
”You are never further than one decision away

from making a difference. It doesn’t matter

whether it’s a big difference, doesn’t matter if it

was a small difference, because you don’t have to

save the world by yourself. In fact you can’t. All

you have to do is lay down one brick. All you have

to do is make things a little bit better in a small

way so other people can lay their brick on top of

that, or beside that. And together, step-by-step,

day-by-day, year-by-year, we build the foundation

of something better...We make things better, we

become safe, together, right. Collectively that is

our strength. That is the power of civilization.

That is the power that shapes the future.”

Edward Snowden
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Abstract

A global pandemic remains a public health event that presents a unique and unpre-

dictable challenge for those making health related decisions and the populations who

experience the virus. Though a pandemic also provides the opportunity for researchers

and health administrations around the world to mobilize in the fields of epidemiol-

ogy, computer science, and mathematics to generate epidemic models, vaccines, and

vaccination strategies to mitigate unfavourable outcomes. To this end, a generative

representation to create personal contact networks, representing the social connec-

tions within a population, known as the Local THADS-N generative representation is

introduced and expanded upon. This representation uses an evolutionary algorithm

and is modified to include new local edge operations improving the performance of

the system across several test problems. These problems include an epidemic’s du-

ration, spread through a population, and closeness to past epidemic behaviour. The

system is further developed to represent sub-communities known as districts, better

articulating epidemics spreading within and between neighbourhoods. In addition,

the representation is used to simulate four competing vaccination strategies in prepa-

ration for iterative vaccine deployment amongst a population, an inevitability when

considering the lag inherent to developing vaccines. Finally, the Susceptible-Infected-

Removed (SIR) model of infection used by the system is expanded in preparation for

adding an asymptomatic state of infection as seen within the COVID-19 pandemic.
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Chapter 1

Introduction

Epidemics, such as COVID-19, continue to offer many challenges to human pop-

ulations as they spread without the possibility of immediate detection and evolve

continually. The societies which experience the epidemic must adapt their way of

life, after detection, in order to minimize the impact of the virus. This puts an

enormous burden on public heath administrations, researchers, and the governmental

officials responsible for discovering, tracking, modelling, mitigating, and searching for

a vaccine for the virus [47].

This thesis encompasses aspects of epidemic modelling, mitigation, and vaccine

deployment using evolutionary algorithms to evolve personal contact networks. Evo-

lutionary algorithms, one branch of evolutionary computation [41], were proposed

in [6] to investigate their ability at generating these networks, and have demonstrated

their worth. Since then our system has undergone several iterations with each adding

new functionality or making refinements. Thus, this work presents a version of the

algorithm that aims to consummate this investigation. This includes finalizing the

representation used by the algorithm, evaluating a novel parameter selection tech-

nique known as point packing [5], and exploring the algorithm’s ability to generate

networks under various epidemic models [2]. In addition, the networks generated by

the algorithm are used to test different vaccination strategies and explore the impact

sub-communities within a population has on epidemic behaviour. These modifications

are elaborated upon and evaluated within the case studies in subsequent chapters.

The personal contact networks generated by the evolutionary algorithm represent

the physical connections between members of a population and are the basis of the

work completed herein. They are generated using graph induction, and then used

to simulate epidemics. These simulated epidemics are evaluated against various test

problems in order to improve the representation, develop vaccination strategies, and

1



CHAPTER 1. INTRODUCTION

expand the model of infection to more accurately mirror that seen with COVID-19.

When assessing a particular network there are a number of metrics which can

be harnessed to determine its relative utility. The following metrics are deployed

in this thesis: how long a virus spreads within the population, known as epidemic

duration; how close a simulated epidemic is to prior observed epidemic behaviour or

epidemic profile matching ; and epidemic spread, which is the number of individuals

in a population which become infected with the virus. These metrics are used as

a measure of the representation’s ability to model the epidemic or a vaccination

strategy’s effectiveness at mitigating the impact of the epidemic.

1.1 Structure of the Paper

The rest of this thesis is structured in the following manner. Chapter 2 broadly

introduces the field of epidemiology including vaccine development and models for

simulating epidemics. Chapter 3 outlines evolutionary algorithms, including the de-

cisions that need to be considered when using this tool to solve any number of test

problems. Chapter 4 provides a complete overview of the evolutionary algorithm

and related components used in the body of work included subsequently. Chapters 5

through 8 are made up of four papers that were published in conferences and utilize

said evolutionary algorithm. Finally, Chapter 9 concludes the advances made through

iterative improvements to the system and suggests future research potential in this

area.

2



Chapter 2

Background Research

The work completed as part of this Master’s thesis relies upon prior work completed

by researchers coming from multiple disciplines. The spread of viruses in a human

population combines areas of research in mathematics, statistics, biology, medicine,

and epidemiology. No single discipline is able to conduct the research necessary

to sequence a virus, develop a vaccine or intervention, collect data to generate a

personal contact network, monitor and model the spread of the virus, and formulate

appropriate and effective social policy to mitigate the scope and degree of harm done

by the virus on the population [17].

2.1 Epidemiology

Epidemiology broadly studies the relationship between a population’s behaviour or

status and the health outcomes for members of the population. The intent of epidemi-

ological research is to apply interventions within populations with the explicit goal of

improving a given health outcome. Health authorities around the world utilize epi-

demiology to analyse the state of their population and make decisions regarding the

ailments afflicting the population. When considering the spread of a virus, the total

number of infections divided by the number of people living in a particular country or

region provides a rate of infection for said region. This is one metric that can be used

to compare a virus’ intensity between two regions. Though epidemiology relies on a

broader set of information from several disciplines in order to form a complete picture

of the environment and the relevant characteristics pertaining to the virus [17].

The pattern of infection through a population can be affected by time, locale, and

an individual’s health. The locale includes factors such as: climate in the region,

differences between urban and rural environments, and where infection hubs such

3



CHAPTER 2. BACKGROUND RESEARCH

as schools are located. An individual’s age, sex, socioeconomic status, past medical

history, and place of work are some characteristics that can impact the likelihood

and severity of infection within an individual. In addition, epidemiologists generate

their interventions assuming the incidence of a new disease occurs only when a cer-

tain combination of risk factors combines within an individual. These risk factors are

referred to as determinants and are the focus of epidemiological research. The risk

assessments of each of these determinants informs those making the everyday deci-

sions impacting the spread of a virus. The assessment of risk requires robust health

surveillance [17].

The surveillance necessary to track the spread of a virus and the health of a

population requires the perpetual, systematic collection, evaluation, integration, and

circulation of health data to global, federal, and local health officials. The accuracy,

timeliness, and robustness of this data directly impacts the quality and effectiveness

of the decisions made by these officials [17]. One example is contact tracing; obtaining

a complete record of infection as well as potential infections can prevent an epidemic

within a country should the surveillance be of sufficient breadth, depth, and, most

critically, speed. Another example is contact networks comprising data on those who

come into contact with one-another; affording projections of virus spread through a

community. These are valuable assets to those choosing which control measures to

implement in response to a global pandemic.

Control measures enacted upon a population can aim to prevent an ailment from

arriving within the region, eliminate a virus from the region, or control the spread

of a virus through the region. Normally, these measures target those in the chain of

transmission which are most receptive to the intervention being considered. The chain

of transmission includes: the agents within infected members of the population, any

other source(s) of the virus, how the virus moves from person-to-person or the mode

of transmission, the portal of entry into the body, and the people, or hosts, susceptible

to becoming infected [17]. The appropriate control measures vary depending on

the disease being considered and the environment in which it is spreading, though

some common measures exist. Isolating those who are infected could prevent direct

transmission of the virus while modifications to social norms such as face coverings,

physical distancing, and modified greetings can reduce the likelihood of transmission.

Whereas, the development and distribution of a vaccine increases a host’s defences

by preventing the virus from taking root within the body. Should a critical mass of

individuals be immune then herd immunity is established; thus preventing a pathogen

from being able to spread through the population by eliminating potential chains of

4
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infection. Though, the proportion of immune people within the population necessary

to achieve herd immunity varies by disease and is unknown at the outset. These

and other control measures are tracked and modified in response to the epidemic

curve of a virus. The epidemic curve is generated by plotting the days since the start

of an outbreak against the number of new confirmed cases within the population.

The epidemic curve provides a useful visualization of the severity of the virus in a

population with peaks resembling times of rapid spread and troughs when the virus

is being controlled effectively or eradicated from the population.

Every susceptible person who comes into contact with a new virus has the potential

to become infected. Those that do become infected undergo an incubation period,

known as the subclinical period of disease, in which they are unaware they have

the virus and may or may not be infectious. The length of the incubation period

ranges from a few moments to multiple decades. For some viruses once the ailment

has reached a critical mass an individual may become infectious yet asymptomatic,

lacking any presence of the contagion in lab tests; these individuals are known as

carriers. Carriers take few precautions to prevent transmission of the virus as they

are unaware they are infected, let alone infectious. Once symptoms appear within an

individual they are considered to have entered the clinical period of disease. This is

when most cases can be confirmed by health professionals. The length of the clinical

period exhibits the same variability in length as does the subclinical period. The vast

difference between severity of a virus in any particular individual is known as the

spectrum of disease and is the reason why some remain asymptomatic while other

succumb to the virus. Thus, an infected individual will either recover from the virus,

be in a state of disability, or pass away [17].

2.2 Vaccination

Vaccines enhance the immune system of a potential host by providing it with genetic

material of a disease, allowing for the production of antibodies that target the disease.

Antibodies are proteins that neutralize the cells of an invading virus by attaching

themselves to the cell membrane of the virus. The cells of the foreign pathogen

are known as antigens. The genetic material from the vaccine allows the body to

develop an antibody before a potential host comes into contact with the virus [18,

27, 39]. Thus, when the virus is detected within the body the antibody begins being

released into the bloodstream. When an antibody for a particular ailment comes

into contact with the invading cell, the invader is neutralized. A vaccine essentially
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allows our body to generate an antibody for a virus before being exposed to said

virus. Without a vaccine, an individual will only begin the production of the required

antibody after the virus has taken a foothold. This delay allows for the disease to

multiply, spread, and manifest as viral symptoms within the body. Should the immune

system of an individual fail to formulate the required antibody before the period of

infectability of the virus or the onset of symptoms then that individual will be able to

pass on the virus to others and experience the symptoms associated with the virus;

these symptoms could be mild (i.e. coughing and sneezing), moderate (i.e. requiring

admittance to the hospital), or severe (i.e. permanent disability or death). The

development of the antibody by the immune system before exposure allows for an

immediate response, neutralizing the virus before it can spread to others or cause

damage to the body.

The production of a vaccine requires scientists to modify the DNA of a virus

such that it won’t infect the host and will allow the immune system to generate the

required antibody. This requires a substantial amount of trial-and-error, with the

discovery of a successful vaccine candidate not guaranteed. In addition, governments

and international organizations have formalized the phases necessary to ensure unsafe

and ineffective vaccine candidates do not receive approval. Should this occur, public

trust in the particular vaccine and vaccination in general would diminish, in turn

reducing the available funding to the generation of vaccines in the first place. The

phases of vaccine development include: the exploratory stage where scientists search

for antigens that may trigger the same immune response as the pathogen; the pre-

clinical stage where a vaccine candidate is tested using tissue samples or with animal

studies; clinical Phase 1 dose-ranging trials on less than 100 individuals who undergo

intense observation to determine the safety and dosing schedule of the candidate

vaccine; clinical phase 2 trials with hundreds of test subjects from the vaccine’s

target population to reduce side effects; clinical phase 3 trials which seek to ensure

the candidate vaccine is both safe and sufficiently effective when administered to

thousands of test subjects; the regulatory review and approval stage in which the

vaccine is measured against regulatory standards and approved by a country’s health

authority; lastly, the quality control stage which ensures that the vaccine continues

to remain effective and safe for its life-cycle; this stage may include a fourth clinical

phase to ensure the vaccine is sufficiently effective and safe for mass immunization of

the general population [27].

Upon the discovery, refinement, and regulatory approval of a vaccine for a disease

the global health production capacities must expand to meet the demand for the new
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vaccine, especially when experiencing a pandemic on a global scale such as COVID-19.

The initial demand upon the discovery of a vaccine requires the drug manufacturers

to be prepared to begin scaling up production immediately in order to meet the ini-

tial demand of the new vaccine; especially during a pandemic. The manufacture of

vaccine can be impeded by several factors. These factors include a shortage of the

materials and/or capacity necessary to produce the vaccine, inefficiencies within the

supply chain (i.e. surpluses in some regions and shortages in another), and compe-

tition between governments hoping to inoculate their own population before other

governments have the opportunity to purchase or manufacture sufficient quantity for

their population. The World Health Organization (WHO) has the authority to pre-

qualify vaccines for multi-national distribution. In order to receive this designation a

vaccine manufacturer shares with WHO the production process and quality control

measures and is also subject to compliance testing and monitoring of complaints.

This requires an understanding of the supply chain, international standards, and the

regulations drug manufacturers are subject to which will hasten the distribution of a

successful vaccine [37,46].

With the discovery of a vaccine for COVID-19 assumed, manufacturers have be-

gun preparing for the dramatic increase in capacity that will be necessary to meet

demand. Tens of companies have already voluntarily outlined the unused capacity

within their production lines and have publicly committed to alleviating the supply

shortage once a vaccine is found. Though, the continued production of existing vac-

cines and the ingredients necessary to produce them will take precedence. Thus, a

complete picture of the surge capacity of global vaccine manufacturing is unknown

as each company will make decisions based on their unique circumstances, which are

unknown to the public and can fluctuate. Tackling the COVID-19 production chal-

lenge can be achieved through effective communication between manufacturers and

the global immunization community. The Developing Countries Vaccine Manufactur-

ers Network (DCVMN) is a public-health body that facilitates the communication

necessary to minimize the time from vaccine discovery to deployment within popu-

lations . This reduction is achieved by the collection and sharing of information as

to quality control and production capacity, providing regulatory oversight, mobiliz-

ing international cooperation, and improving immunization standards within member

countries [37]. However, the global manufacturing capacity will never reach a point

of being able to produce enough vaccine for everybody around the world at once;

strategic immunization that improves epidemic outcomes is needed.

Upon the delivery of a new vaccine, a country must decide how to allocate it
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among the members of their population [1, 36]. This could be simple such as the

order in which individuals request to receive the vaccine or complex, by analyzing

and extrapolating from the demographic, health, sex, and age information of their

population. Regardless, a selection mechanism is required. This leads to the pro-

duction of a vaccination strategy. In [44, 50] four strategies were considered. These

included a random selection of individuals to be vaccinated, and three other strate-

gies based on the structure of the personal contact network, which is known ahead of

time. These were done using an improved version of the compartmental Susceptible-

Infected-Removed (SIR) model, modified to include a variable rate of infection using

the personal contact network of the population. This model uses differential equa-

tions to simulate an epidemic and provides only the number of susceptible, infected,

or removed individuals at each time step. The next section will outline the compart-

mental SIR model. Whereas, Case Study 7 features work using a network-based SIR

model in which infections can move through the personal contact network only along

network edges. The Case Study investigates three potential vaccination strategies for

deployment of a new vaccine.

2.3 Epidemic Models

2.3.1 Compartmental Differential Equation Model

The compartmental differential equation model of infection was first outlined in 1927

and is the starting point for most epidemic modelling that is done today [30,33]. The

SIR model assumes a well-mixed population in which anybody can infect anyone else

within the population. In this model the population is divided into three mutually

exclusive groups: those still able to be infected by the epidemic are susceptible, those

that currently have the epidemic are infected, and those that were previously infected

are removed (due to immunity or death). Using differential equations the number

of people within each group is updated every time step. This permits the modelling

of simple epidemics on homogeneous populations. The variables of the differential

equation can be updated as an epidemic spreads through a population; allowing for

the model’s projections to be updated and new epidemic curves to be generated.

2.3.2 Network-Based SIR(S) Model

The work featured within the Case Studies uses the compartmental model of in-

fection [30, 33], but substitutes the differential equations out for personal contact
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networks. These networks limit the spread of a virus along the edges of the net-

work. This permits the researcher to determine how an epidemic spreads through a

population from person to person or through communities within the overall popu-

lation. Additionally, this allows for assigning demographic and health information

to individuals within the population to make decisions about individual infections

based on an individual’s characteristics, rather than relying only on population level

statistics. An epidemic begins by choosing one individual within the population to

be infected, and then the epidemic is permitted to spread along edges of the network.

An individual has a probability α of being infected by each adjacent infected pop-

ulation member, calculated independently. The epidemic disease lasts a single time

step within an infected individual after which they are no longer able to spread the

epidemic and now belong to the removed group. In contrast, the Susceptible-Infected-

Removed-Susceptible (SIRS) model of infection adds the ability for an individual to

lose immunity, becoming susceptible again after being removed for a number of time

steps. The Case Studies use both the SIR and SIRS epidemic models.

2.3.3 Communities

In Chapter 6 we introduce the concept of sub-communities known as districts. There-

fore, the overall community or population is itself comprised of a fixed number k of

smaller districts. To simplify analysis, all districts have the same size and same struc-

ture. Essentially, a personal contact network (graph) of the required district size is

evolved and then k copies are used to construct the overall community. Each of the

k districts is connected to each of the other districts. A district yet to experience

the epidemic has a probability α′ that one of its members will become infected by a

member of another district that is infected, calculated independently for each neigh-

bouring infected district. Figure 2.1 demonstrates how a community of districts is

created using a personal contact network. For simplicity, the first individual infected

within a district is the individual represented by the vertex with the lowest index

within the district, and is called patient zero.

Prior to initiating an epidemic the size and number of districts, k, is used to

generate the community; recall that the overall community is modelled as a set of k

identical districts which are fully connected to one another as shown in Figure 2.1.

The connections between the districts provide the ability for an epidemic to spread

between districts. To commence each epidemic, the vertex with the lowest index,

patient zero, from the district with the lowest index, district zero, is marked infected
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Figure 2.1: A community is comprised of k identical personal contact networks which
are completely connected to one another. The rectangular vertex represents the vertex
with the lowest index within the district (patient zero).

and the epidemic is permitted to spread along edges from vertex to vertex within a

district. This is known as a within-district infection. Within-district infections have

probability α of spreading from infected to susceptible individuals within the same

district via edges in the graph; each of these probabilities is calculated independently.

The epidemic can also spread from any district with infected individuals to any

district yet to experience any infections. This is a between-district infection and has

probability α′ of occurring at each time step. When a new district is first infected, it

is again patient zero who is the first individual infected within that district.

2.3.4 Simulations

An epidemic, as realized in the Case Studies, begins by choosing one individual within

a community to be infected. From there, the epidemic is permitted to spread along

edges of the network. The epidemic disease lasts a single time step within an infected

individual; after this time they are no longer able to spread the epidemic and now

belong to the removed group.

In earlier research, networks that yielded a long epidemic duration were found to

be ”banana” shaped, with patient zero at the end of the banana, and the epidemic
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proceeding down the length of the banana – the thickness of the banana is just enough

to prevent the epidemic from burning out early [8]. If the probability of epidemic

spread is high, then longer, thinner bananas are generated.

In accordance with the SIR model of infection, all individuals in the population

are initially set to the susceptible state except for one individual (patient zero) who

is chosen to be infected with the disease. The status of members of the population

is represented by integers in an array; the first element of the array, vertex zero, is

set to be patient zero for all epidemics simulated in the Case Studies. Furthermore,

the epidemic is then permitted to spread throughout the personal contact network

along edges from infected individuals to those who are susceptible. Every infected

member can infect each of their neighbours with a probability of α = 0.5, calculated

independently. This simplification allows us to analyze the impact of a vaccination

strategy on an outbreak; in real life situations this value could vary depending on

level and duration of contact between individuals.

2.4 Graph Theory

The personal contact network used in this work is implemented as a combinatorial

graph. Individuals are the vertices of the graph and the connections between indi-

viduals are its edges. The terms network and graph are used interchangeably within

this thesis. A graph G is defined as a set of edges E and vertices V and is denoted

G(V,E). An edge is represented as {p, q} in which p and q are vertices from V . Only

undirected graphs are used: infection can pass in either direction. A path from vertex

p to vertex q on graph G is a sequence of edges from E which connect p and q. The

distance from p to q is the length of the shortest path which connects p and q.

A path from vertex p to vertex q on graph G is a sequence of edges from E which

connect p and q. The distance from p to q is the length of the shortest path between

p and q. A graph is connected if there is a path from every vertex to every other

vertex [49].

2.4.1 Social Contact Networks

This thesis focuses on the ability to generate personal contact networks, representing

physical connections between community members, which satisfy the data about the

number of infections per time period or maximize epidemic length. A personal contact

network is the foundation of an epidemic model in which an epidemic spreads along
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the links of the network. The case study in Chapter 8 compares two models of

disease spread, in preparation for incorporating an asymptomatic state to match the

behavior of SARS-Covid-2. The approach of employing a generative solution to a test

problem is known as graph induction which has a variety of applications [16, 29, 34].

The representation used within this thesis is known as the Local THADS-N generative

representation; the metrics used to evaluate the performance of a network are epidemic

profile matching, introduced in [11], and maximizing epidemic duration.

12



Chapter 3

Evolutionary Algorithms

Darwin, who founded the idea of natural selection, offers us the foundation for the

ideas used in evolutionary computation [15]. He observed that random minor al-

terations to a species, across time, permitted some members of the population to

outlive others eventually causing more members of the species to acquire said al-

teration. Those who had the modification would have more offspring, live longer,

and/or be more fit for the environment which granted those genes a greater chance of

reproductive success. Across successive generations of the species those without the

modification would die off, while those with the modification would thrive. This pro-

cess is constantly occurring in all biological systems and is the basis for the diversity

that exists in nature. The successive advances in living organisms are stored in the

DNA that codes the cells and proteins that comprise the organisms [25].

The advancement of living things is realized by a combination of selection bias by

the organism, reproduction, and random mutation within the genome. Animals often

select mates who demonstrate an ability to raise, support, and protect a family unit;

this represents the selection mechanism in animals with these judgements acting as a

proxy for biological superiority. When two animals or plants procreate their children

share a combination of their parents’ DNA, creating a unique genetic code. Though

this re-combination of genes is random in nature, with no guarantee that any supposed

improvement is passed along to offspring. In fact, the same advancement can evolve

independently; the process of analogous features evolving in two different species with

their common ancestor not having that feature is known as convergent evolution. One

example of convergent evolution is the development of advanced eyesight in mammals

and cephalopods, such as octopus, with the most recent common ancestor having only

basic photo-receptive cells. Mutation is a result of errors arising within the DNA of

a living organism; these errors produce new DNA sequences which can be passed
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on to offspring. There is no guarantee that any such sequence is passed on to or

expressed in an organism’s descendants, although these mutations are necessary for

the exploration of new, and potential beneficial, DNA sequences [25].

These concepts are the inspiration for evolutionary algorithms which aim to exert

the same evolutionary pressure on potential solutions to a test problem that evolution

has facilitated on living things, that is, the evolution of an organism’s genome to allow

successive generations to survive and thrive within their environment to a higher

degree than that of their ancestors. This gradual improvement, over millions of

years for living organisms, can be simulated on a test problem in a fraction of the

time using modern processors. In order to simulate this evolution a researcher must

decide on how to articulate the problem, or more accurately the potential solutions

to the problem, in a manner which allows for evolution. This includes how candidate

solutions are represented, initialized, selected for reproduction, undergo reproduction,

experience mutation, and are evaluated in comparison to one another [41]. Each of

these will be explained below using the problem of generating a linear line of best

fit, with function y = mx + b, for a scatter plot populated with points. An example

of a line of best fit on a scatter plot can be found in Figure 3.1. It is important to

note that methods exist to generate a line of best fit without the use of evolutionary

computation, thus this problem is chosen for demonstration purposes only [42].

3.1 Representation

The first hurdle to using evolutionary algorithms on a test problem is choosing a

suitable representation for potential solutions to the problem. Like DNA in living

things, this representation must be robust enough to represent any and all potential

solutions to the problem at hand. Typically, a string of letters and/or numbers are

used to represent a solution within the algorithm with rules to convert the string

representation to a solution to the real-world problem being solved [41]. When it

comes to generating a line of best fit a suitable representation would be two real

values, which represent the m and b values of the function describing the line of best

fit. This has the ability to represent any straight line, except for a vertical asymptote,

a trivial solution that will only arise when the scatter plot has all the points sharing

the same value for x. Thus, each potential solution, or chromosome, is comprised of

two real numbers.

14



CHAPTER 3. EVOLUTIONARY ALGORITHMS

Figure 3.1: A scatter plot with 40 points in blue and an appropriate line of best fit
in orange. The equation of the line of best fit is also provided.

3.2 Initialization

Once a representation of the problem has been established a population of random

solutions is generated, known as the initial population. The number of chromo-

somes in this population must be chosen and/or determined during parameter tun-

ing. Regardless, each candidate solution is typically initialized in a random fashion

in order to ensure the population as a whole features possible solutions that suffi-

ciently encompass the solution space. However, In the event that the researcher is

aware of domain information regarding acceptable solutions they can put appropri-

ate bounds on the randomness of initialization. Furthermore, certain problems may

have known, close to optimal, solutions to the problem which can be used as initial

solutions themselves or they can be modified in a random fashion to generate the

initial population [41]. For example, when considering generating the line of best

fit for the points in Figure 3.1 choosing only positive values for m would be bene-

ficial as there is an obvious positive slope to the points. Additionally, limiting the

potential values of b to the range [−70, 70], with 70 being the largest value on the

Y-axis, would also be logical. Though if these observations are omitted then the val-

ues m and b of each chromosome could be set to a random number in the range
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[FLOAT.MINIMUM,FLOAT.MAXIMUM ], determined by the chosen coding

language.

3.3 Fitness Evaluation

After initializing the starting population of solutions to the problem the researcher

must determine some way of ranking the solutions in order to compare them to one

another. Usually, this is accomplished by representing the quality of a solution with a

single real number, permitting a continuous spectrum on which to judge the fitness of a

solution in comparison to the other potential solutions. In evolutionary computation,

this is termed a fitness function; more generally, in optimization problems it is the

objective function that is to be maximized or minimized. In this work the fitness

and objective function are synonymous. There are problems that may require a

multi-objective fitness function where a solution is judged on multiple, conflicting or

unrelated criteria. In this case, multiple real numbers would be used to evaluate a

solution, with each based on a characteristic that an optimal solution would exhibit.

For example, an optimal financial portfolio would maximize the expected return while

minimizing the potential risk to a client [41]. When considering generating a line of

best fit a fitness function for a candidate solution, in the form y′ = mx+ b, could be

the sum of the squares (y − y′)2 for each x from each point (x, y) in the scatter plot.

In this case, the optimal solution would the chromosome with a sum, or candidate

solution fitness, of as close to zero as possible.

3.4 Selection

In order for the population of candidate solutions to converge towards an optimal

or nearly-optimal solution across simulated generations a mechanism for determining

who within the population is granted reproductive rights is necessary. Two com-

mon selection mechanisms are: roulette wheel selection whereby each member of the

population is granted a likelihood of being chosen proportional to the quality of the

solution and tournament selection in which a random subset of the population is

selected and the two solutions with best fitness in the tournament are chosen to re-

produce. In addition to the selection of parents, a researcher must determine how to

manage the new children and the rest of the population not chosen for reproduction.

A steady state evolutionary algorithm is one that retains a majority of the popula-

tion, unchanged, between generations; with the children replacing members of the
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population with the worst fitness. Whereas, a generational evolutionary algorithm

replaces all or the vast majority of the population with offspring generated using one

(asexual reproduction) or two (sexual reproduction) members of the old generation.

In this case if some amount of the population is retained between generations this is

known as elitism as those with the best fitness are the solutions retained [41]. In the

case of determining a line of best fit any combination of these selection mechanisms

could be chosen.

3.5 Reproduction

After selecting which two solutions are to be used for reproduction a process to create

new solutions, the children, using genetic recombination needs to be determined.

Similar to biological evolution a child is created using the strings representing the two

parent chromosomes. Four common recombination strategies include: single-point

crossover, two-point crossover, k-point crossover, and uniform crossover. In order to

demonstrate how these strategies make children, consider a hypothetical evolutionary

algorithm in which each chromosome is represented as a string of 100 binary digits

(i.e. 100 0’s or 1’s). The two parent strings A and B will be used to generate two child

strings c and d. When using single-point crossover a random index, i in the range

[0, 99] is chosen which is known as the crossover point. Then the first child string, c,

is created by copying the first i digits from A followed by copying the last 100 − i
digits from B. Similarly, d is generated by copying the first i digits from B followed

by copying the last 100−i digits from A. In two point or k-point crossover this idea is

extended to include two or k indices; with the genetic material comprising the children

being copied from the parents, with the source flipping between parents at each index.

Lastly, uniform crossover randomly selects which parent is the source at each digit in

the string, with the second child receiving the genetic material not given to the first

child. Thus, all the digits which exist in the two parents will be represented in the

children regardless of the recombination strategy being implemented. Additionally,

a crossover probability must be chosen by the researcher representing the likelihood

that two parents will undergo crossover to generate offspring [41].

Switching back to the problem of determining a line of best fit, the crossover

strategies described above don’t map directly onto this problem. A chromosome in

this case is two floating point values, namely m and b from the equation y = mx+ b.

However, we can use a similar idea by calculating the difference between the two

parents’ m and b values denoted δm and δb. Additionally, let the smaller slope
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between the parents be mm and the smaller y-intercept be bm. The first child, c,

would be generated as follows m = mm + 1
3
δm and b = bm + 1

3
δb. Similarly, the

second child would be m = mm + 2
3
δm and b = bm + 2

3
δb.

3.6 Mutation

Now that new children have been generated a mechanism to simulate mutation must

be chosen by a researcher. The mutation mechanism achieves the randomness in

nature that allows for new genetic material to generated permitting the evolutionary

algorithm to further explore the solution space. Some common mutation operators

include: flip bit, which works on binary strings by randomly flipping some number of

bits in the chromosome to the opposite value (i.e. 0 becomes 1 or 1 becomes 0); uni-

form mutation, which replaces a number of values in the chromosome with a randomly

generated value between a user-specified upper and lower bound; and Gaussian mu-

tation, which works similarly by adding a random value, from a user-defined normal

distribution, to some number of values within the chromosome. Considering the level

of randomness present within some of these mutation operators it may be necessary

to disallow new chromosome values that fall outside upper and lower bounds decided

by the researcher. In addition to choosing a strategy, the probability of mutation to

occur as well as which chromosomes undergo mutation must be determined. Typically

the mutation probability is low for any particular value comprising a chromosome;

one option is to set the probability to 1
lengthofchromosome

meaning each chromosome

should expect to have one value undergo mutation. Furthermore, mutation could be

applied to every chromosome in the population or reserved for the newly generated

children [41]. When solving for a line of best fit Gaussian mutation would be an ap-

propriate mutation operator to be applied, probabilistically, to the newly generated

children chromosomes.

3.7 Parameter Selection

An important consideration for evolutionary algorithms is an appropriate exploration

of the parameter space. Each algorithm, regardless of the decisions made for each

component above, involves several probabilities that will have a significant impact on

the algorithm’s ability to find acceptable solutions. Thus, testing several combinations

of probabilities, upper and lower bounds, and choices for operators is necessary to

tune the algorithm and achieve acceptable results [41].
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3.8 Evolutionary Computation

Evolutionary algorithms represent one of the many concepts which encompass evo-

lutionary computation more generally. Some of these algorithms include: genetic

programming which evolves programs or functions typically represented in a tree

structure where leaf nodes hold operands and tree nodes hold operators [48]; ant

colony optimization which simulates the behaviour of ants using locally available in-

formation to each ant and pheromones to signal choices that have benefited other

ants in the population [28]; and particle swarm optimization in which each particle

maintains a velocity and undergoes an acceleration towards particles with a better

fitness [32].
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Chapter 4

Methodology

4.1 The Generative Representation

The Local THADS-N representation does not explicitly provide a solution to a prob-

lem. Instead it provides a number of edge-editing operations (Toggle, Hop, Add,

Delete, Swap, and Null) performed on an initial graph in order to specify a solution

to the problem. A generative solution is chosen because it permits the inclusion of

domain information, such as a reasonable number of edges, in the initial graph. It

also permits evolution of graphs with a simple linear structure, a list of editing com-

mands represented as integers applied to an initial graph. Some existing applications

of generative representations include [16, 29, 34] and evidence of the effectiveness of

generative solutions is shown in [31]. The operations within this representation dic-

tate changes to the edge space of a graph. The initial graph in which these strings

of operations are applied is shown in Fig. 4.1. This graph was chosen because pre-

vious research [8, 11] has demonstrated that graphs having vertices with four or five

edges are desirable for the test problems. Other graph topologies appear in previous

work [3, 6, 8–10,12].

In [7] the first operation of the representation, edge swap, was introduced as a

potential universal operator for graph induction. Edge swap was used because it was

able to take an initial personal contact network and change which members of the

population come into contact with each other. Additional operations were added to

the representation in [3], allowing for the addition and deletion of connections; more

recent work has focused on adding local variants of the operations [12, 19, 20]. Local

operations are only applied to triples of vertices for which any pair of the vertices are

at a maximum distance of two before and after the operation is applied. Previous

research has shown that local operations have great potential for achieving the proper
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Figure 4.1: Initial graph with 128 vertices on which to apply the string of edge
operations. Each vertex has two edges to the two preceding nodes as well as two
edges to the two proceeding nodes in the ring.
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balance between exploration and exploitation in the evolutionary algorithm.

Given a graph G(V,E) and the vertices p, q, r, and s from the set V the edge

operations are defined below and can be visualized in Figure 4.2.

• Toggle(p, q): If edge {p, q} is in E then remove {p, q} from E, otherwise add

{p, q} to E.

• Local Toggle(p, q, r): If edge {p, q} and {q, r} are in E then Toggle(p, r).

• Hop(p, q, r): If edge {p, q} and {q, r} are in E and edge {p, r} is not in E

then remove edge {p, q} from E and add edge {p, r} to E.

• Add(p, q): If {p, q} is not in E then add {p, q} to E, otherwise do nothing.

• Local Add(p, q, r): If edge {p, q} and {q, r} are in E then Add(p, r).

• Delete(p, q): If {p, q} is in E then remove {p, q} from E, otherwise do nothing.

• Local Delete(p, q, r): If edge {p, q} and {q, r} are in E then Delete(p, r).

• Swap(p, q, r, s): If {p, q} and {r, s} are the only edges between p, q, r and s

then remove {p, q} and {r, s} from E and add {p, s} and {q, r} to E.

• Null(): Do nothing.

4.2 Evolution

A steady state evolutionary algorithm [43] is used to generate the strings of edge

operations which correspond to a solution. The variables with respect to system

design were determined empirically.

A population of 1000 chromosomes each containing a string of 256 Local THADS-

N edge operations is used. When a single string of operations is applied to the 128-

vertex graph in Fig. 4.1 a candidate solution to the test problem is produced. The

chromosomes are initially generated at random based upon the probabilities provided

to each of the operations via the program parameters. From there, the chromosomes

undergo 500,000 mating events, with statistical output being recorded every 5,000

mating events for the population in the ED and ES problems. The PM problem uses

40,000 mating events with output every 400 events as fitness calculation is much more

intensive. Each mating event consists of a round of tournament selection, crossover

and mutation. Tournament selection selects 7 chromosomes at random from the
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Figure 4.2: Examples of operators included in the Local THADS-N representation.
The figure shows the eight of the nine operations being applied sequentially to an
initial six cycle graph. The operations are applied in reading order such that the final
graph is the result of applying all eight operations. The null operation is omitted as
it does not change the graph.
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population. The two chromosomes with the worst fitness are replaced with copies of

the two chromosomes with the best fitness. Next, the two copies undergo two-point

crossover (probability of 1), and mutation occurs on 1-3 of the operations within that

chromosome, replacing them with new commands chosen by the same probability

distribution discussed above. The choice of 1-3 mutations is randomly determined

with each choice being equiprobable. Lastly, the fitness of the children is recalculated.

After evolution the candidate solution with the best fitness from the whole population

is saved. This process is repeated 30 times for each parameter setting (PS) being

tested. In the PM problem this is repeated on each of the nine epidemic profiles in

Figure 4.3, 4.4, 4.5, 4.6, and 4.7.

In order to determine which solutions should be favoured for evolution two fitness

functions are used. Both simulate epidemics on solutions in the form of personal

contact networks. In each epidemic the vertex with the lowest index, patient zero, is

marked infected and the epidemic is permitted to spread along edges from vertex to

vertex. These epidemics have probability α = 50% of spreading to susceptible indi-

viduals via edges in the graph; each of these probabilities is calculated independently.

It is important to note that this fitness measure does not indicate the absolute qual-

ity of a network. Instead, it measures the relative quality of a network, permitting

successive candidate solutions to converge to networks which are more likely to create

epidemics satisfying the problem.

4.2.1 Tournament Selection

Each mating event consists of a round of tournament selection, crossover and muta-

tion. Tournament selection selects 7 chromosomes at random from the population,

evaluates their fitness and replaces the two chromosomes with the worst fitness by

copies of the two chromosomes with the best fitness. These two copies then un-

dergo two-point crossover, and mutation occurs on 1-3 of the operations within that

chromosome, replacing them with new commands chosen by the same probability

distribution. The choice of 1-3 mutations is randomly determined with each choice

being equiprobable. Finally, fitness is recalculated for the children.

4.2.2 Skeptical Tournament Selection

The epidemic duration and spread problems calculate fitness by simulating a single

epidemic on a candidate solution. The length of the epidemic is measured as the num-

ber of time steps until there are zero infected individuals in the (overall) community.
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This single sample epidemic is used to estimate the fitness of a solution, implying that

a mediocre community may attain a fitness value for this single epidemic that is far

greater than its mean fitness across epidemics. To circumvent a scenario in which a

solution is provided undeserved reproductive rights skeptical tournament selection is

used [45]. This modifies traditional tournament selection by recalculating the fitness

of the parents after a mating event. This reduces the probability of re-selecting a

solution which once had a sample fitness far above its average fitness, although this

situation will still occur. The use of skeptical tournament selection has been shown

to yield better solutions for the epidemic duration problem [45], hence its use. Addi-

tionally, this process favours graphs with less variance as solutions which are chosen

for reproduction with increased frequency also have their fitness recalculated more

frequently.

4.3 Fitness Evaluation

It is important to note that this fitness measure does not indicate the absolute quality

of a network. Instead, it measures the relative quality of a network, permitting

successive candidate solutions to converge to networks which are more likely to create

epidemics satisfying the problem. All the fitness functions used feature a many-to-

many relationship in which the value achieved by the fitness function can potentially

map to many personal contact networks. This is because the fitness is not determined

by the edge space of the networks, but rather by unleashing epidemics on the networks.

In this work the fitness function and objective function are synonymous.

4.3.1 Profile Matching Fitness

Introduced in [11], epidemic Profile Matching (PM) begins with defined epidemic

behavior on a human population to determine if networks likely to permit similar

behavior, can be generated. An epidemic profile is specified by the number of indi-

viduals infected at each time step of an epidemic simulation. There is no evidence to

suggest that a particular network is ideal for any given epidemic profile, therefore the

goal of the epidemic profile matching problem is to find networks likely to generate

behavior resembling the profile. The nine profiles used to test this problem, from [11],

are shown in Figure 4.3, 4.4, 4.5, 4.6, and 4.7. These profiles were chosen as they

provide a broad range of potential epidemic behaviour and to be able to compare the

fitness with previous research.
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The PM problem uses the fitness function from [45] which determines a solution’s

fitness by simulating 50 epidemics. By comparing the number of infected individuals

at each time step of each epidemic with the expected number of infected individuals

the sum squared error (SSE) of a solution is calculated. The 50 SSE measurements

are then sorted in increasing order E1 ≤ E2 ≤ . . . ≤ En, which is used to determine

the fitness of a graph G in the form of a linearly weighted sum of the measurements

according to fit(G) =
∑n

i=1
Ei

i
.

The SSEs are sorted, allowing for the fitness function to be most impacted by

simulated epidemics which most accurately resemble the known epidemic profile being

considered. In order to provide a fitness value for a network which can be compared

to other networks the fitness is calculated, without weighting, after execution.

A PM fitness of 0.0 would mean that all the simulated epidemics perfectly recre-

ated the profile in question. However, this outcome is highly unlikely given the

stochastic nature present when it comes to an epidemics spreading between individ-

uals within a population. The largest (and worst) fitness possible would depend on

the profile under consideration.

A fitness plot of the mean fitness of the population of solutions using parameters

setting 1 and profile 1 from [21] is included in Figure 4.8. It can be seen that the

population has more or less converged around generation 35 000 with fitness 11.2, from

an initial mean fitness of 23.0. Convergence occurs when the evolutionary algorithm

only achieves marginal improvements if it is left running.

4.3.2 Epidemic Duration Fitness

The length of an epidemic is the number of time steps until there are zero infected

individuals within a population. The Epidemic Duration (ED) problem [8] seeks to

find graphs which promote longer-lasting epidemics. Originally, this was determined

by averaging the length of 50 simulated epidemics on a candidate graph [6, 8]. In

contrast, this fitness function uses one sample epidemic to evaluate the fitness of a

solution combined with a selection method known as skeptical tournament selection,

detailed in Section 4.2.2, from [45].

The best fitness possible would be equal to the number of nodes in the personal

contact network being tested, with this representing the virus infecting a single indi-

vidual at each time step. Conversely, the worst fitness possible would be 2 whereby

patient zero infects every other member of the population in one time step. Both of

these extremes are highly unlikely given the necessary edge space requirements.
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4.3.3 Epidemic Spread Fitness

The spread of an epidemic is the total number of individuals infected by the epidemic

over its entire course, i.e. from the time at which it is unleashed up until the time

at which there are zero infected individuals within the population. As with epidemic

length, this is applied both to static graphs and to graphs that evolve in reaction to

the vaccination strategy. Evaluation of epidemic spread is a simple sum of the number

of newly infected individuals during each time step. Additionally, in order to prevent

evolution from coalescing around networks with ever-increasing edge counts the fitness

function evaluates to zero whenever the total number of edges is greater than five times

the number of vertices. Skeptical tournament selection is used from [45].

The potential minimum for this fitness function is 1 in which patient zero does

not infect anybody else whereas the maximum fitness possible would be the number

of nodes within the graph, meaning every individual was infected over the course of

the epidemic.

4.4 Vaccination Strategies

One of the goals of this study is to evaluate different vaccination strategies with re-

spect to their effect upon (a) epidemic length and (b) epidemic spread. Four strategies

are applied to each of these, as follows:

• No vaccine: No individuals are vaccinated at any point.

• Random: At each time step, one individual from the susceptible category is

selected for vaccination. Selection is performed uniformly at random.

• High degree: At each time step, one individual from the susceptible category

is selected for vaccination. Selection is performed uniformly at random amongst

all of the individuals (vertices) that have the highest degree of all nodes in the

graph.

• Ring: At each time step, one individual from the susceptible category is selected

for vaccination. Selection is performed uniformly at random from amongst all

of the individuals (vertices) that are neighbours of infected individuals.

As stated earlier, according to our model infection can pass from one individual to

a neighbouring individual within one time step. The length of time before a vaccine

becomes effective can vary from one vaccine to another. In the current study, the
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vaccine becomes effective and the individual is added to the removed category imme-

diately upon being selected to receive the vaccine according to the current vaccination

strategy.

4.5 Point Packing Parameter Selection

A notable concern when implementing evolutionary algorithms is how to appropri-

ately set the numerous parameters fundamental to this type of problem. A popular

method to determine suitable parameters is for a researcher to perform pragmatic pre-

liminary experimentation with various PSs. Alternatively, parameters can be chosen

based upon appropriate ranges, altered one at a time to determine that parameter’s

impact on the ability of the algorithm to find optimal solutions. A full factorial explo-

ration of the parameter space is also an option, as evolutionary algorithms commonly

interact in a non-linear manner. The representation used in this research has nine

parameters, namely the probabilities associated with each of the Local THADS-N

editing operations. A full factorial exploration would grow as the eighth power of the

sampling density as the nine probabilities must sum to one, removing one of the de-

grees of freedom. Anything less than a full factorial exploration allows for an optimal

parameter setting to never be discovered.

In order to overcome this problem point packing is used. Both point packing [5]

and the full factorial approach result in a set of points throughout the parameter

space, where each point is a PS. This method of parameter selection will result in

far fewer points than the full factorial approach. The point packing also allows the

researcher to set the minimum spacing between points in the parameter space which

determines the number of PSs to be tested. Obviously, the number of PSs tested

correlates with the degree to which the parameter space is explored but with a greater

cost to run more PSs. In determining a method to select PSs point packing was the

most similar to that of a full factorial exploration, but the full factorial’s costs grow

much faster than those of point packing. Point packing includes many of the same

benefits of a full factorial design, namely: thorough exploration of the parameter

space and objective design removing any bias the researcher may have. Achieving

this level of exploration with far fewer points than a fixed grid.

In this study the chromosome length was set to 256 for all experiments as this

was the only parameter that was a large integer; whereas the probabilities associated

with the nine operations are decimal values less than one which when summed add to

one. These values were set using an evolutionary algorithm that uses point packing.
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Algorithm 1. Conway’s Lexicode Algorithm

Input: a set S of points in some order.

a minimum distance δ.

Output: a subset T of S with minimum distance δ.

Details:

Initialize T to be empty.

Traversing S in order,

Add a point from S to T if its distance

from the current members of T is at least δ.

Return(T )

The point packing algorithm uses Conway’s Lexicode Algorithm, shown in Algo-

rithm 1, to generate the initial population of PSs and as the variation operator used

in the evolutionary algorithm; see further details in [5]. To run this algorithm, a

researcher must choose a value for the minimum allowable distance between PSs.

Evolutionary algorithms use crossover to capitalize on solutions that have the

best fitness while using mutation to introduce enough randomness to avoid locally

maximal solutions. In contrast, the evolutionary algorithm used to achieve a point

packing with the most points uses one variation operation: Conway Crossover Op-

erator (CCO). This operator first selects two collections of PSs and combines these

sets into one set. From there, twenty new PSs are generated randomly and they are

added to the combined set. This set is then shuffled, and a new collection of PSs

obeying the minimum distance between points is generated using Algorithm 1. This

process accomplishes both crossover, by combining two collections, and mutation, by

introducing randomly generated PSs.

The algorithm that evolves point packings of PSs uses a population of 4000 collec-

tions of PSs. Each mating event randomly chooses three members of the population

and the two with the largest collection of points are subjected to CCO and the newly

generated collection replaces the collection with the least number of points. Thirty

runs are conducted, each comprised of 1,000,000 mating events. The run that pro-

duces a collection with the most PSs is chosen for the experiment because if there are

more points obeying the minimum distance in a set space then the space is the best

explored using that largest collection of points.
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Profile 1

Profile 2

Figure 4.3: Epidemic profiles 1 and 2 representing time step vs. number of infected
individuals during that time step.
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Profile 3

Profile 4

Figure 4.4: Epidemic profiles 3 and 4 representing time step vs. number of infected
individuals during that time step.
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Profile 5

Profile 6

Figure 4.5: Epidemic profiles 5 and 6 representing time step vs. number of infected
individuals during that time step.
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Profile 7

Profile 8

Figure 4.6: Epidemic profiles 7 and 8 representing time step vs. number of infected
individuals during that time step.
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Profile 9

Figure 4.7: Epidemic profile 9 representing time step vs. number of infected individ-
uals during that time step.

Figure 4.8: The mean fitness of the population of solutions across 40 000 generations
using parameter setting 1 and profile 1 from [21]
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Case Study 1

Representation for Evolution of Epidemic
Models

This case study was originally published in CEC 2019 conference proceedings [21]. It

explores the creation of a representation capable of generating personal contact net-

works that are most likely to exhibit specific epidemic behavior. This is difficult due

to the inherit volatility of an epidemic and the numerous parameters accompanying

the problem. To surpass these hurdles, evolutionary algorithms are used to create

a generative solution which generates personal contact networks, modeling human

populations, to satisfy the epidemic duration and epidemic profile matching prob-

lems. This representation is entitled the Local THADS-N representation. Two new

operators are added to the original THADS-N system, and tested with a traditional

parameter sweep and a parameter selection method known as point packing on nine

epidemic profiles. Additionally, a new epidemic model is implemented in order to

allow for lost immunity within a population.
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5.1 Introduction

The representation used within this paper is known as the Local THADS-N generative

representation; the test problems explored here are maximizing epidemic duration [8]

and epidemic profile matching [11].

5.2 The Local THADS-N Representation

5.2.1 Edge Operations from Previous Work

Given a graph G(V,E) and the vertices p, q, r, and s from the set V the existing

operations are defined below.

• Toggle(p, q): If edge {p, q} is in E then remove {p, q} from E, otherwise add

{p, q} to E.

• Local Toggle(p, q, r): If edge {p, q} and {q, r} are in E then Toggle(p, r).

• Hop(p, q, r): If edge {p, q} and {q, r} are in E and edge {p, r} is not in E

then remove edge {p, q} from E and add edge {p, r} to E.

• Add(p, q): If {p, q} is not in E then add {p, q} to E, otherwise do nothing.

• Delete(p, q): If {p, q} is in E then remove {p, q} from E, otherwise do nothing.

• Swap(p, q, r, s): If {p, q} and {r, s} are the only edges between p, q, r and s

then remove {p, q} and {r, s} from E and add {p, s} and {q, r} to E.

• Null(): Do nothing.

5.2.2 New Edge Operations to be Tested

Given a graph G(V,E) and vertices p, q, and r from V the new operations examined

in the current study are as follows:

• Local Add(p, q, r): If edge {p, q} and {q, r} are in E then Add(p, r).

• Local Delete(p, q, r): If edge {p, q} and {q, r} are in E then Delete(p, r).

The inclusion of these operations finalizes the study of local variants of operations,

and completes the list of all operations in the Local THADS-N representation used

in this paper.
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5.3 Experimental Design

The specifications for the four experiments in this study are summarized in Table 5.1.

Table 5.1: The specifications for the four experiments included within this paper.

Exp. Model Fitness Function Tournament Selection Parameter Selection Parameter Sets Testing
A SIR Profile Matching Traditional Size 7 Parameter Sweep 26 New Local Add Edge Operation
B SIR Profile Matching Traditional Size 7 Parameter Sweep 26 New Local Delete Edge Operation
C SIR Profile Matching Traditional Size 7 Point Packing 90 Point Packing Parameter Selection
D SIRS Epidemic Length Skeptical Size 7 Point Packing 29 SIRS Model Compared to SIR

5.3.1 Exp. A & B: Local Add and Delete on the PM Problem

In order to determine whether the addition of each of the new operators is beneficial to

the representation for the PM problem a traditional parameter sweep was performed.

In [45] it is demonstrated that swap allowed for better performance than hop for the

PM problem. Additionally, [20] establishes that, for most profiles, the best fitness

was accomplished when the probability of toggle and local toggle are approximately

equal. Therefore, the percentage for swap is zero for both parameter sweeps. The

proportion for local add is also set to zero for the local delete parameter sweep, and

vice-versa. The PSs for Exp. A, looking at local add, are in Table 5.2. The local

delete parameter sweep, for Exp. B, follows the same pattern as local add, although

the table is omitted due to page limits.

In both sweeps the first PS sets the proportions for original add or delete and

its local variant to zero while the other operations, except swap, are given equal

proportions. This establishes a baseline for how the evolutionary algorithm performs

without any add or delete. The rest of the PSs are divided into five sets of five PSs

each. The PS of the first set for both the add and delete parameter sweeps assigns 0.1

to add or delete and zero to their new variants. The remaining 0.9 is evenly divided

by the other operations as in PS 1. Each successive PS within the set transfers a

portion of the probability of the original operation to its local variant. The remaining

sets perform the same operation with a greater proportion being shared by the two

operations being compared. This allows for the performance of the original operation

to be directly compared to its local variant.

5.3.2 Exp. C: Point Packing on the PM Problem

The point packing is being used as a tool to generate PSs for use in Exp. C. The

point packing algorithm uses Conway’s Lexicode Algorithm, shown in Algorithm 1,
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Table 5.2: Traditional parameter sweep for Exp. A on the PM problem. The same
pattern is repeated for Exp. B on local delete.

PS Togg. Hop Add Del. Swap L-Togg. L-Add L-Del. Null
1 0.2000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.0000 0.2000
2 0.1800 0.1800 0.1000 0.1800 0.0000 0.1800 0.0000 0.0000 0.1800
3 0.1800 0.1800 0.0750 0.1800 0.0000 0.1800 0.0250 0.0000 0.1800
4 0.1800 0.1800 0.0500 0.1800 0.0000 0.1800 0.0500 0.0000 0.1800
5 0.1800 0.1800 0.0250 0.1800 0.0000 0.1800 0.0750 0.0000 0.1800
6 0.1800 0.1800 0.0000 0.1800 0.0000 0.1800 0.1000 0.0000 0.1800
7 0.1600 0.1600 0.2000 0.1600 0.0000 0.1600 0.0000 0.0000 0.1600
8 0.1600 0.1600 0.1500 0.1600 0.0000 0.1600 0.0500 0.0000 0.1600
9 0.1600 0.1600 0.1000 0.1600 0.0000 0.1600 0.1000 0.0000 0.1600
10 0.1600 0.1600 0.0500 0.1600 0.0000 0.1600 0.1500 0.0000 0.1600
11 0.1600 0.1600 0.0000 0.1600 0.0000 0.1600 0.2000 0.0000 0.1600
12 0.1400 0.1400 0.3000 0.1400 0.0000 0.1400 0.0000 0.0000 0.1400
13 0.1400 0.1400 0.2250 0.1400 0.0000 0.1400 0.0750 0.0000 0.1400
14 0.1400 0.1400 0.1500 0.1400 0.0000 0.1400 0.1500 0.0000 0.1400
15 0.1400 0.1400 0.0750 0.1400 0.0000 0.1400 0.2250 0.0000 0.1400
16 0.1400 0.1400 0.0000 0.1400 0.0000 0.1400 0.3000 0.0000 0.1400
17 0.1200 0.1200 0.4000 0.1200 0.0000 0.1200 0.0000 0.0000 0.1200
18 0.1200 0.1200 0.3000 0.1200 0.0000 0.1200 0.1000 0.0000 0.1200
19 0.1200 0.1200 0.2000 0.1200 0.0000 0.1200 0.2000 0.0000 0.1200
20 0.1200 0.1200 0.1000 0.1200 0.0000 0.1200 0.3000 0.0000 0.1200
21 0.1200 0.1200 0.0000 0.1200 0.0000 0.1200 0.4000 0.0000 0.1200
22 0.1000 0.1000 0.5000 0.1000 0.0000 0.1000 0.0000 0.0000 0.1000
23 0.1000 0.1000 0.3750 0.1000 0.0000 0.1000 0.1250 0.0000 0.1000
24 0.1000 0.1000 0.2500 0.1000 0.0000 0.1000 0.2500 0.0000 0.1000
25 0.1000 0.1000 0.1250 0.1000 0.0000 0.1000 0.3750 0.0000 0.1000
26 0.1000 0.1000 0.0000 0.1000 0.0000 0.1000 0.5000 0.0000 0.1000
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Table 5.3: Parameter Settings (PS) from point packing with minimum distance of
0.35 to be used for Exp. C.

PS Togg. Hop Add Del. Swap L-Togg. L-Add L-Del. Null
1 0.0013 0.0145 0.0374 0.0133 0.4139 0.0281 0.0107 0.2846 0.1962
2 0.5210 0.0096 0.0283 0.3316 0.0237 0.0135 0.0056 0.0218 0.0449
3 0.2528 0.0142 0.0087 0.2138 0.0021 0.2267 0.2228 0.0079 0.0509
4 0.0042 0.5606 0.0094 0.0055 0.0598 0.0113 0.0292 0.0308 0.2892
5 0.3876 0.1348 0.0250 0.0104 0.0315 0.3750 0.0085 0.0056 0.0216
6 0.0082 0.0335 0.0254 0.1409 0.2295 0.0279 0.2669 0.2420 0.0257
7 0.0317 0.0007 0.2116 0.0121 0.2291 0.1894 0.0018 0.0048 0.3187
8 0.2170 0.1965 0.0209 0.2728 0.0657 0.0031 0.0019 0.2111 0.0111
9 0.0024 0.0036 0.0074 0.0009 0.4092 0.0604 0.4846 0.0248 0.0067
10 0.0339 0.0322 0.0159 0.0004 0.0409 0.0076 0.2603 0.0036 0.6052
11 0.3136 0.0257 0.2158 0.0245 0.0005 0.0016 0.0086 0.2082 0.2015
12 0.0192 0.0322 0.4278 0.0307 0.0187 0.0531 0.1712 0.0262 0.2210
13 0.0095 0.0195 0.1936 0.2307 0.0364 0.0445 0.0129 0.2488 0.2041
14 0.0052 0.0221 0.0088 0.5403 0.3377 0.0586 0.0021 0.0058 0.0194
15 0.0026 0.4736 0.0142 0.0152 0.3205 0.1318 0.0097 0.0166 0.0158
16 0.0183 0.0171 0.1063 0.0335 0.2484 0.0033 0.2818 0.0195 0.2719
17 0.1827 0.2299 0.0068 0.0141 0.2395 0.1041 0.0219 0.0036 0.1974
18 0.1624 0.2728 0.2574 0.0020 0.0054 0.0113 0.0139 0.0169 0.2580
19 0.0703 0.0521 0.4787 0.0139 0.3289 0.0017 0.0152 0.0122 0.0272
20 0.2470 0.0190 0.2148 0.1066 0.1674 0.1864 0.0047 0.0193 0.0347
21 0.0383 0.4753 0.0165 0.0204 0.0139 0.0106 0.3416 0.0345 0.0488
22 0.0181 0.0288 0.0008 0.0302 0.4775 0.3370 0.0125 0.0380 0.0571
23 0.0100 0.0289 0.0168 0.3018 0.0063 0.2717 0.0456 0.0284 0.2906
24 0.3227 0.4718 0.0221 0.0598 0.0086 0.0053 0.0010 0.0227 0.0861
25 0.0630 0.0131 0.0320 0.0003 0.0186 0.0022 0.0079 0.2790 0.5839
26 0.0056 0.0016 0.0133 0.0032 0.0272 0.0177 0.8115 0.0214 0.0985
27 0.0097 0.0311 0.0641 0.0184 0.0068 0.2727 0.2621 0.0303 0.3048
28 0.4752 0.0075 0.0069 0.0940 0.0019 0.0125 0.0031 0.3606 0.0382
29 0.3052 0.0039 0.0032 0.0068 0.0029 0.0142 0.0051 0.0204 0.6381
30 0.7537 0.0097 0.0551 0.0129 0.0286 0.0310 0.0255 0.0437 0.0398
31 0.0299 0.0521 0.2231 0.0091 0.2253 0.0000 0.0063 0.4334 0.0209
32 0.1499 0.0108 0.2576 0.2280 0.0384 0.0043 0.2632 0.0144 0.0333
33 0.2713 0.0041 0.0133 0.0129 0.0311 0.0446 0.5675 0.0068 0.0484
34 0.0052 0.5016 0.0216 0.0649 0.0003 0.3428 0.0086 0.0029 0.0520
35 0.0122 0.0562 0.0077 0.8188 0.0215 0.0182 0.0159 0.0105 0.0390
36 0.0200 0.0163 0.3498 0.0067 0.0303 0.0047 0.0019 0.0127 0.5575
37 0.0014 0.0037 0.0153 0.2139 0.0052 0.5059 0.1873 0.0102 0.0571
38 0.2625 0.0753 0.0296 0.0183 0.2670 0.0223 0.2740 0.0269 0.0241
39 0.0474 0.0448 0.0220 0.0186 0.8183 0.0039 0.0208 0.0053 0.0189
40 0.0171 0.0612 0.0321 0.0082 0.0000 0.4944 0.0092 0.3120 0.0657
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Table 5.4: Parameter Settings (PS) from point packing with minimum distance of
0.35 to be used for Exp. C.

PS Togg. Hop Add Del. Swap L-Togg. L-Add L-Del. Null
41 0.2067 0.0029 0.0122 0.2816 0.2316 0.0215 0.0919 0.0122 0.1396
42 0.0178 0.0342 0.0395 0.0172 0.1119 0.5079 0.0029 0.0152 0.2532
43 0.2574 0.1292 0.0079 0.0056 0.0002 0.0042 0.1834 0.0700 0.3422
44 0.0110 0.0630 0.4820 0.0419 0.0261 0.3131 0.0071 0.0381 0.0178
45 0.0267 0.2889 0.0032 0.5082 0.0014 0.0146 0.0687 0.0600 0.0284
46 0.0301 0.0301 0.0071 0.4044 0.0573 0.0039 0.4091 0.0301 0.0278
47 0.0569 0.3108 0.4790 0.0358 0.0080 0.0128 0.0154 0.0723 0.0091
48 0.0333 0.2106 0.0077 0.0519 0.1585 0.3089 0.1942 0.0064 0.0284
49 0.0044 0.0419 0.0082 0.0149 0.0135 0.3141 0.5054 0.0366 0.0611
50 0.0009 0.2389 0.0057 0.0289 0.0257 0.0015 0.2376 0.2397 0.2211
51 0.0821 0.0058 0.4506 0.0577 0.0032 0.0217 0.0515 0.2980 0.0292
52 0.2732 0.0203 0.0281 0.0283 0.0088 0.2954 0.0009 0.0059 0.3392
53 0.0111 0.0214 0.0174 0.0152 0.0125 0.0001 0.0086 0.8152 0.0985
54 0.0002 0.0537 0.0158 0.0841 0.0350 0.2202 0.0004 0.5641 0.0266
55 0.5538 0.0226 0.0153 0.0031 0.3259 0.0139 0.0196 0.0206 0.0251
56 0.0023 0.0460 0.0106 0.0162 0.0154 0.2868 0.0075 0.2704 0.3448
57 0.0104 0.2906 0.2388 0.0064 0.2286 0.0055 0.1638 0.0217 0.0342
58 0.2768 0.0041 0.0092 0.0202 0.0046 0.1133 0.2531 0.2810 0.0376
59 0.0972 0.0064 0.0078 0.4710 0.0035 0.3930 0.0006 0.0134 0.0071
60 0.0358 0.2520 0.1084 0.2817 0.0025 0.2724 0.0053 0.0122 0.0297
61 0.0049 0.0111 0.2527 0.0003 0.3048 0.2133 0.1832 0.0089 0.0208
62 0.0026 0.0376 0.0401 0.2856 0.2110 0.2173 0.0020 0.1825 0.0213
63 0.0046 0.0398 0.1853 0.1300 0.5136 0.0400 0.0105 0.0448 0.0315
64 0.0033 0.0145 0.0048 0.0262 0.0018 0.0256 0.5288 0.0175 0.3774
65 0.0309 0.0066 0.0121 0.0100 0.0148 0.8240 0.0210 0.0067 0.0741
66 0.1586 0.0047 0.1787 0.5368 0.0212 0.0412 0.0020 0.0258 0.0310
67 0.0056 0.0219 0.0177 0.4372 0.0255 0.0147 0.0105 0.4473 0.0196
68 0.0266 0.0188 0.0029 0.0033 0.0665 0.0211 0.0054 0.0002 0.8552
69 0.0156 0.4267 0.0049 0.0292 0.0319 0.0105 0.0206 0.4256 0.0348
70 0.0072 0.5227 0.0999 0.2535 0.0055 0.0030 0.0690 0.0017 0.0373
71 0.0089 0.0002 0.3233 0.0183 0.0020 0.0128 0.4968 0.0249 0.1128
72 0.0141 0.0061 0.0105 0.0114 0.3714 0.0008 0.0136 0.0481 0.5239
73 0.0075 0.2373 0.2009 0.0070 0.0483 0.2103 0.0316 0.2377 0.0194
74 0.3296 0.0009 0.4767 0.0360 0.0263 0.0369 0.0111 0.0012 0.0811
75 0.4925 0.0061 0.0120 0.0517 0.0083 0.0052 0.2846 0.0127 0.1268
76 0.0424 0.0519 0.0112 0.5233 0.0174 0.0070 0.0099 0.0096 0.3273
77 0.2812 0.0270 0.0030 0.0538 0.2586 0.0951 0.0031 0.2592 0.0191
78 0.0046 0.1773 0.0649 0.0990 0.1194 0.0323 0.4604 0.0056 0.0365
79 0.0481 0.3252 0.0009 0.0203 0.0009 0.0301 0.0230 0.0085 0.5430
80 0.0071 0.0223 0.0159 0.0048 0.0002 0.3492 0.0003 0.0201 0.5801
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Table 5.5: Parameter Settings (PS) from point packing with minimum distance of
0.35 to be used for Exp. C.

PS Togg. Hop Add Del. Swap L-Togg. L-Add L-Del. Null
81 0.0197 0.0795 0.7238 0.0001 0.0481 0.0175 0.0393 0.0038 0.0684
82 0.0164 0.7935 0.0291 0.0074 0.0499 0.0299 0.0308 0.0329 0.0100
83 0.0084 0.0159 0.0323 0.0172 0.0021 0.0046 0.4702 0.3775 0.0718
84 0.0586 0.0304 0.4598 0.3598 0.0204 0.0155 0.0272 0.0107 0.0175
85 0.0200 0.0130 0.0721 0.2606 0.0071 0.0326 0.0052 0.0484 0.5409
86 0.0876 0.0420 0.0108 0.0061 0.0690 0.0213 0.0032 0.4764 0.2836
87 0.2740 0.0123 0.0136 0.0024 0.5226 0.0142 0.0491 0.0042 0.1075
88 0.0017 0.2278 0.1060 0.2606 0.0284 0.0043 0.1286 0.0060 0.2365
89 0.5255 0.0053 0.0375 0.0014 0.0560 0.0315 0.0056 0.0120 0.3252
90 0.4981 0.2045 0.2272 0.0210 0.0135 0.0170 0.0013 0.0026 0.0147

to generate the initial population of PSs and as the variation operator used in the

evolutionary algorithm; see further details in [5]. To run this algorithm, a researcher

must choose a value for the minimum allowable distance between PSs. The minimum

distance used here is 0.35 which returned 81-90 PSs, as found in Table 5.3. This

minimum distance was chosen at it allowed testing of a reasonably larger number of

PSs than had been previously used for point packing.

5.3.3 Exp. D: The SIRS Model on the ED Problem

The ED problem was reintroduced to this body of research to determine the impact

on the representation from the new operations added since [45]. This addition also

allows for a natural introduction of the SIRS epidemic model as the change will

ultimately increase the length of epidemics. Now an epidemic has the potential to

last indefinitely, although this did not happen for any epidemics simulated within this

paper. To explore both of these additions a small point packing, using the process

from Section 5.3.2, was conducted with a minimum distance of 0.535 (see Table 5.6).

This distance was chosen as it produced a similar number of PSs as in Section 5.3.1.

To explore the impact of the SIRS model compared to the SIR model, the number

of time steps during which an individual remains removed was set to 6, 8, and 10.

Therefore, the four different environments used to test the ED problem are SIR, SIRS

6, SIRS 8, and SIRS 10.
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Table 5.6: Parameter Settings (PS) from point packing with minimum distance of
0.535 to explore SIR(S) on Exp. D.

PS Togg. Hop Add Del. Swap L-Togg. L-Add L-Del. Null
1 0.0312 0.3528 0.2545 0.2835 0.0065 0.0151 0.0011 0.0324 0.0229
2 0.3988 0.0250 0.4167 0.0122 0.0380 0.0016 0.0325 0.0569 0.0182
3 0.0107 0.0358 0.7801 0.0243 0.0614 0.0563 0.0130 0.0057 0.0128
4 0.0438 0.0188 0.0281 0.0499 0.0003 0.4322 0.0051 0.0170 0.4047
5 0.0085 0.0104 0.0232 0.0177 0.4035 0.0008 0.0613 0.4326 0.0421
6 0.7592 0.0305 0.0024 0.0060 0.0068 0.0344 0.0106 0.1176 0.0326
7 0.0122 0.0196 0.3838 0.0942 0.0070 0.0067 0.0303 0.0173 0.4288
8 0.0020 0.0727 0.0010 0.0435 0.0355 0.0123 0.7946 0.0201 0.0184
9 0.0073 0.0261 0.3406 0.0015 0.0195 0.3741 0.0077 0.2037 0.0195
10 0.4303 0.0847 0.0105 0.0086 0.4158 0.0042 0.0025 0.0208 0.0226
11 0.0108 0.0072 0.0030 0.0617 0.4359 0.0010 0.0129 0.0223 0.4451
12 0.3682 0.0191 0.0319 0.3670 0.0191 0.1107 0.0127 0.0466 0.0247
13 0.0199 0.0032 0.3243 0.1881 0.3991 0.0012 0.0262 0.0269 0.0110
14 0.0180 0.0491 0.0002 0.7646 0.0277 0.0174 0.0661 0.0047 0.0522
15 0.0334 0.4149 0.0113 0.0005 0.0323 0.4130 0.0213 0.0373 0.0360
16 0.0129 0.3896 0.0193 0.0034 0.0038 0.0001 0.1483 0.4096 0.0130
17 0.0093 0.0211 0.0098 0.0020 0.8084 0.0532 0.0000 0.0519 0.0442
18 0.0341 0.0192 0.0044 0.2095 0.0586 0.3328 0.3233 0.0047 0.0134
19 0.0531 0.7894 0.0394 0.0261 0.0114 0.0203 0.0150 0.0164 0.0289
20 0.0038 0.0457 0.4066 0.0768 0.0226 0.0061 0.3952 0.0268 0.0164
21 0.0032 0.3982 0.0129 0.0426 0.0336 0.0115 0.0070 0.0539 0.4371
22 0.0259 0.0140 0.0032 0.2220 0.0056 0.0160 0.0203 0.3623 0.3308
23 0.0053 0.0229 0.0372 0.0192 0.0110 0.0134 0.0435 0.0045 0.8430
24 0.0176 0.3765 0.0125 0.0156 0.3637 0.0094 0.1757 0.0099 0.0190
25 0.3572 0.2016 0.0045 0.0079 0.0026 0.0088 0.3556 0.0510 0.0109
26 0.0027 0.0091 0.0011 0.0628 0.0071 0.8545 0.0484 0.0028 0.0115
27 0.0038 0.0156 0.0221 0.0021 0.0285 0.0267 0.4183 0.0396 0.4432
28 0.0265 0.0456 0.0144 0.0109 0.0179 0.0102 0.0087 0.7966 0.0691
29 0.4238 0.0343 0.0021 0.0319 0.0021 0.0066 0.0487 0.0037 0.4469
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[t]

Figure 5.1: Box and whisker plots of the 30 PM-Fitness results from Exp. A. Vertical
lines added to aid readability and coincide with horizontal lines in Table 5.2. Lower
fitness is better.

5.4 Results and Discussion

A brief summary of the results from the four experiments are provided in Table 5.7.

Each of these are discussed in more detail in the following sections.

5.4.1 Exp. A: Local Add on PM Problem

Box and whisker plots of the fitness values achieved in each of the 26 PSs for testing

local add against the original implementation are displayed within Fig. 5.1. For

Table 5.7: A brief summary of results from the four experiments.

Exp. Testing Summary of Findings
A Local Add Better fitness on all but profile 8
B Local Delete Worse fitness on all profiles
C Point Packing Best fitness values on all profiles
D SIRS Model Longer, more volatile epidemics
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Figure 5.2: Box and whisker plots of the 30 PM-Fitness results from Exp. B. Vertical
lines added to aid readability. Lower fitness is better.

most profiles there is an obvious skew towards a lower, or better, fitness value as the

overall use of add increases regardless of the variant of add in question. Furthermore,

most profiles benefit from the replacement of add with local add. This phenomena is

most obvious in profiles 5, 6, and 7. In contrast, profile 8 does not follow the trend

observed in the other profiles. This fact is most evident in PS 22 to 26 where there is

a upward trend as the use of add is replaced with local add. A caveat to these findings

is that these are slight trends in that the confidence intervals of all PSs within a given

profile overlap. These findings correlate with those found in [20] where local toggle

performed better on all profiles except profile 8. This provides further evidence that

better performance may be achieved if parameters are tuned on a per-profile basis.

5.4.2 Exp. B: Local Delete on PM Problem

Box and whisker plots of the fitness values achieved in each of the 26 PSs for testing

local delete against the original implementation are displayed within Fig. 5.2. All the
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profiles show a decline in performance as the overall use of delete increases regardless

of variant. Additionally, the replacement of delete with its local variant results in

worse fitness for most profiles. This trend is seen most apparently in profiles 4, 5,

6 and 7. With local delete, all profiles receive decreased fitness as delete is replaced

with its local variant. The confidence intervals for each of the PSs on a given profile

mostly overlap in a similar fashion to the local add results demonstrating that the

trends observed are minor.

5.4.3 Exp. C: Point Packing on PM Problem

The results from the different profiles used provides adequate evidence to suggest

that some profiles are impacted significantly by the choice of parameters while others

exhibit better consistency regardless of PS. For example, looking at the results for

profiles 7 and 8 in Fig. 5.3 the same PSs resulted in a fitness range of 8.96-39.68 in

profile 7 while in profile 8 the range was 6.57-9.14. These results point to the previous

observation that performance of the evolutionary algorithm is significantly impacted

by the profile being used to perform the evolutionary algorithm. Additionally, some

PSs have desirable results on some profiles while at the same time have horrible

results on other profiles. This is most notably observed in PSs 30, 74, 81, and 90.

It is also worth noting that the point packing parameter exploration returned PSs

which resulted in fitness values far better than all those observed in both traditional

parameter sweeps for all the profiles. Additionally, these fitness values obtained are of

statistical significance since for all of the profiles, there is no overlap in the confidence

intervals.

To provide additional insight Fig. 5.4 provides a plot of the best, worst and median

rank achieved by each of the 90 point packing PSs, sorted by median. This figure

clearly demonstrates that there are PSs that perform well on all epidemic profiles

used within this study. The three best PSs, namely 26, 33 and 71, all have large

probabilities associated with the local version of the add operator. The proportions

assigned to local add for those three PSs are 81%, 57%, and 50% respectively. This

provides further evidence to suggest that the local add operator is superior to the

original implementation.

5.4.4 Exp. D: SIRS Model on ED Problem

The ED-Fitness values, with 95% confidence interval, for the 29 PSs can be found

in Fig. 5.5. PSs 20, 23, and 27 yield good results across the four environments
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Figure 5.3: Box and whisker plots of the 30 PM-Fitness results for the 90 paramater
setting in Exp. C. Vertical lines added to aid readability and coincide with horizontal
lines in Table 5.6. Lower fitness is better.
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Figure 5.4: Best, median and worst rank achieved from all nine profiles in Exp. C for
each of the point packing PSs using PM-fitness, sorted by increasing median. Lower
rank is better.
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(a) Box and whisker plots of the 30 ED-Fitness results.

(b) The mean ED-Fitness with 95% confidence interval.

Figure 5.5: Results from Exp. D within the four environments: SIR, SIR 6, SIR 8,
and SIR 10. Vertical lines added to aid readability and coincide with the horizontal
lines in Table 5.6. Higher fitness is better.
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used for testing. PS 20 consisted of mainly add and local add; it is common for a

point packing to include an PS exhibiting these characteristics to be among the best

PSs, regardless of problem, see [20]. Both PSs 23 and 27 have large amounts of null

probability with PS 27 also having a significant portion attributed to local add. This

could indicate that a graph closer to the starting graph provides better fitness for the

ED problem. PSs 2, 3, and 6 all performed poorly across the environments. These

PSs were dominated by the toggle and/or add operations, each providing more than

75% of the proportion to toggle and add combined. An interesting observation for the

SIRS 6 series in Fig. 5.5(b) is that the standard deviation is closely correlated with

the overall performance of a PS. This is true for all PSs in the SIRS 6 environment

other than PS 3, which is dominated by the add operation. Also, PS 8 performs

remarkably with the highest mean epidemic duration of 483 time steps and the best

fitness of 939 time steps, a value 235 above any network found by any other PS. In

contrast, PS 8 has sub-optimal results for SIRS 8 and SIRS 10. PS 8 also consistently

has a large standard deviation compared to the other PSs in all environments.

Regardless of PS there are clear trends moving from the SIR model towards the

SIRS 10, 8, and 6 models. Firstly, the standard deviation elevates dramatically,

ranging between 1.40-3.55 in the SIR model to 44.3-115.5 with SIRS 6. This means

the ability for a PS to result in stable network behaviour between multiple epidemic

simulations is impacted greatly. Secondly, as expected the ability for individuals to be

susceptible a second time has dramatically increased the length of epidemics observed.

The average epidemic length progressed from 40.4, to 114.6, 183.2, and finally 361.2.

This value will increase to the point of epidemics which last infinitely long due to the

definition used for epidemic length in this paper and the permission of cycles within

the graph.

5.5 Conclusions and Future Work

The findings of this paper as well as [3], [45] and [20] indicate that three of the four

new local operators resulted in better fitness for all nine epidemic profiles. Therefore,

moving forward there is strong evidence to suggest that the hop, local toggle, and

local add operations belong within the generative representation discussed in this

paper. The local delete operation can be kept for completeness though should be set

to 0% when performing traditional parameter sweeps.
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Case Study 2

Pandemic: A Graph Evolution Story

This case study was originally published in CIBCB 2019 conference proceedings [24].

The Graph Evolution Tool (GET) was built to generate personal contact networks

representing who can infect whom within a community. The tool is expanded in order

to permit an infection scheme which divides the community into different districts,

thus permitting within-district and between-district infections. The evolutionary al-

gorithm comprising GET is expanded upon to simulate communities which include

512 individuals in up to eight districts, initially infecting one person in one district

and spreading through a community. The overall goal is to generate communities that

will maximize the length of an epidemic. The problem associated with adequately ex-

ploring the numerous parameters accompanying evolutionary algorithms is addressed

using a point packing and insight from previous work. The Susceptible-Infected-

Removed (SIR) model of infection was chosen as it provides a sufficient balance of

simplicity and complexity for the problem.
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6.1 Introduction

In [26], the researchers use personal contact networks to represent a human population

and compare simulated epidemics against data from an outbreak of H1N1 in 2009 on

a university campus. Their personal contact network is generated in a series of layers

with each layer adding more edges to the network. The first layer has edges between

members living in the same residence room. The second layer connects members

who are enrolled in the same class. Successive layers represent less intense and less

frequent interactions between individuals (e.g. attending the same university). The

network begins as vertices without any edges and the layers are applied such that

the graph is connected only after the final layer is applied. Thus, the final layer adds

edges between several sub-networks which share no edges between one-another.

The current study combines a similar network structure as [26] with the Local

THADS-N generative representation. The problem of maximizing epidemic duration

is used to test personal contact networks that are arranged into a set of sub-networks.

This arrangement is analogous to a set of districts or neighbourhoods, each with

separate personal contact networks.

Within a district individuals have frequent interactions, while there are less fre-

quent interactions with nearby districts such as when an individual travels from their

own neighbourhood to another. The study thus considers how the length of the

epidemic is affected when an epidemic starts in one district and then with some

probability ”jumps” to another district.

The remainder of this paper is organized as follows. Section 4.1 formally defines

the representation. Section 5.3 reviews the design of the experiments, how parameters

are obtained and their values. The results from the experiments will be presented

and analyzed in Section 5.4. Lastly, Section 5.5 will conclude the paper as well as

present possibilities for future research.

6.2 The Local THADS-N Representation

Recall that the Local THADS-N representation does not directly specify a solution

to a problem. Instead, the representation provides several editing operations that can

be used to modify a graph. A solution to the problem is then specified by applying

a sequence of edits to the initial graph.

In this study, the strings of operations are applied to an initial graph that has the

general structure shown in Fig. 4.1. The example shown has 128 vertices but it is
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Table 6.1: The sets of Local THADS-N operation densities used for constructing
solutions to the epidemic duration problem

Set Toggle Hop Add Delete Swap L-Toggle L-Add L-Delete Null Justification for Choice
1 0.04381 0.01885 0.02812 0.04993 0.00027 0.43224 0.00508 0.01696 0.40473 High Fitness
2 0.00382 0.01564 0.02205 0.00214 0.02848 0.02672 0.41832 0.03961 0.44321 High Fitness
3 0.03415 0.01919 0.00443 0.20950 0.05859 0.33277 0.32325 0.00469 0.01343 High Fitness
4 0.01763 0.37651 0.01251 0.01565 0.36368 0.00940 0.17572 0.00993 0.01898 Low Standard Deviation
5 0.35718 0.20156 0.00448 0.00787 0.00263 0.00880 0.35559 0.05101 0.01090 Low Standard Deviation
6 0.01221 0.01963 0.38384 0.09418 0.00695 0.00673 0.03030 0.01730 0.42884 Low Standard Deviation
7 0.00377 0.04566 0.40664 0.07685 0.02258 0.00606 0.39520 0.02680 0.01644 Both
8 0.00197 0.07271 0.00097 0.04354 0.03551 0.01226 0.79455 0.02013 0.01836 Both

generalized to graphs with the desired number of vertices for a given district. This

structure was chosen as previous research [8, 11] demonstrated that graphs having

vertices with four or five edges are desirable for the test problem at hand.

One possible representation for directly evolving graphs with n vertices would be a

binary gene with
(
n
2

)
loci, each of which specifies the presence or absence of a possible

edge. This representation seems natural. However, it was found to perform badly on

many test problems [10], as were its subsequent modifications. The reason for this

poor performance relates to the fact that almost all interesting graphs are sparse,

while very few graphs represented in this manner are sparse. Although it is possible

to adjust the primitive probability of an edge existing, this helps only in a limited

way because in this representation crossover has a high probability of increasing the

number of edges when applied to two sparse graphs.

The generative representation used in this study also searches a relatively re-

stricted portion of network space, namely a sphere, in the space, whose centre is the

starting graph and with radius equal to the number of allowed edits.

6.2.1 Past solutions to the epidemic duration problem

Recall that networks yielding a long epidemic duration were found to be ”banana”

shaped. An example of this shaped network is included in Figure 6.4(a). In this work

we would expect individual districts to become banana shaped.

6.3 Experimental Design

6.3.1 Point Packing Parameter Selection

The current study relies on sets of parameters from an earlier study [21]. These

parameters were determined by point packing from Section 4.5, a mechanism which
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Table 6.2: The variables associated with the various epidemic communities for the
epidemic duration problem

Community k district Size Total Vertices α′

A 1 512 512 N/A
B 4 128 512 0.10
C 4 128 512 0.05
D 8 64 512 0.10
E 8 64 512 0.05

Original 1 128 128 N/A

thoroughly explores the parameter space without the overhead of a full factorial explo-

ration. The parameter sets used here were selected as they were the top-performing

from amongst those generated, which also considered the problem of maximizing epi-

demic duration, albeit for a different epidemic model and only for single communities

of a fixed size. A minimum distance of 0.535 was specified to run the point packing,

generating some 29 parameter sets.

6.3.2 Description of Experiments

Eight sets of parameters are used in the current study. Of the 29 parameter sets from

the previous study, we selected the five that produced results with the highest fitness,

and the five that produced results with the lowest standard deviation resulting from

30 runs in the previous study. Listed in Table 6.1, it can be seen that two parameter

sets satisfied both of these requirements, therefore there are eight parameter sets in

total.

The densities for a given parameter set are designed to add up to 1.0. It may ap-

pear that there are some rather unusual choices of values for parameters in comparison

to a traditional parameter sweep. For example, in set 1 toggle has a probability (den-

sity) of 4.381% of being selected for any given entry in the chromosome. A more

traditional parameter sweep would be more likely to choose probabilities that were

(for example) multiples of 5 or 10%. This type of situation, however, is a feature of

point packing and it is one of the reasons it is able to explore the parameter space so

well.

Each of the eight parameter settings is applied to five communities, listed in Table

6.2 as communities A–E. The overall number of individuals in a community is held

constant at 512. Each of these individuals belongs to one of 8 separate districts each

of size 64 (communities D and E), 4 separate districts each of size 128 (communities
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B and C), or a single district of size 512 (community A). For all communities, the

probability of within-district infection is held constant at α = 50%. The probability

of between-district infection is either α′ = 5% or 10% for 4 or 8 districts, and does not

apply in community A as this consists of only one district. For comparison purposes,

we also consider the problem of epidemic duration on a community with a single

district of size 128 (listed as “original” in Table 6.2).

6.4 Results and Discussion

The results shown in Fig. 6.1 represent the box and whisker plots of the maximum

epidemic lengths achieved by 30 runs of the evolutionary algorithm. Along with these,

the results achieved from epidemics on a community comprised of a single district

with 128 vertices is included within Fig. 6.1(f) and labelled as “original”. This

is provided as a comparison against the five communities totalling 512 individuals

each (communities A–E) implemented in this study, allowing some insight as to what

happens within a single district which is of average size in comparison to the others.

A rough sine wave pattern can be seen between parameter sets across the commu-

nities, although the variance from this pattern is observed most dramatically when

four districts are used, as in communities B and C. In contrast, using eight districts

flattened the observed pattern between parameter sets. One outlier, dominated by

the hop and swap operations, is parameter set 4; in this case, the number of districts

has a negative impact on the fitness achieved regardless of the value of α′. Parameter

sets 2 and 8 each result in the best values for three of the communities; Original, D,

and E yielded the best results with parameter set 2 and the rest did so with param-

eter set 8. As parameter set 2 relies on local add and null a large number of local

connections will exist between district members when compared to those without

these conditions. Parameter set 8 uses mostly local add, with marginal probability

attributed to the other edge operations. Parameter settings with a sizeable use of

the local add operation have been among point packing’s most fit results since its

introduction to the representation in [19,21].

The epidemic data from the communities is combined into Fig. 6.2. Most glar-

ingly, it is apparent that, of the communities tested, the optimal one for maximizing

epidemic duration placed all individuals into a single district. This is based on the

fact that community A clearly outperforms all the other communities tested. The ad-

dition of separate districts was expected to allow the epidemic to spread more slowly;

ideally, the epidemic would spread to another district just as it had infected the last
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(a) Community A (b) Community B

(c) Community C (d) Community D

(e) Community E (f) Original

Figure 6.1: Box and whisker plots of the maximum epidemic duration from 30 runs
of the evolutionary algorithm across all communities and all operation probability
densities.
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Figure 6.2: The mean of the maximum epidemic duration, with 95% confidence in-
terval, from 30 runs of the evolutionary algorithm for all communities.
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Figure 6.3: The mean of the maximum epidemic duration, with 95% confidence inter-
val, from 30 runs of the evolutionary algorithm on communities with a single district.
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members of its current district. This situation, however, did not materialize; likely

this was due to a value of α′ which was too high, resulting in the epidemic spreading

too quickly between districts. This is evidenced by the fact that decreasing the value

of α′ provided significant fitness increases for all but one (parameter set, community)

pair, namely parameter set 4 when comparing communities B (with α′ = 0.10) and C

(with α′ = 0.05 and all other settings identical to B). The significant impact observed

by changing the values of α′, the number of districts, and the district size indicate

that further optimization is required in order to best pair community settings with

probability densities.

Furthermore, Fig. 6.3 features two communities, each comprised of a single district

with either 128 or 512 vertices. This was included to demonstrate how a change to

only the district size can impact the fitness evaluation. Obviously, the larger district

is able to sustain a longer epidemic as there are more individuals to infect, so the

increase is unsurprising. However, note that the four-fold increase in the number

of vertices, from 128 to 512, only results in an approximately two-fold increase in

epidemic duration, from 39.83–44.17 for 128 vertices to 77.5–85.03 for 512 vertices. It

is also important to note that any increase in duration also coincides with an increase

in standard deviation, as a wider range of possibilities are present regardless of other

factors being considered.

Lastly, Fig. 6.4 provides visual representations of three districts which achieved

the best fitness for communities with districts of size 128 using parameter setting

8. Recall that the three districts represented in the figure differ in both their α′

values and fitness evaluations. The original community, with a single district, will

have evolved differently than those within communities B and C as the fitness value

depends on the length of an outbreak within one district as compared to four in

communities B and C. The personal contact network from previous work appears

to have diverged more from the initial ring structure than the districts from B and

C; these networks have a significant area of their networks roughly resembling the

starting ring. In contrast, the original district resembles the “banana” shape which

has been a common trend within previous work, though there still exists a section of

the network with a ring shape. Looking closely at the networks from the districts for

communities B and C can provide some insight into how α′, which is the probability of

transmission between districts, impacts network evolution. Community B’s district,

with α′ = 0.10, features a smaller tail and a larger proportion of the population

still within the original ring structure as compared to community C with α′ = 0.05.

Looking again at the original community, which has no α′ value as it is the entire
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(a) Original (b) Community B

(c) Community C

Figure 6.4: The personal contact networks of size 128 representing the district which
resulted in the longest epidemic with parameter set 8 within the designated commu-
nity. Patient zero is labelled for clarity.
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community, a pattern emerges: lacking an α′ value is effectively the same as an α′

value of 0.00. Therefore, as α′ increases the districts resemble the original structure

more closely. It is also interesting to note that “patient zero”, the first person infected

in a given district, is at the end of the tail in all cases.

6.5 Conclusions and Future Work

The inclusion of districts with the model has allowed for the Graph Evolution Tool

(GET) to increase its functionality when it comes to the goal of being able to use

the model to simulate epidemics on human populations. However, there are several

additional areas of development available to further improve the model.

6.5.1 Between-district and within-district infection rates

A logical starting point would be to further investigate the effect of modifying the

values of α′, the between-district infection rate and α, the within-district infection

rate. In the current study α always had a fixed value of 0.5. Meanwhile, this study

demonstrated that a lower value for α′ had a positive effect upon epidemic duration.

A more thorough investigation of the settings for these two parameters would provide

greater insight on their impacts across the communities investigated here as well as

other, larger, social contact networks. A further possibility is the implementation of

α′ as a function based on the number of infected individuals or some combination of

properties within a community or its districts.
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Case Study 3

Modelling of Vaccination Strategies
for Epidemics using Evolutionary
Computation

This case study was originally published in CEC 2020 conference proceedings [22].

Personal contact networks that represent social interactions can be used to identify

who can infect whom during the spread of an epidemic. The structure of a personal

contact network has great impact upon both epidemic duration and the total number

of infected individuals. A vaccine, with varying degrees of success, can reduce both

the length and spread of an epidemic, but in the case of a limited supply of vaccine

a vaccination strategy must be chosen, and this has a significant effect on epidemic

behaviour.

In this study we consider four different vaccination strategies and compare their

effects upon epidemic duration and spread. These are random vaccination, high degree

vaccination, ring vaccination, and the base case of no vaccination. All vaccinations

are applied as the epidemic progresses, as opposed to in advance. The strategies are

initially applied to static personal contact networks that are known ahead of time.

They are then applied to personal contact networks that are evolved as the vaccination

strategy is applied.
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7.1 Introduction

Recall that a personal contact network represents connections within a community

of individuals along which a disease can spread. These networks can be generated

through the use of demographic information, historical epidemic data, or by using an

existing network such as YouTube watch history [40].

In the case of a limited supply of vaccine, selection of individuals for vaccination

can have a significant impact on the severity of an epidemic. Four different vaccination

strategies were considered in [50] and [44]. These included the simple strategy of

choosing random individuals to be vaccinated, and three other strategies based on

the structure of the personal contact network, which is known ahead of time.

The current study aims to evaluate four vaccination strategies to determine their

relative effectiveness in reducing the length of an epidemic or cumulative number of

infected individuals. Other than the baseline case in which no vaccination occurs,

these strategies are random vaccination, high-degree random vaccination, and ring

vaccination. The first two of these are also considered in [50] and [44] although we

model the situation in which individuals are vaccinated during the time at which the

epidemic is spreading. We measure the effect of the strategies upon epidemic duration

and epidemic spread. Initially, the different strategies are applied to personal contact

networks that are known ahead of time and static. The strategies are later applied to

personal contact networks that evolve in reaction to vaccination, with these networks

designed to maximize either epidemic duration or epidemic spread. We analyze the

relative performance of the different strategies, as well as properties of the personal

contact networks evolved.

7.2 Experimental Design

The Local THADS-N generative representation from Section 4.1 will be used in this

case study to generate the personal contact networks which then are assessed for

performance against the test problems.

In this study we consider the modelling of an epidemic with respect to two dif-

ferent fitness functions, each of which is combined with the four different vaccination

strategies from Section 4.4. The two fitness functions are Epidemic Duration and

Epidemic Spread from Section 4.3.
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Table 7.1: Parameter Settings for probability densities of the edge operations. Cre-
ated using a point packing with minimum distance of 0.535 from [21]. The header
row is populated with PS meaning parameter setting, followed by the edge operations
in the order listed in Section 5.2.1

PS Togg. Hop Add Del. Swap L-Togg. L-Add L-Del. Null
1 0.0312 0.3528 0.2545 0.2835 0.0065 0.0151 0.0011 0.0324 0.0229
2 0.3988 0.0250 0.4167 0.0122 0.0380 0.0016 0.0325 0.0569 0.0182
3 0.0107 0.0358 0.7801 0.0243 0.0614 0.0563 0.0130 0.0057 0.0128
4 0.0438 0.0188 0.0281 0.0499 0.0003 0.4322 0.0051 0.0170 0.4047
5 0.0085 0.0104 0.0232 0.0177 0.4035 0.0008 0.0613 0.4326 0.0421
6 0.7592 0.0305 0.0024 0.0060 0.0068 0.0344 0.0106 0.1176 0.0326
7 0.0122 0.0196 0.3838 0.0942 0.0070 0.0067 0.0303 0.0173 0.4288
8 0.0020 0.0727 0.0010 0.0435 0.0355 0.0123 0.7946 0.0201 0.0184
9 0.0073 0.0261 0.3406 0.0015 0.0195 0.3741 0.0077 0.2037 0.0195
10 0.4303 0.0847 0.0105 0.0086 0.4158 0.0042 0.0025 0.0208 0.0226
11 0.0108 0.0072 0.0030 0.0617 0.4359 0.0010 0.0129 0.0223 0.4451
12 0.3682 0.0191 0.0319 0.3670 0.0191 0.1107 0.0127 0.0466 0.0247
13 0.0199 0.0032 0.3243 0.1881 0.3991 0.0012 0.0262 0.0269 0.0110
14 0.0180 0.0491 0.0002 0.7646 0.0277 0.0174 0.0661 0.0047 0.0522
15 0.0334 0.4149 0.0113 0.0005 0.0323 0.4130 0.0213 0.0373 0.0360
16 0.0129 0.3896 0.0193 0.0034 0.0038 0.0001 0.1483 0.4096 0.0130
17 0.0093 0.0211 0.0098 0.0020 0.8084 0.0532 0.0000 0.0519 0.0442
18 0.0341 0.0192 0.0044 0.2095 0.0586 0.3328 0.3233 0.0047 0.0134
19 0.0531 0.7894 0.0394 0.0261 0.0114 0.0203 0.0150 0.0164 0.0289
20 0.0038 0.0457 0.4066 0.0768 0.0226 0.0061 0.3952 0.0268 0.0164
21 0.0032 0.3982 0.0129 0.0426 0.0336 0.0115 0.0070 0.0539 0.4371
22 0.0259 0.0140 0.0032 0.2220 0.0056 0.0160 0.0203 0.3623 0.3308
23 0.0053 0.0229 0.0372 0.0192 0.0110 0.0134 0.0435 0.0045 0.8430
24 0.0176 0.3765 0.0125 0.0156 0.3637 0.0094 0.1757 0.0099 0.0190
25 0.3572 0.2016 0.0045 0.0079 0.0026 0.0088 0.3556 0.0510 0.0109
26 0.0027 0.0091 0.0011 0.0628 0.0071 0.8545 0.0484 0.0028 0.0115
27 0.0038 0.0156 0.0221 0.0021 0.0285 0.0267 0.4183 0.0396 0.4432
28 0.0265 0.0456 0.0144 0.0109 0.0179 0.0102 0.0087 0.7966 0.0691
29 0.4238 0.0343 0.0021 0.0319 0.0021 0.0066 0.0487 0.0037 0.4469
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7.2.1 Static Graphs

The epidemic duration (ED) problem [8] seeks to find graphs which promote longer-

lasting epidemics. In considering the epidemic duration problem, previous work [21]

generated a large number of graphs. As a first step in the current study, we take the

best 30 of these, i.e. those for which epidemics had the longest duration. Using these

graphs, we then evaluate the length of the epidemic when each of the four vaccination

strategies listed in Section 4.4 are applied.

The epidemic spread (ES) problem seeks to find graphs which promote more

widespread epidemics, i.e. those in which more individuals are infected over the course

of the epidemic. As this problem has not been previously addressed, we generate

graphs designed to maximize epidemic spread, using the process defined in Section

4.2. Equivalently to the ED problem, we take the best 30 of these, i.e. those for which

the maximum number of individuals were infected. We then evaluate the spread of

the epidemic when each of the four vaccination strategies listed in Section 4.4 are

applied.

Each of the above represents a situation in which a personal contact network is

known ahead of time and does not change throughout the course of the epidemic,

regardless of vaccine strategy applied.

7.2.2 Evolving Graphs

To represent a situation in which a personal contact network changes in reaction to

vaccination, we also evolve graphs. To evolve the graphs, we follow the process defined

in Section 4.2. Graphs are evolved with respect to (a) maximizing epidemic length

and (b) maximizing epidemic spread. In each case, the graphs are evolved while a

chosen vaccination strategy is being applied. As before, we use the four vaccination

strategies described in Section 4.4.

7.3 Results and Discussion

This section provides the results for the performance of the four vaccination strategies.

These are evaluated for their effect on both epidemic duration and epidemic spread,

and for both static graphs and evolved graphs.

Note that the evolutionary algorithm is on the side of the epidemic, i.e. works

towards providing personal contact networks which maximize the fitness (duration or

spread). From the other side, the goal of the vaccination strategies is to reduce the
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Figure 7.1: The mean epidemic length, with 95% confidence interval, of epidemics
unleashed on the 30 best personal contact networks for each of the 29 parameter
settings with the specified vaccination strategy. The personal contact networks are
from [21].

length or spread of an epidemic. Therefore, in terms of vaccination strategy lower

values are better, even though both fitness functions have the goal of maximizing

their value during evolution.

7.3.1 Static Graphs

Epidemic Duration

The results for the 29 parameter settings under the epidemic duration problem, ap-

plied to a static environment with the four vaccination strategies, are available in

Figure 7.1. Recall that the epidemic is not permitted to evolve in response to the

chosen vaccination strategy in a static environment. Therefore, the epidemic length

without any vaccination is expected to be much higher than with any vaccination

strategy as the personal contact network was explicitly evolved to achieve a maxi-

mal epidemic length without any vaccinations. This turns out to be true: for the

29 parameter settings the mean epidemic length without vaccination ranged between

33.233− 44.1667 compared to a drastically reduced 7.3− 19.5667 for the other three

vaccination strategies. Regardless of strategy, within a static environment the intro-

duction of vaccines has a significant impact on overall length of the epidemic within
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Figure 7.2: The mean epidemic spread, with 95% confidence interval, of epidemics
unleashed on the 30 best personal contact networks for each of the 29 parameter
settings with the specified vaccination strategy. The personal contact networks are
from [21].

the population for all parameter settings.

Other than when there is no vaccination, the random vaccination strategy per-

forms worst for all parameter settings except experiments 5, 17, and 20. However,

the confidence intervals also typically overlap between these strategies and are thus

not statistically significant. The random high-degree vaccination strategy performs

exceptionally well in experiment 18 with a mean length of 11.9± 1.7319 compared to

17.5333± 3.195 for ring vaccination and 36.4333± 1.2142 without vaccination. Ring

vaccination and high-degree vaccination perform similarly for the majority of exper-

iments, though in experiments 5, 10, and 17 ring vaccination outperforms the other

strategies. Lastly, the standard deviation for ring vaccination is larger than the other

vaccination strategies leading to more variability in outcome when that strategy is

chosen.

Epidemic Spread

The results for the 29 parameter settings under the epidemic spread problem, applied

to a static environment with the four vaccination strategies, are available in Figure

7.2. The lack of a vaccine results in the totality of the population becoming infected
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during the course of an epidemic for each of the 30 runs performed on all parameter

settings except for 2, 3, and 6. In experiments 2 and 3 the number of edges in the

network happened to be higher than the cutoff to make the fitness evaluate to zero

for all vaccination strategies. Recall that the epidemic spread fitness is zero whenever

the total number of edges is more than 5 times the total number of nodes for a

personal contact network. Also, in experiment 6, this was also the case for 16 of the

30 networks tested. These 16 fitness values of zero were removed from experiment 6

for all strategies before the mean fitness was calculated in order to not dramatically

skew the results towards zero.

The inclusion of vaccination does an adequate job at limiting the spread of the

epidemic throughout the population, regardless of which strategy is chosen. First,

the random vaccination strategy does not outperform the other strategies nor does it

under-perform them. Rather, the random strategy typically falls between the perfor-

mance of high-degree and ring vaccination with the confidence intervals overlapping

or one being contained within another. However, random vaccination can achieve

superior fitness, though these scenarios greatly increase the variance of the fitness as

can be seen in parameter settings 8, 22, and 28. Similarly, in experiments 16, 21,

and 27 the random high-degree vaccination strategy also achieves fitness values that

are less than the other strategies; this is at the cost of consistency of outcome when

the strategy is applied. Finally, the ring vaccination strategy behaves in two distinct

ways: a large variance and thus inconclusive results (e.g. for experiments 4 and 25)

or a small variance and poor performance (e.g. experiments 11 and 26).

7.3.2 Evolving Graphs

Epidemic Duration

The results for the 29 parameter settings under the epidemic duration problem, ap-

plied to an evolving environment with the four vaccination strategies, are available in

Figure 7.3. Recall that in an evolving environment a strategy for vaccination is chosen

and the evolutionary algorithm is then permitted to find personal contact networks

which maximize fitness while vaccines are present. Therefore, it is not surprising that

the lengths achieved in environments with vaccine present perform much better than

the static results from above. Most obviously, the ring vaccination strategy performs

poorly compared to the random vaccination strategies. This could be because of the

less random selection of individuals to vaccinate, permitting the evolutionary algo-

rithm to develop strategies against the fixed strategy employed by ring vaccination.

67



CHAPTER 7. CASE STUDY 3

Figure 7.3: The mean epidemic length, with 95% confidence interval, of the best
fitness value achieved on 30 runs of the evolutionary algorithm for each of the 29
parameter settings with the specified vaccination strategy.

In comparison, an entirely random strategy leaves little intuition to be gained by the

evolutionary algorithm across generations.

The random vaccination strategies perform similarly to one another for all param-

eter sets, with the confidence intervals overlapping for all but experiments 15, 19, and

22. Random high-degree vaccination performs best in experiments 15 and 19 while

the fully random vaccination strategy performs best in experiment 22. Furthermore,

the overall reduction in the length of an epidemic is not consistent across parameter

settings. For example, in experiment 10 the mean epidemic length went from 33.233

without a vaccine to 29.3667, 29.5333, and 30.3 for random vaccines, random high-

degree vaccines, and ring vaccines respectively; this is a reduction of around three

time steps. In contrast, in parameter setting 27 the mean lengths go from 44.1667 to

33.0667, 33.6667, and 34.4333, a reduction of around 10 time steps. Therefore, the

overall impact of a vaccine on epidemic length is more dependent on the underlying

personal contact network than the vaccination strategy being applied in this case.

Epidemic Spread

The results for the 29 parameter settings under the epidemic spread problem, applied

to an evolving environment with the four vaccination strategies, are available in Figure
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Figure 7.4: The mean epidemic spread, with 95% confidence interval, of the best
fitness value achieved on 30 runs of the evolutionary algorithm for each of the 29
parameter settings with the specified vaccination strategy.

7.4. As with the static epidemic spread, parameter settings 2 and 3 both universally

failed the fitness functions requirement that the total number of edges cannot exceed

5 times the total number of vertices, and are thus omitted to better see the contrast

between the more interesting results from the other experiments. Also, experiment 6

once again has 16 of the 30 runs fail this requirement for all four vaccination strategies

and these were removed before calculating the mean for experiment 6.

The ring vaccination strategy performs worse than both random strategies by a

significant margin for all the experiments. Once again, this is likely a product of the

evolutionary algorithm devising contact networks which counteract the effect of the

ring vaccination strategy. Both random and high-degree strategies’ results once again

overlap in all but a few experiments, namely experiments 1, 15, and 24. The random

high-degree strategy outperforms the random strategy for these parameter settings

making them the optimal strategy in this case.

7.3.3 Static vs Evolving Graphs

The static environment does not allow for the personal contact network to respond to

the vaccination strategy being applied to the population. Therefore, the outcomes of

the strategies within the static environment have a much larger variance compared to
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those who undergo evolution. Thus, the result of applying the strategy varies greatly

between runs. Whereas, when the networks are permitted to evolve the fitness values

increase and variance decreases. This phenomenon is also what leads to the vaccine

strategies performing better in a static environment as compared to one which is

evolving.

7.3.4 Parameters

The parameter settings have a great deal of influence over the final networks being

generated and thus they also greatly impact the performance of the various vaccine

strategies above. Recall, experiment 2 and 3 failed when tested against the epidemic

spread fitness function. Both of these settings had an abundance of add density with

0.4167 and 0.7801 respectively, which would result in an abundance of edges to be

added to the graph likely leading to the epidemic spread fitness to evaluate to zero

for all of the runs. Parameter setting 2 also had the toggle density set to 0.3988.

Experiment 5 had a value of 0.4035 for swap and 0.4326 for local delete. Local delete

would go about removing edges from triples of vertices which remain connected after

the edge is deleted. This reduction in local connections can lead to a more restricted

path for the epidemic to spread, improving the likelihood that the ring vaccination

strategy immunizes a node necessary to access subsections of the graph. Experiment 5

accomplishes this on the epidemic length problem in a static environment. Parameter

setting 6 also fails for 16 of the 30 runs when epidemic spread fitness is used which is

likely the result of the density for toggle being 0.7592. As toggle can add or remove

edges and the edges chosen are at random, it seems reasonable that this reliance on

toggle is the culprit for why the fitness calculation fails approximately half the time.

7.4 Conclusions and Future Work

Four different vaccination strategies were evaluated for their effect upon epidemic

duration and epidemic spread. These were first applied to personal contact networks

known ahead of time, and that had been created specifically to maximize the duration

or spread of the epidemic. They were then applied to personal contact networks

that were evolved with a goal of maximizing epidemic duration or spread as the

vaccination strategy was applied. For all of the above, the vaccinations were applied

as the epidemic progressed, as opposed to in advance. This is closer to a real-life

situation than one in which all vaccines are applied prior to the start of the epidemic
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and on a known, static graph.

When applied to a static network, it was demonstrated that all vaccination strate-

gies greatly reduced both duration and spread of the epidemic. Random vaccination

was tied to increased epidemic duration in comparison to both ring vaccination and

high-degree vaccination, but generally slightly reduced spread in comparison to the

others.

When applied to evolved networks, again all vaccination strategies reduced both

duration and spread of the epidemic, but not as drastically. For these networks,

random vaccination actually reduced epidemic duration and spread. This was possibly

due to the fact that the evolutionary algorithm was unable to take advantage of a

fixed strategy, and also the fact that the random vaccination strategy is more likely

to choose a node further away from currently infected individuals, thereby allowing

some sections of the graph to prevent infection passing through.

All of the above trends concerning relative performance of the vaccination strate-

gies hold across all 29 parameter sets considered, with some minor variation. This is

despite the fact that the graphs produced by the different parameter sets are quite

different from one another.
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Case Study 4

Evolving the Curve

This case study was originally published in CIBCB 2020 conference proceedings [23].

Evolutionary algorithms are used to generate personal contact networks, modelling

human populations, that are most likely to match a given epidemic profile. The

Susceptible-Infected-Removed (SIR) model is used and also expanded upon to allow

for an extended period of infection, termed the SIIR model. The networks gener-

ated for each of these models are thoroughly evaluated for their ability to match nine

different epidemic profiles.
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8.1 Introduction

This paper focuses on the ability to generate personal contact networks, representing

physical connections between community members, which satisfy the data about the

number of infections per time period. A personal contact network is the foundation

of an epidemic model in which an epidemic spreads along the links of the network.

This study compares two models of disease spread, in preparation for incorporating

an asymptomatic state to match the behavior of SARS-Covid-2. The approach of

employing a generative solution to a test problem is known as graph induction which

has a variety of applications [16,29,34]. The representation used within this paper is

known as the Local THADS-N generative representation; the metric used to evaluate

the performance of a network is epidemic profile matching, introduced in [11]. The

representation is described in detail in Section 4.1.

8.2 Background

8.2.1 The Models of Infection Used

The Susceptible-Infected-Removed (SIR) model of infection [30,33] provides a simple

model for the simulation of epidemics. In the SIR model, the epidemic disease lasts a

single time step within an infected individual. The current study also allows for the

infected stage to last two time steps, which we term SIIR; conceptually, this relates

to a situation in which an individual is contagious for a longer length of time, thereby

providing them an additional timestep in which they can infect others. This paper

compares graphs evolved to match epidemic profiles with the SIR and SIIR models to

assess the degree of influence the model has on the graph that arises. Another reason

the SIIR model was chosen was in preparation for incorporating the SEIR model in

which Exposed individuals have contracted the disease yet are not infectious; this is

akin to the incubation period of a virus.

8.3 Experimental Design

A steady state evolutionary algorithm [43] is used to generate the solutions, which

are strings of edge operations. All variables with respect to system design were

determined empirically.
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Table 8.1: The sets of Local THADS-N edge operation probabilities from [21] for
constructing solutions using the evolutionary algorithm described in Section 4.2

Experiment Toggle Hop Add Delete Swap L-Toggle L-Add L-Delete Null
PS1 0.2528 0.0142 0.0087 0.2138 0.0021 0.2267 0.2228 0.0079 0.0509
PS2 0.0056 0.0016 0.0133 0.0032 0.0272 0.0177 0.8115 0.0214 0.0985
PS3 0.2713 0.0041 0.0133 0.0129 0.0311 0.0446 0.5675 0.0068 0.0484
PS4 0.0044 0.0419 0.0082 0.0149 0.0135 0.3141 0.5054 0.0366 0.0611
PS5 0.0090 0.0002 0.3233 0.0183 0.0020 0.0128 0.4968 0.0249 0.1128
PS6 0.4925 0.0061 0.0120 0.0517 0.0083 0.0052 0.2846 0.0127 0.1268
PS7 0.0197 0.0795 0.7238 0.0001 0.0481 0.0175 0.0393 0.0038 0.0684
PS8 0.0084 0.0159 0.0323 0.0172 0.0021 0.0046 0.4702 0.3775 0.0718

8.3.1 An Entropic Pseudometric for Comparing Graphs

One of the major hypotheses under test in this study is that, within the same epidemic

profile, changing the model of disease spread will cause the graph induction system to

produce substantially different graphs. To document this, we need a way to compare

graphs that is not obfuscated by the many irrelevant variations in structure. A

pseudometric that has these qualities is the Column-Entropy distance(CE-distance)

[35]. Computation is based on the simulated diffusion of a collection of different

gasses, one per vertex, with absorption of all gasses present taking place at a low

rate at each vertex. This process converges rapidly as gas is added arithmetically

but decays exponentially via absorption. The result is a matrix, with rows indexed

by vertices and columns indexed by gasses, giving the amount of each gas at each

vertex. Columns are normalized to sum to one and then the entropy of each column

is computed, yielding an entropy vector for the network. The entropy associated with

a column represents the evenness of distribution of other nodes as destinations of

random walks beginning at the node indexing the column. Entropies are then sorted

into decreasing order to create sorted entropy vector for a network. The CE-distance

between two networks is the Euclidean distance between their sorted entropy vectors.

The sorting step is a fast method of approximating correspondence between nodes in

the two networks. A more detailed explanation of this, and other pseudometrics on

networks, appears in [35]. A pseudometric is a distance measure with the property

that two dissimilar objects can be at distance zero from one another – something that

did not occur in practice in this study, meaning that the CE-distance is functionally

a metric in this study.
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8.4 Results and Discussion

Taking the network with best (lowest) fitness from each run of the evolutionary algo-

rithm results in 30 graphs for each (parameter setting, profile) pair. These were used

to generate box and whisker plots of the profile matching fitness on the nine profiles

using the SIIR model of infection, shown in Figure 8.1. Additionally, results from

previous work using the SIR model of infection are included [21] to investigate the

impact of increasing the infectious period of an epidemic. It is clear that the fitness

values achieved remain consistent between the SIR and SIIR epidemic models. The

confidence intervals achieved by both models overlap, with the parameter settings

having similar impacts on performance regardless of the model chosen. This demon-

strates that the addition of the SIIR model does not have a tangible impact on the

overall fitness of the networks generated. However, although the fitness values are

similar other differences can exist within the networks, which will be investigated in

the following sections.

Table 8.2: The parameter setting with the lowest (best) mean fitness across 30 runs
for each profile and model of infection used.

Profile SIR Best SIR Mean SIIR Best SIIR Mean
1 PS3 7.7314 PS2 7.7023
2 PS3 9.8480 PS3 9.8514
3 PS3 8.7472 PS3 8.7454
4 PS3 7.7277 PS3 7.7803
5 PS2 9.6765 PS2 9.5650
6 PS2 8.5336 PS2 8.4512
7 PS2 9.9484 PS2 9.8524
8 PS7 7.1829 PS7 7.1637
9 PS2 7.3203 PS2 7.3143

8.4.1 Graph Visualizations

To investigate the impact of the SIIR model on the networks generated, visualizations

of the graphs were created. The network with best (lowest) fitness from the parameter

setting with the lowest mean fitness is chosen from each of the epidemic models

studied. See Table 8.2 for the parameter settings and mean fitness corresponding

to the visualizations being compared. To aid in analyzing the differences between

networks the nodes were coloured as follows: patient zero is red, nodes 1-31 are cyan,

nodes 32-63 are orange, nodes 64-95 are yellow, and nodes 96-127 are green. Visuals
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Figure 8.1: Box and whisker plots of the profile matching fitness achieved on 30 runs
of the evolutionary algorithm using the SIR and SIIR epidemic models. The eight
columns correspond to the eight parameter settings with the left box plotting the
fitness using the SIR model, and the right the SIIR model within each column.

for profiles 2, 4, and 6 are provided respectively in Figures 8.2, 8.3, and 8.4.

Looking at these visualizations there seem to be clear differences between the

networks on the two models of infection. For profile 2 the SIR model results in

significant intermixing of the four node colours throughout the network. The SIR

model also retains a lot of the chain in the initial network from Figure 4.1, most

notably with the green nodes at the top left and cyan nodes at the bottom right. In

contrast the SIIR model results in much less intermingling of the four colours with

four distinct clusters remaining intact in the evolved network while much of the chain

structure is lost.

The retained chain structure is a feature of both networks generated on profile

4 in Figure 8.3, although the location of the chain within the resultant network is

different between models. The SIR model contains distinct chains in the blue and

orange nodes, while the SIIR model features chains in the yellow and orange nodes.

Flipping one of the networks reveals that the overall structure of the network is
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similar, with the non-chain section of the network resembling a large well connected

cluster of all node colours and patient zero.

The networks generated using profile 6 in Figure 8.4 feature large sections of the

initial structure of the network. The SIR model is made almost entirely of the chain

structures with most of the orange, yellow and green nodes being part of the chain.

The SIIR network also has large sections of the chain retained for green, blue, and

orange nodes, although less notably than in the SIR model. Also, the SIIR model

allows for more mingling between nodes of different colours than the SIR model.

The differences between networks generated using different models of infection

are similar for the remaining profiles, although the changes are not as stark as for

the networks from the above profiles. A more thorough investigation is necessary to

gain insight into the patterns that exist on the plethora of networks generated in this

study.

8.4.2 An Entropic Pseudometric for Comparing Graphs

The final structure of the networks generated can fluctuate based on the various

parameter settings, profiles and epidemic models used within the study. Therefore

the column entropy distance is computed in a pair-wise manner to determine the

distance between any pair of networks. The network used to compute this value

for any given system configuration is the network which achieved the best fitness

across the runs. These values were used to generate heat maps of the column entropy

distance between and within the two epidemic models; see Figure 8.5. Dark blue

represents a difference of zero while bright yellow indicates a high distance.

The first heat map compares the 72 networks generated using the SIR model with

the 72 generated using the SIIR model. Different patterns emerge across system

configurations. The top-left quadrant demonstrates that the networks are somewhat

impacted by the epidemic model being used, with some cells being darker blue and

others approaching the median value. In contrast the center, specifically comparing

profile 5 to 7 across models, features networks with minimal column entropy distance.

Furthermore, profile 8 and 9 are the brightest rows/columns revealing the large vari-

ability between the networks realized under the two models. Most notably, profile 9

under SIR results in networks furthest from those generated using SIIR on profile 8,

with this section of the map being brightest.

The second heat map compares networks generated using the SIR model with

themselves, and the third map does this for the SIIR model. The patterns from the
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(a) SIR on Profile 2

(b) SIIR on Profile 2

Figure 8.2: The visualization of the graph with lowest fitness on profile 2 generated
under the specified model of infection. See Table 8.2 for parameter setting and fitness
values.

78



CHAPTER 8. CASE STUDY 4

(a) SIR on Profile 4

(b) SIIR on Profile 4

Figure 8.3: The visualization of the graph with lowest fitness on profile 4 generated
under the specified model of infection. See Table 8.2 for parameter setting and fitness
values.
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(a) SIR on Profile 6

(b) SIIR on Profile 6

Figure 8.4: The visualization of the graph with lowest fitness on profile 6 generated
under the specified model of infection. See Table 8.2 for parameter setting and fitness
values.
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first heat map are largely apparent in these maps as well with only slight variations.

This provides evidence that the networks generated are dominated by the profile

and to a lesser degree the parameter setting being used to select edge operations.

Therefore, the variable having the least impact is in fact the model of infection chosen,

although small variations exist between the maps. Under the SIR model the top-left

quadrant demonstrates less variability between networks from settings on profiles 1-4.

The center of the map is noticeably brighter than the first figure, meaning that the

distance between networks generated within the SIR environment actually differ more

than those between the models, an unexpected result.

The final heat map is the brightest of the three. This means that the networks

created using the SIIR epidemic actually differ more from each other than from those

generated using the SIR model. Once again the most significant variations exist for

the networks created using profile 8 and 9. These profiles are comprised of epidemic

curves that are heavily weighted towards the start of an outbreak. This would favour

sporadic epidemic behaviour in which the outcome of the epidemic depends heavily

on where and how quickly the virus spreads in the first few time steps. This likely

contributes to the variability between networks observed in the heat map. The rows

and columns that are coloured almost entirely yellow and green in profile 5 and 7 under

PS7 are due to the reliance on the add operation within that parameter setting. This

causes the epidemics to quickly spread and infect the entirety of a population early

on. However, these profiles feature a significant portion of their infections later in the

outbreak so the fitness is impacted significantly, leading to the large column entropy

distance.

8.4.3 SIR on SIIR, etc. Epidemic Profiles

The final method of comparison between the epidemic models involves the epidemic

profiles or epidemic curve that result from simulating an epidemic. The network

with the lowest mean fitness, across all parameter settings, is used for each epidemic

model. This provides two networks per epidemic profile. On each of the networks 500

SIR and 500 SIIR epidemics are simulated; the SIR and SIIR epidemic with lowest

fitness for each model is then plotted against the profile being evolved to. This plot

is available for profile 1 in Figure 8.6. The networks generated using the SIR model

result in curves which most closely resemble the profile being evolved to, irrespective

of the type of epidemic being actualized. Although, the network that came from

the SIIR model results in two epidemics which overshoot the epidemic curve but in
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Figure 8.5: Heatmaps of column entropy distance between graphs generated using
the specified epidemic profile and model of infection. Each profile consists of eight
vectors representing results from each of the parameter settings on that profile.
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Figure 8.6: Number of infected individuals per time step for simulated epidemics on
networks generated using the evolutionary algorithm from Section 5.2.1 using profile 1.
The network with lowest mean fitness evolved using each epidemic model of infection
was used to simulate 500 SIR and 500 SIIR epidemics. The epidemic with best fitness
is shown.

a similar manner. The SIIR epidemic provides a steeper and taller curve than the

SIR epidemic’s more jagged and delayed peak. This is likely because the increased

infection length allows for greater and faster spread of the epidemic.

8.5 Conclusions and Future Work

The addition of the SIIR model of infection was hypothesized to result in differences in

the networks generated using the system described above. This addition did provide

evidence that the model of infection has an impact on the networks generated though

the differences are minor in the majority of cases. The algorithm was able to adapt to

the SIIR model by matching the fitness achieved by the SIR model in all cases. The

visualizations of the networks generated demonstrate that differences in structure are

present based on the model used. This structure allows for two different epidemic
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models to generate the same epidemic curve on their respective network, as shown

in Figure 8.6. Lastly, the column entropy distance heat maps revealed that the

profile, parameter setting, as well as the epidemic model all contribute to the networks

generated and fitness achieved, although the profile and parameter setting cause the

majority of the fluctuation when compared to the model of infection being deployed.
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Conclusion

The Local THADS-N representation has many potential avenues for improvement in

order to better model epidemics and generate the personal contact networks used to

do so. These possibilities and the current progress in achieving them will be outlined

in the proceeding sections.

9.1 Point Packing

The point packing method for selecting parameters continues to provide ample evi-

dence as to how it consistently finds PSs which have a greater ability to explore more

of the parameter space. This exploration has resulted in the best fitness values found

on all of the epidemic profiles. Additionally, the point packing approach does not

require anything other than for the researcher to set a minimum acceptable distance

between points. These benefits come with a method for parameter selection that

works to remove researcher bias or the need for background information on the prob-

lem. This is especially true when considering that the same parameter set can have

drastically different results across environments. Without using a point packing it is

likely that any set of parameters chosen in traditional ways will not explore enough

of the parameter space.

9.1.1 Improved point packing

In this study we used point packings that were generated uniformly at random and

then normalized to generate probabilities for the various graph editing operations that

add to 1.0. It turns out that this method of finding point packings can be problematic,

as it has a bias toward the probability 1/n where n is the number of parameters being
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set. A more complex form of normalization permits uniform sampling of the simplex

of points with positive coordinates summing to 1.0. While the parameter setting

performed here is not incorrect, a more complete sampling might be possible with the

new technique.

The inclusion of the SIRS model is the first of many possibilities when it comes

to exploring more complex epidemic models. More research should be conducted into

potential patterns between a PSs ability to generate successful networks within various

epidemic environments. Additionally, ways to reduce the volatility present within the

longer lasting epidemics associated with the SIRS model should be developed. This

relates closely to the continued goal of reducing the complexity of the evolutionary

algorithm utilized within this paper to allow for better scalability.

Other modifications could include expansions to the epidemic models used here.

For example, the graphs could use directed edges, or the probability of infection could

be modelled by using weighted edges. Furthermore, the representation can be applied

to new graph-evolution problems which may solve problems in new and interesting do-

mains. Lastly, this model could be tested against real-world data sets from historical

epidemics or outbreaks on campuses, in hospitals or between communities for which

data has been recorded and is available. Endless possibilities exist for the expansion

of this generative representation.

The use of point packing was included as a means of finding an optimal set of

parameter settings for the problem at hand. In the future, hyper-parameter tuning

could be examined [13]. To go one step further, we could also investigate the use of

hyper-heuristics [14].

9.2 Epidemic Model and Community Properties

Previous work included the use of two epidemic models, the SIR model used here, and

the SIRS model where an individual once again becomes susceptible some number

of time steps after recovering from infection. It would be worthwhile to study the

impact of the SIRS model when used with districts. Another modification could

include the ability to represent voluntary vaccination rates based on the severity of

the epidemic among other factors as presented in [38]. Additionally, it would be

beneficial to thoroughly investigate the number of districts and their sizes, along with

the possibility of connecting the districts in an adaptive manner, or at least not simply

as a fully connected graph.
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9.3 Algorithm Complexity

As the representation has grown and evolved, so too has the running time. A neces-

sity of epidemics lasting longer is that the fitness calculations, which are a simulated

epidemic, take longer to calculate. Therefore, as the model becomes more complex,

complications will compound and further iteration, without simplification, will be-

come increasingly challenging. Furthermore, large increases to community size would

allow for the model to be used on larger human populations, although this would also

dramatically impact the computation time.

9.4 Comparing Solutions and Graph Visualization

There exist other tools which can generate graphs to test against their ability to model

epidemic behavior. Therefore, a future area of research could be to compare the Local

THADS-N representation against other solutions. This work could include examining

the success of these methodologies in modeling real world epidemic behavior. Fur-

thermore, it would be interesting to examine the actual graphs generated, including

possibly by using graph visualization tools in order to view epidemic behaviour on a

community.

In the future, it would be of interest to consider how to evolve the vaccination

strategies themselves, using known, static, personal contact networks. These evolved

strategies could then be compared to existing strategies, including those presented

in this paper. One could also consider such factors as a sliding scale of high-degree

vaccination. It would also be of interest to apply these ideas and techniques to related

issues such as the design of quarantine strategies.

Also, in from Chapter 7 current study we considered that vaccines would take

effect immediately. In real life situations, this can depend upon the type of vaccine.

Therefore we could consider the following vaccine effectiveness delays: (i) that the

vaccine is effective immediately, (ii) that the vaccine takes one time step to become

effective, and (iii) that the vaccine takes two (or more) time steps to become effective.

A key limitation of this system is the size of the personal contact networks that

can be generated before evolution becomes too costly to be practical. Networks with

128 nodes can model small communities while simulating an epidemic between com-

munities as part of a personal contact network resembling a city, province, or country.

This would also allow for smoother epidemic curves as the network would more closely

resemble real world networks with physical and social distance between members of
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the population, a situation that is not possible with 128 nodes. Moreover, the epi-

demic curves released by public health professionals often feature rolling averages

to handle sporadic epidemic behaviour that changes day-by-day. Larger networks,

permitting longer epidemics, would allow for smoother epidemic curves than those

realized within this study.

The inclusion of the SIIR model is the first of many possibilities when it comes

to exploring more complex epidemic models. A further increase to the length of

infectability, such as in [4], along with the inclusion of a presymptomatic or asymp-

tomatic state to the model are also possible. More research should be conducted into

potential patterns between the ability of a parameter setting to generate successful

networks within various epidemic environments. This relates closely to the continued

goal of reducing the complexity of the evolutionary algorithm utilized within this

paper to allow for better scalability.

Other modifications could include expansions to the epidemic models used here.

For example, the graphs could use directed edges, or the probability of infection could

be modelled by using weighted edges. Future work would also benefit from exploring

different values for α or replacing a single value with a probability distribution to

better resemble real-world virus infectability. Additionally, exploring different initial

graphs and their impact on performance could provide new insights and increase the

robustness of the software. The personal contact networks from particular countries

or communities will undoubtedly have some variation and the software will need to

handle this variation. Furthermore, the representation can be applied to new graph-

evolution problems which may solve problems in new and interesting domains. Lastly,

this model could be tested against real-world data sets from SARS-Covid-2, historical

epidemics or outbreaks on campuses, in hospitals or between communities for which

data has been recorded and is available. Endless possibilities exist for the expansion

of this generative representation.

9.5 Investigating Different Initial Networks

The network that undergoes strings of edge operations from Section 4.1 is quite dif-

ferent from personal contact networks from real populations. It is also quite common

for the final networks to retain part of the initial ring. Therefore the use of an ini-

tial network with a different structure, possibly resembling aspects seen in real world

graphs, would give a greater opportunity for evolution to find more realistic networks.
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[23] Michael Dubé, Sheridan Houghten, Daniel Ashlock, and James Hughes. Evolving

the curve. In 2020 IEEE Conference on Computational Intelligence in Bioinfor-

matics and Computational Biology (CIBCB), pages 1–8, 2020.
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