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General Abstract

Reduced capacity for executive cognitive function and for the autonomic control

of cardiac responsivity are both concomitants of the aging process. These may be linked

through their mutual dependence on medial prefrontal function, but the specifics of that

linkage have not been well explored. Executive functions associated with medial

prefrontal cortex involve various aspects ofperformance monitoring, whereas centrally

mediated autonomic functions can be observed as heart rate variability (HRV), i.e.,

variability in the length of intervals between heart beats. The focus for this thesis was to

examine the degree to which the capacity for phasic autonomic adjustments to heart rate

relates to performance monitoring in younger and older adults, using measures of

electrocortical and autonomic activity.

Behavioural performance and attention allocation during two age-sensitive tasks

could be predicted by various aspects of autonomic control. For young adults, greater

influence of the parasympathetic system on HRV was beneficial for learning unfamiliar

maze paths; for older adults, greater sympathetic influence was detrimental to these

functions. Further, these relationships were primarily evoked when the task required the

construction and use of internalized representations of mazes rather than passive

responses to feedback. When memory for source was required, older adults made three

times as many source errors as young adults. However, greater parasympathetic influence

on HRV in the older group was conducive to avoiding source errors and to reduced

electrocortical responses to irrelevant information. Higher sympathetic predominance, in

contrast, was associated with higher rates of source error and greater electrocortical

responses tq non-target information in both groups. These relations were not seen for
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errors associated with a speeded perceptual task, irrespective of its difficulty level.

Overall, autonomic modulation of cardiac activity was associated with higher levels of

performance monitoring, but differentially across tasks and age groups. With respect to

age, those older adults who had maintained higher levels of autonomic cardiac regulation

appeared to have also maintained higher levels of executive control over task

performance.
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ChaI)t,er 1: General Introduction

Why is autonomicfunction ofinterest to psychology?

Cardiovascular competence and cognitive performance are inextricably entwined

at the physiological level. The brain has enormous energy requirements for its small size,

comprising 20-30% of the body's total usage (Benton, Parker & Donohue, 1996). In

cognitively demanding conditions~, absorption of glucose from the blood is measurably

accelerated (Donohue & Benton, 1999; Scholey, Harper & Kennedy, 2001), and

limitations in the availability of cortical glucose can have negative effects on

performance (e.g., Benton et at, 1996). Having no good way to store energy, the brain is

fundamentally dependent on the circulatory system to supply it with glucose and oxygen

(Scholey et a!., 2001). Therefore, it is highly likely that cognitive performance is related

to individual differences in the res~ponsivityof the autonomic nervous system. It is also

possible that the capacity for autoIlomic control may influence cognition independent of

the general effects of age on processing speed (e.g., Salthouse, 1996), frontal lobe decline

(e.g., Raz, 2000), or inhibitory co:ntrol (e.g., Chao & Knight, 1997). If so, cognitive

performance for those who have 111aintained higher levels of autonomic responsivity into

old age may be relatively preserved as compared to that of their same age peers for whom

this responsivity has declined. T11e~: studies reported in this thesis were initiated to explore

this issue. Ultimately, determinillg relationships between autonomic variables and

cognitive performance outcomes in late life may be informative with respect to the

development of cognitive impairolent and dementia, and useful in the context of optimal

or "successful" aging.
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Cardiac reg'ulation and the specicll role ofparasympathetic control

To appreciate relationships between autonomic control and cognition, it is

necessary to understand how the a"utonomic nervous system implements cardiac control.

Heart rate is the net outcome of the competitive activity of the sympathetic and

parasympathetic nervous systems on the sino-atrial node, the heart's pacemaker (Levy,

1990; Saul, 1990).·Both divisions of the autonomic nervous system originate in brainstem

nuclei. Sympathetic activity is associated with ergotrophic (work-related) functions such

as energy mobilization, emotional arousal, and preparation for action in response to

environmental challenge (Bemtsol1 et aI., 1997; Porges, 1995a). Parasympathetic activity

is associated with tropotrophic (growth-related) functions such as digestion and energy

conservation (e.g., heart rate slowjng), information intake, and focused attention (Porges,

1995a) in the absence of enviroIln1ental challenge. In resting conditions, cardiac function

is tonically inhibited by the parasympathetic system (Levy, 1990). The intrinsic heart

rate-the rate at which the low polarization threshold of cardiac autorhythmic cells

initiates heartbeats ifunimpeded~~·-is comparatively fast, about 100 bpm. However, when

sitting, intrinsic heart rate is controlled so that an adult's actual heart rate is only 60-80

bpm.

However, due to differen:ces in the latencies and courses of action of their

respective neurotransmitters, nore:pinephrine and acetylcholine, sympathetic and

parasympathetic effects are not equivalent. Adrenergic transmission is relatively slow,

such that sympathetic activation requires about 4 seconds to peak, and 15-20 seconds to

return to baseline (Appelhans & :L:uecken, 2006). In contrast, acetylcholine has a

comparatively fast onset and of£,;et. As a result, parasympathetic transmission peaks in
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less than a second and requires only a second-about the length of one heartbeat-to

return to baseline (Levy, 1997). TJ1erefore, beat-to-beat control ofheart rate is mediated

by the fast-acting parasympathetic system (Levy, 1990, 1997; Porges, McCabe &

Yongue, 1982; Spyer, 1994; van d.er Molen, Somsen & Orlebeke, 1985). If

parasympathetic activity is reduced, so is the overall variability in heart rate. The effects

of reduced HRV are consistentlY'Jlegative (Goldberger, 1996); low HRV has been

associated with physical complaiIl"ts such as hypertension (Guzzetti et aI., 1988; Liao et

aI., 1996) and coronary heart disea.se (Dekker et aI., 2000; Wennerblorn et a!., 2000), and

also maladaptive emotional functioning, including anxiety (Friedman & Thayer, 1998)

and depression (Rechlin, Weis & Claus, 1994; Udupa et aI., 2007; van der Kooy et al.,

2006). Even the reduced HRV seen in normal aging reflects a form of autonomic

dysregulation (Bonnemeier et aI., 2003). In a healthy human, heart rate is not steady,

even during sleep (Porges, 1995a)..

The physiological explanation for HRV is not simple (Porges, 1992). The

electrocardiogram (EeG) is a recotrd of cardiac electrical output that includes irregular

fluctuations reflecting neural contributions from multiple physiological sources. EeG

signals can be decomposed by spectral analysis into three components that reflect the

influence of low-frequency circadian rhythms, medium-frequency rhythms associated

with short-term blood pressurereg'ulation, and high-frequency rhythms associated with

the respiratory cycle. Combined, tllese multiple rhythms contribute considerable

complexity to the cardiac electrical signal. Because discrete physiological sources make

contributions to variation in heart rate, variability in the cardiac signal is not merely

random noise. HRV_represents all independent source ofvariance from heart rate and
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conveys additional information a110ut the nature of cardiac regulation (Seely & Macklem,

2004).

Cardiac regulation is a system chttracterized by non-linear dynamics

In general, health is characterized by "organized variability" (Seely.& Macklem,

2004), that is, by variability that aJ)pears random in the short term, while exhibiting

regularity over longer periods (Goldberger, 1996). Cardiac regulation is an example of a

non-linear, biological system that :has the statistical properties of fractals. A fractal is an

object composed of sub-units (and sub-sub-units) that closely mimic the scale structure of

the larger unit. In the physical donlain, this structure is represented by coastlines,

mountain ranges, and the branchillg of trees, including the arterial and venous "trees" of

the circulatory system. In living organisms, fractal structures allow for efficient transport

across a complex, widely-distributed system (Goldberger, 1996), for example, of oxygen

to bodily tissues.

Fractal structure also occ'urs in the temporal dimension, as it does in cardiac

regulation. In the heart, each heartbeat is "kick-started" by an electrical impulse from the

sino-atrial node. A network ofRis and Purkinje cells allows rapid conduction of the

pacemaker's electrical signal throllgh the myocardium, coordinating the contractions of

the ventricular muscle cells so as to produce a beat powerful enough to pump blood

around the body. Breakdown of ttle fractal structure of cardiac control by age or disease

destroys its long-range regularity, leading either to domination of the signal by a single

frequency rather than multiple frecluencies, as in heart failure, or to uncorrelated

randomness, as in atrial fibrillatioIl (Goldberger, 1996, 1997), a dangerous situation
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where disorganized atrial electrical impulses result in uncoordinated conduction to the

ventricles and an irregular heartbeat.

Greater heart rate variability indicates that the fractal structure of cardiac control

is intact, and is itself a sign ofhealth and optimal cardiac functioning (Park, Lee & Jeong,

2007). Variability in the heart rate reflects cardiovascular adaptation to the challenges of

daily life. HRV also indexes the efficiency ofneural feedback mechanisms to organize

physiological resources (Kennedy & Scholey, 2000; Scholey et at, 2001), and by

extension, behavioural adaptabilitJI (Thayer & Lane, 2000). Conversely, reduced

variability in the ECG signal is a Illarker of autonomic dysfunction and a symptom of

diminished cardiovascular health (DeMeersman & Stein, 2007).

The development ofmodels ofpajOasympathetic control

Until the 1970s at least, the vast majority of studies focused on sympathetic

function and its arousal effects (Je:nnings & McKnight, 1994). This was partly because

sympathetic effects were more ob'vious and could be readily measured as changes in heart

rate, for example, in orienting paradigms (e.g., Graham & Clifton, 1966; Lacey, 1967;

Gbrist, Webb, Sutterer & Howarcl:, 1970). The traditional view of cardiac regulation was

that the sympathetic and parasyn11)athetic systems acted reciprocally (in which case it was

enough to measure one of them). Neglect of the parasympathetic system occurred partly

because there was no good way to properly isolate and measure parasympathetically

mediated HRV.

Initial time domain attem.pts to measure HRV, such as the standard deviation of

heart rate (e.g., Porges & Raskin., 1969; Waddington, MacCulloch & Sambrooks, 1979),

included all sources of variability, and did not specifically isolate parasympathetic
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control. However, with the develo:pment of techniques such as spectral analysis ofECO

data (Akselrod et aI., 1981), polynomial filtering (Porges, 1985) or peak-valley methods

(Grossman, van Beek & Wientjes, 1990) and the refmement ofmeasures ofrespiratory

sinus arrhythmia (RSA, Katona & Jih, 1975), it became possible to isolate

parasympathetic influences. RSA, the measure used in this thesis, refers to small natural

fluctuations in heart rate that are coordinated with the normal respiration cycle as a result

of a common generator in the D1edulla (Porges, 1986). During inspiration, vagal efferent

activity is briefly inhibited and heart rate increases slightly; during expiration, vagal

efferent activity is.reinstated, and ]leart rate decreases slightly. Because these fluctuations

are mediated by the vagus nerve, llnder nonnal conditions they provide an index that is

specific to parasympathetic activity. RSA reflects the interaction between the

cardiovascular and respiratory systems in meeting the metabolic needs of the organism.

The magnitude ofRSA is represertted by the difference between the smaller mean R-R

(interbeat) interval during inspiration and the larger mean R-R interval during expiration

(Yasuma & Hayano, 2004). Individ'ual differences in this measure are significant, and

stable across situations (Berntson et aI., 1994; Grossman & Taylor, 2007).

In 1991, Berntson et al. introduced the notion of autonomic space, in which

sympathetic and parasympathetic influences were represented as independent, rather than

reciprocal, contributors to heart rate. Shortly thereafter, Porges (1992) described a model

ofpsychophysiological functionin,g showing that vagally mediated cardiac modulation

was critical to attentional controL 'The model was developed further as polyvagal theory

(Porges, 1995b, 2003), postulating that mammalian modes of attention, emotion, and

communication were facilitated tl1:rough the evolutionary development of a dual vagal
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system. According to the pol;rvagal perspective, the oldest vagal branch projects from the

dorsal motor nucleus in the medulla to primarily sub-diaphragmatic structures, and is

found in animals· from lower phylogenetic orders as well as mammals. Its major function

is to facilitate basic vegetative capacities such as gastric motility and digestion, and it is

also connected to the heart. The m.ore recent vagal branch, originating in the nucleus

ambiguus in the medulla, projects mainly to supradiaphragmatic structures including the

heart, larynx, pharynx, esophagus, and bronchi, and is thus independently positioned to

facilitate uniquely mammalian cOlnpetencies such as social behaviour and

communication.

Porges hypothesized that tIle much-studied heart rate slowing seen in conjunction

with the orienting reflex was mediated by the "vegetative" vagus emanating from the

dorsal motor nucleus, whereas the suppression ofHRV that is characteristic of sustained

attention, a mammalian specialty, 'was mediated by the "smart vagus" that projected from

the nucleus ambiguus (Porges, 1995b). The novel idea in this theory is that cognitive

operations are integrated with carcliac control, and thus, limitations in autonomic

functioning will influence cogniti.'ve capacities such as sustained attention. Others have

vigorously challenged pol;rvagal theory (e.g., Grossman & Taylor, 2007), alleging that no

such theorizing is necessary becatlse the benefit of vagal control as indexed by RSA is

purely physiological, that is, it sinlply increases cardiorespiratory efficiency (Hayano &

Yasuma, 2003; Hayano, Yasuma, Okada, Mukai & Fujinami, 1996).

Discussion of relationships between. RSA and cognitive or affective functioning is

absent from the Hayano reports, as these authors view RSA straightforwardly as an index

of cardiopulmonary reserve, with elinical significance for certain medical conditions, that
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is reduced with age, stress, or disease. Grossman's approach is also primarily

physiological. His principal objection to studies that are rooted in polyvagal theory

involves the inferring ofpsychological states from physiological variables. Whereas a

physiological parameter can be inferred from a behaviour or psychological state, it is a

logical error to infer the reverse-··'unless the physiological parameter is a marker for the

behaviour/psychological state, that is, there is a one-to-one relationship between the

marker and the state. Otherwise, relations between autonomic indices and psychological

outcomes may be the result OfuIT111easured third variables rather than the autonomic

index (for an example, see Masi, I-Iawkley, Rickett & Cacioppo, 2007). Certainly, RSA

measured during task performance is determined by multiple processes, including

baseline levels, the amount of chal1ge for task performance, etc., and one cannot assume a

one-to-one relationship between o:n-task RSA and task variables. One way to get around

this problem is by using a multivariate approach in which some determinants ofRSA are

controlled, thus reducing the num1:)er of determinants to a few, or possibly even one

predictor (Berntson, Cacioppo & (irossman, 2007). Another way to get around it is to use

restingRSA as a general index ofphysiological reserve, that is, the baseline capacity of

the parasympathetic system to reSI)ond to the metabolic demands ofbehavioural and

cognitive processes, as has been d.()ne here.

The neurovisceral integration inollel

Irrespective of the aforementioned critiques (e.g., Grossman & Taylor, 2007;

Hayano & Yasuma, 2003), subse~l.uent researchers built on Porges' foundation,

developing a model ofneurovisceral integration in which peripheral regulation of

autonomic function is modulated l:>y higher regions of the brain, in accord with changing
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environmental contingencies. Earlier work had already shown that the limbic system can

directly influence the brainstem :nl1clei that control the vagus nerve (e.g., Schwaber, Kapp

& Higgins, 1980), and that blockiIlg acetylcholine transmission (Dellinger, Taylor &

Porges, 1987), or depressing vagal tone by anesthesia (Donchin, Feld & Porges, 1985),

has a detrimental effect on attention. More recent research focused on a number ofbrain

regions that form a central autono]nic network in medial frontal cortex that influences

autonomic regulation (CAN, Benarroch, 1993; Benarroch, 1997; Fisk & Wyss, 1997;

Terreberry& Neafsey, 1987). The CAN incorporates structures from the neocortex to

mid-brain to brainstem, including anterior cingulate cortex (ACC), insular and

ventromedial cortices, the central Jlucleus of the amygdala, the paraventricularand other

hypothalamic nuclei, periaquadu.ctal gray matter, the parabrachial nucleus, the nucleus of

the solitary tract, the nucleus ambiguus, ventrolateral and ventromedial medulla, and the

medullary tegmental field (Friednlan, 2007; Thayer & Lane, 2000).

Through multiple distribllted paths and reciprocal connections among its

structural components, the CAN receives sensory inputs and external information from

the environment and integrates this information with physiological responses in the

service of goal-directed behavioux, including the direction ofblood flow to particular

regions, changes in respiration, an.d the release ofhormones such as cortisol (Thayer &

Lane, 2000). Via directconnectiollS between ACC and autonomic brainstem nuclei (Ter

Horst & Postema, 1997), the CA~t\r's output modulates the activity ofpreganglionic

sympathetic and parasympathetic :neurons in the stellate ganglia and vagus nerve,

respectively, and through them,. in:fluences the activity of the sino-atrial node. Variability

in the cardiac signal reflects OUtpllt of the CAN (Saul, 1990). By indexing the interplay of
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higher central and lower peripheral mechanisms, and thus, the efficiency of central­

peripheral neural feedback mech.atlisms, baseline measures ofHRV allow us to quantify

the capacity for self-regulation (Tllayer & Lane, 2000). Greater capacity for self­

regulation permits greater behavio'ural flexibility, increasing the potential for adaptive

responding in the face of an ever-changing environment.

ACC, performance-monitoring, arId autonomic control

One of the most important structural components of the CAN is anterior cingulate

cortex. ACC is a large expanse of~medial frontal cortex wrapped around the rostral end of

the corpus callosum. It is activate(l in a wide range of contexts. The most rostral portion

of ACC modulates autonomic activity and emotional responses (e.g., Whalen et al.,

1998), whereas the more dorsal section is associated with response selection, motor

activity, cognitively demanding information processing, and responses to noxious stimuli

(Bush, Luu & Posner, 2000; DeviIlsky, Morrell & Vogt, 1995; but see Vogt, Berger &

Derbyshire, 2003). ACC activatioJl also appears to be critically involved with the

initiation of goal-directed behavio'urs and the motivational significance of actions

(Kennerly, Walton, Behrens, Buc1:Jey & Rushworth, 2006). Thus, there is no brain region

more appropriate for the purpose of examining relationships between autonomic function,

cognitive outcomes and behaviollr, than ACe.

ACC has been identified as a neural interface between cognitive and

biobehavioural systems, that is, between high-level appraisal systems and low-level

visceral systems (Critchley, Tang, Glaser, Butterworth & Dolan, 2005). Importantly,

during effortful cognitive or motor operations, ACC supports the generation of

appropriate states of cardiovascular arousal (Critchley et aI., 2003; Critchley et aI., 2005;
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Gianaros, Van der Veen & Jennings, 2004; Hoshikawa & Yamamoto, 1997) via

projections to the brainstem nuclei of the sympathetic and parasympathetic nervous

systems (Devinsky et aI., 1995). Irl addition to its role in autonomic regulation, ACC is

part of a reward-based learning g:ystem (e.g., Amiez, Joseph & Procyk, 2006; Shidara &

Richmond, 2002) that is activated in response to behavioural errors (e.g., Falkenstein,

Hohnsbein, Hoormann & Blanke, 1991), the prospect ofpoor outcomes (Bartholow et aI.,

2005), and situations where the olltcome of an action suddenly disconfirms expectations

(Oliveira, McDonald & Goodman, 2007).

In a reinforcement leamin~~ account of ACC activation, Holroyd and Coles (2002)

postulated that a phasic drop in tIle activity ofmesencephalic dopaminergic neurons in

the basal ganglia disinhibits neurons in ACC, which initiates an event-related potential

(ERP) in the EEG waveform at medial fronto-central sites, i.e., the error-related

negativity (ERN; Gehring, Goss, (~oles, Meyer & Donchin, 1993), or error negativity

(Ne; Falkenstein, Hohnsbein, Hoo:nnann & Blanke, 1990). When errors cannot be

perceived internally, external etror information can elicit a similar, feedback-related

negativity (FRN) in the same region (e.g., Miltner, Braun & Coles, 1997; Muller, Moller,

Rodriguez-Fornells & Munte, 2005; Nieuwenhuis, Slagter, von Geusau, Heslenfeld &

Holroyd, 2005). The dependence of error negativities on mid-brain dopamine is

supported by the fact that ERN anlplitudes are increased after the administration of D­

amphetamine, an indirect dopamiJ1e agonist (de Bruijn, Hulstijn, Verkes, Ruigt & Sabbe,

2004).

ACC activity does not itse]l.frepresent executive processing (Critchley et al.,

2005) and ERNs/FRNs do not re;present a direct attempt ofACC to cope with aversive or
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difficult situations, but rather are thought to alert other frontal brain regions (such as

dorsolateral prefrontal cortex) to tIle need for increased cognitive control (Botvinick,

Braver, Barch, Carter & Cohen, 2001) and an immediate change in response strategy

(Bartholow et aI., 2005; Ridderinldlof, Ullsperger, Crone & Nieuwenhuis, 2004). ACC

signals also constitute a local record of the consequences of recent actions, indicating

which ones were successful (and \vorth performing again in the future) and which were

not (Amiez et aI., 2006; Kennerly et aI., 2006). This record would be most important in

cumulative.learning tasks, where .participants are expected to learn from error information

and use this knowledge on future trials.

The neuroviseeral model and eogn,ition

The bulk of research on alltonomic and psychological functioning has been in the

context of emotional regulation (e.g., Agelink et aI., 2004; Cacioppo, Berntson, Larsen,

Poehhnann & Ito, 2000; Frazier; Strauss & Steinhauer, 2004; Movius & Allen, 2005;

Rottenberg, 2007; Sack, Hopper (S~: Lamprecht, 2004). The neurovisceral integration

model itselfwas developed with respect to dysfunctional emotional responding as seen in

anxiety disorders (e.g., Friedman, 2007; Friedman & Thayer, 1998; Hagemann,

Waldstein & Thayer, 2003). However, this model has also been discussed in the context

of selective attention and self-regtnlation (Thayer & Lane, 2000). An important part of

self-regulation is the ability to select important information and to ignore irrelevant

information, making rapid attentional shifts or sustaining focus as needed. This suggests,

along with recent findings in HR.\l research, that the framework could be extended to

include cognitive processes, and trlay have particular relevance for executive functions,

including attentional control.
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Higher tonic levels of vagally mediated HRV have been associated with reduced

attentional capture during Stroop I)erformance(Johnsen et aI., 2003), greater working

memory ability (Hansen, Johnsen & Thayer, 2003), and better scores on tests of

intelligence (Melis & van Boxtel, 2007) in younger adults. There is little work in this area

with respect to older adults, tho·ugh presumably autonomic relationships in older groups

would be of interest, since autonolnic functioning undergoes systemic age-related change

(for reviews see DeMeersman & Stein, 2007; Low, 1997; e.g., Umetani, Singer, McCraty

& Atkinson, 1998). Sporadic exce:ptions exist. In an unpublished paper, Porges et aI.

(1973) showed that older adults vvith higher HRV have faster reaction times than a

comparable group with lower HR"Iv.A recent population study has linked lower HRV to

increased risk of cognitive impairlnent in older disabled women (Kim et aI., 2006). In

addition, hypertensive status-.·characterized by unchecked sympathetic predominance of

heart rate-is associated with per£ormance decrements in cognitive tasks (Kuo, Sorond,

Iloputaife, et aI., 2004; Robbins, I:~lias,Elias & Budge, 2005), and cognitive impairment

later in life (e.g., Farmer et aI., 1990; Launer et al., 2000). Thus, it was of interest to

examine ACC activation and HR\T in conjunction with performance of cognitive tasks,

particularly those that evoked executive functions in older and younger adults.

The nature ofthe tasks

ACC function has typicall)T been measured using the standard Eriksen flanker

task. However, researchers have recently begun to adjust the task, varying it to examine

ACC function with respect to diVerse psychological variables such as the timing of action

monitoring (e.g., van Veen & Carter, 2002), effects ofmotivation and personality

correlates (e.g., Pailing & Segalo\vitz, 2004), response monitoring in autism (e.g.,
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Henderson et a!., 2006), and effects of emotional faces on psychopaths (e.g., Munro et aI.,

2007), to name a few. Researchers have also turned to different paradigms, such as

feedback tasks, to explore perfomlance lTIonitoring and ACC function. These paradigms

are designed so that participants are unable to discern internally when they have made an

error and must rely on external feedback for that information. Feedback related

negativities (FRNs) to error infot111ation have typically been elicited in guessing or

gambling tasks (e.g., Donkers, 'Nieuwenhuis & van Boxtel, 2005; Hajcak, Moser,

Holroyd & Simons, 2006; Yeung & Sanfey, 2004), difficult time-estimation tasks (e.g.,

Mars, de Bruijn, Hulstijn, Miltner & Coles, 2004; Miltner et at, 1997) and tasks where

reward contingencies are impossilJle to learn (e.g., Nieuwenhuis et a!., 2002;

Nieuwenhuis, Slagter et aI., 2005). In these paradigms, the outcome of each trial has no

relation to any other trial.

However, with more investigation of response-monitoring and autonomic

regulation in the A-CC, it has beco:lme clear that ACC activity reflects the history ofrecent

actions and their outcomes (Anliez et aI., 2006; Kennerly et al., 2006) and that this has

implications for future perfonnan.c:e (e.g., Rushworth, Walton, Kennerly & Bannerman,

2004; Walton, Croxson, Behrens, .:Kennerly & Rushworth, 2007). When an error occurs

following a run of successful choices (and is thus surprising), the ACC error signal is

larger. Serendipitously, this result distinguishes the unsuccessful choice so that it is not

repeated in upcoming trials.

Error information may become very salient another way. A cumulative learning

task that requires participants to acquire item and configural information and retain it for

subsequent use would make error information very important, and thus it would be more
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likely to elicit maximal responses from ACC. Because spatialleaming requires the

cumulative acquisition of item ancl configural information via attentional control and

working memory (i.e., executive fiLlnctions), errors in this task would be very likely to

evoke responses in ACC. Because spatialleaming would engage executive functions, it is

also likely to require considerable physiological support (Aasman, Mulder & Mulder,

1987; Critchley et a!., 2003) and tllUS would be likely to engage autonomic modulation by

Ace. Therefore, a novel maze-learning task with three levels of difficulty (Snyder et a!.,

2005) was selected for the present studies. We expected that better cardiac autonomic

control, that is, greater parasympathetic influence on heart rate (higher RSA) would be

correlated with better maze-learning performance, particularly at the more difficult levels.

In an earlier study, we reported relationships between autonomic indices and task

outcomes using a source memory task that was highly depende:pt on both attentional

control and working memory (Dy\van, Mathewson & Segalowitz, submitted). In older

adults, higher levels of RSA were correlated with lower source error rates, but no

relationships were found betwee~n RSA and performance of a contrasting Eriksen letter

flanker task for older or younger adults, even though this task was originally conceived of

as a test of executive functioning (Eriksen & Eriksen, 1974). However, it was not clear

from our study whether the discrel,ancy was due to the differential cognitive processing

elicited by each task, or whether tlie source task was simply a more difficult assignment.

In the present series of studies, We sought to explore the model suggested by the results

ofDywan et a!. (submitted). Replieation of the pattern ofparasympathetic relationships

with performance of the source hlenlory but not the flanker task would support the

conclusion that parasympathetic fi.lnction as measured by RSA was particularly beneficial
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for cognitive tasks requiring atte'ntional control and working memory. In addition, we

included a more difficult letter flal1ker task (van Veen & Carter, 2002). If attention and

working memory processes were eritical to eliciting relationships between autonomic

function and task outcomes, then "~ve would expect to find them only in relation to source

memory performance, and not in relation to flanker trials-even difficult ones-that

could be completed using available visual infonnation. Conversely, ifrelationships with

autonomic variables were a functi4)n of task difficulty, they should vary across the two

levels of the flanker paradigm, anclwould be seen in the difficult flanker task as well as

the source memory task, but not in the standard flanker task. This discrepancy was also

tested ina novel maze-learning task with two contrasting conditions: initialleam trials, in

which participants were totally delJendent on feedback to discover a given maze path, and

repeated test trials, in which spatial memory could be consulted to assist with decision­

making during maze performance ..

In sum, three kinds of executive function tasks were administered in the present

set of studies. Because subjective Jperceptions of task difficulty and time pressure

influence HRV independent of objective task performance (Derrick, 1988), at the end of

the testing session we asked participants to rate how difficult each task was for them.

Autonomic assessment

In these studies, four autollomic indices were calculated from resting ECG and

resting blood pressure readings to represent the autonomic capacities of each individual,

unconfounded by the influence of task demands. These measures may be thought of as

personal characteristics or capacities.
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Resting heart rate, the net outcome of the interplay between parasympathetic and

sympathetic activity, is included ill our analyses because it provides the simplest picture

of cardiac behaviour. Its standard deviation can serve as an index of overall HRV, and

thus, a rough measure ofparasympathetic control. However, indices that isolate

parasympathetic capacity specifically are more sensitive to cognitive demands than

global estimates ofHRV, in both younger and older adults (Lyness & Porges, 1985).

Therefore, RSAwas calculated from heart rate derived from EeG recordings. Having

indices of the functioning ofbot11 divisions of the autonomic nervous system would

provide a more comprehensive picture of age-related change in autonomic control vis-a­

vis cognitive processing. Therefore, systolic blood pressure (SBP) was assessed before

and after the testing session to provide a mean resting sympathetic measure. SBP and

heart rate were used to calculate f41te pressure product (RPP; heart rate x SBP, divided by

100), a reliable indirect measure of cardiac oxygen consumption and thus, cardiac

workload (Fredericks, Choi, Hart, Butt & Mital, 2005). Since myocardial contractility

increases cardiac oxygen use ancl is increased primarily via sympathetic activation, RPP

was used as a proxy for sympathetic drive. Thus, we used two general indices of

autonomic functioning (heart rate and systolic blood pressure) and two measures more

closely associated with the separate influence of each division of the autonomic nervous

system (RSA and RPP) on the heart.

Synopsis

The research presented in th.e following three chapters represents separate studies of

electrophysiological and/or auto'n()mic respoTI.ses and behaviour in· the context of two

well-known tasks-source memory and flanker paradigms-and a novel maze-learning
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task. Each of the three studies is based on data from a single sample of 20 older adults

and 20 younger adults. Participa~nts were tested in two three-hour sessions about a week

apart, alternating between the so'urce memory and flanker tasks on the first day, and

completing the maze task in one sitting on the second day, with breaks as needed.

However, due to some recording and data-processing difficulties and issues with

adequate performance of the tasks, the sample sizes differ between studies.

The focus for the first stu(ly is the effect of age-related decline in ACC functioning

on the acquisition of spatial knowledge by older and younger adults in the maze-learning

task. The second study involves age-related change in the relations between autonomic

control variables and behavioural and electrophysiological responses in the maze­

learning task. In the third study, relationships between autonomic control variables and

cognitive outcomes from the source monitoring task versus the flanker task are explored

in each age group. Analyses ofbe:havioural performance (errors, response times),

electrophysiological measures of on-line cortical activity (event-related potentials; ERPs)

and resting autonomic control variables (heart rate, blood pressure, RSA, rate pressure

product) are presented for each stu.dy. Finally, a general discussion presents four possible

mechanisms by which parasympathetic cardiac control may contribute to the performance

of complex executive functions, ~uld suggests some directions for future research in the

area of autonomic and cognitive fttnction with respect to preserving cognitive capacity in

late life.



Chapter 2: Aging and electrocortical response to error feedback

durilllg a spatial learning task

Abstract

Event-related potentials were collected as older and younger adults responded to

error feedback in an adaptation of the Groton Maze Learning Test, an age-sensitive

measure of spatial learning and executive skills expected to maximally involve anterior

cingulate cortex (ACC). Older adults made more errors and produced smaller feedback­

related negativities (FRNs) than ·young controls. LORETA source localization revealed

that for young adults, neural activation associated with the FRN was focused in ACC and

was stronger to negative feedbac'k... Older adults responded with less intense and less

differentiated ACe activation, bout FRN amplitudes did relate to error rate in the most

difficult mazes. The feedback P3 ,;vas sensitive to negative feedback but played no role in

the prediction of error for either group. These data reflect the selective age-related decline

of ACe response but also its continued contribution to performance monitoring in aging.
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Introduction

There are at least two ways in which humans gain information about their own

performance of a given activity (tvliiller et a!., 2005). One is through an internal

monitoring system that responds vi/hen it is apparent that the consequences of a choice or

action are other than intended. The other involves the attention paid to external feedback

about performance in circumstances where it is impossible to know the accuracy of one's

actions. The neural response to -intemally- and externally-based error feedback can be

investigated through two closely related electrophysiological responses. The error-related

negativity (ERN) is a response-locked waveform that is associated with the internal

monitoring of errors. There is also a feedback-related negativity (FRN), a stimulus­

locked waveform that is generated in response to error information acquired from the

environment. The FRN is topograI)hically and morphologically similar to the ERN (e.g.,

Holroyd et a!., 2004; Nieuwenhuis et a!., 2002) and generators ofboth components have

been localized to anterior cingulate cortex (ACC; e.g., Dehaene, Posner & Tucker, 1994;

Miltner et aI., 1997).

The ACC is part of a re'w:ard-based learning system (e.g., Amiez et aI., 2006;

Shidara & Richmond, 2002) that is activated when the outcome of an action is contrary to

expectations (e.g., Oliveira et at; 2007) and response strategy must be adjusted

(Bartholowet aI., 2005; Ridderinl.~:hofet al., 2004). In a reinforcement learning account

of error-related negativities, Holroyd and Coles (2002) have suggested that medial frontal

negativities (ERNs, FRNs) occur \vhen the basal ganglia signal frontal brain regions,

including th~ ACC, through phasic drops in the activity ofmesencephalic dopaminergic

neurons that occur when outcom.es are worse than expected. The suggested link between
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dopamine levels and ERN response has received support by examining the effects of

psychopharmacological manipulation ofdopamine (de Bruijn, Hulstijn, Yerkes, Ruigt &

Sabbe, 2005).

It is not surprising then, that the ERN is reduced with age (Falkenstein, Hoormann

& Hohnsbein, 2001; Gehring & l<Jnight, 2000; Kok, 2000; Mathewson, Dywan &

Segalowitz, 2005; Nieuwenhuis et aI., 2002), given the evidence of an age-related decline

in available dopamine within bofh nigrostriatal (Reeves, Bench & Howard, 2002) and

mesolimbic (Cruz-Muros et aI., 2007) dopamine systems. A decline in dopamine

receptors (D2/D3) has been obser\Ted across the lifespan in the striatum as well as

extrastriatal regions such as the A(::C (Kaasinen et aI., 2000), along with a decline in

dopamine synthesis in these saIne regions (Ota et al., 2006). However, mapping the

association between age-reduced l~RNs and age-related change in behavior has not been

straightforward. For example, ERll~s are reduced in older adults even when their accuracy

levels are the same or better than. ~young adults on speeded perceptual tasks (Falkenstein

et aI., 2001; Nieuwenhuis et al., 2(02). In young adults, within-group correlational

analyses have provided some evid,ence ofrelations between size ofERN and error rate

(e.g., Hajcak, McDonald & Sinlo11s, 2003; Herrmann, Rommler, Ehlis, Heidrich &

'Pallgatter, 2004), but these relatio:tls were not found within older groups with respect to

ERP and accuracy data collected <luring a standard letter flanker task (Mathewson et aI.,

2005). This suggests that, in older adults, successful performance may be independent of

the robustness of the error signal1:)ut, to our knowledge, these within-group relations have

not been specifically examined in lother studies ofperformance monitoring in older

adults.
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Much less is known abotrt age effects with respect to the FRN. In perhaps the only

study to date, Nieuwenhuis et al. (2002), experiment 2, found that FRNs, like ERNs, were

smaller in older than in younger a(lults when elicited during a probabilistic learning task.

However, for older adults, the FR1~ response pattern was not wholly consistent with a

major prediction of reinforcement learning theory (Holroyd & Coles, 2002). According to

this model, one would expect that, as the correct representation of stimulus-response

mappings become internalized o'ver a number of trials, the FRN should reduce in size

because external feedback becomes redundant. Awareness ofmaking an error would

occur in conjunction with the incorrect response, thus producing a larger ERN and a

much diminished FRN. This is exactly what happened for the younger adults in the

Nieuwenhuis et aI. study. However, for older adults there was no evidence that FRN

amplitudes were sensitive to the validity of feedback or to the amount of learning that had

occurred.

One could conclude that error-related ERP components simply reflect the

reduction of dopamine in the system and tell us nothing more about the nature of age­

related change in perfonnance mOIlitoring or general cognitive decline. Alternatively, it

may be that the tasks used to assess performance monitoring have not engaged the

anterior cingulate to the degree ne(;)essary to observe the link between neural response

and behavior in older adults. FRN"s have typically been elicited in gambling or guessing

tasks (e.g., Donkers et aI., 2005; IIajcak et a!., 2006; Yeung & Sanfey, 2004), time­

estimation tasks (Mars et al., 2004; Miltner et aI., 1997), and tasks where it is impossible

to learn about reward contingencies (Nieuwenhuis et aI., 2002; Nieuwenhuis, Slagter et

aI., 2005).
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Nonetheless, as research,ers continue to parse the functions of the ACC and

related brain regions in animal a:ncl human studies, it has been shown that the ACC is

most involved when error feedbac'k is based on a history of actions and outcomes (Amiez

et aI., 2006; Kennerly et aI., 2006). In such contexts, variation in ACe activity in

response to trial outcome can predict learning rate (Behrens, Woolrich, Walton &

Rushworth, 2007). However, as Nieuwenhuis et aI. (2002) observed, the tasks used with

older adults have not required an extended learning trajectory in that they reach

asymptote quite quickly. Spatial1earning tasks, on the other hand, require cumulative

acquisition of item and configural information, invoking executive functions such as

attention and working memory. TIlus, it was our goal to examine electrophysiological

indices ofACC activity in older al1d younger adults using a modified version of the

Groton Maze Learning Test (Snyder et aI., 2005). This computer-based task involves

finding a hidden pathway througl1 a grid of tiles by trial and error while receiving

informative visual feedback after each move. Its outcome measures (e.g., errors and

completion times) are sensitive to age differences in spatialleaming efficiency and

correlate with scores on neuropsychological tests of executive function, such as planning

and sustained attention (Pietrzak~ C:ohen & Snyder, 2007).

Age-related decline in spatial learning ability has been well documented (Driscoll

et a!., 2003; Levden, Schellenbacll, Grossman-Hutter, Kriiger& Lindenberger, 2005;

Moffat, Elkins & Resnick,.2006; ~v1offat, Kennedy, Rodrigue & Raz, 2007; Newman &

Kazniak, 2000). These deficits ha've been associated with structural and chemical changes

in the hippocampus (Driscoll et al", 2003). Others (e.g., Moffat et aI., 2006) have linked

this reduced activation in hippocattnpal and extra hippocampal regions to higher levels of
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activation in the ACC and medial:frontal cortex. Thus, the hippocampal decline could be

expected to place more load on midbrain error monitoring capacity and maximally

engage the ACC (see also Yoshida & Ishii, 2006). It is also of interest that ACC neurons,

with their links to premotor and motor cortices (Hatanaka et aI., 2003), select for spatial

aspects of a rewarded motor response (e.g., Shima & Tanji, 1998), suggesting that maze

learning should be particularly effective in eliciting ACC activation.

For our adaptation of the l11aze learning task, the initial presentation of each maze

required the use of a trial-and-error strategy to find the maze within a grid, with feedback

occurring after each move. Negative feedback was expected to elicit FRN responses in

both groups, albeit smaller ones ill. the older group. On the initial "learning trial" for each

maze, discovering the maze withirl the grid would depend totally on feedback, thus

eliciting a learn-trial FRN that cO'uId be contrasted with the FRN from repeated trials.

Even though feedback continued to be provided during the repeated trials, in these "test

trials", maze location would beco:rJae increasingly internalized, so that the memory

representation of a given maze cOIlfiguration could be consulted during the re-tracing of

its path. The development of inter:nal memory representations was expected to

increasingly allow for intern.al realization of errors, leading to a gradual reduction in the

reliance on feedback and hence a reduction in the amplitude of the FRN response

(Holroyd & Coles, 2002).

In order to ensure activation of the ACe, we also varied maze difficulty in a

stepwise fashion while maintainin15 consistency with regard to user interface, instructions,

task requirements, and feedbacl< at each level. We anticipated that larger mazes would

force participants to rely more heavily on the strategic control of attention and hence



25

require greater involvement ofth:e Ace (e.g., Paus, Koski, Caramanos & Westbury,

1998). Because ERP responses to negative feedback are hypothesized to signal the need

for increased top-down control al1fl altered behaviour, we expected that smaller FRN

responses would relate to reduced learning efficiency. Finally, because FRN activation

has not been imaged in older adults, we used low resolution tomography (LORETA) to

find plausible solutions for the ne'ural generators of the electrical activity seen at the scalp

and to test for significant differe~nces between positive and negative feedback conditions.

Method

Participants

Twenty undergraduates fronl Brock University (15 female; 18-26 years, M ==

20.4), and 20 older adult volunteers (15 female; 65-87 years, M == 74.6) from the

surrounding community of 8t. Catharines, Ontario, Canada, participated in this study.

Exclusion criteria included neurological or psychiatric conditions or use ofpsychoactive

medications.! Participants had nOfJmal or corrected-to-normal vision, and were fluent

English speakers. Older adults scored within the normal range (27-30, M == 28.6, SD ==

1.08) on the Mini-Mental Status EJ'xamination (Folstein, Folstein & McHugh, 1975).

There was no difference in education levels between the two groups (MYoung == 13.7, SD ==

2.14 years; MOlder == 14.5, SD =: 2.17 years,p > .2) but, as expected, older adults'

vocabulary level, as measured b'y the SCaLP "Spot the Word" task (M == 87% correct)

exceeded that of the younger grotl:P (M== 79% correct), t(37) == 4.04,p < .001, (Baddeley,

Emslie & Nimmo-Smith, 1992). lrhe study received clearance from the Brock University

Research Ethics Board and all participants provided written informed consent. Most
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students received partial course credit. All others, including older adults, received a small

monetary stipend for their time.

Stimuli and Experimental Design

The Groton Maze Leamillg Test (Pietrzak et aI., 2007; Snyder et a!., 2005),

developed by Peter J. Snyder and loosely based on an earlier design by Milner (1965),

was modified so that responses cO'uld be time-locked to ERPs recorded from individual

subjects. To increase spatial memory load and demands on attentional capacity, we

included three difficulty levels: easy (4 x 4 grid), moderate (6 x 6 grid), and difficult (8 x

8 grid). At each difficulty level, participants were asked to find a maze path that was

hidden within a grid of square grey tiles (Figure 2.1). Beginning in the upper left comer

and travelling toward the lower ri,ght comer, participants used a stylus to indicate which

tile they thought might be next in "ihe hidden path on the touch-screen of a tablet laptop

computer.2 Allowable choices Were up, down, left, or right of the current tile. Diagonal

and backward moves were not allowed. Progress through each maze was self-paced but

the timing of feedback was controlled to ensure sufficient time for the recording of

feedback-related ERPs. After every step, the selected tile either turned green for a correct

choice ortumed red for an incorrect choice. Ifparticipants chose an incorrect tile, they

were obliged to return to the previo'us correct tile and make a new selection.

Figure 2.1

In. the initial "learn" trial of each maze, participants were completely dependent

on external feedback to learn the rl1aze path. However, on subsequent repeated "test"

trials, they would also be able to access a developing internal map of~he.stimulusfield in
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memory, even though trial-by-trial provision of feedback continued. Thus, the initial

learn trial constituted a pure learning condition, whereas the repeated test trials would be '

expected to reflect an increase in: the degree to which perfonnance could be guided by a

growing internal representation of the maze. Behavioural outcomes included total time to

completion and the total number of steps required to complete a trial, with raw error

scores being calculated off-line. Eight unique mazes were presented at the 4 x 4 grid size.

Each involved the initial learn trial plus two test trials. A perfect score for a 4 x 4 maze

comprised 10 correct moves. Fo:ur unique mazes were presented at the 6 x 6 grid size,

with one learn and three test trials per maze and a perfect score comprising 20 moves. For

8 x 8 grids, two unique mazes Were presented, with one learn trial and five test trials per

maze. A perfect score for an 8 x 8 maze comprised 30 moves. Thus, larger grid sizes

involved fewer mazes but include,d more test trials per maze.

Procedures

A paper-and-pencil health qltestionnaire, the SCOLP vocabulary test, and a blood

pressure reading were administere,d prior to the computerized maze tasks. A health index

was informally coded on the basis of each participant's health history (0 == no health

issues reported, 1 == at least one fl'1!inor health issue, 2 == at least one significant health

condition, such as high bloodpressure, 3 == overall health is ofconcern).

Participants responded to all three levels of the maze task in a single session while

seated in a dimly lit, electrically aJlld acoustically shielded room. Maze stimuli were

presented usingE-Prime research. software (Psychological Software Tools, Inc.) on a

tablet computer (an Acer Travelm.ate C300 laptop with touch-screen). EEG was recorded

throughout. Following completio:n of the maze task, participants rated the subjective
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difficulty of the mazes at each gri(l size using a paper and pencil rating sheet with a 5­

point scale.

Electrophysiological recording and measures

EEG scalp data were recorded from 250 scalp sites using a Geodesic Sensor Net

(Electrical Oeodesics Inc., Eugene, Oregon). The acquisition program was NetStation

(version 4.0.1, EOI). Electrode illl]pedances were generally kept below 50 kQ. The signals

were sampled at 500 samples/s and digitized with a 16-bit analog-to-digital converter. All

recordings were referenced to Cz in NetStation. Data were processed off-line with a 1 ­

30 Hz band-pass filter and segmellted into 1000-ms epochs with a 200-ms baseline time­

locked to the onset of the feedbaclc. For correct trials, all epochs in which amplitudes at

midline sites exceeded 75 JlV were automatically excluded. Because there were fewer

error trials, each error epoch was vrisually inspected and eye artifacts corrected as

necessary using regression progralns. Feedback-locked, artifact-free epochs were

converted to an individual average:, re-referenced to the common averaged reference,

baseline-corrected, and then comr)ined to create group averages using the ERPScore

analysis program (Segalowitz, 1999).

Because the FRN appearedl to be superimposed on a larger positive wave (Miltner

et at, 1997), we used Brain Electn)magnetic Source Analysis (BESA, version 5.1,

MEGIS) to conduct separate principal components analyses (PCA) of the group-averaged

waveforms from error trials across the time window ofthe FRN/P3 complex (lasting

from the FRN peak to the P3 peat:) for each condition, age group, and level (see also

Yeung, Holroyd & Cohen, 2005). These analyses indicated that two components

accounted for the majority ofvariance, 97.5%- 99.3% (Mcompl = 91.9%; M comp2 = 6.6%)



29

across this time window for younger adults in all conditions, and between 94.7% and

98.9% of the variance (Mcontpl :=: 90.7%; Mcomp2 = 6.6%) for older adults across all

conditions. Consistent indications of two distinct components in the FRN/P3 complex in

every condition and in both age groups confirmed the independence of the FRN and

feedback P3 and indicated that it '\i1laS appropriate to analyze them separately.

As is evident in Figures 2.4 and 2.5, both error-related components peaked

slightly later for older than younger adults. Therefore, to more accurately reflect

responses for each age group, FRJ>J amplitude was defined as the most negative peak

between 250 and 400 fiS following negative feedback for younger adults and, for older

adults, as the most negative peak. l:.etween 300 and 400 ms. For younger adults, P3

amplitude was scored as the mean amplitude within a 360-460-ms latency window, and

for older adults, between 400 and 520 ms.

LORETAanalyses

We submitted averaged EltP data to (LORETA) software (LORETA-Key-Ol Free

Brain Ware) to illustrate likely brain electrical sources for the ERPs, and to compare the

activation at the time of the ERP pleaks across positive and negative feedback conditions

(Pascual-Marqui, Esslen, Kochi &: Lehmann, 2002). LORETA software allows

quantitative localization of neur()~nal electrical activity from EEG recordings. In

LORETA, brain volume is modelled as a dense three-dimensional grid composed of

2,394 volume elements (voxels) at. 7mm spatial resolution, which together represent the

hippocampus and grey matter volume of a reference brain that has been digitized

according to the Talairach atlas (a'vailablefrom the Brain Imaging Centre, Montreal

Neurologic Institute).
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A long-standing problem in electrophysiology is that any pattern of electrical

activity at the scalp can be accounted for by an infinite variety ofneural generators or

. sources. To deal with this, LORE~rAmakes use of a physiological constraint, namely,

that adjacent neurons fire more synchronously and simultaneously than neurons that are

farther apart. This allows a single, three-dimensional solution to be calculated from a

particular electrical distribution. B·ased on the linear, weighted sum of electrical

potentials from across the scalp, L10RETA calculates the current source density fot each

voxel. For every moment (2 ms =: 1 time point) in a designated time· window, the program

produces "blurred-localized" images of neural point sources, retaining the areas of

maximum activity but with a certain amount of dispersion. The program also produces a

non-parametric, voxel-by-voxel statistical comparison of activation across the whole

brain, yielding a two-tailed t test c.olTected for multiple comparisons.

Data from all 250 electrod.e sites were reduced to 81 standard sites in BESA (5.1)

and then converted to voxels in the LORETA program. Voxel-by-voxel comparisons of

individuals' whole-brain activatioIl were made at the peak timing of the FRN and P3

elicited from error trials versus tl10se elicited from correct trials for each maze condition,

level, and age group. The data Were not normalized or log-transformed.

Statistical analysis

Behavioural and electroph:ysiological data (stimulus-locked ERPs) were analyzed

using 3 x 2 x 2 mixed model ANC)VAs, with grid size (4 x 4, 6 x 6, 8 x 8) and trial type

(learn trials vs. test trials) as within-group factors and age group (older vs. younger

adults) as the between-group factor, followed by Bonferroni-corrected pairwise­

comparisons or individual comparisons where required. When the number of degrees of
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freedom in the numerator was greater than one, the Huynh-Feldt correction was applied.

Results are reported using the original degrees of freedom and correctedp-values. Both

error-related components were then analyzed for associations with behavioural

performance using hierarchical tegression.

Results

Behavioural data

Data from participants wid1 scores from all three grid sizes (19 younger, 14 older

adults) were entered in this and all subsequent analyses. Some older participants were

unable to complete the highest le~vels ofthe maze task because of the difficulty these

levels posed. Data from one yo'ung adult were lost due to technical error. As expected,

older adults (M == 3.35 ± .24) ratedl the task as more difficult than younger adults (M ==

2.52 ± .20), F(l, 27) == 7.00,p < .02, T)2 == .21, and difficulty ratings increased with grid

size (M 4x4 == 2.20 ± .13; M 6x6 == 2.. 91 ± .14; M8x8 == 3.69 ± .24), F(2,54) == 46.08,p < .001,

112 ==.63. Grid size ~lso interacted with group, F(2, 54) == 3.59,p < .05,112 == .12, such that

both groups rated the largest mazes as equally difficult (p > .30) but the medium and

small mazes were rated as more difficult by older than younger adults (ps < .02). Within

each age group, difficulty ratings '\vere independent of age, education, vocabulary score,

and estimated health status (ps > j)9). For younger adults only, difficulty levels related to

error scores during test trials at each grid size (ps < .001).

Raw error scores were cal(~·ulatedby subtracting perfect scores (10, 20, or 30

steps, for each grid size, respectively) from the mean number of steps made across all

trials at that maze level. Because each incorrect move required backing up one step to the

last correct tile, the net scores were divided by two. As evident in Figure 2.2, the main
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effects of age, trial type, and grid size were significant (ps < .01) but were superseded by

a three-way interaction, F(2, 62) =:::: 10.94,p < .001, 112 == .26. Follow-up analyses

indicated that for learn trials, en"ors increased with grid size to the same degree in both

groups. However, on test trials, w]len differential learning rates became relevant, older

adults made proportionally more errors than younger adults, and these increased with grid

size.3 (See Table 2.1).

Figure 2.2 and Table 2.1

Maze completion times Were estimated on the basis of total time taken to

complete each maze and an.alyzed. in the same way as for errors. Again, all'main effects

were significant (ps < .001) but Were superseded by interactions between grid size and

trial type, F(2, 42) == 31.02,p < .001,112
== .60, and grid size and group, F(2, 42) == 11.20,

P < .001, 112 == .35. Follow-up a:nalyses indicated that, as would be expected, overall

completion times increased with grid size for both groups irrespective of trial type (ps <

.001). However, for test trials on: their own, the increase in completion times as a function

of grid size was greater for older than younger adults (see Figure 2.3 and Table 2.2).

Thus, it would appear that the grOllps did not differ markedly on learn trials (the first

presentation of each maze) when (~:veryone had to depend on feedback for each trial.

However, on test trials, when dif£erentiallearning rates became relevant, the difference

between age groups was clearly" e'vident (see also, Footnote 3).

Fig"ure 2.3 and Table 2.2

ERP response
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Displayed in Figures 2.4 alld 2.5 are the overlaid averaged ERP wavefonns for

correct and error trials at represe:ntative midline sites (Fz, FCz, and Cz) for learn and test

conditions for younger adults (Fig'ure 2.4) and for older adults (Figure 2.5). Figures 2.6

and 2.7 depict topographical maps for younger and older adults with respect to the FRN

and P3 to error feedback for learn trials (Figure 2.6) and test trials (Figure 2.7). Both

represent data collapsed across all eight unique mazes presented at the 4 x 4 grid size.

The patterns of activity for the larger grids were similar and so have not been displayed

here. However, the actual amplitufle and latency data for all grid sizes across conditions

for both groups are presented in Table 2.3 (FRNs) and Table 2.4 (P3s). Trial rejectiollS

due to excessive artifact or recording.difficulties resulted in some ERP analyses being

conducted with fewer participants than others.

Tables 2.3 and 2.4

Visual inspection of Figures 2.4 and 2.5 indicates the lack of early sensory

components, NI and Pl. These were absent because the visual system was loaded with

visual input from the entire maze grid throughout task performance. Response accuracy

was indicated by the selected tile transforming to red or green, which presented a very

subtle change in visual sensation.. "Thus, the P2, a more endogenous component,

represents the first clear ERP res:ponse to feedback, occurring at approximately 200-250

illS post-feedback for both groups .. It is also evident (Figures 2.4 and 2.5) that positive

feedback failed to elicit the FRN' or feedback P3. Only error-related data were examined

with respect to these components~
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FRN. Peak FRN amplitudes were analyzed in the same way as the behavioural

data except that site (Fz, Fez, Cz) also served as a within-group factor. There was a

marginal effect for site, P(2, 38) = 3.44,p < .07, 112 == .15, which was due to the FRN

being slightly larger at Fz than at either of the other midline sites. There were also main

effects for age and grid size, but tllese were superseded by an interaction among group,

grid size, and trial type, F(2, 38) == 3.82,p < .04, 112 == .17. Follow-up analyses indicated

that FRN amplitudes were shallo\ver for larger grid sizes (p < .02), but this grid size

effect was seen primarily in the older adults and occurred primarily for test trials (p <

.05). The size of the FRN was not reduced during test trials relative to learn trials (p >

.69), as might be expected according to Holroyd and Coles (2002) reinforcement learning

theory. However, further analysis revealed a marginal effect of trial type (learn versus

test) for maximum FRN amplitudes (at Fz) for young adults (p < .09), but no effect of

trial type for FRNs at Fz for older adults (p > .60). This suggests that FRN amplitudes

tended to become smaller with lea:ming, consistent with reinforcement learning theory

(Holroyd & Coles, 2002), but onl)l in younger adults (cf similar findings in Nieuwenhuis

et aI., 2002).

A parallel ANOVA of FRJ>~ peak latencies confirmed that the FRN occurred later

for older than younger adults bt!t also produced a group x site interaction, F(2, 38) ==

21.19,p < .001,112 == .53. Simple comparisons revealed that the FRN was manifest earlier

at the more central (Cz) than frontal (Fz) site for younger adults (ps < .02) but that

latency did not differ across sites Jor the older group (ps > .10).

P3. A feedback P3 compo:nent occurred at approximately 450 ms for older adults

and 400 ms for the younger group., Mean P3 amplitudes were analyzed in the same way
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as the FRN. There was a main effect of site, F(2, 38) = 7.88,p < .01,112 = .29, indicating

that P3 amplitudes were largest at Cz. There were no other main effects, but there was a

group x trial type interaction, F'1(2~ 38) = 5.67,p < .03, 112 = .23. Follow-up analyses ofP3

amplitudes at Cz (maximal site) in.dicated that for younger adults, the P3 was generally

larger during test trials than learn ~rials (p < .01), whereas for older adults, this

distinction did not occur (p > .30).

Figures 2.4 to 2.7

LORETA comparisons. In a series of statistical analyses, we compared neural

activity associated with negative relative to positive feedback at the moment of the

maximal FRN peak (based at Fz) or P3 peak (based at Cz). The calculation is a t test of

voxel-by-voxel comparisons of activation across the whole brain for the two conditions

compared against a critical value and corrected for multiple comparisons. Analyses were

done separately for each age gro'uJ), for each trial type, and at each maze level.

Presented in Table 2.5 are the t statistics for each comparison and its respective

critical value for t. These t-values are those associated with maximal brain activation in

whole-brain comparisons of the negative versus positive feedback conditions. For young

adults, the neural activation associated with the FRN peak was always greater in response

to negative relative to positive fee:1dback (ps < .01). For older adults, differences in

activation between negative feedback and positive feedback were not as consistent,

occurring only in one of six conditions, that is, on learn trials for the 6 x 6 grids (p -< .05).

In contrast, the neural activation associated with the peak amplitude of the feedback P3

was always greater for negative relative to positive feedback for both age groups, for both
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trial types (learn and test), and for all grid sizes. Overall, activation associated with the

feedback-related P3 appeared to be stronger and more consistently sensitive to the nature

of the feedback than that associated with the FRN.

Table 2.5

It should be noted that whe:n the t test for whole-brain comparisons ofresponses

to negative verses positive feedback was calculated, the regions of maximal

differentiation identified by LORI~TAwere sometimes distributed outside of the medial

prefrontal cortex. Because we Were interested primarily in ACC activation, we next tested

the degree to which greater activation to negative versus positive feedback could be

observed specifically within medial prefrontal cortex. The LORETA brain maps (Figures

2.8 and 2.9) provide a graphical representation of the LORETA t statistics comparing

response-related activation associated with the FRN (Figure 2.8) and feedback P3 (Figure

2.9) only as evident in mid-sagittal regions.4 The red color indicates areas of increased

activity associated with negative '/ers-us positive feedback. The presence of a red asterisk

indicates that the t statistic for th.e comparison in this local medial region exceeded the

critical t-value for significance across the whole head.

Figures 2.8 and 2.9

First, with respect to the FI~N in young adults, it is evident from visual inspection

of Figure 2.8 that medial brain regions were involved in the maximal differentiation

between negative and positive feetdback on both learn and test trials and across all levels

of task difficulty. Also, although :not specifically tested, the focus of the differentiation in
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learn trials appeared to be more anterior for the most difficult maze, that is, for 8 x 8 grid

size. For older adults, it is ofpartiGular interest that, despite some evidence for significant

levels of FRN differentiation bet\veen negative versus positive feedback at the whole

brain level (Table 2.3, column 2), the differential levels of activation did not generally

occur in medial regions during either trial type for mazes of any grid size. The only

exception was in learn trials at the 6 x 6 grid size. In this condition, older adults appeared

to generate an ACC-focused error·..related response in conjunction with negative relative

to positive feedback. In all other condition.s, the differential neural response to feedback

for older adults in medial regions seemed much weaker and more diffuse than for the

younger adults.

Figure 2.9 depicts differen,ees in activation between negative and positive

feedback in medial prefrontal regions at the peak latency of the feedback P3. In young

adults, differential levels of activation in response to negative relative to positive

feedback tended to be quite wides:pread across medial cortex for both learn and test trials.

Moreover, older adults also prodl~.ced some strongly focused activation in response to

negative relative to positive feedback, but mostly during test trials. The neural activity

associated with this differentiation. was less evident during learn trials for older adults

except for a modest effect in the iIILitiallearn trials on the 4 x 4 grids.

Correlates ofbehavioural response

We examined the degree to which error rates could be predicted by the amplitude

of the FRN and feedback P3. Usin.g error rate as our dependent measure we ran

regression analyses separately for each trial type and grid size. In each case, ~e first

entered group, then FRN amplitud.e, followed by their interaction. A similar set of
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analyses was done to examine th.e feedback P3. In no case did the amplitude of the P3

account for additional variance to the prediction of maze error (ps typically> .67) over

that accounted for by group. However, as can be seen in Table 2.6, there was some

evidence of a relation between ~F:R_~N amplitude and error.

Table 2.6

First, for learn trials, we see that group, when entered on the first step, is a good

predictor of error rate only for the 4 x 4 mazes (p < .01). However, FRN amplitude added

to that prediction when entered 011 the second step, and when considered together, FRN

amplitude explained 13% unique 'variance relative to group (5%), suggesting that it is the

better predictor. There was no gro1llp effect for the initialleam trials for 6 x 6 or 8 x 8

mazes (ps > .09), but.for the sn1aller mazes, FRN amplitude added uniquely to the

prediction of learn trial error rate over and above any effects of group (ps < .03).

For test trials, we see that the effect of group on step 1 was large for all three grid

sizes (ps < .01). Group accounted for 18 to 34% unique variance when considered

together with FRN amplitude in the 4 x 4 and 6 x 6 mazes. It was only for the 8 x 8

mazes that FRN amplitude added to that prediction (p < .04; step 2) and also interacted

significantly with group in predicting test trial errors (p < .001; step 3). This robust

interaction (see Figure 2.10) was l)ased on the fact that, for young adults, the amplitude of

FRNs (Fz) associated with negativ'e feedback during the 8 x 8 mazes did not predict test

trial error rate, r:= .15, ns. The relationship for older adults, however, was strong, r:= .86,

p < .001.
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Figure 2.10

What these analyses indicate is that both age group and FRN amplitude can

predict error variance on the maze learnin.g task. The size of these relations seems to

depend on the context in which they occur. In the learn trials, because error rates are quite

similar between groups, the group variable would be unlikely to serve as a predictor of

error rate unless it captures the sanae variance as FRN amplitude, which it does on the 4 x

4 maze (i.e., this maze captures the relationship between group membership and the size

of the FRN). FRN amplitude, hO\~lever, may be a more relevant predictor because error

feedback is so important in initially learning the route. Those who produce larger FRNs

may have better error monitoring capacity and would be less likely to make perseverative

errors during learn trials. That is, they would be less likely to make a choice that had

already been designated as an error.

Test trials present a differe:nt situation. Here, group differences in spatial memory

become relevant, and we see that ;age group now accounts for most of the variance in

predicting error rate, as would be expected. Error feedback may be less relevant because

many of the participants may depend more on the internal representatio'n of the maze that

they built up during the learn trials, especially for the small and medium size mazes.

Thus, the size of the FRN may c~pture less of the variance in predicting test trial

performal1ce. That is, error rates rr1ight best be prediced by memory ability, which is best

captured by age group, rather than error-monitoring capacity per sea However, in the case

of the largest maze, it is less likely' that a stable internal representation will have emerged
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after a single learn trial, so that en~or-monitoringcapacity (as evidenced by larger FRNs)

would remain highly relevant across trials, especially for the older adults.

What is apparent, however, is that whenever a relation between FRN and error

rate occurs it is positive, i.e., a shallower FRN is associated with a higher error rate. This

is consistent with the general model that a more efficient error monitoring system would

produce a larger electrocortical response to error feedback, and the responsivity of this

system would be associated with· the reduced likelihood of making an error. Behavioural

results are presented together witll autonomic and electrocortical results in Table 2.7.

Table 2.7

Discussion

We examined the effects of aging on ERP indices ofperformance monitoring

using a hidden-maze learning task~ designed to capture age differences in spatialleaming

ability. This cumulative learning task, presented at three levels of difficulty, was expected

to maximally engage the perforn1ance-monitoring capacity of the medial prefrontal

cortex, particularly the ACC. We expected reduced ACC activation in older adults and

tested whether such a reduction rrJight be specifically related to spatialleaming within

this group.

Behavioural data were entirely consistent with expectations (e.g., Moffat et al.,

2006; Newman & Kazniak, 2000}:. in that older adults found the maze-learning task to be

more difficult than did the younger group. Older adults responded to error feedback as

well as the younger aduJts on initial learn trials, that is, when the location of the maze

was unknown and all participants "were forced to rely solely on the feedback received
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after each trial. It was on subseq:uent test trials, when spatialleaming began to playa

greater role in finding the hidden rnaze, that older adults made significantly more errors

than their younger counterparts. S"ulch performance differences would be in keeping with

well-documented age-related chan.ges in hippocampal structure and function (e.g.,

Driscoll et a!., 2003); however, ditferences in electrophysiological indices of error

processing suggest that reduced performance monitoring may also playa role.

Older adults' neural respoflse to the feedback provided during this task differed

substantially from that of the YOtlnger adults, suggesting diminished ACC activation

during maze learning, with possible consequences for the recruitment of executive

resources (e.g., Moffat et aI., 2007). FRNs produced by older adults were generally

reduced in size relative to those produced by the younger participants, a difference that

was evident during the initiallearrling trials for each maze and during subsequent test

trials for all three levels of task difficulty. These data replicate the age-related reduction

in FRN amplitude reported by Nieuwenhuis et a!. (2002). They are also consistent with

the broader literature on the respoIlse-locked ERN, which is diminished with age

(Falkenstein et aI., 2001; Gehring ,& Knight, 2000; Kok, 2000; Mathewson et a!., 2005).

It is true that reduced certainty ofhaving made an error has been associated with

shallower error-related ERPs (Col~~s, Scheffers & Holroyd, 2001; Pailing & Segalowitz,

2004; Scheffers & Coles, 2000) and that older adults may be more likely to be uncertain

about the accuracy of their responses as suggested by Band and Kok (2000). However, in

this study, because all participants were given unambiguous feedback on every trial, error

uncertainty cannot be considered a contributor to the diminished FRNs observed here

(see also Nieuwenhuis et a!., 2002). We note also that the FRNs of older adults were
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diminished on initial learn trials V\lhen they did as well as younger adults, and on test

trials when their error rate was markedly greater. Together, these results are consistent

with the view (e.g., Falkenstein etaI., 2001; Mathewson et aI., 2005; Nieuwenhuis et aI.,

2002) that the age reduction in the amplitude of error-related ERPs is due to a general

phenomenon, such as a decline in fdopamine levels that seems intrinsic to the aging

process (e.g., Cruz-M'uros et aI., 2007; Kaasinen et aI., 2000; Ota et aI., 2006; Reeves et

aI., 2002).

The hidden-maze task was well suited to engage the ACe because finding one's

way through the mazes across a nlllmber of trials requires the accumulation of spatial

information, and this incorporatio:n of the recent history of actions and outcomes is a

process particularly associated With ACC activation (Kennerly et aI., 2006). Maze

learning was also likely to engage ACC neurons because of their links with premotor and

motor cortices (Hatanaka et aI., 2003) and their responsivity to spatial aspects of a

rewarded response (Shima & Tanji, 1998). As well, greater engagement of the ACC

would be expected as diffieulty le'vels increased (Paus et aI., 1998). Thus, we anticipated

that the maze learning task would :provide an optimal vehicle with which to study the

ACe activation as it related to err()r-related ERP components, task parameters, and age.

LORETA analyses provided two sorts of data. First, we found that for young

adults, overall neural activation at the ti!lle of the FRN was consistently and robustly

greater in response to negative as opposed to positive feedback. This is what one would

expect with a well-functioning error monitoring system.(e.g., Ridderinkhof et al., 2004).

However, this activation was decif.iedly less robust and less consistent for our older

adults, with differential levels of activation reaching statistical significance very
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sporadically, that is, only during tlie learn trial of the 6 x 6 grid size mazes. This age

difference was also apparentin a Illore focused analysis of the differential activation

specifically within medial prefrontal cortex. For young adults, the activation ofmedial

brain regions was clearly evident in the differentiated FRN response to error feedback,

whereas for older adults, differential activation in the ACe was very modest and again

remained significant in only one condition: for learn trials of the 6 x 6 grid size mazes.

These data are consistent \vith other evidence that the ACC is particularly

vulnerable to age-related decline (Schultz et at, 1999; Vaidya, Paradiso, Boles Ponto,

McCormick & Robinson, 2007) oo:1d also with data reported by Ferrandez and Pouthas

(2001). Using BESA source localization, the latter found that ACe activation was

markedly reduced in older relative to younger participants during two attention­

demanding tasks. This reduced A(:C activation was apparent even though their older

adults (46-62 years) were much younger than those in our study.

The next question was w:hether the strength of the FRN response would be related

to perfonnance accuracy. Group differences do not really speak to these issues because

one can filld dimil1ished error-related components in older adults in situations in which

the older ad'ults' actual perfonnan.ce is as good as or better than that of the younger group

(Falkenstein et at, 2001; Nieuwe:nhuis et aI., 2002). Smaller ERNs may be due to a

general age-related limit or reduction in the availability ofmid-brain dopamine (e.g.,

Volkow et at, 1998). As well, th.ere are many differences between young university

students (mean age of20 years) and older community volunteers (mean age of75 years)

that could account for differential accuracy rates. To get around this problem, we

examined individ'ual differences ill error count~ as predicted by FRN amplitudes, after
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regressing out any general effects (due to age. The results of these analyses did not

provide overwhelming support for the relation between FRN amplitude and accuracy

although there were some intriglliYlg exceptions.

Whenever relations were found, they were in the expected direction, that is, the

smaller the FRN, the higher the error count (Table 2.6), with the most robust example of

this being observed for older adults in the test trial performance of the largest maze.

When the FRN did add variance to the prediction of error (as in learn trials of the 4 x 4

and 6 x 6 mazes and test trials of the 8 x 8 maze), it accounted for more unique variance

than age group. As discussed abo~le, the relation between error rate and FRN amplitude

may depend on the degree to whie:h error feedback, relative to memory ability, is central

to the task. Thus, we have demonstrated that FRN amplitude does relate to error rate in

some conditions, as has been shovvn with respect to the ERN in young adults (e.g.,

Hajcak et al., ~003; Herrmann et at, 2004). As well, the relations between these measures

may often be difficult to see becallLse they depend on sufficient variance in both ERP and

behavioural measures, which may' not always occur when using the same tasks with

younger and older individuals. Etror scores tend to congregate more on the left side of the

distribution for young adults and the right side for the elder participants. The same may

happen, of course, if the variance in the physiological measure is truncated for either

group (see also Mathewson et aL~ 2005).

In this study, the range in. error rate for older adults was greater in the 8 x 8 grid

(Figure 2.10) than in other smaller grids and in c<;>mparison to the younger group,

resulting in a very large relation ViTith FRN amplitude. Thus, although it was true that

FRNs and hence ACC activation. ,;vere reduced in the older relative to the younger group,
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ACC activation seems, nonetheless, to make a difference with respect to error response.

That is, within the older group, performance was not independent of the robustness of

error signals.

We also examined the feed.back P3. Principal component analysis had indicated

that the feedback P3 formed a separate ERP response, which was also obvious from the

scalp maxima and LORETA activation maps. The feedback P3 proved to be particularly

sensitive to o'verall activation patterns associated with negative relative to positive

feedback at the whole-brain level for both younger and older adults. Examining medial

regions specifically, activation associated with the feedback P3 was still significantly
,

differentiated for all grid sizes andl conditions for young adults. We also noted that P3

activation was more clearly respoflsive to negative relative to positive feedback in older

adults during test trials, albeit ratrler minimally in the learn trial situation. However,

despite this differential activatioll 'by condition, there was absolutely no evidence that

individual differences in feedback P3 activation related to error counts. This may, of

course, be due to alack of variance in the degree ofP3 response or, more interestingly, to

the fact that the P3 plays a differeIlt role in the monitoring of task performance.

It is significant that the clistinction between FRN and P3 responses observed in

these data involve neural systems that are differentially susceptible to th.e effects of age.

The responsivity of the FRN is based on the viability of dopaminergic enervation of

medial prefrontal cortex, a systerrl that has been shown to decline with age (e.g., Cruz-

Muros et aI., 2007; Kaasinen et aI., 2000; Ota et aI., 2006; Reeves et aI., 2002; Volkow et

aI., 2000). Conversely, the feedback'P3 appears to behave as one would expect of the

.standard P3 in that it is highly reactive to motivationally significant events, in this case,
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to feedback about having made an error. This responsivity is thought to depend on the

viability of the locus coeruleus-n.orepinephrine system (Nieuwenhuis, Aston-Jones &

Cohen, 2005; Polich, 2007)-a sy'stem that appears to be much more robust in the face of

age-related change (Matsunaga, Isobe & Shirokawa, 2006; Nakai, Matsunaga, Isobe &

Shirokawa, 2006). In 'fact, when a decline does occur in noradrenergic cortical axon

terminals it is more likely to be associated with atypical changes that have serious

implications for cognition (Herrrnann et a!., 2004; Rommelfanger & Weinshenker, 2007)

and therefore, we might expect tha~t an aberration in the feedback P3 would be indicative

afnon-normative decline, whereas a reduction in the FRN would be associated with

normal aging.5

Our data also speak to sonle issues with respect to the general understanding of

the error-related ERP response. First, a central prediction of the reinforcement learning

account of the FRN is that FRN arnplitudes should decline as an internal representation of

stimulus-response mapping is esta'blished (Holroyd & Coles, 2002). In the present case,

this would mean that, as participants developed an internal representation of the maze,

they would be more likely to reco.gnize an error on their own, which would generate a

response-locked ERN and externa1 feedback would be less informative and hence elicit a

smaller FRN. However, a learning:-based reduction in FRN amplitude was not evident in

this study, even in the neural responses of our younger adults where reduced error rates

indicated that an internal represe~ntation had been formed. Thus, these data do not provide

support for this aspect of the rein£orcement leami1?-g perspective and suggest that the

degree to which the diminishmel1t of the FRN occurs depends on the type ofpar~digm

used" as well as the nature of the ~~;~edback and the age of the participant (Nieuwenhuis et
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aI., 2002). It is intriguing, however, that the relations between FRN amplitude and error

rate were more evident in those trials in which the reliance on feedback was central,

which is likely to have occurred 011 4 x 4 and 6 x 6 learning trials and on test trials for the

largest mazes.

A second issue involves the differential role played by the FRN and P3 in

reinforcement learning situations. ·Yeung and Sanfey (2004) have reported that the FRN

tends to be larger in response to losses than gains, but insensitive to the absolute

magnitude of the loss/gain. Howe'ver, in their study the P3 was sensitive to the size of the

loss/gain but did not change as a function of the negative/positive valence of the outcome

(correct vs. error). The authors interpreted these results as indicating that the FRN does

not represent the absolute value of the outcome, only that the outcome is negative, which

is consistent with our data and witJh the dopamine hypothesis (Holroyd & Coles, 2002).

However, our results involving the P3 are inconsistent with their observations in that the

feedback P3 for both young and older adults in the present study appear to be acutely

sensitive to feedback valence, a discrepancy that may be due to differences in task

parameters. Yeung and Sanfey's ~participants were engaged in a gambling study where P3

amplitudes reflected degrees of re:allosses and gains over which participants had no

control. By contrast, in the hiddel1·~maze learning task, making an error served a

utilitarian function with respect to the actual improvement ofperformance on the

subsequent trial. Thus, the P3 in tile lnaze task could be considered in the same light as

the Pe in standard response-Iocke(j paradigms, that is, as an index of the salience of the

error within the context of a task: iJtl which one has some power to control outcomes

(Mathewson et aI., 2005).
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In summary, the results of this study have shown that older adults are less able

than younger adults to learn a series ofhidden mazes and that they do not respond to

negative feedback during their attempts in the same way as younger adults. Most

discrepant was the neural respon:se associated with the FRN. For younger adults this

component was clearly associated with feedback-specific activation in the anterior

cingulate and adjacent regions in. fhe medial cortex, a situation that did not hold for our

older adults whose neural respon.se, whether measured at the scalp or through LORETA

source localization, revealed a Weak and diffuse level of activation suggesting a less

focused or strategic response (Rajah & D'Esposito, 2005). However, despite the weak and

diffuse nature of the ACC respoIlse, it was not irrelevant to error monitoring

performance. Amplitude of the :F'R:N related strongly to error rate for older adults when

they were solving the largest mazes. In addition, given that there was little significant

activation elsewhere in the brain at the moment of the FRN peak, the link between FRN

amplitude and accuracy is not lil<ely due to compensatory activation outside of the ACC.

It was interesting as well tJhat the feedback P3 was robustly sensitive to error

feedback for both groups. Given the growing consensus that the P3 and FRN reflect

different neural processing syste~n:~.s associated with different neurotransmitter support

(Nieuwenhuis, Aston-Jones et aI., 2005), their dissociation in this data set lends support

for the separable decline of these systems in the course ofnormal aging. Further in regard

to the dissociation between these c:omponents, it is of interest to note that any relations

found between the ERP feedback Gomponents and performance occurred only with

respect to the FRN and by extension, the differential feedback-related activation in ACe.

Finally, although generally suppoItive of the reinforcement learning hypothesis regarding
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feedback negativities (Holroyd & 'Coles, 2002), these data also present some challenges

to our understanding of the association between response-based and feedback-based

components that eventually will have to be reconciled.6



Chapter 3. Autonomi,c control and maze-learning performance

in older and younger adults

Abstract

The capacity to make phasic adjustments in heart rate was examined as it related

to cognitive performance in older and younger adults. Resting cardiac measures and on­

line electrocortical brain activit)'\vere recorded as participants received error feedback

while working through a hidden-1Tlaze task. Cognitive demands were increased by

expanding maze size. Results indicated that cardiac indices of autonomic regulation were

predictive ofperformance. Increased errors were associated with lower levels of

respiratory sinus arrhythmia (RS.A), an index ofphasic parasympathetic cardiac control,

mainly for young adults; in older adults, increased errors were associated with higher rate

pressure product (RPP), an index of cardiac workload. These relations were most

apparent when the demand for controlled processing was substantially increased.
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Introduction

Autonomic processes associated lvith cognition

Heart rate variability (HR\T)-variation in the length of the interval between heart

beats-is a hallmark of adaptive p:hysiological self-regulation (Porges, 1992; Thayer &

Lane, 2000). Individuals with higller HRV demonstrate greater physiological flexibility,

whereas lower HRV represents re(luced ability to organize physiological resources in the

service of goal-directed behavioliT (Thayer & Lane, 2000). Although HRV has often been

examined in the context of emotio:nal regulation (e.g., Appelhans & Luecken, 2006;

Friedman & Thayer, 1998), stress responses (e.g., Gianaros et aI., 2005; Hall et al.,2004),

and social development (e.g., Fabes, Eisenberg, Karbon, Troyer & Switzer, 1994; Porges,

2001), few researchers have used lIRV to predict cognitive performance (for exceptions,

see Hansen et aI., 2003; Johnsen et aI., 2003; Melis & van Boxtel, 2007), and even fewer

have examined these relations in: older populations. However, since aging has important

effects on autonomic functioning (Low, 1997), it was our goal to examine these relations

as they occur in both older and y'ollnger adults.

Heart rate is the net outcoIne of competitive innervation of the heart by the

sympathetic and parasympathetic <ii-visions of the autonomic nervous system (ANS).

However, the peripheral output of these divisions is modulated directly by a number of

higher brain regions in medial frolltal cortex that form a central autonomic network

(CAN; Benarroch, 1993; see also i\hem, Sollers, Lane et aI., 2001). To generate adaptive

responses, the CAN integrates sertsory inputs and external information from the

environment (Thayer & Lane, 2000). Neural output from the CAN influences

sympathetic and parasympathetic ]leUrOns in the stellate ganglia and vagus nerve,
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respectively, and through these systems, affects the function of the heart's pacemaker, the

sino-atrial node. Thus, variability in the cardiac signal is closely associated with CAN

output (Thayer & Lane, 2000). An important part of this network, the anterior cingulate

cortex (ACe) mediates central autonomic regulation during the performance of cognitive

tasks (Critchley et at, 2003; Critcllley et al., 2005; Matthews, Paulus, Simmons, Nelesen

& Dimsdale, 2004).

The effects of the two alitonomic divisions on HRV are competitive but not

equivalent, due to differences in tIle latencies and courses of action of their respective

neurotransmitters. Sympathetic activation occurs when post-ganglionic sympathetic

fibres release norepinephrine, a ne'urotransmitter with a relatively slow onset. It requires

about 4 seconds to peak, returning to baseline after about 15-20 seconds (Appelhans &

Luecken, 2006). In contrast, parasympathetic transmission peaks in less than one second

on the release of acetylcholine by' JPost-ganglionic parasympathetic nerves-a

neurotransmitter ·with comparativ\::ly fast onset and offset. Thus, high frequency

modulation ofheart rate is mediated by the parasympathetic system, and low-frequency

modulation is mediated sympathetically (Levy, 1990, 1997). Resting HRV is dominated

by parasympathetic influences thToughout life. Ifparasympathetic activity is reduced, so

is overall HRV, and with it, the fl.e.xibility ofbehavioural responses.

Parasympathetic control d.eclines significantly in healthy aging (e.g.,

DeMeersman, 1993), shifting the relative balance between the two branches of the

autonomic nervous system toward. greater sympathetic predominance (Bonnemeier et aI.,

2003; Waddington et at, 1979) an.d lower overall HRV (e.g~, Singh, Vinod, Saxena &

Deepak, 2006). Thus, physiological aging results in a form of autonomic dysregulation
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(Bonnemeier et aI., 2003). BecalLse lower HRV is also seen in depression (Rechlin et aI.,

1994; Udupa et a!., 2007), anxiety (Friedman & Thayer, 1998), hypertension (Guzzetti et

aI., 1988; Liao et a!., 1996), and coronary heart disease (Dekker et a!., 2000; Wennerblom

et aI., 2000), the reduction ofHR\r is not fundamentally a benign developmental change.

Our focus is on the degree to which dysregulation in this system affects cognitive

processing. We expect cognitive outcomes to be adversely affected when HRV is

reduced.

The role ofthe ACC in autonomic and cognitive function

In addition to its role in autonomic regulation, ACC activity has been closely

associated with performance monitoring. The ACC is part of a reward-based learning

system (e.g., Amiez et al., 2006; Shidara & Richmond, 2002) that is activated when the

outcome of an action'violates expectations (e.g., Holroyd & Coles, 2002; Oliveira et aI.,

2007). Event-related potentials ill "!the EEG waveform, that is, the error-related negativity

(ERN, Gehring et aI., 1993), or enror negativity, Ne, (Falkenstein et aI., 1990) are

reported to be generated in or very· near the ACe. When errors cannot be discerned

internally, a feedback-related 'negativity (FRN, Miltner et al., 1997) is generated in the

same region (e.g., Holroyd et aT.; 2004; Nieuwenhuis, Slagter et aI., 2005). ERP

responses to negative informatio'n are hypothesized to signal the need for increased top­

down control and a change of strategy (Bartholow et aI., 2005; Ridderinkhof et a!., 2004),

and they are generally attenuatecl'\Nith age (Falkenstein -et aI., 2001; Nieuwenhuis et a!.,

2002).

Whenever an error is mad.e, cognitive and physiological resources must be

coordinated within milliseconds to assess the unexpected result and reorganize behaviour



54

so as to offset the consequences or avoid further errors (Thayer & Lane, 2000). Thus,

errors will evoke central modulation of cardiac autonomic control by dorsal ACC

(Critchley et aI., 2005; Thayer & I.Jane, 2000) and elicit. transient cardiac slowing (Crone

et a!., 2003; Somsen, van der Molen, Jennings & van Beek, 2000), as do situations

requiring cognitive manipulation. (e.g., Jennings, van der Molen & Debski, 2003) or the

inhibition of responses (Jennings~ 'van der Molen, Brock & Somsen, 1992). Because

controlled processing has higher p:hysiological costs than automatic processes (Aasman et

aI., 1987) or tasks that draw on prior knowledge (e.g., Melis & van Boxtel, 2007) or

visual information (e.g. Middleto:l1t, Sharma, Agouzoul, Sahakian & Robbins, 1999), it is

more likely to be affected by the a'bility to organize physiological resources in the service

of goal-directed behaviour (Critcl:l.1ey et aI., 2003; Schneider, Dumais & Schiffrin, 1984).

In previous work with older adults, we reported a strong relation between higher

HRV and better performance in a source monitoring task, a relation not seen in a standard

letter flanker task requiring speeded responses (Dywan et al., submitted). However,

source monitoring is also more difficult for older adults than is performing a flanker task

(e.g., Nieuwenhuis et aI., 2002), S() it was possible that this dissociation was not due to

differences in task requirements~ 'but rather, in task difficulty. An.other focus of this study

was to disentangle these two factors.

The present study

We examined behaviour, cardiac autonomic control, and electrophysiological

indices of ACC activity in younger and older adults using a spatialleaming task-a

modified version of the Groton Maze Learning Test (Snyder et aI., 2005). This computer­

based task involves finding a hid.clen pathway through a grid of tiles by trial and error,
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receiving informative visual feed'back after each move. Outcome measures (e.g., errors

and completion times) have prove]} sensitive to age differences in spatialleaming

efficiency, and correlate with SCOf,es on neuropsychological tests of executive function,

such as planning and sustained attention (Pietrzak et al., 2007). Negative feedback was

expected to elicit FRN responses in both age groups.

Each maze was repeated several times, with feedback provided after every

response throughout each trial. 111 the initial trial for a maze, participants learned the

hidden maze path by trial and error and were entirely dependent on external feedback.

However, on subsequent repeated trials, they were able to access a developing internal

map of the stimulus field in addition to receiving feedback. The cognitive requirements of

the two conditions differed, in th.at initial learning trials were similar to many of the

guessing tasks currently used to collect FRNs (e.g., Hajcak et aI., 2006; Yeung & Sanfey,

2004), whereas the repeated trials were expected to reflect the extent to which

participants had learned the maze. We expected to find better performance in these

additional trials than in the learn trials, and increasingly improved performance across

repetitions. Autonomic relationsh.i~ps from these two contrasting conditions could be

compared. If relationships betwee:n autonomic variables and task outcomes differed by

trial type, this would support the h.ypothesis that task requirements were an important

factor in eliciting them.

An advantage of the adapted maze-learning test is that it can be administered at

more than one level of difficulty; ',;vith consistent instructions, user interface, task

requirements, and feedback at eac.h level. This allowed us to test whether relationships

between autonomic control and cognitive processing would be stronger when difficulty
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increased within the task. If larger mazes showed stronger associations with autonomic

measures than smaller ones, this Vi/ould suggest that relationships between autonomic

control and task outcomes are a fu:nction of difficulty level.

Age-related decline in spatial learning ability has been well documented

(Driscoll et a!., 2003; Moffat et aI., 2006; Newman & Kazniak, 2000). This decline has

been associated with structural and chemical changes in the hippocampus (Driscoll et a!.,

2003), changes that are reported to place more load on midbrain error monitoring

capacity, tnaking it likely that a spatial learning task would maximally engage the ACC

(e.g., Moffat et aI., 2006; Yoshida & Ishii, 2006). As well, ACC activation is greatest

when expectations are violated, so that activation could be said to reflect the local history

of recent actions and outcomes (Amiez et al., 2006; Kennerly et aI., 2006). Thus, tasks

that are in some sense cumulative are likely to maximally activate this brain region. To

date, however, FRNs have typically been elicited in guessing or gamblin.g tasks (e.g.,

Donkers et aI., 2005; Hajcak et aL~. 2006; Yeung & Sanfey, 2004), time-estimation tasks

(e.g., Miltner et a!., 1997), and task:s where reward contingencies are impossible to learn

(e.g., Nieuwenhuis et a!., 2002; N"ieuwenhuis, Slagter et a!., 2005). In these paradigms, no

trial has any direct co~sequence for any other trial. In contrast, spatial learning requires

cumulative acquisition of item andl configural information that must be retained for use in

subsequent trials. Thus, in a spatialleaming task, ACC signalling would be largest after

an error that followed a run of suceessful choices, potentially reducing the likelihood of

the error being repeated in the next trials (Kennerly et aI., 2006).

Despite our primary interest in parasympathetically mediated HRV, because the

two divisions of the autonomic n.ervous system function independently of each other
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(Berntson et aI., 1994), the viability ofboth divisions was assessed. For a

parasympathetic index, we calculated respiratory sinus arrhythmia (RSA) from the

cardiac signal. This is a commonly used, vagally mediated measure of the natural

variation in interbeat interval that:is linked to the respiratory cycle. Rate pressure product

(RPP), a proxy for myocardial oxygen demand, was calculated as an index of cardiac

workload (Monroe & French, 1961; Nelson et a!., 1974). As would be expected from a

sympathetic measure, RPP is reported to increase in stressful conditions, such as exercise

(Robinson, 1967), public speakillg, anger recall (e.g., Merritt, Bennett, Williams, Sollers

& Thayer, 2004), and the perfonnance of arithmetic problems (Robinson, 1967). Resting

heart rate and blood pressure were also recorded. These four autonomic indices were

analyzed with behavioural perfornlance and the error-related ERPs elicited by negative

feedback in the spatial learning task.

We anticipated that spatial learning would be less efficient in older than younger

adults. We also expected that within each age group, higher resting levels ofRSA would

correlate with better behavioural Il·erformance (fewer errors) and more robust cognitive

responses to errors (larger error-related ERPs). Because RPP was computed mainly as a

control measure, we made no predliction about resting measures of cardiac workload with

respect to behavioural performance or electrocortical responses.

An in-depth examination of the ERP correlates of error feedback during the maze

learning task has been undertake:n and reported in chapter 2 (see also Mathewson,

Dywan, Snyder,. Tays & Segalowitz, in press). However, in order to examine RSA in the

context ofbehavioural and electrot~ortical indices of error feedback during the maze
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learning task, it is necessary to pr()'vide some information regarding task outcomes to

allow evaluation of their relation.sllip to RSA.

Method

Participants

Participants were drawn fi·om the same subje~t group (20 older and 20 younger)

as the first study (chapter 2). Beca'use not all participants were able to complete all of the

mazes, particularly the largest ones, behavioural data from one younger adult and six

older adults were incomplete. Data from these seven participants were excluded from

analysis, leaving data from the sanle 33 participants (19 young; 14 older), as in chapter 2.

Cardiac data from one older adult 'were unusable due to the frequent presence of a cardiac

anomaly (possible premature atrial contractions) unrelated to autonomically mediated

heart rate variability. However, fhis person's behavioural and electrocortical data were

retained due to our small sample size.

Stimuli and experimental design

These were the same as thOSI:~ outlined in chapter 2.

Procedures

In addition to the testing procedures described in chapter 2, trained laboratory

personnel recorded blood pressure readings before and after the testing session using a

manual sphygmomanometer whih::: participants were comfortably seated.

Cardiac measures

Electroc~rdiogram (ECG) recordings were collected during a 5-minute pre­

session rest period, throughout rrlaze performance at each difficulty level, and during a 5­

minute post-session rest period after all computer tasks were completed. EeG signals
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were recorded from two electrod.es placed on the participants' chest, about 2.5 em below

the left clavicle and about 5 cm below the top of the sternum, at the midline, with a

hardware gain of 1000.7 ECG signals were sampled at 500 Hz and digitized with a 16-bit

ADC, then edited by hand and analyzed using a commercial software package

(MindWare HRV 2.51, Lafayette Instruments). R-R (interbeat) intervals were visually

checked in the MindWare progranl by a trained laboratory technician and edited where

necessary according to principles tadvocated by Berntson and Stowell (1998). Minute-by­

minute estimates ofRSA (heart rate variability at the respiratory frequency, 0.12-0.4 Hz)

were calculated via spectral analysis of the heart beat series (Fast Fourier Transform)

using a Hamming window. These estimates, along with average interbeat interval (IBI),

were calculated for each rest period.8 RPP during rest periods was derived by multiplying

mean blood pressure readings toge:ther with mean minute-by-minute estimates ofresting

heart rate, then dividing by 100.

Electrophysiological (EEG) recor{ling and measures

EEG scalp data were record.e,d as described in chapter 2, from 250 scalp sites using a

Geodesic Sensor Net with signals sampled at 500 samples/so

Scoring and analyses

Autonomic indices were arlalyzed in 2 x 2 mixed mod~lANOVAs with period

(pre-session vs. post-session) as tIle within-subjects factor and group (older vs. younger

adults) as a between-subjects factc>r. As outlined in chapter 2, behavioural and

electrophysiological data (FRNs) 'I,Rere analyzed using 3 x 2 x 2 mixed model ANOVAs,

with grid size and trial type as within-group factors and age group as the between-group
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factor. Autonomic indices were then examined for associations with behavioural

perfonnance and electrocortical n:~,easures (FRNs) using hierarchical regression.

Results

Autonomic indices

IBI (heart period; the inverse ofheart rate) was assessed in a mixed model

ANOVA with phase (pre-test, post-test) as the within-subjects factor and age group as the

between-subjects factor. Overall~ lleart period did not differ between older (M == 889 ± 35

ms) and younger adults (M == 823 ± 28 ms; p > .15) but there was a main effect ofphase,

F(l, 26) ==26.86,p <.001,112 == .51, such that IBIs were shorter (M== 830 ± 22 illS) prior

to testing than in the post-test period (M == 882 ± 23 fiS). There was no significant

interaction (p > .09), but participaJlts' heart rates were generally slower after testing than

prior to the testing session.

Subjecting RSA to a similar analysis revealed that, as expected, RSA was higher

in younger (M == 6.17 ± .30 In ms2
) than older adults (M == 4.59 ± .38 In ms2;p < .01) and

lower during the pre-testing rest ,period (M == 5.11 ± .291n ms2
) than during the post­

testing rest period (M== 5.65 ± .21ln ms2 ;p < .01). However, age group interacted with

phase, F(l, 26) == 5.04, p < .04, 112
== .16, such that the shift was significant from pre- to

post-test for older (p < .02) but not for younger adults (p > .10). Because RSA appeared

to be particularly suppressed durin.g the pre-test period for the older adults relative to

their post-test levels, we surmise fhat the pre-test period may have been more stressful for

them.

Systolic blood pressure (SI3P) measures from the pre- and post-test rest periods

were also compared in an age gro'up by phase (pre- or post-task) mixed model ANOVA.
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SBP was significantly higher in older (M == 140 ± 2.3 rom Hg) than younger adults (M ==

105 ± 2.8 rom Hg),p < .001, with a marginal age by phase interaction, F(I, 18) = 4.01,p

< .07,112 == .18. Follow-up analyses showed that SBP did not change significantly for

either group (ps > .15), but the directions of change differed, with younger adults

declining slightly and older adults increasing slightly to account for the interaction.

RPP measures were calculated for the resting periods before and after testing, and

similarly compared in a mixed model ANOVA. RPP was higher in older (M== 95 ± 3.6)

than younger adults (M == 76 ± 4.4), F(1, 13) == 11.19,p < .01, 112
== .46, and higher before

testing began (M == 90 ± 3.7) thail at the end of the session when testing was complete (M

== 82 ± 2.8), F(l, 13) == 5.53,p < ~04, 112
== .30. There was no interaction with age (p> .80).

Thus, resting autonomic :m,easures showed group differences that were consistent

with age-related decline in cardiac autonomic control, i.e., lower indices of

parasympathetically mediated H:Rk"V, and higher indices ofblood pressure and cardiac

workload in the older sample, eve]:} though resting heart rate did not differ between

groups.

Separate correlational analyses among autonomic measures indicated that in

young adults, IBI was positively correlated with RSA (r== .57,p < .02) and negatively

correlated with RPP (r== -.69,p < .01), demonstrating that in this age group, resting heart

rate was predominantly under parasympathetic control (Levy, 1990). In addition, RPP

was correlated with SBP (r == .72, "p < .01). Thus, in the younger group, RPP appeared to

be equally driven by blood press'ure and heart rate, as one would expect, given how RPP

is calculated. Among the older adults, RPP was inversely correlated with both RSA (r == ­

.64,p < .04), and IBI (r== -.79"p < .01) as expected, but was unrelated to SBP (p> .15),
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suggesting that RPP variance in tllis group was more reflective of variance in resting

heart rate than blood pressure. The inverse correlation between RSA and RPP in the older

group also suggests that resting parasympathetic and sympathetic influences were

reciprocal in this group. This relation failed to reach significance for younger adults (p >

.06).

Behavioural responses

Older adults (M == 3.35 ± .24) rated the task as more difficult than did younger

adults (M == 2.52 ± .20,p < .02), aIld difficulty ratings were higher for larger mazes (M4x4

== 2.20 ± .13; M6x6== 2.91 ± .14; M~~?x8 == 3.69 ± .24,p < .001). Grid size interacted with age

group, F(2,54) == 3.59,p < .05, 112 == .12. Older adults rated the small and medium mazes

as more difficult than younger adu1ts (ps < .02); however, both groups rated the largest

mazes as equally difficult (p > .30). Within each age group, difficulty ratings were

unaffected by age, education, vocabulary score, and estimated health status (ps> .09). At

each grid size, difficulty levels were specifically associated with test error scores for

younger (ps < .001) but not older adults (ps > .12), with n.o relationships between

difficulty ratings and learn errors for either group (all ps > .06).

As outlined in .chapter 2, ITlain effects of age, trial type, and grid size on error

rates were all significant (ps < .01), but were qualified by a three-way interaction, F(2,

62) == 10.94,p < .001,112
== .26 (T.able 2.1). Follow-up analyses indicated that errors

increased with grid size to the SallIe degree for both groups in learn trials (interaction: p >

.80), as would be expected whe~n. 'p,articipants were completely dependent on feedback.

However, on test trials, when dif£erentialleaming rates became relevant, errors increased

with grid size (p < .01), especially' for older adults (p < .001; see Footnote 3). In addition,
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the difference between performa~n(;eof the initial learn trial and the very first test trial for

each grid size, that is, the mean (lrop in errors from the learn trial to the first test trial, was

assessed by a mixed model ANO'\!A with age group and grid size as relevant factors. As

would be expected, the drop in errors differed as a function of grid size, (M4x4 == -5.67 ±

.4; M6x6 == -10.25 ± 1.1; M8x8 == -lLI·.81± 2.0), F(2, 46) == 17.15,p < .001, 112 == .43, simply

because larger grids provided more opportunities for mistakes. More importantly,

younger adults (M == -13.23 ± 1.1) learned more from the initial learn trial for each maze

than did older adults (M== -7.27 ± 1.6), F(I, 23) == 9.87,p < .01,112 == .30. There was no

interaction (p > .08).

Relations between behavioural pe}iormance and autonomic measures

'We examined the degree to which autonomic variables (resting measures of IBI,

RSA, SBP and RPP) related to beh.avioural performance in a series of regression

analyses, separately for each auto'nomic measure, trial type, and size. As measures from

the pre-testing period were unaffected b.y the testing session and deemed most

representative of individual differences in autonomic control variables, these resting

measures were used as independeIlt predictors. Error rates constituted the dependent

measure. Group was always entered on the first step, followed by the autonomic measure

on the second step, and the interaction term last.

IBI did not predict errors at any grid level for either trial type (ps > .15). The

interaction term predicted test errors, but only in the largest maze (p < .05). Follow-up

analyses to explain the interactio:n indicated that longer IBI was a marginal predictor of

reduced test errors in the 8 x 8 ma,ze for older adults (p < .09) but not younger ones (p >

.80).
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Predicting learn errors. Group was a significant predictor ofvariance in learn

errors in the 4 x 4 maze (p < .01). RSA did not add to this prediction when entered on the

second step of the regression analysis. However, when they were both in the equation,

RSA and group accounted for similar amounts of variance in the prediction of learn

errors in both the smaller mazes and neither variable accounted uniquely for it (see Table

3.1). The pattern was the same for RPP. The exception was for the 8 x 8 maze where, in

separate analyses, RSA (p < .01), RPP (p < .01), and the interaction ofRPP with group (p

< .02; Table 3.1) accounted for significant variance in learn trial errors (see Figures 3.1

and 3.2). Thus, higher RSA and lower RPP were associated with better learning of the

most difficult maze and there was no evidence that any variance could be accounted for

by group. This was expected since the groups did not differ in terms of the number of

errors made on learn trials. It could be argued that the cognitive processes elicited during

initialleam trials ofthe largest maze were very similar to those of test trials, since

learning 30 correct moves while responding to error feedback in the largest·mazes

required considerable attentional control and working memory capacity. Overall,

parasympathetic control and sympathetic predominance appeared to explain significant

amounts ofvariance in learning at the level of the largest maze. Neither IBI nor SBP nor

their interaction terms predicted learn errors at any grid level (ps > .18).

Figures 3.1 and 3.2 and Table 3.1

Predicting test errors. As expected, group was a significant predictor of error

variance in test errors at all grid levels (ps < .01) since these depend on spatial memory, a

challenge for the older group.. However, RSA also account~d for significant additional
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variance in test errors, beyond group, at all maze levels (ps < .05; see Table 3.2). In each

case, the amount ofvariance acco'unted for by group was reduced once RSA was

included in the same model, indic,ating some overlap in the variance accounted for by

these variables. However, both group and RSA continued to account fOf at least 10% of

the variance when considered together, indicating that, despite the overlap, each

contributed uniquely to test trial elTOf. Interactions between group and RSA did not

predict test errors at any level (ps :> .60), indicating that higher RSA was associated to

some extent with better performan.ce in both groups. Thus, these findings with respect to

test trials were in the expected direction. Consistent with our earlier report, higher RSA

was associated with better perforrrlance on a complex, attention-demanding task (Dywan

et aI., submitted).

Although it is unusual to ex.plore data further when interactions are not

significant, because of the a priori hypothesis central to this thesis, namely, that higher

RSA vvould be associated with better performance of tasks requiring. high levels of

attentional control and working lnemory, separate correlational analyses were carried out

to isolate the role ofRSA with res:pect to errors within each group. No relationships

between RSA measures and errors reached significance for older adults (allps > .15), but

for younger adults, RSA was marginally related to test errors in the 4 x 4 maze (p < .08),

and significantly correlated with test errors in the 6 x 6 and 8 x 8 mazes (ps < .04; see

Figure 3.3). The significant relationships for young adults (but not older adults, prs >.25)

were retained when adjusted for resting heart rate (prs < .05). In general, younger adults

with higher resting RSA performe1d test trials better than their compatriots with lower

RSA.9
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Neither IBI nor SBP, nor their interaction terms, reliably predicted test errors

(typically, ps > .16). However, analyses indicated that although RPP itself did not predict

test errors across groups (ps > .20), at all three grid sizes, the interaction ofRPP with

group (ps < .03) contributed significantly to test error prediction by group (ps < .01). The

robustness of the interaction terms was based on the fact that for young adults, there were

no relationships between RPP and learn errors or test errors (ps > .15), but for older

adults, higher RPP was associated with higher test error rates (4 x 4: p < .07; 6 x 6, 8 x 8:

ps < .05; see Figure 3.4). In general~ higher RPP in older adults appeared to be

detrimental to maze test performance whereas there was no such association for young

adults.

Figures 3.3 and 3.4 and Table 3.2

Since subjective difficulty ratings were correlated with test errors at each grid

level, these ratings were also entered in regression analyses with autonomic variables,

separately for each grid level, with group entered first as usual. The RSA x group

interaction (p < .02) for the 8 x 8 mazes and marginal relation for the 6 x 6 mazes, (p <

.07), indicated an association between higher difficulty ratings and lower RSA in the

younger group. This was supported by the pattern of bivariate correlational analyses

(younger: 4 x 4:p < .06; 6 x 6, 8 x 8:ps < .02; older: allps > .80). Thus, younger

individuals with higher resting RSA rated the larger mazes as less difficult than did those

with lower RSA, in addition to performing them better. There were no significant

relations between difficulty ratings and IBI, SBP, RPP, or their interactions for any grid

size (allps > .15).
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FRN response to feedback

Based on visual inspection, FRN amplitude, which was unique to error trials, was

defined as the most negative peak between 250 and 400 ms following negative feedback

for younger adults and, for older a1dults, between 300 and 400 ms, as explained·in chapter

2. The age difference (p < .001) ·vvas confirmed in an ANOVA ofFRN latencies. (See the

overlaid averaged ERPwaveforms for correct and error trials at representative midline

sites (Fz, Fez, and Cz) for each group in Figures 2.4 and Figure 2.5).

As described in chapter 2, overall, peak FRN amplitudes were deepest in the 4 x 4

maze (p < .01), and larger for yo'uIlger than older adults (p < .03). They also tended to be

largest at Fz, relative to other midline sites (p < .06), although these main effects were

qualified by an interaction. among group, grid size, and trial type, F(2, 38) == 3.82,p < .04,

112 == .17. Follow-up analyses indicated that FRN amplitudes were shallower for larger

grid sizes (p < .02), especially wit]:} respect to test trials (p < .05) for older adults.

Autonomic correlates ofelectroph;ysiological response

To determine whether cardiac variables related directly to electrocortical function,

ERP amplitudes from each trial tYJ?e and grid size were analyzed in the same way as

behaviour. Another series oflliercllrchical regression analyses was carried out using FRN

amplitudes at Fz as the dependent variable for each trial type and grid size, with

autonomic variables (IBI, RSA, SJ3P and RPP) as predictors, followed by separate

correlational analyses for each group. The results of these analyses indicated that when

group was entered first in the regression analysis, autonomic variables were not generally

associated with FRN amplitudes. 11le only exception was that higher RPP was linked to

shallower FRNs to test errors in tl1e 4 x 4 maze (p < .02; see Table 3.4), accounting for
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25% of the variance, but with no interaction (p> .13). This sporadic result suggests that,

across groups, signalling for increased cognitive control was stronger (deeper FRNs)

when resting cardiac workload (sympathetic predominance) was lower.

Figure 3.5 and Tables 3.3 and 3.4

Autonomic relationships a function ofincreased difficulty or task demands?

We ~ad planned to formally test our hypothesis that the relationship between

cardiac autonomic control and behavioural outcomes would be stronger as difficulty

increased. However, the ranges of the significant correlations across grid sizes were

obviously quite small, being ...51 with respect to test errors and RSA in the larger mazes

(6 x 6, 8 x 8) for young adults, and ranging from .58 to .59 with respect to test errors in

the larger mazes and RPP for older adults (Table 3.5). Thus, it would appear that the

strength of the relationships between cardiac autonomic variables and test performance

varied little across difficulty levels. Any apparent increase in the steepness of the slope of

the regression lines in the more difficult mazes could be attributed to the confounding of

difficulty level and grid size, i.e.; greater numbers of errors were possible in larger mazes.

Furthermore, because the pattern of relationships between performance and cardiac

autonomic variables was observed more consistently for test trials (Table 3.2), than for

learn trials (where it was seen only in the largest, most complex mazes; Table 3,,1), we

concluded that t~sk requirements were most influential in determining these relationships,

rather than increased challenge within a tas~ at least across the difficulty levels tested

here. No relations were seen with respect to autonomic indices for learn trials until task

demands evoked working memory, at a high threshold of difficulty, in the 8 x 8 maze.
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Table 3.5

Discussion

Cardiac autonomic regulation in older and younger adults was examined in

relation to performance of a spatialleaming task. Negative feedback following errors in

the maze task was expected to engage the performance monitoring capacity ofmedial

prefrontal cortex, and to elicit fee<lback-related negativities (FRNs). Age differences were

expected in resting indices of cardiac autonomic control, task performance, and response

to feedback. We tested whether, vvithin their respective groups, younger and older

participants with higher HRV would show better performance of the maze-learning task.

Behavioural results were irlline with expectations: older adults rated the mazes

higher in difficulty than did youn·ger adults, suggesting that they had to exert greater

effort to cope with the basic dem.a:l1ds of the task. Older adults also made more errors

overall, mainly because of their Vt~1nerabilityin repeated test trials. Thus, despite

evidence of learning in both grollllls, older adults experienced the maze-learning task as

subjectively more difficult in tenl1softhe effort required, and objectively, in terms of

their actual performance. In addition, the processes by which mazes were learned

appeared to differ by age group. '~lhereas younger participants acquired most of the

necessary information about maze paths during the initial learning trial of a maze, older

participants learned the maze path.s incrementally, i.e., making frequent errors up to and

including the later test trials. Thesle findings are consistent with age-related deficits in

executive skills required for spatia.11earning (cf. Moffat et aI., 2006), as well as deficits in
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learning reward contingencies (evg., Mell et aI., 2005) and limited ability to increase

attentional effort (e.g., Chao & Knight, 1997).

The relationships between cardiac autonomic control variables and task outcomes

differed by group. Overall, higher resting RSA was associated with lower difficulty

ratings and better leam- and test-trial performance in larger mazes. As indexed by RSA,

the capacity to flexibly regulate ]leart rate appeared to be important for the efficient

organization ofphysiological reso·urces and correct responses in our cumulative spatial

learning task, particularly within fhe younger group. For younger adults, these

relationships remained significant even when resting heart period was controlled,

suggesting that RSA accounted for unique variance in performance in the larger mazes

that was not explained by heart period. In addition, difficulty ratings for this group were

highly correlated with test trial perfonnance at each grid level (all rs > .76, ps < .001).

Thus, young adults with higher resting RSA completed test trials with greater ease than

did those with lower RSA. Altho'ugh correlations between RSA and test trial performance

within. the older group did not reach significance, .the direction of association was the

same for both young and older adlllts, indicating that the relation of RSA to performance

was similar in both groups, albeit '~vveaker for older adults.

In general, analysis of individual levels of resting RPP revealed associations

between resting cardiac workload and learn and test trial performance in older adults of

the larger mazes. That is, higher :R..PP in the older group, reflecting increased sympathetic

predominance (Monroe & Frenc'h~~ 1961; Nelson et aI., 1974), was associated with

relatively poor test trial performarlce. No relationships with RPP were found in the

younger group. In addition, COffilll,on measures of autonomic regulation such as resting
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heart rate and systolic blood presslilfe did not generally relate to performance outcomes or

FRN magnitude.

Our finding associations between performance and autonomic variables is in line

with reports of enhanced attentiorlal control and working memory performance with

higher RSA in young adults (e.g., :Hansen et a!., 2003; Johnsen et al., 2003). They also

corroborate results from a study in our lab where higher RSA in older adults was

associated with better performan.ce of an attention-demanding source monitoring task

(Dywan et a!., submitted). Our RPIP results in the older group are consistent with studies

showing links between pathological sympathetic predominance (e.g., hypertension) and

poor performance of a variety of cognitive tasks, including tests of continuous task­

switching (e.g., Trail-making B; }~::uo et aI., 2004), verbal and visual memory (e.g.,

logical memory and visual reprodllction; Elias, Elias, Sullivan, Wolf & D'Agostino,

2003), and spatial problem-solving and abstract reasoning (block design and similarities;

e.g., Robbins et aI., 2005). More effective blood pressure recovery after cognitive testing

has also been linked to superior pe:rformance ofmemory tests in older adults (e.g., visual

paired associates; Wright, Kunz-:E:brecht, Iliffe, Foese & Steptoe, 2005). Together these

studies suggest that when sympath.etic activity is unchecked by adequate parasympathetic

function (as seen in older adults), cognitive outcomes are adversely affected.

The hypothesis that relatio]t1ships between autonomic indices and performance

would be stronger with increased task difficulty was not fully supported. Although it was

clear that relationships between cardiac autonomic control variables (RSA or RPP) and

performance were generally significant for test trials, they did not strengthen appreciably

as grid size increased, for either group. In contrast, for learn trials, no relationships were
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seen with autonomic variables until a level of difficulty was reached that imposed

demands on attention and working memory comparable to those required in test trials.

Altho'ugh this suggests some sen:sitivity to task difficulty, in general, our results support

the hypothesis that these relation.s:hips do not vary as a function of simple changes in task

parameters, unless the difficulty 'becomes sufficient to elicit higher level executive

functioning. Thus, the requirement for executive skills appears to be more important to

evoking relations with cardiac co~ntrol variables than within-task difficulty per se (cf.

Mulder, 1986).

We have also shown that d.eeper FRN amplitudes were associated with lower

learn error rates in the 4 x 4 and 6 x 6 mazes across groups (Mathewson, Dywan, Snyder,

Tays & Segalowitz, 2008), consistent with reports showing inverse relationships between

error negativities and accuracy itl ':young adults (e.g., Hajcak et aI., 2003; Herrmann et at,

2004). In the present study, deeper FRN amplitudes to negative feedback in initial maze­

learning (4 x 4 test trials) in youllger adults were associated with greater parasympathetic

influence on heart rate and reduce~i sympathetic predominance. Thus, for young adults,

deeper FRNs were linked to better performance and to greater cardiac control in the

easiest maze conditions. In contra.st, the FRN responses of older adults peaked later,

irrespective of trial type or task difficulty, suggesting that older adults were slower than

younger adults to process negativi~~ feedback (cf. Hillman, Belopolsky, Snook, Kramer &

McAuley, 2004). The FRNs of old.er adults were also comparatively shallow and

undifferentiated across midline sites, and did not discriminate well between negative and

positive feedback in either trial ty:pe (see Figure 2.5 and Eppinger, Kray, Mock &
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Mecklinger, 2008; Mathewson et at, 2008)10, nor were they related to RSA or RPP at any

grid level (ps > .13).

Attenuated FRNs are consistent with age-related reductions in available dopamine

(e.g., Kaasinen et al., 2000; Volko'w et aI., 1998), and there is evidence to suggest that

they may be linked to reductions ill stimulus-reward association learning (e.g., Mell et aI.,

2005). When errors are detected, i~CC signals initiate the activation of top-down

mechanisms (e.g., Bartholow et at, 2005; Holroyd & Coles, 2002; Walton, Devlin &

Rushworth, 2004), to deal with tIle situation and stabilize deteriorating performance.

According to Sarter et al. (2006)~ this stabilization is hypothesized to occur via greatly

increased cholinergic activity in prefrontal cortex. To increase top-down control,

prefrontal cortex engages the cholinergic system through neurons that project to the basal

forebrain, which innervates all cortical areas and layers (Gaykema, van Weeghel, Hersh

& Luiten, 1991). However, the res'ulting efflux of acetylcholine that leads to the

implementation of top-down control is subject to mesolimbic regulation, because mid­

brain doparninergic neuronal frring controls the excitability of the cortical cholinergic

input system (Gaykema & Zaboslry, 1996; Smiley, Subramanian & Mesulam, 1999). The

reduced availability ofmid-brain (lopamine with age may interfere with the capacity of

prefrontal cortex to implement to'p-down control through the cholinergic system. This

hypothesis may explain why shall~)werFRN amplitudes in young adults are associated

with poor performance in the sm.aller mazes, and why older adults have greater difficulty

learning the mazes in general. It is also consistent with the suggestion ofNeiuwenhuis et

ale (2002), namely, that perforrnan.ce deficits are due to both inefficiency in the
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monitoring processes that call for increased top-down control, that is, shallower error

negativities, and inefficiency in actually implementing executive control thereafter.

Summary and conclusions

Sympathetic and parasympathetic influences interacted with performance in a

challenging spatial learning task differentially for older and younger adults. In younger

adults, higher trait-like measures ofHRV as measured by pre-test resting RSA were

associated with better performance of test trials, and learn trials of the largest maze,

suggesting that greater capacity to modulate heart rate via the parasympathetic system

was related to more efficient learning of spatial information. In the older group, RSA did

not relate directly to performance; however, poorer cardiac regulation (as indexed by

higher pre-test resting cardiac workload, or RPP) was associated with poorer tes~

performance in general and with poorer performance in learn trials of the largest maze,

suggesting that the relative increase in sympathetic predominance with age was related to

poor learning and/or maintenance of spatial information. We also found some support for

the idea that efficient feedback monitoring (larger FRN amplitude) was linked to lower

error scores and better autonomic control in the younger group.

Overall, our data suggest that greater sympathetic predominance in the regulation

of cardiac autonomic control was detrimental to performance of test trials, where

differentialleaming rates were relevant, but not to learn trials, where only guessing was

required, unless the demand for executive processing was substantially increased. Thus, it

seems that the requirement for executive skills is necessary to reveal relationships

between cardiac autonomic control and cognitive function. This leads us to suggest that

some of the cognitive processes involved in constructing internalized representations,
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interpreting feedback, and withholding the tendency to repeat errors made previously

were linked to adequate autonomic modulation, that is, to greater parasympathetic

influence and less sympathetic predominance. Because this balance is important for

maximal performance levels in both age groups, as age reduces the capacity for

parasympathetic regulation, older adults will be increasingly disadvantaged with respect

to performance of executive function tasks.



Chapter 4: Autonomic influence on recollective response:

Source memory, aging, and ERPs

Abstract

The anterior cingulate is considered an interface between cognitive and autonomic

control systems. To test effects of age on these systems, resting cardiac measures from

older and younger adults were co:nl1pared with ERPs and performance on an age-sensitive

source memory task and a standard letter flanker task given at two levels of difficulty.

Aging was associated with a threefold increase in source memory error and a less

differentiated ERP response to targeted study words relative to familiar but non-target

lures. Also, poorer cardiac vagal control predicted a larger ERP response to lures and

increased lure error. These relatioIls were less reliable in the younger group and for

flanker task errors irrespective of difficulty level. Results suggest that cardiac vagal

control is relevant for the monitoring of internally maintained information in the service

ofresponse selection and inhibitory control as these functions decline with age.
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Introduction

Memories involve not onlJl the reconstruction ofprevious experience, but

attributions about where and Whe-Il a particular event was originally encountered (Jacoby,

Kelley & Dywan, 1989; Johnson, 2005). Whenever it is difficult to recall the actual

details of the context in which an event took place, reasonable but not necessarily correct

attributions about the initial conte:Kt may be made. Source monitoring paradigms provide

a way to understand how plausible but incorrect attributions can occur in a variety of

situations, including eye-witness testimony (Loftus, 1975), and stereotyping (Mather,

Johnson & De Leonardis, 1999), 'blut this tendency is typically exaggerated by aging (e.g.,

Dywan & Jacoby, 1990; Dywan, Segalowitz & Arsenault, 2002; Jacoby, Bishara, Hessels

& Toth, 2005; Jennings & Jacoby~, 1997). When easy access to the context of an event is

unreliable, resolving the ambiguit~( of its source in order to make a correct attribution

evokes effortful, controlled processing (Jacoby et aI., 2005). Because this kind of

processing has higher physiological costs than automatic processes (Aasman et al., 1987;

Melis & van Boxtel, 2007; Middleton et aI., 1999), it is likely to be affected by the ability

to organize physiological resources in the service of goal-directed behaviour (Critchley et

aI., 2003; Schneider et aI., 1984). \~le hypothesized, therefore, that the executive

functioning required for source nl0nitoring by older adults would be more directly related

to cardiac autonomic control thall less effortful processing.

The role ofautonomic function with respect to age and cognitive control

Heart rate variability (RR"'T) is a hallmark of adaptive physiological self­

regulation and behavioural flexibility (Porges, 1992; Thayer & Lane, 2000). Overall

variability in heart rate reflects ceILtral modulation of the sympathetic and
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parasympathetic divisions of the ANS (Benarroch, 1997; Thayer & Lane, 2000). Greater

variability in the cardiac signal is associated with youth (Park et aI., 2007), health (Masi

et aI., 2007; Singh et aI., 2006), and physical fitness (DeMeersman & Stein, 2007;

Sandercock, Bromley & Brodie, 2005). With increased age, HRV declines, beginning

from the late twenties (DeMeersman, 1993; Waddington et aI., 1979). This effectively

shifts the balance between the t\,io branches of the autonomic nervous system toward

relatively greater sympathetic pretdominance (e.g., Bonnemeier et at, 2003). Thus, aging

involves a form of autonomic dysregulation. This dysregulation has been explicitly

associated with various conditions that accompany aging, including the development of

hypertension (Liao et aI., 1996)~ cardiovascular disease (Wennerblorn et aI., 2000), and

diabetes (Lindmark et at, 2005; Takayama, Sakura, Katsumori, Wasada & Iwamoto,

2001). However, our focus was 011 determining the relationship between autonomic

regulation, as indexed by HRV, a11d higher order cognitive control.

Because of differences in the latencies and courses of action of their respective

neurotransmitters, the sympathetic and parasympathetic systems have different roles in

cardiac control. Local, beat-to-beat modulation ofheart rate is dominated by the

parasympathetic system (Levy, 1990, 1997). Peak parasympathetic transmission

(primarily affecting heart beat tuning) is reached in less than one second and reverts

quickly to baseline because acetylcholine, the neurotransmitter released by

parasympathetic nerves, is easily· synthesized and metabolized. Thus, the parasympathetic

division of the autonomic systerrl is most likely to be sensitive to changing cognitive

demands. In contrast, during symJ)athetic transmission, post-ganglionic sympathetic

fibres release norepinephrine, a relatively slow-acting neurotransmitter that increases the
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strength and speed of ventricular contractions, but requires about four seconds to peak

and returns to baseline after abo'ut 15-20 seconds.

Respiratory sinus arrhythnlia (RSA) is a common index ofparasympathetically

mediated HRV that can be estimated via spectral analysis ofECG. This natural form of

variation in the cardiac signal is 'yoked to the respiratory cycle and mediated almost

entirely by the vagus nerve. Thus:, RSA provides a relatively pure and non-invasive

estimate ofparasympathetic in~fltle:nce on HRV (Brownley, Hurwitz & Schneiderman,

2000; Porges, Doussard-Roosevelt, Portales & Seuss, 1994). In examining potential

sources ofHRV, estimates of the 'viability ofboth branches of the autonomic nervous

system must be considered becallse the two divisions of the ANS function independently

of each other (Berntson et a!., 1994). However, it is impossible to get an estimate of

purely sympathetic influence on fIRV via spectral analysis. Rate pressure product (RPP),

an indirect measure of myocardial oxygen demand and thus, cardiac workload (Merritt et

aI., 2004; Monroe & French, 1961; Nelson et al., 1974; Robinson, 1967) provides a

m,easure that reflects sympathetic influence on cardiac control. Like a sympathetic

measure, RPP increases during exercise (Robinson, 1967), and in stressful conditions

such as public speaking, anger recall (e.g., Merritt et al., 2004), and performing

arithmetic problems (Robinson, 1967). It may be considered an index of sympathetic

predominance in cardiac control.

Autonomic responses to p:hysical demands, such as the orthostatic stress of

changing from a supine to standin,g position, are generally quite unifonn across younger

adults. However, autonomic responses to psychological stressors tend to be more

idiosyncratic (Berntson et al., 199·4). These idiosyncratic differences are stable across a
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variety ofpsychological tasks ah{l reproducible across time (Pitzalis et at, 1996). They

have been well studied in the context of affective functioning (e.g., Beauchaine, 2001),

including emotional regulation (e.,g., Appelhans & Luecken, 2006; Friedman & Thayer,

1998), stress (e.g., Gianaros et at, 2005; Hall et at, 2004), and social development in

infants and children (e.g., Fabes et at, 1994; Porges, 2001). Although there have been

relatively few studies using HRV to predict cognitive performance, those extant have

yielded intriguing results. For eX.alnple, higher HRV has been reported in association with

enhanced attentional control and \11orking memory performance in young adults (e.g.,

Hansen et at, 2003; Johnsen et aL, 2003). In addition, Kim et al. (2006) recently showed

that lower overall HRV was associated with greater risk of cognitive decline in an older,

community-dwelling population. lIowever, mechanisms for these associations have been

largely unexplored.

The source memory exclllsion paradigm (Dywan & Jacoby, 1990; Jennings &

Jacoby, 1997) is known to be particularly sensitive to age. In this paradigm, older and

younger participants are asked to review a list of words, and then to distinguish the

previously seen words from ne'W "vl0rds in a running recognition test. (See Figure 4.1).

The test list also contains lures=-Ill.ew items that have been repeated in the test list. By

their repetition, the lures become Jamiliar and th~s, confusable with the studied items.

Resolving the ambiguous status of lures while resisting the tendency to call them study

items because of their familiarity requires effortful, controlled processing.

Figure 4.1



81

Typically, older adults ha've much greater difficulty with this task. Although they

are as able as younger adults to correctly identify the previously studied words and reject

any new items, they are much mo:re likely to designate lures as ,having come from the

study list (e.g., Dywan et aI.,'2002; Dywan, Segalowitz & Webster, 1998; Dywan,

Segalowitz, Webster, Hendry & I-Iarding, 2001). The assumption is that younger adults

are more able to rely on early, m:ore automatic processes to make this distinction, whereas

older adults are more dependent 011 controlled processes to reject the repeated lures. That

is, because older adults are less able to rely on early detection, they are thought to rely

more on later correction to avoid, Inaking source memory errors (Dywan et aI., 2002;

Jacoby et a!., 2005; Jacoby, Kelleyr & McElree, 1999).

When attempts at late correction fail, the result is a greater inability to withhold a

prepotent response to lures, a function for which the recruitment of frontal lobe processes

is thought to be most essential (e.g;., Janowsky, Shimamura & Squire, 1989; Miller &

Cohen, 2001; Spencer & Raz, 1994). Frontal lobe functions are considered especially

vulnerable to decline with age (e.g., Murphy, West, Armilio, Craik & Stuss, 2007; Raz,

2000). Candidate regions for decline include structures in the medial frontal lobe (e.g.,

the ACC). ACC areas modulate parasympathetic and sympathetic activity via projections

to their brainstem nuclei and to cliencephalic brain regions (Devinsky et al., 1995) and are

reported to modulate autonomic ftlnction in conjunction with cognitive demands (e.g.,

Critchley et a!., 2003; Gianaros et aI., 2004). The ability to make appropriate autonomic

adjustments has also been shown to account for significant variance in the performance

of difficult cognitive tasks in healthy young adults (e.g., Melis & van Boxtel, 2007).

Taken further, this suggests that fc~r older adults with relatively preserved autonomic
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control, executive processing (in.eluding source monitoring) may be better maintained,

relative to their same age peers. Indeed, differential performance in a source monitoring

task has been reported in older adtLlts with higher HRV (Dywan et at, submitted). In the

present study, we sought to replicate and extend these results.

ACC andperformance monitoring

ACC is involved in autonolmic regulation during task performance, but it also has

a role in performance monitoring, as it is activated after an unintended behavioural error

or when the outcome of an action totherwise violates expectations (e.g., Holroyd & Coles,

2002; Oliveira et at, 2007). Event-related potentials (ERPs) resulting from this

activation, that is, the error-related. negativity (ERN; Gehring et aI., 1993), or error

negativity, (Ne; Falkenstein et aL, 1990) signal the immediate need for increased top­

down 'control to deal with the negative situation (Bartholow et at, 2005; Ridderinkhof et

aI., 2004). Via the local record created by these signals, the ACC is thought to assess the

consequences of individual actio'n,:~; (Walton et aI., 2004), providing feedback as to which

actions are worth performing in fllture and which are not.

Error negativities have been extensively researched in speeded response tasks

such as the flanker task (Eriksen 6:~ Eriksen, 1974). Although this task has been described

as a test of executive function due to the interference from flanking letters on target

identification, it appears to be easier for older adults to avoid flanker errors than source

memory errors (Mathewson et aI., 2005). Flanker error rates of older and younger adults

are often comparable (e.g., Falkel1stein et aI., 2001) and sometimes even lower in older

adults (e.g., Nieuwenhuis et aI., 2l()02). However, older adults typically make 2-3 times as

many source errors as their youD.ger counterparts in source monitoring exclusion
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paradigms (e.g., Dywan et a!., 2002; Mathewson et al., 2005). Whereas speeded response

tasks require attentional control, tlley do not require the manipulation of stored

information and thus do not draw on working memory resources to the same degree as

source monitoring does.

Electrocortical responses are g~nerally sensitive to the repeated occurrence or

target status of stimuli, being larger for previously encountered information (e.g., Bentin

&. McCarthy, 1994), and larger for targets than non-targets (e.g., P300, Polich & Criado,

2006). In the source memory test {lsed here, we measured the late positive component

(LPC) from correct trials to three stimulus types: targeted study words, non-target lures,

and non-target foils. The LPC ha.s sometimes been described as reflecting incidental

recollection or recognition of a previously encountered stimulus (e.g., Wilding & Rugg,

1997). However, in the source me:llTIory exclusion task, previously seen items can seem

familiar either because they were recently studied, or because they were just encountered

a few items back in a test list. Distinguishing between these two sources of familiarity

represents more than simple recog:nition and is likely to elicit active information

processing (Dywan et aI., 1998). 1'hus, the stimulus-locked LPC in this task may be seen

as a response to the salience of an important event (e.g., Dywan et at, 1998).

Whereas younger adults t~,rpically produce large LPCs to correctly selected study

words and appropriately little acti'vation to non-target foils and lures, the

electrophysiological responses of older adults are consistently less differentiated by

targetness, and are sometimes eveJIl larger for correctly rejected non-target lures tha:n for

study items (e.g., Dywan et at, 1. 998). This greater electrophysiological reactivity to lures

may reflect failed early discrimination that has to be overcome, increasing the likelihood
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that they will be responded to as tllOUgh they were targets (Dywan et at, 1998). Although

we have shown autonomic associations with response-locked error signals in the source

memory task in another sample (I)ywan et at, submitted), the electrocortical indices of

attention allocation, i.e., LPCs, Dlay also be associated with differences in autonomic

modulation. To our knowledge this has not been reported to date.

The present study

Our main goal was to ascertain whether executive processing was more efficient

in older adults whose HRV was preserved relative to their same age peers. To do this,

associations between individual differences in cardiac autonomic control variables and

the behavioural and electr<?physiological responses of younger and older adults were

tested in a source monitoring task, and a contrasting letter flanker task.

For autonomic measures~ resting blood pressure and resting ECG were collected

at the start and end of the testing session. Three indices of autonomic control were

derived from the EeG recordings, each of which represented important aspects of

participants' baseline capacity for autonomic regulation. Mean interbeat interval (IEI),

the net outcome of various competing sources of innervation of the heart, served as a

global index of cardiac behavio'ur (i.e., heart rate). To estimate the influence of the two

major branches of cardiac controt RSA was derived from spectral analysis as an estimate

ofparasympathetic function, and ]{PP was calculated (heart rate x systolic blood

pressure; SBP)'as a proxy for syJn:pathetic influence on HRV.

Age effects were expected in RSA, RPP, and SBP, but our model presupposes

that individual differences in alit01'lOmic control explain variance in test outcomes over

and above that explained by the g(~:neral consequences of aging. Our main hypothesis was
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that the relations among RSA, E:RNs, and source memory error (Dywan et al., submitted)

would be replicated and extended to another ERP component, the stimulus-locked LPC.

We expected that those older adults with poorer autonomic reg~lation, i.e., poorer

parasympathetic regulation and &'Teater sympathetic predominance, would make more

source memory errors and wo·ulcl"be less able to suppress the LPC associated with lures

during the test situation.

In contrast to the source Il1emory task, associations between autonomic control

indices and outcomes in previo'us \vork (i.e., behavioural performance and ERN

responses) were conspicuously absent when it came to the standard flanker task (Dywan

et at, submitted). Accordingly, they were not expected in the current study. However, it

was not clear from our initial experiment whether the failure to find associations between

autonomic variables and error responses on the flanker task was due to a markedly

different type of cognitive demandl (i.e., the reliance on internally-maintained working

memory infonnation in the source memory task) or simply to differences iIi task

difficulty. To explore this issue, a more challenging flanker task (van Veen & Carter,

2002) was administered (to younger adults) and the results correlated with autonomic

variables. If autonomic relationshi:ps were found for both source monitoring and the ­

difficult version of the flanker ta.s]( but not the standard version, this would s"uggest that

task difficulty was the dimensio~n ]nost relevant for autonomic control. If they were found

for source monitoring alone, this ·'vv'ould suggest that specific cognitive operations-in

this case, the dependence on monitoring internally held information-were most relevant

for autonomic control.
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Method

Participants

The participant groups were the same as in the first study (chapter 2). However, due

to the challenge presented by the longer words used in this particular source memory

task, a number ofparticipants de:010nstrated a tendency toward either a strong positive

response bias or a very conservativ"e response bias. Therefore, using behavioural

discrimination between study w()r,is and foils as a criterion, we eliminated data from any

participants who scored lower th:al1 40% correct on the study words or higher than 25%

on foil errors1
!, leaving data fronl 30 participants (16 young; 14 older) available for

analysis. Cardiac data from. one ollder adult were unusable due to the frequent presence of

a cardiac anomaly in the signal t]lat did not reflect autonomically mediated heart rate

variability, but his behavio'ural an{l electrocortical data were retained due to our small

sample size.

Procedures

A paper-and-pencil health: qltestionnaire, the SCaLP vocabulary test, and a mood

screening measure (Zigmond & S·.naith, 1983) were administered prior to the

computerized tasks. In addition, trained laboratory personnel recorded blood pressure

using a manual sphygmomanolneter, before and after completion of the computer tasks. 12

Heart rate was recorded during a 5-minute rest period pre- and post-task. Cardiac and

electrophysiological measures 'were also recorded throughout task perfonnance.

Participants responded to both the source memory and flanker tasks in a single session

while seated comfortably in a dill11y lit, electrically and acoustically shielded room. On
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completion of testing, participants rated the subjective difficulty of each task using a

paper and pencil 5-point Likert scale.

Behavioural measures

Source memory task. Partieipants read aloud a study list of25 common words that

were between 5 and 8 letters long and equated for frequency and imageability (MRC

Psycholinguistic Database, U.K.). Single words were presented in white lower case

letters on a black background for 1989 ms by computer, with a stimulus onset difference

of3978 ms. Each word was 1-3 ellG in height and 8-11 cm in length, subtending

approximately 7.5-10.5° of visual angle when viewed from about 60 cm (unfixed). The

display refresh rate was 75 Hz. At test, 139 words were presented in capital letters for

496 ms with an onset difference of2992 ms. These included 6 practice words, and 125

test words, with 8 fillers, that is, 8 foils that were inserted to maintain adequate spacing

between lures but for which respo"nse data were not analyzed. Targets were 25 study

words, interspersed with 75 new £i)ils, 25 of which were presented twice, always

separated by 6 intervening words. Repetition of new foils resulted in a se~ of words that

were familiar (lures), although th,e:y were not from the study list. Participants' task was to

identify whether a word was froln, the study list (studied words) or not (new words and

lures) by key press, on each trial. ~]Lhe assignment of keys to letters was counterbalanced

across participants, and response times were measured from stimulus onset to the

beginning of the key press."

Accurate performance req,llired participants to override the tendency to respond

"yes" to the falniliar lures. Speed and accuracy were equally emphasized. To ensure

sufficient trials for stable ERPs, a second block of trials, with new stimuli, was presented
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after a 25-minute break during ,~;tlich participants completed the standard flanker task and

had a short rest. Data from both blocks were scored and combined for subsequent

analyses.

Standardflanker task. Oldler and younger adults also engaged in a standard letter

flanker task (Eriksen & Eriksen, 1974). Congruent (HHHHH or SSSSS) and incongruent

(HHSHH or SSHSS) letter strings 'were randomized and presented by computer on a

black background in white upper case letters, 1.5 cm high, spanning 6-8 em, subtending a

visual angle of approximately 5.5 ,- 7.50 when viewed from an unfixed distance of about

60 cm. Stimulus duration was 189 fiS with an interstimulus interval of 1243 ms.

Participants were asked to identify· the central letter in the string ("H" or "S") by key

press as quickly and accurately as possible. The assignment ofkeys to letters was

counterbalanced across participants. Response times were measured from stimulus onset

to the beginning of the key press. (~ongruent trials were presented with a probability of

.33 (80 trials each) and incongrtleILt trials with a probability of .67 (160 trials each),

comprising 480 trials in all. Two s.hort breaks of 5988 ms each occurred immediately

after 160. trials and after 320 trials::, during which the screen remained black.

Difficultflanker task. You~nger adults also participated in a more difficult letter

flanker task modelled after one de'veloped by van Veen and Carter (2002). The second

task was not administered to older adults due to its rapid presentation rate and

complexity.

The more difficult flanker task presented randomized 5-letter strings having the

same visual stimulus properties as the standard flanker task, with the object again being

to identify the centre letter as quickJy as possible by button press. The letter strings
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represented three contrasting conditions: congruent (SSSSS, HHHHH, XXXXX, PPPPP),

stimulus incongruent (SSXSS, X·J(SXX, HHPHH, PPHPP), and response incongruent

(SSPSS, PPSPP, XXHXX, HHXJIH). Participants were instructed to always respond to S

or X with one hand, and to H or:P with the other hand. The assignment ofkeys to letters

was counterbalanced. In the congruent condition, centre letters and flankers were

identical. In the stimulus incongruent condition, flankers differed from the central letter,

but the response required by eith:er type of letter was nlapped to the same hand. In the

response incongruent condition, tlle·response required for the central letter was mapped

to one hand but the response associated with the flanking letters was mapped to the other

hand (van Veen & Carter, 2002).

Each trial began with a ceJltral fixation cross. To increase the difficulty of task

perfonnance, flanking letters appeared slightly before the central letter. Flanking letters

were presented for 243 ms, where,as the central letter appeared 147 fiS later and remained

on the screen for 96 fiS, so the array for each trial spanned a total of243 ms. To prevent

phase-locked anticipation of stinlldi, the interstimulus interval varied by 200 ms

increments 1?etween 496 ms and 1296 ms. Response times were measured from the onset

of the central letter to the beginnin.g of the key press. To minimize fatigue, randomized

trials were presented in two blocks of 360 trials each, with a short break of 5988 fiS after

180 trials in each block during wll:ich the screen remained black. In each block, congruent

trials were presented with a .50 probability (180 trials) and stimulus incongruent and

response incongruent trials were each presented with a probability of .25 (90 trials each).

Results indicate that each succeeding level is more difficult than the one before it (van

Veen & Carter, 2002).
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Autonomic measures

Electrocardiogram (ECG) recordings were collected during a 5-minute pre­

session baseline rest period anel a 5-minute post-session rest period. R-R (interbeat)

intervals were checked and editec! by a trained laboratory technician using commercial

software (Mindware HRV 2.51). Estimates ofRSA (HRV at the respiratory frequency,

0.12-0.4 Hz) were calculated via fast Fourier transformation in five I-minute periods and

averaged for each rest period (pre*· vs. post-session). Mean IBI was calculated for each

resting period, and RPP for each rest period was derived by multiplying resting blood

pressure readings together with mean estimates of resting heart rate, then dividing by

100.

Electrophysiological (EEG) reco14~iing

As in the previous two studies, BEG scalp data were recorded from 250 scalp sites

using a Geodesic Sensor Net. All recordings were referenced to Cz (site 257 in

NetStation). Data were processed offline with a 1-30 Hz bandpass filter and segmented in

1000 illS (flanker tasks) or 2000 -n18 (source memory task) epochs with a baseline of200

ms time-locked to the onset ofth.e response (flanker tasks, - 600 to - 400 ms relative to

the onset of the response) or wOfcl stimulus (source memory task, -200 to 0 liS relative to

stimulus onset).

Analyses and scoring

Behavioural and electrop'h:ysiological data (ERPs) were analyzed using mixed

model ANOVAs and Bonferroni-eorrected pairwise-comparisons. Trial rejections due to

excessive artefact or recording difficulties resulted in some analyses being conducted

with fewer participants than others. The Huynh-Feldt correction was applied when the
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degrees of freedom in the numerator were greater than one;· results are reported using the

original degrees of freedom and correctedp-values.

Results

Indices ofautonomic function

IBI, RSA, SBP and RPP nrom each resting period were assessed in separate mixed

model ANOVAs with condition (JJre-test, post-test) as the within-subjects factor and

group as the between-subjects factor.

A group by period (pre.. vs. post-session) ANOVA ofIBI showed that resting

heart rate was faster in the younger (M == 814 ± 30 illS) rather than older adults (M == 918

± 37 IDS), F(l, 21) == 4.75,p < .05,112 ==.18, but there was no difference between rest

periods and no interaction with group (ps > .40). Thus, IBI was averaged across the two

rest periods to provide a trait-lil<e Ineasure of resting heart period. However, RSA was

higher in younger ad'ults (M == 6.32 ± .34 In ms2
) than older adults (M == 4.41 ± .43 1n

ms2
), F(l, 21) == 12.08,p < .01, 112 ==.37, with no effect ofperiod and no interaction (ps >

.30). Therefore, RSA measures from the two rest periods were averaged.for a trait-like

index ofresting parasympathetic c.ontrol. In contrast, SBP was higher for the older group

(M== 140.6 ± 5.1 mm Hg) than for the younger group (M== 107.4 ± 4.9 mm Hg), F(I, 23)

== 21.73, p < .001, 112 == .49, but tllere were no other effects (ps > .13). Thus, the mean was

used as an index of resting systolie blood pressure. We noted that SBP in this unselected

older group was in the borderline l1ypertensive range (e.g., about 140 nun Hg; Erdine et

aI., 2006). RPP, calculated for the resting baseline periods before and after testing, was

also higher in older (M == 93.6 ± 5 .. 2) than younger adults (M == 77.7 ± 4.1), F(l, 16) ==

5.75,p < .03, 112 == .26, but there ·Vilas no effect ofbaseline period or interaction (ps > .80).
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Therefore, RPP from the two rest :periods was averaged for an index ofresting

sympathetic predominance.

Age-related differences in autonomic.control included lower parasympathetic

control (resting RSA) in older ad'nlts than younger ones, despite a slower baseline resting

heart rate for older adults, and higl1er indices of sympathetic influence (resting SBP and

RPP).

Separate correlational anal:yses among autonomic measures for each group

indicated that higher RSA was sig:nificantly associated with longer IBI (slower heart rate)

in the older group (r== .81,p < .01), but only marginally in the younger group (r== .49,p

< .07). Thus, parasympathetic influence was reflected more strongly in the resting heart

rate of older adults than younger adults, although the direction of the relations was the

same for both groups. In older a(lu.1ts, higher RPP correlated with a significantly faster

resting heart rate (shorter IBI; r= ···.76,p < .01), but was only marginally related to blood

pressure (r== .58,p < .07). In contrast, for younger adults, higher RPP was significantly

correlated with higher blood pressure (r == .76,p < .01), but was unrelated to IBI (p >

.25). This suggests that resting R.~P:P in older adults more closely reflected resting heart

rate, whereas in younger adults it Jprimarily reflected resting blood pressure. Finally, RSA

was negatively correlated with R~P·P in older (r == -.68,p < .03) but not younger adults (r ==

.002,p> .99), suggesting that for older adults, the relationship between parasympathetic

and sympathetic influences on heart rate was reciprocal, but in young adults these

measures were independent. This :Ipattern ofresults suggests that quantitative changes in

individual aspects of cardiac allto:nomic control may also result in qualitative changes in

the nature of this control with age.,
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Source memory task: Behavioural data

The mean percentage of ")res" responses to study words, lures, and foils were

submitted to a group by stimulus...type mixed model ANOVA. Main effects of age (p <

.001) and word type (p < .001) Were qualified by an age-by-word-type interaction,

F(2,56) == 18.60,p < .001, 112
== .40, indicating that although the groups did not differ on

study word accuracy (MOlder== 64 :1: 3 %; MYounger == 65 ± 3 %; p > .90), older adults (M ==

48 ± 4 %) were three times as lil(ely to endorse lures as having been in the study list as

younger adults (M == 16 ± 4%;p < .001) and made more foil errors (MOlder== 10 ± 1 %)

than younger adults (MYounger == 4:±: 1%;p < .01. See Figure 4.2 and Table 4.1). A similar

analysis of response times to corr4::ct trials showed that foils were responded to

marginally more slowly (M == 1094 ms ± 129) than study words (M == 917 ± 81 ms) and

lures (M == 901 ± 74 ms) in both groups, F(2, 22) == 4.00,p < .06, 112
== .27, but there was

no overall age difference in resporlse times and no interaction with condition (ps > .30;

see Table 4.2).

I~igure 4.2 and Tables 4.1 and 4.2

Autonomic variables and behavioural results from the source memory task

Accuracy data for each word type were regressed on mean resting IBI, RSA, SBP

and RPP measures in four series ofhierarchical analyses in which group was always

entered on the first step to accoUnt for variance attributable to age, followed by the

autonomic variable on the secon.d, and the interaction, third.

In the series with IBI as tb.e autonomic variable, group, as expected (p < .001),

and IBI (p < .01), selectively predicted lure errors (interaction: p > .20). Longer IBI
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(slower heart rate) was "associated with fewer lure errors (see Table 4.3). Neither IBI nor

the interaction was related to stlid~l responses (ps > .08) or foils (ps > .26).

Table 4.3

In the second series, whe~ne: RSA was the autonomic predictor, group (p < .001),

RSA (p < .01), and the interaction (p < .04), all predicted lure errors (see Table 4.4). The

interaction indicated that the relationship was seen in the older group (p < .01) rather than

the younger group (p > .50). In general, higher RSA was associated with fewer lure

errors. Neither RSA nor the interaetion was associated with study responses (ps > .14) or

foil errors (ps > .14).

Table 4.4

In the third series, SBP a:n<l its interaction with group were unrelated to

behavioural responses to any wordl type (ps > .20). In the fourth series, using RPP as the

autonomic variable, both group (p < .001), and RPP (p< .01), selectively predicted lure

errors (interaction:p > .07; see 11alJle 4.5). Higher RPP was correlated with more lure

errors. Neither RPP nor the interaction was associated with study responses (ps > .70) or

foil errors (p > .30). Similar patterlGS were obtained for IBI, RSA, and RPP using

responses to study words or lures adjusted for positive response bias, that is, with foil

responses covaried from the depeI1Ldent variables. Thus, both simple and adjusted

responses yielded the same relatio":ns between perfonnance and autonomic variables.
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Follow-up analyses for each group separately revealed that better performance in

the older group (i.e., fewer lure errors) was associated with slower heart rate (longer IBI:

r = -.68,p < .03), higher RSA, (r == -.79,p < .01), and lower RPP (r = .67,p < .03; see

Figures 4.3 to 4.5 and Table 4.6). :Lure errors were inversely associated with IBI in

younger adults (r = -.64, p < .01; see Figure 4.3), but with no other autonomic measures

(allps> .17). There were no relati10nships for study words or foils for older (allps > .10)

or younger adults (allps > .09). T:hese results indicate tllat autonomic influences on HRV

were strongly and specifically related to the degree to which older adults could refrain

from en.dorsing a familiar butnon.....target lure.

Figu,res 4.3 to 4.5 and Tables 4.5 and 4.6

Because RSA and RPP predicted lure errors in opposite directions in the older

group, the question arose as to Wb.ether they accounted for the same variance. This was

addressed by an additional hierarc]hical regression analysis in which RSA and RPP were

entered together on the second steJp, after group. The model on the second step of the

analysis was significant (p < .01). Within this model, group (p < .01), RPP (p < .04) and

RSA (p < .07) uniquely explaine(lll%,6%, and 5% of the error variance, respectively.

This suggests that, .despite some o'verlap, the two autonomic variables and group did not

account for exactly the same varia:nce in lure errors. Thus, autonomic measures are not

merely s'ubstitutes for age group. ()ne of the interaction terms (group x RSA;p < .04) on

the third step accounted for a furtller 6% of lure error variance, consistent with the fact

that significant prediction of lure errors by RSA was limited to the older group.
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Source memory task: ERPs

To compare ERP responses across the different experimental conditions~

stimulus-locked LPCs were averaged for each word type (study words, repeated lures,

foils). LPCs occurred between 500 ms to 725 ms post stimulus onset. To ensure sufficient

trials to fonn a reliable LPC, correct trials from the two blocks of the source memory task

were combined. LPC amplitude data from 10 young and 8 older participants were

available for inclusion in the waveforms. Figure 4.6 depicts the LPC response at midline

sites to study words, lures and foils for each group.

Figure 4.6

Examination oftopographical maps in BESA (5.0.1) revealed that the LPC to

study words (on correct trials) was centred approximately at midline parietal sites

including pz (88, 89~ 100,131 in the EGI 256~channel net). Accordingly, LPC amplitudes

.at these 4 sites were averaged and this composite LPC measure was submitted to a mixed

model ANOVA with word-type (study, lure, or foil) as the within-group factor, and group

as a between~group factor. There was no overall difference in EEG amplitude between

groups (p > .20). However, the ANOVA revealed a marginal word-type by group

interaction, F(2, 36) = 3.30,p < .07, 112 = .16. Follow-up analyses revealed that the

younger group produced a larger LPC to study words (M = 1.09 ± .23 J.tV) than to new

foils (M= ..32 ± .19 J-lV,p < .01), with responses to lures (M= .60 ± .22IlV) in-betwe,en,

whereas little differentiation was seen in the older group (p> .60; see Table 4.7).

However, the average waveform may hide individual differences in the older gr?up (note

the wide standard deviations iJ;l Table 4.7 for older adults). The overall pattern of results
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is similar to earlier findings (e.g., :Dywan et aI., 1998; 2001; 2002) where LPC activation

was largest in the younger group for targeted study words, as expected, and LPC

amplitudes were undifferentiated "between target and non-target information in the older

group.

Table 4.7

To determine the relatiol1ship between brain responses to each stimulus type and

behavioural performance, lure errors were regressed on LPC amplitudes to lures,

controlling for age group. Age group (p < .001) predicted lure errors, and LPC

amplitudes (p < .05) added to this :prediction, but the interaction term did not (p > .75).

There were no such relationships for study words (ps > .20) or foils (ps > .45) and their

respective LPCs and interactions. "When this analysis was repeated using LPCs to lures

corrected for reactivity (i.e., correeted for LPCs to foils) as an independent predictor, and

lure errors corrected for positive response bias (i.e., corrected for foil errors) as the

dependent variable, a significant iJllteraction was found (p-< .01). Separate correlational

analyses by group indicated that dIe larger the difference between the LPCs to lures and

LPCs to foils (indicative of a large electrocortical reaction to lures and a small reaction to

foils), the poorer the adjusted perf~ormance in older (r == .77,p < .03) but not younger

adults (p > .60).

Autonomic variables and LPCs fron1 the source memory task

Mean LPC responses for e;ach word type were regressed on resting IBI, RSA,

SBP, and RPP measures in four series ofhierarchical analyses, respectively. Like the

regression analyses ofbehaviour, group was always entered on the frrst step, the
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autonomic variable on the second, and the interaction, third. In the series with RSA as the

autonomic predictor, being in the ()lder group predicted attenuated LCP responses to

study words (p < .01), whereas RSA and the interaction did not (ps > .20; see Table 4.8).

However, higher resting RSA preclicted smaller LPC responses to familiar lures (p < .02),

whereas neither group nor the interaction did (ps > .20). Higher RSA also predicted

smaller LPC responses to foils (p <: .04), whereas the other variables did not (ps > .20).

Thus, higher RSA was associated'with a diminished electrocortical response to non-target

information, for both younger ancl older adults.

Table 4.8

The older group generated smaller LPC responses to study words (p < .03), but

neither RPP (our estimate of synlI~latheticpredominance) nor the interaction term

predicted LPCs to study words (ps >.80). However, higher resting RPP predicted larger

LPC responses to non-target lures (p < .01), whereas group and the interaction did not (ps

> .30; Table 4.9). Higher RPP was also associated with larger LPC responses to foils (p <

.04), whereas group and the interaction (ps > .15) failed to reach significance. A similar

pattern was obtained for RPP usin.g adjusted LPC activation to lures, that is, with LPC

activation to foils covaried from fbe dependentvariable (p < .04). Thus, simple and

adjusted LPC measures were botl1 associated with RPP. With respect to the remaining

autonomic measures, IBI, SBP, a:n,d their interactions added nothing to the prediction of

our electrocortical measures (alIJ)s > .08).
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Table 4.9

Separate correlational analyses by group indicated that for older adults the ability

to limit attentional allocation to non-target lures as reflected in a reduced LPC was

associated with higher RSA (r == -.69,p < .06) and lower RPP (r == .75,p < .04; see Table

4.10, Figures 4.7 and 4.8). For YOlmger adults, those with lower RPP were also better

able to abort the processing of lures (r == .71,p < .03, Figure 4.8). Thus, larger LPC

responses to lures appeared to be associated with higher sympathetic drive in both

groups, and marginally associated. with reduced parasympathetic influence in the older

group. These relationships must 'be viewed with caution, however, because in both groups

they depended on single participaJlts with unusually high levels of RPP.

Figures 4.7 and 4.8 and Table 4.10

The issue of whether RSA and RPP accounted for the same variance in LPC

amplitudes to lures was addressed. by an additional hierarchical regression analysis in

which RSA and RPP were entered. simultaneously, after group. Models on the second (p

< .01) and third (p < .03) steps were both significant. In the second model, age group

uniquely explained 28% ofLPC variance (p < .01) and RPP explained 26% (p < .01),

whereas RSA did not add significant unique variance to this prediction (p >.20). Thus,

the variance in LPC amplitudes to lures accounted for by RSA overlapped with variance

explained by other predictors (RPI~, group), but clearly RPP and group did not substitute

for each other. The RSA x RPP interaction on the third step accounted for an additional
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19% (p < .01), suggesting that RSi\ was associated with the prediction of LPC

amplitudes only at particular le'vels ofRPP.

To summarize: whereas ID.embership in the older group was associated with

smaller LPC responses to targeted study.words, in this group lower parasympathetic

control (RSA) and higher sympatlletic drive (RPP) were both associated with larger

parietal LPC responses to non-targ;et information (lures and foils). These findings are

consistent with the behavioural analyses showing links between better performance (i.e.,

fewer lure errors) and lower RSA in the older group, and better performance and more

relaxed heart rate (longer IBI) in the younger group. Thus, both the ERP and behavioural

results are consistent with a mod.el in which parasympathetic capacity was conducive to

supporting the performance demaIlds of a cognitively complex source memory task,

whereas sympathetic predominance, typically seen in older adults, was detrimental to it.

Flanker tasks

Standardflanker task. A :nlixed model ANOVA of difficulty ratings indicated that

participants from both groups ratctd the source memory task (M== 3.12 ± .18) as more

difficult than the standard flanker task (M== 1.93 ± .17, p < .001), and older adults (M==

2.84 ± .17) rated the tasks as more: difficult than younger adults overall (M== 2.22 ± .16,

p < .02), with no interaction (p > .07).

Data from one younger adullt who made too few errors for a reliable ERN were

omitted from analyses, leaving data from 20 older and 19 younger adults. Behavioural

results from this task were typical for both groups. A mixed model ANOVA with

condition (congruent or incongrlle:nt) as a within-subjects variable and group as a

between-subjects variable indicate:d that participants were less accurate on incongruent
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trials (M= 91 ± 1 %) than congruent trials, (M= 94 ± 1 %), F(1, 37) = 24.84,p < .001,,,2

=.40, but there was no effect of age on accuracy and no interaction (ps > .80; see Table

4.11). A parallel ANOVA of response times indicated that participants responded more

slowly to incongruent trials (M= 511 ± 11 IDS) than congruent trials, (M =470 ± 11 IDS)~

F(I, 37) = 291.64,p < .001,112 = .89, and that older adults (M= 539 ± 16 IDS) were

slower to respond than younger ones (M = 441 ± 16 IDS), F(l, 37) =z 19.08,p < .001, 112 =

.34, with no interaction (p > .14; see Table 4.12). In SUfi, older adults were slower to

respond, but they were not less accurate than younger adults.

Tables 4.11 and 4.12

Figure 4.9 depicts the ERP response at midline sites following flanker errors for

each group, respectively. Amplitudes were submitted to a mixed model ANOVA with

site (Fz, Fez, Cz, or pz) as the within-subjects variable and group (younger versus older)

as the between-subjects variable. The ERN produced by younger adults (M = -5.31± 1.3

!!V) was larger than that of older adults (M == .33 JlV ± 1.3, p < .01), and overall, the ERN

was deepest at Cz (M= -3.60 ± 1.0 JlV,p < .001). Site also interacted with group, F(3,

102) = 5.53,p < .01, 112
:;= .14, such that the ERN of older adults was less differentiated

across midline sites (p> .40) compared to that ofyounger adults, (p < .001; see Table

4.13).

Figure 4.9 and Table 4.13
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To estimate the effect of interference from the flanking letters on identification of

the centre letter, that is, the "flan::ker effect," accuracy data from congruent trials (mainly

reflecting a motor response to the stimulus array), were covaried from accuracy data in

incongruent trials, and similarly, response times from the congruent condition were

covaried from response times fronl the incongruent condition. The resulting residuals

were regressed on resting IBI, RSJ.~, SBP, and RPP measures in separate hierarchical

regression analyses with group o:n the first step, the autonomic variable next, and the

interaction third. None of these variables predicted residual accuracy or residual response

times (allps > .13). ERN amplitll.d.es at Cz (maximal site) were analyzed similarly.

Although group predicted shallo'\ver ERN amplitudes (ps < .01), none of the autonomic

variables or their interactions was significantly related to the ERN (ps > .30).

Difficult flanker task. A more challenging flanker task was administered only to

the younger adults. Subjective difficulty ratings for the two flanker tasks were compared

in a repeated measures ANOVA. i\.s expected, yo~ng adults rated the second flanker task

(M== 3.40 ± .29) as more diffic'ult than the first one, (M== 2.00 ± .25), F(l, 18) == 32.79,p

< .001,112 == .65. Data from one young adult were eliminated prior to analyses due to

random responding.

Correct hits were submitted to a block (one or two) by condition (congruent,

stimulus incongruent, or response incongruent) repeated-measures ANOVA. Results

were typical for this task: acCUraC)T did not differ between the congruent (M == 91 ± 1%)

and stimulus incongruent (M == 92 ± 2%) conditions, but was significantly lower in the

response incongruent condition (~~.::f == 81 ± 2%), F(2, 36) == 49.33,p < .001, 112 == .73.

There was no effect ofblock, or irlteraction (ps > .15; see Table 4.14).
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Table 4.14

Response times, analysed similarly, increased monotonically between congruent

trials (M = 434 ± 12 ms), stimulus incongruent trials (M = 455 ± 11 ms), and response

incongruent trials (M= 503 ± 15 IllS),F(2, 36) = 57.98,p < .001,112 = .76. They were

faster in the first block (M = 479 ± 12 ms) than the second block (M = 449 ± 13 ms), F(I,

18) = 24.24,p < .001, 112 = .57, altll0ugh this did not interact with condition (p > .80; see

Table 4.15). Taken together, the 'behavioural results confirm that difficulty was greatest

in the response incongruent conclition, and greater in the stimulus incongruent than

congruent condition, replicating tile behavioural results originally reported by Van Veen

and Carter (2002).

Table 4.15

EEG data were collapsed across blocks 1 and 2 of the difficult flanker task to

obtain stable ERP waveforms and. are depicted in Figure 4.10. A repeated-measures

ANaVA ofpeak ERN amplitudes confinned a typical ERN in the difficult flanker task,

which was deepest at Fez (M= -5.36 ± .88 JlV), F(3, 42) = 20.27,p < .001, Tt2 = .59.

There was no effect ofblock, and :no interaction (ps > .13; see Table 4.16). Thus, the

ERN from the difficult flanker tas]k~ was not in any way unusual.

Figure 4.10 and Table 4.16
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To estimate the effect of interference in the stimulus incongruent and response

incongruent conditions, that is, tht:::: "flanker effect" in the difficult flanker task, accuracy

data from congruent trials were covaried from accuracy in response incongruent trials,

and similarly, response times fronl the congruent condition were covaried from response

times from the more difficult stirnJllus incongruent and response incongruent conditions.

The resulting residuals were regressed on resting IBI, RSA, SBP, and RPP measures in

separate hierarchical regression analyses. None of these variables predicted residual

accuracy (allps > .70) in this tas"k, nor residual response times for either stimulus

incongruent (allps > .20) or response incongruent trials (allps > .30). Autonomic

variables were also entered as ptedictors in hierarchical regression analyses with ERN

amplitude as the dependent variar>le. IBI, RSA and SBP were unrelated to ERN

amplitudes atFCz (ps > .12), but lLigherRPP was associated with shallower ERNs at

FCz, (p < .05). This isolated findillg is consistent with our model, in which higher

sympathetic drive would be expected to be associated with less efficient error- _

monitoring.

Discussion

Good performance on a SO'llrce monitoring exclusion task requires high-level

executive skills to resolve the arribiguous status of lures and to control the prepotent

tendency to respond to them sim~pJl.yon the basis of familiarity. Consistent with previous

research (Dywan et a!., 2002; Jenrdngs & Jacoby, 1997), older adults were less able to

withhold responding to lures even though they were as good as younger adults at

identifying the targeted study wOftl:is. In contrast, their perfonnance accuracy in the

standard flanker task was equal to that ofyounger adults. This differential performance



105

by older adults may reside in the contrast between source monitoring, where older adults

are more dependent on executive I)rocesses to make complex discriminations that

younger adults make quickly all(l automatically (Dywan et aI., 2002), and perceptual

discrimination in the flanker task, which does not present the same kinds of demands.

Autonomic regulation also differed between older and younger adults. Resting

RSA, a measure ofparasympathetic control, was significantly lower in the older group,

but resting systolic blood pressure and RPP (measures of sympathetic inflllence) were

significantly higher, at the level ofborderline hypertension (e.g., Erdine et a!., 2006). In

addition, resting RSA and resting :RPP were reciprocally related in older adults,

suggesting less independence betviTeen parasympathetic and sympathetic function in this

group than typically seen in youn~~eradults (Berntson et a!., 1994). For younger adults,

RSA and RPP clearly represented independent sources of cardiac regulation.

Consistent with our model~l higher resting levels of RSA in the older group were

associated with more successful :nejection of non-target lures but were unrelated to the

endorsement of study words or foils. We note that Dywan et a!. (submitted) reported a

very similar relationship between :higher levels ofRSA and lower levels of adjusted

source error for older adults. No ~FtSA relationship was found for younger adults in either

of these studies, but in the curreIlt study, slower resting heart rate (suggesting more

relaxed cardiac control) was associated with better source monitoring performance in

both groups. Also consistent with our model, higher resting levels ofRPP were

associated with worse performance, being specifically correlated with lure errors across

groups, but not with study words or foils. This indicates that relatively greater
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sympathetic influence on resting h.eart rate (especially in older adults) was specifically

associated with the commission of source memory errors.

Electrophysiological measures such as the LPC reflect cognitive responses in real

time. Here, being in the younger group was associated with generating larger LPC

responses to targeted study words. However, after any effects of gro'UP were accounted

for, higher RSA added to the prediction of efficient attentional control, that is, higher

RSA predicted a smaller electroc():rtical response to non-target lures and foils across

groups. Note that ERPs were averaged only for correct trials, which means that even

when accurate decisions were ma(le, those with higher sympathetic drive were more

reactive to the non-target stimuli. Similarly, higher RPP was associated with larger LPCs

to non-target lures and foils (but I~ot study words) across groups, although given the small

numbers in the analyses, these rela~tions relied on single cases. The LPC results were

consistent, however, with the beha.vioural results, suggesting that greater sympathetic

predominance in cardiac control resulted in a greater reactivity to salient but non-target

stimuli, which was likely to make the inhibition ofprepotent responses more difficult,

especially for older adults. Thus, :higher parasympathetic and lower sympathetic influence

on HRV at rest were selectively associated with smaller electrocortical responses to

salient but non-target lures (and to a lesser extent, non-target foils) in both groups.

In contrast, no relationships were found between resting autonomic indices and

performance or ERPs for either gn)up in the standard flanker task, similar to results

reported by Dywan et ale (submitted). To test the hypothesis that the differential

associations between autonomic cv;::;tivity and task outcomes were due to the qualitatively

different type of task requirements. rather than simply to difficulty level, we added a more
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complex version of the flanker tas:llc (van Veen & Carter, 2002). Even here, almost no

relations between autonomic indices and flanker effects or electrophysiological indices

were found. Thus, the overall pattern ofresults supported the hypothesis that greater

parasympathetic capacity and lo'\,ver sympathetic predominance in older adults are

beneficial in tasks that require internal monitoring ofresponse contingencies and the need

for inhibitory control, i.e., functiol1S specifically linked to the frontal lobes (Bunge,

Ochsner, Desmond, Glover & Gal)rieli, 2001; Miller & Cohen, 2001; Spencer & Raz,

1994).

In general, our results wit.h older adults using an age-sensitive source memory

task are in line with other studies showing that greater HRV is conducive to good

cognitive performance. For example, Johnsen et al. (2003) demonstrated in an emotional

Stroop task that greater attentional control (i.e., reduced capture by words associated with

dentistry) was associated with higl:ler HRV in young dental phobics. Hansen and

colleagues have shown that higher HRV in young navy men was associated with greater

working memory capacity (2003) and better learning over time (2004). With respect to

older adults, Kim et al. (2006) ha've recently shown that the odds of cognitive impairment

in older, disabled, community-dwelling women were several times higher for those

whose HRV was in the lowest qttartile. These studies highlight the importance of cardiac

vagal control in relation to good c.ognitive outcomes, and the present results demonstrate

that these relations are evident in. 'both younger and older adults.

The RPP results with respect to source monitoring performance are consistent

with studies showing links betwee:n autonomic measures, specifically pathological

sympathetic predominance-hypeTtension-and poor performance of other c01p.plex
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cognitive tasks, including memory' tests (e.g., Elias et at, 2003), task-switching (e.g., Kuo

et at, 2004), spatial problem-solving and abstract reasoning (e.g., Robbins et aI., 2005),

and the Wisconsin Card Sort Test (e.g., Raz, Rodrigue & Acker, 2003). Other studies

have demonstrated associations b4::tween hypertension and increased risk oflong~term

cognitive impainnent (Kilander, 1~;fyman, Boberg, Hansson & Lithell, 1998; Launer et aI.,

2000), whereas treatment ofhypertension has been reported to decrease that risk (Forette,

Seux, Staessen, Lutgarde & at, 2002; Peila, White, Masaki, Petrovich & Launer, 2006).

Together these studies make a strong case for reduced cognitive capacity when

sympathetic activity is largely unchecked by adequate parasympathetic regulation.

Bein.g in a state of emotio:nal arousal is reported to disrupt attentional control in

younger adults (e.g., Derryberry 8,: Reed, 2002; Eysenck, Derakshan, Santos & Calvo,

2007), effectively decreasing goal-directed attentional functioning and increasing the

extent to which attention is influeIlced by "bottom-up" stimulus factors. Undue arousal is

particularly likely to interfere with working memory and inhibitory control (Eysenck et

al., 2007). In source memory par8A:iigms, the use of emotional versus neutral stimuli has

been shown to result in attentional changes that benefit item information, but at the

expense of contextual details (Mather et aI., 2006; Mitchell, Mather, Johnson, Raye &

Greene, 2006). Not only can emotional arousal alter the allocation of attention, but it also

has obvious autonomic effects, illc:luding increased heart rate and reduced HRV (e.g.,

Friedman, 2007; Hagemann et aI., 2003). For older adults, the sympathetic predominance

seen at rest may reflect a tonic ca:niiovascular state that is similar to that of chronic

emotional arousal seen in clinical anxiety disorders. This sympathetically mediated but

non-emotional condition also appears to disrupt fil1ely tuned attentional allocation, as
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seen in positive correlations between higher resting RPP and the source memory

performance of older adults reported here.

Understanding the role ofl<'SA is more challenging. In general, heart rate

variability is inversely related to 11100d pressure variability (Sloan et at, 1997). To ensure

adequate perfusion, and because \~vide fluctuations in pressure can be hannful, blood

pressure is normally kept within a. certain physiological range. When a transient increase

in blood pressure occurs, arterial b,aroreflexes relax blood vessel walls (Brownley et aI.,

2000) and increase vagal output, reducing heart rate and contractile strength (Thames &

Kontos, 1970). Because blood vessels receive only sympathetic innervation, changes in

arterial stiffuess are mediated sympathetically, making vagally mediated cardiac

adjustments initiated by the baroreceptors critical for offsetting changes in blood pressure

(e.g., Sloan, Shapiro, Bagiella, M:~lers & Gorman, 1999). Thus, individual differences in

resting measures ofRSA essentially index the capacity for parasympathetic buffering of

blood pressure variability. If this capacity is reduced, then blood pressure increases may

not be properly mitigated, with ne,gative physical consequences and detrimental effects

on cognitive performance.

With respect to relations 'between autonomic indices and task outcomes in source

monitoring versus flanker tasks, ollrr findings suggest that these tasks differed in the

requirement for parasympathetic control at two levels-within-task and between-tasks.

Autonomic indices were always 1110st clearly associated with the avoidance of lure errors,

but never with correct identification of study words or foils. Further, they were never

linked to action slips in the flanl<.er tasks in either group. Finding significant relationships

between cardiac autonomic control and "inappropriate" attention to lures and foils (larger
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LPCs) is consistent with the idea that parasympathetic control is most relevant for the

avoidance of complex errors. Lures present a greater challenge than either study words or

foils, requiring higher levels of controlled processing to resolve their status, and control

over the tendency to ascribe them to having .been "studied", on the basis of their

familiarity. We speculate that the isreater challenge presented by lures is also likely to

increase blood pressure (cf. Wright, et aI., 2005), necessitating parasympathetic cardiac

adjustments in order to allow optilnal controlled processing.

Our conclusion about the relevance of task demands rather than task difficulty for

eliciting relationships between aut1onomic control variables and performance is consistent

with previous research. Drawing firom the same participant group as for the present study,

Mathewson et al. (2008) showed. significant relationships between autonomic indices

(RSA and RPP) and good perforlIlance of a spatialleaming task on trials that required

accessing mental reconstructions ()fhidden mazes, but not for trials that required only

passive responses to feedback. III addition, studies using HRV as a dependent variable

suggest that relationships betwee"ul task outcomes and HRV appear to be insensitive to the

manipulation ofparameters such. as memory load within task (Aasman et aI., 1987;

Redondo & Del Valle-Inclan, 1992). In contrast, HRV is reported to be differentially

sensitive to demands for active nl.anipulation of information (e.g., Gianaros et a!., 2004;

Mulder, 1986; see also Wright et 21.1.,2005).

For older adults in the c'urrent study, relatively higher resting RSA predicted

better performance of the task that required executive processing. The fact that this

relationship was not found for YOlll.nger adults may be because sorting out the ambiguous

status of lures was not difficult for this age group. They misclassified only 16% of lures,
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whereas older adults who were q.llite capable of discriminating between previously

studied words and new, never-see:n foils nonetheless had considerable difficulty

withholding their "target" respon.se to lures. It is possible that the restricted range of lure

errors for the young group preclud.ed any correlations with RSA, although a significant

relationship between lure errors and IBI suggested that parasympathetic influence on

heart rate was also beneficial for Olur YO'unger participants.

Summary

Although older adults can ,generally remember item information, under ordinary

conditions they typically have greater difficulty making correct attributions about the

source of a particular item or evelTt. Our main goal was to ascertain whether controlled

processing was more efficient in older adults whose HRV was relatively preserved, that

is, in those with greater parasympathetic control and lower sympathetic drive, relative to

their same age peers. This hypotllesis was supported. Within the older group, better

source monitoring performance '\~laS associated with slower resting heart rate (longer IBI),

higher resting RSA, and lower resting RPP, suggesting that relatively preserved

parasympathetic function was con"ducive to the performance of a task requiring top-down

attentional control. A similar dynamic was reflected in the younger group, where a more

relaxed resting heart rate was also associated with better performance of the source task,

although this did not extend to R..S.A or RPP. For both younger and older adults, greater

sympathetic drive appeared to be linked to inappropriate cognitive appraisal of salient but

non-target stimuli, particularly ItLres. These relations are consistent with the idea that

parasympathetic control, which declines with age, is necessary for controlling arousal in

response to cognitive challenge.



Chapter 5: General Discussion

Evidence for selective decline of executive functions in late life can be found in

the performance of complex tasks that involve such processes as source- monitoring (e.g.,

Dywan & Jacoby, 1990) and spatialleaming (e.g., Kirasic, Allen & Haggerty, 1992).

Remembering an event, along with its context, relies on hippocampal function (e.g., Gold

et aI., 2006; Manns & Eichenbaum, 2006), which is particularly vulnerable to age-related

decline (De Jong et aI., 1999; Driscoll et aI., 2003; Jack et aI., 1998; Raz & Rodrigue,

2006). Because of this decline, older adults are less likely to encode or retrieve the

contextual details about a remembered event (Kensinger & Schacter, 1999; Senkfor &

Van Petten, 1998; Spencer & Raz, 1995) and more likely to attribute memories to sources

that seem familiar and plausible but may be incorrect (e.g., Dywan & Jacoby, 1990;

Jennings & Jacoby, 1997). In young adults, these operations appear to be effortless and to

result in the correct attribution of sources in a fairly automatic fashion.

Older adults are also more likely than younger adults to have difficulty learning

spatial relations between objects (Lavden et aI., 2005; Moffat et aI., 2006) and creating

allocentric maps of space (Moffat & Resnick, 2002), independent of any perceptual or

motor problems, with the result that they may have trouble finding their way in familiar

as well as unfamiliar environments (Chiu et aI., 2004; Kirasic, 2000). During spatial

navigation tasks, reduced functioning in hippocampal and extrahippocampal regions

appears to be accompanied by increased activity in Ace and medial frontal cortex,

suggesting a compensatory shift from medial temporal systems to more frontal,

controlled processes (Gutchess et aI., 2005; Moffat et aI., 2006). The same principle may

hold for source memory performance, given evidence of changes in functional

11 !)
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connectivity between the hippocampus and the rest of the brain such that connections to

anterior regions are stronger and to posterior ones weaker, as compared to younger adults

(Dennis et aI., 2008). Results from both of these kinds of complex tasks suggest that what

is learned easily and efficiently by a healthy young person may be acquired in later life

with difficulty, via the use ofmore effortful controlled processes and different neural

circuitry (e.g., Grady, Springer, Hongwanishkul, McIntosh & Winocur, 2006; Gutchess et

aI., 2005).

When automatic processes are less available (e.g., Moffat et aI., 2007), or when

tasks are difficult (e.g., Paus et aI., 1998) or require working memory (Cabeza & Nyberg,

2000), activity is increased in medial prefrontal regions of the brain, particularly in Ace.

Ace signals following errors alert other prefrontal brain regions to immediately increase

top-down control (Botvinick et aI., 2001) and change strategy to improve performance

(Bartholow et al., 2005). They also provide a local history of the rewards and losses

associated with recent actions (Kennerly et al., 2006). Third, error signals to prefrontal

cortex (ERNs, FRNs) may also be responsible for initiating a widespread release of

acetylcholine throughout the brain that focuses attention and increases cognitive control

(Sarter et al., 2006). These neural alarm signals are generally attenuated in ol~er adults,

likely due to age-related decline in the availability ofmesencephalic dopamine (Volkow

et aI., 1998), or they may reflect poor performance by this age group (Eppinger et al.,

2008). IfAce error signals are too small to rouse prefrontal regions sufficiently, this may

have consequences for recruiting the cholinergic system and re-asserting cognitive

control, with the result that performance may not be stabilized enough to avert negative

outcomes.



114

To meet behavioural req"uirements, the ACC integrates cognitive and motivational

states with states ofbodily arousal through its projections to subcortical autonomic

control areas (Critchley et a!., 2003; Critchley et al., 2005). The autonomic system

comprises parasympathetic activity (associated with energy conservation, homeostatic

functions, and focused attention) and sympathetic activity (associated with energy

mobilization, increased emotional arousal, and preparation for action). Tasks requiring

controlled processing, i.e., those \vith higher physiological costs (Aasman et a!., 1987),

would presumably be most vulnera.ble to age-related changes in these autonomic

regulatory functions. However, parasympathetic function, so important for focussed

attention, declines with age (Wad,dington et a!., 1979), while resting sympathetic tone is

normal or increased (Low, 1997)~

The heterogeneity seen ill :~nany domains related to aging leads researchers to look

beyond group effects and consider how individual differences in various age-sensitive

physiological systems affect the 'behavioural outcomes of interest. In this thesis, the main

focus has been on individual differences in higher order cognitive control and in

autonomic influences (Berntson et a!., 1994) that are associated with ACC function. We

expected that behavioural, electro(~ortical, and phasic vagal cardiac influences would be

correlated in tasks that tapped executive functioning. As well, we expected that higher

levels ofphasic vagal cardiac co:ntrol in old age would be associated with higher levels of

performance when top-down atte~rJltional control was required. The main hypothesis was

that executive performance wo"uld. be relatively preserved for older adults who have

maintained a high level of autonoIlnic flexibility compared to that of their peers for whom

this responsivity has declined.
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Relationships among behavioutalt electrocortical, and cardiac measures

Behavioural performance'v/as examined in tests of source monitoring, spatial

learning, and speeded responding in relation to electrophysiological responses and

cardiac autonomic control. The 1l1ain issues were whether ACC would respond to error

feedback in the same way in older and younger adults across tasks and difficulty levels,

and whether younger and older participants with higher HRV (greater parasympathetic

influence) and concomitantly lo'wer sympathetic predominance would perform

cognitively challenging tasks more successfully and efficiently. LORETA analyses of

FRN activation following maze errors indicated that the neural response of older adults

did not discriminate very well betl;veen positive and negative feedback in the maze­

learning task. Moreover, shallo'w ]~RNs could not have been due to uncertainty about

errors, since feedback was always informative and accurate. Nonetheless, despite the

reduced amplitudes among older adults, relatively deeper FRNs predicted better memory

performance of the largest maze fbr the older group. Results also indicated that increased

resting RPP, a proxy for cardiac vvorkload and thus, sympathetic influence on heart rate,

was associated with "less successful spatialleaming and reduced electrophysiological

correlates of error processing (FRT~\Js) in older adults, suggesting less efficient

performance monitoring with ele~vatedRPP in this group. Conversely, higher RSA was

associated with greater ease and 1110re successful spatial learning performance for

younger adults, suggesting that paJrasympathetic competence facilitated maze learning in

this group.

In the source monitoring e:Kclusion task, older adults were less able than young

adults to distinguish between the familiarity associated with previously studied words and
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that associated with new words that were merely repeated in the test list. However,

performance did not differ between older and younger adults on a contrasting, speeded

response task (Eriksen & Eriksell, 1974). With respect to source monitoring, relatively

lower levels ofRSA within the ol(ler group predicted a greater tendency to falsely

attribute lures to the list of studied. words. This indicates that although RSA was reduced,

group-wise, with age, individual differences in RSA among older adults still predicted

more successful source monitoring. Autonomic variables were also analyzed with respect

to electrophysiological measures of attention allotted to target versus non-target

information (LPCs). Low RSA a11d high sympathetic drive both pointed to a reduced

ability to suppress the LPC respoIlse to salient non-target information. In this task,

controlling the attentional response to lures on correct trials correlated with more

successful avoidance of lure errors, suggesting that when electrophysiological responses

to non-target lures were larger, participants had a greater tendency to process them like

target infonnation.

Thus, older adults made "attentional errors," as it were, with respect to correctly

rejected lures, that seemed to forecast behavioural errors. Greater sympathetic drive was

directly linked to both the allocatiol1 of attention (LPCs). during correct trials in this task

and behavioural errors. Thus, for two tests of executive functioning, we have presented

evidence for the association of syrnpathetic drive with brain responses in older adults that

appeared to lead to behavioural errors. In addition, relatively higher resting RSA in older

adults was cond·ucive to more efficient information processing in both of these tasks,

being related to more robust registration of errors in the spatial task (i.e., larger FRNs)

and marginally to reduced attentio:nal allocation to non-target information in the source
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task (i.e., smaller LPCs). Conversely, in the Eriksen flanker task, virtually no relations

were found between autonomic variables and either error-monitoring performance or

ERPs.

Although the relationships. differed by age and task, the model emerging from

these studies highlights a special role for parasympathetic modulation ofheart rate vis-a­

vis complex cognition: for tasks requiring executive skills, particularly attentional control

and internal monitoring or worlcing memory, higher RSA was conducive to good

performance, consistent with pre'vious studies of attention and working memory in

younger (Hansen et a!., 2003; Jo'hIlsen et aI., 2003; Melis & van Boxtel, 2007) and older

adults (Dywan et aI., submitted). lIowever, higher RPP in the older group appeared to

have a detrimental effect on perfoJl:mance, consistent with studies linking hypertension to

poor cognitive outcomes (e.g., :Elias et a!., 2003; Raz et a!., 2003) and long-term

cognitive impairment (e.g., Kivipelto et a!., 2001; Launer et a!., 2000; Skoog et a!., 1996).

Good behavioural performance an.,d appropriate cortical responses were positively aligned

with healthy parasympathetic function and negatively aligned with unhealthy sympathetic

predominance.

The fact that several significant RPP correlations were unique to the older group

does not suggest that sympathetic :function per se has detrimental effects on performance,

but more likely, poor performanc.e is due to the greater dependence of cardiac modulation

on the sympathetic system, witho'lIlt the counterbalancing effect of the vagal brake

(Porges, 1995a). Sympathetic transmission requires 4 seconds to peak and returns slowly

to baseline because the sympatlletil,c neurotransmitter, norepinephrine, has a relatively

slow onset. Norepinephrine is also removed from cardiac tissue relatively slowly (Levy,
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1993). In contrast, parasympathetic activation can slow heart rate within a single cardiac

cycle (Levy, 1997) because of the fast onset and high turnover rate of acetylcholine, the

parasympathetic transmitter. Beca'llse of the different pharmacokinetics of their respective

neurotransmitters, changes in heart rate follow changes in parasympathetic efferent

activity much more closely than do changes in sympathetic activity (Berntson, Cacioppo

& Quigley, 1993). Parasympathetic activity is thus likely to be more sensitive to fast­

changing cortical demands than is sympathetic activity. The age-related shift towards

greater sympathetic predominance indicates that the fine-grained, efficient, high

frequency, beat-to-beat control of heart rate is reduced in older adults, leaving the slower­

responding and metabolically more costly system greater responsibility, as it were, for

short-term cardiac regulation (Saul, 1990).

RSA capacity in young adlllts appeared to be beneficial for the mental

construction of large mazes, and ItSA capacity in older adults appeared to be critical for

sorting out the status of lures and controlling the tendency to make a prepotent response.

However, although sensitive to ag,e group and specific task demands, autonomic

responses in both age groups appear to be activated by the demand for executive versus

automatic processing. Resting :RSJ\ was correlated with better performance in younger

adults in the largest maze of the sp1atialleaming task, whereas resting heart rate predicted

test errors for older adults. Conversely, resting RSA was correlated with better

performance in older adults in th:e source-monitoring task, whereas resting heart rate

predicted source errors in the YOlrnger group. If these results are taken together, it appears

that resting heart rate, which is 'u,ntder predominantly parasympathetic control,
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significantly predicted performance for a particular age group, even when RSA did not

(Low, 1997).

Relationships between individual cardiac autonomic control indices and

behavioural outcomes were clearly specific to executive functions. They were more

reliable in test trials of the maze taslc where differential learning rates affected

performance outcomes, but for learn trials only in the largest mazes that is, for trials in

which working memory was reqll.ired in addition to guessing. Autonomic relationships

were also evident in the source nlemory task that required the resolution of lure status and

control over the tendency to attribute lures to the study list, but not in flanker task

performance, which could be acco'mplished using information that was provided on the

computer screen or in immediate rnemory. Even when flanker difficulty was increased,

there were no relationships between either RSA or RPP and task outcomes. Similarly,

Jennings and colleagues (1997) re]?orted that task responses requiring mnemonic look-up

are unique in that they will not o~n]ly slow response selection but also transiently delay

heartbeats, whereas other cognitive operations such as arithmetic addition will not.

Furthermore, memory processes in other contexts (e.g., rehearsal) are likely to induce

cardiac acceleration, rather than deceleration, due to the metabolic requirements of these

processes (van der Molen, Bashc)re, Halliday & Callaway, 1991). Indeed working

memory requirements seem to be critical for eliciting relationships between cardiac

autonomic control variables and task performance (c'f. Jorna, 1992; Mulder, 1986),

whereas manipulating task characteristics more superficially through augmenting the

visual complexity of the flanker array and increasing the speed and complexity of the

response by requiring the use of th.e incompatible hand (cf. Jennings, van der Molen,



120

Brock & Somsen, 1991; Mulder 8c Mulder-Hajonides van der Meulen, 1973) do not.

However, it is clear that increased task difficulty can be confounded with changes in task

requirements with respect to working memory (e.g., Gianaros et aI., 2004; Vincent, Craik

& Furedy, 1996).

How does parasympathetic control contribute to good performance?

Based on the extant literature, there are at least four possible mechanisms

whereby the parasympathetic system could contribute to good perfonnance outcomes.

First, parasympathetic modulatiol1 ofheart rate appears to be the main autonomic control

mechanism for buffering BP changes in response to challenging situations (Sloan et aI.,

1999). Executive challenges pose(~ by tests of'working memory are associated with

changes in HRV (e.g., Aasman et al., 1987; Aasman, Wijers, Mulder & Mulder, 1988)

and blood pr.essure (e.g., Budge, de Jager, Hogervorst & Smith, 2002; Kuo et a!., 2004).

Studies have suggested that patietlts with chronic hypertension are less able to

compensate for rapid changes in b,lood pressure and thus the brain is more vulnerable to

blood pressure fluctuations (e.g., IJaron, 2001). This may have cumulative effects over

time, as seen in numerous studies linking hypertension to increased risk of cognitive

impairment (e.g., Breteler, 2000; I(ivipelto et aI., 2001; Launer et a!., 2000; Petrovitch,

White, Izmirilian, et a!., 2000; S](oog et aI., 1996; Whitmer, Sidney, Claiborne Johnston

& Yaffe, 2005). The relative red'llction ofparasympathetic control with age may

constitute an important mechanisfjl by which autonomic change has negative effects on

cognitive function, that is, by lea~ving sympathetic activation unopposed and thus

reducing the autonomic system's;ability to counter rapid changes in blood pressure in

situations ofchallenge (Sloan et al., 1999; Van Vliet, Belforti & Montani, 2002).
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Additional research is necessary to determine whether this hypothesis has sufficient

explanatory power to account for the findings here and elsewhere.

Second, it has been suggested that the intrinsic physiological function ofRSA is

to improve the efficiency ofpulmonary gas exchange (Hayano & Yasuma, 2003; Yasuma'

& Hayano, 2004). Due to the parasympathetic gating ofheart rate reflected in RSA, heart

rate increases slightly during inspiration, as oxygen is being taken in, and slows slightly

during expiration, avoiding unnecessary beats when no extra oxygen is available, thereby

conserving cardiac and respirator)r energy (Hayano & Yasuill.a, 2003). By ensuring

optimal brain perfusion with the least metabolic expense, RSA may provide a small

physiological reserve that has subtle effects on brain perfusion. Higher levels ofRSA

may therefore impact positively all cognitive functioning, particularly in situations that

tax working memory capacity. Tllis physiological advantage may account for our

findings, but more investigation is. required before accepting it as an explanation for

them.

Third, RSA may reduce th.e likelihood ofprepotent responses (e.g., Dywan et al.,

2002), by keeping sympathetic arousal in check. Parasympathetic and sympathetic

autonomic activity is modulated 'b:y the Central Autonomic Network (CAN; Benarroch,

1997), which integrates infonnati()n about internal bodily states, sensory information and

the external environment, adjusti:n,g physiological arousal up or down as appropriate for

the context (Benarroch, 1993). 'Wllen the ability of the parasympathetic system to oppose

sympathetic activity is reduced with age or illness, the resulting chronic autonomic state

is similar to that seen in conditio~nsof heightened emotional arousal (e.g., Thayer,

Friedman & Borkovec, 1996). ~Bei:ng in a relatively more aroused state could increase the
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predisposition to respond impulsively, without adequately sorting out the status of lures,

making it harder to control the terl,dency to make inappropriate responses to information

that is compelling but incorrect. It is possible that a state ofheightened arousal is enough

to explain relationships between a'utonomic control and perfonnance of complex working

memory tasks in older adults, but :~nore research would be needed to establish this.

All of the above alternatives impute the benefits of RSA to mechanisms that are

primarily physiological. But cardiac responses may be influenced centrally (Benarroch,

1997; Jennings et a!., 1991; Thayer & Lane, 2000). For example, when a prepotent

response must be held in check, "rnidbrain coordination of the countermanding of

response execution" is reflected ill phasic cardiac slowing following individual trials

(Jennings et al., 1992; see also Jen.nings & van der Molen, 2002). In these instances, the

brief lengthening of the interbeat interval that occurs does not represent a passive

relaxation ofheart rate, but rather the active inhibition of central representations of

alternative responses, in favour of a higher priority action. It is not just motor responses,

but central representations of various actions that are inhibited, as shown by the fact that

heart rate slowing tracks the degree of stimulus rotation in mental rotation paradigms,

i.e., slowing is more pronounced \;vith greater rotations (Band & Miller, 1997), and the

fact that heart rate slowing is specific to successful inhibition of the incorrect response in

situations when instructions conflict (Jennings et a!., 1992). Arguably, inhibition is

integral to both of the executive fu.nction tasks used in the present studies. Cognitive

operations in the source memory task include resisting prepotent tendencies to identify

lures as study words in favour ofrnore appropriate responses. In repeated test trials in the
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maze task, they include consulting memory to select one correct tile from two or three

equally likely tiles and ignoring tile others, for each move.

Of course there is a physiological advantage to the momentary heartbeat delay as

well: lengthening the interbeat interval allows the heart slightly more time to fill, so that

on the next cardiac cycle, the heartbeat will be stronger and blood volume greater

(Jennings & van der Molen, 2002). Because the lengthening is momentary, vagal control

is implicated. (See also Obrist, 1981). However, if the vagal brake is less sensitive, due to

hypertension, or if central darnpelling of response representations is reduced in old age so

that these momentary delays do ]10t reliably occur, then countermanding prepotent

responses would be more difficult and errors more likely. Thus, the principle of

neurovisceral integration (Friedman, 2007; Thayer & Lane, 2000) is clearly manifested in

the inhibition ofprepotent responses in tasks that require working memory.

Future directions

The present model should 'be considered a set ofworking hypotheses that need

replication and further testing. Questions remain, of course. Currently, the exact

mechanisms by which parasympathetic capacity exerts its beneficial effect on cognitive

outcomes are not known. If they vI/ere known, they could be very helpful for the

development of strategies to dela)T cognitive decline. The administration of medications

for hypertension has been show~n tiD increase HRV (Ylitalo, Juhani Airaksinen, Sellin &

Huikuri, 1999) and to reduce the risk of long-term cognitive impairment (e.g., Forette et

at, 2002; Peila et at, 2006), suggesting that artificially limitil1g the strength of

sympathetic activation can forestall cognitive decline. Alternatively, HRV can be

improved in older adults with regrl.lar exercise (e.g., Pichot et al., 2005; Sandercock et at,
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2005). This leads to a new questio:n: Does either the artificial or natural reinstatement of

parasympathetic function result in a concomitant improvement in cognitive function? It is

unlikely that pharmaceutical and. lifestyle solutions can reverse age-related change in

autonomic control, but they may' offset some of the negative effects of aging with

benefits derived from improving 'perfusion and controlling blood pressure variability or

metabolic factors such as insulin: resistance (e.g., Wareham, Wong & Day, 2000). Such

solutions may even promote ne·urogenesis in the dentate gyrus of the hippocampus (e.g.,

Pereira et at, 2007). Longitudinal and population studies will be needed to address these

questions.

Hypertension is a strong risk factor for hippocampal atrophy (De Jong et at,

1999; Korf, White, Scheltens & aI., 2004), cognitive impairment (Kilander et al., 1998;

Solfrizzi et a!., 2004), vascular delnentia (Launer et aI., 2000; Posner et aI., 2002), and

Alzheimer's disease (Kivipelto et aI., 2001; Petrovitch et aI., 2000). Vascular factors may

even have a synergistic role in th.e development of Alzheimer-type neurodegeneration

(Iadecola & Gorelick, 2003; Jellillger, 2005). Ten years ago, Brookmeyer (1998)

suggested that the public health inlpact of delaying dementia onset by as little as 2 years

would be to cut incidence rates by' 25%. Physical activity in midlife (Rovio et aI., 2005)

and even in late life (Lytle, Van(ler, Pandav, Dodge & Ganguli, 2004) has been shown to

reduce the risk of cognitive impaiIment and to delay cognitive decline by as much as 1.5

years (e.g., Weuve, Kang, MansoI:l. et aI., 2004; Larson, Wang, Bowen, et aI., 2006; see

also Rockwood & Middleton, 2007). The magnitude of this effect is comparable to that of

drugs currently available to treat I)fogressive cognitive decline, with two important

advantages: the drugs offer only s)'ll1ptomatic treatment, and exercise avoids their side
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effects. The question ofwhether cognitive function can be maintained or restored by the

preservation ofparasympathetic :predominance in autonomic control has not been

answered, but in the light of estiITlates that the dementia cases will balloon from 4.5

million in the u.s. in 2000 to approximately 13.2 million by 2050 at present rates of

population growth (Hebert, Schen·, Bienias, Bennett & Evans, 2003), attempts to answer

it would be worthwhile.
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Footnotes

1. Most of the older adults had been prescribed some fonn ofblood pressure medication.

However, only 1 of the 14 was taking beta-blockers, which are believed to have central

nervous system effects. ,Because tlle error counts and Inidline ERPs for this individual

were within one standard deviatioll of the means for the older group in all cases, these

data were included in all relevant analyses. We note that some hypertension is typically

found in samples within this age range (Jennings, Van der Veen & Meltzer, 2006;

Mathewson et a!., 2005).

2. Three younger participants cO:tr~.:pleted the maze task using a keypad to respond. Their

behavioural data were not significantly different from those of the rest of the younger

group (one-way ANOVAs, ps > .15) and so were retained.

3. Because difficulty level was cOIlfounded with grid size, we reanalyzed error scores and

response times after dividing the'IT]L by the average error score or response time for each

maze across groups. In both cases~, the interaction between group and trial type remained

robust (error scores,p < .001; cOITlpletion times,p < .01); however, in both cases the

three-way interaction with grid siz:e was lost. Thus, although groups performed similarly

on learn trials when everyone had to depend on feedback for each move and differed on

test trials when differentialleamin.g rates became relevant these group differences were

not exacerbated as a function of g:rid size.

4. The t statistic for significance ill a local region is always equal to or less than the t

statistic for the global test. Thus, any t statistic for a local maximum in a mid-sagittal

region can never exceed the corresponding t statistic for global brain activation reported

in Table 2.5.

5. Although a significant decline ill acetylcholine is more typically associated with

Alzheimer's disease and a significant decline in dopamine with Parkinson's disease, there

is evidence that these losses may follow the initial loss of the neuroprotective benefits of
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norepinephrine due to degeneration of the locus coeruleus, a major source of

noradrenergic neurons in the brain. (Kalinin et aI., 2007; Rommelfanger & Weinshenker,

2007).

6. A version of this chapter has been published as ajoumal article by Psychophysiology .

(2008) with the following authors: K. J. Mathewson, J. Dywan, P. J. Snyder, W. J. Tays,

and S. J. Segalowitz.

7. Although this placement was not standard for EeG recording, in most cases recordings

were adequate for calculating autolllornic indices. Therefore, not all analyses included

exactly the same participants.

8. Respiration rates were not available in this study. It is generally 9-esirable to

demonstrate that RSA measures ofheart rate variability are not influenced by respiration

rate (e.g., Grossman & Taylor, 2.007; Wilhelm, Grossman & Roth, 1999). However,

natural respiration rates are unlikely to unduly affect RSA during recordings of resting

heart rate (Berntson et at, 1997; Il~enver, Reed & Porges, 2007). Also, we' used this. as a

trait-like measure of individual differences, rather than to make comparisons across

conditions or phases in the experirnent, so there is no question of task-related changes in

breathing rates affecting our RSA :measures.

9. RSA from the pre-testing rest period proved to be a significant predictor of test trial

errors regardless of grid size, an,! also for learn trial errors in the 8 x 8 maze. An

averaged measure ofRSA (i.e., from both rest periods) was a comparable predictor of

performance in most analyses. HO"wever, RSA from the post-test resting period was not

(all ps >.10). This suggests that variance in resting RSA from the pre-testing period,

reflecting trait-like differences in lzSA, was integral to the relationships with

performance.

10. Eppinger et aI. (2008) foundtlllat ifperformance is equated between older and

younger adults by the use of a fleJi;;jble response deadline, ERNs are not reduced with age.
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However, for the same task,feedl),ack-rel~tednegativities (FRNs) were clearly reduced in

older adults, even when perfonnaIlce was equated. Our results are consistent with the

latter finding of Eppinger and coll~~agues: there was no response deadline in the maze

task because responses were self-placed, and FRNs were clearly reduced in older adults.

11. As mentioned, most of the old.er adults had been prescribed some form ofblood

pressure medication. However, in the sample used for this study, only two of the 14 were

taking beta-blockers. Since their d.ata did not differ from those of the other adults and

since dropping them from the analysis did not change the results in any substantial way,

they were retained due to our sm·all sample size.

12. Post-test blood pressure readil1gs were unavailable for several young participants and

one older one. Replacement of tllese values was done two ways before calculation of

RPP. We let available pre-test rea1dings stand in for missing post-test values. We also

interpolated any missing individtlal post-test value from its corresponding pre-test value,

using the B and constant from th.e regression line for pre- and post-test blood pressure

readings. As there were no differellces in the patterns ofresults, regardless ofwhich

measure was used, we report RP:P data based on the simple substitutions.
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Table 2.1. Mean Number ofErrors (SD) for Younger and Older Participants as a
Function ofTrial Type and Maze Level. N == 19 younger, 14 older.

Maze Level Means

4x4 6x6 8x8

Learn Trials

Younger 4.61 (.89) 12.14 (1.60) 18.53 (2.93) 11.76 (.35)

Older 5.'72 (1.04) 13.04 (1.77) 19.75 (4.23) 12.83 (.41)

Test Trials

Younger 1.16 (.82) 4.29 (2.36) 5.97 (4.30) 3.81 (.76)

Older 3.03 (1.55) 9.22 (4.19) 13.97 (7.28) 8.74 (.88)

Note: Marginal means (standard. errors) are in bold.
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Table 2.2. Mean Completion Tifnes (SD) for Younger and Older Participants as a
Function ofTrial Type and Maze Level. N == 19 younger, 7 older.

Maze Level Means

4x4 6x6 8x8

Learn Trials

Younger 25.81 (5.9) 53.38 (11.7) 78.25 (15.2) 52.48 (2.7)

Older 32.83 (9.9) 67.51 (16.6) 97.41 (17.8) 65.92 (4.1)

Test Trials

Younger 14.76 (3.2) 29.62 (5.1) 41.18 (9.4) 28.52 (1.8)

Older 24.41 (5.4) 48.78 (14.9) 67.56 (10.2) 46.92 (2.7)

Note: Marginal means (standard terrors) are in bold.



Table 2.3. Peak FRNAmplitudes (SD) in Microvolts During the Maze
Learning Task as a Function afGroup, Site, Trial Type, and Maze Level.
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Level t..Jearn Trials Test Trials

Site Youl}ger Older Younger Older

4x4 Fz -2.45 (2.08) 1.44 (2.52) -1.63 (3.30) -.24 (1.49)

FCz -1.19 (2.00) 1.68 (2.77) -.52 (3.38) -.20 (2.42)

Cz .31 (~.~49) 1.34 (2.98) .64 (4.60) -.20 (3.03)

- 1.11
u
{·616) 1.48 (.84) -.51 (.82) -.21 (1.0)

6x6 Fz -1.62 (2.25) 1.80 (.93) -1.07 (2.10) 2.96 (1.27)

FCz -.02 (2.63) 2.79 (1.73) -.22 (2.47) 3.58 (1.51)

Cz 1.35 (4.11) 2.54 (2.22) .56 (4.41) 3.10 (1.93)

-.10 (~.§:~t) 2.38 (.81) -.24 (.59) 3.21 (.75)

8 x 8 Fz -1.65 (2.13) 1.. 75 (1.53) -1.34 (2.43) 1.68 (1.16)

FCz -.69 (2.6~:l) 2.19 (2.11) -1.12 (4.41) 2.45 (1.98)

Cz 1.01 (4..0~g) 2.09 (2.20) .22 (5.66) 2.21 (1.97)

-.44 (.6~) 2.01 (.84) -.75 (.91) 2.11 (1.2)

Note: The FRN was scored as the lowest peak between 280-400 ms post-
feedback for both age groups .. Marginal means (standard errors) are in bold.



Table 2.4. Peak Feedback ,F"3 Amplitudes (SD) in Microvolts During the
Maze Learning Task as a Function ofGroup, Site, Trial Type, and Maze
Level.
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Level I...Iearn Trials Test Trials

Site Yout.'l:.ge! Older Younger Older

4x4 Fz 2.00 (2.58) 3.22 (2.17) 3.51 (3.62) 2.42 (2.19)

Fez 3.93 (3.15) 4.45 (1.95) 6.21 (3.45) 3.51 (1.97)

Cz 5.49 (~.~66) 4.90 (2.65) 8.37 (4.76) 4.15 (2.32)

3.81 (~§~~~) 4.19 (.79) 6.03 (.73) 3.36 (.93)

6x6 Fz 2.82 (2.09) 4.35 (1.65) 3.03 (2.36) 4.55 (1.02)

FCz 4.46 (2.81) 5.53 (1.12) 5.44 (3.03) 5.46 (1.32)

Cz 5.98 (:?.~,90) 5.44 (1.98) 7.02 (3.54) 5.18 (2.11)

4.42 (.6~~1) 5.11 (.76) 5.16 (.53) 5.06 (.68)

8 x 8 Fz 2.72 (1.98) 3.72 (2.16) 3.14 (2.95) 3.49 (1.18)

FCz 4.38 (2.7·4) 4.61 (1.58) 5.57 (3.04) 4.76 (1.07)

Cz 5.58 (3.6)) 4.67 (1.62) 7.32 (4.47) 4.98 (1.61)

4.23 (.5~~) 4.33 (.70) 5.34 (.67) 4.41 (.86)

Note: Average P3 amplitudes. were calculated from 360-460 fiS post-
feedback for younger adults }3lnd 400-520 illS for older adults. Marginal
means (standard errors) are irlL bold.
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Table 2.5. Comparisons ofWhole Scalp Activation based on Low Resolution
Electromagnetic Tomography (l~ORETA) for Error versus Correct Trials for FRNs
and P3s for Each Group, Maze l~evel, and Trial Type.

Level FRN P3
(E,rror vs Correct) (Error vs Correct)

Trial Youflger Older Younger Older
Type

4x4 Learn 7.18*** 3.09 7.77*** 8.22***
(4.28) (4.70) (4.07) (5.08)

Test 4.59*** 4.86 9.07*** 6.63**
(3.41) (5.31) (3.60) (4.84)

6x6 Learn 6.22** 7.20* 8.86*** 9.72**
(4.55) (5.96) (4.02) (5.47)

Test 8.29*** 6.43 12.60*** 8.47**
(3.95) (6.64) (3.64) (5.93)

8 x 8 Learn 7.18*** 3.67 9.12*** 5.61 *
(4.41) (4.53) (3.83) (4.66)

Test 7.83*** 4.18 9.90*** 7.91***
(3.. 6~?) (4.27) (3.45) (4.52)

Note: * == p < .05, ** == p < .01, *** == p < .001. Significance indicates that the t-value
associated with error relative to correct feedback was larger than the critical t-value.
Activation was measured at the time point ofpeak amplitude for each individual at Fz
for the FRN, and Cz for the P3. (~ritical t-values for each analysis are in brackets.
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Table 2.6. Results ofHierarchical Regression Analyses Predicting Mean Number ofErrors as
a Function ofAge Group and FRN/lmplitude for Each Maze Level and Trial Type.

Learn Trials Test Trials

Level Model R2~ F df sr2 R2~ F df sr2

4x4 Group .30 10.80*** 25 .30* .39 17.57*** 28 .39***

.05 .34**

FRN .13 5.51 * 24 .13* .01 .37 27 .01

.05 .33**

.13 .03
GxFRN <.01 .11 23 <.01 .05 2.17 26 .05

6x6 Group .12 3.10 23 .12 .33 10.74** 22 .33**

<.01 .18*
FRN .22 7.45* 22 .22* <.01 .04 21 <.01

.03 .06
<.01 .01

GxFRN .03 81") 21 .03 .01 .32 20 .01• - ..L.,

8x8 Group .09 2.59 25 .09 .33 13.12** 27 .33**

.01 .05
FRN .06 1.75 24 .06 .11 4.89* 26 .11 *

.01 <.01

.03 .14**
GxFRN .05 1.59 23 .05 .25 20.04*** 25 .25***

Note. * == p < .05, ** ==p < .01, *** == p < .001
sr2 represents the unique variance accounted for by the specific variable relative to other
variables in the equation in predictin.g error rate.
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Table 2.7. Summary ofMeans (SD.~) for Errors, Completion Times, FRNAmplitudes at
Fz, and P3 Amplitudes at Cz, by Trial Type and Group.

Trial Type

Younger

Mean Errors Time (ms) FRN~ax (~V) P3max(~V)

12.14 (1 .. 60) 53.38 (11.7) -1.62 (2.25)

18.53 (2 .. 93) 78.25 (15.2) -1.65 (2.13)

Learn 4.61 (0.89) 25.81 (5.9) -2.45 (2.08) 5.49 (3.66)

5.98 (3.90)

5.58 (3.61)

4.29 (2.36) 29.62 (5.1)

5.97 (4,.30) 41.18 (9.4)

Test

Older

1.16 (.82) 14.76 (3.2) -1.63 (3.30)

-1.07 (2.10)

-1.34 (2.43)

8.37 (4.76)

7.02 (3.54)

7.32 (4.47)

1.80 (0.93) - 5.44 (1.98)

1.75 (1.53) 4.67 (1.62)

Learn

Test

5.72 (1,.04) 32.83 (9.9)

13.04 (1 ..77) 67.51 (16.6)

19.75 (4..23) 97.41 (17.8)

3.03 (1.55) 24.41 (5.4)

9.22 (4.19) 48.78 (14.9)

13.97 (7 ..28) 67.56 (10.2)

1.44 (2.52)

-0.24 (1.49)

2.96 (1.27)

1.68 (1.16)

4.90 (2.65)

4.15 (2.32)

5.18 (2.11)

4.98 (1.61)
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Table 3.1. Results ofHierarchicall~egressionAnalyses Predicting Mean Number ofLearn-
Trial Errors as a Function ofGrouJ) and RSA or RPPfor Each Maze Level.

RSA RPP

Level Model R2~ F df sr2 Model R2~ F df sr2

4x4 Group .23 8.57** 28 .23** Group .18 5.50* 25 .18*

.10 .09

RSA .09 3.37 27 .09 RPP .04 1.19 24 .04

.01 .01
<.01 <.01

GxRSA <.01 .01 26 <.01 GxRPP .01 .43 23 .01

6x6 Group .06 1.89 28 .06 Group .02 .60 25 .02

.03 .02
RSA .02 .72 27 .02 RPP <.01 <.01 24 <.01

.05 .01

.02 .02
GxRSA .04 1.09 26 .04 GxRPP .02 .49 23 .02

8x8 Group <.01 .02 28 <.01 Group .01 .27 25 .01

.03 .01
RSA .23 8.03** 27 .23** RPP .24 7.78** 24 .24**

.03 .18*

.07 .06
G· x RSA .02 .58 26 .02 GxRPP .17 6.84* 23 .17*

Note. * == p < .05, ** == p < .01
sr2 represents the unique variance ac(~ounted for by the specific variable relative to other
variables in the equation in predicting error rate.
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Table 3.2. Results ofHierarchical.Regression Analyses Predicting Mean Number ofTest-Trial
Errors as a Function of'Group and "R~SA or RPPfor Each Maze Level.

RSA RPP

Level Model R2~ F1 df sr2 Model R2~ F df sr2

4x4 Group .33 13.65** 28 .33** Group .34 12.94** 25 .34**

.15* .25**

RSA .10 4.71* 27 .10* RPP .01 .22 24 .01

.02 .10*

.01 .11 *
GxRSA <.01 <.01 26 <.01 GxRPP .15 6.67* 23 .15*

6x6 Group .31 12.35** 28 .31 ** Group .31 11.10** 25 .31 **

.13* .19*
RSA .10 4.70* 27 .10* RPP .03 .98 24 .03

<.01 .10*
.02 .09

GxRSA <.01 .11 26 <.01 GxRPP .14 6.37* 23 .14*

8 x 8 Group .27 10.16:** 28 .27** Group .33 12.09** 25 .33**

.11 * .19*
RSA .10 4.31 >j:: 27 .10* RPP .04 1.61 24 .04

<.01 .09
.03 .08

GxRSA .01 .23 26 .01 GxRPP .13 5.99* 23 .13*

Note. * =p < .05, ** = p < .01
sr2 represents the unique variance accounted for by the specific variable relative to other variables
in the equation in predicting error rate.
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Table 3.3. Results ofHierarchical Regression Analyses Predicting FRNAmplitude as a Function
ofGroup and RSA for Each Maze l.;evel and Trial Type.

Learn Trials Test Trials

Level Model R?il F df sr2 R2il F df sr2

4x4 Group .36 14.35*** 26 .36*** .03 .78 26 .03

.20** <.01

RSA .05 2.06 25 .05 .12 3.35 25 .11

.05 .08
<.01 .15*

GxRSA .01 .30 24 <.01 .09 2.81 24 .09

6x6 Group .43 15.93** 21 .43*** .55 24.39*** 20 .55***

.30** .50***
RSA .07 2.73 20 .07 <.01 .03 19 <.01

.02 .10

.01 <.01
GxRSA <.01 .OL~ 19 <.01 .01 .47 18 .01

8 x 8 Group .30 10.01 ** 23 .30** .39 16.21*** 25 .39***

.13* .30**
RSA .05 1.60 22 .05 .01 .37 24 .01

<.01 .04
.05 <.01

GxRSA .03 .99 21 .03 <.01 .05 23 <.01

Note. * == p < .05, ** == p < .01, *** := p < .001
sr2 represents the unique variance accounted for by the specific variable relative to other variables
in the equation in predicting error rate.
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Table 3.4. Results ofHierarchical.Regression Analyses Predicting FRN Amplitude as a Function
ofGroup and RPPfor Each Maze Level and Trial Type.

Learn Trials Test Trials

Level Model R?~ 1:; df sr2 R2~ F df sr2

4x4 Group .40 14.72** 22 .40** .05 1.03 22 .05

.31 ** <.01

RPP <.01 .01 21 <.01 .25 7.44* 21 .25*

.05 .07

.02 .18*
GxRPP .02 .72 20 .02 .08 2.38 20 .08

6x6 Group .45 13.65** 17 .45** .54 18.94*** 16 .54***

.32** .49***
RPP .05 1.70 16 .05 .01 .16 15 <.01

.01 <.01
.01 <.01

GxRPP <.01 .02 15 <.01 .01 .18 14 <.01

8x8 Group .35 10.00** 19 .35** .40 13.96** 21 .40**

.26* .29**
RPP <.01 .07 18 <.01 .06 2.33 20 .06

.02 <.01
<.01 <.01

GxRPP <.01 .09 17 <.01 .01 .16 19 <.01

Note. * == p < .05, ** == p < .01, *** := p < .001
sr2 represents the ill1ique variance accounted for by the specific variable relative to other variables
in the equation in predicting error rate.



Table 3.5. Pearson r (=~orrelations Between Autonomic Indices and
Mean Error Rates on ,Learn and Test Trials as a Function ofMaze
Level and Group.

Group

Autonomic Index Maze Level Younger Older

RSA (Learn Trials) 4x4 -.31 -.35

6x6 .06 -.37

gxg -.56* -.40

RSA (Test Trials) 4x4 -.43t -.36

6x6 -.51 * -.31

gxg -.51 * -.28

RPP (Learn Trials) 4x4 .20 .29

6x6 -.11 .17

gxg .38 .80**

RPP (Test Trials) 4x4 -.24 .55t

6x6 -.05 .59*

g x 8 .05 .58*

Note. t == p < .08, * =1) < .05, ** == p < .01
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Table 4.1. Mean Proportion (S~D) ofItems Judged to be Study Words (aYes"
Responses) in the Source Memory Task as a Function ofGroup. N == 16younger~ 14
older.

Word Type

Group

Younger

Older

Study

.65 (.14)

.64 (.10)

Lure

.16(.08)

.48 (.20)

Foil

.04 (.03)

.10 (.07)
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Table 4.2. Mean Response Tin'~:es (SD) from Correct Trials in the Source Memory
Task as a Function ofGroup and Word Type. N == 5 younger~ 8 older.

Word Type

Group

Younger

Older

Study (ms)

851 (320)

983 (263)

Lure (ms)

943 (366)

858 (172)

Foil (ms)

1114 (633)

1075 (302)
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Table 4.3. Results o/Hierarchical Regression Analyses Predicting Behavioural
Responses in the Source Menrzory Task as a Function o/Group and IBI.

Model Word Type F df

Group Study .01 .12 24 .01

.03
IBI .04 .87 23 .04

.11

.16
G x IBI .13 3.30 22 .13

Group Lures .55 28.97*** 24 .54***

.73***
IBI .18 15.78** 23 .18**

.07*
<.01

G x IBI .02 1.68 22 .02

Group Foils .17 4.95* 24 .16*

.21 *
IBI .05 1.31 23 .05

.16*

.06
G x IBI .02 3.60 22 .11

Note. * =p < .05, ** =p < .Ol~. *** =p < .001
sr2 represents the unique variallce accounted for by the specific variable relative to
othe,r variables in the equatiol1 in predicting error rate.
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Table 4.4. Results ofHierarchical Regression Analyses Predicting Behavioural
Responses in the Source Men1.ory Task as a Function ofGroup and RSA.

Model Word Type R?~ F df sr2

Group Study .03 .54 21 .02

<.01
RSA .01 .14 20 .01

.08

.11
GxRSA .10 2.26 19 .10

Group Lures .57 27.70*** 21 .57***

.14**
RSA .14 9.10** 20 .14**

.12**
.01

GxRSA .06 5.20* 19 .06*

Group Foils .18 4.56* 21 .18*

.02
RSA .09 2.37 20 .09

.12

.04
GxRSA .10 2.84 19 .10

Note. * == p < .05, ** == p < .Ol~, *** == p < .001
sr2 represents the unique varian,ee accounted for by the specific variable relative to
other variables in the equatiol1 in predicting error rate.
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Table 4.5. Results ofHierarchical Regression Analyses Predicting Behavioural
Responses in the Source Memory Task as a Function ofGroup and RPP.

Model Word Type F df

Group Study .02 .42 24 .02

.01
RPP .01 .11 23 .01

<.01
<.01

GxRPP <.01 .01 22 <.01

Group Lures .58 32.62*** 24 .58***

.38***
RPP .12 9.04** 23 .12**

.01

.01
GxRPP .04 3.51 22 .04

Group Foils .18 5.20* 24 .18*

.15
RPP <.01 .09 23 <.01

.01

.02
GxRPP .03 .86 22 .03

Note. * = p < .05, ** =p < .Ol~, *** = p < .001
sr2 represents the unique varial1ce accounted for by the specific variable relative to
other variables in the equatiol1 in predicting error rate.



Table 4.6. Pearson r Correlations between Autonon1ic Indices and
Behavioural Responses in the Source Melnory Task as a Function of
Word Type and Group.

Group

Autonomic WOfel ~rype Younger Older
Index

IBI Stu.<iy .45 -.24

Lllres -.64** -.68*

Foils .23 -.46

RSA Study .18 -.19

Lllrles -.16 -.79**

Foils .14 -.52

RPP Stu(ly -.07 -.07

Llltes .37 .67*

Foils -.24 .20

Note. * == p < .05, ** == J) < .01
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Table 4.7. Peak Parietal Stim-ulus-Locked LPC Amplitudes (SD) in Microvolts
Associated with Different Worcl Types (Study, Lure, Foil) in the Source Memory Task
as a Function ofGroup. N =: 11 younger, 9 older.

Word Type

Group

Younger

Older

Study (llV)

1.09 (.75)

.19(.62)

Lure (flV)

.60 (.73)

.44(1.31)

Foil (JlV)

.32 (.62)

.30 (1.16)
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Table 4.8. Results ofHierarchical Regression Analyses Predicting Parietal LPC
Amplitude Associated with Previously Studied Words, Familiar Lures, and Foils in the
Source Memory Task as a Fun,ction ofGroup and RSA.

Model

Group

RSA

GxRSA

Word
Type

Study .38

.06

<.01

F

9.81 **

1.68

.08

df

16

15

14

.38**

.42**

.06

.05

.02
<.01

Group Lures .02 .29 16 .02

.21 *
RSA .36 8.53* 15 .37*

.01
<.01

GxRSA .05 1.23 14 .05

Group Foils .01 .15 16 .01

.14
RSA .27 5.53* 15 .27*

.02

.01
GxRSA .07 1.40 14 .07

Note. * == p < .05, ** == p < .01.
sr2 represents the unique varia~nee accounted for by the specific variable relative to
other variables in the equatioll in predicting error rate.
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Table 4.9. Res'ults o/Hierarchical Regression Analyses Predicting Parietal LPC
Amplitude Associated with Previously Studied Words, Familiar Lures, and Foils in the
Source Memory Task as a Function ofGroup and RPP.

Model

Group

RPP

GxRPP

Word Type

Study .27

<.01

<.01

F

5.90*

.05

.01

df

16

15

14

2sr

.27*

.18
<.01

<.01
<.01
<.01

Group Lures <.01 .07 16 <.01

.18*
RPP .52 16.44** 15 .52**

.06
<.01

GxRPP .03 .95 14 .03

Group Foils, <.01 .01 16 <.01

.06
RPP .25 5.04* 15 .25*

.13

.03
GxRPP .11 2.32 14 .11

Note. * = p < .05, ** = p < .01
sr2 represents the unique variance accounted for by the specific variable relative to
other variables in the equation in predicting error rate.



Table 4.10. Pearson r C7orrelations between Autonomic Variables and
Electrocortical Response (I-,PC) to Test Words in the Source Memory
Task as a Function a/Word Type and Group.

Group

Autonomic Index We>!d..Type Younger Older

RSA Study -.27 -.17

Lures -.35 -.69t

Foils -.22 -.58

RPP Study -.02 -.11

Lures .71* .75*

Foils .17 .67

Note. t == p < .06; * == p <-: .05
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Table 4.11. Mean Proportion Correct (SD) in the Congruent and Incongruent
Conditions ofthe Standard Flanker Task as a Function ofGroup. N = 19 younger, 20
older.

Error Type

Group
Younger

Older

Incongruent

.91 (.08)

.90 (.05)

Congruent

.94 (.04)

.94 (.04)
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Table 4.12. Mean Response ~;times (SD) to Correct Trials in the Congruent and
Incongruent Conditions ofthe Standard Flanker Task as a Function ofGroup.
N == 19 younger, 20 older.

Error Type

Group
Younger

Older

Incongruent (ms)

460 (66)

562 (76)

Congruent (ms)

422 (63)

517 (76)



182

Table 4.13. Peak ERNAmplitudes (SD) in Microvolts During the Standard Flanker
Task as a Function ofGroup and Site. N == 18 younger, 18 older.

Group Site ERN Amplitude

Younger Fz -4.61 (4.73)

FCz -6.92 (6.26)

Cz -7.11 (6.00)

pz -2.62 (4.15)

-5.31 (1.26)

Older Fz

FCz

Cz

pz

.49 (6.39)

.14 (6.71)

-.09 (6.27)

.78 (4.25)

.33 (1.26)

Note: Marginal means (stanclarderrors) are in bold.



Table 4.14. Mean Proportion Correct (SD) in the Difficult Flanker Taskfor
Younger Adults as a Functio.n ofCondition and Block. N == 19.

183

Condition Block Proportion Correct

Congruent 1 .90 (.06)

Stimulus Incongruent 1 .91 (.07)

Response Incongruent 1 .81 (.08)

.87 (.02)

Con.gruent

Stimulus Incongruent

Response Incongruent

2

2

2

.91 (.06)

.92 (.08)

.82 (.10)

.89 (.02)

Note: Marginal means (stand,ard errors) are in bold.
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Table 4.15. Mean Response ~j~imes (SD) from Correct Trials in the Difficult Flanker
Taskfor Younger Adults as a Function ofCondition and Block. N == 19.

Condition Block Response Time (ms)

Congruent 1 450 (55)

Stimulus Incongruent 1 470 (42)

Response Incongruent 1 517 (70)

479 (12)

Congruent

Stimulus Incongruent

Response Incongruent

2

2

2

418 (57)

441 (53)

489 (69)

449 (13)

Note: Marginal means (stanclard errors) are in bold.
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Table 4.16. Peak ERNAmplitudes (SD) in Microvolts During the Difficult Flanker
Task/or Younger Adults as Cl Function o/Site. N == 15.

Site Block ERN Amplitude

Fz 1 -3.84 (3.56)

FCz 1 -4.63 (3.24)

Cz 1 -4.05 (2.81)

pz 1 -.29 (2.57)

-3.20 (.70)

Fz 2 -4.33 (3.82)

FCz 2 -6.10 (4.33)

Cz 2 -5.47 (4.44)

pz 2 -1.15 (1.87)

-4.27 (.81)

Note: Marginal means (stan.dard errors) are in bold.
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Groton Maze Learning Test:
4 x 4 grid

D
DD
DD

Start II..... D D D
DDDD
DDDD
DDD

DD
•D

(Repeat x 2)

... Finish

Error! Go back one.
Try again.

Success!

Figure 2.1. Depiction of the maze task. Tiles that have
turned green (here shown in grey) indicate that a
correct choice has been made. Tiles that have turned
red (here shown in black) indicate an error.
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Figure 2.2. Mean accuracy rates for the maze task as a
function of maze level, trial type, and group.
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Figure 2.3. Mean completion times for the maze task as a
function of maze level, trial type, and group.
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Younger Adults (4 x 4 Maze)
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Figure 2.4. Averaged ERP waveforms,from error and correct trials for younger adults
in learn and test conditions collapsed across 8 unique mazes at the 4 x 4 maze level.
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Older Adults (4 x 4 Maze)
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Figure 2.5. Averaged ERP waveforms· from error and correct trials for older adults in
learn and test conditions collapsed across 8 unique mazes at the 4 x 4 maze level.
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Learn Trials (4 x 4 Grids)
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Figure 2.6. Topographies of the FRN and feedback P3 on error trials
of the 4 x 4 maze in the learn condition, as a function of group.
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Test Trials (4 x 4 Grids)
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Figure 2.7. Topographies of the FRN and feedback P3 on error trials
of the 4 x 4 maze in the test condition, as a function of group.
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Figure 2.8. Graphical representation of LORETA t statistics comparing
FRN activation, as a function of maze level, trial type and group. T-values
are ndicated above each figure. The asterisk indicates that the t-statistic

for the maximum difference in this medial region exceeds the critical t-value
for significance.
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Figure 2.9. Graphical representation of LORETA t statistics comparing
P3 activation, as a function of maze level, trial type and group. T-values
are ndicated above each figure. The asterisk indicates that the t-statistic
for the maximum difference in this medial region exceeds the critical t-value
for significance.
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Figure 4.1. Depiction of the source memory task. Participants press "Yes" for a
test word that appeared in the study list and "No" for any other word. Lures are
repeated new words in the test list.
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older adults (n =8). Correct trials.
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Appendix B

Health and Medical History Questionnaire (Check all that apply) Study: _
Subject ID code: Age: __ Gender: __ Date: _

Item Past Continuing problem/relevant details
Vision Problems

Hearing Problems

Problems with Language (speech,
word finding, stuttering)
Serious Headaches

Special Problems with Reading

Special Problems with Arithmetic or
Number Skills
General Fatigue

Chronic Fatigue Syndrome

Mono, Epstein Barr, HIV, or other
long-lasting virus
Serious Accident

Head Injury/Concussion

Loss of Consciousness-

Fainting or Dizziness

Seizure Disorder (Epilepsy)

Major Surgery (recent, last few
years)
Recent Major Stress (e.g., death in
familylhealth concerns, in last year)
Problems with appetite/eating
(eating more or less than required)
Asthma/serious allergies

Arthritis/rheumatism or other
movement/motor problems
Paralysis/numbness

Autoimmune Disorders (e.g., Lupus,
Multiple Sclerosis)
Serious InfectionslFevers
(e.g., Tuberculosis)
Diabetes

Heart Disease/irregularities
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Hypertension (High Blood Pressure)

High Cholesterolltriglycerides

Chronic Obstructive Lung Disease

Disease/dysfunction of major organs
(e.g., liver, kidneys)
Problems with attention or
concentration (e.g., ADD)
Problems with activity level
(hyperactivity)
Problems with mood
(Depression!Anxiety)
Other Psychiatric problems

Problems with sleep (e.g., falling
asleep, frequent or early waking)
Other serious disease/health
concerns (e.g., cancer; chronic pain)

Medications
Are you taking any prescribed or over-the-counter medications?
Medication Purpose

"~

..

h' h 5 h' h)d4d3
Use of Stimulants/Suppressants
(0 1 r h 2 r h d== none; == v. IZI t; == IZI t to rno erate; == rno erate; == rno erate to 19l; == IZI

caffeine (coffee, tea, chocolate, soft drinks)

alcohol (beer, wine, liquor)

Nicotine

recreational or mood altering drugs
(soft, e.g., marijuana)

Recreational-- harder drugs (e.g., cocaine)

General Health Practices:
Exercise (how strenuous,
how often?)
Diet (healthy choices?
How consistent?)
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Appendix C

NAME: HADS DATE:

This questionnaire is designed to help identify how you feel. Read each question and check the
response which comes closest to have you have been feeling in t1le pastfew weeks. Don't take too
long on anyone question; your immediate reaction to each item is what is of interest. .

]) I feel tense or "wound up":
Most of the time
A lot of the time
Time to time, occasionally
Not at all

3) Tstill enjoy the things I used to enjoy:
Definitely !\S much
Not quite so much
Only a little
Hardly at all

5) I get a sort of frightened feeling, as jf
something awful is about to happen:

Very definitely and quite badly
Yes, but not too badly
A little, but it doesn't worry rna
Not at al!

7) I can laugh and see the funny side of things:
As much as I always could
Not quite so much now
Definitely not So much now
Not at all

9) Worrying thoughts go through my min.d:
A great deal of the time
A lot of the time
From time to time, not too often
Only occasionally

] ]) .T feel cheerful:
Not at all
Not often
Sometimes
Most of the time

13) I cao sit at ease lUld feel relaxed:
Definitely
Usually
Not often
Not at all

2) 1 feel as jfI am slowed down:
Nearly all the time
Very often
Sometimes
Not at all

4) I get a sort of frightened feeling like "butterflies"
in the stomach:

Not at all
Occasionally
Quite often
Very often

6) I have lost interest in my appearance:
Definitely
I don't!\S much care as IshouJd
I may not take quite as much care
I take just as much care as ever

8) r feet restless as if! have to be on the move:
Very much .indeed
Quite a lot
Not very much
Not at all

10) I look forward with enjoyment to things:
As much as I ever did
Rather less than Tused to
Definitely less than I used to
Hardly at all

, 12) 1 get sudden feelings of panic:
Very often indeed
Quite often
Not very often
Not at all

14) 1 can enjoy a good book, radio, 0'(' TV programme:
Often
Sometimes
Not often
Very seldom
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.Mini-Mental Stat~ Examination (MMSE)
(Instructions for the administration of the MMSE

have been provided on the reverse)

Patient's Name

Rated by

Maximum
Score

5
5

3

5

3

Score

Date

ORIENTATION
What is the (year) (season) (date) (day) (month)?
Where are we: (province) (country) (town or city) (hospital) (floor)?

REGISTRATION
Name 3 common objects (e.g., "apple," "table;" "penny").
Take 1 second to say each. Then ask the patient to repeat all 3 after you have said them.
Give 1 point for each correct answer. Then repeat them until he/she learns all 3.
Make a maximum of 6 trials. Count trials and record. Trials:

ATTENTION AND CALCULATION
Spell "world" backwards. The score is the number of letters in correct order (D_L~R_O_W_).
[Note: Instead of "world", the following may be used - subtract 7 from 100 and keep
subtracting 7 from the result until you tell him/her to stop.]

RECALL
Ask for the 3 objects repeated above. Give 1 point for each correct answer.
[Note: Recall cannot be tested if all 3 objects were not remembered during registration.]

2
1
3

Total Score

LANGUAGE
Name a "pencil," and a "watch."
Repeat the folloWing: "No ifs, ands, or buts."
Follow a 3·stage cpmmand:
"Take a paper in your right hand,
fold it in half, and put it on the flooL"

READ AND OBEY THE FOLLOWING:
Close your eyes.
Write a sentence.
Copy the following design.

No construction problem

(2 points)
(1 point)

(3 points)

(1 point)
(1 point)
(l point)

Adapted from Fohtein MF, Folstein SE. and McHugh PIt "'Mini-Mental State": a practical method f<?r ,grading the cogniti~e .
nate of patients for the clinician./ Psychiorr RtS 19"75;12:196-8 and CockrelljR. and Folstein MF. MinI-Mental State ExamInation (MMSE).
Psychophorm Bu/l1988;24(4):689-9-2.
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Instructions for Administration of
Mini-Mental State Examination (MMSE)

OrientatIon

Registration

Attention

and Calculation'

Recall

Language

1. Ask for the date. Then ask specifically for parts omitted, e.g., "Can you also tell me what season it is?"

Score one point for each correct answer.

2. Ask in tum: "Can you tell me the name of this hospital?" (town, country, etc.)

Score one point for each correct answer.

Ask the patient if you may test his/her memory. Then say the names of 3 unrelated objects, clearly and

slowly, about one second for each. After you have said all 3, ask the patient to repeat them. This first

repetition determines his/her score (0-3) but keep saying them until he/she can repeat all 3, up to 6 trials.

If all 3 are not eventually learned, recall cannot be meaningfully tested.

Ask the patient to spell the word "world" backwards. The score is the number of letters in correct order

(e.g., DLROW=5; DLRW=4; DLW=3; OW=2; LDRWO=l).

Alternative: Ask the patient to subtract 7 from 100, stopping after 5 subtractions (93, 86, 79, 72, 65).

The score is 1 point for each correct answer.

Ask the patient if he/she can recall the 3 words you previously asked him/her to remember. Score 0-3.

Naming: Show the patient a \\Tistwatch and ask him/her what it is. Repeat for pencil. Score 0-2.

Repetition: Ask the patient to repeat the sentence after you. Allow only one trial. Score 0 or 1.

3-stage command: Give the patient a piece of plain blank paper and repeat the command.

Score 1 point for each part correctly ~"(ecuted.

Reading: On a blank piece of paper print the sentence, "Close your eyes," in letters large enough

for the patient to see clearly. Ask him/her to read it and do what it says. Score 1 point only if he/she actually

closes his/her eyes.

Writing: Give the patient a blank piece of paper and ask him/her to write a sentence for you. Do not dictate

a sentence; it is to be written spontaneously. It must contain a subject and verb and be sensible. Correct

grammar and punctuation are not necessary.

Copying: On a clean piece of paper, draw intersecting pentagons, each side about 1 in., and ask him/her to

copy it exactly as it is. All 10 angles must be present and 2 must inter~ct to score 1 point. Tremor and rota­

tion are ignored.
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EIit3 The Speed
.. and Capacity
r.::"c'::;:'.-; of Language-ProcessingTest·

The Spot-the-WordTest Version B

This is a test of your knowledge of words. You
will be asked to decide which of two items, such
as 'bread' and 'glot', is a real word and which is an
invented item; 'bread', of course, is the real word.

Each of the pairs of items below contains one real
word and one nonsense word, invented so as to look
like a word but having no meaning. Please tick the
item in each pair that you think is the real word.
Some will be common words, most will be unco~­
mon and some very rarely used. If you are unsure,
guess, you will probably be right more often than
you think.

Before you begin the main test try the following.

Practice
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kitchen

. puma

plorifmm

cuticle

flonty

craxent

Are there any questions?

harrick

laptess

levity

andrinand

xylophone

sofa



slank chariot

lentil glotex

stamen dombus

loba comet

pylon strain

scrapten flannel

fender ullus

ragspur joust

milliary mantis

sterile paltp.

proctive monotheism

glivular. stallion

intervantation rictus

byz~ntine chloriant

monologue rufine

elegy festant

malign vago

exomze gelding

bulliner trireme

visagt hyperlistie

froin oratory

meridian phillidism

grottle strumpet

equme psynomy

baggalette riposte

valance plesmoid

introvert vinadism

penumbra rubiant

breen malinger

gammon unterried
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coracle prestasis

paramour imbulasm

dallow octatoon

fleggary carnation

liminoid agnostic

naquescent plinth

thole leptine

crattish reform

wraith stribble

metulate pristine

pauper' - progotic

aurant - baleen

palindrome lentathic

hedgehog mordler

prassy ferret

torbate drumlin

texture disenrupted

isomorphic thassiary

fremoid vitriol

farrago gesticity

minidyne hermeneutic

pusality chaos

devastate prallage

peremptory paralepsy

chalper camera

roster falluate

scaline accolade

methagenate pleonasm

drobble infiltrate

mystical harreen

219
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Appendix F

Aging 04
Maze Task Instructions

4 by4
-"This next task involves learning a hidden route through a maze. This first maze is made

up of 16 squares arranged in a 4 by 4 pattern. You will start in the top left-hand corner

and your goal is to find the path to the bottom right-hand corner. The maze will look

something like this (Show page). -"In order to move from the start to the end, you will

use the arrow keys. Just press the button that points in the direction that you need to go

you are currently on."

.....-+ ~.?-
I ,

~ '"? X.

END

x

in. You can only move to any square that is to ~he left, right, above or below the square

~ V c.~t to 11 ft«- ~"d
Note: Start, end & directions. or moue.- a~OJ 811di~

"Since the correct path is hidden you will get feedback every time you make a move. Use

this feedback to try and learn the whole correct path from start to finish. If you make a

correct move, the box you've moved to will change to green (then a green cross). If you

make a mistake the box you've moved to will go red (then a red cross). If you make a

mistake, just go back to the square you were at to get back on the right path. Once you've

moved you will have to wait a short moment before making your next move." (Show next

page)



ICorrect MoveI Incorrect Move

+

+•
••••...

t
I

+

+

••••••...
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+
I

~

-"The path goes from block to block in irregular paths. There is only one correct path in

each display and the path will never cross over itself. Here is what an example path might

.look like if you could see all the right moves:"

Note: "You would have to follow the
path exactly as shown, going in the
directions the arrows are pointing.
There are no shortcuts"

END
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-"You will get 8, '4 by 4' mazes to do. The first time you go through it you will just be

guessing where to go. But try to remember the right path so you don't have to guess as

much on the next run through the maze. You will go through each of these small'4 by 4'

mazes three times. Once to learn it and then twice to see if you can remember the right

way. Don't expect to be able to remember the mazes on the first time through, just try

your best and guess when you need to."

"After we have finished the 8, '4 by 4' mazes we will do some larger more difficult

mazes. Any questions? Ready" (Start 4 by 4 mazes)

6 by 6 Mazes:

-"The next set we will do has 36 squares arranged '6 by 6'. All the same rules apply. This

will be harder then the last set so just try your best to get through the maze in the fewest

steps and guess when you need to. There are 4 of these mazes and you will have a chance

. to do each of them 4 times. The first trial is to start learning the way through and this time

you will have 3 chances to try and remember the correct path. Any questions?" (Start

task)

8 by 8 Maze:

-"Now we will do the final set of mazes which are' 8 by 8' or 64 squares large. This will

be quite difficult but just try your best. All the same rules apply as before. You will do 2

different mazes and will do them each 5 times. One trial to try and learn the maze and

four trials to try and remember where the correct path was. Any questions?" (Start task)
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Appendix G

Instructions to Participants: Day l-Karen& Bill, March 2004

1. Baseline heart rateIPre: (Aging04_S#_OlHRpre) Please rest quietly for a few minutes, with
your eyes open, looking at the computer screen. Just relax and feel free to blink as needed.

[Change EEG files now].

2. a) Lag Part A: Study Phase: (Aging04_S#_OlLagA).
Use merged version of LagA, combining study and test list in one file.

You are going to see some words appear one at a time on the computer screen. This is the
'study list'. I want you to read each word out loud and try to remember each word in case
you should see it later.

b) Lag A: Test Phase:
[Set up red cards at either side ofpt's monitor: Study on one side, Others on the other side].

Now you are going to view another list of words. In this list you will see some words from
the study list and you'll see some new words. You don't need to say theme this time. What I
want you to do is press the __ key whenever you see a word form the study list. Now,
some of the new words may repeat, but don't worry about that. Your. job is to look for the
old words, the ones from the study list. Whenever you see a word from the study list, press
the __ key. For all of the other words, press the __ key. Please try to withhold your
blink until after you have made your decision and hit the appropriate key.
So, if you see a word from the study list, show me which key you will press. __ (Watch
them.) That's right. Ifyou see a word that was not from the study list, show me which key
YOlJ will press. __ Rightagain. Do you have any questions?

[Change EEG files now].

3. Easier Flanker Task (Flanker A): (Aging04_S#_OlFlankA)
[Set up red cards at either side of monitor: H on one side, S on other].

Now we will do a different task. You will see a string of 5 letters on the screen. Your task is
to identify the centre letter in the string.
If it is an H, press the __ key. On the other hand, if it is an S, press the __ key.
(Show examples on 4 cards: HHHHH, SSSSS, SSHSS, HHSHH).
Ifyou saw this, which key ~ould you press? _
Ifyou saw this, which key would you press? _
If you saw this, which key would you press? _
Ifyou saw this, which key would you press? _

The letter strings will appear and disappear rather quickly and there is quite a number of
them. If you make a mistake, don't worry, keep going with the new strings as they appear
on the screen.



224

There will be two pauses to let you "catch your breath/clear your head" . When they occur,
just rest until the letter strings start again.
Again, please try to blink lightly and try not to blink at exactly the moment when you make
your response.
Do you have any questions?
Once again, if the centre letter is an H, which key do you press? If it is an S, which key do
you press?

[Change EEG files now].

4. a) Lag B: Study Phase: Aging04_S#_OlLagB

Now we are going to repeat the first task but with new words. Again you will see some
words appear one at a time on the computer screen. This is a brand new 'study list'. Please
read each word out loud and try to remember these words for later.

b) Lag B: Test Phase: [Set up red cards again: Study, Other].

/ Now you are going to view another list of words. In this next list you'll see words from the
second study list and new words you haven't seen yet today. As before, your job is to hit the
__ key whenever you see a study word. For all of the other words, which are not from the
new study list, press the __ key. Please try to withhold your blink until after you have
made your decision and hit the appropriate key.
So, if you see a word from the study list, show me which key you will press. That's right. If
you see a word that was not from this study list, show me which key you will press. __"
Right. If you see a study word, which key? __ Right. Do you have any questions?

[Change EEG files now].

5. Break-juice, muffin, water, orange juice, tea, cookies, granola bars. You might want to close
your eyes for a minute or two, to give them a rest.

6. Difficult Flanker Task: (HHPHH, SSXSS; Aging04_S#_OlFlankBi).
[Set up red cards on either side of monitor: H, P on one side, S, X on other].

Now we will do another letter task that is similar to one you did before. You will see a
string of 5 letters on the screen, as before. Again, your task is to identify the centre letter in
the string. This time, if it is an H or a P, press the __ key with your __"hand. If it is an
S or an X, press the __ key with your __ hand.
(Show examples on 6 cards: HHHHH, SSSSS, HHPHH SSXSS, HHXHH, SSPSS).
If you saw this, which key would you press? _
Ifyou saw this, which key would you press? _
If you saw this, which key would you press? _
Ifyou saw this, which key would you press? _
If you saw this, which key would you press? _
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If you saw this, which key would you press? _

Again, if you make a mistake, don't worry, keep going with the new strings as they appear
on the screen.
There will be one pause. When it happens, just rest until the letter strings start again.
This letter task is shorter than the last letter task you did.
Do you have any questions?
Please try, as best you can, not to blink at exactly the moment when you make your
response.
Once again, if the centre letter is an H or P, which key do you press? That's right. If it is an
S or X, which key do you press? Right.

[Change EEG files now].

7. a) Lag L Study Phase: (Aging04_S#_sessionILagL)

Ok, now you will see a new study list on the screen. Just read each word out loud, and try
to remember it in case you come across it later.

b) Lag L: Test Phase: [Set up red cartls again: Study, Other].

Now some more words will be presented on the screen. Please press the __ key whenever
you see a study word. For all of the other words, press the _._ key. Please try to withhold
your blink until after you have hit the appropriate key.

[Change EEG files now].

8.. Difficult Flanker Task: (HHPHH, ~SXSS; Aging04_S#_OIFlankBBii).
[Set up H,P, and S,X cards on either side of monitor].

Now we will do another letter task that is the same as the last one you did.

You will see a string of 5 letters on the screen, as before. Again, your task is to identify the
centre letter in the string. If it is an H or a P, press the _.__ key with your __hand. If it
is an S or an X, press the _._ key with your __ hand.

[Only if necessary, show examples on 6 cards: HHHHH, SSSSS, HHPHH SSXSS, HHXHH,
SSPSS).
If you saw this, which key would you press? _
If you saw this, which key would you press? _
Ifyou saw this, which key would you press? _
Ifyou saw this, which key would you press? _
If you saw this, which key would you press? _
Ifyou saw this, which key would you press? 1

Again, if you make a mistake, don't worry, keep going with the new strings as they appear
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on the screen. This letter task is the shorter one.
Once again, if the centre letter is an H or P, which key do you press? That's right. If it is an
S or X, which key do you press? Right.

[Change EEG files now].

9. a) Lag M: Study Phase: (Aging04_S#_01LagM)

Now we are beginning the last task for today. I will show you one more study list. Again
you will see some words appear one at a time on the computer screen. lwant you to read
the words out loud and try to remember them in case you see them 'again later.

b) Lag M: Test Phase: [Set up red cards: Study, Others].

This is the very last list of words. Please press the __ key whenever you see a study word.
For all of the other words, which are not from that study list, press the __ key. It is
important not to miss any study words if you can help it.

[Change EEG files now].

10. Baseline heart rate/Post: Aging04_S#_01HRpost.

Please rest quietly for a few minutes, with your eyes open, looking at the computer screen.
Just relax and feel free to blink as needed.

[Stop recording].
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