Implicit associative memory remains intact with age and extends to target-distractor pairs

Emily Elizabeth Davis

Submitted in partial fulfillment of the requirements for the degree of

Masters of Arts, Psychology

Faculty of Social Sciences, Brock University
St. Catharines, Ontario

© 2020
Abstract

Past research has shown that older adults’ reduced inhibitory control causes them to hyper-bind, or form erroneous associations between task-relevant and -irrelevant information. In the current study, we aimed to extend hyper-binding to a novel, implicit memory paradigm. In two experiments, participants viewed pictures of objects superimposed with text and their task was to make speeded categorization judgments about the objects. The encoding phase contained three blocks that varied the potential for binding: no-binding, some-binding, and full-binding. During the no/some-binding blocks, participants decided if the pictured object alone could fit inside a common desk drawer while ignoring the superimposed text. In the no-binding block, the text was a nonword; in the some-binding block, it was an object word. During the full-binding block, participants attended to both the picture and word and decided if both items could fit inside a drawer together. After a delay, participants completed the test phase during which they viewed intact and rearranged pairs from the three encoding blocks and decided if both items could fit in a drawer together. In both experiments, older adults responded faster to intact than rearranged pairs from both the some- and full-binding blocks, suggesting that they had learned both target-target and target-distractor pairs. Young adults showed no difference in RTs to pairs from either block. These findings suggest that the binding mechanism itself is spared with age; what declines instead is inhibitory control, which serves to limit attention, and ergo binding, to task-relevant information.
Acknowledgements

I would like to thank Dr. Campbell for her constant support and mentorship over the last two years. I have become a much better researcher because of her knowledge, expertise, and the time that she dedicates to her graduate students. I am thankful every day that I was able to complete my degree in her lab. Thank you to my committee members Dr. Emrich and Dr. Mahy for their invaluable insight and support. I would like to thank Sarah Henderson for being an amazing teammate and a sounding board. I could not have asked for a better office-mate and friend to enjoy the highs and lows of graduate school with. I could not imagine the next four years of my Ph.D. without her partnership (and “sad” afternoon muffins). This research could not have been done without Amy Holliday who poured hours of her time into calling older adults, training research assistants, and going above and beyond her responsibilities to help with this project. Finally, thank you to all members of Campbell’s Neurocognitive Aging lab, extended BUCAN Lab, and the Face Perception Lab, who all piloted experiments, helped with programming, tested participants, searched for older adults in parking lots, made fresh coffee in the morning, and shared intel on free food from 600F.
Table of Contents

Abstract ... ii

Acknowledgements ... iii

List of Tables .. v

List of Figures ... vi

Introduction .. 1

Experiment 1 .. 5
 Methods .. 5
 Participants ... 5
 Materials .. 6
 Procedure ... 7

Results and Discussion ... 9

Experiment 2 .. 13
 Methods ... 13
 Participants .. 13
 Results .. 14

Flanker Exploratory Analysis .. 17
 Results .. 19
 Flanker Accuracy .. 19
 Flanker Reaction Time .. 19

General Discussion ... 20

Conclusions ... 25

References ... 34

Appendix A ... 42

Appendix B ... 45

Appendix C ... 46

Appendix D ... 50

Appendix E ... 52
List of Tables

Table 1. Demographic information for participants in Experiment 1 and 2 .. 27
Table 2. Accuracy for Encoding and Test Phase within block types for Experiment 1 and Experiment 2 ... 28
Table 3. Reaction Times for Encoding and Test Phase within block types for Experiment 1 and Experiment 2 ... 29
Table 4. Flanker Task Data ... 30
List of Figures

Figure 1. Results from Experiment 1 and 2 ... 31
Figure 2. Relationship between hyper-binding and flanker accuracy 32
Figure 3. Relationship between hyper-binding and flanker RT 33
Introduction

Previous research has shown that associative memory (i.e., memory for how different units of information are related) declines more with age than item memory (Chalfont & Johnson, 1996). This has been shown across various methods and materials, such as person-action pairs (Old & Naveh-Benjamin, 2008a), word pairs (Naveh-Benjamin, 2000), and picture pairs (Guez & Lev, 2016). According to the Associative Deficit Hypothesis (ADH; Naveh-Benjamin, 2000), older adults are particularly impaired on tests of associative memory because the mechanism that binds individual items into pairs at encoding declines with age (Old & Naveh-Benjamin, 2008b). While age differences in strategy (Naveh-Benjamin, Brav, & Levy, 2007) and attention (Castel & Craik, 2003) may also play a role, the primary cause of age differences in associative memory, according to the ADH, is an age-related decline in the efficiency of the binding mechanism itself (Naveh-Benjamin, & Mayr, 2018). Binding is the process that allows units of multisensory elements (e.g., shapes, colours, sounds) to be integrated into a whole before long term memory storage (Baddeley, 2000; Tulving, 2002). Without this function, people would be unable to retrieve detailed memories for particular events as each unit of the event would be independently stored and could not be jointly recalled. In daily life, this would result in the inability to recall where you left your car keys or the name of someone you recently met. Binding is thought to be a relatively automatic process (i.e., does not require conscious effort) that occurs in the medial temporal lobe, specifically the hippocampus (Moscovitch, 1992; Yonelinas, 2013). Declines in hippocampal function and volume have been linked to healthy aging (e.g., Raz, et al., 2005) and associated with binding dysfunction (e.g., Mitchell, Johnson, Raye, & D’Esposito, 2000; Olsen,
Page, Moor, Chatterjee, & Verfaellie, 2006). Hence, it has been argued that older adults’ poor performance on associative memory tasks is caused by an inability to bind.

However, an alternative explanation for age differences in associative memory is suggested by inhibitory deficit theory (Hasher & Zacks, 1988, Lustig, Hasher, & Zacks, 2007). Inhibitory deficit theory posits that older adults have difficulty limiting attention to goal-relevant information and blocking out irrelevant distraction. Once information has entered the focus of attention, older adults also have trouble deleting that information or putting it out of mind (Hasher, Zacks, & May, 1999). While some studies suggest that young adults also encode irrelevant information and use it in certain circumstances (e.g., Thomas & Hasher, 2012; Gopie, Craik, & Hasher, 2011), younger adults’ knowledge of distraction seems less robust than that of older adults (e.g., see Amer, Anderson, & Hasher, 2018, for a failed replication of the Gopie et al. findings and a demonstration of older adults’ conceptual knowledge of previous distractors). Thus, older adults’ inhibitory deficit often leads them to have more information within the focus of attention than young adults.

Campbell, Hasher, and colleagues have argued that this co-attended information becomes automatically bound into associations (many of which are irrelevant to the task at hand), an effect they termed “hyper-binding” (Campbell, Hasher, & Thomas, 2010; Campbell, Zimerman, Healey, Lee, & Hasher, 2012; Campbell, Trelle, & Hasher, 2014). There are instances in which access to these irrelevant associations may actually benefit older adults’ memory (Campbell et al., 2010; Weeks, Biss, Murphy, & Hasher, 2016; Amer, Campbell, & Hasher, 2016). For example: Biss, Murphy, & Hasher (2016) demonstrated that they could boost older adults’ memory performance in a face-name learning task by showing them the pairings in a prior, seemingly unrelated task, in which the faces were targets and the names were distractors.
Alternatively, younger adults showed no benefit; presumably because younger adults efficiently ignored the distracting names during the initial task. Though these erroneous associations can be beneficial for older adults, more often they likely result in increased competition during effortful retrieval and cause forgetting (e.g., Postman & Hasher, 1972; Gerard, Zacks, Hasher, & Radvansky, 1991; Biss, Campbell, & Hasher, 2012). Thus, it is possible that older adults’ poorer performance on associative memory tasks is not entirely caused by an inability to bind, but by their tendency to bind too much.

In the first study on hyper-binding, Campbell, Hasher, & Thomas (2010) showed that older adults form erroneous associations between co-occurring target and distractor stimuli. In that study, older and younger adults performed a 1-back task in which pictures were shown with superimposed words as distractors. Following a delay, participants were asked to study several picture/word pairs for an upcoming memory test. Unbeknown to the participants, some of the pairs in the study list were presented during the 1-back task and were either intact (original pairing), rearranged (items were previously presented, but not together), or new (not seen before). The cued recall results showed that older adults’ memory performance was boosted for intact pairs and disrupted for rearranged pairs, suggesting that they had formed associations between the target pictures and distracting words during the 1-back task. Younger adults did not show any benefit or disadvantage for the two pair types, suggesting that they did not form irrelevant associations during the 1-back task. Other studies have provided converging evidence for the hyper-binding effect (e.g., Campbell, et al., 2012; Campbell, et al., 2014; James, Strunk, Arndt, & Duarte, 2016; Pehlivanoglu, Jain, Ariel, & Verhaeghen, 2014; Weeks, Biss, Murphy, & Hasher, 2016), though recent work suggests that it may be a purely implicit phenomenon. When older adults are informed of a connection between the encoding and test tasks, the memory
benefit for intact pairs disappears (Campbell & Hasher, 2018). These findings suggest that older adults can encode associations, but they are less able to access them through effortful retrieval (c.f., Cohn, Emrich, & Moscovitch, 2008). Thus, implicit memory paradigms may offer a more sensitive measure of age differences in binding, independent of retrieval.

Further evidence of older adults’ intact implicit associative memory comes from a study by Dew and Giovanello (2010). In that study, older and younger adults were shown picture pairs of everyday objects and asked to decide if the objects could fit together inside a common desk drawer, without forfeiting speed and accuracy. Following a delay, participants performed the same object categorization task, but now the pairs of stimuli were either kept intact from the encoding phase, rearranged, or new. Reaction times (RTs) during the test phase were used to measure memory, such that slower RTs for rearranged pairs compared to intact pairs was indicative of implicit associative memory. The researchers found that young and older adults were similarly slowed to rearranged pairs relative to intact pairs, suggesting that when tested implicitly, older adults’ associative memory appears intact.

In the current study, we aimed to extend the hyper-binding effect to this fully implicit associative memory paradigm and conceptually replicate the findings of Dew and Giovanello (2010). Across two experiments, we modified the original paradigm to use picture-word pairs, similar to the original hyper-binding paradigm (Campbell et al., 2010), and to include three encoding blocks with varying potential for binding: a no-binding block, some-binding block, and full-binding block. The ‘full-binding’ block was closest to the encoding phase of Dew and Giovanello (2010) because participants were asked to attend to both the word and picture and decide if they could fit together inside a common desk drawer. Thus, it was expected that both age groups would attend to both items and incidentally encode the pairs. During the ‘some-
binding’ block, participants were asked to ignore the word and make the categorization judgement on the picture alone. It was expected that because older adults have reduced inhibitory control, they would inadvertently attend to the word and bind it to the target picture. Young adults were expected to ignore the distracting words during the some-binding block and as a result, not show implicit memory for the pairs from this block. Finally, the ‘no-binding’ block was used as a baseline condition in which the distraction at encoding was random letter strings and the pictures were later paired with new words during the test phase. It was hypothesized that older adults would show faster RTs to intact than rearranged pairs from both the some-binding and full-binding blocks. In contrast, young adults were expected to show faster RTs to intact than rearranged pairs for only the full-binding block because they should be proficient at ignoring the distracting words during the some-binding block.

Experiment 1

Methods

Participants.

Data was collected from 30 younger and 30 older adults. We ran a power analysis for a repeated measures design with a within-between interaction using the following criteria: two between-subject groups, six within-subject measures and an effect size f of 0.27 (Gpower software; Faul, Erdfelder, Lang, & Buchner, 2007). The expected effect size used in the power analysis was based on the original hyper-binding study, which showed a small effect size for the critical age x pair type interaction (Campbell, et al., 2010, Exp 1: $\eta^2_p = .07$, and Exp 2: $\eta^2_p = .10$). The power analysis indicated that 24 participants per group was sufficient to detect a small effect with 96% power ($\alpha = .05$). We aimed to test 30 participants per group to account for any exclusions. Young adults were recruited from Brock University and received partial course credit
for their participation. Older adults were recruited from the community and received $10/hr in compensation. One young adult was excluded for reporting use of an explicit recall strategy during the implicit memory task and one was excluded for not meeting the young adult age criteria (i.e., 18-28 years old). One older adult was excluded for misunderstanding task instructions and two were excluded for having Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005; See Appendix E) scores less than 23 (Carson, Leach & Murphy, 2018). These exclusions resulted in a final sample of 28 young adults, aged 18-27 (23 female; $M_{age} = 20.29$; $SD = 2.16$), and 27 older adults, aged 64-82 (20 female; $M_{age} = 71.44$; $SD = 4.78$). Demographic information for all participants is presented in Table 1. Most participants were tested in the afternoon, when older adults tend to be most distractible (e.g., May, 1999).

Older adults’ average score on the MoCA was 27.07 ($SD = 1.75$). Older adults scored higher on the Shipley Vocabulary Test (Shipley, 1946; See Appendix D), $t (53) = 11.20$, $p < .001$, as would be expected (Verhaeghen, 2003), and had more years of education, $t (30.24) = 5.23$, $p < .001^1$, than younger adults.

Materials.

Seventy-two words representing everyday objects (e.g., birdcage) and 76 line-drawings (Snodgrass and Vanderwart, 1980) were selected. The average word length was 5.67 characters (min. 3, max. 12). Stimuli were the same or similar to the types of objects used by Dew & Giovanello (2010; e.g., picture of couch becomes the word, “couch” or a Snodgrass image of a couch). Line drawings were colored red and divided into three lists of 24, plus another four for practice trials. One of the lists was paired with random six-character, letter strings (e.g.,

1 Adjusted for heterogeneity of variance. Levene’s Test was significant ($F = 11.53, p = .001$)
WZBLWY) to create the no-binding condition and two of the lists were paired with words to create the some- and full-binding conditions. The practice set was paired with letter strings. For the memory test (72 trials), pairs from the some- and full-binding blocks were evenly split into intact and rearranged pairs, and the no-binding pictures were paired with new words from the remaining word list.

All picture/word pairs were matched such that the correct response to both objects would be congruent (i.e., both objects either fit, or did not fit, inside a desk drawer), but participants were not made aware of this. Half of the trials required a “yes” response, and the other half required a “no” response. The picture and word lists were rotated through the different block types to create three counterbalance conditions, such that the stimuli pairs appeared in each block and pair type across counterbalances.

Procedure.

The study was approved by the Research Ethics Board at Brock University and all participants signed a consent form (See Appendix A). The task was administered with E-Prime 3 (Psychology Software Tools, Pittsburgh, PA) on a 14-inch laptop (1366 x 786 px). The picture-word pairs were presented in the center of the screen. Word stimuli were presented in black, Consolas, size 24 font superimposed directly on the red Snodgrass images against a white background. For the encoding task, participants first performed the practice trials and were given the opportunity to repeat the practice if they were unclear about the instructions. Then for every participant, the conditions were presented in the following order: no-binding, some-binding, full-binding. In the no-binding condition, a picture with superimposed letters appeared in the center of the screen and participants were asked to ignore the letters and answer the question, “Does the object fit inside a common desk drawer?”, without sacrificing speed or accuracy. Participants
were told that the objects on the screen represented real life objects and a real desk drawer was shown to them for reference. Yes/no responses were made using two keyboard options and RT was measured in milliseconds. Each trial cleared the display once a participant responded, or after eight seconds, and was followed by a fixation cross (500ms).

The some- and full-binding conditions used the same timing, except the pictures were superimposed with words instead of letter strings, and participants were given different instructions. In the some-binding condition, participants were asked to judge the object and ignore the word and answer the same question as the no-binding condition. In the full-binding condition, participants were asked to attend to both the picture and the word and to decide if the objects could fit together inside a desk drawer.

To limit the likelihood of participants becoming aware of the connection between tasks, the encoding task was followed by an arrow flanker task (120 trials + 20 practice), which took approximately 5-minutes to complete. In this task, participants viewed a series of five white arrows (e.g., >>>>>>) on a black background and had to decide as quickly as possible if the arrow in the center was pointing to the left or the right. In 50% of the trials the center arrow pointed the same direction as the other arrows (congruent) and in 50% the center arrow was pointing in the opposite direction of the other arrows (incongruent). Participants had 1500 ms to respond using the ‘f’ and ‘j’ keys (indicating left and right, respectively) and each trial was separated by a 1000 ms fixation.

For the final implicit memory test, participants were told that they would perform the same object categorization task, except now for all trials they were to decide if both objects could fit together inside a desk drawer. Again, participants were asked to respond as quickly as possible without sacrificing accuracy. Unbeknown to the participants, the stimuli consisted of
intact and rearranged pairs from the some- and full-binding blocks, randomly intermixed with old picture-new word pairs from the no-binding block.

Following the computer tasks, participants completed a graded awareness questionnaire that probed participants’ knowledge of the repeated stimuli (See Appendix B). They were first asked, “Did you notice a connection between any of the tasks you did?” If the participants answered no, then no further questions were asked. If they responded “yes”, then they were asked, “What did you notice?”, “When did you notice it”, and “How did you notice?”, and critically, “Did you consciously try to use or avoid using the words you saw in the first task as responses to the last task?” (i.e., switch to an explicit retrieval strategy). Participants were considered aware if they reported intentionally trying to retrieve the pairs at test. The use of an explicit retrieval strategy has been shown to impact implicit memory, as opposed to awareness of repeated stimuli per se (McKone & Slee, 1997). Finally, participants completed the MoCA, Shipley Vocabulary Test, and a demographic questionnaire (See Appendix C).

Results and Discussion

Anticipatory responses faster than 200 ms and slow responses longer than 4000 ms were first removed, then RTs for each participant were trimmed (>±2.5 SD) separately within each condition (removing < 4.32% of trials from each age group). Only accurate responses to the object categorization question were included in the RT analyses.

Encoding phase RTs and accuracy data are reported in Table 2 and 3. For the encoding phase, mean accuracy on the classification task was submitted to a 2 (Age: young, old) x 3 (Block Type: no-binding [NB], some-binding [SB], full-binding [FB]) mixed ANOVA. Overall, accuracy was high and did not differ between older and younger adults, $F(1,53) = .05, p = .830$.

Block type had no effect on accuracy, $F(2,106) = 1.17, p = .313$, nor was there a block type x age interaction, $F(1.83, 96.75) = 2.74, p = .074^2$. RT data for the encoding phase was entered into the same ANOVA as the accuracy data. Older adults responded more slowly, on average, than younger adults, $F(1, 53) = 20.57, p < .001$. There was a significant main effect of block type, $F(2, 106) = 56.25, p < .001$, which was superseded by a block type x age group interaction, $F(2, 106) = 3.18, p = .046$. Follow-up tests show that older adults responded more slowly than young adults in the NB block, $MD = 320.21, SE = 84.03, p < .001, 95\% CI [151.69, 488.74]$, the SB block, $MD = 243.46, SE = 79.97, p = .005, 95\% CI [73.85, 394.64]$, and FB block, $MD = 404.39, SE = 77.40, p < .001, 95\% CI [249.559.63]$. Thus, this interaction appears to be driven by the size of the age group differences varying across the blocks because older adults responded more slowly than young adults regardless of block type.

For the test phase, trials from the no-binding condition were dummy coded, such that trials were randomly assigned to the intact and rearranged conditions. This allowed us to submit data from the no-binding block to the same ANOVAs as data from the some- and full-binding blocks. Accuracy and RT data were submitted to separate 2 (Age: young, old) x 3 (Block Type: NB, SB, FB) x 2 (Pair Type: intact, rearranged) mixed ANOVAs. Accuracy was again high and did not differ between older and younger adults, $F(1,53) = .335, p = .565$. There was no main effect of block type, $F(2, 106) = 1.95, p = .148$, or pair type, $F(1, 53) = <. 001, p = .991$, but there was a significant block type x pair type interaction, $F(2, 106) = 5.64, p = .005$. This was due to participants being more accurate for the intact ($M = 92.58\%, SE = .12$) than rearranged pairs ($M = 89.25\%, SE = .15$) from the some-binding block, $p = .007$, but not the full-binding block ($p = .188$). There was also a significant difference between intact and rearranged pairs

2 Both main effect of block and block by age interaction are Huynh-Feldt adjusted ($\varepsilon > .75$)
from the no-binding block, \(p = .036 \), but pair type was randomly assigned for this condition and thus, the difference in this case is not meaningful. Finally, the three-way interaction between age, block type, and pair type was not significant, \(F(2, 106) = .678, p = .510 \).

Turning to the main hypothesis, RTs from the test phase showed a main effect of age, \(F(1, 53) = 39.05, p < .001, r = .65 \), such that older adults (\(M = 1292.25, SE = 38.80 \)) responded more slowly than younger adults (\(M = 952.42, SE = 38.10 \)). There was a main effect of block type, \(F(2, 106) = 5.01, p = .008, r = .21 \), such that participants responded more slowly to pairs from the some-binding condition (\(M = 1153.15, SE = 30.14 \)) than the full-binding condition (\(M = 1092.50, SE = 27.68 \), \(p = .005 \)). Moreover, there was a main effect of pair type, \(F(1, 53) = 15.76, p < .001, r = .48 \), such that all participants responded faster to intact (\(M = 1098.91, SE = 28.24 \)) than rearranged pairs (\(M = 1145.76, SE = 27.40 \)), \(p < .001 \). There was a marginally significant block type x pair type interaction, \(F(2, 106) = 2.42, p = .094, r = .15 \), a marginally significant block type x age interaction, \(F(2, 106) = 2.37, p = .099, r = .15 \), and a significant pair type x age interaction, \(F(1, 53) = 6.58, p = .013, r = .33 \). However, these interactions were superseded by a significant block type x pair type x age interaction, \(F(2, 106) = 8.90, p < .001, r = .28 \)(see Figure 1). As expected, young adults showed no difference in RT between the intact (\(M = 979.53, SE = 44.51 \)) and rearranged pairs (\(M = 953.40, SE = 45.99 \)) from the some-binding block, \(t(27) = .80, MD = 26.13, SE = 32.51, p = .425, 95\% CI [-39.07, 91.34] \). However, in contrast to previous work (Dew & Giovanello, 2010), they also showed no difference in RT for intact (\(M = 899.81, SE = 41.54 \)) and rearranged pairs (\(M = 932.18, SE = 41.45 \)), from the full-binding block, \(t(27) = 1.10, MD = -32.27, SE = 29.49, p = .277, 95\% CI [-91.51, 26.77] \).

In contrast, older adults responded more quickly to intact (\(M = 1249.50, SE = 45.33 \)) than rearranged pairs (\(M = 1430.18, SE = 46.83 \)) from the some-binding block, \(t(26) = 5.46, MD = -
Similarly, older adults responded more quickly to intact ($M = 1227.77$, $SE = 42.30$) than rearranged pairs ($M = 1310.25$, $SE = 42.21$) from the full-binding block, $t(26) = 2.75$, $MD = -82.48$, $SE = 30.03$, $p = .008$, 95% CI [-142.70, -22.25]. In line with our predictions, older adults learned both the to-be-attended and to-be-ignored associations. This finding replicates the results of Dew and Giovanello (2010), showing intact associative memory for target information in older adults when tested implicitly, and extends this effect to target-distractor pairs. These results lend support to the hyper-binding hypothesis, showing that older adults bind too much when faced with distraction.

Surprisingly, young adults did not show associative memory for picture-word pairs that were fully attended during the encoding phase. Healthy, young adults typically show good memory for associations in explicit and implicit memory paradigms (see Old & Naveh-Benjamin, 2008b for a meta-analysis of age effects in associative memory). Older and younger adults did not differ in accuracy during the task, suggesting that both age groups performed the task correctly. One possibility is that block order had an effect on associative memory in younger adults. In Experiment 1, the full-binding block was always viewed last. It is conceivable that during the first two blocks, younger adults developed a strategy for inhibiting the letter strings/words that interfered with their binding in the final block (despite being directed to attend to both the picture and the word). Alternatively, pairs from the full-binding block, always viewed last, were likely most susceptible to proactive interference from previous blocks and this may have affected learning and/or retrieval of these pairs (Lustig & Hasher, 2001). Presenting the full-binding block last also meant that there was less time between study and test for the full-binding pairs, which may have differentially benefited older adults. Thus, Experiment 2 included
different block orders to test whether younger adults’ apparent lack of associative memory in the current paradigm is due to order effects.

Experiment 2

The goal of the current study was to replicate the results from Experiment 1 and to determine if block order is affecting younger adults’ performance. As such, the procedure remained the same except for the addition of two alternative block orders. It was hypothesized that older adults would respond faster to intact pairs than rearranged pairs from both the some-binding and full-binding blocks. Younger adults were again expected to respond faster to intact pairs than rearranged pairs from the full-binding block, but not the some-binding block, though this difference may interact with block order.

Methods

The methods in Experiment 2 were the same as Experiment 1 except two additional block orders were added and the three orders were counterbalanced across participants: 1) no-binding, some-binding, full-binding (same as Exp 1); 2) some-binding, full-binding, no-binding; and 3) full-binding, no-binding, some-binding. Additionally, four new words were chosen to serve as distractors for the practice trials that came before the some- and full-binding conditions, as previously the distractors during the practice were always letter strings.

Participants.

Participants were 45 older and 45 younger adults who were recruited and compensated the same way as Experiment 1. Fifteen additional participants were tested per group to allow for greater power to test the effect of the new block order. A power analysis supports these
additional participants. The power analysis was based on a repeated measures design with a within-between interaction using the following criteria: six between-subject groups (2 [age] x 3 [CB order]), six within-subject measures and an effect size f of 0.27 (Gpower software; Faul, et al., 2007). It was not clear what the effect size of block order may be given that we were uncertain whether strategy, proactive interference, or other factors may be causing young adults’ poor performance in the full-binding block; thus, we kept the small effect size used in Experiment 1 ($f = 0.27$) as there is no reason to assume that block order effects should be large in nature. The power analysis indicated that 42 participants per group was sufficient to detect a small effect with 96% power ($\alpha = .05$). We aimed to test 45 participants per group to account for any exclusions. Eleven older and 15 younger adults were replaced for various reasons, such as, reporting use of an explicit strategy during the implicit memory test (old N = 3; young N = 9), misunderstanding task instructions (old N = 1), and experimenter error (young N = 1). Further, seven older adults scored below the MoCA cut-off (< 23) and four younger adults did not meet the age criteria (ages 18-28) for the study. One older adult was excluded from the sample because their average RTs in test phase were 3 SD above the group average, resulting in a final sample of 44 older adults, aged 61-82 (34 female; $M_{age} = 70.44$; $SD = 5.87$; one older adult did not report their age), and 45 younger adults, aged 17-28 (36 female; $M_{age} = 19.53$; $SD = 5.87$).

Older adults’ average score on the MoCA was 26.70 ($SD = 1.77$). On average, older adults scored higher on the Shipley Vocabulary Test, $t (82.52) = 9.58$, $p < .001$, and had more years of educations, $t (58.13) = 4.33$, $p < .001^3$, compared to younger adults.

Results

3 T-tests for education and vocabulary were adjusted for heterogeneity of variance. Levene’s Tests were significant ($ps < .02$).
Encoding RTs and accuracy are reported in Table 2 and 3. RTs were pre-processed in the same way as Experiment 1 (< 3.82% of RTs trimmed per age group). Accuracy data from the encoding phase were submitted to a 2 (Age: young, old) x 3 (Block Type: NB, SB, FB) mixed ANOVA. Overall, accuracy was again high and did not differ between young and older adults $F(1, 87) = .33, p = .569$. Accuracy was also not affected by block type, $F(2, 174) = .81, p = .448$, and there was no block by age interaction, $F(2, 174) = .57, p = .564$. RT data was entered into the same ANOVA as above. Older adults responded more slowly on average than young adults, $F(1,87) = 58.49, p < .001$. There was a main effect of block type, $F(2,174) = 84.24, p < .001, r = .57$. This main effect is due to participants responding slower with increasing task demands (NB < SB < FB; $ps < .034$). There was no interaction between block and age, $F(2,174) = 2.29, p = .104$.

For the test phase, pairs from the no-binding block were randomly assigned to the intact or rearranged conditions. Accuracy scores were submitted to a 2 (Age: young, old) x 3 (Block Type: NB, SB, FB) x 2 (Pair Type: intact, rearranged) mixed ANOVA. Again, accuracy did not differ between young ($M = 88.03\%, SE = .11$) and older adults ($M = 88.38\%, SE = .11$), nor was it affected by block type or pair type ($ps > .198$).

If block order in the encoding phase of Experiment 1 affected younger adults’ learning of associative pairs from the full-binding block, then we would expect block order to affect test RTs in Experiment 2. To test this possibility, RT data were submitted to a 2 (Age: young, old) x 3 (Block Type: NB, SB, FB) x 2 (Pair Type: intact, rearranged) x 3 (Block Order: NB 1st, SB 1st, FB 1st) mixed ANOVA. There was no main effect of block order, $F(2, 83) = 1.71, p = .872, r = .14$, block type, $F(2, 166) = 1.63, p = .20, r = .10$, or pair type, $F(1, 83) = 2.96, p = .089, r = .19$, and none of the other interactions with block order approached significance ($ps > .523$),
including Block Order x Age, $F(2, 83) = .14, p = .872, r = .04$. This analysis suggests there were no age differences in how older and younger adults responded across block order. Next, we looked at the effect of block order in young adults alone by submitting their RT data to a 3 (Block Type: NB, SB, FB) x 2 (Pair Type: intact, rearranged) x 3 (Block Order: NB 1st, SB 1st, FB 1st) mixed ANOVA. There was no main effect of block order, $F(1, 42) = .52, p = .599, r = .11$, block type, $F(2, 84) = 1.05, p = .354, r = .11$, or pair type, $F(1, 42) = .003, p = .959, r = .01$, and the interaction between block, pair type, and block order was not significant, $F(4, 84) = 1.35, p = .258, r = .13$. Therefore, it seems that block order was not responsible for the lack of associative memory for pairs from the full-binding block in younger adults. All subsequent analyses were collapsed across block order.

Test phase RTs were entered into a 2 (Age: young, old) x 3 (Block Type: NB, SB, FB) x 2 (Pair Type: intact, rearranged) mixed ANOVA. RTs were not affected by block type, $F(2, 174) = 1.63, p = .199, r = .09$, but on average, older adults ($M = 1236.24, SE = 31.81$) responded more slowly than young adults ($M = 903.11, SE = 31.45$), $F(1, 87) = 55.46, p < .001, r = .62$. Further, there was no effect of pair type, $F(1, 87) = 2.93, p = .090, r = .18$ and no interactions between block type x age, $F(2, 174) = .53, p = .590, r = .06$, or pair type x age, $F(1, 87) = 2.71, p = .103, r = .17$, but there was a significant interaction between block type and pair type, $F(1.94, 168.33) = 3.95, p = .021, r = .15$. Importantly, there was a significant three-way interaction between age, block type, and pair type, $F(1.94, 168.33) = 3.32, p = .040, r = 14^4$ (see Figure 2). In line with the results from Experiment 1, younger adults did not differ in RTs to the intact ($M = 902.68, SE = 36.03$) and rearranged pairs ($M = 904.90, SE = 36.20$) from the same-binding block, $t(44) = .08, MD = 2.22, SE = 28.32, p = .938, 95\% CI [-58.51, 54.07]$, nor the full-binding block

4 Block type x Pair type and block type x pair type x age interactions are Huynh-Feldt adjusted ($\varepsilon > .75$)
(intact $M = 886.40, SE = 38.22$; rearranged $M = 889.71, SE = 37.50$), $t(44) = .11, MD = 3.31, SE = 29.54, p = .911, 95\% CI [-62.02, 55.40]$. Although we replicated our findings from Experiment 1, the results do not fully support our original hypothesis that younger adults would respond faster to intact than rearranged pairs from the full-binding block, but not those from the some-binding block.

As for older adults, they responded faster to intact ($M = 1188.28, SE = 36.43$) than rearranged pairs ($M = 1250.90, SE = 36.60$) from the some-binding block, $t(43) = 2.19, MD = -62.62, SE = 28.64, p = .031, 95\% CI [-119.55, -5.69]$, and faster to intact ($M = 1178.29, SE = 38.76$) than rearranged pairs ($M = 1291.84, SE = 37.93$) from the full-binding block, $t(43) = 3.80, MD = -113.54, SE = 29.87, p < .001, 95\% CI [-172.92, -54.17]$. These findings replicate the results from Experiment 1 and support our hypothesis that older adults would incidentally encode both target-target and target-distractor pairs.

Flanker Exploratory Analysis

In Experiment 1 and 2, participants completed an arrow flanker task between the encoding and test phase. Traditionally, the flanker task has been used as measure of inhibitory control, which itself has been divided into three subtypes: access, deletion, and restraint (Hasher, Zacks & May, 1999). Access is stopping irrelevant distraction from entering the focus of attention; deletion is removing information from attention or working memory once it is no longer relevant; and restraint is stopping prepotent or well-rehearsed responses. In the flanker task, incongruent trials create response conflict, meaning the trials require motor response *restraint* because the distracting arrows generate a conflicting motor response relative to the center (target) arrow. The congruent trials do not require response restraint. When these
conditions are compared there is a robust congruency effect, such that participants have higher accuracy and faster RTs for the congruent trials compared to the incongruent trials (Erikson & Erikson, 1974). Presumably this effect is driven by an individual’s level of inhibitory control, or more specifically, individual differences in restraint (c.f., Mayr, Awh, & Laurey, 2003; Nieuwenhuis et al., 2006), which is known to decline with age (Hasher & Zacks, 1988). Therefore, older adults should be worse at inhibiting distractor responses, which should result in a larger congruency effect when compared to younger adults (though this has not been consistently observed with the flanker task; e.g., Hsieh, Liang & Tsai, 2012; Verhaeghen, 2011; Wild-Wall, Falkenstein & Hohnsbein, 2008). Additionally, inhibitory control is an individual difference that can be measured in both older and younger adults. Therefore, it is possible that regardless of age, those with low levels of inhibitory control, as measured by the flanker task, would be more likely to encode target-distractor pairs during the implicit associative memory task (though inhibiting distracting words on the object categorization task may depend more on the access function of inhibitory control, rather than restraint, so the correlation may be minimal).

To test whether the flanker congruency effect related to hyper-binding, we collapsed the data across Experiment 1 and 2 to maximize power. Participants with a mean accuracy score ± 2.5 SD away from the group mean for either condition were excluded from the analysis (Younger N =1; Older N = 2). Additionally, data from three participants was missing for this task (Younger N = 2; Older N = 1). The final sample included 70 younger and 69 older adults.

5 Note that the pattern of results remains the same when the data are analyzed separately for each experiment.
Results

Flanker Accuracy.

Accuracy was calculated as the proportion of correct responses for each condition. The accuracy data was submitted to a 2 (Age: Young, Old) x 2 (Congruency: Congruent, Incongruent) ANOVA. This yielded a main effect of age, $F(1, 137) = 5.38, p = .022$ and congruency, $F(1, 137) = 52.92, p < .001$. The main effects were superseded by a significant age by congruency interaction, $F(1,137) = 12.69, p = .001$. Surprisingly, this interaction appears to be driven by lower accuracy in younger adults ($M = .95, SD = .09$) than older adults ($M = .98, SD = .03$) in the incongruent condition. In the congruent condition, younger ($M = .98, SD = .05$) and older adults ($M = .99, SD = .03$) showed similar accuracy (see Table 4).

To test whether individual differences in the congruency effect for accuracy was correlated with hyper-binding, we calculated a difference score for flanker accuracy (incongruent – congruent) and hyper-binding (rearranged – intact pairs, some-binding condition only). The correlation between these two variables was not significant, $r = .048, p = .577$ (see Figure 2). When this correlation is tested within age groups, the results do not change (p’s > .1).

Flanker Reaction Time.

RTs were trimmed within each condition (± 2.5 SD were removed). RT data were submitted to a 2 (Age: Young, Old) x 2 (Congruency: Congruent, Incongruent) ANOVA. There was a main effect of age, $F(1, 137) = 72.32, p < .001$, such that, on average older adults responded more slowly than young adults. There was a main effect of congruency, $F(1, 137) = 615.72, p < .001$, such that all participants responded faster to the congruent trials compared to
the incongruent trials. However, there was no interaction between age and congruency, $F(1, 137) = .09, p = .765$ (see Table 4).

To test whether individual differences in the congruency effect for RT was correlated with hyper-binding, we calculated a difference score for flanker RT (incongruent – congruent) and hyper-binding. Again, the correlation between these two variables was not significant, $r = .041, p = .632$ and does not change when tested within age groups, $ps > .5$ (see Figure 3).

General Discussion

Age differences in explicit associative memory are well documented (Old & Naveh-Benjamin, 2008b), but the precise cause of these differences is still under debate. According to inhibitory deficit theory (Hasher & Zacks, 1988) and more specifically, the hyper-binding hypothesis (Campbell et al., 2010), memory binding is an automatic process that remains relatively intact with age. What declines instead is the ability to maintain focus on relevant information and inhibit distraction, leading older adults to have more distracting information in mind and, as a result, to form more non-target associations than younger adults. Across two experiments, we found that older adults were faster to make categorization judgments about object pairs that remained intact from encoding versus those that were rearranged, and they showed this implicit associative memory effect for both fully attended (target-target) pairs and partly attended (target-distractor) pairs. Young adults, on the other hand, showed no evidence of implicit associative memory in the current study.

Older adults’ faster responding to intact pairs from the full-binding condition replicates the effects of Dew & Giovanello (2010) and suggests that associative memory is maintained with age when tested implicitly. These findings suggest that the binding mechanism itself is not
impaired with age (Naveh-Benjamin, 2000; Chalfont & Johnson, 1996), in that even implicit associative memory would decline with age if older adults were less able to bind. Rather, it seems that older adults have a specific deficit in limiting attention to and intentionally binding relevant components of an episode together (Old & Naveh-Benjamin, 2008b), potentially due to a decline in the use of effective associative strategies (Naveh-Benjamin et al., 2007). In addition, older adults may have difficulty accessing associations explicitly, possibly due to impaired controlled retrieval (Cohn et al., 2008; Jennings & Jacoby, 1993, 1997; Healey, Hasher & Campbell, 2013) and/or increased interference at retrieval from non-target associations (Campbell et al., 2010; Biss et al, 2012). In the current study, older adults not only learned the attended pairs from the full-binding block, but they also learned the target-distractor pairs from the same-binding block, as predicted by the hyper-binding hypothesis. We have argued that hyper-binding likely contributes to older adults’ associative memory deficit by leading to greater interference at retrieval, in a manner similar to classic fan or cue-overload effects (Anderson, 1974; Watkins & Watkins, 1975). Previous work suggests that explicit memory for associations may be more vulnerable to interference from non-target associations than implicit memory for associations (Graf & Schacter, 1987; cf. Lustig & Hasher, 2001) and thus, hyper-binding may contribute to older adults’ associative deficit under explicit retrieval conditions while leaving implicit memory for associations relatively spared.

In contrast to previous work (Dew & Giovanello, 2010), young adults in this study did not respond faster to intact than rearranged pairs, even when these pairs were fully attended. Experiment 2 aimed to test whether this lack of priming was due to the order of conditions in Experiment 1, which always presented the full-binding block last after two blocks of ignoring letter stimuli. However, block order had no effect on RTs in Experiment 2, and indeed, even
when younger adults received the full-binding block first, they showed no difference in RTs to intact ($M = 927.64, SD = 259.63$) and rearranged pairs ($M = 930.97, SD = 194.81$) from the full-binding condition, $t(14) = .08, p = .935$, suggesting that block order was not responsible for the lack of effect in the younger group. The lack of priming observed in the younger adults is unforeseen, however, there were a number of changes made to Dew & Giovanello’s paradigm that were necessary to extend hyper-binding to this task, including the creation of new block types (i.e., no- and some-binding) that were critical to testing the hyper-binding hypothesis.

Other differences include: 1) we used overlapping picture-word pairs, while they used non-overlapping picture-picture pairs; 2) our test list consisted of 48 old (24 intact, 24 rearranged) and 24 half-new pairs (no fillers), while their test list consisted of 24 old, 24 new, and 20 filler pairs; and 3) we included two additional encoding blocks that required a slightly different judgment (i.e., would the picture *alone* fit inside a drawer). The decision to use similar stimuli to the original hyper-binding paradigm (i.e., picture-word pairs) is an important difference that could be contributing to the current findings. Further, in both experiments, older adults scored significantly higher on the vocabulary test than young adults (see Table 1), in line with previous work (Verhaeghen, 2003). It is plausible that the use of word stimuli could have improved older adults’ implicit memory for the pairs. However, if superior language ability in older adults was driving the current results, we would expect a correlation between vocabulary and binding in the some- and/or full-binding blocks, which we do not ($ps > .2$). This insignificant relationship suggests that the decision to use picture-word pairs did not differentially affect older and younger adults’ performance in our experiments. Future research should investigate whether systematically varying stimulus types influences the strength of implicit memory in older and younger adults.
Another possible reason for young adults’ lack of implicit associative memory in the full-binding block could be due to the self-paced nature of the task. In both experiments, stimuli offset once participants responded and young adults’ encoding phase RTs were significantly faster than those of older adults (see Table 2). Thus, young adults may not have had enough time to bind each pair (c.f., Voss & Gonsalves, 2010, who showed that longer study actually decreased priming in younger adults). If longer encoding time was related to binding, we would expect to see a correlation between encoding RT and binding in the some- and/or full-binding blocks, but there was no correlation in either group (even when collapsing across experiments to maximize power, $p’s > .28$). Further, across both experiments, when encoding RT is accounted for in the main analysis the pattern of results does not change, providing further evidence that encoding RT does not seem to account for the results. Future research investigating implicit associative memory should use consistent encoding durations to determine if encoding RT plays a significant role.

A final potential explanation for why young adults did not show faster RTs for intact than rearranged pairs in the full-binding block is that the young adults in our study responded faster overall than the young adults in Dew and Giovanello (2010). In their Experiment 1 (which included the same desk drawer judgment as the current study), young adults’ mean RTs at test were as follows: Intact $M = 969 \ (SD = 183)$, Rearranged $M = 1039 \ (SD = 179)$. In this study, for the full-binding condition (which is most equivalent to Dew & Giovanello, 2010), our young adults were notably faster: Exp 1 Intact $M = 899.81 \ (SD = 212.78)$, Rearranged $M = 932.18 \ (SD = 210.37)$; Exp 2 Intact $M = 886.40 \ (SD = 227.74)$, Rearranged $M = 889.71 \ (SD = 196.35)$.

6 A series of one-sample t-tests comparing our values to those of Dew & Giovanello revealed that our younger adults were significantly faster in most cases (Exp 1 Intact: $t \ (27) = -1.72, p = .097$; Rearranged: $t \ (27) = -2.69, p = .012$; Exp 2 Intact: $t \ (44) = -2.43, p = .019$; Rearranged: $t \ (44) = -5.10, p < .001$).
Thus, floor effects may have contributed to the apparent lack of associative memory in our younger adults. Young adults’ fast responding may have been caused by a realization that if one object does not fit in the desk drawer, then both objects will not fit together (avoiding the need to attend to both objects). We are currently developing a new paradigm that forces participants to attend to both objects in the full-binding condition.

In our exploratory analyses of the flanker task, we expected that because inhibitory control declines with age, older adults would have a larger congruency effect when compared to younger adults. We did not observe this age difference. It is important to note that our findings are not an anomaly; there are many studies that report no age difference on the flanker task (e.g., Hsieh, Liang, & Tsai, 2012; Nobuyuki, Namiko, Kenta, Tae, & Nobuo, 2012; Wild-Wall, Falkenstein & Hohnsbein, 2008) or demonstrate that age differences can be accounted for by age-related slowing (Jennings, Dagenbach, Engle, & Funke, 2005; Verhaeghen, 2011). These findings may not be entirely surprising because there is some debate in the literature over what the flanker task is actually measuring. Proponents of conflict monitoring theory suggest that it does measure inhibitory control (Botvinick, Braver, Barch, Carter, & Cohen, 2001), while other researchers suggest it is actually a measure of stimulus repetition priming effects (Davelaar & Stevens, 2009; Mayr, Awh & Laurey, 2003; Nieuwenhuis et al., 2006). In the current experiment, the flanker task was not selected *a priori* as a measure of inhibitory control; rather, it was chosen to serve as a filler task because it is relatively undemanding and does not include any words (which could interfere with memory). Thus, in the scope of this paper it is not possible to make strong claims about the validity of this task. However, the lack of age differences in our study may lend support to the priming perspective as inhibitory control deficits in aging have been widely supported.
The proposition that the flanker task does not solely measure inhibitory control might also explain why we did not see the anticipated relationship between the congruency effect and hyper-binding. Alternatively, it is possible that the flanker task is measuring inhibitory control, but a different type of inhibitory control than that responsible for hyper-binding. Proponents of conflict monitoring theory suggest that performance on the flanker task is reliant on restraint, while hyper-binding is thought to result from a decline in access, or a reduced ability to prevent irrelevant information from entering the focus of attention. Therefore, while both tasks may depend on inhibitory control, they may depend on different sub-types of inhibitory control and thus, be unrelated to each other. Future research should use a battery of inhibitory control tasks that measure access to create a latent factor that can be used to model the relationship between these variables.

Conclusions

The current results and previous work on hyper-binding demonstrate the consequences of reduced inhibitory control for associative memory in older adults. Hasher and Zacks (1979) originally posited that automatic processes, such as the encoding of temporal order and frequency of occurrence, remain relatively stable across the lifespan. Instead what develops throughout childhood and declines in old age, they argued, are controlled processes such as the inhibition of prepotent responses and the suppression of distraction (Hasher & Zacks, 1988). Memory binding is thought to be a relatively automatic process (Moscovitch, 1992; Olsen, Moses, Riggs, & Ryan, 2012), present in species throughout the animal kingdom (e.g., Clayton & Dickinson, 1998; Crystal & Smith, 2014) and in children at a very early age (e.g., Rovee-Collier, 1999). If two or more pieces of information are co-attended (e.g., an object and its context, a pair of words), they are obligatorily bound into a joint memory trace (Logan &
Etherton, 1994; Chun & Jiang, 1998; Turk-Browne, Jungé, & Scholl, 2005). Thus, attention is the gatekeeper of associative memory, and if attention is not limited to target information, as is often the case for older adults (for a recent review, see Hasher & Campbell, in press), then more non-target associations will inevitably be formed. These non-target associations likely lead to greater interference at retrieval for older adults, which again due to impaired inhibitory control, older adults are less able to resolve (Healey et al., 2013; Ikier, Yang, & Hasher, 2008).

Associative memory, when tested explicitly, shows a marked decline with age. If this decline were due to an impairment in the binding mechanism itself, then implicit associative memory would also decline with age. However, the current results and those from previous work (Dew & Giovanello, 2010; Campbell et al., 2012) suggest that implicit associative memory remains intact with age. An alternative explanation for older adults’ explicit associative memory deficit is put forth by inhibitory theory, which suggests that reduced inhibitory control leads to excess (or hyper-) binding at encoding, followed by a lessened ability to inhibit these excess associations at retrieval. There may be times when these excess associations are helpful (as in face-name learning; Weeks et al., 2016), but more often than not, hyper-binding is likely detrimental to older adults’ performance on explicit tests of associative memory.
Table 1.
Demographic information for participants in Experiment 1 and 2.

<table>
<thead>
<tr>
<th>Group</th>
<th>Age (years)</th>
<th>M</th>
<th>Range</th>
<th>SD</th>
<th>Education (years)</th>
<th>M</th>
<th>Range</th>
<th>SD</th>
<th>Vocabulary</th>
<th>M</th>
<th>Range</th>
<th>SD</th>
<th>MoCA</th>
<th>M</th>
<th>Range</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td></td>
</tr>
<tr>
<td>Younger</td>
<td>20.29</td>
<td>18-27</td>
<td>2.16</td>
<td></td>
<td>14.15</td>
<td>12-17</td>
<td>1.41</td>
<td></td>
<td>26.86</td>
<td>20-39</td>
<td>3.66</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older</td>
<td>71.44</td>
<td>64-82</td>
<td>4.78</td>
<td></td>
<td>18.73</td>
<td>9-29</td>
<td>4.25</td>
<td></td>
<td>36.37</td>
<td>31-40</td>
<td>2.51</td>
<td></td>
<td>27.07</td>
<td>24-30</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
</tr>
<tr>
<td>Younger</td>
<td>19.53</td>
<td>17-28</td>
<td>2.01</td>
<td></td>
<td>13.82</td>
<td>7-18</td>
<td>1.91</td>
<td></td>
<td>26.93</td>
<td>18-35</td>
<td>4.26</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Older</td>
<td>70.50</td>
<td>61-82</td>
<td>5.75</td>
<td></td>
<td>16.87</td>
<td>4-30</td>
<td>4.22</td>
<td></td>
<td>34.64</td>
<td>22-40</td>
<td>3.28</td>
<td></td>
<td>26.7</td>
<td>23-30</td>
<td>1.77</td>
<td></td>
</tr>
</tbody>
</table>

Note. Education data was missing for two participants in Experiment 2.
Table 2.
Accuracy for Encoding and Test Phase within block types for Experiment 1 and Experiment 2.

<table>
<thead>
<tr>
<th></th>
<th>Younger</th>
<th></th>
<th>Older</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Experiment 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-binding</td>
<td>19.93</td>
<td>4.12</td>
<td>20.41</td>
<td>2.19</td>
</tr>
<tr>
<td>Some-binding</td>
<td>19.96</td>
<td>4.48</td>
<td>21.00</td>
<td>2.09</td>
</tr>
<tr>
<td>Full-binding</td>
<td>21.46</td>
<td>1.57</td>
<td>20.33</td>
<td>2.27</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>10.75</td>
<td>0.84</td>
<td>11.04</td>
<td>0.90</td>
</tr>
<tr>
<td>Rearranged</td>
<td>11.18</td>
<td>1.02</td>
<td>11.22</td>
<td>1.05</td>
</tr>
<tr>
<td>Some-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>11.07</td>
<td>0.86</td>
<td>11.11</td>
<td>0.85</td>
</tr>
<tr>
<td>Rearranged</td>
<td>10.57</td>
<td>1.07</td>
<td>10.89</td>
<td>1.09</td>
</tr>
<tr>
<td>Full-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>10.86</td>
<td>0.85</td>
<td>10.78</td>
<td>1.05</td>
</tr>
<tr>
<td>Rearranged</td>
<td>10.75</td>
<td>1.00</td>
<td>10.81</td>
<td>0.96</td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-binding</td>
<td>20.67</td>
<td>2.33</td>
<td>20.73</td>
<td>1.78</td>
</tr>
<tr>
<td>Some-binding</td>
<td>20.82</td>
<td>1.60</td>
<td>20.73</td>
<td>1.80</td>
</tr>
<tr>
<td>Full-binding</td>
<td>21.24</td>
<td>1.96</td>
<td>20.77</td>
<td>2.24</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>10.49</td>
<td>1.01</td>
<td>10.64</td>
<td>0.99</td>
</tr>
<tr>
<td>Rearranged</td>
<td>10.38</td>
<td>1.53</td>
<td>10.66</td>
<td>1.18</td>
</tr>
<tr>
<td>Some-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>10.71</td>
<td>1.04</td>
<td>10.45</td>
<td>0.95</td>
</tr>
<tr>
<td>Rearranged</td>
<td>10.40</td>
<td>1.23</td>
<td>10.61</td>
<td>0.97</td>
</tr>
<tr>
<td>Full-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>10.53</td>
<td>1.10</td>
<td>10.55</td>
<td>1.37</td>
</tr>
<tr>
<td>Rearranged</td>
<td>10.87</td>
<td>1.14</td>
<td>10.73</td>
<td>1.21</td>
</tr>
</tbody>
</table>
Table 3.
Reaction Times for Encoding and Test Phase within block types for Experiment 1 and Experiment 2.

<table>
<thead>
<tr>
<th></th>
<th>Younger</th>
<th></th>
<th></th>
<th>Older</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M)</td>
<td>(SD)</td>
<td></td>
<td>(M)</td>
<td>(SD)</td>
</tr>
<tr>
<td>Experiment 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-binding</td>
<td>1057.56</td>
<td>260.84</td>
<td></td>
<td>1377.77</td>
<td>356.60</td>
</tr>
<tr>
<td>Some-binding</td>
<td>1038.92</td>
<td>277.76</td>
<td></td>
<td>1273.17</td>
<td>314.73</td>
</tr>
<tr>
<td>Full-binding</td>
<td>1289.81</td>
<td>244.29</td>
<td></td>
<td>1694.20</td>
<td>325.39</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>953.04</td>
<td>204.88</td>
<td></td>
<td>1283.78</td>
<td>281.20</td>
</tr>
<tr>
<td>Rearranged</td>
<td>996.55</td>
<td>219.01</td>
<td></td>
<td>1252.02</td>
<td>251.19</td>
</tr>
<tr>
<td>Some-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>979.53</td>
<td>217.19</td>
<td></td>
<td>1249.50</td>
<td>253.15</td>
</tr>
<tr>
<td>Rearranged</td>
<td>953.40</td>
<td>192.73</td>
<td></td>
<td>1430.18</td>
<td>286.61</td>
</tr>
<tr>
<td>Full-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>899.81</td>
<td>212.78</td>
<td></td>
<td>1227.77</td>
<td>226.90</td>
</tr>
<tr>
<td>Rearranged</td>
<td>932.18</td>
<td>210.37</td>
<td></td>
<td>1310.25</td>
<td>228.24</td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-binding</td>
<td>897.65</td>
<td>194.01</td>
<td></td>
<td>1254.41</td>
<td>341.36</td>
</tr>
<tr>
<td>Some-binding</td>
<td>944.37</td>
<td>205.40</td>
<td></td>
<td>1349.81</td>
<td>352.93</td>
</tr>
<tr>
<td>Full-binding</td>
<td>1187.96</td>
<td>280.00</td>
<td></td>
<td>1666.35</td>
<td>372.97</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>918.81</td>
<td>218.78</td>
<td></td>
<td>1268.34</td>
<td>294.15</td>
</tr>
<tr>
<td>Rearranged</td>
<td>916.20</td>
<td>232.44</td>
<td></td>
<td>1239.80</td>
<td>242.08</td>
</tr>
<tr>
<td>Some-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>902.68</td>
<td>235.65</td>
<td></td>
<td>1188.28</td>
<td>247.68</td>
</tr>
<tr>
<td>Rearranged</td>
<td>904.90</td>
<td>219.85</td>
<td></td>
<td>1250.90</td>
<td>264.23</td>
</tr>
<tr>
<td>Full-binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact</td>
<td>886.40</td>
<td>227.74</td>
<td></td>
<td>1178.29</td>
<td>283.96</td>
</tr>
<tr>
<td>Rearranged</td>
<td>889.71</td>
<td>196.35</td>
<td></td>
<td>1291.84</td>
<td>297.64</td>
</tr>
</tbody>
</table>
Table 4.
Flanker Task Data

<table>
<thead>
<tr>
<th></th>
<th>Younger</th>
<th></th>
<th>Older</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Congruent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>418.25</td>
<td>57.76</td>
<td>526.18</td>
<td>89.12</td>
</tr>
<tr>
<td>ACC</td>
<td>0.98</td>
<td>0.05</td>
<td>0.99</td>
<td>0.03</td>
</tr>
<tr>
<td>Incongruent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>473.08</td>
<td>59.20</td>
<td>582.35</td>
<td>93.01</td>
</tr>
<tr>
<td>ACC</td>
<td>0.95</td>
<td>0.09</td>
<td>0.98</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note. Accuracy is represented as a proportion.

ACC: Accuracy
Figure 1. Results from Experiment 1 and 2.

Note: Bars represent difference scores (Rearranged – Intact) for the conditions of interest. Error Bars: 95% CI.
Figure 2. Relationship between hyper-binding and flanker accuracy.
Figure 3. Relationship between hyper-binding and flanker RT.
References

Appendix A

Consent Form

Date: 2019

Project Title: Aging & the Control of Attention

Principal Investigator (PI): Dr. Karen Campbell, Department of Psychology, Brock University 905-688-5550 ext. 4281, kcAMPbell5@brocku.ca

INVITATION

You are invited to participate in a research project designed to learn more about attention and how this cognitive ability changes with age.

WHAT’S INVOLVED

This study consists of one session that will last about 1 hour. We will pay $10.00 per hour as a token of our appreciation for your time. For students, a research participation credit can be provided in lieu of payment.

You will complete a series of tasks on the computer that require you to focus your attention on some information, while ignoring other distracting information. Your task will be to make a button press or verbal response to the attended information while ignoring the distraction. Specific instructions for each task will be provided prior to starting the task. Some of your verbal responses may be tape recorded for later scoring.

We will then ask you to complete some short questionnaires involving vocabulary and basic cognitive functions. You will also be asked to complete a background questionnaire regarding your health, education, and ethnicity.

When done, you will be given a feedback letter explaining in more detail the purpose of the experiment, which will include contact information should you have further questions about the research or the results.

POTENTIAL BENEFITS AND RISKS

Potential risks include fatigue and minor anxiety about task performance. To minimize these risks, regular breaks will be provided, and research assistants will address any concerns about the tasks. Possible benefits include gaining knowledge of how experiments are run in psychology and how cognition is affected by age. You will also contribute to our further understanding of how the mind and brain change with normal, healthy aging.

CONFIDENTIALITY
All information you provide is considered confidential; your name will not be included with your data. We will use a code number to match your computer files to the background questionnaire you complete at the end of testing session. Your computer files will not be seen by anyone outside of the research team. Furthermore, because our interest is in the average responses of the entire group of participants, you will not be identified individually in any way in written reports of this research. We will keep a list of participants in order to ensure that each participant does not take part in the study more than once, which will be kept for 5 years, and this information will not be connected to your responses in the study.

Data collected during this study will be stored in the laboratory of Dr. Karen Campbell, which will be secured at all times. Consent forms will be destroyed once data collection for this study is complete. De-identified data (i.e., scores on the tasks and audio files that cannot be linked to your name) will be kept for five years following publication in an academic journal, after which time all data will be destroyed by shredding paper records, or by deleting electronic records. Access to this data will be restricted to Dr. Karen Campbell and research assistants in Dr. Campbell’s laboratory (all of whom will agree to maintain confidentiality).

VOLUNTARY PARTICIPATION

Participation in this study is voluntary and participants have the right to request the withdrawal of their data. If you wish, you may decline to answer any questions or participate in any component of the study. Further, you may decide to withdraw from this study at any time. If you decide not to participate on the day of the research session, either at the start of the session or during the session, your compensation will be pro-rated. For participants receiving monetary compensation, payment will be proportional to the time you have spent in the study ($10.00/hour). For Brock students receiving course credit, one half credit will be given for every half hour of the study you have completed (and you will not be penalized on Brock University’s SONA system). If you choose to withdraw after some data have been collected (either on the day of the study or after), acquired data will be destroyed and deleted from our records.

PUBLICATION OF RESULTS

Results of this study may be published in professional journals and presented at conferences. While we cannot provide individual feedback to participants, and none of the cognitive assessments are diagnostic in nature, general feedback about this study will be available as soon as data collection is complete in approximately one year. If you are interested in receiving feedback about the results of the study, please indicate below and Dr. Karen Campbell will send you a copy of the findings.

CONTACT INFORMATION AND ETHICS CLEARANCE

If you have any questions about this study or require further information, please contact Dr. Karen Campbell using the contact information provided above. This study has been reviewed and received ethics clearance through the Research Ethics Board at Brock University 16-306-CAMPBELL. If you have any comments or concerns about your rights as a participant, please contact the Research Ethics Office at (905) 688-5550 Ext. 3035, reb@brocku.ca
Thank you for your assistance in this project. Please sign this form and return to the researcher.

CONSENT FORM

I agree to participate in this study described above. I have made this decision based on the information I have read in the Information-Consent Letter. I have had the opportunity to receive any additional details I wanted about the study and understand that I may ask questions in the future. I understand that I may withdraw this consent at any time.

I hereby consent to participate.

STUDENTS

I am participating in this experiment for 1 hour of research participation in a psychology course.

_________________________________ _____________________ __________________________
Signature of Participant Course for Participation Signature of Experimenter

COMMUNITY PARTICIPANTS

I am participating in this experiment for $10.00/hr.

_________________________________ __________________________
Signature of Participant Signature of Experimenter

If you are interested in receiving feedback about the overall results of the study, please provide your email address below.

EMAIL ADDRESS

→
Appendix B

Ss #: _____ - _____

AWARENESS QUESTIONNAIRE

1. Did you notice a connection between any of the tasks you did?
 - If “no”, UNAWARE
 - If “yes”, then ask the following:

2. What did you notice?

3. When did you notice it and how did you notice?

4. Did you consciously try to use or avoid using the words you saw in
 the first task as responses to the last task?

5. Did you employ any strategies during the task to help you answer the questions more
 quickly? If so, please explain.

AWARE

UNAWARE
Appendix C

STUDY: _________________________ PARTICIPANT ID ____________

BACKGROUND INFORMATION
Campbell Lab, Department of Psychology, Brock University

Today’s Date: ________________________________ Day ______ Month ______ Year ______

Age: _____ Sex: () Female () Male Date of birth: ________________________

Are you right or left-handed? () Right () Left

Were you born in Canada? () Yes () No
--If not born in Canada, how old were you when you first came here? _________

What is your first (native) language? ________________________________
--If not English, how old were you when you first learned English? _________

Please list all the languages you speak:

- _______________________ Age learned: ______ used daily?: __________

Please rate the following for your FIRST LANGUAGE : ________________

Speech comprehension: 1 2 3 4 5 6 7
Conversational fluency: 1 2 3 4 5 6 7
Reading: 1 2 3 4 5 6 7
Writing: 1 2 3 4 5 6 7

Please rate the following for your SECOND LANGUAGE : ________________
Speech comprehension: 1 2 3 4 5 6 7
Conversational fluency: 1 2 3 4 5 6 7
Reading: 1 2 3 4 5 6 7
Writing: 1 2 3 4 5 6 7

Education:
Please specify the *number of years* at each educational institute.
- _____ Grade school (grades 1-13)
- _____ Community college
- _____ Vocational/technical school
- _____ University
- _____ Continuing education
- _____ Other: _____________________

- _____ Total number of years of education (Add *all* years including grade school)

Please check any diplomas/degrees you have completed:
- () Grade/highschool diploma
- () Community college diploma
- () Vocational/technical school diploma
- () B.A./B.Sc.
- () M.A./M.Sc.
- () Ph.D.
- () Other: _____________________

What is your marital status?
- () Single
- () Common law
- () Married
- () Widowed
- () Divorced
- () Separated

What has been your major occupation during most of your life?
__

What has been your spouse’s major occupation?
__

Are you retired?
- () Yes
- () No
--If you are retired, in what year did you retire? ___________________________

What time do you typically wake up:
- ____________ AM/PM

HEALTH INFORMATION
How many days have you been bothered by illness during the past 6 months? ________ --How serious an illness was it? () Very serious () Serious () Not serious

Please check the appropriate box regarding the following health conditions:

Hearing problems: () Yes () No
--If yes, do you wear a hearing aid? () Yes () No
--Is your hearing corrected to normal with the hearing aid? () Yes () No

Vision problems: () Yes () No
--If yes, do you wear glasses/contacts? () Yes () No
--Is your vision corrected to 20/20 with glasses/contacts? () Yes () No

Neurological problems (e.g., epilepsy): () Yes () No

Arthritis: () Yes () No
--If yes, is it serious enough to impinge on daily activities? () Yes () No

Diabetes () Yes () No
Cancer () Yes () No
Stroke () Yes () No
--If yes, when did you have a stroke? ________________

High blood pressure () Yes () No
Heart problems () Yes () No
Stomach ulcers () Yes () No
Other: __________________________

Are you colourblind? () Yes () No If yes, what type? __________________________

What medications do you take on a regular basis?

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>For which ailment?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Have you ever been knocked unconscious (e.g., sports injury or accident)?
() Yes () No
-If yes, how old were you? ________________
-What was the cause? __
-How long were you unconscious? __________________________________
-Did you have trouble remembering events after regaining consciousness? () Yes () No
-If yes, please explain ___

Indicate if you are often bothered by any of the following:
() Colds/flu () Depression () Feeling generally run down
() Headaches () Difficulty sleeping () Difficulty eating
() Nervousness/tenseness

In general, how satisfied are you with your health and physical condition?
() Satisfied () Somewhat satisfied () Somewhat dissatisfied () Dissatisfied
On a scale from 1 (poor) -10 (excellent), how would you rate your overall health? _____

PERSONAL INFORMATION

What is your ethnic background? (Try to be as specific as possible).
Appendix D

SHIPLEY INSTITUTE OF LIVING SCALE -- VOCABULARY TEST

S # ___________________ DATE ____________________

Instructions: In the test below, the first word in each line is printed in capital letters. Opposite it are four other words. Circle the one word which means the same thing, or most nearly the same thing, as the first word. If you don’t know, guess. Be sure to circle the one word in each line that means the same thing as the first word.

EXAMPLE:

<table>
<thead>
<tr>
<th>LARGE</th>
<th>red</th>
<th>big</th>
<th>silent</th>
<th>wet</th>
</tr>
</thead>
</table>

(1) TALK draw eat speak sleep
(2) PERMIT allow sew cut drive
(3) PARDON forgive pound divide tell
(4) COUCH pin eraser sofa glass
(5) REMEMBER swim recall number deny
(6) TUMBLE drink dress fall think
(7) HIDEOUS silvery tilted young dreadful
(8) CORDIAL swift muddy leafy hearty
(9) EVIDENT green obvious skeptical afraid
(10) IMPOSTOR conductor officer book pretender
(11) MERIT deserve distrust fight separate
(12) FASCINATE welcome fix stir enchant
(13) INDICATE defy excite signify bicker
(14) IGNORANT red sharp uninformed precise
(15) FORTIFY submerge strengthen vent deaden
(16) RENOWN length head fame loyalty
(17) NARRATE yield buy associate tell
(18) MASSIVE bright large speedy low
(19) HILARITY laughter speed grace malice
(20) SMIRCHED stolen pointed remade soiled
(21) SQUANDER tease belittle cut waste
(22) CAPTION drum ballast headingape
(23) FACILITATE help turn strip bewilder
(24) JOCOSE humorous paltry fervid plain
(25) APPRISE reduce strew inform delight
(26) RUE eat lament dominate cure
(27) DENIZEN senator inhabitant fish atom
(28) DIVEST dispossess intrude rally pledge
(29) AMULET charm orphan dingo pond
(30) INEXORABLE untidy involatile rigid sparse
(31) SERRATED dried notched armed blunt
(32) LISSOM moldy loose supple convex
(33) MOLLIFY mitigate direct pertain abuse
(34) PLAGIARIZE appropriate intend revoke maintain
(35) ORIFICE brush hole buildinglute
(36) QUERULOUS maniacal curious devout complaining
(37) PARIAH outcast priest lentil locker
(38) ABET waken ensue incite placate
(39) TEMERITY rashness timidity desire kindness
(40) PRISTINE vain sound first level
Appendix E

MONTREAL COGNITIVE ASSESSMENT (MOCA®)
Version 7.2 Alternative Version

VISUOSPATIAL / EXECUTIVE
- Draw clock (five past four) (3 points)

NAMING
- Contour numbers hands

MEMORY
- Read list of words, subject must repeat them. Do 2 trials, even if 1st trial is successful. Do a recall after 5 minutes.
- Subject has to repeat them in the forward order
- Subject has to repeat them in the backward order

ATTENTION
- Read list of digits (1 digit/sec.). Subject has to repeat them in the forward order
- Subject has to repeat them in the backward order
- Read list of letters. The subject must tap with his hand at each letter A. No points if ≥2 errors
- Serial 7 subtraction starting at 90

LANGUAGE
- Repeat: A bird can fly into closed windows when it’s dark and windy.
- The caring grandmother sent groceries over a week ago.
- Fluency / Name maximum number of words in one minute that begin with the letter S

ABSTRACTION
- Similarity between e.g. carrot - potato = vegetable
- Diamond - ruby = cannon - rifle

DELAYED RECALL
- Has to recall words WITH NO CUE

Optional
- Category cue
- Multiple choice cue

ORIENTATION
- Date, Month, Year, Day, Place, City

Adapted by: Z. Nasreddine MD, N. Phillips PhD, H. Chertkow MD
© Z. Nasreddine MD www.mocatest.org

NAME: Education: Date of birth: Sex: Date: POINTS:

TOTAL: 26 / 30

Add 1 point if ≤12 yr edu