
Using Deep Learning for
Predicting Stock Trends

Arvand Fazeli

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Department of Computer Science

Brock University
St. Catharines, Ontario

c©Arvand Fazeli, 2019

Abstract

Deep learning has shown great promise in solving complicated problems in recent

years. One applicable area is finance. In this study, deep learning will be used to

test the predictability of stock trends. Stock markets are known to be volatile, prices

fluctuate, and there are many complicated financial indicators involved. While the

opinion of researchers differ about the predictability of stocks, it has been shown

by previous empirical studies that some aspects of stock markets can be predictable

to some extent. Various data including news or financial indicators can be used to

predict stock prices. In this study, the focus will be on using past stock prices and

using technical indicators to increase the performance of the results. The goal of this

study is to measure the accuracy of predictions and evaluate the results. Historical

data is gathered for Apple, Microsoft, Google and Intel stocks. A prediction model

is created by using past data and technical indicators were used as features in the

model. The experiments were performed by using long short-term memory networks.

Different approaches and techniques were tested to boost the performance of the

results. To prove the usability of the final model in the real world and measure the

profitability of results backtesting was performed. The final results show that while

it is not possible to predict the exact price of a stock in the future to gain profitable

results, deep learning can be used to predict the trend of stock markets to generate

buy and sell signals.

Acknowledgements

I would like to extend my deepest gratitude to my supervisor Professor Sheridan

Houghten. Thank you for your encouragement, patience and kind support through

this process.

I would also like to thank Professor Brian J.Ross and Professor Ke Qiu for their

dedication and hard work.

I would like to thank my wife for her support and continued encouragement.

Contents

1 Introduction 1

1.1 Predicting Stock Returns . 1

1.2 Thesis Structure . 2

2 Background 3

2.1 Financial Background . 3

2.1.1 Technical Analysis . 3

2.1.2 Backtesting . 7

2.2 Deep Learning . 8

2.2.1 Artificial Neural Networks . 8

2.2.2 Recurrent Neural Networks 9

2.2.3 Long-Short Term Memory . 10

2.2.4 Training Neural Networks . 11

3 Literature Review 16

3.1 Deep Portfolio . 16

3.2 Textual Analysis . 17

3.3 Fundamental Analysis . 17

3.4 Technical Analysis . 18

3.5 Hyperparameter Optimization . 20

3.6 The Importance of Backtesting . 20

4 Methodology 22

4.1 Data . 22

4.2 Training the model . 23

4.2.1 Multivariate Time Series . 24

4.2.2 Features . 24

4.2.3 Feature Scaling . 24

4.2.4 Stacked Long Short Term Memory 24

4.2.5 Reducing Overfitting . 26

4.2.6 Overall Architecture . 26

4.3 Frameworks and Libraries . 28

4.4 Experiments . 28

4.4.1 Initial Experiments . 28

4.4.2 Final Experiments . 29

4.4.3 Hyperparameter Optimization 30

4.4.4 Backtesting . 32

5 Results and Discussion 33

5.1 Calculating Returns . 33

5.2 The Effect of Technical Indicators . 38

5.3 Hyperparameter Optimization Results 38

5.3.1 Analysis of results . 38

5.4 Final Experiments . 44

5.4.1 Comparing Results . 44

5.5 Testing Other Stocks . 45

6 Conclusion and Future Work 46

Bibliography 52

Appendices 53

A Results of other stocks. 53

A.1 MSFT (Microsoft) . 53

A.2 GOOG (Google) . 55

A.3 INTC (Intel) . 56

List of Tables

2.1 Activation functions . 13

4.1 Features . 26

4.2 Parameter space for optimizing . 30

5.1 The effect of technical indicators. 38

5.2 Ten best results of hyperparameter optimization 40

5.3 Best hyperparameters found after optimization 40

5.4 Comparing the results of conducted experiments. 45

5.5 Comparing ROI for different stocks. 45

List of Figures

2.1 Example of MACD and its histogram [34]. 6

2.2 Buy (green arrow) and sell (red arrow) signals 8

2.3 Perceptron [35] . 9

2.4 LSTM Network [37] . 11

2.5 Error surface (E) of a linear neuron with two input weight (w1, w2) [36] 12

4.1 Records of AAPL stock price for different days 23

4.2 AAPL closing price for the period of five years 23

4.3 Technical indicators calculated and plotted for initial data. 25

4.4 Architecture of the model . 27

4.5 Buy (green marks) and sell (yellow marks) signals. 29

4.6 Talos Hyperparameter tuning workflow [17] (MIT License) 31

5.1 Validation loss for 100 epochs . 34

5.2 Original and predicted data for MACD Histogram. 34

5.3 Predicted MACD Histogram with zero line 35

5.4 Log of trades using Backtrader. 36

5.5 Backtesting using Backtrader. Buy and sell signals are generated for

the test period (after red line). 37

5.6 Change of MSE during the hyperparameter optimization. 39

5.7 The effect of activation functions on the MSE during hyperparameter

optimization . 41

5.8 The effect of different optimizers on the Mean Squared Error(MSE)

during hyperparameter optimization 42

5.9 The effect of loss function and optimizer on the performance of the

model during hyperparameter optimization. 43

5.10 Loss of the model after hyperparameter optimization 44

5.11 Original and Predicted data . 45

A.1 Original and Predicted data . 53

A.2 Predicted MACD Histogram with cross line 54

A.3 Backtesting the data for test period. 54

A.4 Original and Predicted data . 55

A.5 Predicted MACD Histogram with cross line 55

A.6 Backtesting the data for test period. 56

A.7 Original and Predicted data . 57

A.8 Predicted MACD Histogram with cross line 57

A.9 Backtesting the data for test period. 58

Chapter 1

Introduction

The goal of this chapter is to briefly explain the problem of predicting stock returns

and the proposed solution. The structure of the thesis is found at the end of this

chapter.

1.1 Predicting Stock Returns

A stock is a type of security that represents a claim on a part of the corporation’s

assets and earnings, and a stock market is a place where shares of publicly listed

companies are traded. There has been much research on the predictability of stock

markets, and although researchers have different opinions, many empirical studies

show that some aspects of stock markets can be predicted [30].

There are multiple ways to predict the volatile prices of stocks. Information,

including news, tweets, technical indicators, and fundamental indicators, could be

represented in such a way to be analyzable by computers. The processed information

will later be used to find patterns for predicting future prices. One of the most famous

indicators are technical indicators. Technical indicators are mathematical outputs

that use prices from the past to gain better insight about future price movements.

For making investment decisions machine learning models can be incorporated to

make predictions. A sub-field of machine learning is deep learning. Deep learning is

inspired by the structure and function of the brain, and has revolutionized pattern

recognition and machine learning in recent years [22]. Deep learning has been the

main cause for major improvements in speech recognition, image recognition, and

other areas. While it may be hoped to gain similar results in time series prediction,

researchers have pointed out that neural networks can be difficult to train, and con-

figurations of parameters must be tuned to improve the performance of deep learning

1

CHAPTER 1. INTRODUCTION 2

[40].

In this study, deep learning along with technical indicators are used to predict the

price of stocks. A suite of long short-term memory (LSTM) networks is developed

for a range of time series prediction. Different architectures are tested to improve

the performance, and after the initial experiments, we propose a new solution to

create a profitable model: instead of predicting the prices, we focus on predicting the

trends. In the last chapter, the difference between the values of LSTM prediction and

backtesting is explained and we test the profitability of the model by using backtesting

to reach practical results.

1.2 Thesis Structure

The chapters in this thesis are as follows. Chapter 2 gives an introduction to deep

learning and technical analysis. LSTM networks are explained and technical indica-

tors are also described. Chapter 3 reviews previous work related to the thesis’s goal

and the accomplishments made before by other researchers. Chapters 4 and 5 are the

primary chapters describing the conducted experiments and results. In Chapter 4, we

describe the dataset, and the processing of the data. We also describe the experiment

that is designed for building the model and training the dataset. Chapter 5 elaborates

experimental results from using LSTM network. Chapter 6 is the conclusion of the

thesis and discusses possible future work.

Chapter 2

Background

The purpose of this chapter is to give a brief overview of technical analysis and

technical indicators. We will review important technical indicators such as MACD,

RSI and Williams %R. A brief introduction of deep learning is later given and LSTM

networks are explained.

2.1 Financial Background

A stock is a share that claims an ownership on part of the corporation’s assets and

earnings. A stock market is a place where these shares are traded. Although there are

multiple ways to predict stock markets, the most common ones use either technical

indicators, which focus on historical trading data, or fundamental data, which focuses

on financial statements such as revenue of a company. Efficient market hypothesis

(EMH) [48], states that markets are efficient in reflecting the information about stocks,

therefore neither technical analysis nor fundamental analysis can be used to predict

the prices. This theory has its own criticisms. In [49], the authors conclude that

predictable patterns appear in stock returns and the market is not perfectly efficient.

2.1.1 Technical Analysis

Technical analysis uses past market data to predict the direction of prices [45]. Tech-

nical analysis is based on using statistical methods to identify patterns. Other tools

such as charts are also used to predict trends [45].

Technical analysis is based on three assumptions [18]:

1. The market discounts everything: Technical analysts believe that the price of

stock reflects everything that could affect a company and it is not necessary to

3

CHAPTER 2. BACKGROUND 4

take other factors into consideration.

2. Price moves in trends: A stock price tends to continue past trend movement.

Based on the beliefs of technical analysts, prices move in short, medium or long-

term trends. This implies that price tends to follow a past trend rather than

moving erratically.

3. History tends to repeat itself: Technical analysts believe that investors repeat

the same behaviour that is based on emotions such as fear and greed. Because

of this, repeated patterns can be identified on charts.

Technical indicators are mathematical calculations that use past price and volume

to identify the direction and strength of market trends. They can be broken down

into four major types:

1. Trend: Trend indicators, also known as oscillators, indicate the direction in

which the price is moving. Moving Average Convergence Divergence (MACD)

is a trend indicator.

2. Momentum: Momentum indicators measure how strong the trend is. Relative

Strength Index (RSI) is an example of momentum indicator.

3. Volume: Volume is a measurement of the number of units being bought and

sold. It is an indication of how strong the movement is.

4. Volatility: It is a degree of variation of prices over a period of time with no

indication of direction of price movement.

It is worthwhile mentioning that a few indicators are more favored than the others

and have proven to be more useful by past empirical studies. In [32], the authors eval-

uate the profitability of the MACD and Relative Strength Index (RSI), and concludes

that these indicators are profitable for some stocks. The author of [46] states that

the efficiency of a back propagation neural network was most improved by addition

of the technical index term MACD. In [31] the authors find that the RSI and the

MACD outperform the buy-and-hold strategy.

Relative Strength Index (RSI)

To identify overbought or oversold signals, we can use the Relative Strength Index

(RSI). The RSI is a momentum indicator that can signal oversold or overbought

securities [15]. The RSI can signal oversold or overbought securities. RSI ranges

CHAPTER 2. BACKGROUND 5

between 0 and 100; a stock is usually considered overbought when RSI goes above 70

and oversold when it goes below 30. Some analysts use other data ranges such as 80

and 20 or 90 and 10. RSI is typically used on a 14-day time frame and is calculated

by the following formula:

RSI = 100
100

(1 +RS)

RS =
AverageGain

AverageLoss

Moving Average Convergence Divergence

MACD is a trend indicator to reveal changes between two moving averages of a

security price [9]. It is calculated by subtracting 26-day exponential moving average

(EMA) from the 12-day EMA. The exponential moving average (EMA) is a weighted

moving average (WMA) that gives more weight to recent data. The result will be a

9-day EMA of the MACD, also referred to as signal line. This line can be used as a

buying signal when the MACD crosses above its signal line. MACD helps investors

understand whether the uptrend or downtrend is getting stronger or weaker [9]. The

following formula is used for calculating MACD:

MACD = 12 day period EMA− 26 day period EMA.

MACD Histogram

MACD is usually displayed along with a histogram, known as MACD histogram.

As shown in Figure 2.1, when the MACD is below the signal line, the histogram

(displayed as bars) will be below the baseline and when it is positive the values are

reflected on the MACD histogram [9].

The MACD histogram measures the difference between MACD and its signal line

(the 9-day EMA). It was created by Thomas Aspray in 1986, and similar to MACD

it is an oscillator that moves in positive or negative range. MACD histogram was

developed to show crossovers in MACD and generate trading signals [10]. An example

is shown in Figure 2.1 and as we can see as the trend changes and moves upwards

the MACD Histogram turns positive. Its calculation is as follows:

Signal Line = 9dayEMA of MACD.

MACD Histogram = MACD − SignalLine

CHAPTER 2. BACKGROUND 6

Figure 2.1: Example of MACD and its histogram [34].

The MACD histogram can be used as a potential buy signal when it is below the zero

line and begins to converge towards the zero line. It can also be used as a potential

sell signal when it is above the zero line and begins to converge towards the zero line

[11].

Williams %R

Williams %R can be used to find entry and exit points in the market, it compares

a stocks closing price to the high-low range over a specific period, typically 14 days

or more [24]. This indicator is helpful in showing the difference between the period

high and closing price within the range of days. Williams %R is calculated by the

following formula:

Williams%R =
Highest High− Closing Price
Highest High− Lowest Low

∗ (−100)

Highest high is the highest price over the trading period and lowest low is the

lowest price over the same period.

CHAPTER 2. BACKGROUND 7

Volatility

Volatility is the rate at which the price increases or decreases for a given set of

returns. It is used as an indication to the amount of risk related to a security’s value.

High volatility value is an indication that the price can fluctuate drastically in either

direction. Mathematically, it is the standard deviation calculated over a time period.

Standard deviations (σ) are measures of how spread out data is. A high standard

deviation indicates high volatility. It is important to mention that volatility does not

measure the direction of price movements.

Standard Deviation =

√∑n
i=1(xi−x)

2

n−1

xi = Value of the ith point in the dataset

x = The mean value of the dataset

n = The number of data points in the dataset

2.1.2 Backtesting

Backtesting is used to measure the performance of a trading strategy. Backtesting

works by simulating trades with past data to determine if the trading strategy is

profitable or not. A trading strategy is a strategy to trade stocks based on predefined

rules [19]. A passive trading strategy is buy and hold, in which the investor buys the

stock and holds them for a period of time with the hope that stock will increase in

price. Another strategy can be to go long on stocks when there is an upward trend

and short on stocks that have a downward trend. If an investor goes long on a stock

position, it means that he has bought the stock with the expectation of an increase

in value for future time. In contrast, if the investor shorts on a stock he hopes to

generate profit from a drop in price. In shorting, the investor first borrows and sells

the shares. Later when the price of the stock falls, he repurchases the shares and

returns them and gains profit from the drop in price. For this purpose we need to

create buy and sell signals, as shown in Figure 2.2; these signals can be generated

by a system. If the results of backtesting are positive it can be an indicator that the

trading strategy is successful. After training our neural network, we generate buying

and selling signals based on the trading strategy. For backtesting we use a platform

to simulate and test the strategy. The results give us insight about the performance

of our approach in the real world. Based on the results we can modify our approach

CHAPTER 2. BACKGROUND 8

Figure 2.2: Buy (green arrow) and sell (red arrow) signals

or the model to improve the results.

2.2 Deep Learning

Deep learning is a sub-field of machine learning. It is a technique that lets computers

improve with experience and data. In deep learning, each layer trains a set of data

received from the previous layers. It can be described as a feedforward network with

many hidden layers.

2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are composed of multiple units also known as

perceptrons [52]. Each perceptron imitates biological neurons of the human brain. As

seen in Figure 2.3, a perceptron first receives inputs x, and all inputs are multiplied by

weights w. At the next step the output is determined by comparing it to a threshold:

if the weighted sum
∑

j wjxj is less than the specified threshold the output will be

zero, otherwise it will be one.

A multi-layer perceptron is called an artificial neural network. Artificial neural

networks are composed of multiple perceptrons arranged in layers. The first layer

receives inputs and passes it to the middle layers which are called the hidden lay-

ers. Values calculated in one layer are passed to the next layers with the first layer

taking inputs and the last layer producing outputs. There are multiple types of

neural network with different architectures, used in different situations for various

CHAPTER 2. BACKGROUND 9

Figure 2.3: Perceptron [35]

purposes. The most basic type of neural net is the feedforward neural network, in

which information is just passed forward. More information about neural networks

can be found in [52]. Another commonly used type of neural network is the recur-

rent neural network, which is usually suitable for time series data. Recurrent neural

networks (RNN) use internal memory to process a sequence of data. There is also

convolutional neural network which is widely used for image recognition. Selecting

the suitable architecture depends on the problem’s domain and specific needs.

2.2.2 Recurrent Neural Networks

RNNs are multi-layer networks where the connections between the nodes create a

directed cycle. RNNs take as their input not just the current input but also what

they have perceived previously in time. The decision a recurrent neural network

reaches at time step t− 1 affects the decision it will reach one moment later at time

step [41]. Forward propagation begins with a specification of the initial state h(0).

Then, for each time step from t = 1 to t = τ , the following equation can be applied:

a(t) = b+Wh(t−1) + Ux(t)

h(t) = tanh(a(t))

o(t) = c+ V h(t)

y(t) = softmax(o(t))

CHAPTER 2. BACKGROUND 10

where b and c are bias vectors, and weight matrices U ,V and W , respectively are for

input-to-hidden, hidden-to-output and hidden-to-hidden connections [41]. Bias units

are a set of weights that help to shift the activation function. During processing, the

previous hidden state is passed to next step of the sequence. The hidden state acts

as the neural network’s memory, otherwise known as a transition matrix. The weight

matrices are used to determine the importance of present and past hidden state. The

errors they generate will return via backpropagation (explained in Section 2.2.4) and

be used to adjust their weights until it reaches a minimum value [1].

2.2.3 Long-Short Term Memory

The problem of preserving long-term information and skipping short-term input has

existed for a long time. One early approach to address this issue was the long-short

term memory (LSTM) introduced by Hochreiter and Schmidhuber [43].

To control a memory cell a number of gates are needed. An output gate are needed

to read out the entries from the cell. An input gate is needed to read data into the

cell. To reset the contents of the cell, a forget gate is used. The motivation is to

design a system that can remember and ignore inputs as needed. In addition to the

three gates, memory cells are introduced that take the same shape as the hidden state.

This can be considered as a fancy version of states to record additional information

[57].

LSTM can add or remove information from cell states. It can make modifications

by multiplying and adding. When information flows through cell states, LSTM can

selectively remember or forget things. Gates can control what information is let

through by using a sigmoid neural net layer and a pointwise multiplication operation

[20].

The first step in an LSTM is to determine the information that is going to be

thrown away using the forget gate layer, (also known as sigmoid layer). The output

is generated based on ht−1 (hidden state) and xt. The forget gate (ft) is calculated

as follows:

ft = σ(Wf .[ht−1, xt] + bf)

where σ is the sigmoid function, Wf is the weight for the gate, xt is the input for

current time and bf is the bias value for the gate. Bias is the output when there is no

input. The final result is a number between 0 and 1. Later, a number is stochastically

generated and if it is lower than the predefined probability, we forget the gate. At

CHAPTER 2. BACKGROUND 11

Figure 2.4: LSTM Network [37]

the next step, the input gate layer is used to decide which values will be updated and

the tanh function creates new candidates known as C̃t. After that Ct−1 gets updated

by Ct. The following two equations are applied:

it = σ(Wi.[ht−1, xt] + bi)

C̃t = tanh(Wc.[ht, xt] + bc)

At the last step, we run a sigmoid layer to decide the parts of cell states are going

to be filtered and after that the cell state is used as an input for the tanh function.

The result is multiplied by sigmoid gate to output the needed parts [20], using the

following equation:

ot = σ(Wo.[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

The complete architecture is shown in Figure 2.4.

2.2.4 Training Neural Networks

By training neural networks, we are trying to solve an optimization problem. Each

connection between neurons, also known as units, initially has an arbitrary weight,

and the goal is to optimize the weights within the model. These weights will be

constantly updated in order to reach optimal values. The approach that determines

CHAPTER 2. BACKGROUND 12

Figure 2.5: Error surface (E) of a linear neuron with two input weight (w1, w2) [36]

how these values should be updated is dependant on the optimization algorithm, and

the goal is to minimize the loss function. An example of an optimization algorithm is

stochastic gradient descent (SGD) [29]. Backpropagation is used to find the steepest

descent direction in an optimized approach. The training process is iterative; during

each iteration the weights are updated. As shown in Figure 2.5, the slope of the error

surface is used to choose the direction of the next step. For training the model the

data is split into three sets: training, validation and test sets. The validation dataset

is used for tuning the model’s hyperparameters [23].

Activation Function

The activation function is used to determine the output of the neurons of the neural

networks. It maps the resulting values to a value between 0 to 1, or depending on

the activation function, it can map to 1 to -1.

An activation function commonly used in deep neural networks is rectified linear

unit (ReLU) [50]. ReLU function converts the values to zero if the input has a value

below zero and when the value increases the output will have a linear relationship

with the input of the variable. Leaky RelUs introduce a small negative slope which

CHAPTER 2. BACKGROUND 13

Name Function

ReLU φ(x) =

{
0 x ≤ 0

x x > 0

Leaky ReLU φ(x) =

{
αx x ≤ 0

x x > 0

Table 2.1: Activation functions

prevents the output from being zero when x < 0 [3]. As an example, Leaky ReLU

may be y = 0.03x when x < 0. The formulas are shown in Table 2.1.

There is also the softmax function [41], which is used before the output layer. The

softmax function is often used to normalize the input value [41]. It is calculated as

follows:

softmax(x)i =
exp (xi)∑n
j=1 exp (xj)

where exp is the exponential function.

Optimization Algorithm

Choosing the right optimization algorithm can have huge impact on the performance

of the model. The classic optimization method is stochastic gradient descent (SGD),

which is an iterative method that randomly selects samples to find the optimal values

[57] . Another popular optimization method is Adam. Adam, calculates the learning

rate the based on the first and second moment of the gradients [44]. The method re-

quires less memory and is suited for problems with large data and/or parameters. It is

also a suitable choice for non-stationary objectives and problems with very noisy gra-

dients [44]. Nadam optimizer incorporates Nesterov accelerated gradient into Adam,

which allows larger decay rate compared to momentum. Nesterov accelerated mo-

mentum makes bigger moves into direction of the previous accumulated gradient and

then measure the gradient [38]. In regular momentum the gradient is calculated by

running the following iterative scheme :

vt = βvt−1 −∇θf (θt−1)

θt = θt−1 + γtvt

where γt is a learning rate schedule, β is the damping coefficient, which determines

how quickly the momentum vector decays. Nesterov momentum improves conver-

gence and stability and calculates the results with a momentum-based method with

CHAPTER 2. BACKGROUND 14

the following formula [47]:

vt = βvt−1 −∇θf (θt−1 + γt−1βvt−1)

θt = θt−1 + γtvt

Loss Function

A loss function is a measurement of how well our model is performing. A high loss

function implies that the predictions are not working. An optimization problem tries

to minimize the loss function. A basic example of a loss function is mean squared

error (MSE). To calculate MSE, as shown in the following formula, we square the

difference between the predictions (yi) and the actual values (ỹi), and average it out

across the dataset.

MSE =
1

n

n∑
i=1

(yi − ỹi)2

Another loss function is Huber loss, which is mostly used for regression and is less

sensitive to outliners than MSE [6]. Huber loss is preferred in certain cases for which

there are both large outliers; an outlier is a data point that differs significantly from

other observations. Huber loss accepts the hyperparameter δ, which is a configurable

parameter. The definition is as follows:

Lδ(y, f(x)) =


1
2
(y − f(x))2 for |y − f(x)| ≤ δ

δ|y − f(x)| − 1
2
δ2 otherwise

where f(x) is the predicted value and y is the actual value.

Reducing Overfitting

Deep neural networks are powerful tools to learn complex tasks. However, the model

may be overfitted. When the difference between the training error and test error is

too big, overfitting has happened [41]. There are couple of ways to avoid overfitting,

and in our approach we will be using dropout and added noise.

The dropout technique is essentially a regularization method used to prevent over-

fitting while training neural nets. By applying dropout to the hidden layer, we are

essentially removing each hidden unit with probability p. This can result in a network

with a subset of original neurons [57].

Another approach to improve generalization error and to optimize the structure of

the mapping problem is to add random noise. The amount of noise is a configurable

CHAPTER 2. BACKGROUND 15

hyperparameter. Noise is only added during the training and not during the validation

or testing of the dataset.

Hyperparameter Optimization

Hyperparameter optimization aims to find a set of hyperparameters in order to min-

imize the generalization error [33]. This is a difficult task due to the dimensionality

of the hyperparameter space. However, in the machine learning field, often a subset

of the hyperparameters usually play a significant role with high impact [56]. The pa-

rameters are optimized by inputting the data and measuring the error until the best

set is found. The hyperparameter optimization that is used in our approach is grid

search. Grid search is an exhaustive search through a manually predefined subset of

hyperparameter space. Grid search constructs all possible combinations for a set of

parameters. As an example we can consider the following parameters:

p1 = [a, b, c]

p2 = [1, 2, 3]

p3 = [α, β, θ]

Grid Search will create 33 combinations, including: [a, 1, α], [a, 1, β], ...[c, 3, θ], and

processes all these combinations.

Chapter 3

Literature Review

Predicting the stock market has been the subject of many studies. Dealing with the

wide variety of data sources to create a prediction tool is a daunting task. However,

deep learning has shown great advantages in processing non-stationary data, and has

been used more recently in the finance realm. In this chapter we will review previous

works with the focus of using deep learning for stock prediction.

3.1 Deep Portfolio

In [42], the authors propose a new method to build deep learning hierarchical decision

models that can include complex features. To do so, a framework needs to be set up

to train the data. After that, a four-step algorithm is defined for model construction

to build deep portfolios and create an automated process to select portfolios.

The dataset is divided into three subsets: training, validation and testing. To

avoid overfitting, a regularization penalty is added. For large datasets, mini-batch

stochastic gradient descent is used to perform optimization. To implement the frame-

work a four-step process is used, consisting of auto-encoding, calibration, validation,

and verification. The algorithm aims to create deep hierarchical compositions of port-

folios that are constructed in the encoding step. Deep factors can be represented as

compositions of financial put and call options for the univariate activation. During

the calibration a non-linear portfolio is created by using the returns, risk free rate

and portfolio weights. At the first step, each stock is ranked by the measure of its

similarity to other stocks (communal information), for choosing stocks, the 10 most

communal (similar) stocks are chosen. Some non-communal stocks are also picked.

This can be treated as adding non-learned features. Market-cap is used for index

weight. Model selection (i.e. verification) is conducted through comparison. As an

16

CHAPTER 3. LITERATURE REVIEW 17

example, this method is tested on the IBB Index. The results show that the validation

error is higher in the test set. By reviewing the verification results it was suggested

that to achieve reliable predictions a deep portfolio of at least forty stocks is needed.

It was shown that deep learning may have the potential to dramatically improve

the predictive performance in conventional applications.

3.2 Textual Analysis

Textual analysis is an approach that involves understanding the text to gain infor-

mation. This approach could be used to determine whether an expression is positive,

negative or neutral. In [55], the author analyzes the influence of news articles. The

information is gathered from websites like Twitter or Reddit. After downloading the

headlines, the stock trend is correlated with headlines to find the effect of the head-

lines on the trends. The problem is reduced to predicting whether a stock price rises

or falls. Recurrent neural networks were used to map the function between sentiment

values and the target price. The news headlines are first preprocessed and passed as

inputs to the neural network. The performed experiments tried to predict the stock

prices using information from both numerical analysis and textual analysis. The nu-

merical analysis was performed using LSTM. This resulted in a MSE of 0.00045. After

that, textual analysis was performed on the news headlines. The author claims 78%

accuracy in predicting their influence on the stock prices. When the results from tex-

tual analysis are augmented over the predictions from numerical analysis, the model

resulted in 0.00037 MSE. The thesis concludes that adding textual information from

news to the stock price data would substantially improve the prediction accuracy.

3.3 Fundamental Analysis

In [28] the authors propose an investment strategy for creating portfolios based on

predicted future fundamental indicators. The authors suggest that the long term

performance of an investment depends on how the stock is currently priced with

respect to its future fundamental indicators. In previous experiments, the authors

concluded that predicting the relative returns directly with RNN is not feasible and

does not out-perform a linear model. In a quantitative strategy, stocks are sorted

and portfolios are created with stocks with the highest points. Stocks can be valued

by taking fundamental data into account. High value factor ratios are called value

stocks and those with low ratios are called growth stocks. Portfolios of stocks which

CHAPTER 3. LITERATURE REVIEW 18

give more weight to value stocks have significantly outperformed portfolios that give

more weight to growth stocks over the long run. Fundamental data, such as revenue,

operating income and debt, are gathered. Computed features of the reported data

are analyzed, based on these values. Using deep learning, future fundamentals are

forecasted based on a trailing 5 year window. Quantitative analysis demonstrates

a significant improvement in MSE over a naive strategy. They run a simulation to

assess future financial reports, and by applying earning yields (EBIT/EV) during a

12 month period they achieve a 44% annual return.

3.4 Technical Analysis

Technical data is gathered directly from the market and can be used for trading by

generating buy, sell and hold signals.

In [25], the authors use deep learning to predict one-month-ahead stock returns

in a cross-section of the Japanese stock market, and compare the performance of

this method to shallow neural networks and machine learning models. The cross-

section tries to find the reasons why stock A has higher or lower returns than stock

B. This is in contrast with time-series in which the average returns change over time.

The predictive stock returns (scores) have been calculated from the information of

the past five points of time for 25 factors (features) for the MSCI Japan Index.

By inputting data of these factors and passing them through many layers, useful

features have been extracted and prediction accuracy for future stock returns has

been improved. As a measure of the performance, the authors use rank correlation

between the actual out-of-sample returns and their predicted scores and directional

accuracy. In the end, three approaches have been compared. Conventional three-

layer neural networks, support vector regression and random forests are identified

as representative machine learning techniques. Before describing the methodology,

the authors study related works in this area. The dataset for this test was gathered

from the MSCI Japan Index. Twenty-five factors including: book-to-market ratio,

earnings-to-price, dividend yield, sales-to-price, cash flow-to-price, etc. are used to

perform the calculations.

The problem has been defined as a regression problem, and mean squared error is

used as a loss function. The model is trained by using the latest 120 sets of training

from the past 10 years. For measuring the performance, rather than using the values

of loss function directly, rank correlation coefficient (CORR) and directional accuracy

(direction) are used because these are more relevant measures of performance than the

CHAPTER 3. LITERATURE REVIEW 19

loss function. CORR measures the strength and direction of association between two

ranked variables and rank correlation between the actual out-of-sample returns and

their predicted scores is used. Direction accuracy compares the forecast direction to

the actual realized direction. The performance of a long-short portfolio is compared

with support vector regression and random forests. The long-short portfolio strategy

is to buy the top stocks with higher prediction scores and sell the bottom stocks with

lower prediction scores.

A total of 8 patterns of deep neural networks (DNN) with 8 layers (DNN8) and

with 5 layers (DNN5) are examined and TensorFlow is used for the implementation.

It is seen that the loss of the model increased when fewer layers were used and that

a higher number of layers resulted in higher CORR and direction.

Next, an ensemble methodology is used to combine different machine learning

models to determine if the results would improve, but it is observed that the im-

provement is limited. In conclusion it is observed that with more layers the pre-

diction accuracy of cross-sectional stock returns increases. Four patterns of DNN

outperform the CORR of both support-vector regression and random forests. For

future research recurrent neural networks, which are a suitable choice for time series

data, were recommended.

In [54], the researchers use an artificial neural network for creating a trading

system by using technical indicators. To predict the stock market among 100 technical

indicators, the three most important ones are chosen and a multilayer perceptron is

used to predict buy-sell signals by analyzing time-series data. A multilayer perceptron

(MLP) is a class of feedforward artificial neural network. The data is gathered from

Dow30 stocks for the period from 1997 to 2017. To perform the experiment, data

was gathered from Dow30 stocks, was obtained from “Yahoo! Finance”. The aim is

to predict buy, and sell points of the stock prices by using a multilayer perceptron.

To model the data, hold, buy and sell signals are generated based on peak and valley

points. The training is performed for prices between dates of 1997 to 2006 and test

data is from 2007 to 2017. It may be hard to beat the buy and hold strategy over

long periods of time, however in comparison to buy and hold the model provides

mixed results, with some being better and some worse. The average annualized

return is 10.3%, while the average annualized return of buy and hold strategy is

13.83%. The paper suggests that individually fine tuning the technical indicator

parameters for each stock might improve overall performance. The experiments show

that even without optimizing the model, the results are comparable to the buy and

hold strategy.

CHAPTER 3. LITERATURE REVIEW 20

In [39], the authors use deep learning to explore its potential in a time series

prediction problem. Average monthly statistics for the S&P 500 split by industry are

gathered from January 1990 until October 2015.

LSTM networks are used to determine the directional movements. They create a

set of features for training and create a classification problem, response variable Y s
t+1

for each stock s and date t that can take on two different values. Class 0 is realized

if the one-period return R1, st+1 of stock s is smaller than the cross-sectional median

return of all stocks in period t+ 1. Class 1 is realized if the one-period return of s is

larger than or equal to the cross-sectional median. The prediction is the probability

of P s
t+1|t for each stock s to either out-or under-perform cross-sectional median in

period t+ 1. After that, they sort the values and go long on stocks with the highest

probability and short on stocks with the lowest probability. With daily returns of

0.46 percent and the Sharpe ratio (a measurement to understand the return of an

investment compared to its risk) of 5.8 prior to transaction costs, they find LSTM

networks outperform memory free classification methods and show that deep learning

can be deployed in this domain.

3.5 Hyperparameter Optimization

One research example that considered optimizing parameters and design choices for

the correct hyperparameter optimization is [53]. The authors test the importance of

different network design choices and hyperparameters. By evaluating 50,000 different

configurations, they found that some parameters, for example the last layer of the

network, have a large impact on performance. Other parameters, such as the number

of LSTM layers are of minor importance. To summarize their conclusions, variational

dropout was on all tasks superior to no-dropout or naive dropout. Adam and Adam

with Nesterov momentum (Nadam) (explained in Section 2.2.4) usually performed

the best of those examined. SGD (explained in Section 2.2.4) did not produce good

results in most of the cases. During the experiments, they looked at one dimension

for a certain hyperparameter. However, hyperparameters can influence each other

and the individual best options may not necessarily lead to the global optimum.

3.6 The Importance of Backtesting

As mentioned before, backtesting works by simulating trades with past data to deter-

mine if the trading strategy is profitable or not. It is a process to see how accurately

CHAPTER 3. LITERATURE REVIEW 21

the method would have predicted actual results. While there are articles that mention

the results of their loss function as a success, it should be mentioned that generat-

ing good results for the loss function does not necessarily mean that the proposed

approach would be profitable in the real world. Therefore it is better to simulate

the strategy and perform backtesting. In [26], the authors search for accuracy us-

ing different statistical measures. After tuning the hyperparameters, they reach the

conclusion that it may not be possible to predict the adjusted closing price solely

based on the open, high, low, close and adjusted closing price. They run the LSTM

algorithm based on backtesting data. Although the LSTM model had an accuracy of

80% on predicting the adjusted closing price, they suggest that it was a naive conclu-

sion that their model can do an excellent prediction of the market. It was seen that

predictions did not perform well when feeding unseen data in an iterative process.

Chapter 4

Methodology

In this chapter we will propose our approach for solving the prediction problem. Our

initial goal was to predict the price of a stock s at time t in future, but due to

unsatisfactory results we modified our approach to concentrate on trend prediction.

Later we optimize the hyperparameters of the model to improve the results. We will

describe the metrics for evaluating the performance of the model and the details of

the new approach.

4.1 Data

Our data is chosen from one of the companies from S&P 500. We select a stock

that has a shift in major in trends for the last 120 days, which is equivalent to our

test data size. Data is downloaded from 3/13/2014 until 3/12/2019 for Apple Stock

(AAPL) from “Yahoo! Finance” to conduct the experiments. Our data is the stock

price over approximately five years and as shown in Figure 4.1. The data consists of

six columns:

1. Open: The price the stock started trading at when the exchange opened.

2. High: The highest price the stock has seen during the day.

3. Low: The lowest price the stock has seen during the day.

4. Close: The stock price at the last close of the market.

5. Volume: The volume is the number of shares that changed hands during a given

day.

6. Adjusted Close: The adjusted closing price also factors for dividends.

22

CHAPTER 4. METHODOLOGY 23

Figure 4.1: Records of AAPL stock price for different days

Each data in a column is converted into an array, and technical indicators are

created based on these values.

4.2 Training the model

The data, plotted in Figure 4.2, shows the stock price of Apple (AAPL) indexed by the

date starting from 3/13/2014 until 3/12/2019. Training the model is a process that

includes comparing the actual value with the value generated by randomly assigned

weights. Backpropagation is used to train the network, see Section 2.2.4. During this

process the weights of neurons are updated based on the previous epoch or iteration.

days

p
ri

ce

Figure 4.2: AAPL closing price for the period of five years

During training, the number of epochs is counted by multiplying number of itera-

tions by batch size. An epoch, which is useful for periodic evaluation is one pass over

CHAPTER 4. METHODOLOGY 24

the entire data [21].

4.2.1 Multivariate Time Series

By using LSTM networks it is possible to forecast data using multiple input variables.

In a univariate time series, the forecast depends on one time dependant variable.

Unlike univariate time series, multivariate time series can have multiple variables.

Each of these variables depend on their past value and can be dependent on other

values.

4.2.2 Features

To create the model we use a list of features shown in Table 4.1. Three of these features

are technical indicators (RSI, Volatility, Williams %R). These indicators were created

using the initial data and are plotted in Figure 4.3. We will later examine the effect

of these indicators on the performance of the model.

4.2.3 Feature Scaling

To standardize the range of features, we used scaling. To scale the features we used

min-max scaling, with a range of -1 to 1. By using feature scaling we normalize the

range of values The formula is:

x′ =
x−min(x)

max(x)−min(x)

In the formula, x is an original value and x′ is the normalized value.

4.2.4 Stacked Long Short Term Memory

Recurrent layers can be stacked on top of each other. In a gated recurrent unit(GRU),

the hidden state is passed from one layer to the other. This makes the GRU to learn

transformations [27]. GRUs performances are generally on par with LSTMs [27].

Stacked LSTMs can be defined as multiple LSTM layers used in sequential order.

The first layers of LSTM return their full output sequences, but the last one only

returns the last step in its output sequence, thus dropping the temporal dimension

[5]. In our model four layers of LSTM are used to improve performance.

CHAPTER 4. METHODOLOGY 25

Figure 4.3: Technical indicators calculated and plotted for initial data.

CHAPTER 4. METHODOLOGY 26

Name

1 Opening Price

2 High Price

3 Low Price

4 Closing Price

5 Adjusted Closing Price

6 Volume

7 Volatility

8 Williams %R

9 RSI

Table 4.1: Features

4.2.5 Reducing Overfitting

As mentioned in Section 2.2.4, dropout prevents overfitting and the term refers to

removing a hidden unit temporarily from the network. Dropout in our model is a

configurable value that indicates the number cells to be dropout during the process.

Gaussian Noise is added during training in order to regularize the layer. The

amount of noise added is a configurable hyperparameter. Injected gradient noise

causes improvement in different models [51].

4.2.6 Overall Architecture

The overall architecture of the network is shown in Figure 4.4 and consists of four

layers of LSTM networks. To create the input data, features are scaled and sliding

windows are created. After that, the data is reshaped for input of LSTM network. The

first layer consists of 100 units, with the dropout of 0.2 initially set. Later this value

will be optimized through hyperparameter optimization. We add the gaussian noise of

0.05 to the model and batch normalization added to the model. The second Layer has

200 units with the same dropout value and the third and fourth layers are the same

as the second layer. The input format is (batch size, times steps, input dimension)

and the batch size (none) will be set later in training of the model.

CHAPTER 4. METHODOLOGY 27

Figure 4.4: Architecture of the model

CHAPTER 4. METHODOLOGY 28

4.3 Frameworks and Libraries

To train the model we used Keras framework [8]. Keras is a Python framework,

which provides neural networks API by running on top of TensorFlow, CNTK, or

Theano [8]. Our framework will also be using TensorFlow [13] on top of Keras.

TensorFlow is a free software library focused on machine learning. It uses graph

structures and each edge between nodes is a multidimensional tensor. Other Python

libraries such as Pandas [14], Numpy [4], Scikit-learn [12], etc. were also used to

process the information. Other libraries such as Backtrader [2] and Talos [16], which

will be discussed later, were used for backtesting and hyperparameter optimization.

4.4 Experiments

We begin our experiments by trying to predict the price of a stock in future time. The

stock we examine is AAPL and we will later examine the effect technical indicators

have on the loss of our model and then we will optimize the hyperparameters through

grid Search and measure the performance of the model. To measure the performance

of the model in the real world we will be using backtesting. To further examine the

functionality of the final model, we will test the approach on three other stocks.

4.4.1 Initial Experiments

Our initial goal was to predict the price of a stock at a certain point in time. After

creating the model and optimizing it, we generated the buy and sell signals as shown

in Figure 4.5. After that backtesting was performed, and surprisingly, even when the

commission was set to 0, the results showed that the value of the portfolio decreased.

We tried to penalize the model for loss of value and add threshold but again the

results were not satisfactory. One reason for the failure of the experiments was that

the loss function was set for the price instead of the profit, in other words a lower MSE

did not result in higher profit. The other reason could be that the neural networks

failed to find an accurate pattern in day to day price changes.

We changed our experiments with the next focus being on predicting the price

change. The aim was to predict if the price change would be positive or negative for

each day. But again, after training the model, the results of the backtesting indicated

that the initial portfolio decreased in value.

The third phase of the initial experiments focused on predicting the RSI. That

resulted in just one buying signal.When the trading strategy was changed with closer

CHAPTER 4. METHODOLOGY 29

overbought and oversold signals, it did not result in an increase in the portfolio value.

days

p
re

d
ic

te
d

p
ri

ce
(s

ca
le

d
)

Figure 4.5: Buy (green marks) and sell (yellow marks) signals.

4.4.2 Final Experiments

Our later experiments focused on predicting the trend of the market. One good

indicator for predicting the trends is the MACD histogram. As mentioned before in

previous chapters, a trading strategy that uses the MACD histogram can be used to

generate a buying signal when the MACD histogram moves from zero to a positive

value and a sell signal when the price change crosses below zero.

The data was split into test, training and validation sets. Ten percent of the data,

which equals approximately to 120 days, starting from 2018/09/10, is set as test data,

and the rest is used for training. The validation will be 10% of the training data.

Before passing the data we must reshape our inputs. The input of the LSTM has

three dimensions: number of samples, time samples and number of features. In the

model, the mean squared error function was used as the loss function, and LeakyRelu

was set as the activation function. Adam (Section 2.2.4) was set initially as the

optimization algorithm. Once we have a suitable model to predict a day ahead, we

tune the hyperparameters and select the best set of configurations.

The number of epochs is set to 100 and batch size to 32. An epoch is a pass through

the whole data. Because the optimization is an iterative process, it is necessary to go

CHAPTER 4. METHODOLOGY 30

over the training set multiple times. The data is divided into smaller batches before

being fed to the neural networks. We will also be reducing the learning rate when our

metric (MSE) has stopped improving. This was done because as noted in [7] : Models

often benefit from reducing the learning rate by a factor. The ReduceLROnPlateau

callback in Keras monitors a quantity and the learning rate will be reduced if no

improvement is seen for a defined number of epochs.

4.4.3 Hyperparameter Optimization

After creating a working model, we optimize hyperparameters. To do so we must

choose which hyperparameters we want to optimize during the process. Based on

previous research, we know that a few parameters have a bigger impact on the results

than the others. The parameters we focused on are shown in Table 4.2. Based on

previous research (including [53]), these values were selected to create a parameter

space for Grid Search.

Parameter Values

Dropout From 0.1 to 0.5 in 5 steps

Optimizer Adam, Nadam, SGD

Loss Function Huber Loss, Mean Squared Error

Activation Function ReLU, LeakyReLU

Table 4.2: Parameter space for optimizing

There are three different optimization strategies: grid search, random search and

probabilistic reduction. We will be using Grid Search which scans the data with a set

of predefined hyperparameters. It builds a model on each parameter configuration

and ultimately selects the model with best performance. The framework that we

will be using to optimize the hyperparameters is Talos [16]. Talos is an open source

framework, and is used for hyperparameter optimization with Keras models. After an

experiment is started, a scan object is created which will be used in the main program.

By using the parameter space, the framework yields the next permutation through

multiple iterations until all permutations of the parameter space are processed. The

hyperparameter tuning workflow of Talos is shown Figure 4.6.

CHAPTER 4. METHODOLOGY 31

Figure 4.6: Talos Hyperparameter tuning workflow [17] (MIT License)

CHAPTER 4. METHODOLOGY 32

4.4.4 Backtesting

To perform backtesting we used BackTrader [2]. BackTrader is an open source frame-

work that allows us to focus on writing reusable trading strategies and test our trad-

ing strategy. Parameters such as commission, interest rate, etc. can be configured

through the program. We chose a simple trading strategy that goes long on prices

(explained in Section 2.1.1). When the MACD Histogram moves from a negative

value toward a positive value we go long on the stock. We also consider a thresh-

old of 5% for crossing the zero-line, this will account for mistakes. If the portfolio’s

value is higher than the initial amount and the buy and hold strategy, we can say the

approach was successful.

Chapter 5

Results and Discussion

In this chapter we present the results of the experiments. The result are visualized

and compared with each other.

5.1 Calculating Returns

The focus of the experiment, as explained in Section 4.4.2, was on predicting the

MACD histogram and using that along with a trading strategy. When the MACD

histogram crosses above zero we buy and sell when it crosses below zero. The mean

squared error, as shown in Figure 5.1 for our experiment without using technical

indicators was 0.04057. In Figure 5.1, the first date of the test data starts with index

0, which is equivalent to 2018/9/10 and the final day is 2019/03/12. The results of

actual and predicted data with scaled values are compared in Figure 5.2.

To calculate how much this model yields profit, it is necessary to identify days

that cross above or below zero to generate buy and sell signals. Based on the data

visualized in Figure 5.3, these days would be [6 11 23 26 40 43 44 58 72 75 125]. Since

we are only considering to go long the buy signals are [11 26 43 58 75] and the sell

signals are [23 40 44 72 125]. To remove sudden fluctuations in our data, we add a

threshold of 5% for the zero-line in the MACD histogram. Therefore the prices have

to cross the above or below the threshold line. As a result, we trade on certain days;

these days are the buy and sell signals that will be fed into Backtrader as input data.

Backtrader has a list of configuration that can be set. For our testing purpose

we are only interested in setting the commission value since it may have the highest

impact on the final result. In the first experiment, the commission is set to zero and

later the final value is calculated after optimizing the model with a commission to

a flat rate of $10, which is a typical price offered for online trading. After feeding

33

CHAPTER 5. RESULTS AND DISCUSSION 34

Figure 5.1: Validation loss for 100 epochs

Figure 5.2: Original and predicted data for MACD Histogram.

the input data to Backtrader, the program starts simulating the trading. The log of

trades in shown in Figure 5.4, and we can see the cost of each trade. The size for

each trade is set to 500. The cost of the investment will be equal to the size of trade

multiplied by the value of the equity on the first purchase. The return on investment

(ROI) is calculated by the following formula:

CHAPTER 5. RESULTS AND DISCUSSION 35

ROI =
(Net profit

Cost of investment
∗ 100

)
The results of backtesting are shown in Figure 5.5. Although the final portfolio

shows a small amount of loss, when compared to the price of stock, the values indicate

that the results can be optimized to create a profitable model.

Figure 5.3: Predicted MACD Histogram with zero line

CHAPTER 5. RESULTS AND DISCUSSION 36

Figure 5.4: Log of trades using Backtrader.

CHAPTER 5. RESULTS AND DISCUSSION 37

Figure 5.5: Backtesting using Backtrader. Buy and sell signals are generated for the
test period (after red line).

CHAPTER 5. RESULTS AND DISCUSSION 38

5.2 The Effect of Technical Indicators

In this experiment, the goal is to examine the use of technical indicators on the

performance of our model. We will examine the use of three main technical indicator:

RSI, William %R and Volatility. In Table 5.3, we see the effect of these indicators

on the loss value. As we can see, by using only RSI we can decrease the loss of the

model to the lowest amount.

Technical Indicator MSE

Volatility 0.02699

William %R 0.03845

RSI 0.02053

All Indicators 0.02598

No Indicator 0.04057

Table 5.1: The effect of technical indicators.

5.3 Hyperparameter Optimization Results

To further improve the results and also to examine which hyperparameters have better

effects on the model for future research, hyperparameter optimization is performed.

As shown in Figure 5.6, after running the experiment for 60 different combinations

based on the hyperparameter space, Mean Squared Error fluctuates between best to

worse. The the set of parameters with the lowest MSE is the best result. The results

of the experiment will be analyzed to find the best hyperparameters.

5.3.1 Analysis of results

By looking at Figure 5.8, it can be seen that by using LeakyReLU the results improve

and MSE comes below 0.1 while by using the ReLU function MSE goes well above

0.2. To summarize the results, the top ten best results are selected and displayed

in Table 5.2. The best parameter space is the first row with the MSE of 0.00484.

The best set of parameters is shown in Table 5.3. The model is evaluated with these

parameters and the results will be calculated to examine the performance. And the

parameters of the best result are shown in Table 5.3. The optimization functions are

CHAPTER 5. RESULTS AND DISCUSSION 39

compared in Figure 5.8. The results of activation and optimization functions can be

seen side by side in Figure 5.9.

MSE

ro
u
n
d
s
of

op
ti
m
iz
at
io
n

Figure 5.6: Change of MSE during the hyperparameter optimization.

CHAPTER 5. RESULTS AND DISCUSSION 40

MSE Dropout Optimizer Loss function Activation

0.004845492 0.1 Nadam MSE LeakyReLU

0.004993705 0.1 Nadam Huber loss LeakyReLU

0.005018013 0.18 Nadam MSE LeakyReLU

0.005358382 0.1 Adam Huber loss LeakyReLU

0.005375063 0.18 Nadam MSE LeakyReLU

0.005381555 0.1 Ndam Huber loss LeakyReLU

0.005391314 0.26 Adam Huber loss LeakyReLU

0.005471755 0.18 Aadam MSE LeakyReLU

0.005537316 0.26 Nadam MSE LeakyReLU

0.00564124 0.34 Nadam MSE LeakyReLU

Table 5.2: Ten best results of hyperparameter optimization

Parameter Value

Loss Function MSE

Activation Function LeakyReLU

Optimization Function Nadam

Dropout 0.1

Table 5.3: Best hyperparameters found after optimization

CHAPTER 5. RESULTS AND DISCUSSION 41

M
S
E

Figure 5.7: The effect of activation functions on the MSE during hyperparameter
optimization

CHAPTER 5. RESULTS AND DISCUSSION 42

Figure 5.8: The effect of different optimizers on the Mean Squared Error(MSE) during
hyperparameter optimization

CHAPTER 5. RESULTS AND DISCUSSION 43

Figure 5.9: The effect of loss function and optimizer on the performance of the model
during hyperparameter optimization.

CHAPTER 5. RESULTS AND DISCUSSION 44

5.4 Final Experiments

After selecting the best parameters from optimizing the hyperparameters and modi-

fying our model, we run the experiments again to see how it increases the value of our

portfolio. In Figure 5.10, we see the loss of the model has decreased by 0.54128436.

Figure A.9 shows the actual and predicted data.

The days that crossed the zero line are [77 78 82 111] Analyzing the predicted

results to generate buy and sell signals we determine [77 82] for buying and [78

111] for selling. Our final portfolio value increased to $1015075.00, which shows that

optimizing the hyperparameters has a positive impact for this single testing set. Based

on the beginning purchase and the end value, the return on investment for 128 days

is equal to 6.1%. It should also be noted that the ROI with the buy and hold strategy

for the same period of time is equal to -16.37%.

Figure 5.10: Loss of the model after hyperparameter optimization

5.4.1 Comparing Results

To summarize the results and compare the results of hyperparameter optimization,

the results are shown in Table 5.4.

CHAPTER 5. RESULTS AND DISCUSSION 45

Figure 5.11: Original and Predicted data

Expriment MSE ROI

Before Optimization 0.040576865 -16.37%

After Optimization 0.004845492 6.67%

Table 5.4: Comparing the results of conducted experiments.

5.5 Testing Other Stocks

To test our approach we select three more stocks from the information technology

sector of S&P 500. We use the same process and select the hyperparameters from our

previous experiment. The final results are shown in Table 5.5. The beginning balance

is the amount of money spent to buy 500 shares. We also redid the last experiment

with the commission included.

Company Name Symbol Commission ROI Buy & Hold

Apple AAPL $10 6.61% -16.37%

Microsoft MSFT $10 25.99% 27.51%

Google GOOG $10 5.769% 9.22%

Intel Corp INTC $10 16.9% 2.34%

Table 5.5: Comparing ROI for different stocks.

Chapter 6

Conclusion and Future Work

In this thesis, we used long-short term memory networks to predict the trend of mar-

kets and generate buy and sell signals to create a profitable model. We started our

research with the initial goal to predict the price of a stock at a certain point in

time. Although we were able to reduce the loss of the model, it was seen that during

backtesting the portfolio decreased in value. This issue indicates the importance of

backtesting and changing the metrics of the model to measure profitability instead of

predicting the price. Later we modified our approach, but again, we were confronted

by failure. We next changed the approach of the model to predict technical indi-

cators and apply a trading strategy based on the selected technical indicator. One

approach that showed promising results was predicting the MACD histogram, which

is a suitable indicator to predict the trend of the market.

We chose Apple’s stock and created an LSTM network to test our approach and

later conducted the experiment for other stocks chosen from S&P 500 . The network’s

architecture was initially improved by studying previous research and Backtesting was

setup to evaluate the model’s outcome in the real world.

With our research we addressed a few topics: 1) It was seen that it was not possible

to use LSTM networks to predict the prices of a stock in order to create a profitable

portfolio. 2) We examined the effect of RSI, William %R and Volatility on the loss

of the model. It was shown that by using only RSI, the model’s loss was reduced,

which contributed to the performance of the model. 3) We measured the effect of

hyperparameter optimization with the use of Grid Search and testing 61 combination

to identify the best set of hyperparameters. It was shown that choosing a different

optimizer and activation function had a substantial effect on the loss of the model.

By reducing the loss value it was possible to increase the return on investment from

a negative value to 6.67%. This paves the way for future research with the focus of

46

CHAPTER 6. CONCLUSION AND FUTURE WORK 47

identifying stocks with higher returns and creating portfolios with multiple stocks.

Our results show that deep learning can be integrated with technical analysis to

create a profitable portfolio by choosing the correct technical indicator. It should also

be noted that the results of the portfolio can be further optimized by choosing more

complicated trading strategies.

The achieved results lay the ground for further research. Future research could

examine the effect of different input data. The data can be gathered from other sectors

and different stock markets. Other technical indicators can also be used to decrease

the loss value. The research could be further expanded to modify the formulas for

technical indicators and also test which indicators have a higher correlation with

other factors such as volatility, etc. to categorize the prediction models. Different

neural network architectures could also be used to achieve better results. Another

topic would be to integrate the methodology with other analyses such as sentiment

analysis [58]. With the help of sentiment analysis, it may be possible to generate buy

signals sooner and integrate that to the built model. Other research direction is the

use of fundamental indicators such as revenue. The combination of these methods

along with the examination of the approach on a wider area of stocks can be a suitable

choice for future research.

Bibliography

[1] A.i. wiki. https://skymind.ai/wiki/lstm. Last accessed 10 April 2019.

[2] Backtrader. https://www.backtrader.com/. Last accessed 26 June 2019.

[3] Convolutional neural networks for visual recognition. http://cs231n.github.

io/neural-networks-1//. Last accessed 11 May 2019.

[4] Fundamental package for scientific computing with python. https://numpy.

org/. Last accessed 1 September 2019.

[5] Getting started with the keras sequential model. https://keras.io/

getting-started/sequential-model-guide/. Last accessed 6 April 2019.

[6] Huber loss function. https://ml-cheatsheet.readthedocs.io/en/latest/

loss_functions.html#huber. Last accessed 08 May 2019.

[7] Keras documentation. https://keras.io/callbacks/. Last accessed 20 May

2019.

[8] Keras: The python deep learning library. https://keras.io. Last accessed 10

September 2018.

[9] Macd. https://www.investopedia.com/terms/m/macd.asp. Last accessed 6

April 2019.

[10] Macd historgram. https://stockcharts.com/school/doku.php?id=chart_

school:technical_indicators:macd-histogram. Last accessed 6 April 2019.

[11] Macd historgram in technical analysis. https://commodity.com/

technical-analysis/macd/. Last accessed 6 April 2019.

[12] Machine learning in python. https://github.com/scikit-learn/

scikit-learn. Last accessed 1 September 2019.

48

BIBLIOGRAPHY 49

[13] An open source machine learning framework. https://github.com/

tensorflow/tensorflow. Last accessed 1 September 2019.

[14] Python data analysis library. https://pandas.pydata.org/. Last accessed 1

September 2019.

[15] Relative strength index - rsi. https://www.investopedia.com/terms/r/rsi.

asp. Last accessed 10 September 2018.

[16] Talos documentation. https://autonomio.github.io/docs_talos/

#introduction. Last accessed 25 May 2019.

[17] Talos workflow. https://github.com/autonomio/talos/wiki/Workflow. Last

accessed 28 May 2019.

[18] Technical analysis: The basic assumptions. https://www.investopedia.com/

university/technical/techanalysis1.asp. Last accessed 10 April 2019.

[19] Trading strategy. https://www.investopedia.com/terms/t/

trading-strategy.asp. Last accessed 02 May 2019.

[20] Understanding lstm networks. http://colah.github.io/posts/

2015-08-Understanding-LSTMs/. Last accessed 10 April 2019.

[21] What does sample, batch, epoch mean? https://keras.io/getting-started/

faq/#what-does-sample-batch-epoch-mean. Last accessed 6 April 2019.

[22] What is deep learning? https://machinelearningmastery.com/

what-is-deep-learning/. Last accessed 10 September 2018.

[23] What is the difference between test and validation datasets? https:

//machinelearningmastery.com/difference-test-validation-datasets/.

Last accessed 10 May 2019.

[24] Williams %r. https://www.investopedia.com/terms/w/williamsr.asp. Last

accessed 10 September 2018.

[25] M. Abe and H. Nakayama. Deep learning for forecasting stock returns in the

cross-section. In Pacific-Asia Conference on Knowledge Discovery and Data

Mining, pages 273–284. Springer, 2018.

[26] W. Ahmed and M. Bahador. The accuracy of the lstm model for predicting the

s&p 500 index and the difference between prediction and backtesting, 2018.

BIBLIOGRAPHY 50

[27] C. Ahuja and L. Morency. Lattice recurrent unit: Improving convergence and

statistical efficiency for sequence modeling. In Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

[28] J. Alberg and Z. C. Lipton. Improving factor-based quantitative investing by

forecasting company fundamentals. stat, 1050:13, 2017.

[29] L. Bottou. Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[30] E. Chong, C. Han, and F. C. Park. Deep learning networks for stock market

analysis and prediction: Methodology, data representations, and case studies.

Elsevier, 2017.

[31] T. Chong and W. Ng. Technical analysis and the london stock exchange: testing

the macd and rsi rules using the ft30. Applied Economics Letters, 15(14):1111–

1114, 2008.

[32] T. Chong, W. Ng, and V. Liew. Revisiting the performance of macd and rsi

oscillators. Journal of risk and financial management, 7(1):1–12, 2014.

[33] M. Claesen and B. De Moor. Hyperparameter search in machine learning. In

Proc. of the 11th Metaheuristics International Conference, pages 1–5, 2015.

[34] Wikimedia Commons. File:macdpicwiki.gif — wikimedia commons, the free me-

dia repository, 2015. [Online; accessed 10-June-2019].

[35] Wikimedia Commons. File:perceptron moj.png — wikimedia commons, the free

media repository, 2016. [Online; accessed 10-June-2019].

[36] Wikimedia Commons. File:error surface of a linear neuron with two input

weights.png — wikimedia commons, the free media repository, 2017. [Online;

accessed 15-May-2019].

[37] Wikimedia Commons. File:long short-term memory.svg — wikimedia commons,

the free media repository, 2018. [Online; accessed 3-May-2019].

[38] T. Dozat. Incorporating nesterov momentum into adam. 2016.

[39] T. Fischer and C. Krauss. Deep learning with long short-term memory net-

works for financial market predictions. European Journal of Operational Re-

search, 270(2):654–669, October 2018.

BIBLIOGRAPHY 51

[40] T. Fletcher. Machine learning for financial market prediction. PhD thesis, Uni-

versity College London, 2010.

[41] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[42] J. B. Heaton, N. G. Polson, and J. H. Witte. Deep learning for finance: deep

portfolios. Applied Stochastic Models in Business and Industry, 33(1):3–12, 2017.

[43] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-

tion, 9:1735–80, 12 1997.

[44] D. Kingma and J. Ba. Adam: A method for stochastic optimization. Interna-

tional Conference on Learning Representations, 12 2014.

[45] C. D. Kirkpatrick and J. R. Dahlquist. Technical Analysis: The Complete Re-

source for Financial Market Technicians. Financial Times Press. Wiley, 2006.

[46] M. Klassen. Investigation of some technical indexes in stock forecasting using

neural networks. In WEC (5), pages 75–79. Citeseer, 2005.

[47] J. Lucas, S. Sun, R. Zemel, and R. Grosse. Aggregated momentum: Stability

through passive damping. CoRR, abs/1804.00325, 2018.

[48] B. G. Malkiel. Efficient market hypothesis. In Finance, pages 127–134. Springer,

1989.

[49] B. G. Malkiel. The efficient market hypothesis and its critics. Journal of economic

perspectives, 17(1):59–82, 2003.

[50] V. Nair and G. Hinton. Rectified linear units improve restricted boltzmann ma-

chines. In Proceedings of the 27th international conference on machine learning

(ICML-10), pages 807–814, 2010.

[51] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach, and

J. Martens. Adding gradient noise improves learning for very deep networks.

stat, 1050:21, 2015.

[52] T. Rashid. Make Your Own Neural Network. CreateSpace Independent Publish-

ing Platform, USA, 1st edition, 2016.

[53] N. Reimers and I. Gurevych. Optimal hyperparameters for deep lstm-networks

for sequence labeling tasks. CoRR, abs/1707.06799, 2017.

BIBLIOGRAPHY 52

[54] O. B. Sezer, A. M. Ozbayoglu, and E. Dogdu. An artificial neural network-

based stock trading system using technical analysis and big data framework. In

Proceedings of the SouthEast Conference, pages 223–226. ACM, 2017.

[55] A. Tipirisetty. Stock price prediction using deep learning. page 60, 2018.

[56] H. Tobias, N. Navarro-Guerrero, S. Magg, and S. Wermter. Speeding up the hy-

perparameter optimization of deep convolutional neural networks. International

Journal of Computational Intelligence and Applications, 17(02):1850008, 2018.

[57] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into Deep Learning. 2019.

[58] Y. Zhao, B. Qin, T. Liu, et al. Sentiment analysis. Journal of Software,

21(8):1834–1848, 2010.

Appendix A

Results of other stocks.

In this Appendix we show the results of other stocks.

A.1 MSFT (Microsoft)

Figure A.1: Original and Predicted data

53

APPENDIX A. RESULTS OF OTHER STOCKS. 54

Figure A.2: Predicted MACD Histogram with cross line

Figure A.3: Backtesting the data for test period.

APPENDIX A. RESULTS OF OTHER STOCKS. 55

A.2 GOOG (Google)

Figure A.4: Original and Predicted data

Figure A.5: Predicted MACD Histogram with cross line

APPENDIX A. RESULTS OF OTHER STOCKS. 56

Figure A.6: Backtesting the data for test period.

A.3 INTC (Intel)

APPENDIX A. RESULTS OF OTHER STOCKS. 57

Figure A.7: Original and Predicted data

Figure A.8: Predicted MACD Histogram with cross line

APPENDIX A. RESULTS OF OTHER STOCKS. 58

Figure A.9: Backtesting the data for test period.

