
A Hybrid Approach to Network
Robustness Optimization using Edge

Rewiring and Edge Addition

James Paterson

Submitted in partial fulfillment

of the requirements for the degree of:

Masters of Science

Department of Computer Science

Faculty of Mathematics and Science

Brock University

St Catharines, Ontario

c© 2020

Abstract

Networks are ubiquitous in the modern world. From computer and telecom-

munication networks to road networks and power grids, networks make up many

crucial pieces of infrastructure that we interact with on a daily basis. These

networks can be subjected to damage from many different sources, both random

and targeted. If one of these networks receives too much damage, it may be

rendered inoperable, which can have disastrous consequences. For this reason,

it is in the best interests of those responsible for these networks to ensure that

they are highly robust to failure. Since it is not usually feasible to rebuild most

existing networks from scratch to make them more resilient, it is necessary to

have an approach that can modify an existing network to make it more robust

to failure.

Previous work has established several methods of accomplishing this task,

including edge rewiring and edge addition. Both of these methods can be very

useful for optimizing network robustness, but each comes with its own set of

limitations. This thesis proposes a new hybrid approach to network robust-

ness optimization that combines both of these approaches. Four edge rewiring

based metaheuristic approaches were modified to incorporate one of three dif-

ferent edge addition strategies. A comparative study was performed on these

new hybrid optimizers, comparing them to each other and to the vanilla edge

rewiring only approach on both synthetic and real world networks. Experiments

showed that this new hybrid approach to network robustness optimization leads

to much more highly robust networks than an edge rewiring only approach.

1

Acknowledgements

I would like to acknowledge and thank the following people and organizations for

their help and support:

• My supervisor, Dr. Beatrice Ombuki-Berman, for her fantastic assistance and

insights. Thank you for your support throughout my research, and for encour-

aging me to pursue my Masters degree in the first place.

• Dr. Brian Ross for his assistance while deciding on my topic, and his detailed

feedback on my work.

• The members of my examination committee for reviewing this work and pro-

viding their questions and comments.

• My parents, Steve and Erin for their love and support throughout this whole

process.

• Brock University and the Government of Ontario for providing funding to help

support my research.

J. P.

2

Contents

1 Introduction 10

2 Background Information 17

2.1 Graphs . 17

2.2 Complex Networks . 19

2.3 Attacking Networks . 19

2.4 Measuring Robustness . 20

2.4.1 R Value . 21

2.4.2 E Value . 22

2.5 Metaheuristics . 23

2.5.1 Hill Climbing . 24

2.5.2 Simulated Annealing . 24

2.5.3 Great Deluge . 25

2.5.4 Genetic Algorithm . 26

2.5.5 Memetic Algorithm . 27

3 Metaheuristics for Robustness Optimization 28

3.1 Network Operations . 28

3.1.1 Edge Swap . 28

3.1.2 Edge Addition . 30

3.2 Metaheuristics Implementation Details 31

3.2.1 Simulated Annealing . 33

3.2.2 Great Deluge . 34

3.2.3 Genetic Algorithm . 35

4 Data and Experimental Setup 39

4.1 Data . 39

3

4.1.1 Barabási-Albert Model . 39

4.1.2 Power Grid Network . 40

4.2 Parameter Optimization . 40

4.2.1 Static Parameters . 41

4.3 Main Experimental Setup . 41

4.4 Performance Measures . 43

4.4.1 ∆R . 43

4.4.2 RE Value . 43

5 Results & Analysis 45

5.1 Parameter Optimization . 45

5.1.1 Simulated Annealing Parameters 45

5.1.2 Great Deluge Parameters . 48

5.1.3 Genetic Algorithm Parameters 51

5.2 Vanilla Metaheuristic Results . 53

5.3 Hybrid Approach Results . 55

5.3.1 Random Linking Strategy Results 55

5.3.2 High Betweenness Linking Strategy Results 58

5.3.3 Increased Assortativity Linking Strategy Results 60

5.3.4 Comparison of Linking Strategies 62

5.4 Metaheuristic Comparison . 70

5.5 Real World Network . 71

6 Conclusion & Future Work 74

References 77

4

List of Figures

1 Edge swap operation example . 28

2 SA parameter optimization results for T0 45

3 SA parameter optimization results for Tmin 46

4 SA parameter optimization results for Tdecay 47

5 GD parameter optimization results for L% 48

6 GD parameter optimization results for ∆L% 49

7 GD parameter optimization results for imax 50

8 GA parameter optimization results for genmax 51

9 GA parameter optimization results for popSize 52

10 GA parameter optimization results for crossover and mutation rate . 53

11 Performance of vanilla edge rewiring optimizers 54

12 ∆R and RE value for different padd values with RLS on 500 vertex

networks. ∆R shown in light grey, RE shown in dark grey. 57

13 ∆R and RE value for different padd values with HBS on 500 vertex

networks. ∆R shown in light grey, RE shown in dark grey. 60

14 ∆R and RE value for different padd values with IAS on 500 vertex

networks. ∆R shown in light grey, RE shown in dark grey. 63

15 Comparison of three linking strategies and vanilla method for GD. ∆R

shown in light grey, RE shown in dark grey. 65

16 Comparison of three linking strategies and vanilla method for SA. ∆R

shown in light grey, RE shown in dark grey. 66

17 Comparison of three linking strategies and vanilla method for GA. ∆R

shown in light grey, RE shown in dark grey. 68

18 Comparison of three linking strategies and vanilla method for MA. ∆R

shown in light grey, RE shown in dark grey. 70

5

19 Comparison of the four metaheuristics using the hybrid approach with

IAS edge addition. ∆R shown in light grey, RE shown in dark grey. . 72

20 Comparison of the four metaheuristics on the power grid network using

both the vanilla and hybrid methods. The ∆R / RE for the vanilla

method is shown in the lightest grey, the ∆R for the hybrid method is

shown in the middle grey, and the RE for the hybrid method is shown

in dark grey. 74

6

List of Tables

1 Parameters used for testing the SA optimizer 41

2 Parameters used for testing the GD optimizer 41

3 Parameters used for testing the GA/MA optimizers 41

4 Static parameters . 42

5 Average R value for different values of T0 in the SA optimizer 46

6 Average R value for different values of Tmin in the SA optimizer . . . 47

7 Average R value for different values of Tdecay in the SA optimizer . . . 47

8 Average R value for different values of L% in the GD optimizer 49

9 Average R value for different values of ∆L% in the GD optimizer . . . 50

10 Average R value for different values of imax in the GD optimizer . . . 50

11 Average R value for different values of genmax in the GA/MA optimizers 51

12 Average R value for different values of popSize in the GA/MA optimizers 52

13 Average R value for different values of crossover and mutation rate in

the GA/MA optimizers . 53

14 Average ∆R value for vanilla edge rewiring optimizers. 54

15 Great Deluge hybrid optimizer with RLS 55

16 Simulated Annealing hybrid optimizer with RLS 56

17 Genetic Algorithm hybrid optimizer with RLS 56

18 Memetic Algorithm hybrid optimizer with RLS 57

19 Great Deluge hybrid optimizer with HBS 58

20 Simulated Annealing hybrid optimizer with HBS 58

21 Genetic Algorithm hybrid optimizer with HBS 59

22 Memetic Algorithm hybrid optimizer with HBS 59

23 Great Deluge hybrid optimizer with IAS 61

24 Simulated Annealing hybrid optimizer with IAS 61

7

25 Genetic Algorithm hybrid optimizer with IAS 61

26 Memetic Algorithm hybrid optimizer with IAS 62

27 Great Deluge - comparison of edge addition strategies 64

28 Simulated Annealing - comparison of edge addition strategies 64

29 Genetic Algorithm - comparison of edge addition strategies 67

30 Memetic Algorithm - comparison of edge addition strategies 69

31 Comparison of optimizer performance with hybrid approach. 71

32 Hybrid vs. vanilla method on real world network. 73

33 Comparison of optimizers for real network using hybrid approach. . . 73

8

List of Algorithms

1 Edge swap algorithm . 29

2 Simulated annealing algorithm implementation 32

3 Great deluge algorithm implementation 35

4 Genetic algorithm implementation . 37

9

1 Introduction

This thesis explores a new hybrid method for optimizing a network’s robustness to

failure. This hybrid approach is used by a metaheuristic to optimize a target network’s

robustness. This new approach combines two existing approaches - optimization

through edge rewiring and optimization through edge addition - to create highly

robust networks.

Many real-world systems can be modelled as networks. From computer networks

and power grids to social networks and air travel networks, these networks are found

in nearly every aspect of our lives. Many of these networks form critical parts of our

infrastructure and would have disastrous consequences if they were rendered nonfunc-

tional. In a poorly designed network, the failure of even a small number of network

components can cause huge damage to the overall network structure. A network’s

resilience to failure is known as “robustness”.

Ideally, networks should be designed from the ground up to be robust to failure,

and this approach has been examined [1]. However, many existing networks could

benefit from enhanced robustness as well. It is possible to make an existing network

more robust by making changes to the network structure. Network robustness can be

improved by changing the pattern of connections, or edges, within the network graph.

These changes can be made by reorganizing the existing edges within a network into a

pattern that can more easily withstand damage to the network structure. This is the

essence of the problem examined in this thesis - to find a way to modify the structure

of a target network in order to make it more robust to failure.

Determining which structural modifications should be made to a network is not

a trivial problem. The target network may have many hundreds or thousands of

vertices and edges, and determining the exact organization of these components to

make a network maximally robust is not feasible. For this reason, we will use meta-

10

heuristic optimization to find network structures which, while not strictly the “best”

structure possible, are among the best we can find in a reasonable amount of time.

While the existing approaches have seen some success, there is still room for further

improvement. In order to build off of these previous approaches, it is necessary to

know which metaheuristic performs best. For this reason, a comparative study will

be performed as part of this thesis.

In [2] and [3], Schneider et al. make use of an edge rewiring approach in order

to optimize the robustness of scale-free networks, which are networks with power law

degree distributions [4]. One goal of their work is to make the networks more robust

while maintaining this scale-free property. To this end, Schneider et al. make use of

an operation known as an “edge swap” which could swap the endpoints of two edges

[3]. This operation does not change the number of edges in the network or the degrees

of affected vertices, so will not change the degree distribution, thus maintaining the

scale-free property of the network. In their work, Schneider et al. also introduced a

measure known as R value in order to measure the robustness of a network [3]. Using

a simple hill climbing algorithm, Schneider et al. performed experiments to optimize

the robustness of two different types of synthetic network as well as two real world

networks [2]. They found that their approach led to networks that were significantly

more robust than the starting networks.

Furthermore, Schneider et al. observe that the optimized networks exhibited an

“onion-like” structure, with a group of highly connected core vertices in the centre

surrounded by several shells of lower degree vertices [2]. Each of these shells contain

vertices all with the same degree, with degree decreasing with distance from the

central core cluster. In networks with this structure, pairs of vertices with the same

degree will usually have a path between them that does not pass through any higher

degree vertices [2]. This is very useful for defending against targeted attacks on the

network that prioritize vertex degree since it ensures that the network still has many

11

viable paths between low degree vertices after the high degree vertices have been

removed.

In [5], Buesser et al. expand upon Schneider et al.’s [2, 3] work, making use

of a simulated annealing algorithm for the robustness optimization. Working with

the same restriction of maintaining the scale-free property of the networks, Buesser

et al. also make use of the edge swap operation and the same R value robustness

measurement [5]. Their experiments show that the use of simulated annealing leads

to significantly higher robustness than the hill climber used in [2]. In [6], Paterson

and Ombuki-Berman make use of the great deluge algorithm to optimize network

robustness as well as the edge swap operation and R value from [2]. Experiments on

synthetic networks of varying sizes show that the great deluge algorithm outperforms

simulated annealing in optimizing network robustness [6].

Zhou et al. [7] tackle this same problem through the use of a memetic algorithm

using a genetic algorithm with a local search. They introduce a novel crossover

method specifically designed to preserve the scale-free property of networks in the

same way as the edge swap operation from [2]. The local search operator that performs

a number of edge swaps in such a way as to promote the onion-like structure found

in highly robust networks [7]. This is done by prioritizing swaps that increase the

assortativity of the network, a metric that is known to be correlated with the onion-

like structure [8]. Experiments with both synthetic and real world networks show the

effectiveness of this technique [7].

Other existing work has covered other robustness optimizing algorithms, robust-

ness optimization for other types of networks, differing attack strategies, or other

measurements of robustness. Louzada et al. [9] and Liang et al. [10] examine

heuristic “smart rewiring” approaches that prioritize the rewiring of edges to pro-

mote certain network properties. Qiu et al. optimize robustness in wireless sensor

networks using both a heuristic hill climbing algorithm [11] and a memetic algorithm

12

[12]. In [13], Zeng et al. examine networks subjected to attack on both vertices and

edges, rather than just vertices. Wang et al. consider edge attacks in [14], focusing

on networks where damage could result in cascading failures. Zhou et al. [15] look at

optimizing networks subjected to multiple different targeted attacks strategies at the

same time, using an evolutionary algorithm to optimize them. Liu et al.’s [16] look

at ways to optimize networks for a different type of robustness measurement known

as community robustness using a memetic algorithm.

One limit of these techniques is that they are only able to move around the

existing edges within the network. This provides an upper limit on the robustness

of the network, since even a network that has been made maximally robust through

this edge rewiring method can be made even more robust by adding new edges. The

addition of new edges to a network can also be used on its own in order to made a

network more robust.

Cao et al. [17] use an edge addition approach to robustness optimization, focusing

on a particular type of network failure that can occur in flow networks called cascading

failure. This type of failure happens when the destruction of some part of the network

causes the flow within the network to be diverted in such a way that it overloads the

capacity of some other section of the network. This causes that secondary section to

fail, which makes the flow divert yet again, potentially causing a chain reaction of

failures [17]. The authors use three different strategies for determining how to add

edges to the network: random linking strategy, high-betweenness linking strategy,

and low-polarization linking strategy. Their work does not look at robustness in

terms of a measure like the R value. They instead look at how much of the network

remains connected after a cascade failure [17]. Of the three linking strategies tested,

low-polarization linking gave the best results [17].

Other work on robustness optimization by edge addition includes Zhang et al.

[18]. They examine a slightly different problem known as the network redundancy

13

problem, where a network is made more robust by adding redundant multiedges to

vulnerable points in a network. This is done through the use of a genetic algorithm,

measuring robustness with a measure called natural connectivity [18]. Jiang et al.

[19] use four different edge addition methods to optimize network robustness and Bai

et al. [20] optimize robustness using an edge adding strategy that takes multiple local

and global network properties into account when selecting new edges to add. Ji et al.

[21] and Kazawa et al. [22] look at edge addition based robustness optimization in

interdependent and multiplex networks, and Zhang et al. [23] examine the problem

in wireless sensor networks. Ma et al. [24] also use edge addition, optimizing for a

robustness measure known as transport efficiency.

These edge addition methods can be useful in improving network robustness, but

they do come with a cost. In many real networks, the cost of adding entirely new edges

can be significantly greater than moving existing edges [3]. The new connection itself

may come with high costs and modifications to the vertices to support the additional

connections may be even greater. For example, adding new flights out of an airport

may require building additional gates to handle the increased traffic. For this reason,

edge addition methods on their own may not always be the more economical way to

improve a network’s robustness.

Other methods for optimizing network robustness that do not use edge rewiring

or edge addition have also been proposed. In [25], Parshani et al. look at reducing

cascade failures in interdependent networks by, perhaps counterintuitively, removing

dependency edges. The removal of these edges would prevent more vertices failing

when their dependent vertices failed, lessening the chain reaction effect of cascade

failures. Schneider et al. [26] examine this approach as well, looking at ways to more

carefully select edges for removal to prevent cascade failures while keeping as much of

the original network intact as possible. Bernstein et al. [27] consider geographically

correlated failures in real world power grid networks. They examine ways to limit the

14

effects of cascade failures in these networks by manipulating the supply and demand

of vertices in the network during the cascade, ending the cascade early by putting

the network back into a stable state. Wu et al. [28] have an interesting approach

involving hiding information about the network’s structure from attackers. Since

targeted attacks rely on network properties such as vertex degree, obfuscating the

true values of these properties can make it difficult to perform optimal attacks. This

approach can make a network more robust against such attacks without making any

changes to its structure.

This thesis proposes a novel hybrid approach to network robustness optimization

that makes use of a combination of the edge addition and edge rewiring approaches.

The goal of this work is to create a method of robustness optimization that retains the

cost efficiency of the edge rewiring method, while including some limited amount of

edge addition to further enhance the target network’s robustness. The target network

will have its structure modified through a series of edge swap operations and one of

three different edge addition strategies. The proposed hybrid approach is incorpo-

rated within the simulated annealing [5], great deluge [6], and memetic algorithm [7]

metaheuristics described above. Additionally, it will also be incorporated into a mod-

ification of Zhou’s [7] memetic algorithm without the local search operator. These

metaheuristics will be combined with two of the linking strategies for adding new

edges described by Cao et al. [17]. A new linking strategy known as the increased

assortativity linking strategy is also proposed, based on the findings in [8]. This new

hybrid approach is then examined on both synthetic [29] and real world networks [30]

to determine which combination of metaheuristic and linking strategy is most useful.

An empirical study to compare these various approaches was carried out.

The experiments performed as part of this thesis show that this hybrid approach to

network robustness optimization can be very effective. Networks optimized through

this process show significantly higher levels of robustness compared to networks op-

15

timized using only edge swaps. This higher level of robustness is also sometimes ac-

companied by a disproportional increase in the number of edges within the network,

indicating that this approach may not be the most cost efficient way to increase a

network’s robustness in some circumstances. This cost efficiency proves to not be an

issue for the real world power grid network [30] that was tested, because this network

saw a large increase in robustness with a disproportionately small number of new

edges. The comparative study shows that there is no definitive best metaheuristic

amongst the four methods tested, and different algorithms performed best in different

circumstances. Testing also reveals that the newly proposed increased assortativity

linking strategy is the best of the three tested methods for performing edge addition.

The remainder of this thesis is structured as follows. Chapter 2 provides back-

ground information about complex networks, network robustness, robustness mea-

sures, and the metaheuristics used. Chapter 3 describes the edge swap operation and

linking strategies, as well as giving implementation details about the metaheuristics.

Chapter 4 describes the experimental setup and the data used for the experiments.

Chapter 5 shows the results of these experiments and provides discussion about these

results. Chapter 6 presents this thesis’ conclusions and provides ideas for avenues of

future work.

16

2 Background Information

This chapter presents background information needed to understand the topic of this

thesis. It will define several important graph theory terms, explain complex networks,

describe how robustness can be measured, and outline the metaheuristics used.

2.1 Graphs

A graph is a mathematical structure representing the relationships between a number

of objects. Graphs are commonly used as a mathematical representation of real-world

networks. A graph G is defined as G = (V,E) where V is a set of vertices (nodes)

and E is a set of edges (connections, links) between vertices [4]. Each edge e ∈ E is

defined as e = (u, v);u, v ∈ V .

Directed/undirected: In a directed graph, edges have a defined direction, indi-

cating a one-way relationship between vertices [4]. For a directed edge edir = (u, v),

the pair of vertices (u, v) is an ordered pair, indicating that there is an edge origi-

nated at u and terminating at v. The edges in an undirected graph do not have a

defined direction, so all connections in an undirected graph are bidirectional [4]. For

an undirected edge eundir = (u, v), the order of vertices in the pair doesn’t matter

since the edge represents a two-way connection.

Degree: The degree of a vertex in a graph is the number of edges which connect

to that vertex [4]. In a directed graph, vertices have both an out-degree and an

in-degree. The out-degree is the number of outgoing edges from a vertex, and the

in-degree is the number of incoming edges.

Degree distribution: The degree distribution of a graph is a probability distri-

bution of the degrees of a graph’s vertices. This distribution shows how often vertices

of particular degrees occur within the graph.

17

Incident: A vertex and edge are said to be incident if the vertex is one of the

edge’s endpoints [4]. Specifically, for an edge e = (v1, v2) and a vertex v, e and v are

incident if v = v1 or v = v2.

Path: A path is a sequence of edges (v0, v1), (v1, v2), ..., (vn−1, vn) that connect

two vertices v0 and vn [4]. If a path exists between two vertices it is possible to travel

between them by following the edges of the path. Multiple paths can exist between

the same two vertices.

Shortest path: The shortest path between two vertices is the path between them

with the smallest number of edges. There may be multiple shortest paths if they all

contain the same number of edges.

Connected/disconnected: A graph is said to be connected if, for every pair of

vertices u and v, there is a path that connects u and v. If this is not the case, the

graph is said to be disconnected [4].

Subgraph: A subgraph G′ = (V ′, E ′) is a graph formed from a subset of the

vertex and edge sets of a graph G = (V,E). E ′ must only include edges whose

endpoints are in V ′ [4].

Induced subgraph: An induced subgraph is a subgraph which includes all edges

from the original graph G whose endpoints are present in the subgraph’s vertex set

V ′ [4].

Connected component: A connected component is an induced subgraph G′ =

(V ′, E ′) of a graph G = (V,E) which is connected and whose vertices have no edge

in E that connects them with a vertex not present in V ′ [4].

Largest connected component: The largest connected component (LCC) of a

graph is the component with the largest number of vertices in its vertex set.

Fully connected: A graph is said to be fully connected if every vertex has an

edge to every other vertex [4].

18

Assortativity: Assortativity is a measure of how frequently vertices in a network

connect to vertices with the same or similar degree. A highly assortative network will

have a large portion of its vertices connected to other vertices of similar degree [31].

2.2 Complex Networks

Complex networks are a class of network where the structure of the network is neither

entirely random or entirely ordered [4]. These networks may exhibit properties such as

a high clustering coefficient, a hierarchical structure, and other non-trivial structural

properties. Many real-world networks are classified as complex.

The interesting properties present in these networks are often the result of some

underlying process within the real-world system the network is modelling [4]. For

instance, an internet social network is likely to develop a highly clustered structure.

This is because an individual using the network is more likely to add a person as a

friend if they already share a friend in common.

2.3 Attacking Networks

Network failure is usually modelled in terms of attacks on the network [2, 5, 6, 7, 32].

These attacks can represent both intentional targeted attacks on the network, as well

as the random failure of edges or vertices. In either case, attacks are modelled by

selecting an edge or vertex, then removing it from the network. In the case that a

vertex is removed, all incident edges are removed along with it. The order in which

edge and/or vertices are selected for removal is known as the attack sequence. This

thesis will only be considering attacks on the vertices of networks.

In random attacks, the edge or vertex to be removed at any step in the attack

sequence is selected in some stochastic manner without any consideration of the struc-

ture of the network [32]. This type of attack can be used to model damage to the

19

network caused by unpredictable failures. For example, a storm knocking a tree down

onto a power line can be modelled as a random attack on a power grid network.

In a targeted attack, the edge or vertex to be removed is chosen according to some

metric with the intention of causing as much damage to the network as possible [32].

These types of attacks can be used to model more intentional, malicious attacks on

the network. An example of this type of attack is if a hacker targets an important

server to disrupt a computer network.

Targeted attacks can be performed in many different ways, depending on which

metric is used to select targets. These metrics are usually some kind of measure of the

importance of the edge or vertex, with the most important edges or vertices being

prioritized [33]. One simple attack sequence for vertex-based attacks is to simply

attack vertices in descending order of their degrees [34].

A common variation of this degree-based attack tactic is known as high degree

adaptive (HDA) attack [2]. In the regular degree-based attack, the attack sequence is

determined at the beginning of the attack based on the initial degree of the vertices.

However, as vertices are removed during the attack, the degrees of the other vertices

can change. This means that as the attack progresses, the “most important” vertices

can change. In HDA, the selected target vertex is the vertex with the highest degree

at the current step of the attack sequence, so the “most important” vertex is always

the one selected. HDA is the attack method used throughout this thesis.

2.4 Measuring Robustness

In order to make a network more robust through some optimization process, we first

need some way of quantifying how robust a network is to failure. Some possible

metrics for network robustness are described below.

20

2.4.1 R Value

One common robustness measure is the R value [3]. R measure robustness as the

average size of the network’s largest connected component (LCC) over the course of

the attack procedure. R is defined as:

R =
1

N − 1

N∑
Q=0

s(Q),

where s(Q) is the fraction of nodes remaining in the LCC after Q vertices are removed.

In essence, the R value measures how quickly a network breaks apart as it is

damaged [2]. This makes it a particularly good robustness measure for any network

whose performance is mainly dependent on maintaining connectivity. Low value of R

indicate that a network begins to break apart earlier on during the attack sequence

or breaks apart more quickly, while higher values indicate that the network remains

connected for longer or breaks apart more gradually. The R value can have values

between 0 and 0.5, where an R value of 0 indicates a fully disconnected network and

an R value of 0.5 indicating a fully connected network [2].

One important characteristic of the R value is its dependence on the attack se-

quence being used. R doesn’t just consider the static structure of the network before

any attacks are performed. It measures how the network breaks down as it loses

vertices [3]. This means that R actually measures how robust a network is against

a particular type of attack. If the attack sequence is changed then the network will

break down in a different way, giving a different value for R.

21

2.4.2 E Value

Another robustness measure that has seen some use is the E value [35]. E is defined

as:

E =
1

N(N − 1)

∑
i 6=j

d−1ij ,

where dij is the shortest distance between vertices i and j in the network. When

there is no path between vertices i and j, d−1ij will be zero.

E measures the efficiency of the communication between any two vertices. Ef-

ficiency can be an important measure for networks where the compactness of the

network is more important that connectivity on its own. One heavy limitation of this

measure is the fact that it is static as it only considers the network at once point in

time [6]. This may not give a full picture of the vulnerability of the network. For

instance, in a star network, there is a single central vertex to which every other ver-

tex in the network is connected. This type of network is very efficient, since every

vertex is at most distance 2 from every other vertex. However, the network is not

very robust, since removing that one central vertex will completely disconnect the

network.

To that end, a variant of the E value exists, known as IntE [36]. This is defined

in a similar method to the R value, measuring the average E value over the course of

the attack sequence:

IntE = 1/N
N∑

Q=1

E(
Q

N
)

where Q is the number of vertices removed at a particular step in the attack sequence.

This variation gives a more accurate picture of a network’s robustness, and retains

the useful feature of the R value where the attack sequence used affects the robustness

22

score. Similar to R, the IntE value can measure how quickly a network breaks apart.

This is due to the fact that disconnected vertices contribute nothing towards the E

value for that step. This ability in combined with a measure of the overall compactness

of the network through the attack, giving a much more useful robustness measure than

the static E value [36].

2.5 Metaheuristics

Optimization is the process of finding the best element of some set. The definition of

“best” will vary from problem to problem, but usually involves finding the minimum

or maximum possible value for some function. The objective of an optimization

problem is to find some state or set of inputs that gives an optimal value to such a

function. Each state or set of inputs is known as a candidate solution to the problem,

with the set of candidate solutions being known as the search space [37].

A method of exploring the search space is needed in order to discover solutions to

these problems. In simple problems, this can be as straightforward as systematically

checking each candidate solution within the search space. In more complex problems,

the search space may be too large to examine every possible solution in a reasonable

amount of time. In this case, we will require the use of a heuristic search procedure.

Heuristic searches attempt to find solutions that are better than the initial state while

not necessarily being the “best” [37]. These searches will only examine some fraction

of the search space and give back a solution that is close to optimal, while not being

truly optimal.

Two broad categories of search are local searches and population-based searches.

In a local search, the algorithm only examines a single solution at a time, selecting

the next solution to examine based on the current selection [37]. The set of solutions

that can be reached from the currently examined solution is known as that solution’s

neighbourhood. The exact specification of the neighbourhood is problem dependent.

23

Population based searches work much differently. In this type of search, an entire

group of candidate solutions, known as the population, is examined at the same time

[37]. Exploration is performed in the search space by switching out some or all of this

population of solutions, according to algorithm-specific methods.

Several heuristic optimization techniques are presented below. Each is described

as a maximization problem, but works equally well for minimization.

2.5.1 Hill Climbing

One simple heuristic optimization technique is known as hill climbing [2, 37]. Hill

climbing (HC) is a local search procedure - it only considers a single candidate solution

at a time. The hill climbing algorithm starts by examining some initial solution S

with a fitness score f(S). The algorithm then considers the neighbourhood of S

and selects a neighbouring solution S ′. If f(S ′) > f(S), S ′ becomes the new S and

the algorithm continues to the next iteration. Otherwise, a different neighbour is

considered. If all the neighbours of S are checked and none of them are better than

S, the algorithm terminates and returns S as the best solution found.

Hill climbing can be effective in convex search spaces, where it is guaranteed to

return an optimal solution. In other cases, it can easily get stuck in local optima [5].

2.5.2 Simulated Annealing

Simulated annealing (SA) is another local search procedure that improves upon the

functionality of hill climbing [5, 37]. It is inspired by the process of annealing in

metallurgy, where a piece of metal is heated up then slowly cooled in order to make

it easier to work with. In SA, a new “temperature” parameter T is introduced. This

parameter is used to help the algorithm avoid getting stuck in local optima the way

hill climbing does [37].

24

The procedure for simulated annealing is generally the same as hill climbing, with

one main exception. In hill climbing, the neighbouring solution S ′ is only accepted

if f(S ′) > f(S). Simulated annealing however, does not outright reject these worse

solutions. The SA algorithm has a chance of accepting worse solutions with a proba-

bility proportional to T and inversely proportional to the difference in fitness between

the two states [5]. This gives a chance for the algorithm to move out of local optima

and have the potential of finding better solutions elsewhere in the search space.

An important part of simulated annealing is that the temperature parameter T

changes over time. Similar to metallurgical annealing, the temperature starts of high

and is allowed to gradually lower over time. The rate at which T is reduced during

the search is governed by the cooling schedule [5]. The variable value of T plays a

large part in the function of the SA algorithm. The high value of T early on in the

search makes the algorithm more likely to accept locally bad solutions, enabling a

higher degree of exploration in the beginning of the search. As T is lowered, the

algorithm begins approaching a basic hill climbing search, allowing it to converge to

a single solution [5].

2.5.3 Great Deluge

The great deluge algorithm (GD)[38] is a local search technique that takes a different

approach to avoiding local optima. This algorithm is inspired by the idea of a person

standing on an island that is slowly being submerged by a flood caused by a torrential

rain. The person can walk anywhere on the island so long as they stay above the

waterline. The GD algorithm works by introducing a new parameter called L, or the

“water level”. This water level parameter is gradually raised over the course of the

search according to another parameter called “rain rate”, or ∆L.

GD works a bit differently than hill climbing and simulated annealing. Rather

than comparing the fitness of S ′ to the fitness of S to determine whether to accept

25

the new solution, GD compares f(S ′) to the water level L. If f(S ′) > L, the solution

is accepted [38]. As the search continues and the water level continues to rise, the

algorithm gets more picky about what solutions it accepts. Once no neighbour state

has a fitness score greater than L, the algorithm is terminated.

2.5.4 Genetic Algorithm

Genetic algorithms (GA) are a type of population based evolutionary algorithm [39].

GAs find solutions to problems by mimicking the process of evolution by natural

selection in biology. In biological evolution, each creature has a unique DNA sequence

that stores genetic information about the creature. Creatures can pass on their genetic

material by producing offspring, and random mutations can introduce variation into

DNA. Creatures are also subject to selection pressures from their environment. These

selection pressures ensure that individuals which are more fit for their environment

are more likely to survive long enough to pass on their genes.

Genetic algorithms make use of a simulated approximation of this process. Candi-

date solutions in the search space are encoded by a chromosome in imitation of DNA.

GA chromosomes are often just lists of numbers which can be used to reconstruct

the solution, but other options are possible as well. The “genetic information” of

individual candidate solutions within a GA population can be combined together to

produce offspring solutions using a process known as crossover. Variation can also

be introduced to chromosomes via a mutation operator. There are many different

crossover and mutation methods, many of which are problem specific. Selection pres-

sure is introduced through a selection operator. The selection operator determines

which candidate solutions in the population will be used for crossover and mutation,

and will favour those with higher fitness values.

26

2.5.5 Memetic Algorithm

Memetic algorithms (MAs) are variation of GAs inspired by Dawkin’s idea of a meme

[40]. Memes are units of cultural information, and are often described as the cultural

equivalent to genes. Both memes and genes represent discrete pieces of information,

and can be modified, combined, and passed down through a population. The main

differences between the two is in the type of information they describe and the means

by which they are transmitted. Memes can be though of as ideas, and are transmitted

through speech, text, or other means of human communication. Genes, on the other

hand, are information that describe how to construct cells and regulate biological

processes, and are transmitted through biological reproduction. One other important

difference between genes and memes is that, in nature, genes are not modified in any

intentional way. The genetic information is only changed through random mutation

and through random recombination with other individuals. Memes, on the other

hand, are able to be deliberately refined and modified by the individuals that pass

them on [41].

In order to mimic this process, memetic algorithms combine a genetic algorithm

with a heuristic local search procedure [41]. This allows them to augment the evo-

lutionary process of the GA with a method of locally refining individuals during the

evolution process.

27

3 Metaheuristics for Robustness Optimization

This chapter provides implementation details for the four different metaheuristics

used and the network operations used by these algorithms.

3.1 Network Operations

All four metaheuristics make use of two main network operations - edge swap and

edge addition. This subsection describes the edge swap operation and three different

methods of edge addition.

3.1.1 Edge Swap

Figure 1: Example of edge swap operation

The edge swap operation [3] can be used to make small modifications to a network

as a means to explore this problem’s search space. An edge swap involves selecting

two edges from the network, removing them, and adding two new edges with the

original edges’ endpoints swapped. If we select edges (v1, v2) and (v3, v4), we will

28

remove these edges from the network and add in two new edges: (v1, v4) and (v2, v3)

[3]. A visual example of this operation can be seen in Figure 1 and the algorithm is

detailed in Algorithm 1.

Algorithm 1 Edge swap algorithm

function EdgeSwap(g)
Candidatese1 ← E

repeat
e1 ← RandomElement(Candidatese1) . e1 = (v1, v2)

Candidatese2 ← E
Candidatese2 ← Candidatese2 − e1

for all e′2 in Candidatese2 do . e′2 = (v3, v4)
if SharesEndpoint(e1, e

′
2) then

Candidatese2 ← Candidatese2 − e′2
end if

if EdgeExists(v1, v4) or EdgeExists(v2, v3) then
Candidatese2 ← Candidatese2 − e′2

end if
end for

if !IsEmpty(Candidatese2) then
e2 ← RandomElement(Candidatese2)
return e1, e2

else
Candidatese1 ← Candidatese1 − e1

end if
until IsEmpty(Candidatese1)

return Null . No valid edge swap
end function

The selection of edges for this operation should be done carefully. If both edges

share an endpoint, then the swap can result in a vertex with a self-referential loop.

This is undesirable in many contexts. Additionally, if the edges (v1, v4) and/or (v2, v3)

already exist, performing this operation can result in the formation of a multi-edge,

which is also usually undesirable. The algorithm described in Algorithm 1 avoids these

29

problems by excluding edges from consideration if swapping them would violate one

of these conditions.

An important property of the edge swap is that is preserves the degree of all

affected nodes [3]. This can be important if preserving the network’s overall degree

distribution is required, as in [2, 5, 6, 7].

For the purposes of this problem, we explore the search space by means of random

edge swaps.

3.1.2 Edge Addition

The edge addition operation can be used to add brand new edges into a network. An

important component of performing edge addition is the selection of which new edge

should be added to the network. If the edge is added in the right spot, it can lead to

a more robust network. Adding a new edge will never decrease the robustness of a

network, but adding one in the wrong spot can result in no change to robustness.

Another way to explore the problem’s search space is by adding brand new edges

into the network. In this thesis, edge addition will be used in concert with the

edge swaps described in Section 3.1.1. At each step in an optimization algorithm,

we will decide, at random, whether to perform an edge swap or add a new edge.

The probability of performing an edge addition instead of a swap is governed by the

parameter padd, which can have any value between 0 and 1.

Different strategies for edge addition can be used. This thesis makes use of the

random linking strategy and high betweenness linking strategy from [17] and proposes

a new linking strategy called increased assortativity strategy. The low polarization

linking strategy from [17] is not used due to slow performance in preliminary tests.

Random Linking Strategy Random linking strategy (RLS)[17] is the simplest

method of edge addition. This strategy involves selecting a pair of vertices with no

30

existing edge between them via uniform random selection, then adding that edge to

the network.

High Betweenness Linking Strategy The high betweenness linking strategy

(HBS)[17] prioritizes connecting vertices which have a high betweenness value. Be-

tweenness measures a vertex’s importance within a network by measuring the number

of paths that connect through it. In this thesis, a vertex is considered to have “high

betweenness” if its betweenness score is greater than the average betweenness of all

vertices in the network. This process selects from among these high betweenness

vertices uniformly randomly.

Increased Assortativity Linking Strategy This thesis proposes a new edge ad-

dition heuristic known as increased assortativity linking strategy, which prioritizes

the increase of this value with each new edge created. This strategy is motivated by

the high robustness “onion-like” networks described by Schneider et al. [2]. These

onion-like networks consist of shells of vertices of decreasing degree, with a high level

of inter-connectivity within each layer. Tanizawa et al. [8] showed that highly assorta-

tive networks may have some of these same properties. The hope is that prioritizing

new connections that increase the assortativity of a network, we can more easily

achieve a high robustness network.

For each iteration of IAS, we will only form a connection between two vertices if

the difference in their current degrees is less than or equal to the threshold parameter

δd.

3.2 Metaheuristics Implementation Details

This section describes the four different metaheuristics examined in this thesis. Pseudo-

code and implementation details are provided.

31

Algorithm 2 Simulated annealing algorithm implementation

function SAOptimize(ginit)
g∗ ← ginit
T ← Tmax

repeat
NoImprove← 0

repeat
x← Random(0,1)
if x < padd then

g ← EdgeAdd(g∗)
else

g ← EdgeSwap(g∗)
end if

if R(g) > R(g∗) then
g∗ ← g

else
y ← Random(0,1)
if y < exp(−∆R/T) then

g∗ ← g
end if

end if

if LastR < R(g∗) then
LastR← R(g∗)
NoImprove← 0

else
NoImprove+ +

end if
until NoImprove > MaxNoImprove

T ← T ∗ (1− Tdecay)
until T < Tmax

return g∗
end function

The general approach of each of these optimizers involves making a number of edge

swaps and edge additions to a target network, using the metaheuristic to determine

where and when these operations should be performed. This is equivalent to a search

through a search space of network structures, with the neighbourhood of any given

32

state defined as the set of networks that can be created by performing one edge swap

or edge addition. The fitness value used for this search is the R value [3] robustness

measure. By the end of the optimization, the result network should will be similar

to, but more robust than, the initial target network.

3.2.1 Simulated Annealing

In the simulated annealing algorithm, we perform a number of iterations of search

space exploration. At each iteration, we select randomly between performing an edge

swap and an edge addition, as defined by the padd parameter. If the swap or addition

improves the robustness of the network, we keep the change. If it does not, we have

a probability of keeping the change equal to:

p = e
Rnew−Rold

T

where Rold is the R value before the swap or addition, Rnew is the R value after the

swap or addition, and T is the temperature parameter [5].

T is initialized to the value of the parameter Tmax. Every time a change is made

that improves the network’s robustness, the temperature parameter T is modified

using:

Ti+1 = Ti ∗ (1− Tdecay)

where Tdecay is the temperature decay parameter. Once T has been reduced below

the minimum temperature Tmin, the process terminates. The process also terminates

if a sufficient number of iterations passes in a row without seeing improvements to

the robustness value.

33

Algorithm 2 shows how this algorithm is implemented for this problem. We per-

form a number of iterations, decreasing T whenever too many consecutive iterations

pass without seeing improvement to the network’s R value. In each iteration, we ran-

domly select between performing an edge addition or an edge swap then compare the

R value of the network after the modification to the R value before the modification.

If the modification led to a more robust network, the modification is kept. Otherwise,

we have a chance to accept the modification based on the probability described above,

otherwise the modification is not carried forward to the next iteration.

3.2.2 Great Deluge

In the great deluge algorithm, network modifications are accepted if they result in

a network with a robustness value greater than a threshold value L, also called the

water level [38]. Each iteration of the algorithm in which the modification is accepted,

this threshold is increased by the rain rate, ∆L. The threshold and the rain rate are

initialized to a percentage of the initial network’s robustness value. This percentage

is controlled by the parameters L% (for the threshold) and ∆L% (for the rain rate).

The process terminates when a sufficient number of iterations passes in a row without

finding a network structure with a robustness value greater than the threshold.

Algorithm 3 shows how this optimization works. We perform a number of iter-

ations where we randomly select between performing an edge addition or an edge

swap. We then compare the R value of the modified network to the current threshold

L, retaining the modification if the R value is above this threshold. If too many iter-

ations pass without finding a network with an R value greater than L, the algorithm

is terminated.

34

Algorithm 3 Great deluge algorithm implementation

function GDOptimize(ginit)
g∗ ← ginit
L← L%∗ R(g∗)
∆L ← ∆L%∗ R(g∗)
NoImprove← 0

repeat
x← Random(0,1)
if x < padd then

g ← EdgeAdd(g∗)
else

g ← EdgeSwap(g∗)
end if

if R(g) > L then
g∗ ← g
L← L+ ∆L

NoImprove← 0
else

NoImprove+ +
end if

until NoImprove > MaxNoImprove
return g∗

end function

3.2.3 Genetic Algorithm

The genetic algorithm uses a population based evolutionary algorithm to optimize

a network’s robustness. The representation used for this GA is simply the graph

of the network [7]. A numerical encoding of the network is unnecessary since the

crossover and mutation operations (as well as the local search operator in the memetic

algorithm variation) are executed on the network structure itself. An additional

encoding/decoding step would be redundant.

The GA’s population is initialized by creating copies of the initial graph and then

performing a number of random edge swap operations on each copy [7]. These swaps

are made totally randomly, without regard for whether they increase or decrease the

network’s robustness. This gives us our initial population.

35

The crossover and mutation operators are described below, as is the memetic

algorithm variation of this GA and its local search operator.

The full GA algorithm is given in Algorithm 4. We begin by initializing the

population, then evolve this population through a fixed number of generations. In

each generation, we begin by selecting two parent chromosomes for the crossover

operator using tournament selection. In tournament selection, k chromosomes are

chosen from the population and the most fit chromosome from this group of k is

selected. We then have a chance of performing crossover with these parents, based on

the crossover rate. If crossover is performed, the newly produced child chromosomes

are added to a new population set. Otherwise, the selected parent chromosomes

are added to this set. Once the new population set is full, each chromosome has

a chance of mutation being applied to it. If mutation is applied to a chromosome,

we randomly select between performing an edge addition or performing the regular

mutation operator. Finally, the new population is set as the current population and

we continue to the next generation.

Crossover The crossover operation used in this algorithm is a custom crossover

devised by Zhou et al. [7]. Since they were working with scale-free networks, the

operator was designed in such a way as to preserve the degree distribution of the

child networks, similar to the edge swap operation.

It begins by copying the parent chromosomes, Gp1 and Gp2, into the child chro-

mosomes Gc1 and Gc2. We then obtain the following sets of vertices:

V Gc1
i = {j|eij ∈ EGc1}

V Gc2
i = {j|eij ∈ EGc2}

V̄ Gc1
i = V Gc1

i − (V Gc1
i ∩ V Gc2

i)

V̄ Gc2
i = V Gc2

i − (V Gc1
i ∩ V Gc2

i)

36

Algorithm 4 Genetic algorithm implementation

function GAOptimize(ginit)
Pop← PopInit(ginit)
Gen← 1

repeat
NewPop← ∅

repeat
gp1, gp2 ← TournamentSelection(k)
gc1, gc2 ← Crossover(gp1, gp2, CrossRate)
NewPop← NewPop+ gc1, gc2

until IsFull(NewPop)

for all g in NewPop do
x← Random(0,1)
if x < MutRate then

y ← Random(0,1)
if y < padd then

g ← EdgeAdd(g)
else

g ← Mutation(g)
end if

end if
end for

Pop← NewPop
Gen+ +

until Gen > MaxGens
end function

V Gc1
i and V Gc2

i are the sets of all vertices adjacent to vertex i in each child chro-

mosome, and V̄ Gc1
i and V̄ Gc1

i are these same sets but with all of the common vertices

stripped out.

We then iterate through each vertex j ∈ V̄ Gc1
i and select a vertex k ∈ V̄ Gc2

i that

has not been used. We remove the edge eij from Gc1 and the edge eik from Gc2, then

add the edges eik into Gc1 and eij into Gc2. Doing this changes the degree of vertices

j and k in both child graphs, so we need to make a correction in order to preserve

the degrees of all vertices.

37

In Gc1, we randomly select another edge ekl connected to vertex k and remove it.

Then we add another new edge ejl. This restores the original degree of both vertices

in Gc1. We then must perform a similar operation in Gc2. We then repeat this entire

process for every vertex i in the network graph. This process results in two child

networks that have some of the structural properties of each of their parents.

Mutation The mutation operator used in this genetic algorithm is simply perform-

ing a series of random edge swaps, similar to initialization process.

The edge addition is implemented as part of the mutation operation. Whenever

mutation is performed, there is a chance that an edge addition is performed instead

of the regular mutation operation. Like in the GD and SA algorithms, the probability

of performing edge addition is governed by the padd parameter.

Memetic Algorithm The memetic algorithm optimizer works in mostly the same

way as the GA, but uses a heuristic local search procedure in place of the mutation

operator [7]. This local search prioritizes edge swaps that increase the assortativity of

the network. Highly robustness and high assortative have been shown to be correlated

[8], so this heuristic may result in better improvements to the network’s robustness.

This heuristic works by only performing edge swaps between pairs of edges eij and

ejk if the following inequality holds:

|di − dl|+ |dj − dk| < α× (|di − dj|+ |dk − dl|)

where di, dj, dk, and dl are the degrees of nodes i, j, k, and l. The parameter α is

used to control the strength of the preference for increased assortativity [7].

This heuristic edge swap is performed multiple times in a row, similar to the GA’s

mutation operator. Also similar to the GA, edge addition may be performed instead

of the local search with a probability based on the parameter padd.

38

4 Data and Experimental Setup

This chapter describes the setup for the experiments as well as the data used for

testing. Additionally, the two main metrics of performance are described.

4.1 Data

Both synthetic and real world networks will be used for the experiments. The bulk

of the experiments will be performed using synthetic networks generated using the

Barabási-Albert model, and a second set of experiments will be performed on a real-

world network.

4.1.1 Barabási-Albert Model

The Barabási-Albert (BA) model [29] is a graph model used to generate scale-free

networks. The model generates networks starting from an initial cluster of m0 fully

connected vertices, then adds new vertices one at a time using a preferential attach-

ment mechanism. When a new vertex is added, it is connected to m existing vertices

in the network, prioritizing vertices with a high degree. This process is continued

until the desired number of vertices, n has been added. The preferential attachment

mechanism ensures that there is a small number of high degree hub vertices and pro-

gressively higher numbers of vertices with smaller degrees, as expected in a scale-free

network.

The probability pi that a newly added vertex will be connected to vertex i is given

as:

pi =
di∑
j dj

where di is the degree of vertex i and j is the number of vertices in the network at

the current iteration of the construction algorithm.

39

4.1.2 Power Grid Network

The real-world network examined in this thesis is the power grid network known

as the 1138-bus network [30]. It has 1138 vertices and originally had 2596 edges.

The network included a large number of self referential edges, which were removed

since they cause issues with some of the metaheuristic implementations. This left the

network with 1458 edges. The focus of this work is on optimization of simple graphs

(networks with no multi-edges or self-referential loops), and these implementations

were not designed to work with non-simple graphs. For this reason, the simplest

approach was to transform the network into a simple graph.

While this modification to the network did not affect its initial robustness, it may

have some effect on the optimization process. The removal of the self-referential links

may influence where edge addition tends to get performed, particularly for the HBS

and IAS addition strategies. This is due to the change in network properties such as

betweenness and vertex degree caused by the removal.

4.2 Parameter Optimization

Parameter optimization was performed on the GD, SA, and GA optimizers to deter-

mine the ideal set of parameters to use for further tests. Each of these parameter

optimization experiments were performed on Barabasi-Albert networks with 100 ver-

tices. 30 runs were performed for each parameter value, and results were analyzed

using ANOVA and pairwise t-tests.

Tables 1, 2, and 3 display the different values tested for each parameter of each

optimizer.

40

Table 1: Parameters used for testing the SA optimizer

Parameter Tested values

T0 0.1, 0.3, 0.6, 1.0, 1.5, 2.0, 3.0

Tmin 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.15

Tdecay 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25

Table 2: Parameters used for testing the GD optimizer

Parameter Tested values

L% 0.3, 0.5, 0.7, 0.9, 1.0, 1.2

∆L% 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.02

imax 10, 20, 40, 60, 80, 100

Table 3: Parameters used for testing the GA/MA optimizers

Parameter Tested values

genmax 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000,

2500, 3000, 4000, 5000, 6000, 7000

popSize 5, 10, 15, 20, 25, 30, 50, 75, 100, 125, 150, 175, 200

RC 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

RM 0.0, 0.1, 0.3, 0.5, 0.7, 0.9

4.2.1 Static Parameters

Some parameters are kept constant throughout all experiments. These parameters,

along with their values, are listed in Table 4.

4.3 Main Experimental Setup

The main set of experiments will determine the effectiveness of incorporating edge

addition into the regular edge rewiring optimization procedure. In order to compare

the performance of this variation to the vanilla problem, a set of runs will be performed

for each of the four optimization procedures (SA, GD, GA, MA) using only the vanilla

edge rewiring method. Runs will be performed using BA networks of 100, 200, and

500 vertices.

Once the vanilla rewiring experiments are complete, a set of runs will be completed

41

Table 4: Static parameters

Name Description Value

δd IAS similarity threshold 3

SA - NoImprove Number of consecutive iterations with no change in

R for SA optimizer

80

k GA/MA tournament size 3

MutateAmount Maximum number of edge swaps performed in GA

mutation/MA local search

4

α MA local search heuristic strength 0.9

m Number of edges added for each new vertex in BA

model

3

m0 Number of vertices in initial fully connected cluster

for BA model

3

with varying amounts of edge addition. Tests will be performed with 5%, 10%, 15%,

20%, 25%, and 30% edge addition for each of the 4 optimizers on each of the 3 network

sizes.

Each experiment will have 30 runs, and edge addition will be performed using

random linking strategy (RLS). Comparisons will be performed between both the

∆R value and RE value described below. Statistical significance will be determined

using ANOVA and pairwise t-tests with a level of significance of α = 0.05.

The experiments described above will be repeated with two other edge addition

strategies: high betweenness linking strategy (HBS) and increased assortativity link-

ing strategy (IAS). The best performing addition chance will be determined for each

addition strategies, and the different strategies will then be compared to each other.

Experiments will also be performed on the power grid network. Tests will be

performed with all 4 metaheuristic optimization methods using both the vanilla ap-

proach and the hybrid approach. The hybrid approach will be compared to the vanilla

approach for each optimizer and then the best version of the optimizers will be com-

pared against each other to determine the most effective method for increasing the

network’s robustness.

42

4.4 Performance Measures

Two different performance measures will be used to measure the effectiveness of the

robustness optimization; they are described in this section.

4.4.1 ∆R

One of these performance measures is ∆R. This measure is calculated using the

following formula:

∆R =
R

R0

where R is the R value at the end of the optimization and R0 is the initial R value

of the target network. This measure gives an indication of how much the robustness

of the target network changes, independent of any other changes to the network. It

also allows easy comparison between networks with different starting R values.

4.4.2 RE Value

The other value used to measure the performance of the optimization is RE value.

This value measures how much the target network’s robustness changes relative to

how many new edges are added during the optimization.

Any network can be made maximally robust by continuously adding edges to it

until it is fully connected. This is obviously an impractical approach for improving

the robustness of any real-world network. Another problem that arises when we try to

optimize a real-world network’s robustness through edge addition is cost. Any change

to a network’s structure will incur some cost, but edge additions can be especially

costly in many situations. They carry not only the cost of adding the connection

itself, but may also carry costs associated with modifying the affected vertices to

handle a larger number of connections.

43

It likely is not a good idea to add 20 new edges to a network for a 5% increase in

robustness when we could get that same 5% increase by adding one single edge to a

different spot. The RE value allows us to measure the difference between cases like

these, as well as compare these kinds of results to optimized networks that had no

new edges added. RE value is defined as follows:

RE =
R

R0

÷ |E|
|E0|

where R is the current network robustness as measured by the R value, R0 is the

robustness of the initial network, |E| is the number of edges currently in the network,

and |E0| is the number of edges in the initial network.

The RE value can be used to compare the relative effectiveness of optimization

done with different amounts of edge addition. A useful property of this measure is

that it is equal to ∆R when the number of edges in the target network does not

change (i.e. padd = 0).

44

5 Results & Analysis

This chapter presents the results of the experiments described in Section 4 and the

statistical analysis of these results.

5.1 Parameter Optimization

This section presents the results of the parameter optimization experiments for the

simulated annealing, great deluge, and genetic algorithms. Additionally, the parame-

ters used in the main set of experiments were selected based on these results and are

presented here.

5.1.1 Simulated Annealing Parameters

ANOVA and pairwise t-tests showed that the different values for T0 generally per-

formed equally well. The one exception was T0 = 0.1, which performed significantly

worse than the others. Table 5 and Figure 2 present the results of this experiment.

This indicates that the choice of starting temperature for the the SA algorithm was

not very important, so long as a very low value was not used.

Figure 2: SA parameter optimization results for T0

45

Table 5: Average R value for different values of T0 in the SA optimizer

T0 ∆R

0.1 1.39

0.3 1.46

0.6 1.42

1.0 1.41

1.5 1.43

2.0 1.43

3.0 1.44

As shown in Table 6 and Figure 3, experiments with Tmin showed no significant

difference between the different tested values. Similar results were seen with Tdecay,

with all tested values having statistically similar results. This can be seen in Table 7

and Figure 4. These results indicate that the choice of these two parameters is not

very important for the algorithm’s performance.

Figure 3: SA parameter optimization results for Tmin

46

Table 6: Average R value for different values of Tmin in the SA optimizer

Tmin ∆R

0.0001 1.42

0.0005 1.45

0.001 1.43

0.005 1.47

0.01 1.42

0.05 1.43

0.1 1.44

0.15 1.45

Figure 4: SA parameter optimization results for Tdecay

Table 7: Average R value for different values of Tdecay in the SA optimizer

Tdecay ∆R

0.005 1.44

0.01 1.43

0.05 1.45

0.1 1.42

0.15 1.45

0.2 1.44

0.25 1.45

47

Based on the results of these experiments, a T0 value of 1.0, a Tmin value of 0.01,

and a Tdecay value of 0.15 were selected for use in the remainder of experiments.

5.1.2 Great Deluge Parameters

Table 8 and Figure 5 show the results of the experiments for the parameter L%. These

experiments show that the initial threshold level (L%) does not have a large impact

on optimizer performance, so long as the value is not set too high. All tested values

except 1.2 led to no significant difference in performance compared to each other. It

is notable that a L% of 1.2 led to no improvement to R value at all, as evidenced by

the ∆R being exactly 1. This is a consequence of the way the great deluge algorithm

works. If the initial threshold is set significantly above the initial fitness value, there

may not be a neighbour of the initial problem state which gives a fitness value greater

than this threshold. In this case, the algorithm cannot make any improvements and

will be stuck in the initial state.

Figure 5: GD parameter optimization results for L%

As seen in Table 9 and Figure 6, the experiments showed that lower values for

∆L% are more beneficial. The values of 0.0001 and 0.0005 both performed significantly

48

Table 8: Average R value for different values of L% in the GD optimizer

L% ∆R

0.3 1.46

0.5 1.49

0.7 1.48

0.9 1.45

1.0 1.44

1.2 1.00

better than the other tested values, and about as well as each other. Low values for

this parameter mean that the will more gradually approach a solution.

Figure 6: GD parameter optimization results for ∆L%

Finally, larger values for imax led to better results than lower values, as shown in

Table 10 and Figure 7. The imax values of 80 and 100 outperformed all other values

and performed equally well as each other. Larger values for this parameter gives the

algorithm more time to explore the search space around states in difficult parts of the

search space, so the algorithm will be less likely to get stuck there as a local optimum.

Based on the results of these experiments, a L% value of 0.5, a ∆L% value of

0.0005, and a imax value of 100 were selected for the remaining experiments.

49

Table 9: Average R value for different values of ∆L% in the GD optimizer

∆L% ∆R

0.0001 1.51

0.0005 1.50

0.001 1.45

0.005 1.27

0.01 1.38

0.02 1.05

Figure 7: GD parameter optimization results for imax

Table 10: Average R value for different values of imax in the GD optimizer

imax ∆R

10 1.19

20 1.30

40 1.38

60 1.42

80 1.46

100 1.50

50

5.1.3 Genetic Algorithm Parameters

The experiments showed that larger values for the max number of generations are

generally better than lower values. These results can be seen in Table 11 and Figure 8.

The ∆R for 7000 generations was higher than for most other values, though the ∆R

was not statistically different for 3000 and 6000 generations. Since 3000 generations

has equivalent performance to 7000 generations but uses less than half the time, that

is the value that will be used in the rest of the experiments.

Figure 8: GA parameter optimization results for genmax

Table 11: Average R value for different values of genmax in the GA/MA optimizers

genmax ∆R genmax ∆R

200 1.30 1800 1.44

400 1.34 2000 1.46

600 1.41 2500 1.46

800 1.41 3000 1.48

1000 1.42 4000 1.46

1200 1.40 5000 1.44

1400 1.42 6000 1.47

1600 1.44 7000 1.52

Table 12 and Figure 9 show the results of experiments on population size for

51

the GA. These results show that lower population sizes outperformed larger sizes.

Specifically, population sizes between 5 and 25 performed about equivalently, and

sizes larger than 25 get progressively worse. These best performing population sizes

are unusually small for a GA, but are consistent with the size used by Zhou et al. [7],

who used a population size of 10 in their work.

Figure 9: GA parameter optimization results for popSize

Table 12: Average R value for different values of popSize in the GA/MA optimizers

popSize ∆R popSize ∆R

5 1.53 75 1.40

10 1.55 100 1.37

15 1.53 125 1.34

20 1.55 150 1.36

25 1.52 175 1.30

30 1.49 200 1.29

50 1.44

Crossover and mutation rate were tested together, and there was no single best

pair of values. Results are displayed in Table 13. It is notable that having a mutation

rate of 0 or 0.1 led to significantly worse results that higher mutation rates and a

crossover rate of 1 also led to worse results.

52

Figure 10: GA parameter optimization results for crossover and mutation rate

Table 13: Average R value for different values of crossover and mutation rate in the
GA/MA optimizers

Crossover rate

0.1 0.3 0.5 0.7 0.9 1.0

M
u

ta
ti

o
n

R
a
te

0.0 1.06 1.08 1.08 1.10 1.14 1.12

0.1 1.27 1.32 1.32 1.33 1.34 1.33

0.3 1.36 1.39 1.40 1.40 1.38 1.36

0.5 1.39 1.37 1.38 1.41 1.40 1.35

0.7 1.40 1.40 1.37 1.39 1.35 1.36

0.9 1.42 1.38 1.42 1.39 1.37 1.33

Based on the results of these experiments, a popSize value of 10, a genmax value

of 300, a RC of 0.7, and a RM of 0.3 were selected for use in future experiments.

5.2 Vanilla Metaheuristic Results

This section presents results demonstrating the performance of the vanilla edge rewiring

method. All four metaheuristics are compared on BA networks of 100, 200, and 500

vertices. The results are summarized in Table 14 and Figure 11. In the table, bolded

results in a column indicate the best optimizer for that network size.

53

Table 14: Average ∆R value for vanilla edge rewiring optimizers.

Optimizer 100 vertices 200 vertices 500 vertices

Great Deluge 1.50 1.56 1.49

Simulated Annealing 1.44 1.48 1.50

Genetic Algorithm 1.56 1.57 1.50

Memetic Algorithm 1.55 1.56 1.53

On the 100 vertex networks, the genetic and memetic algorithms had the best

results, with the great deluge algorithm coming in second. Simulated annealing per-

formed the worst of the four metaheuristics. For the 200 vertex networks, the GA,

MA, and GD optimizers all performed about equivalently while the SA optimizer

performed significantly worse. All four optimizers performed equivalently on the 500

vertex networks.

(a) 100 vertices (b) 200 vertices

(c) 500 vertices

Figure 11: Performance of vanilla edge rewiring optimizers

54

These results indicate that the GA and MA optimizers perform well across all

network sizes, while the SA optimizer performs poorly on small networks. For larger

networks, all four optimizers performed similarly.

5.3 Hybrid Approach Results

This section presents the results of experiments with the hybrid approach. Each of

the three linking strategies for edge addition are examined to determine the best

ratio of edge addition to edge rewiring for that method. The three strategies are then

compared to each other to determine which of them performs best.

5.3.1 Random Linking Strategy Results

Tables 15, 16, 17, and 18 show the effect of different amounts of random linking

strategy (RLS) addition in the hybrid method. Each table shows both the ∆R and

RE values for each of the three network sizes. The bold values show the statistically

best result(s) in that column of the table.

Table 15: Great Deluge hybrid optimizer with RLS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.87 1.26 1.84 1.48 1.69 1.54

0.10 2.06 0.99 1.99 1.30 1.78 1.50

0.15 2.19 0.80 2.14 1.16 1.88 1.45

0.20 2.29 0.66 2.19 1.02 1.96 1.39

0.25 2.31 0.57 2.32 0.91 2.04 1.33

0.30 2.36 0.49 2.39 0.82 2.09 1.27

These results show that larger add chances lead to much larger ∆R values com-

pared to low add chances. Conversely, large add chances result in smaller RE values

compared to lower add chances. This is not always the case, however. On the 500

vertex network, the GA and MA optimizers did not have large reductions in RE as

55

Table 16: Simulated Annealing hybrid optimizer with RLS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.56 1.41 1.61 1.47 1.63 1.53

0.10 1.64 1.37 1.69 1.45 1.71 1.51

0.15 1.65 1.31 1.74 1.44 1.75 1.49

0.20 1.74 1.29 1.76 1.40 1.78 1.47

0.25 1.85 1.28 1.79 1.36 1.81 1.46

0.30 1.81 1.21 1.84 1.35 1.85 1.45

Table 17: Genetic Algorithm hybrid optimizer with RLS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.65 1.48 1.67 1.55 1.58 1.51

0.10 1.76 1.47 1.75 1.55 1.63 1.51

0.15 1.79 1.44 1.75 1.50 1.67 1.52

0.20 1.82 1.38 1.79 1.48 1.70 1.51

0.25 1.85 1.37 1.83 1.49 1.71 1.50

0.30 1.83 1.33 1.85 1.46 1.72 1.49

the add chance increased, with the value staying relatively similar for most values.

This can be seen clearly in Figure 12 for the largest network size, where both the GA

and MA have relatively constant RE as padd increases.

The great deluge algorithm seems to benefit the most from large add chances,

with the highest ∆R among the four optimizers. However, GD also sees the lowest

RE value for large add chances, with many tests giving RE values less than 1. This is

visually demonstrated in Figure 12, with ∆R rising sharply with increasing padd and

RE falling sharply. Simulated annealing follows this same pattern, but with more

moderate changes to both ∆R and RE compared to GD.

56

Table 18: Memetic Algorithm hybrid optimizer with RLS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.69 1.53 1.67 1.56 1.58 1.52

0.10 1.75 1.48 1.75 1.56 1.64 1.52

0.15 1.78 1.43 1.78 1.51 1.67 1.52

0.20 1.84 1.41 1.82 1.52 1.70 1.51

0.25 1.87 1.41 1.83 1.49 1.72 1.51

0.30 1.88 1.34 1.90 1.50 1.76 1.51

(a) Great Deluge (b) Simulated Annealing

(c) Genetic Algorithm (d) Memetic Algorithm

Figure 12: ∆R and RE value for different padd values with RLS on 500 vertex net-
works. ∆R shown in light grey, RE shown in dark grey.

57

5.3.2 High Betweenness Linking Strategy Results

Tables 19, 20, 21, 22 show the results of the hybrid experiments with HBS addition.

These experiments had some different results compared to the RLS experiments. It

can still be seen that the RE value gets lower for larger add chances, as with RLS.

However, this strategy performed differently in terms of ∆R. Some of the experiments

showed a slight preference against a small add chance, but the results were mostly

similar across different values.

Table 19: Great Deluge hybrid optimizer with HBS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.65 1.12 1.62 1.32 1.55 1.43

0.10 1.69 0.88 1.70 1.17 1.58 1.37

0.15 1.67 0.72 1.74 1.02 1.57 1.28

0.20 1.71 0.61 1.73 0.91 1.59 1.22

0.25 1.73 0.54 1.74 0.82 1.59 1.16

0.30 1.70 0.48 1.73 0.75 1.62 1.12

Table 20: Simulated Annealing hybrid optimizer with HBS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.49 1.31 1.52 1.37 1.55 1.42

0.10 1.48 1.16 1.52 1.24 1.56 1.33

0.15 1.48 1.02 1.57 1.13 1.61 1.26

0.20 1.51 0.94 1.56 1.07 1.58 1.19

0.25 1.49 0.86 1.55 0.96 1.58 1.12

0.30 1.52 0.76 1.57 0.90 1.60 1.04

Comparing the results from HBS shown in Figure 13 to the earlier results with

RLS (Figure 12), it is clear that high amounts of HBS is much less useful for optiming

robustness than large amount of RLS. The ∆R barely changes across different values

of padd while the RE value drops off with higher padd values. This means that there

is no benefit to using high levels of HBS, since doing so will not lead to more robust

58

networks while also incurring additional costs related to adding more new edges.

Table 21: Genetic Algorithm hybrid optimizer with HBS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.60 1.44 1.57 1.48 1.53 1.48

0.10 1.61 1.29 1.61 1.44 1.54 1.46

0.15 1.64 1.21 1.62 1.37 1.54 1.43

0.20 1.66 1.14 1.61 1.33 1.53 1.40

0.25 1.66 1.08 1.61 1.29 1.54 1.38

0.30 1.63 1.00 1.63 1.27 1.54 1.37

Table 22: Memetic Algorithm hybrid optimizer with HBS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.59 1.45 1.60 1.51 1.53 1.48

0.10 1.57 1.30 1.60 1.44 1.54 1.46

0.15 1.61 1.22 1.62 1.40 1.52 1.41

0.20 1.62 1.14 1.62 1.34 1.54 1.51

0.25 1.62 1.12 1.63 1.29 1.54 1.38

0.30 1.64 1.03 1.63 1.27 1.54 1.36

This result is likely to to the way that HBS addition works. HBS prioritizes pairs

of vertices that have a high betweenness value. It therefore has considerably less

randomness compared to RLS. HBS may also be not very effective against a degree-

based attack since it will continuously add edges to a subset of the network’s vertices,

increasing their degree and moving them up in the attack sequence. Adding even more

edges to already high degree vertices will not have a large impact on the network’s

robustness since these vertices are the first to be destroyed during the attack.

Similar to RLS, GD seems to benefit the most from high add chance in terms of

∆R, and has the worst RE values for high add chances among the four optimizers. It

is notable that simulated annealing also experiences very low RE values as the add

chance increases under HBS edge addition.

59

(a) Great Deluge (b) Simulated Annealing

(c) Genetic Algorithm (d) Memetic Algorithm

Figure 13: ∆R and RE value for different padd values with HBS on 500 vertex net-
works. ∆R shown in light grey, RE shown in dark grey.

5.3.3 Increased Assortativity Linking Strategy Results

Tables 23, 24, 25, 26 show the results of the hybrid experiments with IAS addition.

The results of these experiments have similarities to the experiments with RLS, in

that higher add chances typically lead to higher ∆R and lower RE. The GA and

MA optimizers substantially benefited from high add chance, with larger add chances

leading to better RE than low add chances while also seeing large increases in ∆R.

As with the other two edge addition strategies, GD seems to benefit the most from

high add chance in terms of ∆R and has the worst RE for high add chances among

the different optimizers.

60

Table 23: Great Deluge hybrid optimizer with IAS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.91 1.27 1.81 1.46 1.69 1.54

0.10 2.05 0.99 2.06 1.33 1.82 1.52

15 2.22 0.81 2.12 1.16 1.93 1.48

0.20 2.30 0.66 2.24 1.02 2.03 1.43

0.25 2.30 0.57 2.34 0.92 2.07 1.35

0.30 2.39 0.49 2.37 0.82 2.18 1.30

Table 24: Simulated Annealing hybrid optimizer with IAS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.59 1.46 1.62 1.50 1.65 1.54

0.10 1.66 1.43 1.70 1.49 1.73 1.54

0.15 1.73 1.42 1.78 1.50 1.77 1.52

0.20 1.75 1.36 1.80 1.47 1.83 1.54

0.25 1.80 1.38 1.82 1.45 1.84 1.52

0.30 1.81 1.35 1.84 1.46 1.85 1.51

Table 25: Genetic Algorithm hybrid optimizer with IAS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.69 1.53 1.66 1.55 1.57 1.50

0.10 1.75 1.50 1.75 1.56 1.64 1.53

0.15 1.83 1.47 1.78 1.55 1.70 1.54

0.20 1.81 1.43 1.82 1.54 1.71 1.53

0.25 1.90 1.45 1.84 1.53 1.75 1.54

0.30 1.85 1.40 1.86 1.51 1.77 1.53

61

Table 26: Memetic Algorithm hybrid optimizer with IAS

100 vertex 200 vertex 500 vertex

padd ∆R RE ∆R RE ∆R RE

0.05 1.71 1.56 1.66 1.55 1.60 1.53

0.10 1.77 1.50 1.75 1.56 1.65 1.53

0.15 1.80 1.48 1.80 1.55 1.70 1.54

0.20 1.89 1.50 1.82 1.55 1.77 1.56

0.25 1.86 1.45 1.83 1.51 1.77 1.55

0.30 1.87 1.41 1.86 1.51 1.79 1.54

Figure 14 shows a visual representation of the performance of IAS with the 500

vertex networks. These charts show similarities with RLS: GD’s ∆R increases greatly

with increased padd while RE drops off quickly and GA and MA see fairly consistent

RE and increasing ∆R with high padd. SA seems some slight differences, with a more

consistent RE value with higher padd, while still seeing increasing ∆R.

5.3.4 Comparison of Linking Strategies

This subsection will compare the performance of these three linking strategies against

each other and against the vanilla edge rewiring method for each metaheuristic. The

linking strategies will be compared using the best value of the padd parameter, as

determined in the previous subsections. Specifically, padd will be set to the value used

in the test with the highest ∆R among the set of tests with the best RE value for

that combination of linking strategy, metaheuristic, and network size. The padd being

used will be specified as each metaheuristic is discussed.

Table 27 shows a comparison of linking strategies for the great deluge algorithm.

For this optimizer, the best performing tests were found to be those with padd = 0.05

across all linking strategies and network sizes. The bolded values in the table show

the best result in that column.

The inclusion of edge addition led to significant increases in ∆R over the vanilla

method, regardless of which strategy was used. The RLS and IAS addition strategies

62

(a) Great Deluge (b) Simulated Annealing

(c) Genetic Algorithm (d) Memetic Algorithm

Figure 14: ∆R and RE value for different padd values with IAS on 500 vertex networks.
∆R shown in light grey, RE shown in dark grey.

has the best ∆R across all sizes of network. HBS did not have as high of a ∆R as

the other two edge addition strategies, but it was still better than no edge addition.

In terms of RE value, the vanilla method gave better results than any of the edge

addition strategies for the 100 and 200 vertex networks. However, in the 500 vertex

network, RLS and IAS had a significantly better RE value than the vanilla approach.

HBS had the worst RE value across all network sizes.

These results indicate that the inclusion of edge addition, especially using the

RLS and IAS strategies, led to greatly increased robustness of the target network,

but this improvement came at the cost of a disproportionate number of new edges

added to the network in most cases. The RE results for the 500 vertex network may

hint that larger networks can benefit more from the inclusion of edge addition than

63

Table 27: Great Deluge - comparison of edge addition strategies

100 vertex 200 vertex 500 vertex

Addition Strategy ∆R RE ∆R RE ∆R RE

None (vanilla) 1.50 1.50 1.56 1.56 1.49 1.49

RLS 1.87 1.26 1.84 1.48 1.69 1.54

HBS 1.65 1.12 1.62 1.32 1.55 1.43

IAS 1.91 1.27 1.81 1.46 1.69 1.54

small networks. These results also show that HBS is not a very effective method

for performing edge addition within this hybrid approach. While it did lead to some

small improvements to robustness, these were were accompanied by a disproportionate

increase in the number of edges within the network, and HBS was outperformed by

both other linking strategies.

Table 28: Simulated Annealing - comparison of edge addition strategies

100 vertex 200 vertex 500 vertex

Addition Strategy ∆R RE ∆R RE ∆R RE

None (vanilla) 1.44 1.44 1.48 1.48 1.50 1.50

RLS 1.56 1.41 1.69 1.45 1.75 1.49

HBS 1.49 1.31 1.52 1.37 1.55 1.42

IAS 1.66 1.43 1.78 1.50 1.83 1.54

The best test results for the simulated annealing optimizer under different addi-

tions strategies are shown in Table 28. In the 100 vertex network, the 10% test for

IAS is used. In the 200 vertex network, the 10% test for RLS and the 15% test for

IAS are used. In the 500 vertex network, the 15% test for RLS and the 20% test for

IAS are used. The 5% test is used in all other cases.

The SA operator with IAS performed extremely well. The best ∆R was obtained

from this edge addition method for all network sizes. RLS came in second, and HBS

a distant third barely better than the vanilla method.

In terms of RE, IAS had results that were statistically similar to the vanilla

method for the 100 and 200 vertex networks. For the 500 vertex network, IAS had a

64

(a) 100 vertices (b) 200 vertices

(c) 500 vertices

Figure 15: Comparison of three linking strategies and vanilla method for GD. ∆R
shown in light grey, RE shown in dark grey.

significantly better RE value than the vanilla method. RLS did not perform as well

with lower RE values than the vanilla method for the 100 and 200 vertex networks,

and equal RE for the 500 vertex network. HBS was the worst performing, coming in

last across all network sizes for RE.

These results indicate that IAS was particularly effective for the simulated an-

nealing optimizer. Its inclusion led to significantly increased robustness of the target

network when compared to the vanilla method, and this increase in robustness was

done without incorporating a disproportionate amount of new edges to the network.

RLS was also fairly effective. While it was not quite as efficient with its edge ad-

dition, it did still lead to significant increases in robustness compared to the vanilla

approach. HBS continues to be disappointing, falling far behind the other two linking

65

strategies. Though there was some small increase in robustness with HBS, this was

once again accompanied by a disproportionate increase in the number of edges.

(a) 100 vertices (b) 200 vertices

(c) 500 vertices

Figure 16: Comparison of three linking strategies and vanilla method for SA. ∆R
shown in light grey, RE shown in dark grey.

Table 29 shows a comparison of test results for different addition strategies for the

GA optimizer. In the 100 vertex network, the 10% tests for RLS and IAS were used.

In the 200 vertex network, the 10% test for RLS and the 20% test for IAS were used.

For the 500 vertex network, the 20% RLS and 30% IAS tests were used. The 5% test

was used for all network sizes for the HBS addition strategy.

For all network sizes, the IAS addition strategy outperformed the vanilla method

in terms of ∆R. In the 100 vertex network tests, RLS had equivalent performance

to IAS for ∆R, but IAS outperformed RLS for the other sizes. RLS still gave better

results than the vanilla method for these larger networks. HBS performed much worse

66

Table 29: Genetic Algorithm - comparison of edge addition strategies

100 vertex 200 vertex 500 vertex

Addition Strategy ∆R RE ∆R RE ∆R RE

None (vanilla) 1.56 1.56 1.57 1.57 1.50 1.50

RLS 1.76 1.47 1.75 1.55 1.70 1.51

HBS 1.60 1.44 1.57 1.48 1.53 1.48

IAS 1.75 1.50 1.82 1.54 1.77 1.53

than the other two linking strategies once again, and did not even perform better than

vanilla in the 200 vertex network.

The results in terms of RE were not as clear cut. For the 100 vertex network, the

vanilla method had a better RE value than any of the addition methods. For the 200

vertex network, RLS and IAS performed equivalently to the vanilla method in terms

of RE, and RLS and IAS were the best performing on the 500 vertex network tests.

HBS had low RE values across all network sizes.

These results show that, like with the other optimizers, the inclusion of RLS or IAS

edge addition leads to much better improvements in network robustness compared

to the vanilla edge rewiring method. However, this robustness may come with a

disproportionate amount of edge addition, particularly in smaller networks. The

results hint that in large networks, the inclusion of edge addition may be a more

efficient way of improving network robustness. As with the GD and SA optimizers,

HBS is still the worst performing linking strategy.

Table 30 shows a comparison between the different edge addition methods for the

MA optimizer. For the 100 vertex network, an add chance of 5% was used for all

three edge addition methods. For the 200 vertex network, an add chance of 10% was

used for RLS, 5% for HBS, and 25% for IAS. For the 500 vertex network, an add

chance of 30% was used for RLS and IAS, and 10% for HBS.

IAS proved to be very good amongst all network sizes, having the best ∆R value

for each network size. RLS tied IAS for ∆R in the smallest network size, and came in

67

(a) 100 vertices (b) 200 vertices

(c) 500 vertices

Figure 17: Comparison of three linking strategies and vanilla method for GA. ∆R
shown in light grey, RE shown in dark grey.

second in the larger networks, though still had significantly better ∆R than the vanilla

approach. HBS was the worst performing again, being barely better than the vanilla

method on the 100 and 200 vertex networks in ∆R and performing equivalently to it

in the 500 vertex network.

IAS and RLS did similarly well in terms of RE. Both strategies tied with the

vanilla method for the 100 vertex network, RLS alone tied vanilla for the 200 vertex

network, and IAS tied vanilla for the 500 vertex network. HBS had very poor RE

once again, falling short of the vanilla method in all network sizes.

These results are consistent with the results for the other optimization methods,

where the inclusion of RLS or IAS edge addition leads to great increases in ∆R

compared to the vanilla method, but similar values for RE. This indicates a large

68

Table 30: Memetic Algorithm - comparison of edge addition strategies

100 vertex 200 vertex 500 vertex

Addition Strategy ∆R RE ∆R RE ∆R RE

None (vanilla) 1.55 1.55 1.56 1.56 1.53 1.53

RLS 1.69 1.53 1.75 1.56 1.76 1.51

HBS 1.59 1.45 1.60 1.51 1.54 1.46

IAS 1.71 1.56 1.83 1.51 1.79 1.54

increase in the robustness of the network, but with a proportional increase in the

number of edges present.

These experiments show that overall, the inclusion of edge addition leads to sig-

nificantly greater improvements to network robustness compared to the vanilla edge

rewiring method. This means that networks which have their structure optimized us-

ing a hybrid edge rewiring/edge addition method will be significantly more resilient

to attacks and damage.

This increased robustness can come with a cost however. In some situations, the

inclusion of edge addition into the optimization procedure can lead to an increase

in the number of edges in the network that is disproportionate to the increase in

robustness. This means that the modifications necessary to get a network to that

high level of robustness may be more costly (in terms of time, money, etc.) in a real

world network compared to the vanilla edge rewiring method. This is not always

the case, however. In fact, for the largest tested network size, the inclusion of edge

addition was strictly better to the vanilla method in terms of both ∆R and RE. This

may indicate the hybrid approach to network robustness may be a more efficient way

of improving the robustness of larger networks.

Of the three tested linking strategies, IAS performed consistently well across all

experiments. RLS had equivalent performance to IAS in some cases, but overall did

not perform quite as well. HBS performed very poorly across the board, as using this

strategy in the hybrid approach has no substantial benefits over the vanilla approach.

69

(a) 100 vertices (b) 200 vertices

(c) 500 vertices

Figure 18: Comparison of three linking strategies and vanilla method for MA. ∆R
shown in light grey, RE shown in dark grey.

5.4 Metaheuristic Comparison

Table 31 shows a comparison between the four metaheuristic optimizers using the

hybrid edge rewiring/addition method with IAS addition. IAS addition was used for

this comparison because it was consistently good across all tests. This table uses the

same add chances as the IAS results presented in the previous section.

This table shows that under the hybrid approach, there was no definitive best

optimization method for all experiments. In the 100 vertex network, the GD optimizer

had the best ∆R value but the worst RE value, while the MA optimizer had the best

RE and was tied for the second best ∆R with the GA optimizer. This indicates that,

for a small network, the GD optimizer will give the best overall robustness, but the

MA optimizer will be best for increasing robustness without greatly increasing the

70

Table 31: Comparison of optimizer performance with hybrid approach.

100 vertex 200 vertex 500 vertex

Optimizer ∆R RE ∆R RE ∆R RE

Great Deluge 1.91 1.27 1.81 1.46 1.69 1.54

Simulated Annealing 1.66 1.43 1.78 1.50 1.83 1.54

Genetic Algorithm 1.75 1.50 1.82 1.54 1.77 1.53

Memetic Algorithm 1.71 1.56 1.83 1.51 1.79 1.54

size of the network.

In the 200 vertex network, all 4 optimization methods had statistically equivalent

∆R values, while the GA and MA optimizers slightly beat out the GD and SA

optimizers in terms of RE. In the largest tested network size, all 4 optimization

methods had similar RE values, while the SA and MA optimizers had the best ∆R.

Overall, these results indicate that the MA optimizer was consistently good across

all tested network sizes, with the GA optimizer being fairly close in performance. The

GD optimizer can lead to great increases in robustness for small networks, at the cost

of a disproportionate increase in network size. The SA optimizer is also fairly effective

for larger networks, being either tied for first or a close second to the MA optimizer.

5.5 Real World Network

Table 32 shows the effect that the inclusion of edge addition had on the optimization

of the robustness of a real world network. For all tests, the hybrid approach used 5%

IAS addition.

This table shows that for all four optimization methods, the hybrid approach led to

very significant improvements in both ∆R and RE compared to the vanilla approach.

The GD and SA optimizers, in particular, had an enormous improvement with the

hybrid approach, while the GA and MA optimizers saw more moderate improvement.

It is notable that these values for ∆R and RE are much higher than the results

from the previous sections. This is largely due to the network being tested here

71

(a) 100 vertices (b) 200 vertices

(c) 500 vertices

Figure 19: Comparison of the four metaheuristics using the hybrid approach with
IAS edge addition. ∆R shown in light grey, RE shown in dark grey.

starting off with a much lower R value, leaving a lot more room for improvement

compared to the synthetic networks.

Table 33 shows a comparison among the four optimizers on the real world network,

all using the hybrid approach with 5% IAS. Of these, the GD optimizer was the best

performing, with the SA optimizer coming in second. The GA and MA optimizers

were tied for last with very similar results.

These experiments show that the inclusion of a hybrid approach can be extremely

effective for improving the robustness of real world networks. One possible reason for

this could be that the tested network was relatively sparse, so including additional

edges had a more significant effect than it would on a denser network.

It is notable that the best performing optimizer on the real world network was the

72

Table 32: Hybrid vs. vanilla method on real world network.

Optimizer Method ∆R RE

Great Deluge
Vanilla 2.73 2.73

Hybrid 4.83 3.46

Simulated Annealing
Vanilla 2.67 2.67

Hybrid 4.05 3.34

Genetic Algorithm
Vanilla 2.38 2.38

Hybrid 2.96 2.67

Memetic Algorithm
Vanilla 2.37 2.37

Hybrid 2.98 2.67

Table 33: Comparison of optimizers for real network using hybrid approach.

Optimizer ∆R RE

Great Deluge 4.83 3.46

Simulated Annealing 4.05 3.34

Genetic Algorithm 2.96 2.67

Memetic Algorithm 2.98 2.67

great deluge algorithm, while this metaheuristic did not perform nearly as well on the

synthetic networks. One reason for this may be due to the GD optimizer performing

a larger amount of edge addition relative to the other metaheuristics. In the real

world network, the GD optimizer saw a 40% increase in the number of edges in the

network, compared to 21% for SA, 11% for GA, and 12% for MA. Since the initial

network for this test was so sparse, more edge addition may have been particularly

effective at increasing its robustness. Since the synthetic networks were more dense,

they did not always benefit as much from larger amounts of edge addition and in

many cases this extra edge addition may have resulted in too many unnecessary new

edges.

73

Figure 20: Comparison of the four metaheuristics on the power grid network using
both the vanilla and hybrid methods. The ∆R / RE for the vanilla method is shown
in the lightest grey, the ∆R for the hybrid method is shown in the middle grey, and
the RE for the hybrid method is shown in dark grey.

6 Conclusion & Future Work

The use of a hybrid edge rewiring/edge addition approach to the problem of net-

work robustness optimization has some advantages to the vanilla edge-rewiring-only

method. In all experiments, the inclusion of edge addition led to networks with larger

increases in R value than networks optimized using the vanilla method. In some cases,

this increase in robustness also coincided with an increase in RE value, indicating

that the change in robustness was disproportionately high compared to the number

of new edges added to the network.

Three different methods of edge addition were tested, and the best performing

method was the increased assortativity linking strategy (IAS). This method of edge

addition prioritized the addition of links that increase the assortativity of the net-

work, helping to promote the onion-like structure that is often found in highly robust

networks.

Experiments performed on a real world power grid network showed that the hybrid

74

approach performed significantly better than the vanilla approach in terms of both the

flat increase in R value and in RE value. This result shows that the hybrid approach

may have valuable applications to increasing the stability of real world networks.

Of the four tested metaheuristic optimization methods, all performed well in some

circumstances. In the synthetic network tests, the memetic and genetic algorithms

were the best performing overall. For the real world network, the great deluge al-

gorithm performed best while the MA and GA optimizers did not perform as well.

These results indicate that the best metaheuristic to use for the optimization of a

network may be situational.

There are a multitude of avenues for expansion of this topic in future work. One

area that requires more exploration is in testing a larger variety of networks, both real

and synthetic. The experiments performed in this thesis on the power grid network

hinted that low density networks may benefit more from the inclusion of edge addition

than higher density networks do. Further experimentation will be required to test this

hypothesis. Other graph properties such as degree distribution or clustering coefficient

may also influence the effectiveness of this hybrid approach. The application of this

hybrid approach to other types of networks may also prove to be useful. The real

world network tested in this thesis had to be modified since the implementation was

only designed to work with simple graphs. This is not an ideal approach when looking

to optimize a real network, so modifications allowing the optimization of non-simple

networks are worth exploring.

Another avenue of future research is the use of alternate methods of measuring

robustness that prioritize the efficient addition of edges to the network. This thesis

made use of the RE value as a post-optimization measurement of performance. Using

RE value or a similar measure as the fitness value during optimization may influence

which edges are selected for addition, potentially leading to more robust networks.

More complex mechanisms for determining how and when edge addition should

75

be performed may also be an interesting expansion on this topic. This thesis used a

simple probability at each iteration of the optimization algorithm to determine if a

new edge should be added or a step of the vanilla optimization should be performed.

Other methods such as a dynamically changing probability to add an edge may be

worth exploring.

76

References

[1] Zhi-Xi Wu and Petter Holme. Onion structure and network robustness. Physical

Review E, 84(2):026106, 2011.

[2] Hans J Herrmann, Christian M Schneider, André A Moreira, José S Andrade Jr,

and Shlomo Havlin. Onion-like network topology enhances robustness against

malicious attacks. Journal of Statistical Mechanics: Theory and Experiment,

2011(01):P01027, 2011.

[3] Christian M Schneider, André A Moreira, José S Andrade, Shlomo Havlin, and

Hans J Herrmann. Mitigation of malicious attacks on networks. Proceedings of

the National Academy of Sciences, 108(10):3838–3841, 2011.

[4] Mark Newman. Networks. Oxford University Press, 2018.

[5] Pierre Buesser, Fabio Daolio, and Marco Tomassini. Optimizing the robustness

of scale-free networks with simulated annealing. In International Conference on

Adaptive and Natural Computing Algorithms, pages 167–176. Springer, 2011.

[6] James Paterson and Beatrice Ombuki-Berman. Optimizing scale-free network

robustness with the great deluge algorithm. In International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems,

pages 434–446. Springer, 2018.

[7] Mingxing Zhou and Jing Liu. A memetic algorithm for enhancing the robustness

of scale-free networks against malicious attacks. Physica A: Statistical Mechanics

and its Applications, 410:131–143, 2014.

[8] Toshihiro Tanizawa, Shlomo Havlin, and H Eugene Stanley. Robustness of

onionlike correlated networks against targeted attacks. Physical Review E,

85(4):046109, 2012.

77

[9] Vitor HP Louzada, Fabio Daolio, Hans J Herrmann, and Marco Tomassini. Smart

rewiring for network robustness. Journal of Complex Networks, 1(2):150–159,

2013.

[10] Bai Liang, Xiao Yan-Dong, Hou Lv-Lin, and Lao Song-Yang. Smart rewiring:

Improving network robustness faster. Chinese Physics Letters, 32(7):078901,

2015.

[11] Tie Qiu, Aoyang Zhao, Feng Xia, Weisheng Si, and Dapeng Oliver Wu. Rose:

Robustness strategy for scale-free wireless sensor networks. IEEE/ACM Trans-

actions on Networking, 25(5):2944–2959, 2017.

[12] Tie Qiu, Jie Liu, Weisheng Si, and Dapeng Oliver Wu. Robustness optimization

scheme with multi-population co-evolution for scale-free wireless sensor networks.

IEEE/ACM Transactions on Networking, 27(3):1028–1042, 2019.

[13] An Zeng and Weiping Liu. Enhancing network robustness against malicious

attacks. Physical Review E, 85(6):066130, 2012.

[14] Shuai Wang and Jing Liu. Enhancing the robustness of complex networks against

edge-based-attack cascading failures. In 2017 IEEE Congress on Evolutionary

Computation (CEC), pages 23–28. IEEE, 2017.

[15] Mingxing Zhou and Jing Liu. A two-phase multiobjective evolutionary algorithm

for enhancing the robustness of scale-free networks against multiple malicious

attacks. IEEE Transactions on Cybernetics, 47(2):539–552, 2016.

[16] Wenfeng Liu, Maoguo Gong, Shanfeng Wang, and Lijia Ma. A two-level learn-

ing strategy based memetic algorithm for enhancing community robustness of

networks. Information Sciences, 422:290–304, 2018.

78

[17] Xian-Bin Cao, Chen Hong, Wen-Bo Du, and Jun Zhang. Improving the network

robustness against cascading failures by adding links. Chaos, Solitons & Fractals,

57:35–40, 2013.

[18] Xiaoke Zhang, Jun Wu, Cuiying Duan, Michael TM Emmerich, and Thomas

Bäck. Towards robustness optimization of complex networks based on redun-

dancy backup. In 2015 IEEE Congress on Evolutionary Computation (CEC),

pages 2820–2826. IEEE, 2015.

[19] Zhongyuan Jiang, Mangui Liang, and Dongchao Guo. Enhancing network

performance by edge addition. International Journal of Modern Physics C,

22(11):1211–1226, 2011.

[20] Yiguang Bai, Sanyang Liu, and Zhaohui Zhang. Effective hybrid link-adding

strategy to enhance network transport efficiency for scale-free networks. Inter-

national Journal of Modern Physics C, 28(08):1750107, 2017.

[21] Xingpei Ji, Bo Wang, Dichen Liu, Guo Chen, Fei Tang, Daqian Wei, and Lian

Tu. Improving interdependent networks robustness by adding connectivity links.

Physica A: Statistical Mechanics and its Applications, 444:9–19, 2016.

[22] Yui Kazawa and Sho Tsugawa. Effectiveness of link-addition strategies for im-

proving the robustness of both multiplex and interdependent networks. Physica

A: Statistical Mechanics and its Applications, page 123586, 2019.

[23] Zhaohui Zhang, Sanyang Liu, Yanqi Yang, and Yiguang Bai. A link-adding strat-

egy for improving robustness and traffic capacity in large-scale wireless sensor

networks. Cluster Computing, 22(3):7687–7694, 2019.

[24] Jinlong Ma, Weizhan Han, Qing Guo, Zhenyong Wang, and Shuai Zhang. A

link-adding strategy for transport efficiency of complex networks. International

Journal of Modern Physics C, 27(05):1650054, 2016.

79

[25] Roni Parshani, Sergey V Buldyrev, and Shlomo Havlin. Interdependent net-

works: Reducing the coupling strength leads to a change from a first to second

order percolation transition. Physical Review Letters, 105(4):048701, 2010.

[26] Christian M Schneider, Nuri Yazdani, Nuno AM Araújo, Shlomo Havlin, and

Hans J Herrmann. Towards designing robust coupled networks. Scientific Re-

ports, 3:1969, 2013.

[27] Andrey Bernstein, Daniel Bienstock, David Hay, Meric Uzunoglu, and Gil Zuss-

man. Power grid vulnerability to geographically correlated failures—analysis and

control implications. In IEEE INFOCOM 2014-IEEE Conference on Computer

Communications, pages 2634–2642. IEEE, 2014.

[28] Jun Wu, Suo-Yi Tan, Zhong Liu, Yue-Jin Tan, and Xin Lu. Enhancing structural

robustness of scale-free networks by information disturbance. Scientific Reports,

7(1):1–13, 2017.

[29] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-

works. Reviews of modern physics, 74(1):47, 2002.

[30] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with in-

teractive graph analytics and visualization. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, 2015.

[31] Mark EJ Newman. Mixing patterns in networks. Physical Review E,

67(2):026126, 2003.

[32] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack

tolerance of complex networks. Nature, 406(6794):378–382, 2000.

[33] Swami Iyer, Timothy Killingback, Bala Sundaram, and Zhen Wang. Attack

robustness and centrality of complex networks. PloS One, 8(4), 2013.

80

[34] Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. Attack

vulnerability of complex networks. Physical Review E, 65(5):056109, 2002.

[35] Vito Latora and Massimo Marchiori. Efficient behavior of small-world networks.

Physical Review Letters, 87(19):198701, 2001.

[36] Vitor HP Louzada, Fabio Daolio, Hans J Herrmann, and Marco Tomassini. Gen-

erating robust and efficient networks under targeted attacks. In Propagation

Phenomena in Real World Networks, pages 215–224. Springer, 2015.

[37] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Pearson Education Limited, 2016.

[38] Gunter Dueck. New optimization heuristics: The great deluge algorithm and the

record-to-record travel. Journal of Computational Physics, 104(1):86–92, 1993.

[39] John Henry Holland et al. Adaptation in natural and artificial systems: an intro-

ductory analysis with applications to biology, control, and artificial intelligence.

MIT press, 1992.

[40] Richard Dawkins. The selfish gene. Oxford University Press, 2016.

[41] Pablo Moscato. On evolution, search, optimization, genetic algorithms and mar-

tial arts: Towards memetic algorithms. Caltech Concurrent Computation Pro-

gram, C3P Report, 826:1989, 1989.

81

