in [5], both modified versions

greatly outperform the original.

The differences between the NichePSO-R and NichePSO-S algorithms are much

less noticeable. Out of the twenty functions used, the NichePSO-R algorithm per-

formed better on six than the NichePSO-S. Out of these six performances, four were

a statistically significant improvement. The NichePSO-S algorithm outperformed the

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 60

Function Dimensions
Global
Optima

Budget NichePSO NichePSO-R NichePSO-S

Five Uneven Peak Trap 1 2 50K
A: 2
S: 0

A: 2
S: 0

A: 2
S: 0

Equal Maxima 1 5 50K
A: 4.3

S: 1.1492
A: 5
S: 0

A: 5
S: 0

Uneven Decreasing Maxima 1 1 50K
A: 1
S: 0

A: 1
S: 0

A: 1
S: 0

Himmelblau 2 4 50K
A: 4
S: 0

A: 4
S: 0

A: 4
S: 0

Six-Hump Camel Back 2 2 50K
A: 1.1333
S: 0.3457

A: 2
S: 0

A: 2
S: 0

Shubert 2 18 200K
A: 14.8333
S: 1.3412

A: 18
S: 0

A: 18
S: 0

Vincent 2 36 200K
A: 20.0333
S: 1.8286

A: 24.4
S: 1.5222

A: 30.5
S: 1.3834

Shubert 3 81 400K
A: 52.5667
S: 2.7877

A: 71.7
S: 2.8905

A: 67.3667
S: 3.1237

Vincent 3 216 400K
A: 43.7333
S: 2.7156

A: 59.8
S: 3.4481

A: 72.9333
S: 3.8946

Modified Rastrigin 2 12 200K
A: 5.9667
S: 3.2108

A: 12
S: 0

A: 12
S: 0

Composite Function 1 2 6 200K
A: 5.9667
S: 0.1826

A: 5.9667
S: 0.1826

A: 4.5333
S: 0.6288

Composite Function 2 2 8 200K
A: 6.1

S: 1.3983
A: 7.8667
S: 0.3457

A: 6.8
S: 0.7611

Composite Function 3 2 6 200K
A: 5.3667
S: 0.8087

A: 4.6
S: 0.6215

A: 4.0667
S: 0.2537

Composite Function 3 3 6 400K
A: 4
S: 0

A: 4
S: 0

A: 4
S: 0

Composite Function 4 3 8 400K
A: 5.0333
S: 0.7649

A: 4.6
S: 0.6215

A: 4.0667
S: 0.2537

Composite Function 3 5 6 400K
A: 4
S: 0

A: 4
S: 0

A: 4
S: 0

Composite Function 4 5 8 400K
A: 2.4

S: 0.5632
A: 3.3333
S: 0.7112

A: 3.2
S: 0.5509

Composite Function 3 10 6 400K
A: 0
S: 0

A: 0
S: 0

A: 2.3
S: 0.8367

Composite Function 4 10 8 400K
A: 0
S: 0

A: 0
S: 0

A: 0.1
S: 0.3051

Composite Function 4 20 8 400K
A: 0
S: 0

A: 0
S: 0

A: 0
S: 0

Table 5.1: The average (A) and standard deviation (S) comparing the NichePSO
algorithm to the modified versions proposed.

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 61

Function Dimensions
Global
Optima

Budget NichePSO NichePSO-R NichePSO-S

Five-Uneven-Peak Trap 1 2 50K 1 1 1
Equal Maxima 1 5 50K 0.86 1 1
Uneven Decreasing Maxima 1 1 50K 1 1 1
Himmelblau 2 4 50K 1 1 1
Six-Hump Camel Back 2 2 50K 0.5667 1 1
Shubert 2 18 200K 0.8241 1 1
Vincent 2 36 200K 0.5565 0.6778 0.8472
Shubert 3 81 400K 0.649 0.8852 0.8317
Vincent 3 216 400K 0.2025 0.2769 0.3377
Modified Rastrigin 2 12 200K 0.4972 1 1
Composite Function 1 2 6 200K 0.9944 0.9944 0.7556
Composite Function 2 2 8 200K 0.7625 0.9833 0.85
Composite Function 3 2 6 200K 0.8944 0.7667 0.6778
Composite Function 3 3 6 400K 0.6667 0.6667 0.6667
Composite Function 4 3 8 400K 0.6292 0.6583 0.6417
Composite Function 3 5 6 400K 0.6667 0.6667 0.6667
Composite Function 4 5 8 400K 0.3 0.4167 0.4
Composite Function 3 10 6 400K 0 0 0.3833
Composite Function 4 10 8 400K 0 0 0.0125
Composite Function 4 20 8 400K 0 0 0

Table 5.2: The peak ratio of each algorithm across all benchmark functions.

NichePSO-R algorithm on four of the twenty functions, three of which were statisti-

cally significant. All other results were either even or too similar to be considered a

significant difference.

Another aspect to consider when comparing the algorithm is the success rate for

each function, shown in Table 5.4. Of the three algorithms, the NichePSO-R shows

on average to have the highest success rate for the most functions. The original

NichePSO algorithm had the highest success rate for the composite function 3 (2D),

but aside from that function the NichePSO-R algorithm has a success rate that is

either higher or equal to the other algorithms for all remaining functions.

The final performance measure to compare the algorithms is computational execu-

tion time. For every run, the time it took to perform the search is recorded, averaged

and reported in Table 5.5. A ratio comparing each recorded time to the original

algorithm is shown in Table 5.6.

For the first 10 functions used, in general the original NichePSO algorithm has

the fastest execution times. However, a lot of these functions are relatively small,

and the actual differences in time for these functions is also small. For example, for

the Five Uneven Peak Trap function, the NichePSO-S took around 13.6 times longer

to execute than the original NichePSO algorithm. However, the actual difference in

time when looking at Table 5.5 is about 700ms, or less than a second difference.

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 62

Function
NichePSO to
NichePSO-R

NichePSO to
NichePSO-S

NichePSO-R to
NichePSO-S

Five Uneven Peak Trap 0.9999 0.9999 0.9999
Equal Maxima 0.0271 0.0271 0.9999
Uneven Decreasing Maxima 0.9999 0.9999 0.9999
Himmelblau 0.9999 0.9999 0.9999
Six-Hump Camel Back 0.0001 0.0001 0.9999
Shubert 0.0001 0.0001 0.9999
Vincent 0.0001 0.0001 0.0001
Shubert 0.0001 0.0001 0.0001
Vincent 0.0001 0.0001 0.0001
Modified Rastrigin 0.0001 0.0001 0.9999
Composite Function 1 0.9999 0.0001 0.0001
Composite Function 2 0.0001 0.05 0.0001
Composite Function 3 0.0003 0.0001 0.0017
Composite Function 3 0.9999 0.9999 0.9999
Composite Function 4 0.2757 0.6384 0.5419
Composite Function 3 0.9999 0.9999 0.9999
Composite Function 4 0.0001 0.0001 0.6031
Composite Function 3 0.9999 0.0001 0.0001
Composite Function 4 0.9999 0.5093 0.5093
Composite Function 4 0.9999 0.9999 0.9999

Table 5.3: P-values comparing each algorithms results using Mann-Whitney U Tests.

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 63

Function Dimensions
Global
Optima

Budget NichePSO NichePSO-R NichePSO-S

Five-Uneven-Peak Trap 1 2 50K 1 1 1
Equal Maxima 1 5 50K 0.6667 1 1
Uneven Decreasing Maxima 1 1 50K 1 1 1
Himmelblau 2 4 50K 1 1 1
Six-Hump Camel Back 2 2 50K 0.1333 1 1
Shubert 2 18 200K 0.0333 1 1
Vincent 2 36 200K 0 0 0
Shubert 3 81 400K 0 0 0
Vincent 3 216 400K 0 0 0
Modified Rastrigin 2 12 200K 0 1 1
Composite Function 1 2 6 200K 0.9667 0.9667 0.0667
Composite Function 2 2 8 200K 0.1667 0.8667 0.1667
Composite Function 3 2 6 200K 0.5333 0.0667 0
Composite Function 3 3 6 400K 0 0 0
Composite Function 4 3 8 400K 0 0 0
Composite Function 3 5 6 400K 0 0 0
Composite Function 4 5 8 400K 0 0 0
Composite Function 3 10 6 400K 0 0 0
Composite Function 4 10 8 400K 0 0 0
Composite Function 4 20 8 400K 0 0 0

Table 5.4: The success rate of each algorithm across all benchmark functions.

Function Dimensions
Global
Optima

Budget NichePSO NichePSO-R NichePSO-S

Five Uneven Peak Trap 1 2 50K 55.1 114.5333 748.5
Equal Maxima 1 5 50K 97.9 46.8 753.7667
Uneven Decreasing Maxima 1 1 50K 148.1 61.2 806.5
Himmelblau 2 4 50K 69.3 116.1333 358.0667
Six-Hump Camel Back 2 2 50K 98.2 72.7333 380.4333
Shubert 2 18 200K 321.633 503.3333 544.5667
Vincent 2 36 200K 162.767 292.8333 421.9667
Shubert 3 81 400K 573.8 726.5333 609.7333
Vincent 3 216 400K 314.4 518.9667 410.3
Modified Rastrigin 2 12 200K 118.5 79.9333 388.6667
Composite Function 1 2 6 200K 16448.7 10431.3 16077.2
Composite Function 2 2 8 200K 16432.6 11148.133 16148.63
Composite Function 3 2 6 200K 17112.4 11837.4 16791.23
Composite Function 3 3 6 400K 22179.6 17994.9 21882.77
Composite Function 4 3 8 400K 23226 19877 22537.63
Composite Function 3 5 6 400K 32669 31898.5 31604
Composite Function 4 5 8 400K 34295.7 33824.4 33311.3
Composite Function 3 10 6 400K 61339.8 56294.6 55740.8
Composite Function 4 10 8 400K 60252.9 60184.6 59282.1
Composite Function 4 20 8 400K 112178 109355.27 108358.8

Table 5.5: The average run time in milliseconds for each algorithm across all bench-
mark functions.

CHAPTER 5. MODIFIED NICHEPSO ALGORITHMS 64

Function Dimensions
Global
Optima

Budget NichePSO NichePSO-R NichePSO-S

Five Uneven Peak Trap 1 2 50K 1 2.0786 13.5844
Equal Maxima 1 5 50K 1 0.4780 7.6994
Uneven Decreasing Maxima 1 1 50K 1 0.4132 5.4456
Himmelblau 2 4 50K 1 1.6758 5.1669
Six-Hump Camel Back 2 2 50K 1 0.7407 3.8741
Shubert 2 18 200K 1 1.5649 1.6931
Vincent 2 36 200K 1 1.7991 2.5925
Shubert 3 81 400K 1 1.2662 1.0626
Vincent 3 216 400K 1 1.6507 1.3050
Modified Rastrigin 2 12 200K 1 0.6745 3.2799
Composite Function 1 2 6 200K 1 0.6342 0.9774
Composite Function 2 2 8 200K 1 0.6784 0.9827
Composite Function 3 2 6 200K 1 0.6917 0.9812
Composite Function 3 3 6 400K 1 0.8113 0.9866
Composite Function 4 3 8 400K 1 0.8558 0.9704
Composite Function 3 5 6 400K 1 0.9764 0.9674
Composite Function 4 5 8 400K 1 0.9863 0.9713
Composite Function 3 10 6 400K 1 0.9177 0.9087
Composite Function 4 10 8 400K 1 0.9989 0.9839
Composite Function 4 20 8 400K 1 0.9748 0.966

Table 5.6: The relative time values of each algorithm across all benchmark functions.

When comparing the times for the composite functions used, for a lot of functions

the runtimes are very similar. On average the NichePSO algorithm is the slowest for

these functions, however once again the differences are only at most a few seconds

overall. What this shows is that all three algorithms have a very similar execution

time, and that one does not need to worry about any algorithm taking significantly

longer to run. If one considers this conclusion with the fact that the performance of

the NichePSO-R and NichePSO-S is significantly higher than the NichePSO function,

then it provides more supporting evidence that the proposed modified NichePSO

algorithms outperform the original.

When comparing the NichePSO-R and NichePSO-S algorithms to each other, both

have their own strengths and merits. The NichePSO-R algorithm performs the best

consistently and on the most function used, while also having the best success rate

and even a fast computation time relative to the other algorithms. The NichePSO-S

algorithm also performs well, and is the only algorithm to be able to locate any optima

on the functions with 10 dimensions. Overall, both the NichePSO-R and NichePSO-S

algorithms show a considerable improvement over the original NichePSO algorithm.

65

Chapter 6

Conclusions and Future Work

The goal of this thesis is to analyze the NichePSO algorithm in detail and gain an

understanding of its strengths and flaws.

This thesis shows that the merging subswarm problem is a prevalent issue with

the traditional NichePSO algorithm, and its impact is analyzed in-depth. Several

alternative subswarm merging strategies were discussed and are shown to overcome

the merging subswarm problem, greatly increasing the performance and stability of

the algorithm.

Several individual components of the NichePSO algorithm are studied and modi-

fied, with the goal of improving performance and reducing computational cost. Sev-

eral parameters that are utilized are tested for their impact and strong parameter

values are suggested.

An alternative subswarm creation method is proposed where new particles are

created and added to the search. This new method is shown to greatly outperform the

vanilla nearest neighbour creation method that the NichePSO algorithm previously

utilized.

The radiusOOB approach to particle and subswarm intersection is proposed, which

treats the radii of subswarms as out of bounds regions for particles not within the

subswarms. Several methods for calculating the radius of a subswarm are looked at

to work with this method, and an optimal approach to sizing a subswarms radius is

discussed in detail.

Reinitialization methods are proposed and analyzed, where subswarms that con-

verge can be randomly placed back into the main swarm to improve exploration. This

approach is shown to provide comparable results using a significantly less number of

particles than previously discussed methods.

All of the experiments and analyses performed lead to the proposal of the NichePSO-

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 66

R and NichePSO-S algorithms. Both of these algorithms were tested against the orig-

inal in a competitive environment, and both show a significant performance increase

over the original NichePSO algorithm across several benchmark functions.

Future work involves further studies to gain additional insight into the NichePSO

algorithm and its modified versions. This includes deeper analyses using standard

benchmark functions, as well as applying the algorithms to other problem types such

as dynamic environments. Studying the NichePSO algorithm’s ability to optimize

large and dynamic data sets will better analyze its applicability to dynamic real

world problems.

The NichePSO-R algorithm can be further improved by developing a new method

for calculating the radius of a subswarm, as discussed in detail in Chapter 4. This

new method will use a dynamic, asymmetric radius for each subswarm that adapts to

the current hills and valleys in the problem search space. Such a radius will maximize

the impact of the radiusOOB method proposed, and minimize the areas in the search

space that are searched by multiple subswarms.

The NichePSO-S algorithm can be further improved by developing a new con-

vergence test that works with subswarms that use a small number of particles. The

current existence method used in the NichePSO-S algorithm works but is trivial. A

specific test that provides subswarms enough time to fully explore their neighbour-

hood while also limiting the number of iterations subswarms exist after converging

will improve efficiency and maximize exploration.

The scalability of the NichePSO-R and NichePSO-S algorithms should be explored

in further detail. Both algorithms struggle to perform on functions with a high number

of dimensions, and studies to analyze the weaknesses and limitations of the algorithm

in higher dimensional problems will be a great benefit. As well, further work is needed

to compare the NichePSO variants to current state-of-the-art MMO algorithms, and

improve the algorithms to make them more competitive.

67

Bibliography

[1] D. Beasley, D. R. Bull, and R. R. Martin. A sequential niche technique for mul-

timodal function optimization. Evolutionary Computation, 1(2):101–125, 1993.

[2] S. Bird and X. Li. Adaptively choosing niching parameters in a pso. GECCO

’06: Genetic and Evolutionary Computation Conference, pages 3–10, 2006.

[3] I. Boussäıd, J. Lepagnot, and P. Siarry. A survey on optimization metaheuristics.

Information Sciences, 237:82–117, 2013. Prediction, Control and Diagnosis using

Advanced Neural Computations.

[4] R. Brits, A. P. Engelbrecht, and F. van den Bergh. Locating multiple op-

tima using particle swarm optimization. Applied Mathematics and Computation,

189(2):1859–1883, 2007.

[5] R. Brits, A.P. Engelbrecht, and F. van den Bergh. A niching particle swarm

optimizer. Proc. 4th Asia–Pac. Conf. Simulat. Evol. Learn. (SEAL), pages 692–

696, 2002.

[6] R. Brits, A.P. Engelbrecht, and F. van den Bergh. Solving systems of uncon-

strained equations using particle swarm optimization. IEEE Conference on Sys-

tems, Man, and Cybernetics, pages vol. 3, page 6, 2002.

[7] R. Brits, A.P. Engelbrecht, and F. van den Bergh. Scalability of niche pso. Swarm

Intelligence Symposium (SIS), pages 228–234, 2003.

[8] Z. G. Chen, Z. H. Zhan, D. Liu, S. Kwong, and J. Zhang. Particle swarm

optimization with hybrid ring topology for multimodal optimization problems.

IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages

2044–2049, 2020.

BIBLIOGRAPHY 68

[9] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar. A survey on new genera-

tion metaheuristic algorithms. Computers & Industrial Engineering, 137:106040,

2019.

[10] A. P. Engelbrecht, B. S. Masiye, and G. Pampard. Niching ability of basic

particle swarm optimization algorithms. IEEE Swarm Intelligence Symposium,

(SIS), pages 397–400, 2005.

[11] A.P. Engelbrecht and L.N.H. van Loggerenberg. Enhancing the nichepso. Pro-

ceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, pages

2297–2302, 2007.

[12] D.E. Goldberg. Genetic algorithms in search, optimization and machine learning.

Addison-Wesley Longman Publishing Co. Inc., 1989.

[13] D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for mul-

timodal function optimization. Proc. 2nd Int. Conf. Genet. Algorithms, pages

41–49, 1987.

[14] A. Gopal, M. M. Sultani, and J. C. Bansal. On stability analysis of particle

swarm optimization algorithm. Arabian Journal for Science and Engineering,

45:2385–2394, 2019.

[15] G. Harik. Finding multimodal solutions using restricted tournament selection.

Proceedings of the 6th International Conference on Genetic Algorithms, pages

24–31, 1995.

[16] K.A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, USA, 1975.

[17] J. Kennedy and R. Eberhart. Particle swarm optimization. Proceedings of IEEE

International Conference on Neural Networks., 4:1942–1948, 1995.

[18] K.D. Koper, M.E. Wysession, and D.A. Wiens. Multimodal function optimiza-

tion with a niching genetic algorithm: A seismological example. Bulletin of the

Seismological Society of America, 89:978–988, 1999.

[19] X. Li. Adaptively choosing neighbourhood bests using species in a particle swarm

optimizer for multimodal function optimization. Genetic and Evolutionary Com-

putation Conference, pages 105–116, 2004.

BIBLIOGRAPHY 69

[20] X. Li, A.P. Engelbrecht, and M. Epitropakis. Benchmark functions for cec’2013

special session and competition on niching methods for multimodal function

optimization. Evol. Comput. Mach. Learn. Group, 2013.

[21] X. Li, M. G. Epitropakis, K. Deb, and A. P. Engelbrecht. Seeking multiple

solutions: An updated survey on niching methods and their applications. IEEE

Transactions on Evolutionary Computation, 21(4):518–538, 2017.

[22] W. Luo, Y. Qiao, X. Lin, P. Xu, and M. Preuss. Hybridizing niching, particle

swarm optimization, and evolution strategy for multimodal optimization. IEEE

Transactions on Cybernetics, 57:495–503, 2020.

[23] S. C. Maree, T. Alderliesten, D. Thierens, and P. A. N. Bosman. Benchmarking

the hill-valley evolutionary algorithm for the gecco 2018 competition on nich-

ing methods multimodal optimization. GECCO ’18: Genetic and Evolutionary

Computation Conference, 2018.

[24] S. C. Maree, T. Alderliesten, D. Thierens, and P. A. N. Bosman. Real-valued

evolutionary multi-modal optimization driven by hill-valley clustering. GECCO

’18: Genetic and Evolutionary Computation Conference, pages 857–864, 2018.

[25] J. Mwaura, A. P. Engelbrecht, and F. V. Nepocumeno. Performance measures

for niching algorithms. IEEE Congress on Evolutionary Computation (CEC),

pages 4775–4784, 2016.

[26] D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a par-

ticle swarm model using speciation. IEEE Transactions on Evolutionary Com-

putation, 10(4):440–458, 2006.

[27] K. E. Parsopoulos and M. N. Vrahatis. On the computation of all global mini-

mizers through particle swarm optimization. IEEE Transactions on Evolutionary

Computation, 8(3):211–224, 2004.

[28] K.E. Parsopoulos, V.P. Plagianakos, G.D. Magoulas, and M.N. Vrahitis. Stretch-

ing technique for obtaining global minimizers through particle swarm optimiza-

tion. Proceedings of the Particle Swarm Optimization Workshop, pages 22–29,

2001.

[29] A. Sahu, S. K. Panigrahi, and S. Pattnaik. Fast convergence particle swarm

optimization for functions optimization. Procedia Technology, 4:319–324, 2012.

BIBLIOGRAPHY 70

[30] I. L. Schoeman and A. P. Engelbrecht. Using vector operations to identify niches

for particle swarm optimization. Cybernetics and Intelligent Systems, pages 361–

366, 2004.

[31] I. L. Schoeman and A. P. Engelbrecht. A parallel vector-based particle swarm

optimizer. Adaptive and Natural Computing Algorithms, pages 268–271, 2005.

[32] Y. Shi and R. Eberhart. An empirical study of particle swarm optimization.

Proceedings of the 1999 Conference on Evolutionary Computation, 3:1945–1950,

1999.

[33] A. Silva, A. Neves, and E. Costa. An empirical comparison of particle swarm

and predator prey optimisation. Proceedings of the 13th Irish International Con-

ference on Artificial Intelligence and Cognitive Science, pages 103–110, 2002.

[34] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis,

University of Pretoria, 2002.

[35] A. Ward, J. K. Liker, J. J. Cristiano, and D. K. Sobek. The second toyota

paradox: How delaying decisions can make better cars faster. Sloan Manag. Rev,

pages vol. 4, page 129, 1995.

[36] K.C. Wong, K.S. Leung, and M. H. Wong. Protein structure prediction on a

lattice model via multimodal optimization techniques. GECCO ’10: Proceedings

of the 12th annual conference on Genetic and evolutionary computation, pages

155–162, 2010.

[37] X. Yin and N. Germay. A fast genetic algorithm with sharing scheme using

cluster analysis methods in multimodal function optimization. Artificial Neural

Nets and Genetic Algorithms., pages 450–457, 1993.

[38] J. Zou, Qi. Deng, J. Zheng, and S. Yang. A close neighbor mobility method

using particle swarm optimizer for solving multimodal optimization problems.

Information Sciences, 519:332–347, 2020.

