
IMPROVING BWA-MEM WITH GPU PARALLEL

COMPUTING

©c 2021

Connor Li

Department of Computer Science

Submitted in partial fulfillment
of the requirement for the degree of

Master of Science

Faculty of Mathematics and Science, Brock University
St. Catharines, Ontario

Dedication

i

This dissertation/thesis is dedicated to Doctor Qiu and Doctor Liang who
take me in as a master student and support during COVID 19

This dissertation/thesis is also dedicated to my mother and father who
provided both emotional and financial support

I also give special thanks
to my friends being there for me during my master years

Due to the many advances made in designing algorithms, especially the ones used in

bioinformatics, it is becoming harder and harder to improve their efficiencies. Therefore,

hardware acceleration using General-Purpose computing on Graphics Processing Unit has

become a popular choice. BWA-MEM is an important part of the BWA software package

for sequence mapping. Because of its high speed and accuracy, we choose to parallelize the

popular short DNA sequence mapper. BWA has been a prevalent single node tool in genome

alignment, and it has been widely studied for acceleration for a long time since the first

version of the BWA package came out. This thesis presents the Big Data GPGPU distributed

BWA-MEM, a tool that combines GPGPU acceleration and distributed computing. The four

hardware parallelization techniques used are CPU multi-threading, GPU paralleled, CPU

distributed, and GPU distributed. The GPGPU distributed software typically outperforms

other parallelization versions. The alignment is performed on a distributed network, and

each node in the network executes a separate GPGPU paralleled version of the software.

The process of BWA-MEM, a popular short DNA sequence mapper, has five major stages,

including 1) loading index and read files, 2) finding super-maximal exact matches (SMEM),

3) chaining and chain filtering, 4) seed extension, and 5) generating the output file. After a

hot spot analysis, function chain2aln from stage four is found to have higher usage.

We parallelize the chain2aln function in three levels. In Level 1, the function ksw_extend2,

an algorithm based on Smith-Waterman, is parallelized to handle extension on one side of the

seed. In Level 2, the function chain2aln is parallelized to handle chain extension, where all

seeds within the same chain are extended. In Level 3, part of the function mem_align1_core

is parallelized for extending multiple chains. Due to the program’s complexity, the paral-

lelization work was limited at the GPU version of ksw_extend2 parallelization Level 3.

ii

ABSTRACT

However, we have successfully combined Spark with BWA-MEM and ksw_extend2 at paral-

lelization Level 1, which has shown that the proposed framework is possible. The paralleled

Level 3 GPU version of ksw_extend2 demonstrated noticeable speed improvement with the

test data set.

iii

TABLE OF CONTENTS

1 INTRODUCTION . 1
1.0.1 Major Contributions . 4

2 BACKGROUND . 5
2.1 DNA Sequencing . 5

2.1.1 Sanger Sequencing . 5

2.1.1.1 Capillary Sanger Sequencing 6

2.1.1.2 Microfluidic Sanger Sequencing 6
2.1.2 NGS platforms . 7

2.1.2.1 Pyrosequencing (Roche/454) 7

2.1.2.2 Reversible Dye Terminator Sequencing (Illumina) 7

2.1.2.3 Ion Semiconductor Sequencing (Ion Torrent/Proton) . . . 8

2.1.2.4 PacBio Sequencing . 8

2.1.2.5 Nanopore Sequencing . 9
2.1.3 De-novo Sequencing Versus Re-sequencing 9

2.2 String Matching . 10
2.2.1 Brute Force Approach . 10

Page

ABSTRACT . ii

LIST OF TABLES .

LIST OF FIGURES .

LIST OF ALGORITHMS .

CHAPTERS

xi i

ix

xi

iv

2.2.2 Dynamic Programming Algorithms 11

2.2.2.1 Edit Distance Computation 11

2.2.2.2 Text Searching with Edit Distance 14
2.2.3 Finite Automata Approach . 15
2.2.4 Hashing Based Approach . 17
2.2.5 Bit Parallel Approach . 17
2.2.6 String Indexing . 18

2.2.6.1 The Word Neighbourhood 19

2.2.6.2 Exact Partitioning . 19

2.2.6.3 Intermediate Partitioning 20
2.3 BWA Package . 20

2.3.1 Seed-and-extend Strategy . 21

2.3.1.1 Type of Seeds . 21
2.3.2 BWA-ALN . 22

2.3.2.1 Burrows-Wheeler Transform 22

2.3.2.2 Suffix Arrays . 24

2.3.2.3 Indexing . 26

2.3.2.4 Exact and Approximate Matching 26

2.3.2.5 Alignment Determination 28
2.3.3 BWA-MEM . 28

2.3.3.1 Indexing and File Loading 29

2.3.3.2 Seeding and Re-seeding 29

2.3.3.3 Chaining and Chain Filtering 30

2.3.3.4 Seed Extension . 30

2.3.3.5 Output . 31
2.4 Parallel Computing . 31

2.4.1 Definition of Parallel Computing 32
2.4.2 Classification of Parallel Computing 32
2.4.3 CPU multi-threaded . 33
2.4.4 CPU Distributed . 33

v

2.4.4.1 Message Passing Interface 33

2.4.4.2 Big Data . 34

2.4.4.3 GPU multi-threaded . 34

3 RESEARCH DESIGN . 39
3.1 Technical Road-Map . 40
3.2 Hardware Setup . 47

3.2.1 SharcNET . 47
3.2.2 Personal PCs . 53
3.2.3 Cloud Services . 55
3.2.4 Brock University Department of Computer Science 55
3.2.5 Summary . 55

3.3 Software Setup . 56
3.3.1 SparkBWA . 56

3.4 BWA-MEM GPGPU Parallelization . 57
3.4.1 Hot Spot Analysis . 57
3.4.2 Smith-Waterman Algorithm . 59

3.4.2.1 Algorithm . 60

3.4.2.2 Substitution Matrix . 61

3.4.2.3 Gap Penalty . 62

3.4.2.4 Smith-Waterman Algorithm Parallelization 63
3.4.3 ksw_extend2 . 66

3.4.3.1 Pruning Optimization . 73
3.4.4 Program Design ksw_extend2 Parallelization 74

3.4.4.1 Level 1 Parallelization: Seed Extension 76

3.4.4.2 Level 2 and Level 3 Parallelization: Chaining and Chain

Filtering . 76
3.4.5 ksw_extend2 with Time-saving Version Implementation 79

3.4.5.1 Phase 1: Alignment Collection and Preparation 80

3.4.5.2 Phase 2: Calculation of Alignment Scores 82

3.4.5.3 Phase 3: Production of Profiles as Output of Results . . . 88

vi

3.4.6 ksw_extend2 with Memory-saving Version Implementation 88

4 TEST RESULTS . 90
4.1 The Generation of the Performance Data 91
4.2 Level 1 Parallelization . 93

4.2.1 Test Data Set Generation with Random Number Generator for Par-

allelization Level 1 . 94
4.2.2 Test 1: Sequence Alignment Similarity and Time Cost without the

pruning mechanism . 96
4.2.3 Test 2: The Effect of the Pruning Mechanism Towards CPU and

GPGPU versions Alignment Performance 98
4.2.4 Test 3: The Effect of the Pruning Mechanism towards CPU and

GPGPU Versions Alignment Performance with Longer Sequence . 101
4.2.5 Summary . 103

4.3 Parallelization Level 2 and Level 3 . 104
4.3.1 How the Sequence Data has been Generated and Used in Paral-

lelization Level 2 and Level 3 . 105
4.3.2 Test 1: Performance Comparisons Among Different Implementa-

tions at Parallelization Level 2 and Level 3 of ksw_extend2 with

Alignments length at 8 bp . 107
4.3.3 Test 2: Performance Comparisons Among Different Implementa-

tions at Parallelization Level 2 and Level 3 of ksw_extend2 with

Alignments length at 16 bp . 109
4.3.4 Test 3: Performance Comparisons Among Different Implementa-

tions at Parallelization Level 2 and Level 3 of ksw_extend2 with

Alignments length at 32 bp . 111
4.3.5 Summary . 113

4.4 GPGPU distributed BWA-MEM . 114
4.4.1 GPGPU Distributed Framework 114
4.4.2 Big Data . 114

4.4.2.1 Hadoop . 115

vii

4.4.2.2 Apache Spark . 115

4.4.2.3 SparkBWA Analyzation 116

4.4.2.4 Summary . 117
4.4.3 Implementation . 117

4.5 Summary . 120

5 DISCUSSION . 121
5.1 Rationale and Objective . 121
5.2 Result . 123
5.3 Theoretical Running Time . 125
5.4 Future Work . 126

6 APPENDIX EXPLANATION . 129

REFERENCES . 135

APPENDIX

A Appendix Explanation . 137

B List of Test Output . 138
B.1 Parallelization Level 1 Test 1 . 138
B.2 Parallelization Level 1 Test 2 . 140
B.3 Parallelization Level 1 Test 3 . 142
B.4 Parallelization Level 2 and Level 3 Test 1 144
B.5 Parallelization Level 2 and Level 3 Test 2 146
B.6 Parallelization Level 2 and Level 3 Test 3 148

C ksw_extend2 GPU Version . 149
C.1 definitions.h . 149
C.2 typedefs.h . 150
C.3 gpuAlign.h . 152
C.4 gpuAlign.cu . 155
C.5 smithwaterman.h . 162
C.6 smithwaterman.cu . 166
C.7 ksw_extend2CPU.c . 182

viii

LIST OF TABLES

2.1 All Rotations of T = $banada . 23

2.2 A lexicographically Sorted BWT Matrix Given an Input String T = $banada 23

3.1 Types of Parallelization Techniques . 40

3.2 Types of Parallelization Techniques . 41

3.3 Description of the Simplified Version of big data GPGPU distributed BWA-

MEM framework . 46

3.4 Hardware Specification for Graham Cluster 48

3.5 The Hardware Specification for Mosaic Cluster. 49

3.6 Software Specification for Graham Cluster. 50

3.7 Software Setup Process on Mosaic Cluster 51

3.8 Output of Software Setup on Mosaic Cluster 52

3.9 SparkBWA Environment Setup on Mosaic Cluster. 53

3.10 Offline PC 1’s Specification . 54

3.11 Offline PC 2’s Specification . 54

3.12 SparkBWA Environment Setup on PC 1 . 56

3.13 An Example of the Subsection Matrix . 61

ix

3.14 Seed Extension in ksw_extend2 . 67

3.15 Time Complexity of GPGPU and CPU version 74

4.1 CPU and GPGPU versions alignment performance comparisons without the

pruning mechanism with different sequence similarity levels at paralleliza-

tion Level 1. 96

4.2 CPU and GPGPU versions alignment performance comparisons with or with-

out the pruning mechanism at parallelization Level 1. 99

4.3 CPU and GPGPU versions alignment performance comparisons with or with-

out the pruning mechanism up to 7416 bp length at parallelization Level 1. . 102

4.4 Performance comparisons among different implementations at parallelization Level

2 and Level 3 of ksw_extend2 with alignments length at 8 bp. 107

4.5 Performance comparisons among different implementations at parallelization Level

2 and Level 3 of ksw_extend2 with alignments length at 16 bp. 109

4.6 Performance comparisons among different implementations at parallelization Level

2 and Level 3 of ksw_extend2 with alignments length at 16 bp. 111

B.1 Parallelization Level 1 Test 1 . 138

B.2 Parallelization Level 1 Test 2 . 140

B.3 Parallelization Level 1 Test 3 . 142

B.4 Parallelization Level 2 and Level 3 Test 1 . 144

B.5 Parallelization Level 2 and Level 3 Test 2 . 146

B.6 Parallelization Level 2 and Level 3 Test 3 . 148

x

LIST OF FIGURES

2.1 Non-Search Version of the Dynamic Programming Algorithm with Edit Dis-

tance. 13

2.2 The Dynamic Programming Algorithm with Approximate String Matching . 14

2.3 A NFA for Approximate String Matching of The Pattern corner with Allowing

Two Edit Operations . 16

2.4 The Suffix Array and Compressed SA of acaaccg$ 25

2.5 A Generic GPGPU Architecture . 35

2.6 Memory Hierarchy in CUDA . 36

3.1 A Simplified Version of big data GPGPU distributed BWA-MEM Framework. 45

3.2 Hot Spot Analysis for BWA-MEM at a Read length of 100 bp 58

3.3 Hot Spot Analysis for BWA-MEM at a Read length of 250 bp 59

3.4 The Calculation of Edit Distance in Smith-Waterman Algorithm 60

3.5 GPU Version of Smith-Waterman Algorithm Computation with Same Read

and Reference Sizes . 63

3.6 GPU Version of Smith-Waterman Algorithm Computation with Different Read

and Reference Sizes . 64

3.7 Three Level of Parallelization . 65

xi

3.8 ksw_extend2 Algorithm H Matrix . 68

3.9 ksw_extend2 Algorithm M Matrix . 68

3.10 ksw_extend2 Algorithm E Matrix . 69

3.11 ksw_extend2 Algorithm F Matrix . 69

3.12 ksw_extend2 Algorithm S Matrix . 70

3.13 ksw_extend2 ’s Cell Computation . 73

3.14 Prunable Cells in H Matrix . 73

3.15 Three Level of Parallelization . 75

3.16 Blocks in Level 1 Parallelization . 76

3.17 GPU Level 2 Parallelization . 77

3.18 GPU Level 3 Parallelization . 77

4.1 CPU and GPGPU versions alignment performance comparisons with without

the pruning mechanism with different similarities at parallelization Level 1. . 97

4.2 GPU and CPU versions performance comparisons with or without the pruning

mechanism at parallelization Level 1. 100

4.3 GPU and CPU versions performance comparisons with or without the pruning

mechanism at parallelization Level 1. 103

4.4 Performance comparisons among different implementations at parallelization Level

2 and Level 3 of ksw_extend2 with alignments length at 8 bp. 108

4.5 Performance comparisons among different implementations at parallelization Level

2 and Level 3 of ksw_extend2 with alignments length at 16 bp. 110

4.6 Performance comparisons among different implementations at parallelization Level

2 and Level 3 of ksw_extend2 with alignments length at 32 bp. 112

xii

List of Algorithms

1 Non-search Version of The Dynamic Programming Approach 12

2 The Dynamic Programming Algorithm with Approximate String Matching . 15

3 Smith-Waterman Algorithm . 61

4 the Algorithm for Computing Substitution Matrix 62

5 Simplified Smith-Waterman Algorithm . 63

6 Maximum Number of Cells Computed in Each Step 64

7 ksw_extend2 Matrices Initialization . 71

8 ksw_extend2 Matrices value Computation 72

9 ksw_extend2 ’s Pruning Mechanism Algorithm 74

xiii

1 INTRODUCTION

In the past, the most challenging task in genome study is to obtain sequences of the genome.

The Human Genome Project [1] lasted 13 years with Sanger sequencing. Nowadays, by using

the massively parallel sequencing, the Next Generation Sequencing (NGS) platforms, such

as Pyrosequencing (Roche/454) [2], Reversible Dye Terminator Sequencing (Illumina) [3],

and Ion Semiconductor Sequencing (Ion Torrent/Proton) [4] can sequence the entire human

genome at a fraction of the cost and much shorter time. Therefore, the bottleneck is no

longer to obtain but to analyze all the sequence data [5]. The demand of development in

new sequence alignment algorithms has led to BWA, Bowtie, and Partek [6]. The sequence

alignment algorithm is a pattern-matching algorithm with patterns and texts over A, C, G,

and T. Given a string pattern p (read) with length m, the sequence alignment algorithm de-

termines its location on the string text t (reference) with length n. As the size of the reference

genome is enormous1, the sequence alignment process is a difficult task.

We choose to speed up BWA as it is a popular software package for mapping lower-

divergent sequence against a large reference genome in bioinformatics [8]. In addition, this

tool is being used in Doctor Liang’s lab2. As NGS develops, the newer NGS platforms are

getting better at obtaining longer reads. Both tools in the BWA package follows the typical

seed-and-extend paradigm, but with BWA-ALN tailored towards shorter reads and BWA-

MEM tailored towards longer reads. As a typical alignment has both exact and approxi-
1For example, the human genome has approximately 3.2 billion base pairs [7].
2One of the author’s supervisor.

1

mate matches, the combination of two methods improve both the speed and accuracy. In

both tools, exact string matching algorithm finds the exact match location on the reference

genome, and approximate string matching algorithm extends the exact matched area at a

lower speed, but each with different algorithms.

In the past decade, many advances has been made towards sequence alignment algo-

rithm, which makes hard to create a new one or improve existing one. As newer hardware

and software frameworks come out every single day, we decide to speed-up BWA-MEM with

new parallelization technique. The four main types of parallelizations in sequence alignment

tools are CPU multi-threaded [8], [9], GPU multi-threaded [10]–[14], CPU distributed [15],

[16], and GPU distributed [17]–[19]. As a popular sequence alignment tool, BWA-ALN al-

ready has multiple parallelized versions, such as BarraCUDA [10], pBWA [9], BigBWA [15],

SparkBWA [16]. However, there are no open-source versions of GPU BWA-MEM avail-

able [8].

As existingGPGPU distributed software has been shown to outperform other versions, the

GPGPU distributed BWA-MEM has a high chance to outperform other BWA parallelization

versions. GPGPU distributed version is a combination of GPU multi-threaded and CPU

distributed version. GPU multi-threaded and CPU distributed BWA-ALN have shown a good

speedup compared to their original program [10]–[16]. BWA-MEM and BWA-ALN follow

seed-and-extend paradigm, which indicates that they have a similar software structure and

they may have a similar speedup. The GPU multi-threaded version is executed on each node

in the distributed network, and the master node uses OpenMPI [9] or MapReduce [15], [16]

to communicate with others to oversee the entire process. As the software has already gained

speedup at the single node level, the speed would quickly add up by having multiple nodes.

OpenMPI and big data are the two most commonly used frameworks to help nodes to

communicate with each other [9], [15], [16]. The big data version of BWA-ALN has shown

a better feature over OpenMPI as it is version agnostic [9], [15], [16]. The same design can

be made with BWA-MEM, which allows it to be version agnostic. As GPGPU parallelized

2

version is the GPGPU distributed version’s predecessor, the first step is to implement the

GPGPU parallelized version.

Therefore, we propose GPGPU distributed BWA-MEM as our solution, and it has not

yet being studied in any previous research. The GPGPU distributed BWA-MEM ’s structure

has two layers. Layer one executes GPGPU BWA-MEM, which contains an adapter and an

unmodified GPGPU BWA-MEM, and is written in C/C++ language. Layer two is the core

of the execution, and is responsible to get user input and then performs map and reduce. It

will set up RDDs, map data, and then reduces output into a single file.

As GPGPU distributed BWA-MEM is build based on GPGPU BWA-MEM, the first

step is to parallelize BWA-MEM with NVIDIA CUDA. The five steps of BWA-MEM are:

1) loading both index and read files content into the program, 2) finding super-maximal exact

matches (SMEM), 3) chaining, and chain filtering, 4) seed extension, 5) generating the out-

put file [20]. In the hot spot analysis, ksw_extend2 has increased from 28.9% to 51.9% of the

total execution time when the sequence length increased from 100 bp to 250 bp [21]. There-

fore, the first step is to parallelize chain2aln3 and its subsequent functions. ksw_extend2, as

part of chain2aln, is based on Smith-Waterman algorithm, and performs single seed side ex-

tension. After successful parallelization of ksw_extend2, tests have shown that ksw_extend2

GPGPU version is roughly 9x 4 faster.

As the new stable release version of Spark recognizes GPGPU as resources, a Spark

standalone version of GPGPU distributed BWA-MEM version can be build and run on

SharcNET. the test was performed to ensure the input and the output of GPGPU dis-

tributed BWA-MEM with parallelization Level 1 is the same as BWA-MEM.
3ksw_extend2 is step 4) seed extension in BWA-MEM.
4The test was performed on intel i7-6700k CPU, NVIDIA GeForce GTX 1080, 32GB RAM, and 1TB

solid state hard drive desktop.

3

1.0.1 Major Contributions

This thesis covers background information on the DNA sequence alignment tools and works

undertaken to speedup BWA-MEM with GPGPU distributed framework. Detailed informa-

tion is provided regarding the significant difference between BWA-MEM and BWA-ALN,

especially in terms of approximate string matching, exact string matching and the details for

each stage of the BWA-MEM. An overview of different parallelization methods are provided,

followed by the parallelization approaches attempted to improve BWA’s speed. We will show

why and how parallelizing the BWA-MEM ’s seed extension algorithm, ksw_extend2, could

enhance BWA-MEM performance.

As the NGS platforms produces large amount of information, the work in biology has

shifted from obtaining sequence data to analyzing them. From algorithm aspect of view,

many advances have been made, and it makes hard to create or improve existing one. From

hardware aspect of view, many new hardware and software come out every single day. There-

fore, we propose GPGPU distributed BWA-MEM as our solution, and this idea has not

mentioned in any paper before. We have successfully parallelized seed-extension part of

BWA-MEM on the GPU side, where the GPU with time-saving version of ksw_extend2 is

roughly 9x 5 faster. GPU with memory-saving version of ksw_extend2 is roughly 3x 6 faster.

And we have successfully build parallelization Level 1 of BWA-MEM into Spark framework

in the standalone mode, which means we can use the SharcNET in the future.

5The test was performed on intel i7-6700k CPU, NVIDIA GeForce GTX 1080, 32GB RAM, and 1TB

solid state hard drive desktop.
6The test was performed on intel i7-6700k CPU, NVIDIA GeForce GTX 1080, 32GB RAM, and 1TB

solid state hard drive desktop.

4

2 BACKGROUND

This Chapter serves as a literature review, which includes background information on se-

quencing platforms, algorithms, parallelization techniques, and BWA packages in general. it

will explain why BWA package is chosen, why BWA-MEM is better than BWA-ALN, why

Big Data framework is better than OpenMPI, and why we didn’t choose any other languages.

2.1 DNA Sequencing

DNA sequencing determines the nucleic acid sequences or the arrangement of four bases, ade-

nine, guanine, cytosine, and thymine in a DNA molecule [22]. Sanger sequencing [23], also

known as the first generation sequencing, is still the gold standard, and is considered extraor-

dinarily accurate but slow and expensive [24]. In contrast to the first generation sequencing

platforms, by using the massively parallel sequencing technique, NGS platforms can sequence

the entire human genome in a fraction of cost and a short amount of time[6].

2.1.1 Sanger Sequencing

Sanger sequencing uses a classical chain termination method by polymerase chain reaction1

Chain termination halts the reaction by adding the modified ddNTPs to the end of a growing

nucleotide chain. Sanger sequencing determines the sequence based on the ending base
1Polymerase chain reaction, or PCR is a method to rapidly-produce millions to billions of copies from

tiny sample of DNA [25].

5

via radioisotope labelling initially but now via fluorescent labelling, and it determines the

sequence of nucleotide bases for DNA length less than 1,000 bp.

2.1.1.1 Capillary Sanger Sequencing

In the new version of Sanger sequencing, DNA is combined in a tube with DNA primer, DNA

polymerase, normal deoxynucleotide-tri phosphates, andmodified dideoxynucleotides (ddNTPs)

for termination [24]. ddNTPs2 are chain-elongating inhibitors of DNA polymerase3. The pro-

cess of Sanger sequencing has multiple repeated cycles. In each repeated cycle, the mixture is

first heated to denature the template DNA [24]. The mixture is cooled done for the primer

to be combined with single-stranded template. The temperature is raised again allowing

DNA polymerase to synthesize, and it will not stop until a ddNTPs is added [24].

At the end of the cycle, the tube contains sequence fragments with different lengths. Each

end of the fragments is labelled with dye to indicate the final nucleotide. After the reaction

is done, capillary gel electrophoresis is used to determine the DNA sequence. In capillary gel

electrophoresis, the fragments run through a long, thin tube containing a gel matrix. The

shorter fragments move quickly through the gel, and the longer fragments move slower. A

laser illuminates the fragments as they reach the end of the tube, which allows the attached

dye to be detected [24]. The signal generated by the detector is presented as a peak on the

graph. Capillary Sanger sequencing supports up to 396 samples per run4.

2.1.1.2 Microfluidic Sanger Sequencing

Microfluidic Sanger sequencing is a wafer-scale chip that integrated all sanger sequencing

steps with nanoliter-scale sample volumes [26]. This technology keeps classical Sanger se-

quencing’s benefits with increased capacity5.
2ddATP, ddCTP, ddGTP, and ddTTP.
3As nucleotides lacking a 3’-hydroxyl (-oh) group.
4Provided the number to show the throughput/run for comparison.
5Provided the number to show the throughput/run for comparison.

6

2.1.2 NGS platforms

NGS, also known as massively parallel sequencing, can sequence billions of DNA base-pairs

at a fraction of the cost and time6. At the cost of lower accuracy and shorter sequence

length in most cases, NGS platforms have a good speedup. Popular NGS includes: py-

rosequencing7 [2], reversible dye terminator sequencing8 [3] and ion semiconductor sequenc-

ing9 [4]. FASTQ format [27] is the de facto standard for storing the output of high-throughput

sequencing instruments, and is a text-based format for storing both raw sequence and corre-

sponding base call quality scores.

2.1.2.1 Pyrosequencing (Roche/454)

Pyrosequencing relies on sequencing by synthesis, where the complementary strand of a

single-stranded DNA is enzymatically synthesized [2]. A parallelized version of the pyrose-

quencing method is developed with emulsion PCR for DNA amplification. During the pro-

cess, DNA strands are broken up into fragments of 400 bp. These fragments are split across

wells, where each well only contains one type of DNA fragment by sequence. The four types

of dNTPs are added to the wells one by one for polymerization, releasing pyrophosphate,

which resulted in light emission with ATP Sulfurylase. The light emitted is picked up by a

detector, where the intensity of the light infers the number and type of dNTP.

2.1.2.2 Reversible Dye Terminator Sequencing (Illumina)

Illumina sequencing10 uses a fluorescent labelling method with the clonal amplification of

DNA on a surface, which is based on DNA clusters or DNA colonies [3]. The polymerases

used in the process is specially engineered with the addition of reversible terminate bases.
6In comparison to Sanger Sequencing.
7Roche/454.
8Illumina
9Ion Torrent/Proton

10Reversible dye-terminators sequencing technology.

7

The sequencing is done in cycles by adding four types of fluorescently labelled dNTPs11. A

laser camera captures the fluorescent colour to identify the newly added nucleotide.

2.1.2.3 Ion Semiconductor Sequencing (Ion Torrent/Proton)

Semiconductor sequencing, also known as Ion Torrent Semiconductor sequencing, sequences

DNA strands by detecting the hydrogen ions released through the DNA polymerization

process [4]. Ion Torrent sequencing is developed based on standard sequencing chemistry with

an ion-sensitive field-effect transistor (ISFET), and it does not require chemically modified

nucleotides, optical devices, or special enzymes.

As ISFET can not tell the difference between nucleotides, the microwell containing a tem-

plate DNA strand flooded with a single type of nucleotide. The detection of ions from mi-

crowell indicate newly added ddNTP, where a higher electronic signal indicates a higher

number of hydrogens. Ion Torrent sequencing is considered inexpensive, but with the limi-

tation of much lower throughput and lack of pair reads12.

2.1.2.4 PacBio Sequencing

PacBio13 is powered by single Molecule, real-time sequencing technology. First, for sample

type, ranging from viruses to vertebrates, their DNA or RNA is isolated. Next, a SMRTbell

library is created by ligating the adapters to double-stranded DNA, creating a circular tem-

plate. The smart sequencing core is the smart cell, which contains millions of tiny wells called

zero-mode waveguides (ZMWs) [28]. As single-molecule DNA is immobilized in the ZMWs,

the polymerization incorporates labelled nucleotide, which emits light at each nucleotide [28].

With this approach, nucleotide incorporation is measured in real-time. PacBio can optimize
11dNTPs do not allow further extension of DNA synthesis before chemically removing the blocker.
12Single read length is longer than Illumina.
13also referred to as smart sequencing technology.

8

the result with two sequencing modes: circular consensus sequencing14 and continuous long

read sequencing16.

2.1.2.5 Nanopore Sequencing

Nanopore sequencing uses nanopore-based DNA and RNA sequencing technology with the

advantage of being portable and producing longer reads. Protein nanopores are tiny holes

crossing membranes, which are embedded into a synthetic membrane [30]. The synthetic

membrane is bathed in an electrophysiological solution, and the ionic current is passed

through the nanopores. DNA and RNA molecules disrupt the current as they are passing

through the nanopores, where the signal generated is analyzed in real-time [30]. Nanopore

sequencing sequences from tens to hundreds of kilobases with the extreme long read length

being its other major strength over other NGS platforms in addition to its high portability.

Nanopore technology can sequence DNA and RNA directly without PCR, which removes

the bias of PCR. Together with PacBio, it is called the third generation sequence technologies

for real-time single molecular sequencing without PCR amplification in long read length.

2.1.3 De-novo Sequencing Versus Re-sequencing

Whole-genome sequencing aims to sequence all the DNA in an organism’s genome, either

with de-novo sequencing or re-sequencing. De-novo sequencing refers to sequencing a novel

genome, for which being sequenced for the first time [31]. Re-sequencing is commonly used

for sequencing individuals’ genome that has being sequenced before in species, which is used

to identify genomic variations of a test genome sample re-sequencing. Sequence alignment

is one of the earliest step in analyzing re-sequencing data and is directly related to the
14circular consensus sequencing, or CCS is used to produce highly accurate long reads15, which has an

accuracy of 99% [29].
16continuous long read sequencing, or CLR is used to generate the longest possible read, where half of the

reads are longer than 50 kb [29].

9

research involved in this thesis.

2.2 String Matching

Sequence alignment is a way to arrange the sequences to identify the similarity regions so

that the functional, structural, and evolutionary relationships between two sequences can be

inferred. In the context of sequence alignment, the DNA sequence can be regard as long texts

over the alphabet A, T, C, G. "Errors" in DNA sequences are caused by insertion, where the

sequence of one or more nucleotides are added between two adjacent nucleotides, or deletion,

where the point at which one or more contiguous nucleotides exists, or substitution, which

is a substitution of a single nucleotide at a specific position. The substitution of a single

nucleotide is commonly referred to as Single Nucleotide Polymorphism17 (SNP). Sequence

alignment algorithm can be simplified as an algorithm that solves pattern matching problem,

which takes a string pattern p (read) and a string text t (reference) with lengths of m and

n as inputs, and returns all the positions in the text where the pattern appears.

Approximate string matching solves retrieval problems such as sufficiently like or most

like, where the non-exact string comes from error correction or information retrieval or file

corruption. During an approximate string match, the allowance for a maximum specified

number of errors in each match is specified.

2.2.1 Brute Force Approach

The brute force algorithm checks all positions of the text between 0 and n−m if the pattern

occurs. After each attempt, in the repeating attempt, the window is shifted by exactly one

position to the right. There is no pre-processing phase in the brute force algorithm18, and

the time complexity of the searching phase is O(mn).
17Human genome has roughly 4 to 5 million SNPs of out the 3 billion nucleotides [32].
18Algorithms that do not pre-process the text or pattern is referred to as online algorithms.

10

2.2.2 Dynamic Programming Algorithms

The first algorithm in dynamic programming approach has been rediscovered many times in

the past [33]–[41]. However, this algorithm was first designed to compute the edit distance,

and it was not being converted to a string matching algorithm until 1980 by Sellers [42].19

2.2.2.1 Edit Distance Computation

The early edit distance function was not used in string searching, we will refer them as non-

search version to differentiate from Seller’s algorithm. Edit distance describes how dissimilar

of two strings by counting how many operations are needed to transform one to another. Edit

distance (denoted as k) is computed by filling matrix C of size n ·m, where Ci,j represents

the edit distance between first i characters of p to the first j characters of t. The well-known

algorithm is given below:
19Although the algorithm is not very efficient, it is still widely used for being easy to map the solution to

different distance functions [43].

11

Algorithm 1 Non-search version of the dynamic programming approach. the first

two lines initialize the first row and first column’s value to the corresponding word’s length,

which represents the edit distance between p or t with an empty string. The third line

calculates all the edit distance for the shorter substrings. If the ith character of p and the jth

character of t are not equal, the edit distance is the minimum value from Ci−1,j, Ci,j−1Ci−1,j−1

plus one. On the other hand, if they are equal, the current edit distance is assigned at this

location. An example is given in Figure 2.1 using Algorithm 1 to compute the edit distance

between connor and corner.

Ci,0 =i

C0,j =j

Ci,j =if(xi = yj) thenCi−1,j−1

else 1 +min(Ci−1,j, Ci,j−1, Ci−1,j−1)

In Algorithm 1, the first two lines initialize the first row and first column’s value to the

corresponding word’s length, which represents the edit distance between p or t with an empty

string. The third line calculates all the edit distance for the shorter substrings. If the ith

character of p and the jth character of t are not equal, the edit distance is the minimum value

from Ci−1,j, Ci,j−1Ci−1,j−1 plus one. On the other hand, if they are equal, the current edit

distance is assigned at this location. An example is given in Figure 2.1 using Algorithm 1 to

compute the edit distance between connor and corner.

12

Figure 2.1 Non-Search version of the dynamic programming algorithm
with edit distance. The dynamic programming algorithm to compute the edit
distance between connor and corner. The bold entries show the path to the final
result.

13

2.2.2.2 Text Searching with Edit Distance

Figure 2.2 The dynamic programming algorithm with approximate string
matching.shows the search version of the dynamic programming approach using
Algorithm 2. In comparison to non-search version, the search version must allow
any character to be the potential starting point. To change non-search version to
search version, Ci,0 = i is modified to Ci,0 = 0. The algorithm worst case time
complexity and space complexity are O(mn) and O(m).

14

Algorithm 2 The dynamic programming algorithm with approximate string

matching. shows the search version of the dynamic programming approach using Algo-

rithm 2. In comparison to non-search version, the search version must allow any character

to be the potential starting point. To change non-search version to search version, Ci,0 = i

is modified to Ci,0 = 0. The algorithm worst case time complexity and space complexity are

O(mn) and O(m).

For all i ∈ {0, 1, 2, ...,m} :

C
′

i = if(Pi = Tj) thenCi−1

else 1 +min(C
′

i−1, Ci, Ci−1)

Figure 2.2 shows the search version of the dynamic programming approach with Algorithm 2.

In comparison to non-search version, the search version must allow any character to be the

potential starting point. To modify the non-search version into search version, Ci,0 = i is

changed to Ci,0 = 0. The algorithm worst case time complexity and space complexity are

O(mn) and O(m)20.

2.2.3 Finite Automata Approach

Finite automata is a fairly old approach to approximate string matching. Finite automata

constructs the finite automation out of the pattern and feed the text one character at a

time through automation. The approximate match is determined with the final state of

the Non-deterministic Finite Automaton (NFA).
20This is because only the previous columns are stored.

15

Figure 2.3 A NFA for approximate string matching of the pattern corner
with allowing two edit operations. The shaded states are those active after
reading the text connor.

Figure 2.3 is an NFA for approximate string matching of the pattern corner with allowing

two edit operations. Each row represents the number of errors encountered, and every column

represents the matching of a prefix of the pattern. An active state in column m and row i

means the pattern has been approximately matched to the text with i errors. The automaton

transitions describe different actions, where a horizontal arrow represents a character match,

and a vertical arrow represents an insertion in the pattern. In Figure 2.3, a solid diagonal

arrow represents a substitution in the pattern, and a dashed diagonal arrow represents a

deletion in the pattern. Finite automata is easy to visualize in concept, but it is impractical.

It has three different ways when moving from one cell to another in the dynamic programming

matrix, which means an allowance for 3m different states is made to ensure every combination

of transitions are available. This approach is considered unfeasible as 3m quickly explodes.

16

2.2.4 Hashing Based Approach

Instead of comparing each position of the text if the pattern occurs, the hashing based

approach avoids a quadratic number of character comparisons by treading pattern or contents

of the window as a single integer. Karp-Rabin algorithm is one of the hashing based approach

algorithms [44], and it uses the hashing value21 from left to right. In the pre-processing phase,

the pattern p is divided by a pre-defined prime number q in constant space and O(m) time.

During the search phase, the remainders of pattern and text are compared for matching for

each shift ranges from shift s = 0 to n−m. Once the match is found, it is still necessary to

check each character to ensure a true match for the searching phase.

2.2.5 Bit Parallel Approach

bit-parallel approach is based on parallelizing another algorithm using bits, and its results, es-

pecially when deal with short patterns in text retrieval, have shown significant improvement.

In computing, the computer words’ length is an essential characteristic of the processor, de-

termined by the processor’s design. By combining multiple entries into a single word, the

number of operations is reduced. The two branches of bit parallel approach are automation

parallelization and matrix parallelization [43].

The first bit-parallel algorithm, Shift-Or, was introduced by Baeza-Yates, which takes

advantage of the bit operations inside a computer word [45]–[47]. If computer word length

is w, the number of operations can be reduced by a factor of at most w. In the algorithm,

an NFA is parallelized to search a p22 in t.

Wu and Manber [48] extended the Shift-Or algorithm based on simulating NFA for regular

expressions with the wild cards, where each row i of the NFA fits in a computer word Ri (row-

wise bit-parallel algorithm). Later on, Baeza-Yates [49] presented a column-wise bit-parallel
21Computed using Horner’s rules.
22without error.

17

algorithm, but neither Wu and Manber’s nor Baeza-Yates’s can increase the parallelization

level. Baeza-Yates and Navarro [50] proposed a diagonal-wise bit-parallel algorithm, where

the states are calculated by diagonals instead of rows [48] or columns [49].

The first bit-parallel approach on the dynamic programming matrix is proposed in [51],

where the secondary diagonal is computed using the two previous diagonals. The algorithm

packs many patterns and text characters in a single computer word, where the results of the

comparisons can update many cells of the diagonal simultaneously. Myers [52] proposed a

new way of bit-parallel approach, where the computer words no longer represent the columns

themselves, but the differences along with columns, which increased the number of cells in

a single computer word (two bits per cell).

2.2.6 String Indexing

String indexing method, a relatively new approach, is handy when deal with frequent searches

on a massive text. Indexing methods have been developed for extract string matching, but

a recent development has modified it to accommodate approximate string matching. The

string indexing approach is beneficial when deal with large patterns and long text in the

sequence alignment. In most indexing methods, a traditional algorithm is needed to verify

the matches once a set of candidate matches has been found.

The string indexing approach pre-scans both text or pattern to archive all occurrences

of each sub-string with a specific length (also referred to as query size). These pattern

occurrences are stored in a number format and sorted in descending order. For example, the

text AAAACCGAAAAG with a query size of four, the first pattern AAAA will be converted

to the number format of 1111 at position one. The next pattern AAAC will be converted to

the number format of 1112 at position two. After all sub-strings have been converted and

sorted with numbers, their pattern, start index, and end index will be stored.

With the help of the pre-scanned archive, within the text, a specific pattern’s occurrence

18

locations can be determined very fast, and the advantages are obvious, especially dealing with

larger text. However, the concern is the query and alphabet size. For example, in biology,

the size of the alphabet is four, with a pattern size of 30, there will be 430 possible entries

in the index23 As the index of this size is not practical, a smaller query size is necessary. In

addition, as approximate string matching is more common in biology, only searching for an

exact match on the index is not practical. Therefore, many tools combine both exact and

inexact matches at the same time to increase performance.

2.2.6.1 The Word Neighbourhood

The word neighbourhood is an approximate string matching algorithm with an index [53].

The word neighbourhood for a pattern p and an edit distance k will contain all words within k

edit distance operations of p. Once the word neighbourhood of k for p is generated, every word

in the neighbourhood is searched, and each hit is recorded for an approximate match within

the location. Even though it sounds like a simple solution, the size of the neighbourhood can

quickly explode. The size of word neighbourhood has been bounded at O(mkαk) [54]. Since

the word neighbourhood’s size increases rapidly, it is only practical to have an extremely

small m and k.

2.2.6.2 Exact Partitioning

Exact partitioning is another method for approximate string matching over an index [54].

In biology, every approximate match of a pattern p, there are sections of p that match the

text T exactly. In an approximate match, if k errors are allowed, and the pattern is split

into k + 1 sections, and then one of the sections is guaranteed to match exactly by the

pigeonhole principle. We assume that a query size of
⌈
m
k+1

⌉
, then each pattern is split into

k+1 sections with length of
⌈
m
k+1

⌉
. Each of the sections is searched over the index. For each

hit, the surrounding text is verified with an inline approximate string matching algorithm for
23If we want the query size equal to the pattern size.

19

a potential match. Exact partitioning is useful when the value of k is moderate. A smaller

k value means a large query size, and a large k size means the query size will be so short

and resulting in many false-positive hits. Other issue is when k + 1 does not divide evenly

into m, which means overlap in some sections.

2.2.6.3 Intermediate Partitioning

The intermediate partitioning is the most recent string indexing approach [55], and is con-

sidered the combination of the two previous approaches and produces better results. Myers

showed that the optimal query size for an index is equal to logα n in 1994. The intermediate

partitioned approach by Navarro uses this optimal query size to build an index. Then the

pattern is split into j =
⌈

m
logα n

⌉
sections of length

⌈
m

logα n

⌉
. Just like the exact partitioned

approach, one of the sections is guaranteed to have at most
⌊
k
j

⌋
errors. Then, similar to the

word neighbourhood approach, a
⌊
k
j

⌋
neighbourhood is generated for each section. For each

of the word in the neighbourhood, it returns a hit on the index, and the surrounding text is

checked for an approximate match with a traditional approximate string matching algorithm.

2.3 BWA Package

BWA is one of the most famous sequence alignment packages for mapping low-divergent

sequence against an extensive reference. The two similar tools within the package, BWA-

MEM and BWA-ALN, both follow the typical seed-and-extend paradigm but use differ-

ent algorithms for exact and approximate matching. As a popular tool, BWA-ALN al-

ready has multiple parallelized versions, such as BarraCUDA [10], pBWA [9], BigBWA [15],

SparkBWA [16]. However, there are no parallelized open-source versions of GPGPU BWA-

MEM. In BWA-ALN, backward search and bounded traversal/backtracking facilitate both

exact and approximate matching24. In comparison, BWA-MEM seeds extension with SMEM
24Seed extension.

20

based on FMD-INDEX, and extend seeds with the Smith-Waterman algorithm.

2.3.1 Seed-and-extend Strategy

The idea of the seed-and-extend strategy is based on the observation that a good sequence

alignment should contain both exact and inexact matches [56]. The seed-and-extend strat-

egy’s process contains four stages: seed generation, seed mapping, seed extension, and read

alignment. Seeds are the shorter sequences extracted from reads in the seed generation stage.

During the mapping stage, exact-matched seeds are identified. After successfully pinpoint-

ing each read’s location with exact-matched seeds, in the seed extension stage, a standard

dynamic program such as the Needleman-Wunsch algorithm [34] or Smith-Waterman algo-

rithm [57] is used to extend each exact-matched seed on both ends. As seed extension is

considered more time consuming than both seed generation and seed mapping, to reduce

time consumption, seed filtration strategies are commonly used before actual seed extension.

Also, the alignment tool’s performance is affected by the seed’s length, where shorter seeds

increase the sensitivity, and longer seeds increase the speed.

2.3.1.1 Type of Seeds

A seed is a sub-string extracted from the read sequence that exactly matched a sub-string

of the reference sequence. The two types of seeds, the fixed-length exact matches or seeds

strategy is used in Novoalign and Bowtie2, and maximal exact matches (MEM) strategy is

used in BWA-MEM and Cushaw2 [56]. The fixed-length seeds are substrings with the same

length generated from the read, where the MEM is the longest exact matches that cannot be

further extended [20]. Super-maximal exact match (SMEM) is a MEM that is not contained

in any other MEMs on the query coordinate [32].

21

2.3.2 BWA-ALN

A k-mer inexactly match seed from a read is generated with Pigeonhole principle, which

supports mismatches and indels in mapping [8]. The pigeonhole principle states that at least

one container contains more than one item for putting j items into k containers, where j > k.

Therefore, if the length of the read is n, the number of allowed mismatched bases between a

read and a reference is m bp, at least one exact match k-mer exists25.

By default, for BWA-ALN, in each seed, the number of allowed mismatches is 2. During

the mapping stage, the process is facilitated by a prefix directed acyclic word graph26 [58].

To reduce the unnecessary seed extension for highly repetitive sequences to improve the

performance, a seed filtration strategy is used. Not all the exact match locations are provided.

Instead, BWA-ALN only gives the largely non-overlapped exact match locations. The newly

scanned seed extensions are discarded if the overlapped region’s length is shorter than the

successfully aligned regions.

2.3.2.1 Burrows-Wheeler Transform

The Burrows-Wheeler transform (BWT) rearranges a character string into runs of similar

characters, which is initially intended for data compression [59]. In BWA-ALN, BWT is used

as it can approximately match DNA reads efficiently, which has a quadratic (O(n2)) time

and space.
25As the read can be separated into non-overlapping k-mer with the length of n/(m+ 1).
26Prefix directed acyclic word graph, orDAWG is a special index structure that represents all the substrings

extracted from a string.

22

Table 2.1 All Rotations of T = $banada. Given an input string T = $banada,
rotate N times, where N = 8 is the length of the T string.

F L
$ b a n a n a
a $ b a n a n
n a $ b a n a
a n a $ b a n
n a n a $ b a
a n a n a $ b
b a n a n a $

Table 2.2 A lexicographically sorted BWT matrix given an input string
T = $banada. The previous produced rotations are sorted lexicographically.

Row Occurrence F L Occurrence
3 3 a n a n a $ b 1
2 2 a n a $ b a n 1
1 1 a $ b a n a n 2
6 1 b a n a n a $ 1
5 2 n a n a $ b a 1
4 1 n a $ b a n a 2
0 1 $ b a n a n a 3

A BWT of an input string T is denoted as BWT (T), where T ’s characters are from

alphabet
∑

. In the first step, the algorithm forms all rotations with the input text T ,

where the character $ is appended to the end of the text (Table 2.1). Table 2.1 describes an

unsorted BWT matrix of all possible rotations T as banana, where $ represents the end of

the string27 Table 2.2 describes a sorted BWT Matrix of T as banana, where each row has

been sorted alphabetically. After sorting, the first and last columns are kept, where the last

column is considered the product of BWT. For example, if T is banana, BWT (banana) is

bnn$aaa (red column of Table 2.2).

If the result of BWT is known, to get the original string T back, an algorithm is used to

reverse the output of BWT. F and L represent the first and the last columns in the BWT

matrix. The last-to-first index mapping can be denoted as LF (i). LF (i) is obtained with
27$ is not present in the alphabet

∑
, and is lexicographically smaller than all symbols in the alphabet

(Table 2.2).

23

the help of 1D array C[c], which contains the number of lexicographically sorted characters’

occurrence, and 2D array Occ[c, k], which contains occurrences of character c in the L[1..k].

Since the first column is lexicographically sorted, the LF (i) is computed as LF (i) = C[L[i]]+

Occ(L[i], i). If LF (i) is known, where L[i] = T [k], we would have L[LF (i)] = T [k − 1]. It

means that in each row of the BWT Matrix, the first character is followed by the last

character in the original input string. Therefore, the sub-string of the input string T ’s

position can be easily determined. For example, in Table 2.2, the first step is to locate the

position of $ sign in the column F at row 0. The last character of T is a. The character a

with the same occurrence is in row 1, which is followed by n (the second last character in T).

It is followed by the same n in row 4, which defines the third character as a. The algorithm

repeats these procedures until the whole string banana is recovered.

2.3.2.2 Suffix Arrays

BWT can be used to approximate matches DNA reads onto a reference sequence (real data)

very efficiently. However, the generation of the BWA requires the use of a matrix, which is

O(n2) in time and space. It is not feasible to store a matrix when deal with large values of n,

such as with the human genome. A combination of compression and indexing is introduced

to reduce both time and space complexity [60]. BWT can be generated from a compressed

suffix array in O(n) time and O(n log |
∑
|) space28. However, it should be noted that the

time complexity for generating a compressed suffix array is O(n log n).

In suffix arrays, a new simple symbol $ is placed at the end of the text t, which does

not exist in any alphabet and is lexicographically smaller than all other characters in the

alphabet. t is stored in an array as T [0, 1, ..., n− 1], where T [n− 1] = $. Let us assume that

t is stored in an array as T [0..n − 1], where T [n − 1] = $. The suffix of T is defined as Ti

as T [i..n − 1], which represents all of the characters starting from T [i] until the end of the

text. A suffix array of T is defined as SA[0, 1, ..., n− 1], which contains a sorted sequence of
28∑ represents the alphabet size.

24

all the suffixes of T , where SA[i] is the lexicographically-smallest suffix of T starting from

i+ 1)th. As an example, SA[0] = (n− 1), and T [SA[0]] = $ for all texts, if j is the value of

SA−1[i], where SA[j] = i, SA−1[i] is how many suffixes are lexicographically smaller than Ti.

As any pattern matches the text at any point within at least one suffix of the suffix array, a

prefix will occur, and prefixes are grouped contiguously within the lexicographically sorted

suffixes. As one of the matching prefixes is found, other matching prefixes can be accessed

in constant time, which makes searching very efficient.

The compressible suffix array of T can be simplified as ψ[0..n − 1], where ψ[0] is equal

to SA−1[0]. For all other i = 1, 2, ..., n− 1, ψ[i] = SA−1[SA[i] + 1]. To store this array, the

naive approach would take O(n log n) space. From previous example, we can see that if i < j

and T [SA[i]] = T [SA[j]], then ψ[i] < ψ[j]. In other words, if two suffixes i and j have the

same first character, and i is lexicographically smaller than j (ψ[i] < ψ[j]), the compressible

suffix array would consists of a sequence of increasing numbers [60].

Figure 2.4 The suffix array and compressed SA of acaaccg$.

In Figure 2.4, letters T [SA[i] are grouped together with lexicographically increasing order.

Also, within each group, the ψ[i] is increasing. The compressible suffix array use this fact to

store with O(n(H0 + 1)) bits in O(n log n) time, where H0 denotes the entropy of the text

with at most log |
∑
| [60]. ψ generate the Burrows-Wheeler transform, W , using formula

W [ψk[P]] = T [k − 1], where p = ψ[0]. The ψ array is generated in O(n log n) time and

O(n(H0 + 1)) space, Burrows-Wheeler transform can be generated from ψ array for t in

O(n) time and space.

25

2.3.2.3 Indexing

First step in BWA-ALN is to index the reference sequence (real data) by performing BWT.

As the index is saved as a file, the reference needs to be indexed only once. In order to

search over both of the strands, a BWT is built on the reverse reference. In order to build

the BWT index, FASTA formatted reference sequence (real data) file is compressed. As

the DNA alphabet is only of size four over A, T, G, and C, the sequence is translated into a

two-bit sequence. If symbol N (non-determined nucleotide by NGS platform) is encountered

during indexing, a random base is chosen and assigned to the position.

2.3.2.4 Exact and Approximate Matching

The suffix array S for a string t is a permutation of the integers 0 through n − 1, such

that S[i] is the start position of the ith lexicographically smallest suffix in t. Suffix array

interval is defined as a pair (Rs(W), Re(W)), where Rs(W) is the minimum index (W is a

prefix of tS[s]), and Re(W) is the maximum index (W is a prefix of tS[e]). In the suffix array,

each exact occurrence of p in t is determined by retrieving the value given by S[k], where k

represents each value in the suffix array interval. There would be one suffix array interval

per pattern at most for exact string matching. However, approximate string matching may

have many intervals per pattern.

For exact matching, the suffix array intervals for an exact match is determined as follows.

C[c] is the number of symbols in t that are lexicographically smaller than c, and Occ(c, i) is

the number of symbols in the first i characters of the BWT compressed version of t that are

lexicographically smaller than c. c is set equal to p[m− 1], where the beginning suffix array

interval would be (C[c], C[c + 1] − 1). Backward search starts searching at the end of it,

Rs(aW) = C(a) +Occ(a,Rs(W)− 1) + 1, and Re(aW) = C(a) +Occ(a,Re(W)). Once hits

the beginning of the pattern, under the case of Rs(P) < Re(P), p exists in t in all locations

referenced by the suffix array interval.

26

An extension of a backward search is used to facilitate approximate matching inBWA. BWA-

ALN first generates the word-neighbourhood for each pattern, and the exact match algorithm

is performed on each word in the word-neighbourhood. The efficiency is improved by esti-

mating the lower-bound of the mismatches with the reverse sequence. It makes BWA-ALN

very efficient as the resultant array crops out large amounts of the word-neighbourhood.

The algorithm for determining the suffix array intervals of a pattern against a BWT-

compressed sequence is used for approximate matching. It is a repeated process for the

reverse reference on a complement sequence. As it is a recursive algorithm, the exit case is

being checked first, and the algorithm exits based on two conditions. Firstly, if the estimated

lower bound for the mismatches in p is higher than a limit, k, the algorithm exits with null

as a result. Secondly, the program would exit when the end of the backward search has

reached, where the suffix array interval is returned as a result.

In the second step, a recursive call to the current function is made, which lowers the back-

ward search character position without searching and decreasing the number of errors al-

lowed. This function call covers an insertion in the pattern as a character is skipped. In the

third step, each possible character b is cycled through at the current index, and the suffix

array interval is calculated when b is added to the front of the currently processed suffix.

The program validates the suffix array interval. If it is not valid, the algorithm continues to

the next iteration of the loop. Otherwise, the algorithm moves on.

In the fourth step, as the current algorithm is not moving backward from the current

character, the algorithm makes the recursive call with the assumption that deletion is in

the pattern but also decreases the number of errors encountered. In the last step, the

algorithm handles the substitution errors. Suppose b matches the character in p at the

current position. In that case, there is no substitution error, so the algorithm calls recursively

with i29 decreased by one30 and keeps the k as same. Under the case of a mismatch, the
29Position index.
30moved backward

27

algorithm is called with both parameters i, and k decreased by one. The algorithm would

leave with a set containing all the suffix array intervals as a result.

2.3.2.5 Alignment Determination

BWA-ALN calculates the quality score of all possible matches based on criteria of the number

of gap-opens, gap-extensions, and mismatches. For paired-end reading, each sequence is first

aligned in the same way for single-end read alignment. Statistical methods estimate the

maximum, average, and minimum insert sizes for the entire group of sequences. The single-

end alignments and the insert size estimates are used to map one read to its other pair. The

longer the reads are, the faster the alignment phase would be, as the smaller the chance that

multiple good reads would be produced. On the other hand, the shorter the reads, the slower

the alignment phase, as there will be more suffix array intervals to look up. The alignment

is finished when all of the sequences have had their alignment determined.

2.3.3 BWA-MEM

In the early days, most mappers are developed for reads of 36 bp in length, which is reasonable

to require end-to-end alignment, and they only report hits within a certain edit distance.

However, with emerging technologies and improved technology, NGS reads are not short

anymore. 100 bp or longer reads need to allow longer gaps under the affine-gap penalty

and report multiple non-overlapping local hits in the reference genome. BWA-MEM is the

latest development of the BWA-MEM software package for 100 bp or longer reads, which

utilizes FMD-index and SMEM for faster alignment. BWA-MEM process has five major

stages: file loading and indexing, seeding and re-seeding, chaining and chain filtering, seed

extension, and output generation.

28

2.3.3.1 Indexing and File Loading

In the file loading and indexing stage, both the reference and read sequences are loaded into

memory. Between pattern p and text t, exact matches that cannot be further extended in

both directions are maximal exact matches. Compared to seeds with pre-defined length,

BWA-MEM ’s key feature of variable seed length reduces each seed’s mapping positions onto

a reference genome. As invalid seed extensions are prevented, the speed of BWA-MEM is

improved. FMD-index, a new index structure, facilitates the detection of all MEMs with

an 80% speedup, which indexes both the forward and the reverse strand DNA [20]. FMD-

index is similar to the bi-directional BWT [61] used by SOAP and Bowtie2. The efficiency

of generating MEM seeds plays a key role, where the frequently used strategy is indexing a

sequence in a full-text suffix tree. Even with improved index structure, the full-text suffix tree

still has a high memory usage as it stores every position of the text. Space-sparse suffix array

was introduced to replace the full-text index in the suffix tree to reduce memory usage as it

only stores every kth position of the text. As read is commonly larger than the computer

memory, read is separated into multiple blocks and processed one by one. After the first

block’s successful alignment, the next block is loaded for the next alignment section.

2.3.3.2 Seeding and Re-seeding

In the seeding and re-seeding stage, the canonical seed-and-extend paradigm is used in BWA-

MEM [20]. The canonical seed-and-extension paradigm finds the exact matches and then

extend the seed to the non-seed fragments within the selected candidate regions in the query

read and the reference genome [62]. An algorithm is initially used to seed an alignment

with supper-maximal exact matches (SMEMs)31. SMEM decreases time consumption by

reducing the most invalid extensions of all other MEM in the read. When reads cannot be

aligned by extension using SMEM, BWA-MEM uses a re-seeding process to generate new
31The longest MEM covering the position without overlapping.

29

seeds. In re-seeding, by default, when SMEM ’s length is larger than 28 bp, the longest MEM

covering the middle of the SMEM is used to initialize.

2.3.3.3 Chaining and Chain Filtering

In the chaining and chain filtering stage, seeds that are colinear to each other would be

greedily chained together. The short chains in a long chain32 are filtered out. At a later

step, unsuccessful seed extension is reduced by chain filtering. However, chains detected are

not accurate, which may not correspond to a final hit.

2.3.3.4 Seed Extension

In seed extension, seeds are ranked by the chain length and seed length. The seed is dropped

if it is already contained in a previously found alignment. BWA-MEM differs from the

standard seed extension as the extension stops when the score difference between the best

alignment and the current alignment is larger than the pre-defined value. This process would

avoid extension through a poorly aligned region. The pre-defined value is further adjusted

by the number of gaps in the alignment. The algorithm accepts an alignment as a successful

mapping between reads and references if the whole read is reached by extension, and the

best improvement alignment score is larger than a pre-defined value.

Also, BWA-MEM traces the best extension score when reaching the end of the query.

Even if a higher score is achieved, this strategy rejects the local alignment when the difference

between the best end-to-end alignment score and the best local alignment score is less than

a pre-defined value33.
32Both 50% and 38 bp shorter than the long-chain.
33This process is used to choose between local and end-to-end alignments automatically.

30

2.3.3.5 Output

After every step completes, the raw output is produced and ready to be processed with

pre-defined parameters in the output generation stage.

2.4 Parallel Computing

As most software executes instructions in sequence, the hardware quickly reaches limits as

only one instruction is executed at any given time [63]. Since the room for speed improvement

from a computational algorithm approach is limited, the alternative approach is to parallelize

the existing algorithm. As the parallelization concept is dated back to the 1950s-1960s, the

parallel accelerators have become prominent and ubiquitous only recently. The development

of parallel computing has a substantial impact on software/hardware design. The trend’s

essence can be attributed to the physical limits of further increasing the operating frequency

of processors and the shifted focus on integrating more computing units on one chip.

Driven by the trend, commercial parallel accelerators34 have become commonplace in

computing systems. Due to the multi-core processors’ massive computational powers, a

wide variety of dense matrices and vectors-based applications has been parallelized. These

algorithms that mainly focus on solving linear algebra, stencil computations, and image pro-

cessing have been extensively investigated. As hardware becomes cheaper and the distributed

network becomes widely acceptable, they are being used to further speed-up computation-

intensive applications35.
34Such as multi-core CPUs and GPUs.
35Still, many irregular algorithms or irregular data structures problems cannot be paralleled. These

applications do not exhibit enough static and runtime parallelism, which make them hard to parallelize.

31

2.4.1 Definition of Parallel Computing

Parallel computing uses multiple processors to execute the instructions from the same al-

gorithm, making the time consumption a fractional of the originals. A great example of

parallel computing could be the relation between workers and woods for a wood chopping

job in a limited area. If only one worker is allowed at any given time, the time consumption

is relatively high compared to two workers. The processing speed may be increased in a

linear relationship until they start to affect each other as resources are limited, where the

effect of speed improvement starts to diminish.

2.4.2 Classification of Parallel Computing

The four computers or processors classifications are SISD, SIMD, MISD, and MIMD [64].

SISD stands for a single instruction stream and single data stream, which means only one

stream of instructions is used on one data stream. One example of SISD would be a tradi-

tional computer, where only one single thread is allowed. However, this type of computer

system no longer exists in daily life as a multi-core processor gets cheaper.

SIMD stands for a single instruction stream and multiple data stream, where the data

sets are distributed across multiple processors. MISD stands for multiple instruction streams

and a single data stream, where it has many function units being performed on the same

data. Examples of MISD includes shuttle flight computers, GPUs and general wavefront

processors. MIMD stands for multiple instructions with the multiple data stream, where

different instructions are performed on different data. MIMD CPU is commonly used for

systems needing high calculation power, such as servers and cluster computers. An example

of such a processor is the Intel Xeon Phi server chip, which has up to 72 cores and 288

threads.

32

2.4.3 CPU multi-threaded

In modern operating systems, a process is defined as an entity that groups resources to-

gether [65]. multi-threaded is either provided by a single control processing unit (CPU) or

a single core within a multi-core processor. Within the single core, multiple processes are

executed simultaneously as the processor quickly switches back and forth between multiple

processes36. This setting provides an illusion of parallelism, but it is not true parallelism. In

a more modern setting, a process can have multiple threads of control, where each thread is

independent of others [65]. Both BWA-MEM and BWA-ALN provide such functionality in

their original package.

2.4.4 CPU Distributed

With the two types of parallelization systems, shared memory multiprocessor system (SMP) is

interconnected through shared physical memory, andmessage-passing multicomputer (MPM)

is interconnected through a network connection with message-passing libraries. SMP is a

specially designed machine as processors have to be directly connected, such as mesh and

hypercube. However, in MPM, a computer cluster is a loosely connected network containing

many regular workstations together through protocols.

2.4.4.1 Message Passing Interface

Message Passing Interface (MPI) is a widely used communication protocol for parallel

computing architectures, which supports both point-to-point and collective communica-

tions [66]. MPI provides the message-passing application programmer interface, allowing

programmers to use high-performance message passing options on advanced machines. In

2012, Peters et al.[9] developed pBWA on Compute Canada’s cluster using MPI, which is

considered the first efficient parallel version of BWA. However, as pBWA was a modified
36Only one task is being executed at any given time.

33

version of BWA-ALN in 2011, it is soon outdated as a newer version of BWA-ALN comes

out.

2.4.4.2 Big Data

big data framework is a collection of open-source framework for distributed storage and

data processing37. Hadoop is the most successful open-source implementation of the MapRe-

duce programming model. Hadoop supports large data sets shared across clusters using

the MapReduce framework, which is designed to scale up from a single node to thousands

of nodes, where each node offers computation power and local storage [67]. The MapReduce

framework is designed to handle node failures at the application layer.

BigBWA (BWA + Hadoop) [14] and SparkBWA (BWA + Spark) [16] are the tools that

use big data technology to boost the performance of BWA. Important reductions in the

execution times were observed when using both tools. In both BigBWA and SparkBWA,

no modifications to the original BWA-ALN source code is required38, which assures its

compatibility with any BWA-ALN version39.

2.4.4.3 GPU multi-threaded

CPUs like Intel Core series are good at doing a few tasks concurrently. In comparison,

GPGPU contains many arithmetic logic units40, which enables millions of threads to be

launched at the same time. In simple and computation-intensive work, GPGPU is more

powerful and cost-efficient than an equivalent CPU.
37There are few implementations of combining big data with BWA, which includes SparkBWA and

BigBWA.
38As they are using two independent software layers.
39Future or legacy.
40Figure 2.5 shows a generic GPGPU architecture.

34

Figure 2.5 A generic GPGPU architecture. In comparison to a CPU, a
GPGPU works with fewer, and relatively small cache layers. GPGPU has more
transistors dedicated to computation and it cares less how long it takes to retrieve
data from memory.

35

Figure 2.6 Memory hierarchy in CUDA. GPGPU contains multiple grid, and
each grid contains multiple thread block. A thread block is a programming abstrac-
tion that presents a group of threads that can be executed serially or in parallel.

A single GPGPU contains multiple of computation units (or blocks), and each blocks

containing multiple threads. Figure 2.6 is the memory hierarchy in GPU architecture. Like

CPU memories have three different cache levels, GPGPU also has its memory hierarchy

with different data transfer speeds, including local memory41, shared memory42, and global

and texture memory. All the threads share global memory, constant memory and texture

memory. Threads also have access to multiple registers and local memory at per thread

level.

Compared to the local/global memory, the shared/register memory is around 150 times
41At per-thread level.
42At per-block level.

36

faster. Registers are the fastest form of memory on the GPGPU [68]. The threads can

only access a parallel data cache or shared memory within the same computation unit, and

is as fast as a register when there are no bank conflicts or when reading from the same

address. The global memory is slow and uncached, commonly used for massive memory

transfer, especially when transfers in and out of GPGPU. Texture memory (read-only) is

cache optimized for 2D access, and is used to store textures during 3D processing [68]. The

constant memory (read-only) is slow, but it is cached and shared with all threads. The

local memory stores the data that does not fit into registers, and is slow but cached. If one

does not need to modify the variables, the read-only memories are the best option. The

shared/register memory should be used as much as possible to ensure fast access. When

the local memory and shared memory are used, synchronization is not needed as no race

condition can occur. However, the user has to use __syncthreads() keyword to synchronize

the thread to avoid deadlocks when dealing with global memory and shared memory. The

shared variables are declared with __shared__ keyword. The global memory is declared

with __device__ keyword, and cudaMelloc() is used to copy a chunk of memory from the

host to the global memory.

The two main components of the CUDA program are host and kernel, where the host is

responsible for moving data between host and device, and the kernel is a parallelized code

meant to be executed concurrently on the GPGPU device. The version number represents

the computing capability of a device, which helps to determine what features are supported.

CUDA allows for three hardware parallelization levels, where kernel functions are executed

on the grids of threads and blocks.

When designing a GPGPU program, high overhead on data transferring must be con-

sidered, especially data transfer between host and device. Also, the data transferring speed

within the GPGPU is varied when using different types of memories. Therefore, Block shared

memory is used for calculation, and texture memory stores pre-calculated information. global

shared memory stores the input and the final result. However, unlike other programs, the

37

GPGPU program has to track memory usage as the hardware does not track how much mem-

ory is used. The device would terminate the program, or worse, crash, once the program

exhausts memory within the GPU.

38

3 RESEARCH DESIGN

This chapter presents the design idea of GPGPU distributed BWA-MEM and methodology

used. After successfully understood how BWA-MEM works, we need to find out which part

of the code takes most of the time, that’s where hot spot analysis comes in. As both BWA-

MEM and BWA-ALN follow the seed-and-extend paradigm, the GPGPU BWA-ALN is

investigated. After analyzing different parallelization techniques, we find that the distributed

GPU BWA-MEM is the fastest among other parallelization techniques.

Two hot spot analysis are performed at 100 bp and 250 bp [21], where ksw_extend2 has

increased from 28.9% to 51.9% of the total execution time. We can conclude that ksw_extend2

increases as the length of the alignment increases. therefore, our main goal is to parallelize

chain2aln.

As the ksw_extend2, part of the chain2aln, can be considered as a simplified smith-

Waterman algorithm, the ksw_extend2 follows the typical Wave-front technique. The BWA-

MEM seed extension is parallelized at three different levels. At parallelization Level 1,

function ksw_extend2 is parallelized, which performs seed extension on the single side. At

parallelization Level 2, function ksw_extend2 is parallelized, which performs seed exten-

sion on both side of the seeds within the same chain. At parallelization Level 3, function

mem_align1_core is parallelized, which performs seed extension in all chains. Under the

assumption of enough GPGPU resources, the time complexity would remain at O(L0+L1)
1.

A Spark version of BWA-MEM has two layers. The first layer is responsible for execut-
1This is for sequence0 and sequence1.

39

ing GPGPU distributed software, and Java native interface (JNI) as an adapter to commu-

nicate with layer two. Layer two is the core of the execution. This part of the program is

responsible to get user input and then perform map and reduce. it will set up RDDs, map

data, and then reduce them into a single file.

3.1 Technical Road-Map

Table 3.1 Types of parallelization techniques. The parallelization techniques
can be categorized into four types: CPU multi-threaded, CPU distributed, GPU
multi-threaded, and GPU distributed.

CPU GPU
multi-threaded POSIX Thread CUDA
Distributed Spark, Hadoop, OpenMPI Spark, Hadoop, OpenMPI

40

Table 3.2 The description of each parallelization type’s benefits.

41

The four types2 of parallelization technique are CPU multi-threaded [8], [9], GPGPU paral-

lelized [10]–[14], CPU distributed [15], [16], and GPGPU distributed [17]–[19]. To understand

what the best option may be, analyzing the benefits and drawbacks of each technology was

necessary.

Among all parallelization techniques, GPU-based software are generally considered faster

than CPU-based software, and they solve problems with high-level parallelization effectively

and efficiently. The two commonly used GPGPU languages, CUDA and OpenCL, are de-

signed to simplify the GPGPU related operations. CUDA stands for Compute Unified Device

Architecture and is created to simplify NVIDIA-related operations. OpenCL stands for Open

Computing language and is supported by multiple GPGPU types, such as AMD and Intel.

NVIDIA has stopped supporting the OpenCL framework for some time. NVIDIA CUDA is

the core for many frameworks and libraries that needed a high performance, such as Tensor-

Flow and OpenCV. As a typical example, NVIDIA GTX 1080, a gaming GPU, owns 2058

cores. In most cases, a single or a small group of connected GPGPU can solve a problem

faster than a multi-core CPU.

There are a few reasons for GPGPU distributed BWA-MEM version to has a high chance

to outperform existing GPGPU distributed BWA-MEM version implementations. First, a

good performance is already shown in the GPGPU multi-threaded version and GPGPU

distributed version of BWA-ALN, indicating distributed GPU BWA-MEM having a good

odds to outperform other parallelized versions. BarraCUDA is a GPGPU paralleled version

of BWA-ALN. The paper on BarraCUDA claimed it is up to three times faster and 60% more

accurate than BWA-ALN [10]. It is reported that BarraCUDA can align short paired-end

NextGen sequences up to ten times faster than BWA when it runs on a GPGPU 12 core K80

Tesla server [10].

Big data BWA-ALN, as a distributed CPU version, such as the SparkBWA, is 2.5X

faster than BWA-ALN with 64 mappers [16]. SparkBWA is 1.4x faster than pBWA [16].
2Table 3.1 shows the different techniques for parallelization, and Table 3.2 shows each of their benefits

42

Since both parallelized BWA-MEM versions have various speed-ups, the distributed ver-

sion of GPGPU BWA-MEM has a high chance to outperform existing tools. There are

few implementations of combining big data with BWA-ALN, which includes SparkBWA

and BigBWA. Hadoop is the most successful open-source implementation of the MapReduce

programming model introduced by Google.

Rather than relying on hardware to deliver high availability, the big data library is de-

signed to detect and handle hardware failures at the application layer, which provides high

availability on top of a cluster of computers. BigBWA (BWA-ALN + Hadoop), SparkBWA

(BWA-ALN + Spark) are new tools that use the big data framework to boost the perfor-

mance of the BWA-ALN. The reductions in the execution times were observed when using

both tools. The design of both BigBWA and SparkBWA has two independent software lay-

ers, which ensures no modifications is needed towards the original BWA-ALN source code

(version agnostic) [15], [16].

Existing studies have shown that GPGPU distributed tools have a better performance

than others. GPGPU distributed BLAST improves the performance of BLASTP on a single

GPGPU with high availability and fault tolerant [69]. BLASTP claims it is 1.5x faster

than Hadoop-BLAST [19]. Therefore, the GPGPU distributed structure could boost BWA-

MEM under the correct implementation. However, BWA-MEM does not have any open

source GPGPU multi-threaded version available, which is the key component for developing

GPGPU distributed. Therefore, GPGPU multi-threaded BWA-MEM needs to be built first.

GPGPU distributed BWA-MEM version, especially under the big data framework, just

like big data BWA-ALN versions mentioned previously, can be version agnostic. GPGPU

distributed is designed with two layers, where the first layer corresponds to GPGPU software

package, and the second layer is responsible for executing MapReduce framework. However,

OpenMPI GPGPU BWA-MEM version can not achieve this goal as modification towards

BWA-MEM itself is needed. GPGPU distributed is the future of parallel computing as cloud

computing become popular. In order to gain further speedup, scientists rely on large GPGPU

43

clusters3.

The big data GPGPU BWA-MEM consists of three main stages: resilient distributed

dataset (RDD) creation, map, and reduce. In the RDD phase, input data is uploaded

onto RDD. Then, map phase carries out the actual alignment process. RDD is a read-only

multi-set of data items distributed over a cluster, which is maintained in a fault-tolerant

way [70]. The Map phase uses the parallelized GPGPU BWA-MEM to perform the align-

ment. In the reduce phase, all the produced files are combined into a single output file.
3Cloud service providers such as Amazon, Google, and Tencent offer high-performance GPGPU clusters

at a relatively lower price.

44

Figure 3.1 A simplified version of big data GPGPU distributed BWA-
MEM framework. The big data GPGPU distributed BWA-MEM framework has
two main layers. Layer one contains a GPGPU version of BWA-MEM, and the layer
two contains MapReduce framework.

45

Table 3.3 The description of the simplified version of big data GPGPU
distributed BWA-MEM framework.

Figure 3.1 is the designed software structure for GPGPU distributed BWA, followed

by Table 3.3 as an explanation. Layer one (GPGPU BWA Layer) contains an unmodified

GPGPU software. Layer two is the MapReduce framework built upon layer one, and the

execution of layer one depends on JAVA Native Interface (JNI). The MapReduce framework

handles data communication on a GPGPU Cluster.

To implement GPGPU distributed BWA-MEM, GPGPU multi-threaded BWA-MEM

and a suitable cluster is needed. After researching the GPGPU multi-threaded BWA-MEM,

there are no open-source versions available. Spark and Hadoop, the two Big Data framework,

both require additional resource manager before September, 20204. In the most recent Spark
4The additional resource manager is for managing GPU resources, which will cause a conflict with existing

46

release allows us to run the GPGPU cluster in Spark standalone mode. Thus, Spark frame-

work stood out and caught our attention.

3.2 Hardware Setup

This Section describes the effort in looking for a suitable cluster to build and run GPGPU

distributed BWA-MEM. The first step is to analyze how the big data cluster interacts with

BWA, especially how it is transferred within the cluster. There are four options available:

1) SharcNET ; 2) personal PC; 3) commercial cloud services; 4) Brock University. and each

of them is described below.

3.2.1 SharcNET

SharcNET is a consortium of universities in Ontario, that aggregate funding to purchase

super-computer systems, which are shared among their members [71]. As Brock University

is a member of SharcNET, the four such clusters on SharcNET that may be suitable for

the program are 1) copper cluster [72] (decommissioned on March 29, 2019); 2) vdi-centos6

cluster [73] (one node is available); 3) mosaic cluster[74]; 4) graham cluster [75]. Both mosaic

and graham clusters provide a full scale cluster with NVIDIA GPGPU installed, but graham

is with newer hardware.

software on SharcNET.

47

Table 3.4 Hardware specification for graham cluster1.

1Retrived from https://www.sharcnet.ca/my/systems/show/114.

Table 3.4 describes the hardware specification of the graham cluster. The nodes from 828

to 987 are equipped with 2 NVIDIA Pascal P100 GPUs, 128 GB of memory, and total local

storage of 800 TB. For implementing a GPGPU distributed BWA-MEM onto the graham

cluster, the nodes from 801 to 803 can be used as a RAM drive (as each of them has 3072

GB of RAMs), and nodes from 828 to 987 can be used as a computation cluster.

48

Table 3.5 Hardware specification for mosaic cluster1.

1Retrived from https://www.sharcnet.ca/my/systems/show/106.

Table 3.5 describes the hardware specification of the mosaic cluster. Within the cluster,

there are two types of equipment, nodes from 1 to 20 with NVIDIA Tesla K20m GPU and

nodes from 21 to 24 with no GPGPU resources but with a high amount of RAM, where the

second one can be treated as a storage cluster.

49

Table 3.6 Software specification for graham cluster1.

1Retrived from https://www.sharcnet.ca/my/systems/show/106.

Table 3.6 describes the software installation status of the mosaic cluster. The mosaic

cluster is installed with CUDA toolkit, GCC and G++, NVIDIA graphics driver, Zlib, and

Java. However, BarraCUDA cannot be compiled without MARVEN installed on the mosaic

cluster. As the Hadoop system is not installed, the big data cluster is not supported on the

50

cluster. Technical support staff at SharcNET indicated that it is impossible to install any new

task scheduler (Hadoop and Spark require a different task scheduler) as they are conflicting

with the existing one unless it does not require installation. Spark standalone cluster can be

setup without installation, but it has not yet come to support GPGPU resources.

Table 3.7 Software setup process on Mosaic Cluster.

Table 3.7 describes the process to setup the necessary environment. In order to gain full

access, the user needs to submit a request to acquire related resources. Also, SharcNET

limits each user’s workload by limiting execution with a time restriction (which is done

through a task scheduler). The command module load is used to load necessary software

packages and specific versions onto the system, and the command module unload can unload

separate software packages from the environment.

51

Table 3.8 Output of software setup on Mosaic cluster

Table 3.8 describes the output after running the set-up code. As the output has shown,

theGCC compile version is 4.9.4, and the Spark version is 2.3.0. The Zlib versions are 1.2.11, 1.2.3-

29, which means it has the required version of Zlib by BarraCUDA.

52

Table 3.9 SparkBWA environment setup on mosaic.

Table 3.9 describes SparkBWA’s environment setup on mosaic.

3.2.2 Personal PCs

There are two advantages of setting up a test environment on personal computers. Firstly,

the work can be started while looking for a cluster. Secondly, we have the full control of the

system configuration, and software installation is available.

53

Table 3.10 Offline PC 1’s specification.

Table 3.10 describes the specification of offline PC 1. Offline PC 1 is a home desktop

with an Intel Core i7 6th Gen equipped with a dedicated GPU. It also has 32 GB RAM

and 1 TB Local Storage installed, which will be the primary desktop for testing. Offline

PC 1 meets the hardware specifications for both BarraCUDA, and our new software, Spark

GPGPU BWA-MEM.

Table 3.11 Offline PC 2’s specification.

Table 3.11 describes the specification of offline PC 2. Offline PC 2 is a laptop equipped

with an Intel i7 3rd Gen and an on-board NVIDIA GPU. However, laptop GPGPU uses hy-

54

brid technology, where the video output is a combined effort of both integrated GPU 5 and

the disintegrated GPU. Also, the performance of this GPGPU is lower than the offline PC 1 ’s

GPU. Furthermore, under the Linux environment, there is no graphics driver for this com-

bined GPU available6. As the PC 1 has an advantage in terms of hardware, we performs

test on this machine.

3.2.3 Cloud Services

In order to find a suitable cluster, the possibility of renting cloud services had been researched.

The two most popular cloud service providers are Amazon and Tencent. Among them, the

cheapest option is Tencent’s server. setting up a testing cluster7 is still costly, and we have

estimated around 3,000 dollars for a single month.

3.2.4 Brock University Department of Computer Science

Computer Science Department at Brock University has just setup new PCs for Master stu-

dents in 2019, but the GPGPU equipment needs to be requested. Also, there is not enough

GPGPU equipment available to setup a small GPGPU cluster.

3.2.5 Summary

A few options for possible hardware had been looked at. We did looked into SHARCNET,

which did own few such clusters, but they lack the necessary software packages. A typical

example is the Mosaic cluster. Mosaic cluster does have Spark installed on all the nodes but

it lacks compatible resource manager for GPGPU equipment. We have looked at hardware

owned by the author, but only (offline PC 1) is equipped with the necessary hardware. At

last, the online paid services are costly.
5The GPGPU is inside the Intel CPU.
6NVIDIA does not provide a graphics driver for Linux.
7With minimum three GPGPU equipped nodes.

55

In this chapter, author mentioned configurations for clusters on SharcNET, PERSONAL

PCs, labtop, and department facilities. Mosaic cluster is part of SharcNET computer net-

work, and it is part of the Ontario’s supper-computer system. The test facilities for laptop

and personal PCs were tested at author’s home. Brock University ’s Facility is located at

Brock University ’s MCJ block. Due to the COVID 19 pandemic, the majority of tests was

performed at Brock University and author’s home on PC 1.

3.3 Software Setup

This Section introduces the installation process step by step.

3.3.1 SparkBWA

Table 3.12 SparkBWA environment setup on PC 1.

Table 3.12 describes the installed software version for SparkBWA, where compatible MAR-

VEN, Spark, Hadoop OpenJDK version has been successfully installed on PC 18.
8The test was performed on intel i7-6700k CPU, NVIDIA GeForce GTX 1080, 32GB RAM, and 1TB

solid state hard drive desktop.

56

3.4 BWA-MEM GPGPU Parallelization

As we have analyzed how BWA-MEM interacts with big data, the next step is to paral-

lelize BWA-MEM with GPU. BWA-MEM can be separated into five stages, which are 1)

loading index and read file content into the program, 2) finding SMEM, 3) chaining and

chain filtering, 4) seed extension, 5) generating the output file. However, due to the thesis’

time limitation, it is impossible to start GPGPU parallelization for all parts. Therefore, a

hot spot analysis from [21] is used to determine the code’s highly used.

3.4.1 Hot Spot Analysis

Hot spot analysis determines a high proportion of executed instructions region within a com-

puter program. As BWA-MEM is a large program, it is hard to determine which stage has

taken a large amount of time. As mentioned in [21], BWA-MEM ’s performance depends on

the length of the read, and is very suitable for reads with 70 bp length. In [21], a hot spot

analysis on the average length of 100 bp was performed [21] (Figure 3.2,) and another hot

spot analysis was performed on the average length of 250 bp for comparison. In both graphs,

the pie represents the total execution time. As shown in Figure 3.2, chain2aln takes 28.9% of

total execution time. As the length of the read increased to 250 bp, chain2aln has increased

to 51.9% of the total time. The test also verifies the fact mentioned from [76] that seed

extension is the most time-consuming component of BWA-MEM.

57

Figure 3.2 Hot spot analysis for BWA-MEM at a read length of 100 bp1.

1Data is from [21].

58

Figure 3.3 Hot spot analysis for BWA-MEM at a read length of 250 bp1.

1Data is from [21].

We have determined that chain2aln is the most time-consuming component of the BWA-

MEM. chain2aln, a modified version of the Smith-Waterman algorithm, is part of step 4

of BWA-MEM. The test result from Level 1 showed that the GPU multi-threaded ver-

sion of ksw_extend2 is not getting any faster than the original CPU version, which is

due to an insufficient parallelization level. Therefore, the parent functions, chain2aln, and

mem_align1_core, are investigated.

3.4.2 Smith-Waterman Algorithm

The Smith-Waterman algorithm is a dynamic programming algorithm that determines sim-

ilar regions between two strings by comparing all possible length segments. As a dynamic

programming algorithm, it is guaranteed to find the optimal local alignment with the scoring

system being used. The Smith-Waterman algorithm has four steps: substitution matrix gap

59

penalty scheme determination, scoring matrix initialization, scoring, and traceback.

Figure 3.4 The calculation of edit distance in Smith-Waterman algorithm.

A score is assigned based on match/mismatch for each pair of bases in the substitution

matrix, where a positive score is assigned for matches, whereas a lower/negative score is

assigned for mismatches. A gap penalty score is assigned when a gap opening or extension is

found. The scoring matrix records the optimal alignment result by comparing all components

one by one, where the new optimal alignment is based on the previous optimal alignment.

In other words, the current alignment is based on deciding which path (match/mismatch or

gap) provides the highest score from the previous alignment. The scoring matrix is 1 + L

of each sequence, where L is the length of the sequence. The extra first row/column allows

sequence to be searched. During initialization, both the first row and the first column are set

to 0, making the terminal gap free from penalty. The matrix is scored from left to right, top

to bottom (Figure 3.4) with the highest score from substitutions, adding gaps. The traceback

generates the highest similarity score based on the given scoring system, which starts at the

element with the highest score, and recursively traces back until 0 is encountered.

3.4.2.1 Algorithm

The Smith–Waterman algorithm is described as follows. let us assume that A = a1a2...an

and B = b1b2...bm are the aligning sequences, where n and m represents the lengths of A and

B. The matrix s(a, b) is the similarity score of the elements in the two sequences, and theWk

is the penalty of a gap with length k. The scoring matrix H has the size of (n+1) ∗ (m+1),

60

where the first row/column is initialized to 0. The following equation is used to describe the

initialization: Hk0 = H0l = 0 for 0 ≤ k ≤ n and 0 ≤ l ≤ m. The scoring matrix is

filled using the equation described in Algorithm 3.

Algorithm 3 Smith-Waterman algorithm.

Hij = max



Hi−1,j−1 + s(ai, bj),

maxk≥1{Hi−k,j −Wk},

maxl≥1{Hi,j−l −Wl},

0

(1 ≤ i ≤ n, 1 ≤ j ≤ m)

In Algorithm 3, Hi−1,j−1+ s(ai, bj) represents the score of aligning ai and bj. Hi−k,j−Wk

represents the score when ai is at the end of a gap of length k. And Hi,j−l −Wl is the score

when bj is at the end of a gap of length l. 0 is assigned when there is no similarity up to ai

and bj. After successful computation of the scoring matrix, the traceback is used to find the

highest similarity score. The traceback starts at the highest score in the scoring matrix H

and ends when a score of 0 is met.

3.4.2.2 Substitution Matrix

In the substitution matrix, matches are assigned with a positive score, and mismatches are

assigned lower or negative. Table 3.13 shows an example of the subsection matrix, with the

assumption of matching score +1, and mismatch score −1. The substitution matrix follows

Algorithm 4.

Table 3.13 An example of the substitution matrix.

A G C T
A 1 -1 -1 -1
C -1 1 -1 -1
G -1 -1 1 -1
T -1 -1 -1 1

61

Algorithm 4 the algorithm for computing substitution matrix.

s(ai, bj) =


+1, ai = bj

−1, ai 6= bj

Algorithm 4 describes a simple algorithm for substitution matrix computation. String

A = a1a2...an and string B = b1b2...bm are formed from the alphabet. Table 3.13 is a

typical example of substitution matrix for DNA. s(ai, bj) is the matching score for the i’s

character in string a and j’s character in string b. In the example, a match is assigned with

a score 1, and a mismatch is assigned with −1. The substitution matrix is different when

the Smith-Waterman algorithm is used for both DNA and protein sequences.

3.4.2.3 Gap Penalty

Linear and affine are the two most commonly used gap penalty strategies in the Smith-

Waterman algorithm. The most straightforward one is the linear gap penalty strategy, where

all gaps have the same penalty weight. As the connected gaps formed by a long gap are

preferable to multiple short scattered gaps, the concepts of gap opening and gap extension

are introduced into the scoring system. The affine gap penalty strategy has a different

penalty weight on gap opening and gap extension. Assuming that the gap penalty function

is denoted as Wk where the length of the gap is denoted as k, the linear gap penalty strategy

calculates the penalty score as Wk = kW1, and the Smith-Waterman algorithm is simplified

as Algorithm 5, where the time complexity is O(mn). Affine gap penalty strategy calculates

the penalty score as Wk = uk + v (u > 0, v > 0), where v is the gap opening penalty, and

u is the gap extension penalty which has a time complexity of O(m2n).

62

Algorithm 5 Simplified Smith-Waterman algorithm.

Hij = max



Hi−1,j−1 + s(ai, bj),

Hi−1,j −W1,

Hi,j−1 −W1,

0

3.4.2.4 Smith-Waterman Algorithm Parallelization

ksw_extend2 has a certain similarities to Smith-Waterman algorithm. In parallelization Level

1 of the Smith-Waterman algorithm, the parallelization is done within the single alignment.

In Level 2, the multiple alignments have been aligned at the same time. The common

parallelization technique used for smith-Waterman algorithm is called the wave front method,

which is parallelism on anti-diagonal.

Figure 3.5 GPU version of Smith-Waterman algorithm computation with
same read and reference sizes. The lengths of the reference and read are the
same. The number in each cell represents which step it is being computed.

Figure 3.5 illustrates the wave front method and how it calculates for two strings with

the same length of 8 bp. The total number of steps needed to compute the whole matrix is

63

15. The number of cells that can be computed in each step is increased by 1 from step 1 to

step 8. After step 8, the number of cells will decrease by one until step 15.

Figure 3.6 GPU version of Smith-Waterman algorithm computation with
different read and reference sizes. The lengths of the reference and read are
different. The number in each cell represents which step it is being computed.

However, not all alignments will have the same length. Figure 3.6 is an example of an

alignment having different sizes of strings (where the first one is 5, and the second one is 9).

From step 1 to step 4, the number of cells that are computed together is equal to the step

number. From step 5 to step 9, the number of cells that are computed together is equal to

the matrix width. From step 10 to step 13, the number of cells can be parallelized start to

decrease by 1 in each step.

Algorithm 6 Maximum number of cells computed in each step. The number of cells

being computed together increases first, and then start to decrease.

Ltotal =L0 + L1

Ls =Min{L0, L1}

Ll =max{L0, L1}

for 1 ≤ i ≤ Ls : Ci = i

for Ls < i ≤ Ll : Ci = Ls

for Ll < i ≤ Ltotal : Ci = Ltotal − i

64

Algorithm 6 describes maximum cells computed, where the letter i represents the ith

step. The two strings S0, and S1’s length are denoted as |S0| = L0, and |S1| = L1, and the

dimension of solving matrix is L0 ·L1. The number of the paralleled cell at step i is labelled

as Ci. The maximum number of steps taken is equal to the length of the matrix diagonal,

which is the total length of both strings Ltotal = L0 + L1. The maximum number of cells

being computed at the same time is equal to the shortest length of L0 and L1, which is

labelled as Ls. Ll is equal to the longest length of L0 and L1. The number of the paralleled

cells starts to decrease at Ll. The number of cells computed at the same time is increased by

1 from step 1 to step Ls. The number of cells computed at the same time remains the same

from step Ls to step Ll, and it starts decreasing at step Ll. Therefore, the time complexity

of the GPGPU version is L0 + L1, the CPU version is L0 · L1, and the parallelized version

of ksw_extend2 has a time complexity of L0 + L1.

As the number of threads is limited, the matrix is divided into blocks, where the dimension

depends on the GPGPU computation power. Each block or a single solving unit is being

solved by one CUDA block, where B · T cells can be calculated at the same time (B is the

number of CUDA blocks, and T is the number of CUDA threads). If the best performance

is to have an 8 · 8 cell block (the number of threads is 64 per block), the solving matrix

would be divided into cell blocks of a dimension 8 · 8, which means the number of blocks is⌈
L0

8

⌉
·
⌈
L1

8

⌉
.

Figure 3.7 Three level of parallelization. Level 2 parallelization contains mul-
tiple alignment pairs, and all pairs are the same length. Once the alignment started,
all the alignments are started in the same time in all alignment pairs.

65

Figure 3.7 shows the relationship between read and reference in a GPGPU version of

Smith-Waterman in Level 2. As the previous method is mainly used for single alignment,

multiple alignments are done using combinations of multiple sequences. For example, there

are 4 pairs of sequences and references with the length of n, a matrix with dimension 4n∗4n

is used while solving.

3.4.3 ksw_extend2

ksw_extend2 is based on the Smith-Waterman extension algorithm but with a pruning mech-

anism and a complex scoring system. In the linear gap penalty strategy, all gaps have the

same penalty weight. In the affine gap penalty strategy, gap opening and gap extension

have a different penalty weight. In ksw_extend2, gaps are classified into gap opening, gap

extension, gap insertion, and gap deletion, and each type has a different penalty wight. The

gap penalty score system for ksw_extend2 is described as follows.o_ins is the gap opening

insertion score, which has a default value of 6.

e_ins is the gap extension insertion score, which has a default value of 1.

o_del is the gap opening deletion score, which has a default value of 6.

e_del is the gap extension deletion score, which has a default value of 1.

oe_ins is the sum of the gap opening insertion score and gap extension insertion score.

oe_del is the gap opening deletion score plus gap extension deletion score.

gapo is the gap opening score, which is either o_ins or o_del (with the default value of 6).

gape is the gap extension score, which is either e_ins or e_del (with the default value of 1).

66

Table 3.14 Seed Extension in ksw_extend2. The extensions are performed for
both ends of the seed in ksw_extend2.

1Sequence fragments for left extension.

2Exact matched region from both seed and reference simulated data.

3Sequence fragments for right extension.

4The length of sequences, unit is in bp.

5The part of the reference simulated data.

6The exact matched sequence from read.

7Queue, sequence fragment pulled from read.

8Sequence fragment from reference for left extension.

9Sequence fragment from queue for left extension.

10Sequence fragment from reference for right extension.

11Sequence fragment from queue for right extension.

Table 3.14 shows how seed extension is done in BWA-MEM. Seed is obtained from

previous exact match. Then the extensions are performed on both ends of the seed with

the ksw_extend2. The exact match score is obtained using the length of the seed.

67

Figure 3.8 ksw_extend2 algorithm H matrix1. The numbers highlighted in
green are initialized based on previous exact matches.

1The result is based on aligning sequence fragment AACCCTTC and sequence fragment

CCCGTCAA.

Figure 3.9 ksw_extend2 algorithm M matrix1.

1The result is based on aligning sequence fragment AACCCTTC and sequence fragment

CCCGTCAA.

68

Figure 3.10 ksw_extend2 algorithm E matrix1. The numbers highlighted in
green are initialized to 0.

1The result is based on aligning sequence fragment AACCCTTC and sequence fragment

CCCGTCAA.

Figure 3.11 ksw_extend2 algorithm F matrix1. The numbers highlighted in
green are initialized to 0.

1The result is based on aligning sequence fragment AACCCTTC and sequence fragment

CCCGTCAA.

69

Figure 3.12 ksw_extend2 algorithm S matrix1. The sequences highlighted on
blue are the sequence fragments used for alignment.

1The result is based on aligning sequence fragment AACCCTTC and sequence fragment CCCGT-

CAA.

As the ksw_extend2 ’s gap penalty strategy considers gap opening, extension, insertion

and deletion separately, the three matrices, H, E, and F are used to represent final, gap

insertion, and gap deletion scores. Let us take two sequences AACCCTTC, CCCGTCAA,

and an exact matching score of 30 as an example, the result of H, E, and F are shown in

Figure 3.8, Figure 3.10, and Figure 3.11 respectively. Substitution matrix S (Figure 3.12)

represents the match/mismatch score, and the default value of a match is 1, and a mismatch

is −4. M Matrix represents the alignment matching score (Figure 3.9).

70

Algorithm 7 ksw_extend2 matrices initialization. The algorithm initializes the num-

bers highlighted in green in H, M , E, F , and S matrices.

Ei,0 =F0,j = 0 for 0 ≤ i ≤ n+ 1 and 0 ≤ j ≤ m+ 1

H0,0 =h0

H1,0 =Max{H0,0 − oe_ins, 0}

H0,1 =Max{H0,0 − oe_del, 0}

Hi,0 =Max{Hi−1,0 − e_ins, 0} for 2 ≤ i ≤ n+ 1

H0,j =Max{H0,j−1 − e_del, 0} for 2 ≤ i ≤ m+ 1

Algorithm 7 initializes each matrix before the computation. Ei,0 = F0,j = 0 for 0 ≤

i ≤ n + 1 and 0 ≤ j ≤ m + 1, initializes the first column of E matrix and first row

of F matrix to 0. As the extension is based on the previous exact matches, H0,0 = h0

sets cell (0, 0) in the H matrix to h0. Let us assume that the length of exact match is k,

h0 is equal to k multiplied by a predefined score a. H1,0 = Max{H0,0 − oe_ins, 0} and

H0,1 = Max{H0,0 − oe_del, 0} sets the second value to the first value minus gap penalty

score (oe_ins for the first one, and oe_del for the second one) in the first column or row

of the H matrix when it is larger than 0 (otherwise it is set to 0). The last two columns

compute the rest of the first row or column by deducting the gap extension score from the

previous one. The part that is being initialized is highlighted with green in Figure 3.8-3.11.

71

Algorithm 8 ksw_extend2 matrices value computation. The algorithm computes the

rest of the numbers in H, M , E, F , and S matrices.

Hi,j =Max {Mi−1,j−1, Ei−1,j−1, Fi−1,j−1} for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ m+ 1

Mi,j =Max {Hi,j + Si,j, 0} for 0 ≤ i ≤ n+ 1 and 1 ≤ j ≤ m+ 1

Ei,j+1 =Max {Mi,j − oe_ins, Ei,j − e_ins} for 1 ≤ i ≤ n+ 1 and 0 ≤ j ≤ m

Fi+1,j =Max {Mi,j − oe_del, Fi,j − e_del} for 1 ≤ i ≤ n and 0 ≤ j ≤ m+ 1

After successful initialization, the rest of the cells in H, M , E, and F matrices are being

filled using Algorithm 8. The first row in the algorithm fills the Hi,j cell from the maximum

value ofMi−1,j−1, Ei−1,j−1 and Fi−1,j−1. TheMi,j cell is filled with the max value of Hi,j+Si,j

and 0. The Ei,j+1 cell is equal to the maximum value of Mi,j − oe_ins, and Ei,j − e_ins.

The Fi+1,j is the maximum value of Mi,j − oe_del, and Fi,j − e_del. Cell Mi,j is the score

obtained comparing the character i and character j. Ei,j+1 cell is the maximum score from

a new gap insertion (Mi,j − oe_ins) or a gap insertion extension (Ei,j − e_ins). Fi+1,j cell

is the maximum score from a new gap deletion (Mi,j − oe_del) or a gap deletion extension

(Fi,j − e_del). Figure 3.13 describes how the cells are computed using Algorithm 8.

72

Figure 3.13 ksw_extend2 ’s cell computation. The value of Hi,j is depends on
its surrounding cells.

3.4.3.1 Pruning Optimization

Figure 3.14 Prunable cells in H matrix. The cells labeled with Prunable cells
are the prunable cells that can be ignored during the computation. The mechanism
controlling the computing area is called the pruning mechanism.

73

Pruning optimization eliminates cells that are mathematically impossible to produce a higher

score than the current maximum score. Therefore, for each row in the matrix, the calculation

is only performed between beg and end (Figure 3.14), where the beg and end are computed

as Algorithm 9. Because of the pruning mechanism, ksw_extend2 ’s time complexity has

been reduced. Table 3.15 shows the time complexity of ksw_extend2 and GPGPU version

of ksw_extend2 under the case with pruning or without the pruning mechanism.

Algorithm 9 ksw_extend2 ’s pruning mechanism algorithm. This algorithm deter-

mines the area for computation.

w =Max{maxinsertion score,maxdeletion score}

maxinsertion score =
Lengthread · scorematch + scoreendBonus − scoreopen insertion

scoreextension insertion + 1

maxdeletion score =
Lengthread · scorematch + scoreendBonus − scoreopen deletion

scoreextension deletion + 1

for 1 ≤ i ≤M :

beg =i− w

end =i+ w + 1

Table 3.15 Time Complexity of GPGPU and CPU version. With the prun-
ing mechanism, the time complexity for CPU version of ksw_extend2 changed from
quadratic time to linear time. However, GPGPU version remains the same with or
without the pruning mechanism.

ksw_extend2 GPU ksw_extend2
With The Pruning Mechanism Linear L1 + L2

Without The Pruning Mechanism L1 · L2 L1 + L2

3.4.4 Program Design ksw_extend2 Parallelization

Based on the functionality of ksw_extend2, the parallelization is divided into three lev-

els: seed extension (seed-extend2), chain extension (chain2aln), and alignments extension

74

(mem_align1_core). Figure 3.15 shows the simplified structure of the BWA-MEM soft-

ware, where ksw_extend2 is for single-sided seed extension, chain2aln deals with chain level

extension, and part of function mem_align1_core performs extension on all alignments.

Figure 3.15 Three level of parallelizations. The Level 1 of parallelization
is function ksw_extend2, which handles the single side seed extension. The Level
2 of parallelization is function chain2aln, which calls function ksw_extend2 and
performs seed extension on both ends of all seeds in the same chain. The Level 3 of
parallelization is performed on multiple chains.

75

3.4.4.1 Level 1 Parallelization: Seed Extension

Figure 3.16 Blocks in Level 1 parallelization. When the size of the sequence
fragments are really long, they will be separated into small computation blocks.

The parallelization technique for Level 1 parallelization is similar to the Smith-Waterman

algorithm’s parallelized version. Similar to the GPGPU version of the Smith-Waterman

algorithm, cells are separated into blocks (Figure 3.16). The pruning mechanism does not

reduce the time complexity as it does not reduce the number of steps taken9. The time

consumption may increase as the beg, and end need to be computed for each line.

A GPGPU version of the Smith-Waterman algorithm, PasWAS [77] has been redesigned

to fit the needs. PasWAS is a simple GPGPU version of the Smith-Waterman algorithm

with the linear gap penalty strategy. Just like a typical Smith-Waterman algorithm, the wave

front technique is applied towards ksw_extend2 ’s parallelization.

3.4.4.2 Level 2 and Level 3 Parallelization: Chaining and Chain Filtering

In the step of chaining and chain filtering, seeds that are close to each other are grouped

into chains, and the seeds that are not going to have successful extensions are filtered out.

Furthermore, function ksw_extend2 is called by function chain2aln, which performs seed

extension.

In the Smith-Waterman algorithm, all combinations are tested for finding matches. How-

ever, in ksw_extend2 ’s version, each reference has only one read to be aligned. After the

redesign, instead of processing alignments in a wave front manner (like the Smith-Waterman
9The number of steps taken is equal to the length of the diagonal.

76

algorithm), and all alignments are processed simultaneously.

Figure 3.17 GPU Level 2 parallelization. At parallelization Level 2, multiple
extensions from the same chain are performed at the same time.

Figure 3.17 shows an example of four alignments being aligned in a single GPGPU run,

where each alignment contains four computation blocks. Each of the blocks represents a

single solving unit, which is solved by one CUDA block. All alignments are in a single row as

they are from the same chain. As the computation proceeds, in step 1, all the block1 blocks

are computed simultaneously. All the block2 and block3 blocks are computed at the same

time in step 2. After completing step 2, the block4 are computed simultaneously in step 3.

Figure 3.18 GPU Level 3 parallelization. At parallelization Level 3, multiple
chain extensions are performed at the same time.

Level 2 parallelization assumes each row as a single chain, a matrix represents all the

77

chains for computation (as shown in Figure 3.18). The number of steps taken to solve all

chains in the matrix is the same as in Level 2 parallelization. After the experiment on

standard data, on average, only three extensions are being computed in each chain at Level

2 parallelization. Therefore, for both Level 2 and Level 3 parallelization, all alignments that

have been performed are collected. Because the length of the extension is usually small,

what matters now is the length of alignment lower than 32 and the number of alignments.

The process can be summarized into three steps. First, all alignments are collected and

stored in arrays. Multiple alignments are then carried out at the same time. In the last

step, the program finishes the final calculation. In Level 2 parallelization, only one cell is

computed in step 1. The number of cells calculated is increased by how many steps are taken

before the step widthofalignment. However, in the Level 3 parallelization, assuming that

k alignments are being performed simultaneously, each step’s computed cell is multiplied by

100 times.

Two different versions of GPGPU multi-threaded ksw_extend2 are created, where one is

targeted at reducing memory usage, and another one is focusing on saving time. The GPU

with time-saving version has its name ending with _v2. The purpose of having two different

versions is to find out the effect of data transferring cost.
1 CalculateScoreHost (){
2 for (unsigned int i=1; i < XdivSHARED_X+YdivSHARED_Y; ++i) {
3 // compute trhe max number of blocks.
4 if (i <= maxNumberOfBlocks)
5 numberOfBlocks = i;
6 else if(i >= startDecreaseAt) numberOfBlocks = XdivSHARED_X+

YdivSHARED_Y - i;
7 else numberOfBlocks = maxNumberOfBlocks;
8 dim3 dimGridSW(NUMBER_SEQUENCES ,NUMBER_TARGETS*numberOfBlocks , 1);
9 calculateScore <<<dimGridSW , dimBlock >>>();

10 cudaThreadSynchronize ();
11 // increase y’s starting position when x reaches the left corner
12 if (x == XdivSHARED_X - 1)
13 ++y;
14 // increase x’s starting position before x reaches the left corner
15 if (x < XdivSHARED_X - 1)
16 ++x;
17 }
18 }
19 __global__ void calculateScore (){
20 // initialize the shared matrix
21 // calculate the blockx , blocky , tIDx , tIDy , bIDx , bIDy
22 // initialize the surrounding

78

23 for (int i=0; i < DIAGONAL; ++i) {
24 // compute matrix score
25 }
26 //copy the result to the global memory
27 }

Listing 3.1 A simplified GPGPU Smith-Waterman algorithm framework
from PasWAS

Listing 3.1 is the basic framework from PaSWAS. A few different versions of Smith-

Waterman algorithm implementation have been looked into, but PasWAS [77] was chosen

for its simple structure and because it is intuitive.

3.4.5 ksw_extend2 with Time-saving Version Implementation

ksw_extend2 consists of three separate phases: (1) alignment collection and preparation,

(2) calculation of alignment scores, and (3) production of profiles as the output of results.

For the explanation of the application, the following set-up is used. On the horizontal axis,

there are x number of sequences, each at a length of N . These are part of the reads from a

sequencing platform that needs an extension. If a sequence is shorter than N , it is padded to

length N with a unique character. All sequences are placed in a single string x with length

X ∗N . On the vertical axis, the target sequences are placed. There are Y target sequences,

each with length M . These sequences are part of the reference that needs an extension, and

they are padded when shorter thanM . They are placed in a single string Y of length Y ∗M .

In the first phase, all align collected, and they are prepared in an array of structures (struct

sw_ext). The strings x and y (for all alignments) are combined and copied to the main

(global) memory of the GPU.

In the second phase, all sequence alignments are calculated in parallel. Cells are anti-

diagonally updated from the upper left to the lower right of each alignment. Let us assume

that the number of alignments is K. At the beginning, there will be K threads active, and at

peak performance, there are K ∗minimum(N,M) threads active. During the entire phase,

the maximum value of each row and its position is tracked.

79

The last phase runs on the host, which produces the alignment profiles. The output con-

tains additional information about each profile, including the number of gaps, mismatches,

and the start and end of the alignments. The required outputs (such as best global alignment

in the read, the best global alignment in the reference, full alignment score, and maximum

off-diagonal distance) are calculated and stored in the array of structures (struct sw_ext).

3.4.5.1 Phase 1: Alignment Collection and Preparation

In Phase 1, alignments are collected from all chains. Once the maximum amount of memory

is reached, collecting them into the queue is stopped. As the algorithm needs to modify

each alignment’s parameters multiple times, they were stored as pointers to be picked up in

later computation. There will be processed and prepared in gpu_sw_seed_extend. All the

parameters and sequences are stored in arrays.
1 int *d_col = 0, *d_row = 0;
2 uint8_t *d_sequences = 0, *d_references = 0;
3 *(h_shared +oe_del) = *(h_shared +o_del) + *(h_shared +e_del);
4 *(h_shared +oe_ins) = *(h_shared +o_ins) + *(h_shared +e_ins);
5 //[1] search for max_qlen and max_tlen for all element
6 //we are looking for the max qlen and max tlen
7 *(h_shared +max_qlen) = swext ->qlen;
8 *(h_shared +max_tlen) = swext ->tlen;
9 // starts from 1

10 for(int i = 1; i < *(h_shared + dims3); i++){//skip the first one
11 if((swext+i)->qlen > *(h_shared +max_qlen)) *(h_shared +max_qlen) = (

swext+i)->qlen;
12 if((swext+i)->tlen > *(h_shared +max_tlen)) *(h_shared +max_tlen) = (

swext+i)->tlen;
13

14 }
15 *(h_shared +block_x_len) = (int) ceil((double)*(h_shared +max_qlen)/

SHARED_X);//how many 8*8 block on x div
16 *(h_shared +block_y_len) = (int) ceil((double)*(h_shared +max_tlen)/

SHARED_Y);//how many 8*8 block on y div
17 *(h_shared +max_x) = *(h_shared +block_x_len) * SHARED_X;//for seed

extension part
18 *(h_shared +max_y) = *(h_shared +block_y_len) * SHARED_Y;// reference

extension part
19 *(h_shared +alignment_x) = *(h_shared +max_x) * *(h_shared +dims3);//TOTAL

LENGTH OF X
20 *(h_shared +alignment_y) = *(h_shared +max_y) * *(h_shared +dims3);//TOTAL

LENGTH OF Y
21 *(h_shared +block_diagnal_len) = max (*(h_shared +block_x_len), *(h_shared

+block_y_len));//TOTAL LENGTH OF Y
22 *(h_shared +alignment_diagnal_len) = *(h_shared +block_diagnal_len)**(

h_shared +dims3);//TOTAL LENGTH OF Y
23 int h_row [*(h_shared +alignment_x)];
24 int h_col [*(h_shared +alignment_y)];
25 uint8_t h_seq [*(h_shared +alignment_x)];

80

26 uint8_t h_ref [*(h_shared +alignment_y)];
27 LocalMatrix t_sc [*(h_shared +dims4)][*(h_shared +dims3)][*(h_shared +

block_y_len)][*(h_shared +block_x_len)];
28 // LocalMatrix *h_scoringMatrix = (LocalMatrix *) calloc(sizeof(LocalMatrix)

, *(h_shared +dims4) * *(h_shared +dims3) * *(h_shared +block_y_len) *
*(h_shared +block_x_len));

29 LocalMatrix *h_scoringMatrix = &t_sc [0][0][0][0];
30 LocalMatrix *d_scoringMatrix;

Listing 3.2 Phase 1 - Stage 1: alignment parameter initialization

Listing 3.2 shows the code used for the first stage, which initialises alignment parameters.

In the first stage, the necessary parameters from the alignment (such as alignment x length,

alignment y length, padded sequence, and reference string length) are initialized, where the

matrix h_scoringMatrix stores all the computed matrices after computation.
1 //we are initializing for everyone
2 //init h_row , h_col
3 for(int align_idx = 0; align_idx < *(h_shared +dims3); align_idx ++){//go

though each alignment option here
4 int start_x_pos = align_idx * *(h_shared +max_x);//ours 403// starting

position
5 int start_y_pos = align_idx * *(h_shared +max_y);// current alignment
6 struct sw_ext *curr_sw_ext = swext + align_idx;
7 int curr_h0 = curr_sw_ext ->sc0;
8 h_row[start_x_pos +0] = curr_h0;// position is 0
9 h_row[start_x_pos +1] = LIKELY(curr_h0 > *(h_shared +oe_ins))? curr_h0 -

*(h_shared +oe_ins) : 0;//404, position as 1
10 for(int curr_x_loc = start_x_pos + 2; LIKELY(curr_x_loc < start_x_pos +

*(h_shared +max_x)); ++ curr_x_loc)
11 h_row[curr_x_loc] = (curr_x_loc <= (start_x_pos + curr_sw_ext ->qlen)

&& h_row[curr_x_loc - 1] > *(h_shared +e_ins))? h_row[curr_x_loc - 1] -
*(h_shared +e_ins) : 0;

12 // adjust $w if it is too large
13 // generate the first row
14 h_col[start_y_pos +0] = curr_h0; //eh[0].e = highest possible score
15 h_col[start_y_pos + 1] = LIKELY(curr_h0 > *(h_shared +oe_del)) ? curr_h0

- *(h_shared +oe_del) : 0;
16 for (int curr_y_loc =start_y_pos + 2; LIKELY(curr_y_loc < start_y_pos +

*(h_shared +max_y)); ++ curr_y_loc)
17 h_col[curr_y_loc] = (curr_y_loc <= (start_y_pos + curr_sw_ext ->tlen)

&& h_col[curr_y_loc - 1] > *(h_shared +e_del))? h_col[curr_y_loc - 1] -
*(h_shared +e_del) : 0;

18 for(int curr_x_loc = start_x_pos; LIKELY(curr_x_loc < start_x_pos + *(
h_shared +max_x)); ++ curr_x_loc)

19 h_seq[curr_x_loc] = LIKELY(curr_x_loc < start_x_pos + curr_sw_ext ->
qlen)? curr_sw_ext ->query[curr_x_loc -start_x_pos] : FILL_CHARACTER;

20

21 for(int curr_y_loc = start_y_pos; LIKELY(curr_y_loc < start_y_pos + *(
h_shared +max_y)); ++ curr_y_loc)

22 h_ref[curr_y_loc] = LIKELY(curr_y_loc < start_y_pos + curr_sw_ext ->
tlen)? curr_sw_ext ->target[curr_y_loc -start_y_pos] : FILL_CHARACTER;

23 curr_sw_ext ->h_col = &h_col[start_y_pos];
24 }

Listing 3.3 Phase 1 - Stage 2: sequence combination

81

Listing 3.3 is the code for combining sequences10 and for initializing matrices. In Stage 2,

each alignment’s sequence and reference were copied into two padded strings, and h_col and

h_row is computed, which represent the first row and first column of the h matrix.
1 checkCudaErrors(cudaMalloc ((void **)&d_scoringMatrix , sizeof(t_sc)));
2 checkCudaErrors(cudaMalloc ((void **)&d_row , sizeof(h_row)));
3 checkCudaErrors(cudaMalloc ((void **)&d_col , sizeof(h_col)));
4 checkCudaErrors(cudaMemcpy(d_row , &h_row [0], sizeof(h_row),

cudaMemcpyHostToDevice));
5 checkCudaErrors(cudaMemcpy(d_col , &h_col [0], sizeof(h_col),

cudaMemcpyHostToDevice));
6 checkCudaErrors(cudaMalloc ((void**) &d_sequences ,sizeof(h_seq)));
7 checkCudaErrors(cudaMalloc ((void**) &d_references ,sizeof(h_ref)));
8 checkCudaErrors(cudaMemcpy(d_sequences , &h_seq[0], sizeof(h_seq),

cudaMemcpyHostToDevice));
9 checkCudaErrors(cudaMemcpy(d_references , &h_ref[0], sizeof(h_ref),

cudaMemcpyHostToDevice));
10 checkCudaErrors(cudaMemcpyToSymbol(d_mat , mat , 25 * sizeof(int8_t),0,

cudaMemcpyHostToDevice));
11 checkCudaErrors(cudaMemcpyToSymbol(d_shared , h_shared , 21 * sizeof(

unsigned int),0, cudaMemcpyHostToDevice));
12 }

Listing 3.4 Phase 1 - Stage 3: data transfering

Listing 3.4 shows how data transfer (from host to device) was done. In Stage 3, the computed

matrices are transferred from the host to the device. In Phase 1, all three stages are done

in function gpu_sw_seed_extend. After Phase 1, all sequence alignment data and pre-

calculated values are transferred into matrices and ready to be aligned, and phase 2 starts

the GPGPU computation on the matrices.

3.4.5.2 Phase 2: Calculation of Alignment Scores

The GPU’s two major memories, global memory, and shared memory, are used to store

different data types as they have different speed. The global memory is the largest memory

located on the GPGPU device, with several hundred megabytes up to 32 gigabytes in size.

The shared memory is relatively small and located close to GPGPU processors, which is 100

times faster than the global memory. The global memory stores computed scoring matrices,

parameters and strings from Phase 1. Because global memory has slower memory access,

the use of global memory is minimized, and the use of faster shared memory is maximized.
10Combining all read and reference sequences (real data) into two string.

82

Constant memory type, such as texture memory, is slightly faster than the global shared

memory used to store frequently used read-only data. Therefore, the intermediate computed

values are stored in the shared memory, and final results are stored and accessed from global

memory.

Each sequence alignment is divided into blocks with the same dimension of SHARED_X·

SHARED_Y , which is predefined in the smaithwaterman.h. The values of SHARED_X

and SHARED_Y is calculated using the occupancy calculator provided by NVIDIA (www.nvidia.com),

which provides the most efficient setting to optimize the current hardware. This SHARED_X·

SHARED_Y cell matrices are mapped to thread blocks of SHARED_X · SHARED_Y

threads. The SHARED_(X or Y , usually X and Y have the same value) characters of the

two sequences and other settings are stored using shared memory. Without neighbouring

block’s scores, it is impossible to compute of the border cells’ score that are surrounded by

others11.

h_col and h_row aeries are used to initialize the first column and the first row of the

h matrices. h_col and h_row store pre-calculated scores based on the maximum exact

matching score, and the gap insertion scores12, gap deletion scores13. In each block, the cal-

culations are done anti-diagonally. To make use of the idle threads in each block, each row’s

maximum values and position are determined. Upon completion, the resulting information

is transferred to the global memory.

Like the cells within the matrix, each block depends on the three surrounding blocks

(except the border matrices). At the start, K blocks of

SHARED_X · SHARED_Y
11Except for the border matrices (for example, the matrices close to the y-axis initialize the first columns

to the computed scores).
12Opening and extension.
13Opening and extension.

83

threads are launched. The maximum number of thread blocks is

y · min(N,M)

SHARED_X · SHARED_Y

For example, if there are 2000 (k = 2000) alignments, and each alignment has a sequence

length of 32 bp, there will be 2000 blocks launched at the start, and 2000· min(N,M)

SHARED_X · SHARED_Y
blocks at maximal14, with each block, containing 64 threads. After the computation is done,

the matrix is transferred from the global shared memory to the host memory.
1 for (unsigned int i = 1; LIKELY(i < halfZhouChang); ++i) {
2 numBlocks = i <= xiaoBian? i : i >= daBian? halfZhouChang - i : xiaoBian

;
3 // reserve dim4 for anything beyound chain
4 dim3 dimSWGrid (*(h_shared +dims4), *(h_shared +dims3) * numBlocks , 1);//

numBlocks
5 calculateScore_v2 <<<dimSWGrid , dimBlock >>>(
6 d_scoringMatrix ,
7 d_row , d_col ,
8 x, y,
9 numBlocks ,

10 d_sequences , d_references);
11 cudaDeviceSynchronize ();
12

13 if (x == *(h_shared +block_x_len) - 1)
14 ++y;
15 if (x < *(h_shared +block_x_len) - 1)
16 ++x;
17 }

Listing 3.5 Phase 2: framework from PaSWAS for computing matrices
anti-diagonally on CPU side

Listing 3.5 describes the basic framework from PaSWAS, which computes anti-diagonally in

the blocks. All the blocks that are located on the current diagonal would be computed when

the calculateScore_v2 is finished. The primary function, calculateScore_v2, is separated

into five steps. In the first step, the shared matrices are initialized to zero, and the blockx,

blocky, tIDx, tIDy, bIDx, and bIDy are calculated for the exact location in the matrix. In

the second step, the computation matrices are initialized. In the third step, a for loop is

used to compute the scoring matrix diagonal by diagonal. In the last step, the computed

result is copied to the global memory.
1 __shared__ int h_matrix[SHARED_Y +1][SHARED_X +1];
2 __shared__ int e_matrix[SHARED_Y +1][SHARED_X +1];

14When all alignments are computing the middle diagonals

84

3 __shared__ int f_matrix[SHARED_Y +1][SHARED_X +1];
4 __shared__ int s_maxima[SHARED_Y];
5 __shared__ int x_maxloc[SHARED_Y];
6

7 memset (& h_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));
8 memset (& e_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));
9 memset (& f_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));

10 memset (& s_maxima [0], EPT_SCORE , SHARED_Y*sizeof(int));
11 memset (& x_maxloc [0], EPT_SCORE , SHARED_Y*sizeof(int));

Listing 3.6 Phase 2 stage 1: matrices initialization

Listing 3.6 is the code for initialization in matrices, and they are stored in shared memory for

faster access. h_matrix, e_matrix and f_matrix store the calculated h, e and h values.

s_maxima and the x_mxloc store the maximum values and maximum locations of current

row. As CUDA does not automatically reset values in the matrix back to zero, memset is

used to reset these values.
1 //if there are only one item , block y is the number of block we needed
2 //x, y is our axises
3 unsigned int currAlign = blockIdx.y%d_shared[dims3];//which alignment we

are looking at
4 unsigned int currBlockOrder = blockIdx.y/d_shared[dims3];// compute

diagnally , the current MingCi of the block
5 unsigned int blockx = x - currBlockOrder;//the block pos of x
6 unsigned int blocky = y + currBlockOrder;//the block pos of y
7 unsigned int tIDx = threadIdx.x;// current thread id of x
8 unsigned int tIDy = threadIdx.y;// current thread id of y
9 int seqIdx = tIDx + currAlign * d_shared[max_x] + blockx * SHARED_X;//

shorter read
10 int refIdx = tIDy + currAlign * d_shared[max_y] + blocky * SHARED_Y;//

longer ref

Listing 3.7 Phase 2 Stage 2: cell assignment for thread in the matrix

Listing 3.7 is for computing the exact location of the thread in the matrix, which calculates

the blockx, blocky, tIDx, tIDy, bIDx, and bIDy. These parameters are important as they

pinpoint which nucleotide in the sequences for each threads.
1 //first block row first row
2 //we have multiple blocks , therefore , we have to be very carefull
3 if(! blocky && !tIDy) {//when tIDy is 0, which would be the first line
4 h_matrix [0][tIDx] = d_row[seqIdx];
5 }
6 if(! blockx && !tIDx){//tIDx is 0, left column
7 h_matrix[tIDy][0] = d_col[refIdx];
8 //if(!tIDx &&! tIDy) h_matrix [0][SHARED_X] = d_col[refIdx]
9 }

10 // surrounded line that we have to copy them from computed d_row and d_col
11 // blocky is > 0
12 int idx = 0;
13 if (blocky && !tIDy){
14 //(x, y-1)

85

15 idx = get1DIdx(0, currAlign ,blocky -1,blockx);
16 if(tIDx) h_matrix [0][tIDx] = d_scoringMatrix[idx]. h_value[SHARED_Y -1][

tIDx -1];
17 f_matrix [0][tIDx] = d_scoringMatrix[idx]. f_value[SHARED_Y -1][tIDx];//

for restoring previous h
18

19 }
20 else if(blockx && !tIDx && tIDy){
21 idx = get1DIdx(0, currAlign ,blocky ,blockx -1);
22 //(x-1, y)
23 h_matrix[tIDy][0] = d_scoringMatrix[idx]. h_value[tIDy -1][SHARED_X -1];
24

25 }
26

27 if(blockx && ! tIDx){
28 idx = get1DIdx(0, currAlign ,blocky ,blockx -1);
29 //(x-1, y)
30 e_matrix[tIDy][0] = d_scoringMatrix[idx]. e_value[tIDy];//for restoring

previous e
31

32 }
33 if (blockx && blocky && ! tIDx && !tIDy){
34 idx = get1DIdx(0, currAlign ,blocky -1,blockx -1);
35 //(x-1,y-1)
36 h_matrix [0][0] = d_scoringMatrix[idx]. h_value[SHARED_Y -1][SHARED_X -1];
37

38 }
39 /**
40 * tXM1 and tYM1 are to store the current value of the thread Index. tIDx

and tIDy are
41 * both increased with 1 later on.
42 */
43 unsigned int tXM1 = tIDx;
44 unsigned int tYM1 = tIDy;
45 // shared location for the parts of the 2 sequences , for faster retrieval

later on:
46 __shared__ uint8_t s_seq[SHARED_X];
47 __shared__ uint8_t s_ref[SHARED_Y];
48

49 // copy sequence data to shared memory (shared is much faster than global)
50 if (!tIDy){
51 s_seq[tIDx] = d_sequences[seqIdx];
52 }
53 if (!tIDx){
54 s_ref[tIDy] = d_references[refIdx];
55

56 }
57 __syncthreads ();
58 // set inner score (aka sequence match/mismatch score):
59 uint8_t charSeq = s_seq[tIDx];
60 uint8_t charRef = s_ref[tIDy];
61

62

63 innerScore = charSeq == FILL_CHARACTER || charRef == FILL_CHARACTER ?
FILL_SCORE : d_mat[charSeq+charRef *5];

64 // transpose the index
65 ++tIDx;
66 ++tIDy;
67 // set shared matrix to zero (starting point!)
68 // wait until all elements have been copied to the shared memory block
69 /**** sync barrier ****/

Listing 3.8 Phase 2 Stage 3: surrounding cells initialization in matrices

86

Listing 3.8 is for border cells initialization. For border blocks, part or all of their cells are

initialized using h_col and h_row, and other cells are initialized using previously computed

matrices. After successful initialization, the current matching score is computed and stored

into the variable innerscore.
1 for (int i=0; i < DIAGONAL; ++i) {
2 if(innerScore != FILL_SCORE){
3 if (i == tXM1+ tYM1) {
4 // calculate only when there are two valid characters
5 // this is necessary when the two sequences are not of equal length
6 // this is the SW-scoring of the cell:
7 // At the beginning of the loop: eh[j] = { H(i-1,j-1), E(i,j) }, f = F

(i,j) and h1 = H(i,j-1)
8 // Similar to SSE2 -SW, cells are computed in the following order:
9 // H(i,j) = max{H(i-1,j-1)+S(i,j), E(i,j), F(i,j)}

10 // E(i+1,j) = max{H(i,j)-gapo , E(i,j)} - gape
11 // F(i,j+1) = max{H(i,j)-gapo , F(i,j)} - gape
12 int M = h_matrix[tYM1][tXM1]? h_matrix[tYM1][tXM1] + innerScore: 0;
13 // m_matrix[tYM1][tXM1] = M;
14 h_matrix[tIDy][tIDx] = max(max(M, e_matrix[tYM1][tXM1]), f_matrix[tYM1

][tXM1]);
15 e_matrix[tYM1][tIDx] = max(max(M-d_shared[oe_ins], e_matrix[tYM1][tXM1

]-d_shared[e_ins]), 0);
16 f_matrix[tIDy][tXM1] = max(max(M-d_shared[oe_del], f_matrix[tYM1][tXM1

]-d_shared[e_del]), 0);
17 }
18 }
19

20 if(i-1 == tXM1 + tYM1){
21 if(!tXM1){
22 s_maxima[tYM1] = h_matrix[tIDy][1];
23 x_maxloc[tYM1] = tXM1;
24 }
25 else if(getHigher(h_matrix[tIDy][tIDx], s_maxima[tYM1], &s_maxima[tYM1])

)
26 x_maxloc[tYM1] = tXM1;
27

28 }
29 // wait until all threads have calculated their new score
30 /**** sync barrier ****/
31 __syncthreads ();
32 }

Listing 3.9 Phase 2 Stage 4: matrices value computation

Listing 3.9 is for computing matrices’ value, where the cells are computed anti-diagonally.

The first code block (in Listing 3.9, from line 2 to line 18) computes the H, E, F values.

The second code block (in Listing 3.9, from line 20 to line 28) finds its maximum value and

location from computed cells, which compares the previous highest value with the current

value.__syncthreads() is executed at the end of each cycle as we wanted to use the previously

calculated values.

87

1 //pass on the information to the next block
2 //here we modify for our diagnalLine
3 //int idx = get1DIdx(blockx , blocky , XdivSHARED_X);
4 idx = get1DIdx(0, currAlign ,blocky ,blockx);
5 d_scoringMatrix[idx]. h_value[tYM1][tXM1] = h_matrix[tIDy][tIDx];
6 d_scoringMatrix[idx]. f_value[tYM1][tXM1] = f_matrix[tIDy][tXM1];
7

8 // stored for next time computation
9 if(!tXM1){

10 d_scoringMatrix[idx]. e_value[tYM1]= e_matrix[tYM1][SHARED_X];
11 d_scoringMatrix[idx]. s_value[tYM1]= s_maxima[tYM1];
12 d_scoringMatrix[idx]. x_value[tYM1]= x_maxloc[tYM1];
13

14 }
15 __syncthreads ();

Listing 3.10 Phase 2 Stage 5: data transferring

The code in Listing 3.10 copies the final result back to the global memory. Phase 2 is the

main GPGPU core program for computing matrices.

3.4.5.3 Phase 3: Production of Profiles as Output of Results

As ksw_extend2 produces the best global alignment in the query and reference, the query’s

target length, query’s full alignment score, and the max off-diagonal distance have to be

produced GPGPU version as well. Therefore, after successfully obtaining the scoring matrix,

an algorithm is needed to compute these final values. Such an algorithm is implemented in

Phase 2.

3.4.6 ksw_extend2 with Memory-saving Version Implementation

The major difference between the memory-saving version and the time-saving version is in

Phase 2. Instead of storing matrices in all blocks15, only one array of blocks is kept, where

the number of blocks is twice the size16 of the number of blocks on the longest diagonal in

the matrix. However, only storing single array of blocks increase the number of times for

data transfer. The sacrifice of saving memory is the overhead caused by data transferring

between host and GPGPU.
15We define a block as the smallest data storage that stores a square matrix of computed values.
16At most, two diagonals of blocks are computed.

88

1 checkCudaErrors(cudaMemcpy (& h_diagnalLine [0], d_diagnalLinePre , sizeof(
h_diagnalLine), cudaMemcpyDeviceToHost));

2

3 LocalMatrix* temp = &* d_diagnalLinePre;
4 d_diagnalLinePre = &* d_diagnalLine;
5 d_diagnalLine = temp;
6 for(int currBlockOrder = 0; currBlockOrder < numBlocks; currBlockOrder ++){
7 for(int currAlign = 0; currAlign < *(h_shared +dims3); currAlign ++){
8 int blockIdx_y = currBlockOrder * *(h_shared +dims3) + currAlign;
9 int calgn = currAlign * *(h_shared +block_y_len) * *(h_shared +

block_x_len);
10 int blocky = (y + currBlockOrder) * *(h_shared +block_x_len);
11 int blockx = (x - currBlockOrder);
12 memcpy ((h_scoringMatrix + calgn + blocky + blockx), (& h_diagnalLine

[0]+ blockIdx_y), sizeof(LocalMatrix));
13 }
14 }

Listing 3.11 Phase 3: save RAM version data transferring

Listing 3.11 is the major difference between the two versions. At the beginning of the

CalculateScore, the memory-saving version only passes in scoring matrix size of two diago-

nals instead of the whole square. However, the computed value is needed to be copied into the

host memory at the end of each computation cycle, which increased the time dramatically.

89

4 TEST RESULTS

In this chapter, three series of tests were performed. The first series of tests were done at

parallelization Level 1. The second series of tests were performed at parallelization Level

2 and Level 3. The last series of tests were for GPGPU distributed version of BWA-MEM

parallelization Level 1.

Three tests were performed at parallelization Level 1. Parallelization Level 1 test 1 was

performed to understand the effect of different sequence similarity levels without the pruning

mechanism. The GPGPU versions’ time consumption increases with the alignment’s length

in a linear relation, and it is not affected by the level of sequence similarity. the CPU version’s

time consumption has a positive correlation with the alignment length, and further increases

with the sequence similarity level. The second test aimed to compare the performance with

or without the pruning mechanism. And the third test was to check if the second test’s

remains the same for longer sequence. With pruning mechanism, the time consumption of

GPGPU version is always higher than the CPU version. this is because the parallelization

level is low.

Another three tests were also performed at parallelization Level 1 and Level 2. In the

test with real data, BWA-MEM has shown that there are only few extensions on average at

the chain level. Therefore, before Level 3 parallelization started, we have to collect as much

fragment pairs as possible. During the test, it has shown that the length of the fragments is

rarely longer than 32 bp in seed extension. Therefore, we designed this test to find out the

performance of aligning multiple pairs in the same time.

90

In the last series of tests, two different version of GPU ksw_extend2 is created. The tests

check out performance on alignment pair with 8, 16, and 32 bp length. GPU with time-saving

version is aimed at reducing the time consumption, which is assuming the time is the most

important aspect of the program. GPU with memory-saving version is aimed at reducing

RAM usage, which is assuming that GPGPU has a limited number of RAM. From the test,

CPU version’s time consumption increases very fast, GPU with memory-saving version is

slower as it has a huge overhead transferring information in and out of GPU.

As the new stable release version of Spark recognizes GPGPU as resources, it just give

us an opportunity to build a GPGPU distributed version of BWA-MEM. The issue before

is that SharcNET only support Spark standalone mode. The test result we have given is

not based on performance, but the correctness of the input and output. Both CPU version

of BWA-MEM and the Spark standalone version of GPGPU BWA-MEM is tested, and their

results are the same. However, there is limitations, as the parallelization level for BWA-MEM

is only at Level 1. However, it is proof of concept that our program is run-able in standalone

mode.

4.1 The Generation of the Performance Data

The read and reference sequences (real data) are obtained from NCBI Sequence Reads

Archive, where the reads were obtained from SRR002062 1, and reference is obtained from SGD1.01:2 2.

We have performed a series of tests to understand the alignment process of BWA-MEM. In

these tests, only two to three alignments are performed in each chain. As the GPGPU ver-

sion of the seed extension will only show performance improvement when multiple extension

alignments are performed simultaneously, it is not ideal for testing with data obtained from

the NCBI Sequence Reads Archive. The structural change is needed in BWA-MEM as we
1Ranged from SRR002062.1.1 to SRR002062.30.1, cDNA fragmentation by DNase I (SRR002062) from

the Sequence Reads Archive.
2SGD1.01.2 is a yeast reference genome sequence.

91

want to perform as much extension as possible.

In the following tests, the test data sets used are generated from the random number

generator (from C). We are using simulated data because we want to have a large amount

of these sequences to show performance improvement. The differences between simulated

reference fragment and query fragment within the same pair are primarily single-nucleotide

mutations. Therefore, in each pair of the test data sets, a simulated reference fragment is

generated with a random number generator, and the read sequence is basically a copy of the

simulated reference fragment with single nucleotide mutations introduced.

The performance results are obtained by measuring the run time of both the CPU version

and the GPGPU version of ksw_extend2. As previously mentioned, in terms of time mea-

sured in the performance test, the time measurement tool is different for CPU and GPGPU

programs. Different tools are used because GPGPU programs could only be measured using

CUDA Tool Kit, and CPU programs could only be measured using their tool. In Listing 4.1,

the time is recorded starting line 1 and line 4 and stopped at line 29 for the GPGPU pro-

gram. However, the CPU part of the ksw_extend2 GPGPU version is not measured as the

measurement tool is different. Listing 4.2 shows how the time is measured with the CPU

program, which starts from line 4 and stops at line 9. The way of measurement is the same

for all the tests. When testing the code, the time spent by both versions are recorded using

the same set of data.
1 cudaEvent_t start , stop;
2 cudaEventCreate (&start);
3 cudaEventCreate (&stop);
4 cudaEventRecord(start);
5 // adjust $w if it is too large
6 // locate memory for d_eh
7 for (unsigned int i = 1; LIKELY(i < halfZhouChang); ++i) {
8 numBlocks = i <= xiaoBian? i : i >= daBian? halfZhouChang - i :

xiaoBian;
9

10 // reserve dim4 for anything beyound chain
11 dim3 dimSWGrid (*(h_shared +dims4), *(h_shared +dims3) * numBlocks , 1);

// numBlocks
12

13 calculateScore_v2 <<<dimSWGrid , dimBlock >>>(
14 d_scoringMatrix ,
15 d_row , d_col ,
16 x, y,

92

17 numBlocks ,
18 d_sequences , d_references);
19

20 cudaDeviceSynchronize ();
21

22 if (x == *(h_shared +block_x_len) - 1)
23 ++y;
24 if (x < *(h_shared +block_x_len) - 1)
25 ++x;
26 }
27 checkCudaErrors(cudaMemcpy(h_scoringMatrix , d_scoringMatrix , sizeof(t_sc),

cudaMemcpyDeviceToHost));
28

29 cudaEventSynchronize(stop);
30 cudaEventRecord(stop);
31 cudaEventSynchronize(stop);
32 float milliseconds = 0;
33 cudaEventElapsedTime (& milliseconds , start , stop);
34 printf("%3.1f,", milliseconds);

Listing 4.1 How the GPGPU version’s time measurement is obtained

1 struct timeval stop , start;
2 gettimeofday (&start , NULL);
3

4 for (int i = 0;i< *(h_shared + dims3); i++) {
5 (h_swext+i)->score = ksw_extend2 ((h_swext+i)->qlen , (h_swext+i)->query

, (h_swext+i)->tlen , (h_swext+i)->target , 5, opt ->mat , opt ->o_del , opt
->e_del , opt ->o_ins , opt ->e_ins , (h_swext+i)->aw[1],

6 opt ->pen_clip3 , opt ->zdrop ,(h_swext+i)->sc0 , &((h_swext+i)->qle) ,&(
h_swext+i)->tle , &(h_swext+i)->gtle , &(h_swext+i)->gscore , &(h_swext+i)
->max_off [1]);

7 }
8

9 gettimeofday (&stop , NULL);
10 printf("%lu\n", (stop.tv_sec - start.tv_sec) * 1000000 + stop.tv_usec -

start.tv_usec);

Listing 4.2 How the CPU version’s time consumption is obtained

4.2 Level 1 Parallelization

The first step is to generate alignment data sets before the test is started using a random

number generator, which provides two similar sequences with some mutations in each align-

ment data set. However, the effect of different mutation rates are needed to be tested in

controlled environments. Therefore, the first test determines the performance differences

between 90, 92, 96, and 98 percent similarities. How the pruning mechanism affects the

overall performance has to be determined as well.

Therefore, the following tests were performed:

93

• Relations between sequence alignment length with or without the pruning mechanism,

and how mutation rate affects the time consumption.

• Relation between GPGPU version and CPU version with the pruning mechanism.

• Relation between GPGPU version and CPU version with or without the pruning mech-

anism in the long run.

4.2.1 Test Data Set Generation with Random Number Generator

for Parallelization Level 1

As described in Section 4.1, we generate test data sets with random number generator.

The test data sets we are going to generate are the fragment pairs. For example, in Ta-

ble 3.14, simulated left reference sequence alignment fragment and simulated left read se-

quence alignment fragment is one pair of alignment fragments, and simulated right reference

alignment fragment and simulated right read alignment fragment is another pair of frag-

ments. In each pair, two fragments may having a different length. For example, the length

of simulated left read sequence alignment fragment is 1, and the length of simulated left refer-

ence sequence alignment fragment is 2. also, the difference between simulated right reference

sequence alignment fragment and simulated right read sequence alignment fragment is only

the first nucleotide, which is caused by single nucleotide mutation.

In generating each pair of fragments, we first generate the first fragment’s base at location

i. If the length if the second fragment is bigger than i, we either copy the first fragment’s base

at location i or generate another random base3. Listing 4.3 is the function for generate these

data sets. In Listing 4.3, from Line 23 to Line 32, a pair of fragments is generated with length

of total_length. A seed is defined and used at Line 17 to produce a consistent testing dataset.

Two char arrays were being prepared (two sequences, or a pair of alignments) with the length

of total_length (from Line 19 to Line 21). For each character of the sequence fragment, we
3This depends on our predefined mutation chance value.

94

do the following. First, at Line 25, a random number from 1 to 100 is generated. Then, on

line 28, a random number between 0 and 4 is generated, which represents the nucleotide on

the sequence. On Line 30, a predefined value percent and the randomly generated number

chance is used to determine if we want to replace the current nucleotide in the seed with

a new random number of 1 to 4. The higher the value of percent, the more similar of two

generated fragments are in the pair.
1 void lvl_1_test(int total_length , int factor , int percent){
2 // options for computing alignment
3 mem_opt_t *opt;
4 //these variables are the will be the output from our computation
5 int bqle , btle , bgtle , bgscore;
6 opt = mem_opt_init ();
7 bwa_fill_scmat(opt ->a, opt ->b, opt ->mat);
8 int l_query = total_length; // length of the query
9 int qe = 0; //qe is the starting position of the right query

10 int re = 0; //re is the starting position of the right reference
11 int64_t rmax [2] = { 0, total_length };
12 int aw[2] = { 100, 100 };
13 int sc0 = 100; // highest score
14 int qle , tle , gtle , gscore;
15 int max_off [2] = { 0, 0 };
16 //set seed to be 6
17 srand (6);
18 // reference sequence
19 uint8_t rseq[total_length];
20 //read sequence
21 uint8_t query[total_length];
22 //the code down below will generate a sequence with length of "

total_length"
23 for(int k = 0; k < total_length; k++){
24 //we generate a random number between 1 and 100
25 int chance = rand() %100;
26 //and we randomly generate a random number between 1 and 4
27 //each of them is representing a nucleotide
28 rseq[k] = rand()%4;
29 //if the random generated number is bigger than the current

percent , we substitute the number with another random number
30 if(chance > percent){query[k]= rand()%4;}
31 else query[k] = rseq[k];
32 }
33 //CPU version of the code
34 score = ksw_extend2(l_query - qe, query + qe, rmax [1] - rmax [0] - re ,

rseq + re , 5, opt ->mat , opt ->o_del , opt ->e_del , opt ->o_ins , opt ->e_ins ,
aw[1], opt ->pen_clip3 , opt ->zdrop , sc0 , &qle , &tle , >le , &gscore , &

max_off [1]);
35 //GPU version of the code
36 score = gpu_sw_extend(l_query - qe, query + qe, rmax [1] - rmax [0] - re

, rseq + re, 5, opt ->mat , opt ->o_del , opt ->e_del , opt ->o_ins , opt ->
e_ins , aw[1], opt ->pen_clip3 , opt ->zdrop , sc0 , &bqle , &btle , &bgtle , &
bgscore , &bmax_off [1]);

37 }

Listing 4.3 Level 1 parallelization test data generation

95

4.2.2 Test 1: Sequence Alignment Similarity and Time Cost with-

out the pruning mechanism

The effect of the mutation rate is studied in the first test, and the main goal of this test is

to examine the influences of different similarities. The assumption is that the CPU version

might increase when the similarities increase (the higher the similarities, the more cells are

needed to compute). However, the GPGPU version’s time consumption may not increase as

the number of steps taken has not changed.

Table 4.1 CPU and GPGPU versions alignment performance comparisons
without the pruning mechanism with different sequence similarity levels
at parallelization Level 1 1.

Length

(bp)2

CPU

90%3

GPGPU

90%4

CPU

92%5

GPGPU

92%6

CPU

94%7

GPGPU

94%8

CPU

96%9

GPGPU

96%10

CPU

98%11

GPGPU

98%12

80 0.08 0.2 0.07 0.2 0.07 0.2 0.08 0.2 0.08 0.2
160 0.27 0.4 0.27 0.4 0.27 0.4 0.27 0.4 0.26 0.4
320 0.81 0.8 0.81 0.8 0.8 0.8 0.81 1.3 0.85 0.8
480 1.56 1.2 1.56 1.2 1.6 1.7 1.62 1.2 1.73 1.2
640 2.54 1.6 2.54 1.6 2.66 1.6 2.71 2.1 2.87 1.7
800 3.74 2.5 3.78 2.1 4.04 2.5 4.07 2.5 4.34 2.1
960 5.21 2.5 5.26 2.5 5.55 2.5 5.69 2.5 5.99 2.6

1Reduced Data Set, the full data set is displayed in Appendix B.1.

2Sequence alignments length ranges from 80 to 960 bp.

3-12CPU and GPGPU Versions performance ranges from 90 to 98 percent.

96

Figure 4.1 CPU and GPGPU versions alignment performance compar-
isons with without the pruning mechanism with different similarities at
parallelization Level 1 1. The x-axis represents the time consumption in ms, and
the y-axis represents sequence length from 16 to 976 bp. Sequence similarity level
represented by colour ranges from 92 to 98 percent.

1This figure is basically the combination of two previous figures.

Table 4.1 compares the performance of the CPU and GPGPU versions without the prun-

ing mechanism with different sequence similarity levels at parallelization Level 1. These

performance data are generated using the code from Listing 4.3. For GPGPU versions, the

time is obtained using cudaEvent. For CPU versions, the C function gettimeofday is being

used. The test is performed once for each different length. However, for each length, the test

data set remains the same for both versions. A more detailed version of the data is shown

in Appendix B.1. However, the test data changes as the random-generated-sets change for

each length, which may contribute to some of the time consumption differences across the

different length.

The time for the CPU version4 has a slight increase when the similarity increases. At 90
4The test was performed on intel i7-6700k CPU, NVIDIA GeForce GTX 1080, 32GB RAM, and 1TB

97

percent similarity, the alignment time at 960 bp is 5.21 ms, and this time is 5.26, 5.55, 5.69,

5.99 ms at 92, 94, 96, and 98 percent similarity, respectively. The increasing similarities

cause a slight increase in time consumption as more nucleotides are needed to be compared.

On the opposite, when similarity is low, the alignment reaches zero scores (with the gap

penalty) much faster, resulting in an alignment of fewer nucleotides. As shown in Figure 4.1,

the time for the GPGPU version has not changed even when the similarity increases. At

90 percent similarity, the alignment time at 960 bp is 2.5 ms, and this time is 2.5, 2.5, 2.5,

2.6 ms at 92, 94, 96, and 98 percent similarity, respectively. it can be seen that GPGPU

lines overlap with each other, which means the coefficients remain the same for all similarity

levels. Therefore, without the pruning mechanism, the GPGPU version of the code has

a linear relation (from the graph), and the time consumption does not change when the

sequence similarity changes.

From Figure 4.1 and Table 4.1, the result can be summarised as follows:

1. Under the case without pruning mechanism, GPGPU version’s time consumption in-

creases with the alignments’ length in a linear relation, which is not affected by the

level of sequence similarity.

2. For the CPU version, the time consumption also shows a positive correlation with the

alignment length, and it further increases with the sequence similarity level.

4.2.3 Test 2: The Effect of the Pruning Mechanism Towards CPU

and GPGPU versions Alignment Performance

After knowing the influence of similarities, this Section examines the pruning mechanism’s

influence, and the similarity of 98% is used for this test. Therefore, both the CPU and

GPGPU versions’ performance both with the pruning mechanism and without the pruning

mechanism is tested. As the pruning mechanism skips the cells in the areas that are not

solid state hard drive desktop.

98

possible to produce the optimal score, for the CPU version, the order of time complexity

should decrease when the pruning mechanism is applied. However, the time complexity for

GPGPU without the pruning mechanism should remain the same.

Table 4.2 CPU and GPGPU versions alignment performance comparisons
with or without the pruning mechanism at parallelization Level 1 1.

length (bp)2 CPU version

with the Pruning

Mechanism (ms)

CPU version

without the

Pruning Mecha-

nism (ms)

GPU version

without the

Pruning Mecha-

nism (ms)

GPU version

with the Pruning

Mechanism (ms)

48 0.03 0.03 0.1 0.1
192 0.33 0.36 0.5 0.5
336 0.65 0.92 0.9 0.9
480 0.97 1.73 1.7 1.3
624 1.29 2.75 1.6 1.6
768 1.62 4 2 2
960 2.05 5.99 2.5 2.5

1Reduced Data Set, Full Set Data is Displayed in Appendix B.2.

2Sequence alignments length ranges from 48 to 960 bp.

99

Figure 4.2 GPU and CPU versions performance comparisons with or
without the pruning mechanism at parallelization Level 1. The y-axis repre-
sents the time consumption in ms, and the x-axis represents sequence length from 16
to 976 bp.

Table 4.2 describes the result from test 2 generated using the code from Listing 4.3.

Figure 4.2 shows the difference between CPU with the pruning mechanism and CPU without

the pruning mechanism. The CPU version without the Pruning mechanism quickly increased

with the sequence length from 0.03 ms at 48 bp to 5.99 ms at 960 bp. However, the CPU

with the pruning mechanism increased is much slower, with the sequence length from 0.03 ms

at 48 bp to the sequence length of 2.05 ms at 960 bp, indicating that the time consummation

decreases when the pruning mechanism is applied.

In Figure 4.2, the GPGPU version with the pruning mechanism increased from 0.1 ms at

length 48 bp to 2.5 ms at 960 bp, and the GPGPU version without the pruning mechanism

remains the same (increased from 0.1 ms at length 48 bp to 2.5 ms at 960 bp), indicating

that the pruning mechanism does not affect the GPGPU version. CPU with the pruning

mechanism and GPGPU with the pruning mechanism both have a similar increasing trend

with the sequence length. However, GPGPU with the pruning mechanism has a much higher

100

speed of increase, suggesting that GPGPU with the pruning mechanism would never beat

CPU with the pruning mechanism.

Based on data in Figure 4.2 and Table 4.2, it can be concluded that the pruning has no

effect on GPU’s performance, but improves CPU’s performance dramatically. More specif-

ically, before 144 bp, CPU’s performance with or without the pruning mechanism remains

the same. However, pruning starts to improve the performance at 144 bp. The cause of this

is due to a large number of cells been cut off, and the pruning mechanism starts to show the

real effect.

4.2.4 Test 3: The Effect of the Pruning Mechanism towards CPU

and GPGPU Versions Alignment Performance with Longer

Sequence

After the first and second experiments, we can conclude that the following statement is

true. Under the case without the pruning mechanism, GPGPU version time consumption

has a linear relation with the alignment length, but it is not affected by the level of sequence

similarity. On the other hand, the CPU version’s time consumption has a positive correlation

with the alignment length, and it further increases with the sequence similarity level. The

pruning mechanism does not affect GPU’s performance but improves CPU’s performance

dramatically. However, this experiment may change for longer sequences. Therefore, we are

going to test the sequence’s length as long as possible. We stop at 7416 bp as the computer

becomes extremely slow.

101

Table 4.3 CPU and GPGPU versions alignment performance compar-
isons with or without the pruning mechanism up to 7416 bp length at
parallelization Level 1 1.

Length (bp)2 CPU version without

the Pruning Mecha-

nism (ms)

CPU version with the

Pruning Mechanism

(ms)

GPU version without

the Pruning Mecha-

nism (ms)
16 0 0.01 0.1
616 2.7 1.27 1.6
1816 19.7 3.98 4.9
3016 52.4 6.73 9.3
4216 101.5 9.44 13.8
5416 167.1 12.2 19.2
6616 247.3 15.03 25.5
7416 309 16.55 30.3

1Reduced Data Set, Full Set Data is Displayed in Appendix B.3.

2Sequence alignments length ranges from 16 to 7416 bp.

Table 4.3 describes the time consumption of CPU and GPGPU versions with or without

the pruning mechanism for sequence up to 7416 bp, which was generated using the code

from Listing 4.3. Since the GPGPU version remains the same with or without the pruning

mechanism, only the GPGPU with the pruning mechanism is tested.

102

Figure 4.3 GPU and CPU versions performance comparisons with or
without the pruning mechanism at parallelization Level 1. The y-axis repre-
sents the time consumption in ms, and the x-axis represents sequence length from 16
to 7416 bp.

As shown in Figure 4.3, the time for CPU with the pruning mechanism increased from 0.01

ms at 16 bp to 16.55 ms at 7416 bp. The GPU’s time with the pruning mechanism increased

slightly faster than the CPU with the pruning mechanism from 0.1 ms at 16 bp to 30.3 ms

at 7416 bp. However, the CPU time without pruning version quickly increased from 0 ms

at 16 bp to 309 ms at 7416 bp, much quicker than the GPGPU version without the pruning

mechanism. The length of the sequences are being tested from 16 bp to 7116 bp. After 7116

bp, there is not enough RAM for the GPGPU to compute it at the same time. The limitation

is that it depends on how big the RAM is.

4.2.5 Summary

At this level, all tests was carried out on a intel i7-6700k CPU, NVIDIA GeForce GTX 1080,

32GB RAM, and 1TB solid state hard drive desktop, which previously referred to as PC 1.

103

The main goal of parallelization Level 1 test 1 is aimed to understand the effect of different

sequence similarity levels. Tests was performed at similarity Level 92%, 94%, 96%, 98% with

the length range of 16 bp to 992 bp. The main goal of test 2 is to understand the effect

of pruning mechanism. Tests was performed on both CPU and GPGPU versions with or

without the pruning mechanism at similarity level of 90% and a length range of 16 bp to

992 bp. Pruning mechanism eliminates cells that cannot generate a higher score than the

exiting maximum score. The main goal for Level 1 test 3 is to check out if the outcome from

test 2 remains the same for longer sequences. The tests was performed with a similarity

Level of 90% and a length range of 16 bp to 992 bp. At this level, the same data set is

used for the same similarity level and length, and the mutations are generated randomly at

random locations on the sequence. Under the case without the pruning mechanism, GPGPU

version’s time consumption increases with the alignment’s length in a linear relation, and is

not affected by the level of sequence similarity. CPU version’s time consumption has shown

a positive correlation with the alignment length, and further increases with the sequence

similarity level. Under the case without the pruning mechanism, the time consumption of

the GPGPU version is always higher than the CPU version.

4.3 Parallelization Level 2 and Level 3

In the tests with real read data5, BWA-MEM has shown that there are only a few extensions

on average at the chain level, referred to as Level 2 parallelization. In Level 3 parallelization,

multiple chains are combined for the maximum number of chains that can be collected. In

the tests using data mentioned from section 4.1, the length of the fragments are rarely longer

than 32 bp in seed extension. Therefore, the sequences’ length in the tests are shorter than

32 bp, including 8 bp, 16 bp, and 32 bp length tests. The time consumption on GPU with

time-saving and memory-saving versions and CPU versions are measured in each test, and
5Section 4.1.

104

these three versions are described below.

1. GPU with memory-saving Version: the program is designed under the assumption

that saving memory was much more important than saving time.

2. GPU with time-saving Version: The program is designed to assume that saving time

is much more important than saving memory.

3. CPU Version: the original version of ksw_extend2.

4.3.1 How the Sequence Data has been Generated and Used in

Parallelization Level 2 and Level 3

Listing 4.4 describes how the sequences are generated and used in the test. First, all the

necessary matrices and variables were initialized from Line 43 to Line 48. Each alignment is

processed and initialized using function sw_ext_int (Line 60). The sequence generation is

performed by function ref_seq_gen at Line 2, similar to the previous result from the Level

1 test.
1 /*this method pass in a pointer address and generate query and target test

references */
2 void ref_seq_gen(uint8_t **query , uint8_t **target , int query_size , int

target_size , int chance_percent){
3

4 (*query) = (uint8_t *) calloc(query_size ,sizeof(uint8_t));
5 (* target) = (uint8_t *) calloc(target_size ,sizeof(uint8_t));
6 uint8_t *tmp_query = (*query);
7 uint8_t *tmp_target = (* target);
8 bool has_longer_query = query_size > target_size;
9 int min_size;

10 int max_size;
11 int idx;
12 if(has_longer_query){
13 min_size = target_size;
14 max_size = query_size;
15 }else{
16 min_size = query_size;
17 max_size = target_size;
18 }
19

20 for(idx = 0; idx < min_size; idx++){
21 // generate a chance digit
22 int chance = rand() %100;
23 // generate a random nucleotide
24 *tmp_query = rand()%4;

105

25 if(chance > chance_percent) *tmp_target = rand()%4;
26 else *tmp_target = *tmp_query;
27 tmp_query ++;
28 tmp_target ++;
29 }
30

31 uint8_t *tmp_pt = has_longer_query? tmp_query : tmp_target;
32 for(; idx < max_size; idx ++){
33 *tmp_pt = rand()%4;
34 tmp_pt ++;
35 }
36 return;
37 }
38

39

40 /*the following code is for~\ textit{Level 2} and~\ textit{Level 3} testing
*/

41 void lvl_2_3_testing(int test_size){
42 //BWA\-MEM options
43 mem_opt_t *opt;
44 // option initialization
45 opt = mem_opt_init ();
46 bwa_fill_scmat(opt ->a, opt ->b, opt ->mat);
47 // memory allocation for Smith -Waterman Extension structure
48 struct sw_ext *h_swext = (sw_ext *) calloc(test_size ,sizeof(sw_ext));
49

50 // adding up testing information , assuming we are testing for 32 bp}
length

51 int g_qlen = 32;
52 int g_tlen = 32;
53 // assuming that we are generating sequences with mutation rate 80
54 int chance = 80;
55 int score_h0 = 100;
56 // generate random number with random seed
57 srand(RD_SEED);
58 struct sw_ext *tmp_swext = h_swext;
59 for(int i = 0; i < test_size; i++){
60 sw_ext_int (&tmp_swext , score_h0 , g_qlen , g_tlen , chance);
61 tmp_swext ++;
62 }
63 // generating shared information , getting ready for GPGPU computation
64 int *h_shared;
65 sw_state_init (&h_shared , test_size ,1, opt);
66 // initialization is over
67 // testing starts here:
68 LocalMatrix *result = gpu_sw_seed_extend(h_swext , h_shared , opt ->mat);
69 LocalMatrix *result2 = gpu_sw_seed_extend_v2(h_swext , h_shared , opt ->

mat);
70 // computes the result from GPU , this function is an altered original

code so it can compute the result from gpU
71 for (int i = 0;i< test_size; i++) {
72 computeMax ((h_swext+i), h_shared , opt ->mat , (result+i**(h_shared +

block_x_len) * *(h_shared + block_y_len)), 5);
73 }
74 \\we compute CPU version
75 for (int i = 0;i< *(h_shared + dims3); i++) {
76 (h_swext+i)->score = ksw_extend2 ((h_swext+i)->qlen , (h_swext+i)->

query , (h_swext+i)->tlen , (h_swext+i)->target , 5, opt ->mat , opt ->o_del ,
opt ->e_del , opt ->o_ins , opt ->e_ins , (h_swext+i)->aw[1], opt ->pen_clip3

, opt ->zdrop , (h_swext+i)->sc0 , &((h_swext+i)->qle), &(h_swext+i)->tle ,
&(h_swext+i)->gtle , &(h_swext+i)->gscore , &(h_swext+i)->max_off [1]);

77 }

106

78 }

Listing 4.4 Level 2 and Level 3 parallelization test data set generation

4.3.2 Test 1: Performance Comparisons Among Different Imple-

mentations at Parallelization Level 2 and Level 3 of ksw_extend2

with Alignments length at 8 bp

The first test performs a different number of alignments simultaneously, where all fragment

pairs have the same length of 8 bp. From the test we performed using data from Section 4.1,

it is common to have short sequences6. If most sequences are short, it is possible to have all

the sequences shorter than 8 bp. When all the sequences are shorter than 8 bp, the GPGPU

version will lengthen all of them to 8 bp. Therefore, for this test, assuming that the length

is equal to 8 bp for all sequences.

Table 4.4 Performance comparisons among different implementations at
parallelization Level 2 and 3 of ksw_extend2 with alignments length at
8 bp1.

Number of

Alignments2

GPU with memory-

saving Version(ms)

GPU with time-saving

Version (ms)

CPU Version (ms)

30 0 0 0.035
630 0.2 0.1 0.687
1230 0.5 0.2 1.327
1830 0.7 0.2 1.994
2430 0.9 0.3 2.631
2550 0.9 0.3 2.746

1Reduced data set, full data set in AppendixB.4.

2The number of alignments performed in a single test.

Table 4.4 describes the time consumption of CPU version, GPU with time-saving version

and GPU with memory-saving version with the sequence length of 8 bp, which was generated
6The short sequences we are referring here are those around the seeds for seed extension inside each read.

107

using the code from Listing 4.4.

Figure 4.4 Performance comparisons among different implementations
at parallelization Level 2 and Level 3 of ksw_extend2 with alignments
length at 8 bp. The y-axis represents the time consumption in ms, and the x-axis
represents number of pairs from 2 to 2558.

Figure 4.4 shows the test result for the alignments at 8 bp. The data showed that

the GPU with time-saving version is much better than the other two versions. The time

for the CPU version increased quickly with 30 alignments from 0.035 ms at 30 bp to 2.746

ms with 2550 alignments, while both GPGPU versions show very little increase with 30

alignments7 to 2550 alignments8. The GPU with time-saving version shows an excellent

performance in comparison to the CPU version. However, it has much worse performance

than the GPU with time-saving version. The conclusion is that the GPU with time-saving

version was roughly nine times faster than the CPU version. The GPU with memory-saving

version was roughly three times slower than the CPU version9.
7Both at 0 ms.
8Time-saving version at 0.3 ms, memory-saving version at 0.9 ms.
9With the number of alignments at 2550, GPU with memory-saving version finished alignments in 0.9

108

4.3.3 Test 2: Performance Comparisons Among Different Imple-

mentations at Parallelization Level 2 and Level 3 of ksw_extend2

with Alignments length at 16 bp

After the first test with a sequence length of 8 bp, all alignments’ length may be longer

than 8 bp but shorter than 16 bp. Therefore, the second test performs a different number

of alignments simultaneously, where all alignments have a length of 16 bp. When all the

sequences are longer than 8 bp and shorter than 16 bp, the GPGPU version will convert all

shorter than 16 bp to 16 bp. Therefore, for this test, assuming that the length is equal to 16

bp for all sequences.

Table 4.5 Performance comparisons among different implementations at
parallelization Level 2 and Level 3 of ksw_extend2 with alignments
length at 16 bp1.

Number of

Alignments2

GPU with memory-

saving Version(ms)

GPU with time-saving

Version (ms)

CPU Version (ms)

30 0.1 0.1 0.114
630 1.1 0.3 2.338
1230 2.1 0.5 4.576
1830 2.4 0.8 6.902
2430 2.7 1 9.166
2550 2.9 1 9.612

1reduced data set, full data set in AppendixB.5.

2The number of alignments performed in a single test.

Table 4.5 shows the time consumption of CPU and GPGPU with the pruning mechanism

with the sequence length of 16 bp, which is generated using the code from Listing 4.4.

ms, GPU with time-saving version in 0.3 ms, and CPU version in 2.7 ms.

109

Figure 4.5 Performance comparisons among different implementations
at parallelization Level 2 and Level 3 of ksw_extend2 with alignments
length at 16 bp. The x-axis represents the time consumption in ms, and the y-axis
represents number of pairs from 2 to 2558.

Figure 4.5 shows the test result for alignments at the length of 16 bp among different

versions. As shown in the figure, the time for the CPU version increased quickly with 30

alignments with 0.114 ms at 30 bp to 9.612 ms with 2550 alignment, while both GPGPU ver-

sions of the code show very little increase with 30 alignments (reduced time 0.1 ms, reduced

memory 0.1 ms) to 2550 alignments10. Like the previous test, the GPU with time-saving

version shows excellent performance over the CPU version. However, it has much worse

performance than the GPU with time-saving version. Therefore, the conclusion remains the

same that the GPU with time-saving version is roughly nine times faster than the CPU

version. The GPU with memory-saving version is roughly three times slower than the CPU

version11.
10Reduced time 1 ms, reduced memory 2.9 ms.
11With the number of alignments at 2550 GPU with memory-saving version finished alignments in 2.9

ms, GPU with memory-saving version in 1 ms, and CPU version in 9.612 ms.

110

4.3.4 Test 3: Performance Comparisons Among Different Imple-

mentations at Parallelization Level 2 and Level 3 of ksw_extend2

with Alignments length at 32 bp

After the first test and the second test with a sequence length of 8 bp and 16 bp, we perform

another test with 32 bp sequences.

Table 4.6 Performance comparisons among different implementations at
parallelization Level 2 and Level 3 of ksw_extend2 with alignments
length at 32 bp1.

Number of

Alignments2

GPU with

memory-saving

Version(ms)

GPU with time-

saving Version

(ms)

CPU Version (ms)

30 0.3 0.1 0.426
150 1.2 0.3 2.046
270 1.4 0.5 3.692
390 2.3 0.7 5.325
510 3.1 0.9 7.62
630 3.3 1.3 8.724
750 3.5 1.2 10.21
810 4.1 1.4 11.18

1reduced data set, full data set in AppendixB.6.

2The number of alignments performed in a single test.

Table 4.6 describes the time consumption of CPU and GPGPU with the pruning mech-

anism with sequences length of 32 bp, which is generated using the code from Listing 4.4.

111

Figure 4.6 Performance comparisons among different implementations
at parallelization Level 2 and Level 3 of ksw_extend2 with alignments
length at 32 bp. The y-axis represents the time consumption in ms, and the x-axis
represents number of pairs from 2 to 832.

Figure 4.6 shows the test result of alignments at the length of 32 bp among different

versions. As shown in the figure, the CPU version’s time increased quickly with 30 alignments

with 0.426 ms at 30 bp to 11.18 ms with 819 alignments. In comparison, both GPGPU

versions of the code show very little increase with 30 alignments12 to 810 alignments13. Like

the previous test, the GPU with time-saving version shows good performance over the CPU

version. However, it has much worse performance than the GPU with time-saving version.

Therefore, the conclusion remains the same that the GPU with time-saving version is roughly

nine times faster than the CPU version. The GPU with memory-saving version is roughly

three times slower than the CPU version14.
12Reduced time 0.1 ms, reduced memory 0.3 ms.
13Reduced time 1.4 ms, reduced memory 4.1 ms.
14With the number of alignments 810, GPU with memory-saving version finished alignments in 4.1

ms, GPU with memory-saving version in 1.4 ms, and CPU version in 11.18 ms.

112

4.3.5 Summary

At this level, all tests was carried out on a intel i7-6700k CPU, NVIDIA GeForce GTX

1080, 32GB RAM, and 1TB solid state hard drive desktop, which previously referred to as

PC 1. In the test with real data15, BWA-MEM has shown that on average, there are only few

extensions at parallelization Level 2 16. Therefore, before Level 3 parallelization computation

start, we need to collect as much fragment pairs as possible. During the test, it has shown

that the length of the fragments are rarely longer than 32 bp in seed extension. Therefore,

tests at parallelization Level 2 and Level 3 are aimed to find out the performance of aligning

multiple pairs at the same time. In the tests, there are two different GPGPU ksw_extend2

versions being created. GPGPU with time-saving version is aimed at reducing the time

consumption, under the assumption that reducing time usage is more important than saving

GPGPU memory. GPGPU with memory-saving version is aimed at reducing the GPGPU

memory usage, under the assumption that GPGPU has a very limited number of RAM,

and this is done through performing multiple data transfer between GPGPU and the main

memory.

The test results remains the same for tests of alignment length at 8 bp, 16 bp and 32

bp. and they have shown that CPU version’s time consumption increases very fast. GPGPU

withmemory-saving version is roughly 3x faster than the CPU version, and the GPGPU with

time-saving version is roughly 3x faster than the GPGPU with memory-saving version. The

reason why GPGPU with memory-saving version is slower is because data transfer between

GPGPU and main memory has a huge overhead.
15Section 4.1.
16At Chain Level.

113

4.4 GPGPU distributed BWA-MEM

As the new stable release version of Spark17 recognizes GPGPU as a resource, it gives us an

opportunity to build a Spark standalone GPGPU version of BWA-MEM on SharcNET. In

this section, we will go through Big Data frameworks, Hadoop and Spark, and then presents

the idea of Spark Standalone GPGPU version of BWA-MEM under parallelization Level 1

of ksw_extend2.

4.4.1 GPGPU Distributed Framework

GPGPU distributed version is similar to CPU distributed version as they both execute the

program on multiple nodes in the cluster. GPGPU distributed can be implemented as one

of the Spark + CUDA, Hadoop + CUDA and OpenMPI + CUDA. In comparison to other

GPGPU distributed frameworks, Spark standalone GPGPU framework stands out for been

version agnostic and easy to set-up.

4.4.2 Big Data

In data analytics, big data software are used to analyze and extract information from large

data sets that are too sophisticated for the traditional data-processing applications. Yahoo!

Inc. claimed they launched the most massive Hadoop production environment in 2008, in

which a Linux cluster with more than 10,000 cores was used for Yahoo! ’s search query [78].

As of 2013, more than half of the Fortune 50 have claimed the use of Hadoop [79]. Spark

is considered another popular big data software package. Spark and Resilient Distributed

Dataset (RDD) were developed in 2012 in response to the MapReduce framework’s limita-

tions.
17Released on September 2, 2020.

114

4.4.2.1 Hadoop

Apache Hadoop contains multiple open-source software utilities, which facilitates a network

of computers to resolve problems involving large amounts of data and computation resources.

Using the MapReduce programming model and distributed storage, Hadoop can process large

amounts of data and automatically handle hardware failures. Both Hadoop Distributed File

System (HDFS) [80], and MapReduce are the core for Apache Hadoop, where HDFS is a file

storage system, and MapReduce is a framework for processing.

Large files are first separated into large data blocks with HDFS, and Hadoop distributes

these data blocks across the cluster. By allowing data to be stored directly in the same node

where the execution happens, the dataset can be processed faster and more effectively than

the conventional super-computer architecture, which mainly relies on high-speed networking

for data transferring. HDFS is a distributed, scalable, and portable file system responsible

for separating large files into multiple blocks. HDFS has five services: name node, secondary

name node, job tracker, data node and task tracker.

4.4.2.2 Apache Spark

Apache Spark’s Resilient Distributed Dataset (RDD) is considered a distributed multi-set of

read-only data across multiple nodes with the feature of fault-tolerant.MapReduce framework

has four stages: reading input data from disk, reducing the results, and storing the reduction

results. Apache Spark depends on a cluster manager and a distributed storage system in

the system, and its core provides distributed task dispatching, scheduling, and basic I/O

functionalities with the RDD abstraction.

The popular cluster manager for Spark includes standalone, Hadoop YARN and Apache

Mesos. For supported distributed storage, the most popular one is HDFS. As the most

popular combination is Hadoop Yarn and Spark, Spark offers a pre-build Spark-Hadoop

package. Spark also provides standalone mode, which uses Spark’s built-in cluster manager,

115

although it still requires a distributed storage system. Both Hadoop YARN and Apache

Mesos offer the capability to include GPGPU resources. Spark version 3.0.1, which is pub-

lished in September 2020, offers the capacity to include GPGPU resources in the standalone

version. After successfully starting the master node, the worker is started with a GPGPU

discovery code, which allows Spark to locate GPGPU resources using the configuration file.

The program can be submitted using spark-submit with GPGPU resources scheduling con-

figuration.
1 ./spark -submit --class com.github.sparkbwa.SparkBWA --master spark://

DESKTOP -A8LGS28.cogeco.local :7077 --driver -memory 2G --conf spark.
executor.memory=4G --conf spark.executor.cores=1 --conf spark.task.cpus
=1 --conf spark.task.resource.gpu.amount =0.3 --conf spark.executor.
resource.gpu.amount=1 file:/opt/SparkBWA/target/SparkBWA -0.2. jar -m -r
-p --index /Data/HumanBase/hg38 -n 32 -w "-R @RG\tID:foo\tLB:bar\tPL:
illumina\tPU:illumina\tSM:ERR000589" file:/data/E1.FASTQ file:/data/E2.
FASTQ file:/data/Output_ERR000589123b

Listing 4.5 Software Execution in Spark Standalone mode with GPGPU
resources

Listing 4.5 describes the code for software execution in Spark Standalone mode with

GPGPU resources, which requests a worker with one GPGPU to execute the program.

4.4.2.3 SparkBWA Analyzation

In MapReduce’s structure, GPGPU distributed BWA-MEM has three main stages: RDD

creation, map, and reduction. A Resilient Distributed Dataset (RDD) is an immutable, par-

titioned collection of elements operated on in parallel. In the RDD creation, the sequence

data is fed into the map phase, where the FASTQ file is used as input and stores into HDFS.

Since HDFS is a distributed file system, the FASTQ file is separated into data blocks and

distributed across the cluster. The FASTQ file is converted into JavaPairRDD, where they

would appear as < read_id, read_content >. The read content contains all information

corresponding to the sequence information, with read_id as the sequence identifier. How-

ever, BWA-MEM supports paired-end read, where two FASTQ files are used as input. In

the case of the paired-end read method, the two tuples are joined using the key with the

format of < read_id, Tuple < read_content1, read_content2 >>. In this way, two reads

116

from the same pair being stored onto a different node are avoided.

Once the RDD creation is completed, the mappers would call for BWA-MEM using the

Java Native Interface (JNI), which would allow the combination of Java code and C/C++

code. The parallelized GPGPU BWA-MEM (C/C++ code) is used to process all the align-

ments parallel in the map stage. All outputs from execution nodes are combined in the reduce

phase, and only one file is produced. As mentioned previously, theGPGPU distributed BWA-

MEM is version agnostic towards the GPGPU version of parallelized GPGPU BWA-MEM.

However, due to Open Sourced GPGPU BWA-MEM ’s unavailability, we have to work on

parallelizing BWA-MEM.

4.4.2.4 Summary

GPU distributed is considered the fastest framework among CPU multi-threaded, CPU dis-

tributed, GPGPU multi-threaded, and GPGPU distributed. However, the setup is the most

expensive: set-up a cluster with minimum 3 GPGPU equipped roughly costs 3,000 dollars

on commercial cluster.

Member of Brock University can take advantage of SharcNET without the support of

Hadoop manager. Both Hadoop and Spark18 needs Hadoop manager to run on SharcNET.

However, the Spark stable release standalone version19 changed this situation, where stan-

dalone version now supports GPGPU resource on the cluster.

4.4.3 Implementation

Apache Spark is the de facto standard framework for distributed scale-out data processing.

With Spark, large amounts of data are analyzed quickly using a farm of servers to analyze

data or generate business insights. Many data processing tasks are considered embarrassingly

parallel, and it is very natural for GPGPU to be leveraged for Spark data processing queries.
18Before September 2, 2020.
19Released on September 2, 2020.

117

NVIDIA CUDA is a parallel computing architecture designed explicitly for NVIDIA GPGPU

architecture, aiming to accelerate computational operations. The combination of Spark and

NVIDIA CUDA accelerates data processing while substantially lowering the infrastructure

costs.

The stable 3.0 version of Spark, which was published on September 2nd of 2020, now offers

the capability to recognize GPUs as first-class resources along with CPU and system memory.

The newest version allows Spark 3.0 to directly place GPU-accelerated workloads on servers

with GPGPU resources as GPGPU resources are required to complete a task. Spark 3.0

offers GPGPU resources in Spark standalone, YARN, and Kubernetes clusters.

This thesis aims to combine Spark and CUDA parallel computing architecture with BWA-

MEM to improve its performance. Due to the large amount of work involved in paralleliz-

ing BWA with CUDA parallel computing architecture, the parallelization Level 3 of seed

extension was not completed on the CPU side. The parallelization of BWA-MEM ’s seed-

extend function has three levels. In Level 1, function ksw_extend2 is parallelized, which

performs seed extension on the single side of the seed. At Level 2, function chain2aln is

parallelized, which performs seed extension on both side of the seeds within the same chain.

in Level 3, function mem_align1_core is parallelized, which performs seed extension on all

seeds in all chains. However, BWA has successfully combined with parallelization Level 1.

As mentioned previously, Brock University is a member of Compute Canada, which

offers a giant amount of computation resources. The older version of Spark only offers

NVIDIA CUDA as a resource with other resources managers. As Compute Canada has

already installed a resource manager, installing another resource manager can cause conflict

in resource management. The only option is to setup a cluster with Spark standalone mode,

which does not require an additional resource manager.

As the newer stable release version of Spark can recognize GPGPU as a resource, the

possibility of combining GPGPU versions of BWA-MEM and Spark was tested. As any third

party does not offer a GPGPU version, the parallelized Level 1 GPU BWA-MEM is used

118

for this purpose. The Section here describes how they have been combined.

SparkBWA is a combination of Spark and BWA, which has provided a basis for Spark-

GPU-BWA’s current work. The benefit of SparkBWA is that it is version agnostic as the

original BWA-ALN is not being touched. The original version of BWA-MEM is replaced

with BWA-MEM -GPU as the input data format for BWA-MEM and BWA-MEM -GPU.

After modification towards the makefile and Maven settings, Spark-GPU-BWA-MEM has

been successfully compiled. Spark-GPU-BWA-MEM has successfully run in the standalone

mode by setting up the newest versions of Spark on the system.

As Spark Standalone mode configuration for GPGPU resources is quite new, there are

only few examples for Spark-GPU framework. The best guide that can be found online

is RAPIDS, which is a software package that uses both Spark and GPU. After successful

installation of Spark software, the discovery script’s location is needed to be referenced

by Spark configuration. By running the launching scripts, Spark can automatically discover

GPGPU resources on the worker node.
1 spark -submit --class com.github.sparkbwa.SparkBWA --master spark://DESKTOP

-A8LGS28.cogeco.local :7077 --driver -memory 1500m --executor -memory 6g
--executor -cores 1 --verbose --num -executors 1 file:/home/cli/Documents
/SparkBWA1/target/SparkBWA -0.2. jar -m -k -n 1 -s --index file:/home/cli
/Documents /40 p10000ltest /10000 index.fa file:/home/cli/Documents /40
p10000ltest /40 pairs.FASTQ file:/home/cli/Documents /40 p10000ltest

Listing 4.6 Spark-GPU Lunch Script

Listing 4.6 describes the launch script for launching Spark-GPU-BWA-MEM for a sin-

gle read alignment. Resources have to be requested when submitting applications. For

Spark-GPU applications, GPGPU resources have to be requested. BWA-MEM is used as a

dynamic library in SparkBWA. The modification towards any newer version of BWA-MEM

for SparkBWA is to add -fPIC. Therefore, an attempt to attach the flag -fPIC to the NVIDIA

CUDA compiler is successful, and the Spark-GPU-BWA-MEM has produced the same result

as BWA-MEM. The result of successfully combining three different technologies has proven

that the idea of Spark-GPU-BWA-MEM can work.

119

4.5 Summary

Both GPU with time-saving and GPU with memory-saving versions outran the CPU version

when multiple alignments were performed simultaneously. TheGPU with time-saving version

is roughly 3x faster than the GPU with memory-saving version, and the GPU with memory-

saving version is roughly 3x faster than the CPU version.

There are limitations to the experiment. First, CUDA only allows time measurement done

through a specific part of the CUDA code, which only allows us to measure the GPGPU part

of the computation. Therefore, only the GPGPU part of the GPGPU version is computed.

However, all parts of the CPU version are measured. Second, we did not implement the whole

program in Level 2 and three due to time constraints. As a result, at Level 2 and Level 3,

with correct implementation, the GPGPU version of BWA-MEM could outrun the CPU

version of BWA-MEM in all testing cases. CUDA only allows time measurement through

a specific part of the CUDA code, which means only the GPGPU part of the computation

is measured. The host’s code was not implemented in Level 2 and Level 3 due to time

constraints. The testing data set was created using a random number generator. We also

proofed that Spark-GPGPU-BWA-MEM is possible on SharcNET.

120

5 DISCUSSION

In this chapter, we will go through rationale and objective, results, theoretical running time,

and future work.

5.1 Rationale and Objective

Developing a new algorithm from scratch within 2 years of the time frame is hard. As

there are a lot of advances been made towards algorithms, developing one or improving

one is hard. As newer framework and hardware come out every single day, improving an

existing algorithm with new hardware or framework is easier. This thesis’s main goal is

to improve an existing algorithm with Big Data frameworks and GPGPU. We decided to

accelerate BWA as it has been a popular alignment package since 2009, and there is already

some research done. The early work for parallelizing BWA is mostly related to BWA-ALN1.

The early parallelization work for BWA-ALN is pBWA [9]. Other versions include Bar-

raCUDA [10], SparkBWA [16], BigBWA [15]. As BWA-ALN has both BarraCUDA2 and

SparkBWA3, and other existing GPGPU distributed programs have already shown promis-

ing result, the GPGPU distributed version of BWA-ALN has a foreseeable performance

improvement.
1BWA-ALN was developed with the first version of BWA package.
2The GPGPU version of BWA-ALN.
3The big data version of BWA-ALN.

121

BWA-MEM4 was first developed in 2012, and is now much popular than BWA-ALN when

dealing with newer NGS platforms. Therefore, the decision was made to parallelize BWA-

MEM instead of BWA-ALN. However, the structure of GPGPU distributed can still have

a good performance improvement. As we do not have an existing open-source GPGPU

version of BWA-MEM, the first step is to produce GPGPU-BWA-MEM5. After a hot spot

analysis [21], we have determined that seed extension has a higher usage than other parts

of the program. Due to time limitations, we have to focus on the part that would have the

best chance to improve our program.

In Level 2 and Level 3 parallelization, we have GPU with time-saving and GPU with

memory-saving versions. In parallelization Level 2 and Level 3 test, GPU with time-saving

and GPU with memory-saving versions outran the CPU version as multiple alignments were

performed simultaneously. The GPGPU with the time-saving version is roughly 9x faster

than the CPU version, and the GPGPU with the memory-saving version is roughly 3x faster

than the CPU version. The smith-Waterman algorithm is a famous approximate algorithm,

and its operation is costly. To change this situation, ksw_extend2 implemented the pruning

mechanism, which reduced the time complexity to a linear relation. On the other hand, no

matter with or without the pruning mechanism, the GPGPU version of the Smith-Waterman

algorithm is always linear, and there is no time saved at all.

In recent years, there has been a boom in big data because of the growth of social mobile,

cloud, and multi-media computing. Understanding the data is far more interesting than the

data itself, and is up to organizations to extract useful, actionable insights. However, the

traditional system cannot store, process, and analyze massive amounts of unstructured data.

That is where cloud computing and big data comes in. In compassion to other methods,

big data programs are highly fault-tolerant and easy to setup. Both Spark and Hadoop are

the big data Software packages, and they are commonly used to analyze large amounts of
4Another tool within the BWA package.
5The GPGPU BWA-ALN is BarraCUDA [10].

122

data. The successful compilation of the current work shows the GPGPU distributed BWA-

MEM works with Spark Standalone mode, which indicates it is possible to run Spark on the

Compute Canada-SharcNET Computing systems. Future work can focus on merging the

GPGPU version of the seed extension with BWA-MEM.

As mentioned previously, Hadoop has a conflict with the existing scheduling system on

SharcNET, and is not possible to setup Hadoop on Compute Canada. We still wanted to com-

pare the differences between Hadoop and Spark for future references. The major difference

between Hadoop and Spark is how the data is being stored on the hardware. For I/O in-

tensive programs, Hadoop on the computer hard drive’s I/O for its performance. Spark uses

fast in-memory performance with reduced disk reading and writing operations. Sequence

alignment programs are I/O intensive programs as both read and reference sequences are

quite large. Storing them into RAM can help to reduce the time spent on I/O. Hadoop is

a highly fault-tolerant system that replicates the data across the nodes and uses them in

case of an issue. Spark keeps track RDD block creation process, and then it can rebuild a

dataset when a partition fails. Spark standalone version supports built-in tools for resource

allocation, scheduling and monitoring.

The benefit of running BWA-MEM on a Spark network is obvious. First, we can use

the Spark network as a huge RAM storage. Another obvious reason to run on a Spark

network is that we want to use a distributed network. The use of Spark with the GPGPU

version of BWA allows the GPGPU version of BWA to be updated. It is perfect as project

can easily be separated into two. As long as MapReduce’s output can be used as input for

the GPGPU version of the BWA-MEM.

5.2 Result

In BWA-MEM, we first collect as many extension alignments as possible before the GPGPU

version of ksw_extend2’s computation. All the alignments then resume afterwards. To

123

collect as many alignments as possible, the modification of the existing code structure is

mandatory. After modification, multiple alignments can be computed simultaneously. the

parallelization level is low at ksw_extend2 parallelization Level 1 and Level 2. This is because

the parallelization is only done for a single alignment at parallelization Level 1, where no

more than lengthquery + lengthsequence cells can be calculated at the same time. At Level 2

parallelization, on average, there are two to three alignments been performed, which does not

provide enough room for parallelization. To have a significant speedup, the parallelization

should be higher than Level 3. The higher level of parallelization involves deeper GPGPU

parallelization in the BWA-MEM. The stable 3.0 version of Spark published on September

2nd of 2020 offers the capability to recognize GPUs as first-class resources along with CPU

and system memory. This means that we will be able to use Compute Canada’s computation

resources. We can alter SparkBWA’s library to form the Spark-GPU-BWA-MEM.

Two different versions of GPU ksw_extend2 were tested, where one is aimed at reducing

GPGPU memory, and the other is aimed to reduce the time usage. At the start of this

thesis, GPU’s assumption with memory-saving version may not affect the execution time.

However, to reduce memory use, extra work is needed for transferring data in and out of

the GPU, which is the most time-consuming part of the GPGPU program even though

the smaller memory version is still roughly three times faster than the CPU version. The

GPGPU version of ksw_extend2 with time-saving usages performs quite well, roughly nine

times faster than the CPU version of ksw_extend2. The GPGPU reduced memory version

of ksw_extend2 has also shown an excellent performance versus the CPU version, which is

three times faster. Since reducing the time is far more important than reducing the memory

usage, the GPGPU reduced time version is considered a better option than the GPGPU

reduced memory version. It was expected that the GPGPU version of ksw_extend2 would

outperform the CPU version of ksw_extend2 when processing multiple alignments at the

same time. However, it does not seem to be the case when it comes to a single alignment.

During the parallel Level 1 testing, the GPGPU version could not outperform the CPU

124

version in all testing cases, especially when the pruning mechanism was used. Therefore, the

performance improvement is gained when the number of alignments increases, which seems

to be independent of the alignment length.

C limits how much memory can be malloced, which has a max size of 16 Megabytes.

Therefore, if people want to use more memory, they have to create more than one pointer for

arrays to store more than 16 Megabytes of information. Because of the time limitations, the

only implemented part is the GPGPU version of ksw_extend2, which means further work is

needed to convert the CPU part of the code to fit what we need.

5.3 Theoretical Running Time

For a typical Smith-Waterman algorithm showed in Algorithm 3, assuming that the two

strings S0, and S1, have the length of |S0| = L0, and |S1| = L1, which means the dimension

of solving matrix is L0 ·L1. As Algorithm 3 computes one cell at a time, the time complexity

of a typical Smith-Waterman algorithm is O(L0 ·L1). Since the Smith-Waterman algorithm

needs to record the scoring matrix, the space complexity is O(L0 · L1).

For ksw_extend2 algorithm shown in Algorithm 8 and Algorithm 7, the initialization

initializes the first column and first row of the scoring matrix, which takes O(L0 + L1). In

the case of without the pruning mechanism, each cell has to be computed separately, which is

similar to Algorithm 3, where the time complexity is O(L0·L1). However, as the ksw_extend2

was implemented with dynamic programming, only previously computed H matrix’s row

(Figure 3.8), E matrix’s column (Figure 3.10), and F matrix’s row (Figure 3.11) are kept.

However, the whole S matrix is pre-calculated. Therefore, it at least has a space complexity

of O(L0 · L1).

When Algorithm 9 is applied to ksw_extend2 for pruning mechanism, only the cells

between beg and end are computed, which has a total length of 2w+1. The time complexity

has been reduced to O(wL1). If L1 and L0 are both equal to n, the time complexity has

125

been reduced from O(n2) to O(wn). When parallelized algorithm is applied, the number of

steps taken is L0 + L1 (as shown in Algorithm 6), which has a time complexity of O(n).

When k alignments are being computed together, the time complexity of parallelized ksw_extend2

remains at O(n) (under the case that GPGPU has enough computation power). However,

the CPU version of ksw_extend2 has a time complexity of O(kwn). GPGPU parallelized

code would spend more time transferring data when the number of alignments increased,

which means the time complexity would not remain at O(n), but it would be much lesser

than O(kw). As shown in Figure 4.6, clearly both CPU and GPGPU versions have a lin-

ear time complexity, which proves the computed time complexity being correct. Also, time

consumption for CPU the version increased much faster than the GPGPU version (observed

from Figure 4.4, Figure 4.5, and Figure 4.6).

5.4 Future Work

The thesis objective is to work towards a GPGPU distributed BWA-MEM. The program has

two main components, which are GPGPU BWA-MEM and big data. At the beginning of

the thesis, we find out no open-source version of BWA-MEM is available. Therefore the first

step is to modify BWA-MEM ’s code for GPGPU programming. Because of the amount of

work involved in parallelizing the BWA-MEM, we only finished parallelizing the BWA-MEM

seed extension part. Also, we did not integrate the GPGPU version of the seed extension

into the BWA-MEM. However, we successfully combined Spark with BWA-MEM and the

GPGPU version of the seed extension at parallelization Level 1. It does not make sense to

compare the GPGPU distributed BWA-MEM as the current parallelization level is low.

To have a better understanding of how seed-extension works in BWA-MEM, we have

tested the seed-extension program using the data mentioned in section 4.1. BWA-MEM

works by finding seeds in each read, chaining the close seeds into chains, and then performs

seed-extension on each chain. These seeds are short fragments from the read that exactly

126

matches the reference sequence. The extension is performed on both ends of the seed, and

the approximate string matching is done through the Smith-Waterman algorithm. The

maximum extension length is smaller than the length of the corresponding exact match.

We ran BWA-MEM with these data step by step to learn exactly how ksw_extend2

works, especially its input and output. Basically, ksw_extend2 takes in the exact matching

score and a pair of possible extension sequence fragments and returns a valid extension result.

As both ends of the seed are extended using the same function, the left side extension is

reversed before extension.

These sequence fragments, in each pair, all have a certain similarity. ksw_extend2 also

uses a pruning mechanism to reduce time complexity. Therefore, the parallelization Level

1 test was designed to determine the relations between similarity and sequence length and

the pruning mechanism’s effect. The result has shown that the time consumption for both

CPU and GPGPU versions shows a positive correlation with the length of the alignments

under the case without the pruning mechanism. The GPGPU version without the pruning

mechanism is not affected by the level of sequence similarity. However, with the CPU version,

the time consumption further increases with the sequence similarity level. The same thing

applies to both versions with the pruning mechanism.

In parallelization Level 1, we have already tested everything up to 7416 bp length. How-

ever, in real situation, the length of the extension rarely goes over 32 bp. Therefore, in

Parallelization Level 2 test, we only test up to 32 bp. The test result has also shown that the

pruning has no effect on the GPU’s performance but dramatically improves the CPU’s per-

formance. Under the pruning mechanism, both program versions have a linear relation with

time consumption and length. However, the GPGPU version can never beat the CPU version

in this case. The main reason behind the program is caused by not utilizing all the GPGPU

resources. As we know, Smith-Waterman’s parallelization is done through the Wave-Front

method and the current anti-diagonal relays on the previous anti-diagonal in the matrix.

However, for the first anti-diagonal, there is only one cell computed. So why not with start

127

10, or 100, or even thousands of extensions at the same time to reduce the time consumption?

This is why we continued to Level 2 and Level 3 parallelization for ksw_extend2.

128

6 APPENDIX EXPLANATION

The modified version of ksw_extend2 is provided from Page 149 to Page 186. Moreover, a

detailed version of the test output is produced from Page 138 to Page 149.

129

REFERENCES

[1] F. S. Collins, M. Morgan, and A. Patrinos, “The human genome project: Lessons from
large-scale biology,” Science, vol. 300, no. 5617, pp. 286–290, 2003.

[2] S. Marsh, “Pyrosequencing,” in Molecular Diagnostics, Elsevier, 2010, pp. 107–116.

[3] R. N. Bharagava, D. Purchase, G. Saxena, and S. I. Mulla, “Applications of metage-
nomics in microbial bioremediation of pollutants: From genomics to environmental
cleanup,” in Microbial diversity in the genomic era, Elsevier, 2019, pp. 459–477.

[4] A. K. Gupta and U. Gupta, “Next generation sequencing and its applications,” in
Animal Biotechnology, Elsevier, 2014, pp. 345–367.

[5] S. Schbath, V. é. r. Martin, M. Zytnicki, J. Fayolle, V. Loux, and J.-F. ç. o. Gibrat,
“Mapping reads on a genomic sequence: An algorithmic overview and a practical com-
parative analysis,” Journal of Computational Biology, vol. 19, no. 6, pp. 796–813, 2012.

[6] H. Li and N. Homer, “A survey of sequence alignment algorithms for next-generation
sequencing,” Briefings in bioinformatics, vol. 11, no. 5, pp. 473–483, 2010.

[7] N. E. Morton, “Parameters of the human genome,” Proceedings of the National Academy
of Sciences, vol. 88, no. 17, pp. 7474–7476, 1991.

[8] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–wheeler
transform,” bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[9] D. Peters, X. Luo, K. Qiu, and P. Liang, “Speeding up large-scale next generation
sequencing data analysis with pbwa.,” Journal of Applied Bioinformatics & Computa-
tional Biology, vol. 6, p. 2, 2012.

[10] W. B. Langdon and B. Y. H. Lam, “Genetically improved barracuda,” BioData Mining,
vol. 10, no. 1, p. 28, 2017.

[11] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu, X. Chu,
K. Zhao, et al., “Soap3: Ultra-fast gpu-based parallel alignment tool for short reads,”
Bioinformatics, vol. 28, no. 6, pp. 878–879, 2012.

[12] Y. Liu and B. Schmidt, “Cushaw2-gpu: Empowering faster gapped short-read align-
ment using gpu computing,” IEEE Design & Test, vol. 31, no. 1, pp. 31–39, 2013.

130

[13] Y. Liu, B. Schmidt, and D. L. Maskell, “Cushaw: A cuda compatible short read aligner
to large genomes based on the burrows–wheeler transform,” Bioinformatics, vol. 28,
no. 14, pp. 1830–1837, 2012.

[14] I. Merelli, H. P é rez-S á nchez, S. Gesing, and D. D’Agostino, High-performance
computing and big data in omics-based medicine, 2014. doi: 10.1155/2014/825649.

[15] J. é. M. Abu ı n, J. C. Pichel, T. á. s. F. Pena, and J. Amigo, “Bigbwa: Approaching
the burrows–wheeler aligner to big data technologies,” Bioinformatics, vol. 31, no. 24,
pp. 4003–4005, 2015.

[16] ——, “Sparkbwa: Speeding up the alignment of high-throughput dna sequencing data,”
PloS one, vol. 11, no. 5, e0155461, 2016.

[17] A. Amir, “Implementation of bio-informatics applications on various gpu platforms,”
2013.

[18] K. Deb and K. Deb, “Multi-objective Optimization,” in Search Methodologies : In-
troductory Tutorials in Optimization and Decision Support Techniques, Boston, MA:
Springer US, 2014, pp. 403–449, isbn: 978-1-4614-6940-7. doi: 10.1007/978-1-4614-
6940-7_15.

[19] N. Khare, A. Khare, and F. Khan, “Hcudablast: An implementation of blast on hadoop
and cuda,” Journal of Big Data, vol. 4, no. 1, pp. 1–8, 2017.

[20] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with bwa-mem,”
arXiv preprint arXiv:1303.3997, 2013.

[21] L. Hai, J. Liu, Z. Hai, Y. Liu, J. Yang, and Z. Liu, “Analysis and accelerating of bwa
sequence comparison algorithm based on GPU,” China Academic Journal Electronic
Publishing House, vol. 1009-2552, no. 3, pp. 67–78, 2018. doi: 10.13274/j.cnki.hdzj.
2018.03.014.

[22] J. M. Heather and B. Chain, “The sequence of sequencers: The history of sequencing
dna,” Genomics, vol. 107, no. 1, pp. 1–8, 2016.

[23] F. Sanger and A. R. Coulson, “A rapid method for determining sequences in dna by
primed synthesis with dna polymerase,” Journal of molecular biology, vol. 94, no. 3,
pp. 441–448, 1975.

[24] A. Gomes and B. Korf, “Chapter 5-genetic testing techniques,” Pediatric Cancer Ge-
netics. Amsterdam: Elsevier, pp. 47–64, 2018.

[25] J. Wages Jr, “Polymerase chain reaction,” Encyclopedia of Analytical Science, p. 243,
2005.

131

https://doi.org/10.1155/2014/825649
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10. 13274 /j. cnki. hdzj. 2018. 03. 014
https://doi.org/10. 13274 /j. cnki. hdzj. 2018. 03. 014

[26] B. M. Paegel, R. G. Blazej, and R. A. Mathies, “Microfluidic devices for dna sequencing:
Sample preparation and electrophoretic analysis,” Current opinion in biotechnology,
vol. 14, no. 1, pp. 42–50, 2003.

[27] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The sanger fastq
file format for sequences with quality scores, and the solexa/illumina fastq variants,”
Nucleic acids research, vol. 38, no. 6, pp. 1767–1771, 2010.

[28] J. Eid, A. Fehr, J. Gray, K. Luong, J. Lyle, G. Otto, P. Peluso, D. Rank, P. Baybayan,
B. Bettman, et al., “Real-time dna sequencing from single polymerase molecules,”
Science, vol. 323, no. 5910, pp. 133–138, 2009.

[29] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb,
“Zero-mode waveguides for single-molecule analysis at high concentrations,” science,
vol. 299, no. 5607, pp. 682–686, 2003.

[30] R. Bowden, R. W. Davies, A. Heger, A. T. Pagnamenta, M. de Cesare, L. E. Oikkonen,
D. Parkes, C. Freeman, F. Dhalla, S. Y. Patel, et al., “Sequencing of human genomes
with nanopore technology,” Nature communications, vol. 10, no. 1, pp. 1–9, 2019.

[31] B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, and G. Lajoie,
“Peaks: Powerful software for peptide de novo sequencing by tandem mass spectrom-
etry,” Rapid communications in mass spectrometry, vol. 17, no. 20, pp. 2337–2342,
2003.

[32] H. Li, “Exploring single-sample snp and indel calling with whole-genome de novo as-
sembly,” Bioinformatics, vol. 28, no. 14, pp. 1838–1844, 2012.

[33] T. K. Vintsyuk, “Speech discrimination by dynamic programming,” Cybernetics, vol. 4,
no. 1, pp. 52–57, 1968.

[34] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins,” Journal of molecular biology,
vol. 48, no. 3, pp. 443–453, 1970.

[35] D. Sankoff, “Matching sequences under deletion/insertion constraints,” Proceedings of
the National Academy of Sciences, vol. 69, no. 1, pp. 4–6, 1972.

[36] P. H. Sellers, “On the theory and computation of evolutionary distances,” SIAM Jour-
nal on Applied Mathematics, vol. 26, no. 4, pp. 787–793, 1974.

[37] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” Journal of
the ACM (JACM), vol. 21, no. 1, pp. 168–173, 1974.

[38] R. A. Wagner and R. Lowrance, “An extension of the string-to-string correction prob-
lem,” Journal of the ACM (JACM), vol. 22, no. 2, pp. 177–183, 1975.

132

[39] J. R. Ullmann, “A binary n-gram technique for automatic correction of substitution,
deletion, insertion and reversal errors in words,” The Computer Journal, vol. 20, no. 2,
pp. 141–147, 1977.

[40] D. Sankoff and J. Kruskal, Time Warps, String Edits, and Macromolecules: the Theory
and Practice of Sequence Comparison (1983). Addison-Wesley, Reading, MA, 1983.

[41] K. Kukich, “Techniques for automatically correcting words in text,” Acm Computing
Surveys (CSUR), vol. 24, no. 4, pp. 377–439, 1992.

[42] P. H. Sellers, “The theory and computation of evolutionary distances: Pattern recog-
nition,” Journal of algorithms, vol. 1, no. 4, pp. 359–373, 1980.

[43] G. Navarro, “A guided tour to approximate string matching,” ACM computing surveys
(CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[44] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algorithms,”
IBM journal of research and development, vol. 31, no. 2, pp. 249–260, 1987.

[45] R. Baeza-Yates, Efficient text searching. University of Waterloo, 1989.

[46] R. Baeza-Yates, “Some new results on approximate string matching,” in Workshop on
Data Structures, 1991.

[47] R. A. Baeza-Yates, “Text-retrieval: Theory and practice.,” in IFIP Congress (1), vol. 12,
1992, pp. 465–476.

[48] S. Wu and U. Manber, “Fast text searching: Allowing errors,” Communications of the
ACM, vol. 35, no. 10, pp. 83–91, 1992.

[49] R. Baeza-Yates, “A unified view to string matching algorithms,” in International Con-
ference on Current Trends in Theory and Practice of Computer Science, Springer,
1996, pp. 1–15.

[50] R. Baeza-Yates and G. Navarro, “Faster approximate string matching,” Algorithmica,
vol. 23, no. 2, pp. 127–158, 1999.

[51] A. H. Wright, “Approximate string matching using withinword parallelism,” Software:
Practice and Experience, vol. 24, no. 4, pp. 337–362, 1994.

[52] G. Myers, “A fast bit-vector algorithm for approximate string matching based on dy-
namic programming,” Journal of the ACM (JACM), vol. 46, no. 3, pp. 395–415, 1999.

[53] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio, “Indexing methods for approx-
imate string matching,” en, IEEE Data Engineering Bulletin, vol. 24, no. 4, pp. 19–27,
2001.

[54] E. Ukkonen, “Finding approximate patterns in strings,” en, Journal of Algorithms,
vol. 6, pp. 132–137, 1985, issn: 01966774. doi: 10.1016/0196-6774(85)90023-9.

133

https://doi.org/10.1016/0196-6774(85)90023-9

[55] G. Navarro and R. Baeza-Yates, “A hybrid indexing method for approximate string
matching,” en, Journal of Discrete Algorithms, vol. 1, no. 1, pp. 205–239, 2000.

[56] N. Ahmed, K. Bertels, and Z. Al-Ars, “A comparison of seed-and-extend techniques in
modern dna read alignment algorithms,” in 2016 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), IEEE, 2016, pp. 1421–1428.

[57] T. F. Smith, M. S. Waterman, et al., “Identification of common molecular subse-
quences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–197, 1981.

[58] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.-T. Chen, and J. Seiferas, “The
smallest automation recognizing the subwords of a text,” Theoretical computer science,
vol. 40, pp. 31–55, 1985.

[59] M. Burrows and D. J. Wheeler, “A block-sorting lossless data compression algorithm,”
1994.

[60] W.-K. Hon, T.-W. Lam, K. Sadakane, W.-K. Sung, and S.-M. Yiu, “A space and time
efficient algorithm for constructing compressed suffix arrays,” Algorithmica, vol. 48,
no. 1, pp. 23–36, 2007.

[61] T. W. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S.-M. Yiu, “High throughput short
read alignment via bi-directional bwt,” in 2009 IEEE International Conference on
Bioinformatics and Biomedicine, IEEE, 2009, pp. 31–36.

[62] Z.-G. Wei, S.-W. Zhang, and F. Liu, “Smsmap: Mapping single molecule sequencing
reads by locating the alignment starting positions,” BMC bioinformatics, vol. 21, no. 1,
pp. 1–15, 2020.

[63] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38, no. 5, pp. 11–
13, 2005.

[64] M. J. Flynn and K. W. Rudd, “Parallel architectures,” ACM Computing Surveys
(CSUR), vol. 28, no. 1, pp. 67–70, 1996.

[65] T. Ungerer, B. Robi č, and J. Š ilc, “Multithreaded processors,” The Computer Journal,
vol. 45, no. 3, pp. 320–348, 2002.

[66] T. Sterling, M. Anderson, and M. Brodowicz, “Chapter 8 - the essential mpi,” in
High Performance Computing, Morgan Kaufmann, 2018, pp. 249–284, isbn: 978-0-12-
420158-3.

[67] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[68] “Cuda memory,” in CUDA Application Design and Development, Morgan Kaufmann,
2011, pp. 109–131, isbn: 978-0-12-388426-8. doi: 10.1016/B978-0-12-388426-8.00005-
7.

134

https://doi.org/10.1016/B978-0-12-388426-8.00005-7
https://doi.org/10.1016/B978-0-12-388426-8.00005-7

[69] C.-L. Hung and G.-J. Hua, “Local alignment tool based on hadoop framework and gpu
architecture,” BioMed research international, vol. 2014, 2014.

[70] S. Mehrotra and A. Grade, Apache Spark Quick Start Guide: Quickly learn the art of
writing efficient big data applications with Apache Spark. Packt Publishing Ltd, 2019.

[71] S. Mccarthy, Through the university of western ontario, researchers are using high-tech
bait - a powerful new computing network - to reel in the "great whites" of the research
world, 2005. [Online]. Available: https://www.innovation.ca/story/sharc-bait (visited
on 11/27/2020).

[72] Sharcnet: Cluster copper.sharcnet.ca. [Online]. Available: https://www.sharcnet.ca/
my/systems/show/108.

[73] Sharcnet: Visualization vdi-centos6. [Online]. Available: https://www.sharcnet.ca/my/
systems/show/104 (visited on 08/12/2020).

[74] Sharcnet: Cluster mosaic.sharcnet.ca. [Online]. Available: https://www.sharcnet.ca/
my/systems/show/106 (visited on 08/12/2020).

[75] Sharcnet: Cluster graham.sharcnet.ca. [Online]. Available: https://www.sharcnet.ca/
my/systems/show/114 (visited on 08/12/2020).

[76] H. Ye, J. Meehan, W. Tong, and H. Hong, “Alignment of short reads: A crucial step for
application of next-generation sequencing data in precision medicine,” Pharmaceutics,
vol. 7, no. 4, pp. 523–541, 2015.

[77] S. Warris, F. Yalcin, K. J. Jackson, and J. P. Nap, “Flexible, fast and accurate sequence
alignment profiling on gpgpu with paswas,” PloS one, vol. 10, no. 4, e0122524, 2015.

[78] C. Metz, How yahoo spawned hadoop, the future of big data, 2011.

[79] A. Inc, Altior’s altrastar - hadoop storage accelerator and optimizer now certified on
CDH 4 (cloudera’s distribution including apache hadoop version 4). [Online]. Available:
https : //www.prnewswire . com/news - releases/altiors - altrastar --- hadoop- storage -
accelerator-and-optimizer-now-certified-on- cdh4- clouderas-distribution- including-
apache-hadoop-version-4-183906141.html (visited on 08/13/2020).

[80] Hdfs architecture guide. [Online]. Available: https://hadoop.apache.org/docs/r1.2.1/
hdfs_design.html (visited on 08/12/2020).

135

https://www.innovation.ca/story/sharc-bait
https://www.sharcnet.ca/my/systems/show/108
https://www.sharcnet.ca/my/systems/show/108
https://www.sharcnet.ca/my/systems/show/104
https://www.sharcnet.ca/my/systems/show/104
https://www.sharcnet.ca/my/systems/show/106
https://www.sharcnet.ca/my/systems/show/106
https://www.sharcnet.ca/my/systems/show/114
https://www.sharcnet.ca/my/systems/show/114
https://www.prnewswire.com/news-releases/altiors-altrastar---hadoop-storage-accelerator-and-optimizer-now-certified-on-cdh4-clouderas-distribution-including-apache-hadoop-version-4-183906141.html
https://www.prnewswire.com/news-releases/altiors-altrastar---hadoop-storage-accelerator-and-optimizer-now-certified-on-cdh4-clouderas-distribution-including-apache-hadoop-version-4-183906141.html
https://www.prnewswire.com/news-releases/altiors-altrastar---hadoop-storage-accelerator-and-optimizer-now-certified-on-cdh4-clouderas-distribution-including-apache-hadoop-version-4-183906141.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

APPENDIX

A Appendix Explanation

The modified version of ksw_extend2 is provided from Page 149 to Page 186. And a detailed

version of the test output is produced from Page 138 to Page 149.

137

B List of Test Output

B.1 Parallelization Level 1 Test 1

Table B.1 CPU performance in alignment time without pruning mechanism Using
different similarities at Level 1.

Length

(bp)

CPU

90%

GPU

90%

CPU

92%

GPU

92%

CPU

94%

GPU

94%

CPU

96%

GPU

96%

CPU

98%

GPU

98%
16 0 0.1 0 0 0 0 0.01 0 0.01 0
32 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
48 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.1 0.03 0.1
64 0.05 0.2 0.05 0.2 0.05 0.2 0.04 0.2 0.04 0.2
80 0.08 0.2 0.07 0.2 0.07 0.2 0.08 0.2 0.08 0.2
96 0.14 0.3 0.11 0.3 0.11 0.3 0.1 0.3 0.1 0.3
112 0.17 0.4 0.15 0.3 0.14 0.3 0.15 0.3 0.15 0.3
128 0.27 0.3 0.18 0.3 0.19 0.3 0.18 0.3 0.18 0.3
144 0.22 0.4 0.23 0.4 0.22 0.4 0.22 0.4 0.22 0.4
160 0.27 0.4 0.27 0.4 0.27 0.4 0.27 0.4 0.26 0.4
176 0.31 0.5 0.31 0.5 0.31 0.5 0.31 0.5 0.32 0.5
192 0.36 0.5 0.35 0.5 0.35 0.5 0.35 0.5 0.36 0.8
208 0.4 0.5 0.4 0.5 0.39 0.5 0.4 0.5 0.41 0.9
224 0.45 0.6 0.45 0.6 0.45 0.6 0.46 0.6 0.48 0.6
240 0.5 0.6 0.51 0.6 0.49 0.7 0.5 0.6 0.52 0.6
256 0.56 0.7 0.56 0.7 0.54 0.7 0.56 0.7 0.59 0.7
272 0.63 0.7 0.61 0.7 0.6 0.7 0.62 0.7 0.64 0.7
288 0.67 0.7 0.67 0.7 0.66 0.7 0.68 0.7 0.71 0.7
304 0.74 0.8 0.73 0.8 0.73 0.8 0.74 0.8 0.78 0.8
320 0.81 0.8 0.81 0.8 0.8 0.8 0.81 1.3 0.85 0.8
336 0.87 0.9 0.86 0.9 0.86 0.9 0.88 0.9 0.92 1.3
352 0.94 0.9 0.93 1.4 0.93 0.9 0.95 0.9 1.01 0.9
368 1.01 1 1.01 1 1 1 1.03 1 1.08 1
384 1.08 1 1.1 1 1.08 1 1.12 1 1.17 1
400 1.16 1 1.16 1 1.17 1 1.19 1 1.25 1
416 1.24 1.1 1.23 1.1 1.24 1.1 1.27 1.1 1.34 1.1
432 1.32 1.1 1.32 1.1 1.33 1.1 1.35 1.1 1.43 1.1
448 1.4 1.2 1.39 1.2 1.42 1.2 1.44 1.2 1.54 1.2

Continued on next page

138

Table B.1 – continued from previous page
Length

(bp)

CPU

90%

GPU

90%

CPU

92%

GPU

92%

CPU

94%

GPU

94%

CPU

96%

GPU

96%

CPU

98%

GPU

98%
464 1.48 1.2 1.48 1.2 1.51 1.7 1.55 1.2 1.63 1.6
480 1.56 1.2 1.56 1.2 1.6 1.7 1.62 1.2 1.73 1.2
496 1.66 1.3 1.65 1.3 1.7 1.3 1.75 1.3 1.82 1.3
512 1.73 1.3 1.74 1.3 1.79 1.3 1.82 1.3 1.93 1.3
528 1.82 1.4 1.83 1.4 1.9 1.8 1.93 1.4 2.04 1.4
544 1.92 1.4 1.93 1.9 2.02 1.4 2.03 1.4 2.15 1.4
560 2.02 1.5 2.02 1.4 2.1 1.9 2.14 1.4 2.27 1.4
576 2.12 1.5 2.14 1.5 2.21 1.5 2.25 1.5 2.38 1.5
592 2.23 1.5 2.21 2 2.32 1.5 2.35 1.5 2.52 1.5
608 2.33 1.6 2.32 1.6 2.45 2 2.47 2 2.62 1.6
624 2.42 1.6 2.43 1.6 2.54 1.6 2.59 1.6 2.75 1.6
640 2.54 1.6 2.54 1.6 2.66 1.6 2.71 2.1 2.87 1.7
656 2.65 1.7 2.65 1.7 2.78 1.7 2.83 1.7 3.01 1.7
672 2.78 1.7 2.77 2.2 2.94 1.7 2.96 1.7 3.15 1.7
688 2.89 1.8 2.89 1.8 3.03 2.2 3.09 1.8 3.28 1.8
704 3.02 1.8 3.01 1.8 3.17 1.8 3.22 1.8 3.42 1.8
720 3.13 1.9 3.13 2.3 3.29 1.9 3.35 1.9 3.58 1.9
736 3.24 2.4 3.26 1.9 3.43 2.4 3.49 1.9 3.71 1.9
752 3.36 1.9 3.38 1.9 3.6 1.9 3.63 2 3.85 1.9
768 3.49 2 3.51 2 3.75 2.6 3.77 2.4 4 2
784 3.63 2.5 3.65 2 3.88 2.6 3.92 2.5 4.16 2
800 3.74 2.5 3.78 2.1 4.04 2.5 4.07 2.5 4.34 2.1
816 3.88 2.6 3.92 2.1 4.19 2.2 4.22 2.1 4.46 2.1
832 4.02 2.2 4.05 2.2 4.53 2.2 4.37 2.2 4.62 2.2
848 4.15 2.2 4.2 2.2 4.42 2.6 4.52 2.2 4.82 2.2
864 4.29 2.2 4.35 2.7 4.58 2.7 4.68 2.2 4.94 2.2
880 4.44 2.3 4.5 2.3 4.73 2.3 4.85 2.3 5.11 2.3
896 4.58 2.3 4.64 2.8 4.89 2.3 5.01 2.3 5.28 2.3
912 4.73 2.3 4.8 2.4 5.09 2.3 5.18 2.4 5.46 2.4
928 4.88 2.4 4.95 2.4 5.22 2.4 5.34 2.4 5.63 2.4
944 5.02 2.4 5.11 2.4 5.42 2.4 5.51 2.4 5.81 2.4
960 5.21 2.5 5.26 2.5 5.55 2.5 5.69 2.5 5.99 2.6
976 5.35 3 5.43 2.5 5.75 3 5.86 2.5 6.18 2.5
992 5.49 2.6 5.63 2.6 5.89 2.6 6.05 2.6 6.41 3.2

139

B.2 Parallelization Level 1 Test 2

Table B.2 Alignment performance test comparison with or without The pruning
mechanism at Level 1 up to 992 bp Length.

length (bp) CPU with the

pruning mech-

anism (ms)

CPU without

the pruning

mechanism

(ms)

GPU without

the pruning

mechanism

(ms)

GPU with the

pruning mech-

anism(ms)

16 0 0.01 0.1 0.1
32 0.01 0.01 0.1 0.1
48 0.03 0.03 0.1 0.1
64 0.05 0.04 0.2 0.2
80 0.07 0.08 0.2 0.2
96 0.11 0.1 0.3 0.3
112 0.14 0.15 0.3 0.3
128 0.18 0.18 0.4 0.4
144 0.22 0.22 0.4 0.4
160 0.26 0.26 0.4 0.4
176 0.29 0.32 0.5 0.5
192 0.33 0.36 0.5 0.5
208 0.35 0.41 0.6 1.1
224 0.4 0.48 0.6 0.6
240 0.42 0.52 0.6 0.6
256 0.46 0.59 0.7 0.7
272 0.5 0.64 0.7 0.7
288 0.54 0.71 0.8 0.8
304 0.57 0.78 0.8 0.8
320 0.61 0.85 0.8 0.8
336 0.65 0.92 0.9 0.9
352 0.69 1.01 0.9 0.9
368 0.72 1.08 1 1
384 0.75 1.17 1 1
400 0.79 1.25 1 1
416 0.82 1.34 1.5 1.1
432 0.86 1.43 1.1 1.1
448 0.89 1.54 1.2 1.2
464 0.94 1.63 1.2 1.2
480 0.97 1.73 1.7 1.3
496 1 1.82 1.3 1.3
512 1.04 1.93 1.3 1.3
528 1.08 2.04 1.4 1.8
544 1.11 2.15 1.4 1.4
560 1.15 2.27 1.5 1.5
576 1.18 2.38 1.9 1.5
592 1.21 2.52 1.5 1.5
608 1.25 2.62 1.6 1.6

Continued on next page

140

Table B.2 – continued from previous page
length (bp) CPU with the

pruning mech-

anism (ms)

CPU without

the pruning

mechanism

(ms)

GPU without

the pruning

mechanism

(ms)

GPU with the

pruning mech-

anism(ms)

624 1.29 2.75 1.6 1.6
640 1.33 2.87 1.7 2.1
656 1.36 3.01 1.7 1.7
672 1.4 3.15 1.8 1.8
688 1.45 3.28 1.8 1.8
704 1.48 3.42 1.8 1.8
720 1.51 3.58 1.9 1.9
736 1.54 3.71 1.9 1.9
752 1.59 3.85 2 2
768 1.62 4 2 2
784 1.65 4.16 2 2
800 1.69 4.34 2.1 2.1
816 1.72 4.46 2.1 2.1
832 1.77 4.62 2.2 2.2
848 1.8 4.82 2.2 2.2
864 1.83 4.94 2.3 2.3
880 1.87 5.11 2.3 2.3
896 1.9 5.28 2.3 2.3
912 1.94 5.46 2.4 2.4
928 1.97 5.63 2.4 2.4
944 2.01 5.81 2.5 2.5
960 2.05 5.99 2.5 2.5
976 2.09 6.18 3 3
992 2.11 6.41 2.6 2.6

141

B.3 Parallelization Level 1 Test 3

Table B.3 Alignment performance test comparison with or without The pruning
mechanism at Level 1 up to 7416 bp Length.

Length (bp) CPU without

pruning mecha-

nism (ms)

CPU With the

pruning mecha-

nism (ms)

GPU Without the

pruning mecha-

nism (ms)
16 0 0.01 0.1
116 0.2 0.15 0.3
216 0.4 0.37 1
316 0.9 0.6 0.8
416 1.3 0.83 1.1
516 1.9 1.05 1.3
616 2.7 1.27 1.6
716 3.5 1.5 1.9
816 4.5 1.72 2.1
916 5.5 1.95 2.4
1016 6.7 2.17 2.7
1116 7.9 2.4 2.9
1216 9.2 2.63 3.2
1316 10.7 2.88 4
1416 12.3 3.08 3.8
1516 14 3.31 4.5
1616 15.8 3.52 4.8
1716 17.7 3.77 4.7
1816 19.7 3.98 4.9
1916 21.8 4.21 5.2
2016 24 4.42 5.5
2116 26.4 4.67 6.3
2216 28.9 4.87 6.2
2316 31.4 5.1 6.5
2416 34 5.33 6.8
2516 37 5.55 7.2
2616 39.8 5.78 7.5
2716 42.8 6.03 9.1
2816 45.8 6.42 8.1
2916 49 6.5 8.5
3016 52.4 6.73 9.3
3116 55.7 6.95 9.1
3216 59.3 7.15 9.5
3316 63.2 7.34 10.3
3416 67 7.57 10.3
3516 70.9 7.79 11.1
3616 74.7 8.03 11
3716 79 8.29 11.8
3816 83.2 8.56 11.7
3916 87.7 8.72 12.2

Continued on next page

142

Table B.3 – continued from previous page
Length (bp) CPU without the

pruning mecha-

nism (ms)

CPU With the

pruning mecha-

nism (ms)

GPU Without the

pruning mecha-

nism (ms)
4016 92 9.25 13
4116 96.9 9.16 13.5
4216 101.5 9.44 13.8
4316 106.4 9.93 14.3
4416 111.1 9.96 14.2
4516 116.3 10.1 15
4616 121.8 10.31 15.4
4716 126.7 10.48 15.5
4816 131.9 10.72 16.3
4916 137.7 10.95 16.8
5016 143.1 11.23 17.2
5116 148.9 11.65 18.1
5216 155.2 11.87 18.1
5316 160.7 11.91 18.8
5416 167.1 12.2 19.2
5516 172.5 12.38 21.4
5616 178.8 12.74 20.3
5716 184.9 13.17 20.8
5816 191.6 13.28 21.3
5916 197.8 13.3 21.7
6016 204.2 13.63 22.4
6116 211.2 13.8 22.9
6216 218.2 14.03 23.3
6316 224.7 14.19 23.9
6416 231.9 14.37 25.6
6516 239.2 14.68 24.1
6616 247.3 15.03 25.5
6716 253.7 15.2 26.5
6816 261.2 15.36 26.5
6916 268.5 15.63 27.7
7016 277.1 16.11 25.9
7116 284.5 15.89 28.5
7216 292.1 16.53 29.2
7316 300.9 16.36 28.9
7416 309 16.55 30.3

143

B.4 Parallelization Level 2 and Level 3 Test 1

Table B.4 Performance comparison for different number of alignments at 8 bp.

Number of Align-

ments

GPU with

memory-saving

version (ms)

GPU with time-

saving version (ms)

CPU Version (ms)

30 0 0 0.035
60 0 0 0.067
90 0 0 0.1
120 0 0 0.132
150 0.1 0 0.164
180 0.1 0 0.196
210 0.1 0 0.229
240 0.1 0 0.263
270 0.1 0 0.296
300 0.1 0.1 0.327
330 0.1 0.1 0.361
360 0.1 0.1 0.404
390 0.2 0.1 0.429
420 0.2 0.1 0.473
450 0.2 0.1 0.497
480 0.2 0.1 0.522
510 0.2 0.1 0.558
540 0.2 0.1 0.599
570 0.2 0.1 0.619
600 0.2 0.1 0.683
630 0.2 0.1 0.687
660 0.2 0.1 0.713
690 0.3 0.1 0.751
720 0.3 0.1 0.782
750 0.3 0.1 0.815
780 0.3 0.1 0.846
810 0.3 0.2 0.892
840 0.3 0.1 0.914
870 0.3 0.1 0.97
900 0.3 0.1 0.982
930 0.3 0.1 1.008
960 0.4 0.1 1.046
990 0.4 0.1 1.076
1020 0.4 0.1 1.11
1050 0.4 0.1 1.558
1080 0.4 0.2 1.168
1110 0.5 0.2 1.255
1140 0.4 0.2 1.255
1170 0.5 0.2 1.279
1200 0.4 0.2 1.298
1230 0.5 0.2 1.327

Continued on next page

144

Table B.4 – continued from previous page
Number of Align-

ments

GPU with

memory-saving

version (ms)

GPU with time-

saving version (ms)

CPU version (ms)

1260 0.5 0.2 1.364
1290 0.5 0.2 1.396
1320 0.5 0.2 1.427
1350 0.5 0.2 1.467
1380 0.5 0.2 1.492
1410 0.5 0.2 1.533
1440 0.5 0.2 1.555
1470 0.6 0.2 1.601
1500 0.6 0.2 1.633
1530 0.6 0.2 1.652
1560 0.6 0.2 1.686
1590 0.6 0.2 2.136
1620 0.6 0.2 2.133
1650 0.6 0.2 1.809
1680 0.6 0.2 1.84
1710 0.6 0.2 1.845
1740 0.7 0.2 2.178
1770 0.7 0.2 1.918
1800 0.7 0.2 2.32
1830 0.7 0.2 1.994
1860 0.7 0.2 2.018
1890 0.7 0.3 2.067
1920 0.7 0.2 2.079
1950 0.7 0.2 2.101
1980 0.7 0.3 2.136
2010 0.7 0.3 2.168
2040 0.8 0.3 2.357
2070 0.9 0.3 2.236
2100 0.7 0.3 2.263
2130 0.8 0.3 2.784
2160 0.8 0.3 2.329
2190 0.8 0.3 2.358
2220 0.8 0.3 2.392
2250 0.8 0.3 2.441
2280 0.8 0.3 2.476
2310 0.9 0.3 2.844
2340 0.8 0.3 2.924
2370 0.9 0.3 2.58
2400 0.9 0.3 2.588
2430 0.9 0.3 2.631
2460 0.9 0.3 2.68
2490 0.9 0.3 2.727
2520 0.9 0.3 2.712
2550 0.9 0.3 2.746

145

B.5 Parallelization Level 2 and Level 3 Test 2

Table B.5 Performance comparison for different number of alignments at 16 bp.

Number of Align-

ments

GPU with Saving

RAM Version (ms)

GPU with Saving

Time Version (ms)

CPU Version (ms)

30 0.1 0.1 0.114
60 0.1 0.1 0.223
90 0.2 0.1 0.339
120 0.2 0.1 0.458
150 0.3 0.1 0.57
180 0.4 0.1 0.673
210 0.5 0.2 0.809
240 0.5 0.2 0.911
270 0.5 0.2 1.006
300 0.5 0.2 1.115
330 0.6 0.2 1.248
360 0.7 0.2 1.36
390 0.8 0.2 1.45
420 0.8 0.2 1.565
450 0.8 0.3 1.704
480 0.8 0.3 1.784
510 0.9 0.3 1.899
540 1 0.3 2.049
570 1 0.3 2.15
600 1 0.3 2.228
630 1.1 0.3 2.338
660 1.1 0.3 2.49
690 1.2 0.3 2.563
720 1.3 0.4 2.673
750 1.3 0.4 2.829
780 1.4 0.4 2.942
810 1.4 0.4 3.007
840 1.5 0.4 3.115
870 1.5 0.5 3.283
900 1.6 0.4 3.348
930 1.6 0.4 3.469
960 1.7 0.4 3.635
990 1.7 0.4 3.731
1020 1.8 0.5 3.792
1050 1.8 0.5 3.896
1080 1.2 0.5 4.078
1110 1.9 0.5 4.115
1140 1.9 0.5 4.231
1170 2 0.5 4.416
1200 2 0.5 4.524
1230 2.1 0.5 4.576
1260 1.4 0.5 4.671
1290 1.6 0.6 4.864

Continued on next page

146

Table B.5 – continued from previous page
Number of Align-

ments

GPU with

memory-saving

version (ms)

GPU with time-

saving version (ms)

CPU Version (ms)

1320 2.2 0.6 4.9
1350 2.3 0.6 5.001
1380 1.7 0.6 5.201
1410 1.8 0.6 5.314
1440 2.4 0.6 5.347
1470 1.9 0.6 5.612
1500 1.9 0.6 5.647
1530 1.9 0.7 5.775
1560 2 0.7 5.797
1590 2 0.7 5.996
1620 2.1 0.7 6.097
1650 2.1 0.7 6.109
1680 2.2 0.7 6.224
1710 2.2 0.7 6.447
1740 2.2 0.7 6.559
1770 1.6 0.7 6.56
1800 2.3 0.7 6.783
1830 2.4 0.8 6.902
1860 1.8 0.8 6.907
1890 1.9 0.8 7.019
1920 1.9 0.8 7.256
1950 2.7 0.8 7.35
1980 1.9 0.8 7.335
2010 2.7 0.8 7.57
2040 2.7 0.8 7.694
2070 2.7 0.9 7.815
2100 2.8 0.9 7.775
2130 3.1 0.9 8.026
2160 2.3 1.2 8.151
2190 2.3 0.9 8.11
2220 3 0.9 8.362
2250 3.4 0.9 8.479
2280 2.5 0.9 8.457
2310 2.5 0.9 8.57
2340 3.2 0.9 8.824
2370 2.6 1 9.119
2400 2.6 1 9.019
2430 2.7 1 9.166
2460 2.7 1 9.273
2490 2.8 1 9.223
2520 2.9 1 9.454
2550 2.9 1 9.612

147

B.6 Parallelization Level 2 and Level 3 Test 3

Table B.6 Performance comparison for different number of alignments at 32 bp.

Number of Align-

ments

GPU with

memory-saving

version (ms)

GPU with time-

saving version (ms)

CPU Version (ms)

30 0.3 0.1 0.426
60 0.5 0.2 0.847
90 0.7 0.3 1.232
120 1.4 0.3 1.813
150 1.2 0.3 2.046
180 1.4 0.4 2.455
210 1.7 0.5 2.878
240 1.8 0.5 3.331
270 1.4 0.5 3.692
300 2.7 0.6 4.129
330 1.9 0.6 4.526
360 2.1 0.7 4.905
390 2.3 0.7 5.325
420 2.5 0.7 5.716
450 2.8 0.8 6.141
480 2.5 0.9 6.556
510 3.1 0.9 7.62
540 2.8 0.9 7.518
570 3.2 1 8.39
600 3.6 1 8.363
630 3.3 1.3 8.724
660 2.8 1.1 9.069
690 3.8 1.2 9.796
720 4 1.2 9.84
750 3.5 1.2 10.21
780 4.6 1.3 10.634
810 4.1 1.4 11.18

148

C ksw_extend2 GPU Version

C.1 definitions.h

1 #ifndef DEFINITIONS_H_
2 #define DEFINITIONS_H_
3

4

5 /**
6 * Warris’s adaptation of the Smith -Waterman algorithm (WASWA).
7 *
8 * Requires a NVidia Geforce CUDA 2.1 with at least 1.3 compute capability

.
9 *

10 * @author Sven Warris
11 * @version 1.1
12 */
13

14 /** maximum X per block (used in dimensions for blocks and amount of
shared memory */

15 #define SHARED_X 8
16 /** maximum Y per block (used in dimensions for blocks and amount of

shared memory */
17 #define SHARED_Y 8
18 #define SW_VERBOSE 4
19

20 #define FILL_SCORE INT_MIN
21 #define FILL_CHARACTER 5
22

23 #endif /* DEFINITIONS_H_ */

Listing C.1 definitions.h

149

C.2 typedefs.h

1 #ifndef TYPEDEFS_H_
2 #define TYPEDEFS_H_
3

4 #include "definitions.h"
5 #include <stdint.h>
6 typedef struct {
7 int64_t rbeg;
8 int32_t qbeg , len;
9 int score;

10 } mem_seed_t; // unaligned memory
11

12 typedef struct {
13 int a, b; // match score and mismatch penalty
14 int o_del , e_del;
15 int o_ins , e_ins;
16 int pen_unpaired; // phred -scaled penalty for unpaired reads
17 int pen_clip5 , pen_clip3; // clipping penalty. This score is not

deducted from the DP score.
18 int w; // band width
19 int zdrop; // Z-dropoff
20

21 uint64_t max_mem_intv;
22

23 int T; // output score threshold; only affecting output
24 int flag; // see MEM_F_* macros
25 int min_seed_len; // minimum seed length
26 int min_chain_weight;
27 int max_chain_extend;
28 float split_factor; // split into a seed if MEM is longer than

min_seed_len*split_factor
29 int split_width; // split into a seed if its occurence is smaller than

this value
30 int max_occ; // skip a seed if its occurence is larger than this

value
31 int max_chain_gap; // do not chain seed if it is max_chain_gap -bp away

from the closest seed
32 int n_threads; // number of threads
33 int chunk_size; // process chunk_size -bp sequences in a batch
34 float mask_level; // regard a hit as redundant if the overlap with

another better hit is over mask_level times the min length of the two
hits

35 float drop_ratio; // drop a chain if its seed coverage is below
drop_ratio times the seed coverage of a better chain overlapping with
the small chain

36 float XA_drop_ratio; // when counting hits for the XA tag , ignore
alignments with score < XA_drop_ratio * max_score; only effective for
the XA tag

37 float mask_level_redun;
38 float mapQ_coef_len;
39 int mapQ_coef_fac;
40 int max_ins; // when estimating insert size distribution , skip pairs

with insert longer than this value
41 int max_matesw; // perform maximally max_matesw rounds of mate -SW for

each end
42 int max_XA_hits , max_XA_hits_alt; // if there are max_hits or fewer ,

output them all
43 int8_t mat [25]; // scoring matrix; mat[0] == 0 if unset

150

44 } mem_opt_t;
45

46

47 /* Scorings matrix for each thread block */
48 typedef struct {
49 int value[SHARED_X +3][SHARED_Y +3];
50 } LocalMatrix;
51

52

53 /* Scorings matrix for each sequence alignment */
54 typedef struct {
55 LocalMatrix matrix [2][2];
56 } ScoringsMatrix;
57

58

59 #endif /* TYPEDEFS_H_ */

Listing C.2 typedefs.h

151

C.3 gpuAlign.h

1 void bwa_fill_scmat(int a, int b, int8_t mat [25]) {
2 int i, j, k;
3 for (i = k = 0; i < 4; ++i) {
4 for (j = 0; j < 4; ++j)
5 mat[k++] = i == j ? a : -b;
6 mat[k++] = -1; // ambiguous base , which is our n.
7 }
8 for (j = 0; j < 5; ++j)
9 mat[k++] = -1;

10 }
11

12

13 typedef struct {
14 int a, b; // match score and mismatch penalty
15 int o_del , e_del;
16 int o_ins , e_ins;
17 int pen_unpaired; // phred -scaled penalty for unpaired reads
18 int pen_clip5 , pen_clip3; // clipping penalty. This score is not

deducted from the DP score.
19 int w; // band width
20 int zdrop; // Z-dropoff
21

22 uint64_t max_mem_intv;
23

24 int T; // output score threshold; only affecting output
25 int flag; // see MEM_F_* macros
26 int min_seed_len; // minimum seed length
27 int min_chain_weight;
28 int max_chain_extend;
29 float split_factor; // split into a seed if MEM is longer than

min_seed_len*split_factor
30 int split_width; // split into a seed if its occurence is smaller than

this value
31 int max_occ; // skip a seed if its occurence is larger than this

value
32 int max_chain_gap; // do not chain seed if it is max_chain_gap -bp away

from the closest seed
33 int n_threads; // number of threads
34 int chunk_size; // process chunk_size -bp sequences in a batch
35 float mask_level; // regard a hit as redundant if the overlap with

another better hit is over mask_level times the min length of the two
hits

36 float drop_ratio; // drop a chain if its seed coverage is below
drop_ratio times the seed coverage of a better chain overlapping with
the small chain

37 float XA_drop_ratio; // when counting hits for the XA tag , ignore
alignments with score < XA_drop_ratio * max_score; only effective for
the XA tag

38 float mask_level_redun;
39 float mapQ_coef_len;
40 int mapQ_coef_fac;
41 int max_ins; // when estimating insert size distribution , skip pairs

with insert longer than this value
42 int max_matesw; // perform maximally max_matesw rounds of mate -SW for

each end
43 int max_XA_hits , max_XA_hits_alt; // if there are max_hits or fewer ,

output them all

152

44 int8_t mat [25]; // scoring matrix; mat[0] == 0 if unset
45 } mem_opt_t;
46

47

48 mem_opt_t *mem_opt_init () {
49 mem_opt_t *o;
50 o = (mem_opt_t *) calloc(1, sizeof(mem_opt_t));
51 o->flag = 0;
52 o->a = 1;
53 o->b = 4; // instertion penalty , deletion paenlty
54 o->o_del = o->o_ins = 6;
55 o->e_del = o->e_ins = 1;
56 //o->o_del = o->o_ins = 2;
57 //o->e_del = o->e_ins = 2;
58 o->w = 100;
59 o->T = 30;
60 o->zdrop = 100;
61 o->pen_unpaired = 17;
62 o->pen_clip5 = o->pen_clip3 = 5;
63

64 o->max_mem_intv = 20;
65

66 o->min_seed_len = 19;
67 o->split_width = 10;
68 o->max_occ = 500;
69 o->max_chain_gap = 10000;
70 o->max_ins = 10000;
71 o->mask_level = 0.50;
72 o->drop_ratio = 0.50;
73 o->XA_drop_ratio = 0.80;
74 o->split_factor = 1.5;
75 o->chunk_size = 10000000;
76 o->n_threads = 1;
77 o->max_XA_hits = 5;
78 o->max_XA_hits_alt = 200;
79 o->max_matesw = 50;
80 o->mask_level_redun = 0.95;
81 o->min_chain_weight = 0;
82 o->max_chain_extend = 1 << 30;
83 o->mapQ_coef_len = 50;
84 o->mapQ_coef_fac = log(o->mapQ_coef_len);
85 bwa_fill_scmat(o->a, o->b, o->mat);
86 return o;
87 }
88

89

90

91 /*below is the method for queue testing*/
92 void queue_testing (){
93 queue *q;
94 q = (queue *) malloc(sizeof(queue *));
95 queue_initialization(q);
96

97 struct sw_ext *kk = (sw_ext *) malloc(sizeof(sw_ext *));
98 kk ->qlen = 20;
99

100 struct sw_ext *gg = (sw_ext *) malloc(sizeof(sw_ext *));
101 gg ->qlen = 30;
102 // struct sw_ext gg = {
103 // .qlen = 30,
104 // };
105

153

106 queue_enqueue(q, kk);
107 queue_enqueue(q,gg);
108 printf("Queue before dequeue\n");
109 queue_display(q->front);
110 // struct sw_ext result[q->count];
111 // to_array_list(q, &result);
112 // for(int i = 0; i < 2; i++){
113 // printf ("%d\n", result[i].qlen +=5);
114 // }
115 //
116 //
117 // array *a;
118 // a = queue_to_array(q, a);
119 }

Listing C.3 gpuAlign.h

154

C.4 gpuAlign.cu

1 #include <stdio.h>
2 #include <string.h>
3 #include <math.h>
4 #include <inttypes.h>
5 #include <stdlib.h>
6 #include <stdint.h>
7 #include <ctype.h>
8 #include <sys/time.h>
9 #include "smithwaterman.h"

10 #include "gpuAlign.h"
11 #include "ksw.h"
12 #define RD_SEED 6
13

14

15

16

17 /*this method pass in a pointer address and then generate query and target
test references */

18 void ref_seq_gen(uint8_t **query , uint8_t **target , int query_size , int
target_size , int chance_percent){

19

20 (*query) = (uint8_t *) calloc(query_size ,sizeof(uint8_t));
21 (* target) = (uint8_t *) calloc(target_size ,sizeof(uint8_t));
22 uint8_t *tmp_query = (*query);
23 uint8_t *tmp_target = (* target);
24 bool has_longer_query = query_size > target_size;
25 int min_size;
26 int max_size;
27 int idx;
28 if(has_longer_query){
29 min_size = target_size;
30 max_size = query_size;
31 }else{
32 min_size = query_size;
33 max_size = target_size;
34 }
35

36 for(idx = 0; idx < min_size; idx++){
37 int chance = rand() %100;
38 *tmp_query = rand()%4;
39 if(chance > chance_percent) *tmp_target = rand()%4;
40 else *tmp_target = *tmp_query;
41 tmp_query ++;
42 tmp_target ++;
43 }
44

45 uint8_t *tmp_pt = has_longer_query? tmp_query : tmp_target;
46 for(; idx < max_size; idx ++){
47 *tmp_pt = rand()%4;
48 tmp_pt ++;
49 }
50 return;
51 }
52

53 /*
54 *single extention information , everything is about current single

extension

155

55 */
56 void sw_ext_int(sw_ext **in, int in_h0 , int query_size , int target_size ,

int chance_percent){
57 //int* h_col ;// this should be a shared information
58 uint8_t *t_qu;
59 uint8_t *t_ta;
60 ref_seq_gen (&t_qu ,&t_ta , query_size ,target_size ,chance_percent);
61 (*in)->sc0 = in_h0;
62 (*in)->query = t_qu;
63 (*in)->target = t_ta;
64 (*in)->qlen = query_size;
65 (*in)->tlen = target_size;
66 (*in)->gtle = 0;
67 (*in)->aw[0] =100;
68 (*in)->aw[1] = 100;
69

70 (*in)->rmax [0] = 0;
71 (*in)->rmax [1] = 0;
72

73

74 (*in)->max_off [0] = 0;
75 (*in)->max_off [1] = 0;
76

77 (*in)->idx = 0;
78 (*in)->seed_idx =0;
79 (*in)->left_right =0;
80

81 }
82

83 void sw_state_init(int **in, unsigned int in_dims3 , unsigned int in_dims4 ,
mem_opt_t *opt){

84 (*in) = (int*) calloc (21,sizeof(unsigned int));
85 int *tmp_p = (*in);
86 *(tmp_p + dims3) = in_dims3;
87 *(tmp_p + dims4) = in_dims4;
88 *(tmp_p + o_del) = opt ->o_del;
89 *(tmp_p + e_del) = opt ->e_del;
90 *(tmp_p + o_ins) = opt ->o_ins;
91 *(tmp_p + e_ins) = opt ->e_ins;
92 *(tmp_p + pen_clip3) = opt ->pen_clip3;
93 *(tmp_p + pen_clip5) = opt ->pen_clip5;
94 *(tmp_p + zdrop) = opt ->zdrop;
95 tmp_p = (*in);
96

97 }
98

99 void print_int_array(int* pt, int row , int col){
100 //int* tmp = pt;
101 printf("2D array[%d][%d]\n", row , col);
102 for(int r = 0; r < row; r++){
103 for(int c = 0; c < col; c++){
104 printf("[%d]", *(pt+r*8+c));
105 //tmp++;
106 }
107 printf("\n");
108 }
109 }
110

111 void print_input(int test_size , struct sw_ext* h_swext) {
112 for (int i = 0; i < test_size; i++) {
113 for (int j = 0; j < (h_swext + i)->qlen; j++) {
114 const uint8_t* tmp_q = (h_swext + i)->query;

156

115 printf("%c", "ACGTN"[*(tmp_q + j)]);
116 }
117 printf("\n");
118 for (int j = 0; j < (h_swext + i)->qlen; j++) {
119 const uint8_t* tmp_q = (h_swext + i)->query;
120 printf("%d,", *(tmp_q + j));
121 }
122 printf("\n");
123 for (int j = 0; j < (h_swext + i)->tlen; j++) {
124 const uint8_t* tmp_t = (h_swext + i)->target;
125 printf("%c", "ACGTN"[*(tmp_t + j)]);
126 }
127 printf("\n");
128 for (int j = 0; j < (h_swext + i)->tlen; j++) {
129 const uint8_t* tmp_t = (h_swext + i)->target;
130 printf("%d,", *(tmp_t + j));
131 }
132 printf("\n");
133 }
134 }
135

136 void ptr_h_value(int* h_shared , LocalMatrix* result) {
137 for (int i = 0;i< *(h_shared + block_x_len) * *(h_shared + block_y_len)*

*(h_shared + dims3); i++) {
138 printf("currID: %d ", i);
139 print_int_array (&(result + i)->h_value [0][0] , SHARED_X , SHARED_Y);
140 }
141 }
142

143 void computeMax(sw_ext* curr_ext , int* h_shared , const int8_t* mat ,
LocalMatrix* h_scoringMatrix , int m)

144 { int w = curr_ext ->aw[curr_ext ->left_right];
145

146 int qlen = curr_ext ->qlen;
147 int tlen = curr_ext ->tlen;
148 int end_bonus = curr_ext ->left_right? *(h_shared + pen_clip3) : *(

h_shared + pen_clip5) ;
149 int line_y = 0;// thread y
150 int max_ie = -1;
151 int gscore = -1;
152 int MaxScore = curr_ext ->sc0;
153 int MaxIdx_X = -1;
154 int MaxIdx_Y = -1;
155 int max_off = 0;
156 int SW_VERBOSE = 0;
157

158 int* h_col = curr_ext ->h_col;
159

160 {
161 int max_ins , max_del , beg , end;
162 //int lbk_lCol = (qlen -1)%SHARED_X;
163 int max , i;
164 for (i = 0, max = 0; i < m * m; ++i) max = max > *(mat + i) ? max : *(

mat + i);
165 //qlen , assume is 10. the max score in the mat is 1. the end bonus

assume is 2. so it would be (qlen *1+5 -6) /1+1
166 max_ins = (int) (((double) ((qlen * max + end_bonus - *(h_shared +

o_ins))) / *(h_shared + e_ins) + 1.)); //get max insertion score
167 max_ins = max_ins > 1 ? max_ins : 1;
168 w = w < max_ins ? w : max_ins; // calculate max band width? which is

defined as the max_ins in current situation.
169 max_del = (int) (((double) ((qlen * max + end_bonus - *(h_shared +

157

o_del))) / *(h_shared + e_del) + 1.)); //get max deletion score
170 max_del = max_del > 1 ? max_del : 1;
171 w = w < max_del ? w : max_del; // TODO: is this necessary ?//ok, I

think the max bandwidth is the max insertion/deletion score you can get
.

172 // DP loop
173 beg = 0;
174 end = qlen;
175 // printf ("[w: %2d]", w);
176 for (int bk_y = 0; bk_y < *(h_shared +block_y_len); bk_y ++) {
177 for (int th_y = 0; LIKELY(th_y < SHARED_Y) && LIKELY(line_y < tlen);
178 th_y ++) {
179 if (beg < line_y - w)beg = line_y - w; // >=o, make sure it is not

over the max scores , or band width
180 if (end > line_y + w + 1) end = line_y + w + 1; //same

thing
181 if (end > qlen) end = qlen;
182 { //for calculating h1 and max ie
183 int h1;
184 if (end == qlen) {
185 h1 =(h_scoringMatrix + bk_y * *(h_shared +block_x_len) + *(

h_shared +block_x_len) - 1)->h_value[th_y][(end - 1) % SHARED_X];
186 max_ie = gscore > h1 ? max_ie : line_y;
187 gscore = gscore > h1 ? gscore : h1;
188 }
189 if(SW_VERBOSE > 3) printf("!!!end[%d, %d][h1: %d, max_ie: %d,

gscore: %d]", line_y , end , h1 , max_ie , gscore);
190

191 }
192 // printf("maxie: %d", max_ie);
193

194 int CurrM = (h_scoringMatrix + bk_y * *(h_shared +block_x_len))->
s_value[th_y]; // current max at current line

195 int mj = (h_scoringMatrix + bk_y * *(h_shared +block_x_len))->
x_value[th_y]; // current max xloc

196 for (int bk_x = 1; bk_x < *(h_shared +block_x_len); bk_x ++) { //
for each block

197 int h = (h_scoringMatrix + bk_y * *(h_shared +block_x_len) +
bk_x)->s_value[th_y];

198 if (SW_VERBOSE > 3) printf("!!%d!!", h);
199 // compare each block’s max
200 if (h > CurrM) {
201 CurrM = h;
202 mj = bk_x * SHARED_X + (h_scoringMatrix + bk_y * *(h_shared +

block_x_len) + bk_x)->x_value[th_y];
203 }
204 }
205 if (CurrM == 0) break;
206

207 if (UNLIKELY(CurrM > MaxScore)) {
208 max_off = max_off > abs(mj - line_y) ? max_off : abs(mj -

line_y);
209 MaxScore = CurrM;
210 MaxIdx_X = mj;
211 MaxIdx_Y = line_y;
212 }
213

214 if (SW_VERBOSE >3)
215 printf("001 [CurrM: %d, max: %d][max_off: %d, mj: %d, line_y: %

d, maxoff_diff >?: %d]\n",CurrM , MaxScore , max_off , mj , line_y ,max_off >
abs(mj - line_y));

216 if (SW_VERBOSE > 3) printf("[beg: %d, end: %d]\n", beg , end);

158

217 { // calculate end , and begin
218

219 int *curr_eh = (int*) malloc(sizeof(int) * (qlen + 1));
220 //int *curr_eh2 = (int*) malloc(sizeof(int) * (qlen + 1));
221 // curr_h [0] = h_col[line_y + 1];
222 { //this is for printing out f value
223 int next_h = h_col[line_y + 1];
224 int line_x = 0;
225 for (int bk_x = 0; bk_x < *(h_shared +block_x_len); bk_x ++) {
226 for (int th_x = 0; LIKELY(th_x <SHARED_X)&& LIKELY(line_x <

qlen); th_x ++) {
227 curr_eh[line_x]= (h_scoringMatrix + bk_y * *(h_shared +

block_x_len)+ bk_x)->f_value[th_y][th_x] + next_h;
228 next_h = (h_scoringMatrix + bk_y * *(h_shared +block_x_len

) + bk_x)->h_value[th_y][th_x];
229 line_x ++;
230

231 }
232 }
233 // curr_f[qlen] = 0;
234 curr_eh[qlen] = next_h;
235

236 }
237

238 int j;
239 for (j = beg;LIKELY(j < end) && curr_eh[j] == 0;++j);
240 beg = j;
241 for (j = end;LIKELY(j >= beg) && curr_eh[j] == 0; --j);
242 end = j + 2 < qlen ? j + 2 : qlen;
243 }
244

245

246 line_y ++;
247

248 }
249 }
250 }
251

252 curr_ext ->qle = MaxIdx_X + 1;
253 curr_ext ->tle = MaxIdx_Y + 1;
254 curr_ext ->gtle = max_ie + 1;
255 curr_ext ->gscore = gscore;
256 curr_ext ->max_off[curr_ext ->left_right] = max_off;
257 curr_ext ->score= MaxScore;
258 if (SW_VERBOSE) printf(">>>>>>result report: 001 [qle: %d, tle: %d, gtle

: %d, gscore: %d, max_off: %d, maxScore: %d]\n", curr_ext ->qle ,
curr_ext ->tle , curr_ext ->gtle , curr_ext ->gscore , curr_ext ->max_off[
curr_ext ->left_right], curr_ext ->score);

259

260 }
261

262

263

264

265

266

267 void testing2(int test_size){
268

269 mem_opt_t *opt;
270 opt = mem_opt_init ();
271 bwa_fill_scmat(opt ->a, opt ->b, opt ->mat);
272

159

273 struct sw_ext *h_swext = (sw_ext *) calloc(test_size ,sizeof(sw_ext));
274

275 // adding up testing information
276

277 int g_qlen = 32;
278 int g_tlen = 32;
279 int chance = 80;
280 int score_h0 = 100;
281

282 srand(RD_SEED);
283 struct sw_ext *tmp_swext = h_swext;
284 for(int i = 0; i < test_size; i++){
285 sw_ext_int (&tmp_swext , score_h0 , g_qlen , g_tlen , chance);
286 tmp_swext ++;
287 }
288 uint8_t tmp_q[] = {1,1,1,3,3,1,0,0,0,2,2,3,1,3,3,1};
289 uint8_t tmp_t[] = {0,0,0,1,1,1,3,3,1,0,0,0,2,2,3,1};
290 h_swext ->query = &tmp_q [0];
291 h_swext ->target= &tmp_t [0];
292 int *h_shared;
293 sw_state_init (&h_shared , test_size ,1, opt);
294 // initialization is over
295 // testing starts here:
296 // print_input(test_size , h_swext);
297 LocalMatrix *result = gpu_sw_seed_extend(h_swext , h_shared , opt ->mat);
298 // ptr_h_value(h_shared , result);
299

300

301 LocalMatrix *result2 = gpu_sw_seed_extend_v2(h_swext , h_shared , opt ->mat
);

302 // ptr_h_value(h_shared , result2);
303

304 for (int i = 0;i< test_size; i++) {
305 computeMax ((h_swext+i), h_shared , opt ->mat , (result+i**(h_shared +

block_x_len) * *(h_shared + block_y_len)), 5);
306 }
307

308

309

310

311 // clock_t t;
312 // t = clock();
313 struct timeval stop , start;
314 gettimeofday (&start , NULL);
315

316 for (int i = 0;i< *(h_shared + dims3); i++) {
317 (h_swext+i)->score = ksw_extend2 ((h_swext+i)->qlen , (h_swext+i)->query

, (h_swext+i)->tlen , (h_swext+i)->target , 5, opt ->mat , opt ->o_del , opt
->e_del , opt ->o_ins , opt ->e_ins ,

318 (h_swext+i)->aw[1],
319 opt ->pen_clip3 , opt ->zdrop ,
320 (h_swext+i)->sc0 ,
321 &((h_swext+i)->qle),
322 &(h_swext+i)->tle ,
323 &(h_swext+i)->gtle ,
324 &(h_swext+i)->gscore ,
325 &(h_swext+i)->max_off [1]);
326 }
327

328 gettimeofday (&stop , NULL);
329 printf("%lu\n", (stop.tv_sec - start.tv_sec) * 1000000 + stop.tv_usec -

start.tv_usec);

160

330 //t = clock()-t;
331 // double time_taken = ((double)t)/CLOCKS_PER_SEC; // in seconds
332 // printf ("%f", time_taken);
333 }
334

335

336

337

338 int main(void) {
339 // queue_testing();
340

341 for(int i = 2; i < 2560; i+=2){
342 printf("%d,", i);
343 testing2(i);
344

345 }
346

347 return 0;
348

349 }

Listing C.4 gpuAlign.cu

161

C.5 smithwaterman.h

1 /*
2 *Connor Li @ Feb. 11th, 2019 V3.2
3 *Brock University Computer Science
4 *this modified smithwaterman algorithm is to be used in GPU version of

KSW_extend2 computation
5 *we consider this is computing alignment on 3 dimention
6 */
7

8 /** maximum X per block (used in dimensions for blocks and amount of
shared memory */

9 #define SHARED_X 8
10 /** maximum Y per block (used in dimensions for blocks and amount of

shared memory */
11 #define SHARED_Y 8
12 /* wether we need to test input output or not*/
13

14 /*fill score , we define int’s min -value as our fill score*/
15 #define FILL_SCORE INT_MIN
16 /*our fill charactor is defined as 5, as a, t, c, g, n is 0 to 4*/
17 #define FILL_CHARACTER 5
18 #define EPT_SCORE 0
19

20

21 #ifdef __GNUC__
22 #define LIKELY(x) __builtin_expect ((x) ,1)
23 #define UNLIKELY(x) __builtin_expect ((x) ,0)
24 #else
25 #define LIKELY(x) (x)
26 #define UNLIKELY(x) (x)
27 #endif
28

29

30

31 /* Scorings matrix for each thread block
32 *we have the following plan:
33 *int h_value -> to store h value
34 *int f_value -> to temperately store f value during matrix calculation
35 *int e_value -> to temperately store e value during matrix calculation
36 *int s_value -> for future calculation references , it stores the max value

of each line
37 *int x_value -> for future calculation references , it stores the location

of the max value ineach line
38 */
39 typedef struct {
40 // h_value is needed to store the computed value
41 int h_value[SHARED_Y][SHARED_X];
42 int f_value[SHARED_Y][SHARED_X];
43 int e_value[SHARED_Y];
44 int s_value[SHARED_Y];
45 int x_value[SHARED_Y];
46 // f_value is needed to store the f_value for post computation
47 } LocalMatrix;
48

49 // matrix for score computation
50 __constant__ int8_t d_mat [25];
51 // sw_shared infomation , this is never changed
52 __constant__ int d_shared [21];

162

53

54

55

56 enum sw_state {
57 //in all alignment , the longest sequence and reference
58 max_qlen ,//the longest read / sequence1
59 max_tlen ,//the longest reference
60 // consider everything together
61 max_x ,//max_x , consider each block is 8 * 8, how many cell we need on x

axis?
62 max_y ,//max_y , consider each block is 8 * 8, how many cell we need on y

axis?
63 // consicer block as cells , what we have? <on the 3dim >
64 block_x_len ,// consider block as a cell , how many block on the x axis?
65 block_y_len ,// consider block as a cell , how many block on the y axis?
66 block_diagnal_len ,//max(block_x_len , block_y_len)
67 // consider block as cell , how many block do we have on the diagnal in a

single alignment?
68 //7
69 alignment_x ,//the total number of cell on x as we compute all x axis
70 alignment_y ,//the total number of cell on y as we compute all y axis
71 alignment_diagnal_len ,// block_diagnal_len * dim3 , consider block as a

cell , how many block on the diagnal on all of the localMatrix?
72 //10
73

74 dims3 ,//3ed dimension , we define as our number of sequence
75 dims4 ,// fourth dimension , which is left for next level of

parallelization
76 //12
77 o_del ,// opening del
78 e_del ,// extension del
79 o_ins ,// opening insertion
80 e_ins ,// extension insertion
81 oe_del ,//open extention opening deletion
82 oe_ins , //open extention opening insertion
83 //18
84 pen_clip3 ,
85 pen_clip5 ,
86 zdrop
87 //21
88 };
89

90 /*
91 *single extention information , everything is about current single

extension
92 */
93 struct sw_ext{
94 //int* h_col ;// this should be a shared information
95 int qlen;
96 const uint8_t *query;
97 int tlen;
98 const uint8_t *target;
99 int sc0;

100 int* h_col;
101

102

103 int aw[2];
104 int rmax [2];
105 int max_off [2];
106

107

108

163

109

110 int qle;
111 int tle;
112 int gtle;
113 int gscore;
114 int score;
115 int idx;
116 // mem_alnreg_t *a;
117 // mem_seed_t *s;
118 int seed_idx;
119 int left_right;//0 is left and 1 is right
120

121 };
122

123

124

125 // A linked list node
126 struct node{
127 struct sw_ext *data;
128 struct node *next;
129 };
130

131

132 /*this is our struct linked list*/
133 typedef struct
134 {
135 int count;
136 struct node *front;
137 struct node *rear;
138 }queue;
139

140

141 typedef struct{
142 int count;
143 struct sw_ext *data;
144

145 }array;
146

147

148 /*queue initialization */
149 void queue_initialization(queue *q);
150

151 /*check if queue is ompty or not*/
152 int queue_isempty(queue *q);
153

154 /*add an item to the queue*/
155 void queue_enqueue(queue *q, struct sw_ext *value);
156

157 /*this will delete the oldest item in the list*/
158 struct sw_ext* queue_dequeue(queue *q);
159

160 /*this method displays queue item*/
161 void queue_display(node *head);
162

163

164 void queue_to_array_list (queue *q, void *data);
165

166 array *queue_to_array(queue *q, array *a);
167

168 extern "C" LocalMatrix* gpu_sw_seed_extend(sw_ext *swext , int *h_shared ,
int8_t *mat);

169

164

170 extern "C" LocalMatrix *gpu_sw_seed_extend_v2(sw_ext *swext , int *h_shared
, int8_t *mat);

Listing C.5 smithwaterman.h

165

C.6 smithwaterman.cu

1 /*
2 *Connor Li @ Feb. 20th, 2019 V3.3
3 *Brock University Computer Science
4 *this modified smithwaterman algorithm is to be used in GPU version of

KSW_extend2 computation
5 *we consider this is computing alignment on 3 dimention
6 */
7

8 #include <stdlib.h>
9 #include <stdio.h>

10 #include <string.h>
11 #include <math.h>
12 #include <builtin_types.h>
13 #include <time.h>
14 #include <helper_cuda.h>
15 #include <stdint.h>
16 #include "smithwaterman.h"
17

18

19 /*queue initialization */
20 void queue_initialization(queue *q)
21 {
22 q->count = 0;
23 q->front = NULL;
24 q->rear = NULL;
25 }
26

27 /*check if queue is ompty or not*/
28 int queue_isempty(queue *q)
29 {
30 return (q->rear == NULL);
31 }
32

33 /*add an item to the queue*/
34 void queue_enqueue(queue *q, struct sw_ext *value)
35 {
36 node *tmp;
37 tmp = (node*) malloc(sizeof(node));
38 tmp ->data = value;
39 tmp ->next = NULL;
40 if(! queue_isempty(q))
41 {
42 q->rear ->next = tmp;
43 q->rear = tmp;
44 }
45 else
46 {
47 q->front = q->rear = tmp;
48 }
49 q->count ++;
50 }
51

52 /*this will delete the oldest item in the list*/
53 struct sw_ext* queue_dequeue(queue *q)
54 {
55 node *tmp;
56 struct sw_ext *n = q->front ->data;

166

57 tmp = q->front;
58 q->front = q->front ->next;
59 q->count --;
60 free(tmp);
61 return(n);
62 }
63

64 /*this method displays queue item*/
65 void queue_display(node *head)
66 {
67 if(head == NULL)
68 {
69 printf("NULL\n");
70 }
71 else
72 {
73 /* prints out desired element*/
74 printf("%d\n", head ->data ->qlen);
75 queue_display(head ->next);
76 }
77 }
78

79 void queue_to_array_list (queue *q, void *data){
80 // struct sw_ext result []){
81 struct sw_ext *result = reinterpret_cast <struct sw_ext*>(data);
82 node* curr = q->front;
83 int index = 0;
84 while(curr!=NULL){
85 result[index ++] = *curr ->data;
86 curr = curr ->next;
87 }
88 }
89

90 array *queue_to_array(queue *q, array *a) {
91 a = (array *) malloc(sizeof(array));
92 // array_initialize(&a, q->count);
93 a->count = q->count;
94 struct sw_ext data[q->count];
95 queue_to_array_list(q, &data);
96 a->data = data;
97 return a;
98 }
99

100 // [0] [1] [2]
101 //check if a is bigger than b, and assign bigger value to &c
102 __device__ bool getHigher(int a, int b, int *c){
103 bool result = a > b;
104 *c = result? a : b;
105 return result;
106 }
107

108

109 /*we need to access two lines , we call: the diagnalLine has been
computated before , we call it as diagnalLine

110 *the line that is even more before: we call it as diagnalLinePre
111 *there are two LocalMatrix array. here is what they do:
112 *our calculation is seperated into two diagnals , (which both is needed for

calculation)
113 *1. d_diagnalLine
114 *and the current one is with the previous information
115 */
116 __global__ void calculateScore(

167

117 LocalMatrix *d_diagnalLine , LocalMatrix *d_diagnalLinePre ,
118 int *d_row , int *d_col ,
119 unsigned int x, unsigned int y,
120 unsigned int numOfBlocks ,
121 uint8_t* d_sequences , uint8_t* d_references){
122 unsigned int DIAGONAL = SHARED_Y + SHARED_X;
123 int innerScore;
124 /**
125 * shared memory block for calculations. It requires
126 * extra (+1 in both directions) space to hold
127 * Neighboring cells
128 */
129 __shared__ int h_matrix[SHARED_Y +1][SHARED_X +1];
130 __shared__ int e_matrix[SHARED_Y +1][SHARED_X +1];
131 __shared__ int f_matrix[SHARED_Y +1][SHARED_X +1];
132 // __shared__ int m_matrix[SHARED_Y][SHARED_X];
133 __shared__ int s_maxima[SHARED_Y];
134 __shared__ int x_maxloc[SHARED_Y];
135

136

137 //if there are only one item , block y is the number of block we needed
138 //x, y is our axises
139 unsigned int currAlign = blockIdx.y%d_shared[dims3];//which alignment we

are looking at
140 unsigned int currBlockOrder = blockIdx.y/d_shared[dims3];// compute

diagnally , the current MingCi of the block
141 unsigned int blockx = x - currBlockOrder;//the block pos of x
142 unsigned int blocky = y + currBlockOrder;//the block pos of y
143 unsigned int tIDx = threadIdx.x;// current thread id of x
144 unsigned int tIDy = threadIdx.y;// current thread id of y
145 // unsigned int bIDx = blockIdx.x;// sequence id, 4th dim , always 1
146 // unsigned int bIDy = currAlign ;// bidy is considered as our alignemnt

nubmer
147

148 // indices of the current characters in both sequen
149 int seqIdx = tIDx + currAlign * d_shared[max_x] + blockx * SHARED_X;//

shorter read
150 int refIdx = tIDy + currAlign * d_shared[max_y] + blocky * SHARED_Y;//

longer ref
151

152 // initialization to the EPT_score
153 int tmp_1 = (SHARED_Y +1)*(SHARED_X +1);
154

155 memset (& h_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));
156 memset (& e_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));
157 memset (& f_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));
158 memset (& s_maxima [0], EPT_SCORE , SHARED_Y*sizeof(int));
159 memset (& x_maxloc [0], EPT_SCORE , SHARED_Y*sizeof(int));
160 __syncthreads ();
161

162 int idx = 0;
163 //first block row first row
164 //we have multiple blocks , therefore , we have to be very carefull
165 if(! blocky && !tIDy) {//when tIDy is 0, which would be the first line
166 h_matrix [0][tIDx] = d_row[seqIdx];
167 }
168 if(! blockx && !tIDx){//tIDx is 0, left column
169 h_matrix[tIDy][0] = d_col[refIdx];
170 //if(!tIDx &&! tIDy) h_matrix [0][SHARED_X] = d_col[refIdx]
171 }
172 // surrounded line that we have to copy them from computed d_row and

d_col

168

173 // blocky is > 0
174 if (blocky && !tIDy){
175 //(x, y-1)
176 idx = !y? blockIdx.y - d_shared[dims3] : blockIdx.y;
177 if(tIDx) h_matrix [0][tIDx] = d_diagnalLine[idx]. h_value[SHARED_Y -1][

tIDx -1];
178 f_matrix [0][tIDx] = d_diagnalLine[idx]. f_value[SHARED_Y -1][tIDx];//

for restoring previous h
179

180 }
181 else if(blockx && !tIDx && tIDy){
182 //(x-1, y)
183 idx = !y? blockIdx.y : blockIdx.y + d_shared[dims3];
184 h_matrix[tIDy][0] = d_diagnalLine[idx]. h_value[tIDy -1][SHARED_X -1];
185

186 }
187

188 if(blockx && ! tIDx){
189 //(x-1, y)
190 idx = !y? blockIdx.y : blockIdx.y + d_shared[dims3];
191 e_matrix[tIDy][0] = d_diagnalLine[idx]. e_value[tIDy];//for restoring

previous e
192

193 }
194 if (blockx && blocky && ! tIDx && !tIDy){
195 //(x-1,y-1)
196 int idx = !y? blockIdx.y - d_shared[dims3] : y == 1? blockIdx.y :

blockIdx.y + d_shared[dims3];
197 h_matrix [0][0] = d_diagnalLinePre[idx]. h_value[SHARED_Y -1][SHARED_X

-1];
198

199 }
200

201

202 /**
203 * tXM1 and tYM1 are to store the current value of the thread Index.

tIDx and tIDy are
204 * both increased with 1 later on.
205 */
206 unsigned int tXM1 = tIDx;
207 unsigned int tYM1 = tIDy;
208 // shared location for the parts of the 2 sequences , for faster

retrieval later on:
209 __shared__ uint8_t s_seq[SHARED_X];
210 __shared__ uint8_t s_ref[SHARED_Y];
211

212 // copy sequence data to shared memory (shared is much faster than
global)

213 if (!tIDy){
214 s_seq[tIDx] = d_sequences[seqIdx];
215 }
216 if (!tIDx){
217 s_ref[tIDy] = d_references[refIdx];
218

219 }
220 __syncthreads ();
221 // set inner score (aka sequence match/mismatch score):
222 uint8_t charSeq = s_seq[tIDx];
223 uint8_t charRef = s_ref[tIDy];
224

225

226 innerScore = charSeq == FILL_CHARACTER || charRef == FILL_CHARACTER ?

169

FILL_SCORE : d_mat[charSeq+charRef *5];
227 // transpose the index
228 ++tIDx;
229 ++tIDy;
230 // set shared matrix to zero (starting point!)
231 // wait until all elements have been copied to the shared memory block
232 /**** sync barrier ****/
233

234 __syncthreads ();
235

236 for (int i=0; i < DIAGONAL; ++i) {
237 if(innerScore != FILL_SCORE){
238 if (i == tXM1+ tYM1) {
239 // // calculate only when there are two valid characters
240 // // this is necessary when the two sequences are not of equal

length
241 // // this is the SW-scoring of the cell:
242 // // At the beginning of the loop: eh[j] = { H(i-1,j-1), E(i,j) },

f = F(i,j) and h1 = H(i,j-1)
243 // // Similar to SSE2 -SW, cells are computed in the following order

:
244 // // H(i,j) = max{H(i-1,j-1)+S(i,j), E(i,j), F(i,j)}
245 // // E(i+1,j) = max{H(i,j)-gapo , E(i,j)} - gape
246 // // F(i,j+1) = max{H(i,j)-gapo , F(i,j)} - gape
247 int M = h_matrix[tYM1][tXM1]? h_matrix[tYM1][tXM1] + innerScore:

0;
248 // m_matrix[tYM1][tXM1] = M;
249 h_matrix[tIDy][tIDx] = max(max(M, e_matrix[tYM1][tXM1]), f_matrix[

tYM1][tXM1]);
250 e_matrix[tYM1][tIDx] = max(max(M-d_shared[oe_ins], e_matrix[tYM1][

tXM1]-d_shared[e_ins]), 0);
251 f_matrix[tIDy][tXM1] = max(max(M-d_shared[oe_del], f_matrix[tYM1][

tXM1]-d_shared[e_del]), 0);
252

253 }
254

255 }
256

257 if(i-1 == tXM1 + tYM1){
258 if(!tXM1){
259 s_maxima[tYM1] = h_matrix[tIDy][1];
260 x_maxloc[tYM1] = tXM1;
261 }
262 else if(getHigher(h_matrix[tIDy][tIDx], s_maxima[tYM1], &s_maxima[

tYM1]))
263 x_maxloc[tYM1] = tXM1;
264

265 }
266 // wait until all threads have calculated their new score
267 /**** sync barrier ****/
268 __syncthreads ();
269 }
270

271

272

273 //pass on the information to the next block
274 //here we modify for our diagnalLine
275 //int idx = get1DIdx(blockx , blocky , XdivSHARED_X);
276 idx = blockIdx.y;
277 d_diagnalLinePre[idx]. h_value[tYM1][tXM1] = h_matrix[tIDy][tIDx];
278 d_diagnalLinePre[idx]. f_value[tYM1][tXM1] = f_matrix[tIDy][tXM1];
279

170

280 // stored for next time computation
281 if(!tXM1){
282 d_diagnalLinePre[idx]. e_value[tYM1]= e_matrix[tYM1][SHARED_X];
283 d_diagnalLinePre[idx]. s_value[tYM1]= s_maxima[tYM1];
284 d_diagnalLinePre[idx]. x_value[tYM1]= x_maxloc[tYM1];
285

286 }
287 __syncthreads ();
288

289 }
290

291

292 /*
293 *sw_ext *sw_ext: this is our array of extension information
294 *int num_seq: number if sequence
295 *int num_target: number of targets
296 *this is our converter , we basically convert everything and get ready

thing to be ready
297 */
298 /*this method pass out a pointer of 2D array type*/
299 extern "C" LocalMatrix *gpu_sw_seed_extend(sw_ext *swext , int *h_shared ,

int8_t *mat){
300 int *d_col = 0, *d_row = 0;
301 uint8_t *d_sequences = 0, *d_references = 0;
302 LocalMatrix* d_diagnalLine;//this is our diagnaline on the computed

matrix
303 LocalMatrix* d_diagnalLinePre;
304 *(h_shared +oe_del) = *(h_shared +o_del) + *(h_shared +e_del);
305 *(h_shared +oe_ins) = *(h_shared +o_ins) + *(h_shared +e_ins);
306 //[1] search for max_qlen and max_tlen for all element
307 //we are looking for the max qlen and max tlen
308 *(h_shared +max_qlen) = swext ->qlen;
309 *(h_shared +max_tlen) = swext ->tlen;
310 // starts from 1
311 for(int i = 1; i < *(h_shared + dims3); i++){//skip the first one
312 if((swext+i)->qlen > *(h_shared +max_qlen)) *(h_shared +max_qlen) = (

swext+i)->qlen;
313 if((swext+i)->tlen > *(h_shared +max_tlen)) *(h_shared +max_tlen) = (

swext+i)->tlen;
314 }
315

316 *(h_shared +block_x_len) = (int) ceil((double)*(h_shared +max_qlen)/
SHARED_X);//how many 8*8 block on x div

317 *(h_shared +block_y_len) = (int) ceil((double)*(h_shared +max_tlen)/
SHARED_Y);//how many 8*8 block on y div

318 *(h_shared +max_x) = *(h_shared +block_x_len) * SHARED_X;//for seed
extension part

319 *(h_shared +max_y) = *(h_shared +block_y_len) * SHARED_Y;// reference
extension part

320 *(h_shared +alignment_x) = *(h_shared +max_x) * *(h_shared +dims3);//
TOTAL LENGTH OF X

321 *(h_shared +alignment_y) = *(h_shared +max_y) * *(h_shared +dims3);//
TOTAL LENGTH OF Y

322 *(h_shared +block_diagnal_len) = max (*(h_shared +block_x_len), *(
h_shared +block_y_len));//TOTAL LENGTH OF Y

323 *(h_shared +alignment_diagnal_len) = *(h_shared +block_diagnal_len)**(
h_shared +dims3);//TOTAL LENGTH OF Y

324

325 int h_row [*(h_shared +alignment_x)];
326 int h_col [*(h_shared +alignment_y)];
327 uint8_t h_seq [*(h_shared +alignment_x)];
328 uint8_t h_ref [*(h_shared +alignment_y)];

171

329 LocalMatrix h_diagnalLine [*(h_shared+alignment_diagnal_len)];
330 LocalMatrix *h_scoringMatrix = (LocalMatrix *) calloc(sizeof(LocalMatrix)

, *(h_shared +dims4) * *(h_shared +dims3) * *(h_shared +block_y_len) *
*(h_shared +block_x_len));

331

332 // initialization is done here.
333 //[2] initialization of top and left row
334

335 //we are initializing for everyone
336 //init h_row , h_col
337 for(int align_idx = 0; align_idx < *(h_shared +dims3); align_idx ++){//go

though each alignment option here
338 int start_x_pos = align_idx * *(h_shared +max_x);//ours 403// starting

position
339 int start_y_pos = align_idx * *(h_shared +max_y);// current alignment
340 struct sw_ext *curr_sw_ext = swext + align_idx;
341 int curr_h0 = curr_sw_ext ->sc0;
342

343

344 h_row[start_x_pos +0] = curr_h0;// position is 0
345 h_row[start_x_pos +1] = LIKELY(curr_h0 > *(h_shared +oe_ins))? curr_h0

- *(h_shared +oe_ins) : 0;//404, position as 1
346 for(int curr_x_loc = start_x_pos + 2; LIKELY(curr_x_loc < start_x_pos

+ *(h_shared +max_x)); ++ curr_x_loc)
347 h_row[curr_x_loc] = (curr_x_loc <= (start_x_pos + curr_sw_ext ->qlen)

&& h_row[curr_x_loc - 1] > *(h_shared +e_ins))? h_row[curr_x_loc - 1]
- *(h_shared +e_ins) : 0;

348

349 // adjust $w if it is too large
350 // generate the first row
351 h_col[start_y_pos +0] = curr_h0; //eh[0].e = highest possible score
352 h_col[start_y_pos + 1] = LIKELY(curr_h0 > *(h_shared +oe_del)) ?

curr_h0 - *(h_shared +oe_del) : 0;
353 for (int curr_y_loc =start_y_pos + 2; LIKELY(curr_y_loc < start_y_pos

+ *(h_shared +max_y)); ++ curr_y_loc)
354 h_col[curr_y_loc] = (curr_y_loc <= (start_y_pos + curr_sw_ext ->tlen)

&& h_col[curr_y_loc - 1] > *(h_shared +e_del))? h_col[curr_y_loc - 1]
- *(h_shared +e_del) : 0;

355

356 for(int curr_x_loc = start_x_pos; LIKELY(curr_x_loc < start_x_pos + *(
h_shared +max_x)); ++ curr_x_loc)

357 h_seq[curr_x_loc] = LIKELY(curr_x_loc < start_x_pos + curr_sw_ext ->
qlen)? curr_sw_ext ->query[curr_x_loc -start_x_pos] : FILL_CHARACTER;

358

359 for(int curr_y_loc = start_y_pos; LIKELY(curr_y_loc < start_y_pos + *(
h_shared +max_y)); ++ curr_y_loc)

360 h_ref[curr_y_loc] = LIKELY(curr_y_loc < start_y_pos + curr_sw_ext ->
tlen)? curr_sw_ext ->target[curr_y_loc -start_y_pos] : FILL_CHARACTER;

361

362

363 curr_sw_ext ->h_col = &h_col[start_y_pos];
364 }
365

366 checkCudaErrors(cudaMalloc ((void **)&d_row , sizeof(h_row)));
367 checkCudaErrors(cudaMalloc ((void **)&d_col , sizeof(h_col)));
368 checkCudaErrors(cudaMemcpy(d_row , &h_row [0], sizeof(h_row),

cudaMemcpyHostToDevice));
369 checkCudaErrors(cudaMemcpy(d_col , &h_col [0], sizeof(h_col),

cudaMemcpyHostToDevice));
370

371 checkCudaErrors(cudaMalloc ((void**) &d_sequences ,sizeof(h_seq)));
372 checkCudaErrors(cudaMalloc ((void**) &d_references ,sizeof(h_ref)));

172

373 checkCudaErrors(cudaMemcpy(d_sequences , &h_seq[0], sizeof(h_seq),
cudaMemcpyHostToDevice));

374 checkCudaErrors(cudaMemcpy(d_references , &h_ref[0], sizeof(h_ref),
cudaMemcpyHostToDevice));

375

376 checkCudaErrors(cudaMalloc ((void **) &d_diagnalLine , sizeof(h_diagnalLine
)));

377 checkCudaErrors(cudaMalloc ((void **) &d_diagnalLinePre , sizeof(
h_diagnalLine)));

378

379 checkCudaErrors(cudaMemcpyToSymbol(d_mat , mat , 25 * sizeof(int8_t),0,
cudaMemcpyHostToDevice));

380 checkCudaErrors(cudaMemcpyToSymbol(d_shared , h_shared , 21 * sizeof(
unsigned int),0, cudaMemcpyHostToDevice));

381

382 unsigned int halfZhouChang = *(h_shared +block_x_len) + *(h_shared +
block_y_len); //half zhouchang of a matrix , width and hight

383 unsigned int xiaoBian = halfZhouChang - *(h_shared + block_diagnal_len);
//the width , xiaoBian , the smaller one also it is the Max number of
blocks

384 unsigned int daBian = *(h_shared + block_diagnal_len);//the hight ,
DaBian , the longer one , also it is the "starting to decrease at

385 unsigned int numBlocks = 0, x = 0, y = 0;
386

387 dim3 dimBlock(SHARED_X , SHARED_Y , 1);
388

389

390

391 cudaEvent_t start , stop;
392 cudaEventCreate (&start);
393 cudaEventCreate (&stop);
394 cudaEventRecord(start);
395 // adjust $w if it is too large
396 // locate memory for d_eh
397 for (unsigned int i = 1; LIKELY(i < halfZhouChang); ++i) {
398 numBlocks = i <= xiaoBian? i : i >= daBian? halfZhouChang - i :

xiaoBian;
399

400 // reserve dim4 for anything beyound chain
401 dim3 dimSWGrid (*(h_shared +dims4), *(h_shared +dims3) * numBlocks ,

1);// numBlocks
402

403 calculateScore <<<dimSWGrid , dimBlock >>>(
404 d_diagnalLine , d_diagnalLinePre ,
405 d_row , d_col ,
406 x, y,
407 numBlocks ,
408 d_sequences , d_references);
409 cudaDeviceSynchronize ();
410

411 checkCudaErrors(cudaMemcpy (& h_diagnalLine [0], d_diagnalLinePre ,
sizeof(h_diagnalLine), cudaMemcpyDeviceToHost));

412

413 LocalMatrix* temp = &* d_diagnalLinePre;
414 d_diagnalLinePre = &* d_diagnalLine;
415 d_diagnalLine = temp;
416

417

418 for(int currBlockOrder = 0; currBlockOrder < numBlocks;
currBlockOrder ++){

419 for(int currAlign = 0; currAlign < *(h_shared +dims3); currAlign
++){

173

420 int blockIdx_y = currBlockOrder * *(h_shared +dims3) + currAlign
;

421 int calgn = currAlign * *(h_shared +block_y_len) * *(h_shared +
block_x_len);

422 int blocky = (y + currBlockOrder) * *(h_shared +block_x_len);
423 int blockx = (x - currBlockOrder);
424

425 memcpy ((h_scoringMatrix + calgn + blocky + blockx), (&
h_diagnalLine [0]+ blockIdx_y), sizeof(LocalMatrix));

426 }
427 }
428

429 if (x == *(h_shared +block_x_len) - 1)
430 ++y;
431 if (x < *(h_shared +block_x_len) - 1)
432 ++x;
433 }
434 cudaEventSynchronize(stop);
435 cudaEventRecord(stop);
436 cudaEventSynchronize(stop);
437 float milliseconds = 0;
438 cudaEventElapsedTime (& milliseconds , start , stop);
439 printf("%3.1f,", milliseconds);
440 cudaEventDestroy(start);
441 cudaEventDestroy(stop);
442 checkCudaErrors(cudaFree(d_col));
443 checkCudaErrors(cudaFree(d_row));
444 checkCudaErrors(cudaFree(d_sequences));
445 checkCudaErrors(cudaFree(d_references));
446 checkCudaErrors(cudaFree(d_diagnalLine));
447 checkCudaErrors(cudaFree(d_diagnalLinePre));
448 return h_scoringMatrix;
449

450 }
451

452 //2D to 1D array idx converter https ://www.cyotek.com/blog/converting -2d-
arrays -to -1d-and -accessing -as-either -2d-or -1d

453 __device__ int get1DIdx(int curr_chain , int curr_aln , int block_y , int
block_x){

454 return curr_chain * d_shared[dims3] * d_shared[block_y_len] * d_shared[
block_x_len] + curr_aln * d_shared[block_y_len] * d_shared[block_x_len]
+ block_y * d_shared[block_x_len] + block_x;

455

456 }
457 /*this version is a speed up version
458 * we need to access two lines , we call: the diagnalLine has been

computated before , we call it as diagnalLine
459 *the line that is even more before: we call it as diagnalLinePre
460 *there are two LocalMatrix array. here is what they do:
461 *our calculation is seperated into two diagnals , (which both is needed for

calculation)
462 *1. d_diagnalLine
463 *and the current one is with the previous information
464 */
465 __global__ void calculateScore_v2(
466 LocalMatrix *d_scoringMatrix ,
467 int *d_row , int *d_col ,
468 unsigned int x, unsigned int y,
469 unsigned int numOfBlocks ,
470 uint8_t* d_sequences , uint8_t* d_references){
471 unsigned int DIAGONAL = SHARED_Y + SHARED_X;
472 int innerScore;

174

473 /**
474 * shared memory block for calculations. It requires
475 * extra (+1 in both directions) space to hold
476 * Neighboring cells
477 */
478 __shared__ int h_matrix[SHARED_Y +1][SHARED_X +1];
479 __shared__ int e_matrix[SHARED_Y +1][SHARED_X +1];
480 __shared__ int f_matrix[SHARED_Y +1][SHARED_X +1];
481 // __shared__ int m_matrix[SHARED_Y][SHARED_X];
482 __shared__ int s_maxima[SHARED_Y];
483 __shared__ int x_maxloc[SHARED_Y];
484

485

486 //if there are only one item , block y is the number of block we needed
487 //x, y is our axises
488 unsigned int currAlign = blockIdx.y%d_shared[dims3];//which alignment we

are looking at
489 unsigned int currBlockOrder = blockIdx.y/d_shared[dims3];// compute

diagnally , the current MingCi of the block
490 unsigned int blockx = x - currBlockOrder;//the block pos of x
491 unsigned int blocky = y + currBlockOrder;//the block pos of y
492 unsigned int tIDx = threadIdx.x;// current thread id of x
493 unsigned int tIDy = threadIdx.y;// current thread id of y
494 // unsigned int bIDx = blockIdx.x;// sequence id, 4th dim , always 1
495 // unsigned int bIDy = currAlign ;// bidy is considered as our alignemnt

nubmer
496

497 // indices of the current characters in both sequen
498 int seqIdx = tIDx + currAlign * d_shared[max_x] + blockx * SHARED_X;//

shorter read
499 int refIdx = tIDy + currAlign * d_shared[max_y] + blocky * SHARED_Y;//

longer ref
500

501 // initialization to the EPT_score
502 int tmp_1 = (SHARED_Y +1)*(SHARED_X +1);
503

504 memset (& h_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));
505 memset (& e_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));
506 memset (& f_matrix [0][0] , EPT_SCORE , tmp_1*sizeof(int));
507 memset (& s_maxima [0], EPT_SCORE , SHARED_Y*sizeof(int));
508 memset (& x_maxloc [0], EPT_SCORE , SHARED_Y*sizeof(int));
509 __syncthreads ();
510

511 //first block row first row
512 //we have multiple blocks , therefore , we have to be very carefull
513 if(! blocky && !tIDy) {//when tIDy is 0, which would be the first line
514 h_matrix [0][tIDx] = d_row[seqIdx];
515 }
516 if(! blockx && !tIDx){//tIDx is 0, left column
517 h_matrix[tIDy][0] = d_col[refIdx];
518 //if(!tIDx &&! tIDy) h_matrix [0][SHARED_X] = d_col[refIdx]
519 }
520 // surrounded line that we have to copy them from computed d_row and

d_col
521 // blocky is > 0
522 int idx = 0;
523 if (blocky && !tIDy){
524 //(x, y-1)
525 idx = get1DIdx(0, currAlign ,blocky -1,blockx);
526 if(tIDx) h_matrix [0][tIDx] = d_scoringMatrix[idx]. h_value[SHARED_Y -1][

tIDx -1];
527 f_matrix [0][tIDx] = d_scoringMatrix[idx]. f_value[SHARED_Y -1][tIDx];//

175

for restoring previous h
528

529 }
530 else if(blockx && !tIDx && tIDy){
531 idx = get1DIdx(0, currAlign ,blocky ,blockx -1);
532 //(x-1, y)
533 h_matrix[tIDy][0] = d_scoringMatrix[idx]. h_value[tIDy -1][SHARED_X -1];
534

535 }
536

537 if(blockx && ! tIDx){
538 idx = get1DIdx(0, currAlign ,blocky ,blockx -1);
539 //(x-1, y)
540 e_matrix[tIDy][0] = d_scoringMatrix[idx]. e_value[tIDy];//for

restoring previous e
541

542 }
543 if (blockx && blocky && ! tIDx && !tIDy){
544 idx = get1DIdx(0, currAlign ,blocky -1,blockx -1);
545 //(x-1,y-1)
546 h_matrix [0][0] = d_scoringMatrix[idx]. h_value[SHARED_Y -1][SHARED_X -1];
547

548 }
549

550

551 /**
552 * tXM1 and tYM1 are to store the current value of the thread Index.

tIDx and tIDy are
553 * both increased with 1 later on.
554 */
555 unsigned int tXM1 = tIDx;
556 unsigned int tYM1 = tIDy;
557 // shared location for the parts of the 2 sequences , for faster

retrieval later on:
558 __shared__ uint8_t s_seq[SHARED_X];
559 __shared__ uint8_t s_ref[SHARED_Y];
560

561 // copy sequence data to shared memory (shared is much faster than
global)

562 if (!tIDy){
563 s_seq[tIDx] = d_sequences[seqIdx];
564 }
565 if (!tIDx){
566 s_ref[tIDy] = d_references[refIdx];
567

568 }
569 __syncthreads ();
570 // set inner score (aka sequence match/mismatch score):
571 uint8_t charSeq = s_seq[tIDx];
572 uint8_t charRef = s_ref[tIDy];
573

574

575 innerScore = charSeq == FILL_CHARACTER || charRef == FILL_CHARACTER ?
FILL_SCORE : d_mat[charSeq+charRef *5];

576 // transpose the index
577 ++tIDx;
578 ++tIDy;
579 // set shared matrix to zero (starting point!)
580 // wait until all elements have been copied to the shared memory block
581 /**** sync barrier ****/
582

583 __syncthreads ();

176

584

585 for (int i=0; i < DIAGONAL; ++i) {
586 if(innerScore != FILL_SCORE){
587 if (i == tXM1+ tYM1) {
588 // // calculate only when there are two valid characters
589 // // this is necessary when the two sequences are not of equal

length
590 // // this is the SW-scoring of the cell:
591 // // At the beginning of the loop: eh[j] = { H(i-1,j-1), E(i,j) },

f = F(i,j) and h1 = H(i,j-1)
592 // // Similar to SSE2 -SW, cells are computed in the following order

:
593 // // H(i,j) = max{H(i-1,j-1)+S(i,j), E(i,j), F(i,j)}
594 // // E(i+1,j) = max{H(i,j)-gapo , E(i,j)} - gape
595 // // F(i,j+1) = max{H(i,j)-gapo , F(i,j)} - gape
596 int M = h_matrix[tYM1][tXM1]? h_matrix[tYM1][tXM1] + innerScore:

0;
597 // m_matrix[tYM1][tXM1] = M;
598 h_matrix[tIDy][tIDx] = max(max(M, e_matrix[tYM1][tXM1]), f_matrix[

tYM1][tXM1]);
599 e_matrix[tYM1][tIDx] = max(max(M-d_shared[oe_ins], e_matrix[tYM1][

tXM1]-d_shared[e_ins]), 0);
600 f_matrix[tIDy][tXM1] = max(max(M-d_shared[oe_del], f_matrix[tYM1][

tXM1]-d_shared[e_del]), 0);
601

602 }
603

604 }
605

606 if(i-1 == tXM1 + tYM1){
607 if(!tXM1){
608 s_maxima[tYM1] = h_matrix[tIDy][1];
609 x_maxloc[tYM1] = tXM1;
610 }
611 else if(getHigher(h_matrix[tIDy][tIDx], s_maxima[tYM1], &s_maxima[

tYM1]))
612 x_maxloc[tYM1] = tXM1;
613

614 }
615 // wait until all threads have calculated their new score
616 /**** sync barrier ****/
617 __syncthreads ();
618 }
619

620

621

622 //pass on the information to the next block
623 //here we modify for our diagnalLine
624 //int idx = get1DIdx(blockx , blocky , XdivSHARED_X);
625 idx = get1DIdx(0, currAlign ,blocky ,blockx);
626 d_scoringMatrix[idx]. h_value[tYM1][tXM1] = h_matrix[tIDy][tIDx];
627 d_scoringMatrix[idx]. f_value[tYM1][tXM1] = f_matrix[tIDy][tXM1];
628

629 // stored for next time computation
630 if(!tXM1){
631 d_scoringMatrix[idx]. e_value[tYM1]= e_matrix[tYM1][SHARED_X];
632 d_scoringMatrix[idx]. s_value[tYM1]= s_maxima[tYM1];
633 d_scoringMatrix[idx]. x_value[tYM1]= x_maxloc[tYM1];
634

635 }
636 __syncthreads ();
637

177

638 }
639

640 /*
641 *sw_ext *sw_ext: this is our array of extension information
642 *int num_seq: number if sequence
643 *int num_target: number of targets
644 *this is our converter , we basically convert everything and get ready

thing to be ready
645 */
646 /*this method pass out a pointer of 2D array type*/
647 extern "C" LocalMatrix *gpu_sw_seed_extend_v2(sw_ext *swext , int *h_shared

, int8_t *mat){
648

649

650

651 int *d_col = 0, *d_row = 0;
652 uint8_t *d_sequences = 0, *d_references = 0;
653 *(h_shared +oe_del) = *(h_shared +o_del) + *(h_shared +e_del);
654 *(h_shared +oe_ins) = *(h_shared +o_ins) + *(h_shared +e_ins);
655 //[1] search for max_qlen and max_tlen for all element
656 //we are looking for the max qlen and max tlen
657 *(h_shared +max_qlen) = swext ->qlen;
658 *(h_shared +max_tlen) = swext ->tlen;
659 // starts from 1
660 for(int i = 1; i < *(h_shared + dims3); i++){//skip the first one
661 if((swext+i)->qlen > *(h_shared +max_qlen)) *(h_shared +max_qlen) = (

swext+i)->qlen;
662 if((swext+i)->tlen > *(h_shared +max_tlen)) *(h_shared +max_tlen) = (

swext+i)->tlen;
663

664 }
665

666

667 *(h_shared +block_x_len) = (int) ceil((double)*(h_shared +max_qlen)/
SHARED_X);//how many 8*8 block on x div

668 *(h_shared +block_y_len) = (int) ceil((double)*(h_shared +max_tlen)/
SHARED_Y);//how many 8*8 block on y div

669 *(h_shared +max_x) = *(h_shared +block_x_len) * SHARED_X;//for seed
extension part

670 *(h_shared +max_y) = *(h_shared +block_y_len) * SHARED_Y;// reference
extension part

671 *(h_shared +alignment_x) = *(h_shared +max_x) * *(h_shared +dims3);//
TOTAL LENGTH OF X

672 *(h_shared +alignment_y) = *(h_shared +max_y) * *(h_shared +dims3);//
TOTAL LENGTH OF Y

673 *(h_shared +block_diagnal_len) = max (*(h_shared +block_x_len), *(
h_shared +block_y_len));//TOTAL LENGTH OF Y

674 *(h_shared +alignment_diagnal_len) = *(h_shared +block_diagnal_len)**(
h_shared +dims3);//TOTAL LENGTH OF Y

675

676 int h_row [*(h_shared +alignment_x)];
677 int h_col [*(h_shared +alignment_y)];
678 uint8_t h_seq [*(h_shared +alignment_x)];
679 uint8_t h_ref [*(h_shared +alignment_y)];
680 LocalMatrix t_sc [*(h_shared +dims4)][*(h_shared +dims3)][*(h_shared +

block_y_len)][*(h_shared +block_x_len)];
681 // LocalMatrix *h_scoringMatrix = (LocalMatrix *) calloc(sizeof(

LocalMatrix), *(h_shared +dims4) * *(h_shared +dims3) * *(h_shared +
block_y_len) * *(h_shared +block_x_len));

682 LocalMatrix *h_scoringMatrix = &t_sc [0][0][0][0];
683 LocalMatrix *d_scoringMatrix;
684 // initialization is done here.

178

685 //[2] initialization of top and left row
686

687 //we are initializing for everyone
688 //init h_row , h_col
689 for(int align_idx = 0; align_idx < *(h_shared +dims3); align_idx ++){//go

though each alignment option here
690 int start_x_pos = align_idx * *(h_shared +max_x);//ours 403// starting

position
691 int start_y_pos = align_idx * *(h_shared +max_y);// current alignment
692 struct sw_ext *curr_sw_ext = swext + align_idx;
693 int curr_h0 = curr_sw_ext ->sc0;
694

695

696 h_row[start_x_pos +0] = curr_h0;// position is 0
697 h_row[start_x_pos +1] = LIKELY(curr_h0 > *(h_shared +oe_ins))? curr_h0

- *(h_shared +oe_ins) : 0;//404, position as 1
698 for(int curr_x_loc = start_x_pos + 2; LIKELY(curr_x_loc < start_x_pos

+ *(h_shared +max_x)); ++ curr_x_loc)
699 h_row[curr_x_loc] = (curr_x_loc <= (start_x_pos + curr_sw_ext ->qlen)

&& h_row[curr_x_loc - 1] > *(h_shared +e_ins))? h_row[curr_x_loc - 1]
- *(h_shared +e_ins) : 0;

700

701 // adjust $w if it is too large
702 // generate the first row
703 h_col[start_y_pos +0] = curr_h0; //eh[0].e = highest possible score
704 h_col[start_y_pos + 1] = LIKELY(curr_h0 > *(h_shared +oe_del)) ?

curr_h0 - *(h_shared +oe_del) : 0;
705 for (int curr_y_loc =start_y_pos + 2; LIKELY(curr_y_loc < start_y_pos

+ *(h_shared +max_y)); ++ curr_y_loc)
706 h_col[curr_y_loc] = (curr_y_loc <= (start_y_pos + curr_sw_ext ->tlen)

&& h_col[curr_y_loc - 1] > *(h_shared +e_del))? h_col[curr_y_loc - 1]
- *(h_shared +e_del) : 0;

707

708 for(int curr_x_loc = start_x_pos; LIKELY(curr_x_loc < start_x_pos + *(
h_shared +max_x)); ++ curr_x_loc)

709 h_seq[curr_x_loc] = LIKELY(curr_x_loc < start_x_pos + curr_sw_ext ->
qlen)? curr_sw_ext ->query[curr_x_loc -start_x_pos] : FILL_CHARACTER;

710

711 for(int curr_y_loc = start_y_pos; LIKELY(curr_y_loc < start_y_pos + *(
h_shared +max_y)); ++ curr_y_loc)

712 h_ref[curr_y_loc] = LIKELY(curr_y_loc < start_y_pos + curr_sw_ext ->
tlen)? curr_sw_ext ->target[curr_y_loc -start_y_pos] : FILL_CHARACTER;

713

714

715 curr_sw_ext ->h_col = &h_col[start_y_pos];
716 }
717 checkCudaErrors(cudaMalloc ((void **)&d_scoringMatrix , sizeof(t_sc)));
718

719 checkCudaErrors(cudaMalloc ((void **)&d_row , sizeof(h_row)));
720 checkCudaErrors(cudaMalloc ((void **)&d_col , sizeof(h_col)));
721 checkCudaErrors(cudaMemcpy(d_row , &h_row [0], sizeof(h_row),

cudaMemcpyHostToDevice));
722 checkCudaErrors(cudaMemcpy(d_col , &h_col [0], sizeof(h_col),

cudaMemcpyHostToDevice));
723

724 checkCudaErrors(cudaMalloc ((void**) &d_sequences ,sizeof(h_seq)));
725 checkCudaErrors(cudaMalloc ((void**) &d_references ,sizeof(h_ref)));
726 checkCudaErrors(cudaMemcpy(d_sequences , &h_seq[0], sizeof(h_seq),

cudaMemcpyHostToDevice));
727 checkCudaErrors(cudaMemcpy(d_references , &h_ref[0], sizeof(h_ref),

cudaMemcpyHostToDevice));
728

179

729

730 checkCudaErrors(cudaMemcpyToSymbol(d_mat , mat , 25 * sizeof(int8_t),0,
cudaMemcpyHostToDevice));

731 checkCudaErrors(cudaMemcpyToSymbol(d_shared , h_shared , 21 * sizeof(
unsigned int),0, cudaMemcpyHostToDevice));

732

733 unsigned int halfZhouChang = *(h_shared +block_x_len) + *(h_shared +
block_y_len); //half zhouchang of a matrix , width and hight

734 unsigned int xiaoBian = halfZhouChang - *(h_shared + block_diagnal_len);
//the width , xiaoBian , the smaller one also it is the Max number of
blocks

735 unsigned int daBian = *(h_shared + block_diagnal_len);//the hight ,
DaBian , the longer one , also it is the "starting to decrease at

736 unsigned int numBlocks = 0, x = 0, y = 0;
737

738 dim3 dimBlock(SHARED_X , SHARED_Y , 1);
739

740

741

742 cudaEvent_t start , stop;
743 cudaEventCreate (&start);
744 cudaEventCreate (&stop);
745 cudaEventRecord(start);
746 // adjust $w if it is too large
747 // locate memory for d_eh
748 for (unsigned int i = 1; LIKELY(i < halfZhouChang); ++i) {
749 numBlocks = i <= xiaoBian? i : i >= daBian? halfZhouChang - i :

xiaoBian;
750

751 // reserve dim4 for anything beyound chain
752 dim3 dimSWGrid (*(h_shared +dims4), *(h_shared +dims3) * numBlocks ,

1);// numBlocks
753

754 calculateScore_v2 <<<dimSWGrid , dimBlock >>>(
755 d_scoringMatrix ,
756 d_row , d_col ,
757 x, y,
758 numBlocks ,
759 d_sequences , d_references);
760

761 cudaDeviceSynchronize ();
762

763 if (x == *(h_shared +block_x_len) - 1)
764 ++y;
765 if (x < *(h_shared +block_x_len) - 1)
766 ++x;
767 }
768 checkCudaErrors(cudaMemcpy(h_scoringMatrix , d_scoringMatrix , sizeof(t_sc

), cudaMemcpyDeviceToHost));
769

770 cudaEventSynchronize(stop);
771 cudaEventRecord(stop);
772 cudaEventSynchronize(stop);
773 float milliseconds = 0;
774 cudaEventElapsedTime (& milliseconds , start , stop);
775 printf("%3.1f,", milliseconds);
776 cudaEventDestroy(start);
777 cudaEventDestroy(stop);
778 checkCudaErrors(cudaFree(d_col));
779 checkCudaErrors(cudaFree(d_row));
780 checkCudaErrors(cudaFree(d_sequences));
781 checkCudaErrors(cudaFree(d_references));

180

782 checkCudaErrors(cudaFree(d_scoringMatrix));
783 return h_scoringMatrix;
784

785 }

Listing C.6 smithwaterman.cu

181

C.7 ksw_extend2CPU.c

1 /* *******************
2 *** SW extension ***
3 ********************/
4 /**
5 * [0] start pos. of seed on query
6 * [1] query seed
7 * [2]tmp = rbeg -rmax[0], the length of left ref
8 * [3]ref
9 * [4] tlen

10 * [5] scoring matrix
11 * [6] deleting cost , gap open penalties for deletions
12 * [7] deleting cost , gap extension penalties.
13 * [8] insertion cost , gap open penalties for insertions
14 * [9] insertion cost , gap insertion penalties.
15 * [10] actuall bandwidth
16 * Band width. Essentially , gaps longer than INT will not be found.

Note that the maximum gap length is also affected by the scoring matrix
and the hit length , not solely determined by this option.

17 * [11] this is end_bonus. not clipping panelly. clipping panelly: Penalty
for 5’- and 3’-end clipping. When performing the Smith -Waterman
extension of the seed alignments ,

18 * BWA -MEM keeps track of the best score reaching the end of the read. If
this score is larger than the best SW score minus the clipping penalty

,
19 * clipping will not be applied (BWA MEM option -L).
20 * [12] drop off , off -diagonal X-dropoff
21 * [13] max matching score
22 *
23 * [14] length of the query in the alignment , the best global alignment in

the query
24 * [15] length of the target in the alignment , the best global alignemtn in

the reference
25 * [16] length of the target if query is fully aligned , query’s target

length after full alignment
26 * [17] score of the best end to end alignemtn , query’s full alignment

score
27 * [18] max off diagonal dist , the best score , the query and reference

position’s difference.
28 */
29

30 /**
31 * how the code is running
32 * input: rbeg [739080] , len[25], l_query [35], qbeg[1], rmax [1] -739118 ,

rmax [0] -739078
33 * input: [del: 1, o_ins: 6, e_ins: 1, match_a: 1, misma_b: 4, zdrop: 100,

pen_clip5: 5, pen_clip3 5]
34 **** currRef:TTATCCTATTACATTATCAATCCTTGCATTTCAGCTTCTT Length = rmax[1]-

rmax [0] = 739118 -739078 = 40
35 **** currSed: ATCCTATTACATTATCAATCCTTGC Length = s->len = 25
36 **** currQue: GATCCTATTACATTATCAATCCTTGCGTTTCAGCT
37 **** leftRef:TT
38 **** leftQue: G
39 **** rihtRef: ATTTCAGCTTCTT Length = 13
40 **** rihtQue: GTTTCAGCT length = 9
41 *then our scoring matrix
42 ****[0A], [1C], [2G], [3T], [4N],
43 ***A[1], [-4], [-4], [-4], [-1],

182

44 ***C[-4], [1], [-4], [-4], [-1],
45 ***G[-4], [-4], [1], [-4], [-1],
46 ***T[-4], [-4], [-4], [1], [-1],
47 ***N[-1], [-1], [-1], [-1], [-1],
48 ***
49 *then we calculate so called query profile
50 ****[G], [T], [T], [T], [C], [A], [G], [C], [T],
51 ***A[-4], [-4], [-4], [-4], [-4], [1], [-4], [-4], [-4],
52 ***C[-4], [-4], [-4], [-4], [1], [-4], [-4], [1], [-4],
53 ***G[1], [-4], [-4], [-4], [-4], [-4], [1], [-4], [-4],
54 ***T[-4], [1], [1], [1], [-4], [-4], [-4], [-4], [1],
55 ***N[-1], [-1], [-1], [-1], [-1], [-1], [-1], [-1], [-1],
56 *
57 *Then
58 *Then
59 */
60 typedef struct {
61 int32_t h, // highest possible score
62 e;//
63 } eh_t;
64

65 int ksw_extend2(int qlen , const uint8_t *query , int tlen , const uint8_t *
target , int m, const int8_t *mat , int o_del , int e_del , int o_ins , int
e_ins , int w, int end_bonus , int zdrop , int h0 , int *_qle , int *_tle ,
int *_gtle , int *_gscore , int *_max_off)

66 { int dgl = 0;
67 if(qlen ==9) dgl = 3;
68 if(dgl >= 2) printf("**++ KSW_extend ++**\n");
69 eh_t *eh; // score array
70 int8_t *qp; // query profile
71 int i, j, k, ssss , oe_del = o_del + e_del ,// opening and extending
72 oe_ins = o_ins + e_ins ,
73 beg , end ,//beg , end , starting and ending position
74 max , max_i , max_j , max_ins , max_del , max_ie ,
75 gscore , max_off;
76 assert(h0 > 0);
77 // allocate memory
78 qp = malloc(qlen * m); //m is 5, I think , this means a, t, c, g, n
79 eh = calloc(qlen + 1, 8);//keep tracking all h and e
80 if(dgl >= 2) printf("--> gen query profile: \n");
81 // generate the query profile
82 for (k = i = 0; k < m; ++k) {
83 const int8_t *p = &mat[k * m];
84 if(dgl >= 2) printf("%d\n",k);
85 for (j = 0; j < qlen; ++j) {
86 qp[i++] = p[query[j]];
87 if(dgl >= 2) printf("%d[%d],",query[j], p[query[j]]);
88 }
89 putchar(’\n’);
90 }
91

92 // set up highest possible score for each row
93 eh[0].h = h0; //eh[0].h = highest possible score
94 eh[1].h = h0 > oe_ins? h0 - oe_ins : 0;
95

96 if(dgl >= 2) printf("**eh :");
97 for (j = 2; j <= qlen && eh[j-1].h > e_ins; ++j){
98 eh[j].h = eh[j-1].h - e_ins;
99 if(dgl >= 2) printf("[%d]", eh[j].h);

100 }
101 putchar(’\n’);
102 // adjust $w if it is too large

183

103 k = m * m;
104

105

106 for (i = 0, max = 0; i < k; ++i) // get the max score in mat.
107 max = max > mat[i]? max : mat[i];
108

109 //qlen , assume is 10. the max score in the mat is 1. the end bonus
assume is 2. so it would be (qlen *1+5 -6) /1+1

110 max_ins = (int)((double)(qlen * max + end_bonus - o_ins) / e_ins + 1.);
//get max insertion score

111 max_ins = max_ins > 1? max_ins : 1;
112 if(dgl >= 2) printf("*** max_ins: %d\n", max_ins);
113 w = w < max_ins? w : max_ins;// calculate max band width? which is

defined as the max_ins in current situation.
114 max_del = (int)((double)(qlen * max + end_bonus - o_del) / e_del + 1.);

//get max deletion score
115 max_del = max_del > 1? max_del : 1;
116 if(dgl >= 2) printf("*** max_del: %d\n", max_del);
117 w = w < max_del? w : max_del; // TODO: is this necessary ?//ok, I think

the max bandwidth is the max insertion/deletion score you can get.
118 // DP loop
119 max = h0, max_i = max_j = -1; max_ie = -1, gscore = -1;
120 max_off = 0;
121 beg = 0, end = qlen;
122 //go though each ref.
123 for (i = 0; LIKELY(i < tlen); ++i) {
124 if(dgl >= 3) {printf("**[1]eh.e :"); for (ssss = 0; ssss <= qlen; ++

ssss){ printf("[%d]", eh[ssss].e);} putchar(’\n’);}
125

126

127 if(dgl >=2) printf("-> start calc: [ID: %d, ", i);
128 int t, f = 0, h1 , m = 0, mj = -1;
129 if(dgl >=2) {
130 printf(" target: %d, ", target[i]);
131 putchar("ACGTN"[(int)query[i]]);
132 printf(", ");
133 }
134

135 int8_t *q = &qp[target[i] * qlen];//get the score
136 // apply the bandwidth and the constraint (if provided)
137 if (beg < i - w) beg = i - w;// >=o, make sure it is not over the max

scores , or band width
138 if (end > i + w + 1) end = i + w + 1;//same thing
139 if (end > qlen) end = qlen;
140

141 // compute the first column
142 if (beg == 0) {//if we are , say , beg is 0, i-w<0,
143 //h0 is the highest possible score. h1 is the highest score with one

o_del and i+1’s e_del
144 h1 = h0 - (o_del + e_del * (i + 1));
145 if (h1 < 0) h1 = 0;//if it is smaller than 0, set to zero
146 } else h1 = 0;//else we just say they are 0.
147 if(dgl >=2) printf("h1: %d, h0: %d, beg: %d, end: %d]\n",h1, h0 , beg ,

end);
148 //up we pre calc everything
149 for (j = beg; LIKELY(j < end); ++j) {
150 if(dgl >=3) printf("--->query’s element [ID: %d, h1: %d, mj<mzsclr >:

%d, m: %d]",j, h1, mj , m);
151 // At the beginning of the loop: eh[j] = { H(i-1,j-1), E(i,j) }, f =

F(i,j) and h1 = H(i,j-1)
152 // Similar to SSE2 -SW, cells are computed in the following order:
153 // H(i,j) = max{H(i-1,j-1)+S(i,j), E(i,j), F(i,j)}

184

154 // E(i+1,j) = max{H(i,j)-gapo , E(i,j)} - gape
155 // F(i,j+1) = max{H(i,j)-gapo , F(i,j)} - gape
156 eh_t *p = &eh[j];
157 int h, M = p->h, e = p->e; // get H(i-1,j-1) and E(i-1,j)
158 if(dgl >=3) printf("001 [h: %d, M: %d, e: %d]", h, M, e);
159 p->h = h1; // set H(i,j-1) for the next row
160 M = M? M + q[j] : 0;// separating H and M to disallow a cigar like

"100 M3I3D20M"
161 h = M > e? M : e; // e and f are guaranteed to be non -negative , so

h>=0 even if M<0
162 h = h > f? h : f;
163 if(dgl >=3) printf("002 [h: %d, M: %d, e: %d, q[%d]:%d]", h, M, e, j,

q[j]);
164

165 h1 = h; // save H(i,j) to h1 for the next column
166 mj = m > h? mj : j; // record the position where max score is

achieved
167 m = m > h? m : h; // m is stored at eh[mj+1]
168 t = M - oe_del;
169 if(dgl >=3) printf("003 [t: %d]", t);
170 t = t > 0? t : 0;
171 e -= e_del;
172 e = e > t? e : t; // computed E(i+1,j)
173 p->e = e; // save E(i+1,j) for the next row
174 t = M - oe_ins;
175 t = t > 0? t : 0;
176 f -= e_ins;
177 f = f > t? f : t; // computed F(i,j+1)
178 if(dgl >=3) printf("004 [h: %d, M: %d, e: %d, t: %d, f: %d]", h, M, e

, t, f);
179 if(dgl >=3) putchar(’\n’);
180 }
181 if(dgl >= 3) {printf("**[.05)eh.e :"); for (ssss = 0; ssss <= qlen; ++

ssss){ printf("[%d]", eh[ssss].e);} putchar(’\n’);}
182

183 eh[end].h = h1; eh[end].e = 0;
184 if(dgl >=2) printf("-> back to normal: ");
185

186 if(dgl >=2) printf("001 [max_ie: %d, gscore: %d, h1: %d, i: %d]",
max_ie , gscore , h1 , i);

187 if (j == qlen) {
188 max_ie = gscore > h1? max_ie : i;
189 gscore = gscore > h1? gscore : h1;
190 }
191 if(dgl >=2) printf("002 [max_ie: %d, gscore: %d, h1: %d, i: %d]",

max_ie , gscore , h1 , i);
192

193 if (m == 0) break;
194 if (m > max) {
195 max = m, max_i = i, max_j = mj;
196 max_off = max_off > abs(mj - i)? max_off : abs(mj - i);
197 } else if (zdrop > 0) {
198 if (i - max_i > mj - max_j) {
199 if (max - m - ((i - max_i) - (mj - max_j)) * e_del > zdrop) break;
200 } else {
201 if (max - m - ((mj - max_j) - (i - max_i)) * e_ins > zdrop) break;
202 }
203 }
204 if(dgl >= 3) {printf("**[2]eh.e :"); for (ssss = 0; ssss <= qlen; ++

ssss){ printf("[%d]", eh[ssss].e);} putchar(’\n’);}
205

206 // update beg and end for the next round

185

207 for (j = beg; LIKELY(j < end) && eh[j].h == 0 && eh[j].e == 0; ++j);
208 beg = j;
209 for (j = end; LIKELY(j >= beg) && eh[j].h == 0 && eh[j].e == 0; --j);
210 end = j + 2 < qlen? j + 2 : qlen;
211 if(dgl >= 3) {printf("**[3]eh.e :"); for (ssss = 0; ssss <= qlen; ++

ssss){ printf("[%d]", eh[ssss].e);} putchar(’\n’);}
212

213 //beg = 0; end = qlen; // uncomment this line for debugging
214 if(dgl >=2) printf("003 [max: %d, max_i: %d, max_j: %d]", max , max_i ,

max_j);
215

216 if(dgl >=2) putchar(’\n’);
217

218 }
219 free(eh); free(qp);
220 if (_qle) *_qle = max_j + 1;//max query’s position
221 if (_tle) *_tle = max_i + 1;//max reference’s position
222 if (_gtle) *_gtle = max_ie + 1;//max_ie ,
223 if (_gscore) *_gscore = gscore;//best score
224 if (_max_off) *_max_off = max_off;
225 if(dgl >=2) printf(">>>>>>result report: 001 [qle: %d, tle: %d, gtle: %d,

gscore: %d, max_off: %d]", *_qle , *_tle , *_gtle , *_gscore , *_max_off);
226 if(dgl >=2) printf("002 [max_j: %d, max_i: %d, max_ie: %d, gscore: %d,

max_off: %d]", max_i , max_j , max_ie , gscore , max_off);
227 if(dgl >=2) putchar(’\n’);
228 return max;
229 }
230

231 int ksw_extend(int qlen , const uint8_t *query , int tlen , const uint8_t *
target , int m, const int8_t *mat , int gapo , int gape , int w,

232 int end_bonus , int zdrop , int h0 , int *qle , int *tle , int *gtle , int *
gscore , int *max_off)

233 {
234 return ksw_extend2(qlen , query , tlen , target , m, mat , gapo , gape , gapo ,

gape , w, end_bonus ,
235 zdrop , h0, qle , tle , gtle , gscore , max_off);
236 }

Listing C.7 ksw_extend2CPU.c

186

	Title Page
	Copyright
	ABSTRACT
	Abstract
	Dedication Page

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	1 INTRODUCTION
	1.0.1 Major Contributions

	2 BACKGROUND
	2.1 DNA Sequencing
	2.1.1 Sanger Sequencing
	2.1.1.1 Capillary Sanger Sequencing
	2.1.1.2 Microfluidic Sanger Sequencing

	2.1.2 NGS platforms
	2.1.2.1 Pyrosequencing (Roche/454)
	2.1.2.2 Reversible Dye Terminator Sequencing (Illumina)
	2.1.2.3 Ion Semiconductor Sequencing (Ion Torrent/Proton)
	2.1.2.4 PacBio Sequencing
	2.1.2.5 Nanopore Sequencing

	2.1.3 De-novo Sequencing Versus Re-sequencing

	2.2 String Matching
	2.2.1 Brute Force Approach
	2.2.2 Dynamic Programming Algorithms
	2.2.2.1 Edit Distance Computation
	2.2.2.2 Text Searching with Edit Distance

	2.2.3 Finite Automata Approach
	2.2.4 Hashing Based Approach
	2.2.5 Bit Parallel Approach
	2.2.6 String Indexing
	2.2.6.1 The Word Neighbourhood
	2.2.6.2 Exact Partitioning
	2.2.6.3 Intermediate Partitioning

	2.3 BWA Package
	2.3.1 Seed-and-extend Strategy
	2.3.1.1 Type of Seeds

	2.3.2 BWA-ALN
	2.3.2.1 Burrows-Wheeler Transform
	2.3.2.2 Suffix Arrays
	2.3.2.3 Indexing
	2.3.2.4 Exact and Approximate Matching
	2.3.2.5 Alignment Determination

	2.3.3 BWA-MEM
	2.3.3.1 Indexing and File Loading
	2.3.3.2 Seeding and Re-seeding
	2.3.3.3 Chaining and Chain Filtering
	2.3.3.4 Seed Extension
	2.3.3.5 Output

	2.4 Parallel Computing
	2.4.1 Definition of Parallel Computing
	2.4.2 Classification of Parallel Computing
	2.4.3 CPU multi-threaded
	2.4.4 CPU Distributed
	2.4.4.1 Message Passing Interface
	2.4.4.2 Big Data
	2.4.4.3 GPU multi-threaded

	3 RESEARCH DESIGN
	3.1 Technical Road-Map
	3.2 Hardware Setup
	3.2.1 SharcNET
	3.2.2 Personal PCs
	3.2.3 Cloud Services
	3.2.4 Brock University Department of Computer Science
	3.2.5 Summary

	3.3 Software Setup
	3.3.1 SparkBWA

	3.4 BWA-MEM GPGPU Parallelization
	3.4.1 Hot Spot Analysis
	3.4.2 Smith-Waterman Algorithm
	3.4.2.1 Algorithm
	3.4.2.2 Substitution Matrix
	3.4.2.3 Gap Penalty
	3.4.2.4 Smith-Waterman Algorithm Parallelization

	3.4.3 ksw_extend2
	3.4.3.1 Pruning Optimization

	3.4.4 Program Design ksw_extend2 Parallelization
	3.4.4.1 Level 1 Parallelization: Seed Extension
	3.4.4.2 Level 2 and Level 3 Parallelization: Chaining and Chain Filtering

	3.4.5 ksw_extend2 with Time-saving Version Implementation
	3.4.5.1 Phase 1: Alignment Collection and Preparation
	3.4.5.2 Phase 2: Calculation of Alignment Scores
	3.4.5.3 Phase 3: Production of Profiles as Output of Results

	3.4.6 ksw_extend2 with Memory-saving Version Implementation

	4 TEST RESULTS
	4.1 The Generation of the Performance Data
	4.2 Level 1 Parallelization
	4.2.1 Test Data Set Generation with Random Number Generator for Parallelization Level 1
	4.2.2 Test 1: Sequence Alignment Similarity and Time Cost without the pruning mechanism
	4.2.3 Test 2: The Effect of the Pruning Mechanism Towards CPU and GPGPU versions Alignment Performance
	4.2.4 Test 3: The Effect of the Pruning Mechanism towards CPU and GPGPU Versions Alignment Performance with Longer Sequence
	4.2.5 Summary

	4.3 Parallelization Level 2 and Level 3
	4.3.1 How the Sequence Data has been Generated and Used in Parallelization Level 2 and Level 3
	4.3.2 Test 1: Performance Comparisons Among Different Implementations at Parallelization Level 2 and Level 3 of ksw_extend2 with Alignments length at 8 bp
	4.3.3 Test 2: Performance Comparisons Among Different Implementations at Parallelization Level 2 and Level 3 of ksw_extend2 with Alignments length at 16 bp
	4.3.4 Test 3: Performance Comparisons Among Different Implementations at Parallelization Level 2 and Level 3 of ksw_extend2 with Alignments length at 32 bp
	4.3.5 Summary

	4.4 GPGPU distributed BWA-MEM
	4.4.1 GPGPU Distributed Framework
	4.4.2 Big Data
	4.4.2.1 Hadoop
	4.4.2.2 Apache Spark
	4.4.2.3 SparkBWA Analyzation
	4.4.2.4 Summary

	4.4.3 Implementation

	4.5 Summary

	5 DISCUSSION
	5.1 Rationale and Objective
	5.2 Result
	5.3 Theoretical Running Time
	5.4 Future Work

	6 APPENDIX EXPLANATION

	REFERENCES
	Appendix
	A Appendix Explanation
	B List of Test Output
	B.1 Parallelization Level 1 Test 1
	B.2 Parallelization Level 1 Test 2
	B.3 Parallelization Level 1 Test 3
	B.4 Parallelization Level 2 and Level 3 Test 1
	B.5 Parallelization Level 2 and Level 3 Test 2
	B.6 Parallelization Level 2 and Level 3 Test 3

	C ksw_extend2 GPU Version
	C.1 definitions.h
	C.2 typedefs.h
	C.3 gpuAlign.h
	C.4 gpuAlign.cu
	C.5 smithwaterman.h
	C.6 smithwaterman.cu
	C.7 ksw_extend2CPU.c

