Infrared Spectroscopy of (Nb+In) Co-Doped Rutile

by

Susan M. M. Yee

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

Department of Physics

BROCK UNIVERSITY

May 11, 2017
© Susan M. M. Yee 2017

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.
Dedication

I dedicate this work to my parents and to my cats who kept me company.
Abstract

This work studied rutile TiO$_2$ in pure form and co-doped with In (e^- acceptor) and Nb (e^- donor) at 5% and 10% to explore the effect of co-doping on the infrared active (IR) modes and the complex dielectric response function between 50 and 8000 cm$^{-1}$ (1.5 - 240 THz, 0.00620 - 0.993 eV). Ceramic pellets of pure, 5% and 10% co-doped TiO$_2$ were prepared using a standard technique. Infrared reflectance (IR) measurements were taken and these data are supplemented with data from the literature to extend the range of frequencies beyond infrared. The dielectric function was determined two ways: (i) by fits of the reflectance to the factorized model of the dielectric function and (ii) by Kramers-Kronig analysis.

Co-doping rutile appears to decrease the permittivity at frequencies just below the mode that softens. It is possible that this is due to an increase in porosity resulting from co-doping. It appears that the increase in permittivity recently observed elsewhere [1] is not caused by doping induced changes to the phonon modes.

The overall effect of co-doping is to make the sample less reflective. The spectrum is composed of three wide, high-reflectance bands. For all levels of co-doping the first band is a mode that softens. The amount of doping does not affect the frequency of the mode that softens. The second and third bands are hard modes.

Co-doping appears to introduce four new, impurity, phonon modes that increase in oscillator strength with increasing co-doping level. These modes are centered near $\omega \approx 136, 447, 654$ and 793 cm$^{-1}$ which are close to four, previously observed, Raman active modes in rutile. It is possible that the co-doping process causes the Raman modes to develop a dipole moment and become weakly IR active.
Acknowledgements

Dr. David A. Crandles
Dr. Maureen Reedyk
Dr. Shyamal K. Bose
Dr. Jory Korobanik
Mr. Nick Momot
Ms. Michelle Przedborski
Brock Physics Department
Brock Electronics Shop
Contents

Dedication .. ii

Abstract .. iii

Acknowledgements .. iv

Contents .. v

List of Tables ... vii

List of Figures .. viii

1 Introduction ... 1
 1.1 Permittivity .. 1
 1.2 Previous Work on Colossal Permittivity 2
 1.3 Overview of Theoretical Explanations of Colossal Permittivity 3
 1.4 Previous Work on Infrared Active Modes in Rutile 7
 1.5 Plan of this Thesis .. 9

2 Dielectric Function Models 11
 2.1 Connection Between Dielectric Function and Optical Conductivity from Maxwell’s Equations 11
 2.2 Drude-Lorentz model for $\varepsilon(\omega)$ 12
 2.3 Factorized Model .. 14
 2.4 Determination of the Dielectric Function from Reflectance Data 15

3 Methods and Materials ... 19
 3.1 Methods and Materials 19
 3.2 X-Ray Diffraction .. 20
 3.3 Scanning Electron Microscope 20
 3.4 Reflectance Spectra .. 22
Contents

4 Results and Discussion
4.1 Determination of the Dielectric Function by fitting the Reflectance 27
4.2 Kramers-Kronig Analysis . 38
4.3 Effect of Doping on the Mode that Softens 45

5 Conclusions

Bibliography

A Phonons

B Group Theory Predictions
List of Tables

1.1.1 Dielectric Constant of Some Materials with Colossal Dielectric Constants at room temperature. ... 1

4.1.1 Fitted Parameters Using the Factorized Model for the Dielectric Function When Fitting the Reflectance - TiO$_2$. ... 33

4.1.2 Fitted Parameters Using the Factorized Model for the Dielectric Function When Fitting the Reflectance - CD 5% .. 34

4.1.3 Fitted Parameters Using the Factorized Model for the Dielectric Function When Fitting the Reflectance - CD 10% ... 35

4.2.1 Data Sets Used in Kramers-Kronig Analysis on TiO$_2$ at 300K 40

4.3.1 Sintering Temperatures and Porosity. .. 51
List of Figures

1.3.1 Crystal Structure of rutile TiO$_2$... 6
1.3.2 Nb and In doped rutile TiO$_2$. ... 6
1.4.1 Reflectivity data for A_2u and E_u type modes at room temperature. 8
1.4.2 Reflectance Spectrum of Polycrystalline TiO$_2$ 9

2.4.1 The measured frequency range is finite. Reflectance must be modeled to complete the spectrum over a wider range of frequencies. 16

3.2.1 X-ray diffraction spectra of 10% co-doped TiO$_2$ sintered at temperatures 1000-1500 degrees Celsius .. 20
3.3.1 Microstructure of TiO$_2$ at 1000, 1300 and 1500 degrees Celsius. 21
3.4.1 Schematic diagram of the optical setup in the lab 22
3.4.2 Photos of the optical setup in the lab. ... 23

4.0.1 Reflectance spectra of TiO$_2$ co-doped at 0%, 5% and 10% levels. (Resolution = 4 cm$^{-1}$) ... 26
4.0.2 Effect of co-doping on the Reflectivity at T=300K 27
4.1.1 Experimental data, factorized model, and Drude model 28
4.1.2 Comparison of the softening-mode transverse optical frequency (ω_{TO}) determined in the fits for TiO$_2$ to those determined by single crystal (IR) reflectance, neutron scattering, and inelastic x-ray scattering (IXS). 31
4.1.3 Transverse Mode Frequencies ω_{TO} vs. Temperature in TiO$_2$ 32
4.1.4 Comparison of TiO$_2$ Reflectance Data Against Calculated Values by the Factorized Model ... 36
4.1.5 Comparison of Co-doped 5% TiO$_2$ Reflectance Data Against Calculated Values by the Factorized Model ... 37
4.1.6 Comparison of Co-doped 10% TiO$_2$ Reflectance Data Against Calculated Values by the Factorized Model ... 38
4.2.1 Reflectivity Data for TiO$_2$ in Range 0-1000 cm$^{-1}$ 41
4.2.2 Reflectivity Data for TiO$_2$ in Range 3000-10000 cm$^{-1}$ 41
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3</td>
<td>Reflectivity Data for TiO$_2$ in Range 10000-500000 cm$^{-1}$</td>
</tr>
<tr>
<td>4.2.4</td>
<td>KK Real Conductivity versus Temperature for Un-Doped TiO$_2$</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Real Conductivity for TiO$_2$, co-doped 5%, co-doped 10% at 4K</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Comparison of Permittivity using Kramers-Kronig Analysis</td>
</tr>
<tr>
<td>4.3.1</td>
<td>The KK real conductivity of TiO$_2$ 4K-300K measurements</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The KK real conductivity of CD 5% 4K-300K measurements</td>
</tr>
<tr>
<td>4.3.3</td>
<td>A new mode appears at \sim130 cm$^{-1}$ most noticeably in the 4.2K measurement</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Comparison of the softening-mode real conductivity in all three doping levels at 4K and 300K</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Comparison of spectral weights</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Effect of porosity on ε_1, assumes factorized model for both ε_a and ε_c. In the “a” direction there is one oscillator: $\omega_{TO} = 150$ cm$^{-1}$, $\Gamma_{TO} = 15$ cm$^{-1}$, $\omega_{LO} = 5000$ cm$^{-1}$, $\Gamma_{LO} = 15$ cm$^{-1}$, $\varepsilon_\infty = 6.843$. In the “c” direction there is one oscillator: $\omega_{TO} = 150$ cm$^{-1}$, $\Gamma_{TO} = 15$ cm$^{-1}$, $\omega_{LO} = 5000$ cm$^{-1}$, $\Gamma_{LO} = 15$ cm$^{-1}$, $\varepsilon_\infty = 8.427$</td>
</tr>
<tr>
<td>4.3.7</td>
<td>Effect of porosity on σ_1. Same model as used in fig. 4.3.6</td>
</tr>
<tr>
<td>4.3.8</td>
<td>Effect of porosity on reflectance. Same model as used in fig. 4.3.6</td>
</tr>
<tr>
<td>A.0.1</td>
<td>Transverse Wave</td>
</tr>
<tr>
<td>A.0.2</td>
<td>Longitudinal Wave</td>
</tr>
<tr>
<td>B.0.1</td>
<td>Octahedron showing symmetry axes</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Permittivity

In non-conductors (also called dielectrics) electrons cannot travel through the material freely. As a result bulk dielectric materials exposed to an external electric field \vec{E} will form an internal electric field, the displacement field \vec{D}, inside the dielectric material. Linear dielectric materials are those in which the relationship between these two fields is linear; i.e. $\vec{D} = \varepsilon \vec{E}$, where $\varepsilon = \varepsilon_1 + i\varepsilon_2$ is the permittivity. The relative permittivity (or dielectric function) ε_r of a dielectric is the ratio of the permittivity ε to the permittivity of free space ε_0. In general, the permittivity is a complex tensor of rank two. Consequently, in anistropic materials, \vec{D} is not parallel to \vec{E}. For many common materials ε is a complex scalar and this real part is usually less than roughly 10^2 in the low frequency ($0 - 10^6$ Hz) range. The permittivity refers to the real part of the dielectric function. Permittivity of some common materials like water is about 80 and many industrial materials have ε_1 less than 100 [2, 3]. Some materials exhibit relative permittivity higher than 10^3, these materials are said to exhibit colossal permittivity (CP) or colossal dielectric constant (CDC). Table 1.1.1 shows the dielectric constants of some CDC materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>ε_1</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCu$_3$Ti4O${12}$</td>
<td>$\approx 10^5$</td>
<td>[4]</td>
</tr>
<tr>
<td>Li$_{0.01}$SixNi${0.99-x}$O</td>
<td>$\approx 5 \cdot 10^3$ at 1 kHz</td>
<td>[5]</td>
</tr>
<tr>
<td>Ba${0.95}$La${0.05}$TiO$_{3-x}$</td>
<td>$\approx 10^6$ at 1 kHz</td>
<td>[6]</td>
</tr>
<tr>
<td>La${15/8}$Sr${1/8}$NiO$_4$</td>
<td>$\approx 10^4$ at 1 GHz</td>
<td>[7]</td>
</tr>
<tr>
<td>LuFe$_2$O$_4$</td>
<td>$\approx 3 \cdot 10^4$ at 1 kHz</td>
<td>[8]</td>
</tr>
</tbody>
</table>

Table 1.1.1: Dielectric Constant of Some Materials with Colossal Dielectric Constants at room temperature.

Consider a capacitor where the plates are separated with vacuum or air. Replacing the vacuum with a dielectric will increase the capacitance by a factor ε_r (see [9] Example 4.6). Therefore dielectric materials can be used to increase the energy stored in a capacitor by a factor of ε_r over a “vacuum-filled” capacitor.
1.2 Previous Work on Colossal Permittivity

High dielectric constant materials allow the manufacture of smaller capacitors which results in higher circuit-density or smaller chips [10], or the manufacture of capacitors that can hold more energy. The development of microelectronic devices is driven by a great demand for smaller and faster devices and systems [6, 10]. Many important electronic circuits are made with capacitors such as high-energy-density storage devices e.g. static and dynamic, random access memory (RAM) [10, 11], radio frequency circuits in which up to 95% of the area of the chip is made of capacitors [10], and thin-film devices for wireless communication systems [11]. Modern electrical systems also need high energy-density storage devices such as found in cordless power tools and hybrid electric vehicles; a need supercapacitors can fill [12]. Solid CP materials may lead to better supercapacitors not only by increasing their energy density but also by improving their safety as current supercapacitors use liquid dielectric material [1]. It is not necessary to develop a pure compound for CP. Doping a parent material is a well established method to make colossal permittivity materials [1, 13–20]. It is not surprising that colossal permittivity has been widely studied for both theoretical and industrial reasons in many materials [1, 5–8, 10, 14–17, 19, 21–29].

CP was discovered in CaCu$_3$Ti$_4$O$_{12}$ (CCTO) around the year 2000 [4] and has been studied extensively by other groups [17, 27, 29–40]. Many CP materials have been discovered that exhibit the CaCu$_3$Ti$_4$O$_{12}$ perovskite-like crystal structure such as Bi$_{2/3}$Cu$_3$Ti$_4$O$_{12}$ [4, 41] and rare-earth element-based materials Ln$_{2/3}$Cu$_3$Ti$_4$O$_{12}$ where Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm (a trivalent rare earth element) [4, 39]. Perovskites themselves have been the object of study for many years [42–49]. Other materials studied for CP properties include BaTiO$_3$ perovskites [50] in both doped[51] and undoped [23, 24] forms, Ba$_x$TiO$_{3-x}$ [6, 23], Ba$_{0.95}$La$_{0.05}$TiO$_{3-x}$ ceramics [6], other barium-based ceramics [23–25, 52], SrTiO$_3$ [53, 54], La$_{15/8}$Sr$_{1/8}$NiO$_4$ [7], doped-NiO, La$_{15/8}$Sr$_{1/8}$NiO$_4$, Ba(Fe$_{0.5}$Nb$_{0.5}$)O$_3$, K$_{0.3}$MoO$_3$ [16], Bi-substituted LaMnO$_3$ ceramics [55], Li$_{0.01}$Si$_x$Ni$_{0.99-x}$O ceramics [5], Sr$_{1-x}$Pr$_x$TiO$_3$ ceramics [54], LuFe$_2$O$_4$ [8], Y-doped CaCu$_3$Ti$_{4-x}$Y$_x$O$_{12-x/2}$ (x = 0–0.1) [38], composite Ba(Zr$_{0.2}$Ti$_{0.8}$)O$_3$/carbon nanotube [52], and the surprisingly simple compound CuO (copper (II) oxide) [56].

TiO$_2$ has been a fruitful parent material for studying and making CP materials. The rutile phase (the most common and the most thermodynamically stable) has a perovskite-like structure where oxygen octahedra contain the Ti atom. Studies over decades have been made on undoped TiO$_2$ [57–63] and single-element doped TiO$_2$ including Nb [17, 59, 61, 64–71], Cr [72], Eu [73], and Fe [63, 74]. In 2013 Hu et al. [1] reported TiO$_2$
co-doped with different percentages of In and Nb showed CP which, importantly, shows low dielectric loss that is mostly temperature and frequency independent. More about this work will be presented in section 1.3.

1.3 Overview of Theoretical Explanations of Colossal Permittivity

The complex dielectric function $\varepsilon^*(\omega)$ is the result of different phenomena: (1) fluctuations of molecular dipoles, (2) the migration of charge carriers (electrons, holes or ions), and/or (3) the separation of charges at boundary surfaces or interfaces which in turn leads to additional polarization. This last phenomenon can take place at inner dielectric boundary layers and/or at the contact surface between external electrodes and the sample. In practical terms samples (or commercial devices) must be connected to the measuring device to measure CP; hence, the observed CP of the entire circuit may be due to electrical effects from within the ceramic itself (intrinsic factors) as well as effects at the electrode-ceramic interface (extrinsic factors).

Ferroelectricity

Ferroelectric materials can exhibit a macroscopic dipole moment even when an external electric field is zero [75, 76]. Such a material can have a large permittivity near the ferroelectric-to-paraelectric phase transition temperature [76–78]. The perovskites ABO_3 where $\text{A} = \text{Ba, K, Pb, Li, La and B} = \text{Ti, Nb, Ta, Mn}$ are examples of ferroelectric crystals [55, 76]. For example, Mamin et al. [28] studied CP in manganites. As an example of the complexity of CP behavior, where CP may be caused by more than one mechanism, Shen et al. [11] studied the Maxwell-Wagner effect in ferroelectric multilayered thin films. Conversely in nonferroelectric materials Lunkenheimer et al. [77] saw “that the largest intrinsic dielectric constant observed so far ... is of order 10^2.”

The crystal structure is an important factor in the ferroelectric behavior of a crystal. For instance, the body center cubic (bcc) structure “prohibits ferroelectricity on symmetry grounds” [30]. Liu et al. [32] propose that CCTO shows “frustrated relaxor ferroelectric behavior” and with the displacement of Ti ions in the lattice this leads to the intrinsic high permittivity of CCTO. However, the transition to the ferroelectric state is frustrated by the tilt of the TiO$_6$ octahedra in the CCTO lattice [4, 30, 32] and it appears that CP in CCTO is not the result of ferroelectric effects [34, 79].
Chapter 1. Introduction

Charge-Density Waves

A charge density wave (CDW) is a standing wave of charge density that occurs in space in one dimensional, long molecular chains or two dimensional objects such as thin epitaxial films (see [82] for a classification of CDWs). The CDW interacts with the lattice atoms and is accompanied by periodic distortions in the atomic positions (for a simple text and visual description see [83]). However, the electronic CDW’s period need not match the atomic lattice’s periodic electric potential [78]. CDW systems can exhibit extremely high intrinsic dielectric constants of magnitudes up to 10^8 [77]. Unfortunately, CDW systems have a high dielectric loss and this limits their practical application in capacitor-based devices [78]. Lunkenheimer et al. [77] believe intrinsic CP behavior appears “only in CDW systems”; however, hopping charge transport, an intrinsic behavior, is also a candidate mechanism for CP.

Hopping Charge Transport

Hopping charges, in particular electrons, refer to charges jumping between lattice sites that contribute to conductivity and permittivity [24, 25, 31, 36, 55, 67, 77, 79, 81, 84]. Hopping conduction can be identified by a characteristic power-law function for conductivity σ_1 as a function of frequency ν: $\sigma_1 = \sigma_0 \nu^s$, $s < 1$. (Note: This power law is called the “Universal Dielectric Response” or UDR because of its wide (universal) applicability.) Applying the Kramers-Kronig relationships gives $\sigma_2 = \tan\left(\frac{\pi s}{2}\right) \sigma_0 \nu^s$. We have $\epsilon_1 = \frac{\sigma_2}{2\pi\epsilon_0}$ and substituting for σ_2 we get $\epsilon_1 = \left(\frac{1}{2\pi\nu\epsilon_0}\right)\left(\tan\left(\frac{\pi s}{2}\right) \sigma_0 \nu^s\right) = \left(\frac{\tan\left(\frac{\pi s}{2}\right) \sigma_0}{2\pi\epsilon_0}\right) (\nu^{s-1})$. For $s < 1$, $\tan\left(\frac{\pi s}{2}\right) < \infty$; so $\epsilon_1 \propto \nu^{s-1}$. Since $s < 1$, $\epsilon_1 \propto \nu^{s-1}$ and so ϵ_1 can reach colossal values as $\nu \to 0$, i.e. for low frequencies. Electron hopping has been suggested [78] to occur in Ti$_{1-x}$Nb$_x$O$_2$ [67], CaCu$_3$Ti$_4$O$_{12}$ [31, 79], BaTiO$_3$ [24], and La$_{1-x}$Bi$_x$MnO$_3$ [55]. In a limiting case, the hopping electrons may become localized, i.e. pinned, to lattice defects leading to giant dipoles [1].

In another limiting case, where the material is a strongly disordered material (e.g. glass) with localized charge carrier states and held at low temperature, the variable range hopping (VRH) model can be applied. Variable range hopping implies a conductivity equation of the form $\sigma(\omega, T) = \sigma_0(\omega, 0) + \sigma_1 \exp \left[-\left(\frac{T}{T_0}\right)^{1/4}\right]$ [85]. The signature feature is the temperature dependence of the conductivity. Krohns et al. [36] and Zhang and Tang [31] found the VRH model consistent with the data from experiments on CCTO.
Lattice-Pinned Electrons

As mentioned earlier in an extreme case hopping electrons may become almost immobile by being pinned to lattice sites. This effect can be exploited to produce CP material with low dielectric loss. In fact, [1] report a new line of research in which they theorize the possibility to create a material in which mobile (“hopping”) electrons are localized (“pinned”) to lattice sites by purposely designed lattice defects. These lattice-pinned electrons are able to move farther than atomically pinned electrons and therefore the induced dipole moment is larger than that of atomic dipoles i.e. the lattice-pinned electrons give rise to giant dipoles. Since the electrons are pinned, they are unable to freely “hop” throughout the lattice. This effectively lowers the conductivity of the material and therefore lowers dielectric loss. Therefore, according to this theory, the result of giant dipoles will be high-performance CP materials and the result of pinning will be low dielectric loss.

Hu et al. [1] showed that co-doping rutile TiO$_2$ with equal amounts of Nb (a donor) and In (an acceptor) increased the permittivity below 1MHz. The co-doping, which means doping with equal concentrations of donors and acceptors, is essential as the Nb assists in creating mobile electrons and the In assists in localizing those electrons. In addition, the material also showed low dielectric loss over a wide temperature range from 80 up to 450 K and over a broad frequency range. For example, Nb + In co-doping at 0.05% results in room-temperature permittivity as high as $\approx 2 \cdot 10^4$, the dielectric loss is less than 0.05, and the frequency range is 10^1 to 10^5 Hz. They claim the observed, room-temperature CP behavior is not a result of Maxwell-Wagner (M-W) polarization in line with the theory behind the fabrication of this CP material. On the other hand, other workers claim that contact effects strongly affected Hu et al.’s measurements [13, 16] and that the defect dipole mechanism may not be the explanation for the measured giant ϵ_1.

A conventional cell of the rutile crystal structure is shown in figure 1.3.1. Ti atoms occupy the vertices and body center of the tetragonal cell and oxygen atoms occupy interior locations of the cell. In or Nb doping replaces the Ti atoms. It is noteworthy that the doping does not fracture the lattice into separate physical domains where boundary layer M-W effects would arise. The crystal structure resulting from the doping is shown in figure 1.3.2.

Figure 1.3.2: Nb and In doped rutile TiO$_2$. From [1]

The importance of Hu’s work extends beyond simply fabricating a CP material with
low dielectric loss. For instance, TiO$_2$ is a simple metal oxide and may be a representative of a large group of metal oxides in which high-performance CP behavior can be manufactured. Changing the dopants is another possibility. Preliminary studies show that Al$^{3+}$ instead of In$^{3+}$ co-doping also results in CP behavior. TiO$_2$ is abundant and has low toxicity, which makes it highly attractive as a base host material for commercial use. For full details of the fabrication methodology and experiments see [1].

1.4 Previous Work on Infrared Active Modes in Rutile

TiO$_2$ (rutile) has a tetragonal unit cell which has D$_{4h}$ symmetry [86] (see fig. 1.3.1). The D$_{4h}$ symmetry properties of rutile can be used to derive which vibrational modes are infrared active [87]. Since there are two formula units per unit cell, the total number of vibrational degrees of freedom is 18 (6 atoms \times 3 degrees_of_freedom /atom). Three of these modes are acoustic, while the other 15 are optical.

It is shown in Gervais et al. [87], that the IR active modes are $3E_u + A_{2u}$ which means that up to three modes should be seen in spectra with incident electric field polarized perpendicular to the c-axis and only one mode should be seen with incident light polarized parallel to c-axis. The normal modes of vibration of the molecule come from the vibration of the atoms of the molecule about their equilibrium position in the lattice; bulk translations and rotations of the molecule are ignored. Infrared radiation excites the dipole moments. Dipoles involve the spatial displacement of charge where 3-dimensional displacement involves the three coordinate functions (x, y, z). A detailed explanation of the application of group theory to solids is in [86, 88].

Gervais and Piriou [87] explored the A_{2u} and E_u vibrational modes of TiO$_2$ as a function of temperature. In fig. 1.4.1 the A_{2u} reflectance spectrum was measured with the incident field polarized parallel to the c-axis, while the E_u spectrum was measured with incident field polarized perpendicular to c-axis. An extra mode of small oscillator strength is observed at about the same frequency (570 cm$^{-1}$) in both polarizations (see fig. 1.4.1). Gervais and Piriou [87] suggest that this might be either impurity related or a 2-phonon process. Doping causes some Ti atoms to be substituted with In or Nb. In the doped crystal the position of O atoms remains the same and the basic symmetry of rutile is preserved. It is expected that co-doped rutile will show similar temperature-dependent A_{2u} and E_u vibrational modes.
Chapter 1. Introduction

Matsumoto et al. [89] studied the dielectric response of single crystal rutile and polycrystalline, ceramic TiO$_2$ at 300K. They used the four-parameter factorized form (see section 2.3) of the dielectric function to model the data because there is a large difference between the transverse optical (TO) and longitudinal optical (LO) mode frequencies. When this occurs the Drude-Lorentz model does not provide good fits and the four-parameter factorized model is appropriate. It is presumed that in polycrystalline ceramics the contributions of the A_{2u} and E_u vibrational modes will both be excited. Therefore, the bulk permittivity will be a combination of the permittivity of a single crystal in all three dimensions. In the simplest approximation, this means the permittivities parallel to the c-axis and perpendicular to the c-axis are combined in a weighted average. The weights are the ratio 1:2 where 1 corresponds to the one axis along which the A_{2u} mode can occur and 2 corresponds to the two axes along which E_u modes can occur. Figure 1.4.2 (figure 3. in [89]) shows excellent agreement between a three-oscillator version of the factorized model and the data for a polycrystalline sample.

Figure 1.4.1: Reflectivity data for A_{2u} and E_u type modes at room temperature.
Left: Figure 2 from [87] showing reflectivity data for the A_{2u} type mode at room temperature (open circles) as well as the best fit data using the factorized model (full curve).
Right: Figure 3 from [87] showing reflectivity data for the E_u type mode at room temperature (open circles), data from Spitzer et al. (solid circles) as well as the best fit data using the factorized model (full curve).
Chapter 1. Introduction

1.5 Plan of this Thesis

The purpose of this thesis is to investigate further the dielectric properties and especially the IR active modes of (Nb, In) co-doped TiO$_2$.

There are many different techniques to measure the dielectric function at different frequency ranges: capacitance spectroscopy in audio frequency to 1MHz range, co-axial reflection spectroscopy in the 1 MHz to 10 GHz range, THz transmission spectroscopy in the 0.15 to 1.5 THz range (5-50 cm$^{-1}$), and infrared reflectance spectroscopy in the 50 -10000 cm$^{-1}$ part of the electromagnetic spectrum. Infrared reflectance spectroscopy provides a method to measure permittivity without using physical electrical contacts. The work done in this thesis involves reflectance spectroscopy measurements on (Nb + In) co-doped rutile. The purpose of this thesis is to determine the contribution of transverse optic phonons to the low frequency dielectric function and to observe how co-doping affects the phonon contribution to the low frequency dielectric function.

Normal reflectance measurements were performed on polycrystalline samples of 0%, 5%, and 10% In and Nb co-doped TiO$_2$. The incident EM radiation stimulates phonons in the crystal lattice. Two forms of analysis of the reflectance data will be used: (i) the factorized form of the dielectric function will be used to fit the reflectance data (ii) Kramers-Kronig analysis will be performed and compared with the fits to the factorized form of the
dielectric function.

Chapter two will discuss the dielectric function models, optical conductivity and Maxwell’s equations. Chapter three will discuss the materials and methods used to synthesize the co-doped TiO$_2$ ceramics. Chapter four will present the reflectance measurements and analysis including calculations of the conductivity and permittivity. Finally chapter five will conclude this thesis.
Chapter 2

Dielectric Function Models

2.1 Connection Between Dielectric Function and Optical Conductivity from Maxwell’s Equations

The frequency dependent dielectric function $\tilde{\varepsilon}(\omega)$ is related to Maxwell’s equations. In the following argument, we are assuming that the dielectric function $\varepsilon = \varepsilon_1 + i\varepsilon_2$ is a frequency dependent function.

Decouple Maxwell’s equations by taking the cross product of the gradient of the electric field

$$\nabla \times (\nabla \times \vec{E}) = -\frac{\partial}{\partial t}(\nabla \times \vec{B}) \quad (2.1.1)$$

$$\nabla(\nabla \cdot \vec{E}) - \nabla^2 \vec{E} = -\frac{\partial}{\partial t}(\mu \vec{J}) + \mu \varepsilon_0 \varepsilon_1 \frac{\partial \vec{E}}{\partial t} \quad (2.1.2)$$

but $\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0} = 0$ then

$$\nabla^2 \vec{E} = \mu \varepsilon_0 \varepsilon_1 \frac{\partial \vec{E}}{\partial t} + \mu \varepsilon_0 \varepsilon_1 \frac{\partial^2 \vec{E}}{\partial t^2} \quad (2.1.3)$$

$\vec{E} = \vec{E}_0 e^{i(kz - \omega t)}$ differentiating with respect to time gives $\frac{\partial}{\partial t} \rightarrow -i\omega$

$$\frac{\partial^2 \vec{E}}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{\partial \vec{E}}{\partial t} \right) = -i\omega \frac{\partial \vec{E}}{\partial t}$$

$$\frac{1}{-i\omega} \frac{\partial^2 \vec{E}}{\partial t^2} = \frac{\partial \vec{E}}{\partial t}$$

and substituting the above into eq. 2.1.3 gives

$$\nabla^2 \vec{E} = \mu \varepsilon_0 \left(\varepsilon_1 + i\frac{\sigma_1}{\varepsilon_0 \omega} \right) \frac{\partial^2 \vec{E}}{\partial t^2} \quad (2.1.4)$$

one can see that the real part of the optical conductivity $\sigma = \sigma_1 + i\sigma_2$ is related to the
imaginary part of the dielectric function as follows:

\[\sigma_1 = \varepsilon_0 \omega \varepsilon_2 \]

Alternatively, \(\nabla^2 \vec{E} \) is proportional to the first time derivative, showing that \(\varepsilon_1 \) is related to \(\sigma_2 \).

\[\nabla^2 \vec{E} = \mu \frac{\partial \vec{E}}{\partial t} (\sigma_1 - i \omega \varepsilon_0 \varepsilon_2) \quad (2.1.5) \]

2.2 Drude-Lorentz model for \(\varepsilon(\omega) \)

In the Drude-Lorentz model for \(\varepsilon(\omega) \), one considers a solid to be a collection of non-interacting dipole oscillators. The spring constants and masses of these oscillators are different and depend on the physical process (absorption of radiation by optical phonons, or transitions between atomic states, or absorption by free carriers which would not have a spring force term \(-kx\)).

Consider one such dipole, modeled as a damped simple harmonic oscillator where the applied electric field is parallel to \(\hat{x} \)

\[
\sum \vec{F} = m \ddot{x} \quad (2.2.1)
\]

\[qE - kx - \Gamma m \frac{dx}{dt} = m \frac{d^2x}{dt^2} \quad (2.2.2) \]

\[m \frac{d^2x}{dt^2} + \Gamma m \frac{dx}{dt} + kx = qE \quad (2.2.3) \]

\[m \frac{d^2x}{dt^2} + \Gamma m \frac{dx}{dt} + kx = q \tilde{E} e^{-i\omega t} \quad (2.2.4) \]

Where \(qE \) is the Coulomb force, \(kx \) is the Hooke’s law spring force and \(\Gamma m \frac{dx}{dt} \) is the drag.

Assume \(x = \tilde{x} e^{-i\omega t} \) then \(\frac{dx}{dt} = -i\omega \tilde{x} \) and \(\frac{d^2x}{dt^2} = \tilde{x}(-i\omega)e^{-i\omega t} \). Denote the natural, undamped frequency of the simple harmonic oscillator as \(\omega_0 \), also known as the resonant frequency. \(m \omega_0^2 \) is another way of expressing the spring constant \(k \).
\[
\frac{d^2 x}{dt^2} + \Gamma \frac{dx}{dt} + m\omega_c^2 x = q\tilde{E}e^{-i\omega t} \quad (2.2.5)
\]
\[
mx(-i\omega)^2 e^{-i\omega t} + \Gamma m\tilde{x}(-i\omega)e^{-i\omega t} + m\omega_c^2 \tilde{x}e^{-i\omega t} = q\tilde{E}e^{-i\omega t} \quad (2.2.6)
\]
\[
-m\tilde{x}\omega^2 - i\Gamma m\tilde{x} + m\omega_c^2 \tilde{x} = q\tilde{E} \quad (2.2.7)
\]

Rearrange to solve for \(\tilde{x} \)

\[
\tilde{x} = \frac{q\tilde{E}}{-m\omega^2 - i\Gamma m\omega + m\omega_c^2} \quad (2.2.8)
\]
\[
\tilde{x} = \frac{q\tilde{E}}{m[(\omega_c^2 - \omega^2) - i\omega\Gamma]} \quad (2.2.9)
\]

Recall the dipole moment \(\vec{p} = \tilde{x}q\hat{x} \) and

\[
\text{Polarization} = \sum \frac{\vec{p}_i}{V} = \frac{Nq^2 \tilde{E}\hat{x}}{m[(\omega_c^2 - \omega^2) - i\omega\Gamma]} \quad (2.2.10)
\]

where \(N \) is the number of dipole moments in the volume \(V \)

\[
\vec{P} = \chi_e \varepsilon_0 \vec{E} = \frac{Nq^2 \tilde{E}\hat{x}}{m[(\omega_c^2 - \omega^2) - i\omega\Gamma]} \quad (2.2.11)
\]

assume \(\vec{P} \) is in the \(x \) direction and recalling that \(\vec{E} \) is parallel to \(\hat{x} \), then

\[
\chi_e = \frac{Nq^2}{m\varepsilon_0[(\omega_c^2 - \omega^2) - i\omega\Gamma]} \quad (2.2.12)
\]

the complex permittivity \(\tilde{\varepsilon} = \varepsilon_0(\varepsilon_1 + i\varepsilon_2) = \varepsilon_0(1 + \chi_e) \) the dielectric constant is \(\varepsilon_r = (1 + \chi_e) \) and the electric displacement \(\vec{D} = \varepsilon_0\varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0(1 + \chi_e)\vec{E} \) and calling \(\frac{Nq^2}{m} = \omega_p^2 \)

\[
\tilde{\varepsilon} = 1 + \frac{\omega_p^2}{(\omega_c^2 - \omega^2) - i\Gamma \omega} \quad (2.2.13)
\]
\[
= 1 + \frac{\omega_p^2[(\omega_c^2 - \omega^2) + i\Gamma \omega]}{[(\omega_c^2 - \omega^2) - i\Gamma \omega][(\omega_c^2 - \omega^2) + i\Gamma \omega]} \quad (2.2.14)
\]
\[
= 1 + \frac{\omega_p^2(\omega_c^2 - \omega^2) + i\Gamma \omega \omega_p^2}{(\omega_c^2 - \omega^2)^2 + (\Gamma \omega)^2} \quad (2.2.15)
\]
where the real part is

\[
\varepsilon_1 = 1 + \frac{\omega_p^2(\omega_c^2 - \omega^2)}{(\omega_c^2 - \omega^2)^2 + (\Gamma \omega)^2} \tag{2.2.17}
\]

and the imaginary part is

\[
\varepsilon_2 = \frac{\Gamma \omega \omega_p^2}{(\omega_c^2 - \omega^2)^2 + (\Gamma \omega)^2} \tag{2.2.18}
\]

and the plasma frequency \(\omega_p^2 = \frac{Nq^2}{me} \) is for one Lorentz oscillator. This can be generalized to multiple oscillators. \(\varepsilon_\infty \) represents the contribution from the bound electrons to the dielectric function and is sometimes referred to as \(\varepsilon_{\text{core}} \).

\[
\tilde{\varepsilon}(\omega) = \varepsilon_\infty + \sum_j \frac{\omega_p^2}{(\omega_c^2 - \omega^2) - i\Gamma_j \omega} \tag{2.2.19}
\]

\[
\varepsilon_1(\omega) = \varepsilon_\infty + \sum_j \frac{\omega_p^2(\omega_c^2 - \omega^2)}{(\omega_c^2 - \omega^2)^2 + (\Gamma_j \omega)^2} \tag{2.2.20}
\]

\[
\varepsilon_2(\omega) = \sum_j \frac{\Gamma \omega \omega_p^2}{(\omega_c^2 - \omega^2)^2 + (\Gamma_j \omega)^2} \tag{2.2.21}
\]

2.3 Factorized Model

It is found that the Drude-Lorentz model of the dielectric function fails for materials that exhibit wide bands. “Wide” is meant to describe a band in which there are definite left and right shoulders to the peak. For such materials, Gervais and Piriou apply [87] the four parameter semiquantum model in the form of a factorized form of the dielectric function.

\[
\tilde{\varepsilon}(\omega) = \varepsilon_\infty \prod_j \frac{\omega_L^2 - \omega^2 - i\Gamma_L \omega}{\omega_T^2 - \omega^2 - i\Gamma_T \omega} \tag{2.3.1}
\]

where \(L \) denotes the longitudinal modes and \(T \) denotes the transverse modes.

The zeroes of the dielectric function occur at the longitudinal frequencies \(\omega_L \) [76]. This result can be derived as follows [90]. Recall for a homogeneous, linear insulator.
Chapter 2. Dielectric Function Models

\[Linear \Rightarrow \bar{D} = \epsilon(\omega)\bar{E} \]
\[\nabla \cdot \bar{D} = \nabla \cdot \epsilon(\omega)\bar{E} \]
\[= \epsilon(\omega)\nabla \cdot \bar{E} \]
\[Insulator \Rightarrow \epsilon(\omega)\nabla \cdot \bar{E} = 0 \]

\[\nabla \cdot \bar{D} = 0 \] because of macroscopic charge neutrality. The longitudinal electric field that is due to the oscillation of charged ions is parallel to the wave vector. Consider the plane wave

\[\bar{E}(\bar{r}, t) = \bar{E}_0 \exp\left[i(\bar{k} \cdot \bar{r} - \omega t)\right] \]

Since \(\bar{E} \) is parallel to \(\bar{k} \) in a longitudinal mode then \(\bar{k} \cdot \bar{E} \neq 0 \) and therefore \(\nabla \cdot \bar{E} \neq 0 \). Therefore, the previous result that \(\epsilon(\omega)\nabla \cdot \bar{E} = 0 \) implies that \(\epsilon(\omega) = 0 \) for longitudinal mode oscillations.

Now consider the factored-form equation for the dielectric function. For small values of \(\Gamma_{Lj} \), \(\check{\epsilon} \) is approximately

\[\check{\epsilon}(\omega) \simeq \epsilon_\infty \prod_j^n \frac{\omega_{Lj}^2 - \omega^2}{\omega_{Tj}^2 - \omega^2 - i\Gamma_{Tj}\omega} \]

Thus, \(\check{\epsilon}(\omega_{Lj}) = 0 \) for all \(j \). That is, the longitudinal frequencies are the zeroes of the factored-form of the dielectric function. This supports the idea that the numerator of the factored form of the dielectric function describes the behavior of the longitudinal modes.

2.4 Determination of the Dielectric Function from Reflectance Data

The optical response function \(\check{\epsilon}(\omega) \equiv \epsilon_1(\omega) + i\epsilon_2(\omega) \) has many interchangeable forms including the optical conductivity and the complex index of refraction \(\check{N}(\omega) \equiv n(\omega) + i\kappa(\omega) \) which is the square root of the complex dielectric function. The fraction of light reflected (R) is a function of the index of refraction as will be shown below.
Chapter 2. Dielectric Function Models

\[\tilde{E}_{\text{Reflect}}(\omega) \equiv r(\omega) e^{i\theta(\omega)} \tilde{E}_{\text{Incident}}(\omega) \quad (2.4.1) \]

\[\tilde{r}(\omega) \equiv r(\omega) e^{i\theta(\omega)} \quad (2.4.2) \]

\[R(\omega) = \frac{\text{Intensity}_{\text{Reflect}}}{\text{Intensity}_{\text{Incident}}} = \frac{|\tilde{E}_{\text{Reflect}}(\omega)|^2}{|\tilde{E}_{\text{Incident}}(\omega)|^2} = r(\omega)^2 \quad (2.4.3) \]

It is possible to determine the complex dielectric function \(\varepsilon(\omega) \) from normal incidence reflectance data.

The phase information \(\theta(\omega) \) appears to be lost because \(\theta(\omega) \) is not measured. However, \(\theta(\omega) \) can be retrieved indirectly by using the Kramers-Kronig relations. It can be shown [90] that for any \(\omega_0 > 0 \)

\[\theta(\omega_0) = \frac{\omega_0}{\pi} P \int_0^\infty \frac{\ln R(\omega) - \ln R(\omega_0)}{\omega_0^2 - \omega^2} d\omega \quad (2.4.4) \]

The integrand has a singular point at \(\omega_0 \) which lies in the range of integration. Therefore it is necessary to use a Cauchy Principal Value (CPV) to evaluate this improper integral. The CPV is denoted with a "P" prefix to the integral sign.

The difficulty using this equation is that \(R(\omega) \) is measured over a finite range. A practical application of the equation means that \(R(\omega) \) must be extrapolated outside the range of measurements.

Figure 2.4.1: The measured frequency range is finite. Reflectance must be modeled to complete the spectrum over a wider range of frequencies.

The procedure to calculate an approximation for \(\varepsilon_1(\omega) \) and \(\varepsilon_2(\omega) \) in terms of reflectance data is

1. measure \(R(\omega) \) on a finite range of \(\omega \)
(2) approximate \(R(\omega) \) on the interval \([0, \infty)\) by extrapolating \(R(\omega) \) outside the measured range

(3) calculate \(r(\omega) = \sqrt{R(\omega)} \)

(4) calculate \(\theta(\omega) \) using the Kramers-Kronig relations

(5) calculate \(n(\omega) \) and \(\kappa(\omega) \) in terms of \(r(\omega) \) and \(\theta(\omega) \)

\[
n(\omega) = \frac{1 - r^2}{1 + r^2 - 2r \cos \theta}
\]

\[
\kappa(\omega) = \frac{2r \sin \theta}{1 + r^2 - 2r \cos \theta}
\]

which follows from the relation

\[
\frac{\tilde{E}_{\text{Reflect}}}{\tilde{E}_{\text{Incident}}} = \frac{\tilde{N} - 1}{\tilde{N} + 1} = re^{i\theta}
\]

(6) calculate \(\varepsilon_1(\omega) \) and \(\varepsilon_2(\omega) \)

\[
\varepsilon_1(\omega) = n^2 - \kappa^2
\]

\[
\varepsilon_2(\omega) = 2n\kappa
\]

which follows from the relation

\[
\tilde{N}(\omega) = \sqrt{\tilde{\varepsilon}(\omega)}
\]

Another way to determine \(\varepsilon_1(\omega) \) and \(\varepsilon_2(\omega) \) from \(R(\omega) \) is by doing a least squares fit of a model of \(R(\omega) = f(\varepsilon_1(\omega), \varepsilon_2(\omega)) \), where \(\tilde{\varepsilon}(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega) \) is either the Drude-Lorentz model (Eq. 2.2.19) or the factorized model (Eq. 2.3.1).

The Fresnel equations for radiation at a normal angle of incidence are

\[
R = \left| \frac{\sqrt{\varepsilon} - 1}{\sqrt{\varepsilon} + 1} \right|^2 = \frac{|n + i\kappa - 1|^2}{|n + i\kappa + 1|^2}
\]
relates the reflectance R and the dielectric function ε.
Chapter 3

Methods and Materials

3.1 Methods and Materials

All samples were made using standard solid state techniques using the materials TiO$_2$ in mixture of anatase and rutile (Alfa Aesar product #10897), In$_2$O$_3$ (Alfa Aesar product #10709) and Nb$_2$O$_5$ (Alfa Aesar product #10822). This technique involves mixing separate materials in a mortar and pestle with a liquid such as methanol or acetone to keep the powder from escaping. Our goal was to co-dope TiO$_2$ with equal amounts of donor (Nb) and acceptor (In) substitutional impurities (Ti$_{1-2x}$Nb$_x$In$_x$O$_2$). To determine the amount of each powder to mix the following calculation was made of the mass ratio of the starting chemicals

$$\frac{\text{In}_2\text{O}_3 \text{ or Nb}_2\text{O}_5}{\text{TiO}_2} = \frac{x}{2} \times \frac{\text{m(}\text{In}_2\text{O}_3 \text{ or Nb}_2\text{O}_5)}{(1-2x) \times 79.87}$$

This ratio was calculated for all percent doping levels for both In$_2$O$_3$ and Nb$_2$O$_5$.

In this experiment methanol was used to keep all the powder inside the mortar. The powders were mixed by hand for a minimum of 30 minutes. Once the powders were thoroughly combined the mixture was left to dry. Once the mixture was dried approximately 0.6g of it was pressed in a laboratory hand press. The sample remained in the press for thirty minutes and was under at least 2.6 tonnes of pressure at all times. After this time the sample is removed and placed in an alumina crucible. There were 7 different soaking temperatures. They were 1000, 1100, 1200, 1300, 1400, 1450 and 1500 degrees celsius. Samples were soaked at one of the seven previous temperatures for 12 hours. This process was repeated multiple times to make the following different sample compositions: 100% TiO$_2$, 0.5% In only; 0.5, 1, 5, and 10% Nb only; 0.5, 1, 5 and 10% co-doped. Selected co-doped samples were used in the XRD and reflectance experiments for further study.
3.2 X-Ray Diffraction

Samples fired at temperatures 1000, 1100, 1200, 1300, 1400 and 1500 were first examined using the precise powder sequence on the Rigaku SmartLab. This experiment showed the disappearance of all but the rutile phase in TiO₂ at 1400 degrees.

![X-ray diffraction spectra](image)

Figure 3.2.1: X-ray diffraction spectra of 10% co-doped TiO₂ sintered at temperatures 1000-1500 degrees Celsius in increments of 100 degrees. Asterisks (*) mark non-rutile phases. From [13].

Samples were placed on a small table that fits into the Rigaku X-Ray. Optical alignment was performed at the beginning of every X-Ray session. Sample measurements were then made using a preprogrammed set of instructions under the powder analysis option. Data was taken from 20 to 110 degrees. Data past 75 degrees is not shown here because there are no features to be seen.

3.3 Scanning Electron Microscope

Scanning electron microscope images were taken at the Canadian Center for Electron Microscopy of TiO₂ samples made at 1000°, 1300° and 1500° degrees (fig. 3.3.1). The images show the grain size at 1000 times magnification. As the sintering temperature increased there is a noticeable increase in grain size.
Figure 3.3.1: Microstructure of TiO$_2$ at 1000, 1300 and 1500 degrees Celsius. Images from [13]. Note: magnification at 1500 C and 1300 C is ×1000, magnification at 1000 C is ×4000.
3.4 Reflectance Spectra

Figure 3.4.1: Schematic diagram of the optical setup in the lab. The upper box in the sketch represents the Bruker (Model IFS 66V/S) which contains the light sources and Michelson interferometer. The light rays are parallel as they emerge from the Michelson. The lower box in the sketch is a custom built unit through which the Janis cryostat which holds the sample traverses. The first mirror in the lower box is a parabolic mirror which focuses the light onto an iris aperture. A spherical mirror focuses the image of the illuminated iris onto the sample. Note that after the light reaches the sample there are two different optical paths which permit the measurement of reflectance or transmission. Position 1 on the schematic is for the reflectance setup. Position 2 is for transmission. The detector is moved depending on the desired data to be taken.
Reflectance \(R \) is calculated with the equation (which is equivalent to equation 1 in [91])

\[
R(\text{sample}) = \left(\frac{I_s}{I_r} \right) \times \left[\frac{I_r(\text{Au})}{I_s(\text{Au})} \right] \times R(\text{Au})
\]

(3.4.1)

where

\(I_r = \) intensity of reflected light from the reference mirror

\(I_s = \) intensity of reflected light from the sample

\(I_r(\text{Au}) = \) intensity of reflected light from the reference mirror when the sample is coated
with Au; this should equal I_r since the mirror has not been altered

$$I_s(Au) = \text{intensity of reflected light from the sample after in situ gold evaporation onto the sample}$$

$$R(Au) = \text{reflectance of sample coated in situ with Au; this equals } I_s(Au)$$

The purpose of taking ratios with respect to the reference mirror is to remove experimental effects due to the instrument e.g. effects from the reference mirror, changes in the electronics over the duration of the experiment [91].

Mid infrared and far infrared reflectance spectra were collected for pure TiO$_2$, 5\% co-doped sintered at 1450$^\circ$ and 10\% co-doped sintered at 1450$^\circ$ at temperatures from 4K to 300K. Samples were mounted onto small copper disks that were secured onto the cold finger of the Janis cryostat (position S in 3.4.1) that was equipped with heating wires and temperature sensors. This apparatus fit into the top of the reflectance and transmission setup. It is screwed tightly to secure its position. The signal from the sample is then maximized by slightly adjusting the reflecting mirrors. All samples were initially cooled to 4K then warmed to 300K. Gold was evaporated onto the surface after the 300K measurement was taken. An explanation of the gold evaporation technique appears in [91]. The sample was then remeasured at 300K and cooled to 4K again to retake the rest of the measurements. Each measurement also had multiple spectra taken. The final spectra were averages of these measurements. From this data the complex dielectric function can be obtained by either fitting to the factorized model of the dielectric function or Kramers Kronig analysis as discussed in Chapter 2 where reflectance is calculated by equation 3.4.1.
Chapter 4

Results and Discussion

The reflectance measurements were made with unpolarized light on polycrystalline samples and therefore all of the IR modes were sampled. The reflectance measurements were taken at resolution 4 cm$^{-1}$.

Consider the TiO$_2$ spectrum seen in figure 4.0.1. The data look quite similar to the single crystal E_u spectrum (see fig. 1.4.1). Note that only three bands (labelled 1, 2, and 3 in the top margin of the figure) plus the dip near 570–600 cm$^{-1}$ (labelled w) at all temperatures can be seen. The reason why there isn’t a fourth band is that the frequency and oscillator strength of the A_{2u} mode is quite similar to the lowest frequency E_u mode.

The spectrum for the CD 5% sample seen in figure 4.0.1 is also similar to the single crystal E_u TiO$_2$ spectrum. Note that only three bands can be seen. There is no fourth band as explained for the TiO$_2$ sample. The dip (w) near 570–600 cm$^{-1}$ has become much more shallow and a new dip near 650 cm$^{-1}$ has appeared except at 300 K. Bands 2 and 3 have become less reflective (reflectivity decreased) than in the TiO$_2$ sample, but the minimum value of the dip separating these two bands has become more reflective (reflectivity increased).

The spectrum for the CD 10% sample seen in figure 4.0.1 also has three bands. There is no fourth band as explained for the TiO$_2$ sample. The dip near 570–600 cm$^{-1}$ has disappeared entirely and the dip near 650 cm$^{-1}$ has become more pronounced. The dip now also appears at 300 K. As in the CD 5% sample, bands 2 and 3 have become less reflective (band 2 is noticeably less than the CD 5% value), but the minimum value of the dip separating these two bands has become more reflective (even more than the CD 5% values). The slope of the first band appears different than in the 5% co-doped and undoped samples.

The overall effect of co-doping is to make the sample less reflective and this effect is strongest in the region surrounding the second band. In the CD 10% sample this region looks like a dip in the spectrum.

For all levels of doping the first band is a mode that softens as can be seen by the temperature-dependent shift in the left edge of the band. The second and third bands do not shift significantly with decreasing temperature.
Figure 4.0.1: Reflectance spectra of TiO$_2$ co-doped at 0%, 5% and 10% levels. (Resolution = 4 cm$^{-1}$)

Figure 4.0.2 shows the effect of co-doping on the reflectance at T=300K. The graph shows that co-doping only slightly changes the frequency of the bands. Co-doping at 5% has negligible effect on the reflectivity for the first band and a small effect on the second and third bands. Co-doping at 10% greatly reduces the reflectivity of the first and second bands from that of TiO$_2$ and CD 5%. At frequencies greater than 700 cm$^{-1}$ the three graphs are coincident; that is, co-doping has no effect.
4.1 Determination of the Dielectric Function by fitting the Reflectance

The data were first analyzed using the Drude-Lorentz model, but the fits were not satisfactory. Fig. 4.1.1 shows the reason why. For a wide band, the fit to the four-parameter factorized model (eq. 4.1.1) is much better. This can be attributed to the fact that for each oscillator the factorized model has an extra degree of freedom over the Drude-Lorentz model.
Figure 4.1.1: Experimental data is plotted with the factorized and Drude Lorentz model. The shoulder is slightly cutoff by the Drude model whereas the factorized model fits to the data better.

For polycrystalline samples, following [89], the dielectric function is fit using the factorized model. The E_u modes are perpendicular to the c-axis and the A_{2u} mode is parallel to the c-axis and will be labelled respectively as a1, a2, a3, a4 and c in tables 4.1.1, 4.1.2, and 4.1.3. The mode labelled “a4” in the tables is the the weak mode labelled “w” in fig. 4.0.1. Although single crystal data showed the extra mode (w) in both the a and c polarized spectra [87] for modelling purposes this work assumes the extra mode only perpendicular to c (ε_a). This is because the weak mode is approximately the same frequency in both polarizations and the data can be very well modeled near 570 cm$^{-1}$ with a total of five oscillators rather than six. In other words, keeping all six modes would give too many degrees of freedom. Therefore, this work models ε_a with four oscillators (a1, a2, a3, a4) and ε_c with one oscillator (c). Equation 2.3.1 can be written for the E_u and A_{2u} modes as

$$\varepsilon_{a,c}(\omega) = \varepsilon_{\infty,a,c} \prod_i \frac{\omega_{LO}^2 - \omega^2 - i\Gamma_{LO} \omega}{\omega_{TO}^2 - \omega^2 - i\Gamma_{TO} \omega}$$

(4.1.1)

The bulk dielectric function is presumed to be a weighted, linear combination of the dielectric functions in a 2:1 ratio [89].
\[\varepsilon(\omega) = \frac{2}{3} \varepsilon_a + \frac{1}{3} \varepsilon_c \] (4.1.2)

For the co-doped 5% and 10% samples the structure (weak dip) near 570 cm\(^{-1}\) (fig. 4.0.2) disappeared in the third band. Therefore, the four "a" oscillator model just described is changed to a three "a" oscillator model for the co-doped 5% and 10% samples. The structure of the third band is more complicated. This is better treated using Kramers-Kronig analysis which will be discussed below.

The fit of the factorized model was done using a function written within Igor Pro software. The parameters for fitting \(\varepsilon(\omega) \) were found by non-linear least squares fitting (Levenberg-Marquardt algorithm) built into Igor Pro Software using Gervais and Piriou parameters [87] as a starting point. The fitted parameters of the factorized model appear in tables 4.1.1, 4.1.2, and 4.1.3. Fitting the parameters for the a4 mode gives a model in which the calculated dielectric is highly unreasonable. The reason for this behavior is unknown. Therefore, these parameters are omitted from further analysis. Some trends in the fitted parameters will be described next.

\(\omega_{\text{TO},a_1} \) increases with increasing temperature for all samples. Therefore, the "a1" oscillator corresponds to a phonon mode that softens. The transverse mode frequencies for a2 and a3 do not vary much as seen in fig. 4.1.3. This figure also shows that a4 appears to be softening but not as much as a1. The value of \(\omega_{\text{TO},a_1} \) is larger for the CD 10% sample at 300K. Similarly, the longitudinal mode frequencies for a2 and a3 do not vary much. \(\omega_{\text{LO},a_1} \) is approximately the same for TiO\(_2\) and CD 5%. \(\omega_{\text{LO},a_1} \) for CD 10% is less than the values for TiO\(_2\) and CD 5% except at 300K. This value is approximately the same as for TiO\(_2\) and 5%

\(\omega_{\text{LO},c} \) is approximately the same for TiO\(_2\) and CD 5%. \(\omega_{\text{LO},c} \) for CD 10% is greater than the values for TiO\(_2\) and CD 5% except at 300K. This value is approximately the same as for TiO\(_2\) and CD 5%. At all temperatures \((\Gamma_{\text{LO},c} \text{ for TiO}_2) < (\Gamma_{\text{LO},c} \text{ for CD 5}) < (\Gamma_{\text{LO},c} \text{ for CD 10}), \) except for CD 10% at 300K. The value for CD 10% at 300K is approximately equal to the values for TiO\(_2\) and CD5%. Overall, co-doping either increases or does not affect \(\omega_{\text{LO},c} \). However, co-doping does affect \(\Gamma_{\text{LO},c} \). Co-doping appears to affect the "c" oscillator more than the "a1" oscillators.

Figure 4.1.2 overlays the softening-mode frequency (highly temperature-dependent, lowest frequency IR mode) determined by various experiments: single crystal IR reflectance from [87], neutron scattering [92], and inelastic x-ray scattering (IXS) [93] measurements of the transverse mode frequencies by reflectance fits. For the E\(_u\) mode at 300 K, this work’s fit is in very good agreement with the IXS result and is lower than the neutron and
earlier IR results. For the A_{2u} mode, this work’s fits are all greater than the neutron results, although the two sets agree reasonably well in the range 100-150 K and the trendlines for both sets are close to parallel. This work’s fitted model relies on an estimate of ε which is a linear combination of ε_a and ε_c as measured on a ceramic pellet which is probably the reason for the discrepancy in measured frequencies. Since the frequencies of the ε_a and ε_c modes are different, adjusting the weights in the linear combination will cause a shift in the estimated frequency for ε. A similar statement can be made for the amplitude of ε. It is difficult to separate the two mode frequencies in polycrystalline reflectance data. On the other hand, Traylor et al. [92] made neutron scattering measurements on a single crystal of rutile.

Table 4.1.3 shows a splitting of the longitudinal and transverse optic modes for the a_1 oscillator. The strength of the splitting is related to the plasma frequency. The strength of an IR mode is determined by the strength of the dipole. Hence, a stronger dipole will result in a stronger IR active mode. The Born effective charge changes as the dipole moment changes; that is, the Born effective charge will increase if the dipole moment (and corresponding strength of the IR active mode) increases.
Figure 4.1.2: Comparison of the softening-mode transverse optical frequency (ω_{TO}) determined in the fits for TiO$_2$ to those determined by single crystal (IR) reflectance, neutron scattering, and inelastic x-ray scattering (IXS).

- Single crystal IR reflectance from [87]
- Neutron scattering from [92]
- IXS from [93]
Figure 4.1.3: Transverse Mode Frequencies ω_{TO} vs. Temperature in TiO$_2$.
Table 4.1.1: Fitted Parameters Using the Factorized Model for the Dielectric Function When Fitting the Reflectance - TiO₂.

Par = Parameter. Unc = Uncertainty.

<table>
<thead>
<tr>
<th>Temp. (K)</th>
<th>4K</th>
<th>4K</th>
<th>100K</th>
<th>100K</th>
<th>150K</th>
<th>150K</th>
<th>200K</th>
<th>200K</th>
<th>250K</th>
<th>250K</th>
<th>300K</th>
<th>300K</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of a oscillators</td>
<td>Par</td>
<td>Unc</td>
<td>Par</td>
<td>Unc</td>
<td>Par</td>
<td>Unc</td>
<td>Par</td>
<td>Unc</td>
<td>Par</td>
<td>Unc</td>
<td>Par</td>
<td>Unc</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>number of c oscillators</td>
<td>1</td>
</tr>
<tr>
<td>(\varepsilon_{\infty,a})</td>
<td>5.86</td>
<td>0.02</td>
<td>5.78</td>
<td>0.02</td>
<td>5.77</td>
<td>0.02</td>
<td>5.63</td>
<td>0.01</td>
<td>5.64</td>
<td>0.01</td>
<td>5.90</td>
<td>0.01</td>
</tr>
<tr>
<td>(\varepsilon_{\infty,c})</td>
<td>7.68</td>
<td>0.03</td>
<td>7.70</td>
<td>0.03</td>
<td>7.72</td>
<td>0.03</td>
<td>7.74</td>
<td>0.02</td>
<td>7.77</td>
<td>0.02</td>
<td>7.77</td>
<td>0.03</td>
</tr>
<tr>
<td>(\omega_{TO,a1})</td>
<td>156.0</td>
<td>0.5</td>
<td>161.1</td>
<td>0.5</td>
<td>166.6</td>
<td>0.5</td>
<td>171.9</td>
<td>0.4</td>
<td>178.0</td>
<td>0.4</td>
<td>183.9</td>
<td>0.6</td>
</tr>
<tr>
<td>(\Gamma_{TO,a1})</td>
<td>7.2</td>
<td>0.7</td>
<td>8.0</td>
<td>0.7</td>
<td>9.8</td>
<td>0.8</td>
<td>12.8</td>
<td>0.6</td>
<td>16.1</td>
<td>0.7</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>(\omega_{LO,a1})</td>
<td>820.5</td>
<td>0.5</td>
<td>820.4</td>
<td>0.5</td>
<td>822.2</td>
<td>0.6</td>
<td>826.5</td>
<td>0.4</td>
<td>829.0</td>
<td>0.4</td>
<td>832.0</td>
<td>0.6</td>
</tr>
<tr>
<td>(\Gamma_{LO,a1})</td>
<td>49</td>
<td>1</td>
<td>51</td>
<td>1</td>
<td>55</td>
<td>1</td>
<td>51.4</td>
<td>0.9</td>
<td>56.6</td>
<td>0.9</td>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td>(\omega_{TO,a2})</td>
<td>380.5</td>
<td>0.1</td>
<td>380.4</td>
<td>0.1</td>
<td>380.0</td>
<td>0.2</td>
<td>379.6</td>
<td>0.1</td>
<td>378.4</td>
<td>0.2</td>
<td>378.1</td>
<td>0.3</td>
</tr>
<tr>
<td>(\Gamma_{TO,a2})</td>
<td>9.2</td>
<td>0.2</td>
<td>14.3</td>
<td>0.3</td>
<td>14.2</td>
<td>0.3</td>
<td>16.8</td>
<td>0.3</td>
<td>17.9</td>
<td>0.3</td>
<td>20.6</td>
<td>0.6</td>
</tr>
<tr>
<td>(\omega_{LO,a2})</td>
<td>355.4</td>
<td>0.2</td>
<td>354.9</td>
<td>0.2</td>
<td>354.4</td>
<td>0.2</td>
<td>353.9</td>
<td>0.2</td>
<td>354.3</td>
<td>0.2</td>
<td>354.5</td>
<td>0.3</td>
</tr>
<tr>
<td>(\Gamma_{LO,a2})</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.2</td>
<td>2.3</td>
<td>0.5</td>
</tr>
<tr>
<td>(\omega_{TO,a3})</td>
<td>487.4</td>
<td>0.2</td>
<td>486.4</td>
<td>0.2</td>
<td>486.6</td>
<td>0.3</td>
<td>486.4</td>
<td>0.2</td>
<td>486.3</td>
<td>0.2</td>
<td>486.7</td>
<td>0.3</td>
</tr>
<tr>
<td>(\Gamma_{TO,a3})</td>
<td>25.3</td>
<td>0.4</td>
<td>28.4</td>
<td>0.4</td>
<td>31.7</td>
<td>0.5</td>
<td>34.9</td>
<td>0.4</td>
<td>37.8</td>
<td>0.4</td>
<td>39.1</td>
<td>0.8</td>
</tr>
<tr>
<td>(\omega_{LO,a3})</td>
<td>431.1</td>
<td>0.2</td>
<td>431.0</td>
<td>0.2</td>
<td>430.7</td>
<td>0.2</td>
<td>429.8</td>
<td>0.2</td>
<td>428.9</td>
<td>0.2</td>
<td>429.0</td>
<td>0.3</td>
</tr>
<tr>
<td>(\Gamma_{LO,a3})</td>
<td>7.2</td>
<td>0.3</td>
<td>9.3</td>
<td>0.3</td>
<td>13.25</td>
<td>0.4</td>
<td>17.2</td>
<td>0.3</td>
<td>21.4</td>
<td>0.4</td>
<td>26.0</td>
<td>0.6</td>
</tr>
<tr>
<td>(\omega_{TO,a4})</td>
<td>585</td>
<td>2</td>
<td>577</td>
<td>2</td>
<td>577</td>
<td>2</td>
<td>583</td>
<td>2</td>
<td>584</td>
<td>1</td>
<td>589</td>
<td>3</td>
</tr>
<tr>
<td>(\Gamma_{TO,a4})</td>
<td>36</td>
<td>4</td>
<td>34</td>
<td>4</td>
<td>37</td>
<td>4</td>
<td>52</td>
<td>4</td>
<td>49</td>
<td>3</td>
<td>66</td>
<td>7</td>
</tr>
<tr>
<td>(\omega_{LO,a4})</td>
<td>583</td>
<td>2</td>
<td>574</td>
<td>2</td>
<td>573</td>
<td>2</td>
<td>578</td>
<td>2</td>
<td>579</td>
<td>2</td>
<td>584</td>
<td>3</td>
</tr>
<tr>
<td>(\Gamma_{LO,a4})</td>
<td>40</td>
<td>5</td>
<td>35</td>
<td>4</td>
<td>37</td>
<td>4</td>
<td>53</td>
<td>4</td>
<td>50</td>
<td>3</td>
<td>69</td>
<td>8</td>
</tr>
<tr>
<td>(\omega_{TO,c})</td>
<td>149</td>
<td>2</td>
<td>153</td>
<td>2</td>
<td>159</td>
<td>2</td>
<td>166</td>
<td>1</td>
<td>172</td>
<td>1</td>
<td>178</td>
<td>1</td>
</tr>
<tr>
<td>(\Gamma_{TO,c})</td>
<td>58</td>
<td>1</td>
<td>61</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>67.6</td>
<td>0.9</td>
<td>71.2</td>
<td>0.9</td>
<td>74</td>
<td>1</td>
</tr>
<tr>
<td>(\omega_{LO,c})</td>
<td>795.6</td>
<td>0.8</td>
<td>795.7</td>
<td>0.8</td>
<td>795.7</td>
<td>0.9</td>
<td>795.6</td>
<td>0.6</td>
<td>795.6</td>
<td>0.6</td>
<td>795</td>
<td>1</td>
</tr>
<tr>
<td>(\Gamma_{LO,c})</td>
<td>43</td>
<td>1</td>
<td>42</td>
<td>1</td>
<td>41</td>
<td>2</td>
<td>39.9</td>
<td>0.9</td>
<td>39</td>
<td>1</td>
<td>38</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 4.1.2: Fitted Parameters Using the Factorized Model for the Dielectric Function When Fitting the Reflectance - CD 5%

When fitting the reflectance with the factorized model, the following fitted parameters for the dielectric function were obtained. The parameters include the number of a and c oscillators, and the fitted values for different temperatures. The table presents the parameter values along with their uncertainties.

<table>
<thead>
<tr>
<th>Temp. (K)</th>
<th>4K</th>
<th>4K</th>
<th>100K</th>
<th>100K</th>
<th>200K</th>
<th>200K</th>
<th>300K</th>
<th>300K</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of a oscillators</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of c oscillators</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_{\infty,a}$</td>
<td>5.46</td>
<td>0.01</td>
<td>5.43</td>
<td>0.01</td>
<td>5.27</td>
<td>0.01</td>
<td>5.305</td>
<td>0.008</td>
</tr>
<tr>
<td>$\varepsilon_{\infty,c}$</td>
<td>7.40</td>
<td>0.02</td>
<td>7.56</td>
<td>0.02</td>
<td>7.66</td>
<td>0.02</td>
<td>7.73</td>
<td>0.01</td>
</tr>
<tr>
<td>$\omega_{TO,a1}$</td>
<td>158.0</td>
<td>0.6</td>
<td>162.9</td>
<td>0.7</td>
<td>174.7</td>
<td>0.8</td>
<td>184.6</td>
<td>0.8</td>
</tr>
<tr>
<td>$\Gamma_{TO,a1}$</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>22</td>
<td>1</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>$\omega_{LO,a1}$</td>
<td>830.4</td>
<td>0.8</td>
<td>828.6</td>
<td>0.9</td>
<td>834.3</td>
<td>0.8</td>
<td>837.8</td>
<td>0.7</td>
</tr>
<tr>
<td>$\Gamma_{LO,a1}$</td>
<td>69.0</td>
<td>2</td>
<td>71</td>
<td>2</td>
<td>64</td>
<td>2</td>
<td>73</td>
<td>2</td>
</tr>
<tr>
<td>$\omega_{TO,a2}$</td>
<td>376.3</td>
<td>0.2</td>
<td>375.8</td>
<td>0.3</td>
<td>376.4</td>
<td>0.4</td>
<td>374.6</td>
<td>0.5</td>
</tr>
<tr>
<td>$\Gamma_{TO,a2}$</td>
<td>12.2</td>
<td>0.4</td>
<td>15.2</td>
<td>0.6</td>
<td>25.7</td>
<td>0.8</td>
<td>31.0</td>
<td>0.9</td>
</tr>
<tr>
<td>$\omega_{LO,a2}$</td>
<td>352.8</td>
<td>0.3</td>
<td>352.9</td>
<td>0.3</td>
<td>349.0</td>
<td>0.4</td>
<td>348.8</td>
<td>0.3</td>
</tr>
<tr>
<td>$\Gamma_{LO,a2}$</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.6</td>
<td>0.2</td>
<td>0.7</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>$\omega_{TO,a3}$</td>
<td>488.2</td>
<td>0.4</td>
<td>486.7</td>
<td>0.5</td>
<td>486.3</td>
<td>0.5</td>
<td>483.5</td>
<td>0.5</td>
</tr>
<tr>
<td>$\Gamma_{TO,a3}$</td>
<td>44.4</td>
<td>0.7</td>
<td>45.1</td>
<td>0.8</td>
<td>55.4</td>
<td>0.8</td>
<td>61.8</td>
<td>0.8</td>
</tr>
<tr>
<td>$\omega_{LO,a3}$</td>
<td>420.9</td>
<td>0.3</td>
<td>421.2</td>
<td>0.4</td>
<td>420.1</td>
<td>0.4</td>
<td>418.4</td>
<td>0.4</td>
</tr>
<tr>
<td>$\Gamma_{LO,a3}$</td>
<td>21.6</td>
<td>0.7</td>
<td>22.4</td>
<td>0.8</td>
<td>28.0</td>
<td>0.8</td>
<td>31.6</td>
<td>0.8</td>
</tr>
<tr>
<td>$\omega_{TO,a4}$</td>
<td>140</td>
<td>2</td>
<td>144</td>
<td>2</td>
<td>163</td>
<td>2</td>
<td>174</td>
<td>1</td>
</tr>
<tr>
<td>$\Gamma_{TO,a4}$</td>
<td>67</td>
<td>2</td>
<td>73</td>
<td>2</td>
<td>77</td>
<td>2</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td>$\omega_{LO,a4}$</td>
<td>787</td>
<td>1</td>
<td>789</td>
<td>1</td>
<td>792</td>
<td>1</td>
<td>794</td>
<td>1</td>
</tr>
<tr>
<td>$\Gamma_{LO,a4}$</td>
<td>31</td>
<td>2</td>
<td>32</td>
<td>3</td>
<td>33</td>
<td>2</td>
<td>35</td>
<td>2</td>
</tr>
</tbody>
</table>

Par = Parameter. Unc = Uncertainty.
Table 4.1.3: Fitted Parameters Using the Factorized Model for the Dielectric Function When Fitting the Reflectance - CD 10%

<table>
<thead>
<tr>
<th>Temp. (K)</th>
<th>4K</th>
<th>4K</th>
<th>100K</th>
<th>100K</th>
<th>200K</th>
<th>200K</th>
<th>300K</th>
<th>300K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Par</td>
<td>Par Unc</td>
<td>Par Unc</td>
<td>Par Unc</td>
<td>Par Unc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of a oscillators</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of c oscillators</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_{\infty,a}$</td>
<td>6.51</td>
<td>0.02</td>
<td>6.57</td>
<td>0.02</td>
<td>6.51</td>
<td>0.02</td>
<td>5.637</td>
<td>0.009</td>
</tr>
<tr>
<td>$\varepsilon_{\infty,c}$</td>
<td>7.59</td>
<td>0.04</td>
<td>7.75</td>
<td>0.04</td>
<td>7.74</td>
<td>0.03</td>
<td>7.8</td>
<td>0.02</td>
</tr>
<tr>
<td>$\omega_{TO,a1}$</td>
<td>146</td>
<td>5</td>
<td>154</td>
<td>4</td>
<td>184</td>
<td>4</td>
<td>213</td>
<td>3</td>
</tr>
<tr>
<td>$\Gamma_{TO,a1}$</td>
<td>147</td>
<td>6</td>
<td>145</td>
<td>7</td>
<td>140</td>
<td>8</td>
<td>143</td>
<td>9</td>
</tr>
<tr>
<td>$\omega_{LO,a1}$</td>
<td>828</td>
<td>1</td>
<td>828</td>
<td>1</td>
<td>833</td>
<td>1</td>
<td>836</td>
<td>1</td>
</tr>
<tr>
<td>$\Gamma_{LO,a1}$</td>
<td>45</td>
<td>2</td>
<td>45</td>
<td>2</td>
<td>38</td>
<td>2</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>$\omega_{TO,a2}$</td>
<td>374.1</td>
<td>0.4</td>
<td>375.2</td>
<td>0.5</td>
<td>376.5</td>
<td>0.8</td>
<td>377</td>
<td>1</td>
</tr>
<tr>
<td>$\Gamma_{TO,a2}$</td>
<td>13.5</td>
<td>0.8</td>
<td>18</td>
<td>1</td>
<td>24</td>
<td>2</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>$\omega_{LO,a2}$</td>
<td>348.3</td>
<td>1</td>
<td>344</td>
<td>1</td>
<td>342</td>
<td>2</td>
<td>343</td>
<td>2</td>
</tr>
<tr>
<td>$\Gamma_{LO,a2}$</td>
<td>34.7</td>
<td>2</td>
<td>40</td>
<td>2</td>
<td>45</td>
<td>3</td>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td>$\omega_{TO,a3}$</td>
<td>496.6</td>
<td>0.7</td>
<td>496.2</td>
<td>0.8</td>
<td>797</td>
<td>1</td>
<td>499</td>
<td>1</td>
</tr>
<tr>
<td>$\Gamma_{TO,a3}$</td>
<td>59</td>
<td>1</td>
<td>64</td>
<td>1</td>
<td>75</td>
<td>2</td>
<td>85</td>
<td>2</td>
</tr>
<tr>
<td>$\omega_{LO,a3}$</td>
<td>405</td>
<td>1</td>
<td>405</td>
<td>1</td>
<td>404</td>
<td>1</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>$\Gamma_{LO,a3}$</td>
<td>57</td>
<td>2</td>
<td>54</td>
<td>2</td>
<td>54</td>
<td>3</td>
<td>57</td>
<td>4</td>
</tr>
<tr>
<td>$\omega_{TO,a4}$</td>
<td>158</td>
<td>1</td>
<td>166</td>
<td>1</td>
<td>176</td>
<td>1</td>
<td>180</td>
<td>1</td>
</tr>
<tr>
<td>$\Gamma_{TO,a4}$</td>
<td>58</td>
<td>2</td>
<td>64</td>
<td>2</td>
<td>68</td>
<td>2</td>
<td>71</td>
<td>2</td>
</tr>
<tr>
<td>$\omega_{LO,a4}$</td>
<td>791</td>
<td>2</td>
<td>791</td>
<td>2</td>
<td>792</td>
<td>2</td>
<td>792</td>
<td>2</td>
</tr>
<tr>
<td>$\Gamma_{LO,a4}$</td>
<td>35</td>
<td>3</td>
<td>34</td>
<td>3</td>
<td>34</td>
<td>3</td>
<td>34</td>
<td>3</td>
</tr>
</tbody>
</table>

Par = Parameter. Unc = Uncertainty.

Appropriateness of using the factorized model

For TiO$_2$ and 5% co-doped the reflectances fit by the factorized model are compared to the measurements and are shown graphically in figures 4.1.4 and 4.1.5. The fits are good for the TiO$_2$ and 5% co-doped samples. The factorized model is able to follow the small dip in the third resstrahlen band. At T=4K the factorized model does not perform...
as well as at T=300K. For example, for TiO_2 the model slightly overestimates the falling right half of the first resstrahlen band and underestimates the small peak on the left part of the third resstrahlen band. For co-doped 10% TiO_2 the reflectances fit by the factorized model are compared to the measurements and are shown graphically in figure 4.1.6. The factorized model does not perform as well as for TiO_2 and 5% co-doped samples. For instance the model fails to describe the structure in the third resstrahlen band. In addition, the uncertainties (see Table 4.1.3) are high for the a1 and c oscillators at 200K. These problems suggest that a Kramers-Kronig analysis may be a better choice.

Figure 4.1.4: Comparison of TiO_2 Reflectance Data Against Calculated Values by the Factorized Model
Figure 4.1.5: Comparison of Co-doped 5% TiO$_2$ Reflectance Data Against Calculated Values by the Factorized Model
Figure 4.1.6: Comparison of Co-doped 10% TiO$_2$ Reflectance Data Against Calculated Values by the Factorized Model

4.2 Kramers-Kronig Analysis

The Kramers-Kronig analysis performs an integration over the interval $[0, \infty)$ (see section 2.4). The challenge is to construct an integrand that gives a reasonable description of reflectance data over the infinite interval. This can be done by constructing an “infinite” data set by (1) using data from various experimental data sets, (2) extrapolating values down to $\omega = 0$ from the data set with the lowest frequency, (3) interpolating reflectance values between disjoint data sets or approximating functions, and (4) extrapolating values to $\omega = \infty$.
Constructing the infinite interval of integration for Kramers-Kronig analysis

Data for the UV region was obtained from Cardona and Harbeke [94]. Cardona and Harbeke made polarized measurements parallel and perpendicular to the c axis. This work used a linear combination (eq. 4.2.1) of the Cardona and Harbeke data to obtain an approximation of reflectance from a ceramic.

\[R = \frac{2}{3}a_{axis} + \frac{1}{3}c_{axis} \]

(4.2.1)

Tanner [95] presents methods showing how the interpolations and extrapolations can be performed with an emphasis on a technique for extrapolating in the extreme UV to X-ray range. For instance, at low frequencies down to \(\omega = 0 \) the reflectance can be extrapolated using various models such as Drude or Lorentzian, a power-law function, or even a constant. In all cases the model is selected as appropriate for the sample material e.g. Drude model is appropriate for metallic samples. At the other end of the spectrum in the x-ray region \(8.0 \times 10^4 - 2.4 \times 10^8 \) \(\text{cm}^{-1} \) the reflectance of a material can be derived by using atomic scattering factors or functions (published tables in [96]) of the constituent elements. A scattering function \(f(\omega) \) is a complex function of energy (frequency). \(\text{Re}(f(\omega)) \) has plateaus each of which is “...approximately equal to the number of “free” electrons at...” energy “\(\omega \)”. \(\text{Im}(f(\omega)) \) has “...peaks or discontinuities at absorption thresholds.” The reflectance derivation assumes a material equals the linear combination of its atoms and, therefore, the complex dielectric function \(\varepsilon \) of the material (which depends on the absorption of energy and the separation of “free” charge) contains a term that equals a linear combination of the scattering functions of each element, where the weight of each function equals the number density of the constituent element (see Tanner [95] eq. 11). From \(\varepsilon \) one can use the Fresnel equations 2.4.11 and 2.4.12 to obtain the reflectance. The observed data set ends with the x-ray region data. The Kramers-Kronig integration must occur to \(\infty \). The contribution to the phase is calculated analytically over this interval by assuming the free electron form \(\omega^{-4} \) (Homes [97]). In the experiments where the region of highest frequency data do not reach the x-ray region, the reflectance is approximated by a “bridge” (interpolating) function that connects the two regions. Tanner [95] presents results that show the conductivity derived from a Kramers-Kronig analysis appears to be insensitive to the form of the bridge function.

Several data sets were connected to the data from this work to construct the infinite interval for the numerical integration used to perform the KK analysis on undoped TiO\(_2\) (Table 4.2.1). These data sets are shown graphically in figures 4.2.1, 4.2.2, and 4.2.3. This work uses the factorized model to extrapolate low frequency data down to \(\omega = 0 \).
<table>
<thead>
<tr>
<th>Data set</th>
<th>Range (cm$^{-1}$)</th>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>extrapolation</td>
<td>$1 - 50$</td>
<td>this work; calculated values using fitted parameters for factorized model. data set: rlow_tio2_300</td>
<td>Tables 4.1.1, 4.1.2, 4.1.3</td>
</tr>
<tr>
<td>experiment</td>
<td>$50 - 8000$</td>
<td>this work. data set: R_tio2_1300_100_300k_wr</td>
<td></td>
</tr>
<tr>
<td>experiment</td>
<td>$8000 - 100000$</td>
<td>Cardona and Harbeke (1965). data set: R_tio2_vis_uv_average</td>
<td>[94]</td>
</tr>
<tr>
<td>bridge</td>
<td>$100000 - 2 \times 10^5$</td>
<td>bridge made using Drude-Lorentz model data set: r_link_UV_henke</td>
<td></td>
</tr>
<tr>
<td>extrapolation</td>
<td>$2 \times 10^5 - 2.4 \times 10^8$</td>
<td>Tanner using modified Henke atomic scattering functions data set: R_henke_tio2_scaled</td>
<td>[95]</td>
</tr>
<tr>
<td>extrapolation</td>
<td>$2.4 \times 10^8 - \infty$</td>
<td>approximation $= \omega^{-4}$</td>
<td>[95]</td>
</tr>
</tbody>
</table>

Table 4.2.1: Data Sets Used in Kramers-Kronig Analysis on TiO$_2$ at 300K
Chapter 4. Results and Discussion

Figure 4.2.1: Reflectivity Data for TiO$_2$ in Range 0-1000 cm$^{-1}$.

Figure 4.2.2: Reflectivity Data for TiO$_2$ in Range 3000-10000 cm$^{-1}$. The data labelled $R_{\text{tio2_vis_uv_average}}$ is the average of the data from Cardona [94].
Chapter 4. Results and Discussion

Figure 4.2.3: Reflectivity Data for TiO$_2$ in Range 10000-500000 cm$^{-1}$. The data labelled \textit{R$_{\text{tio2_vis_uv_average}$} is the average of the data from Cardona [94].

Kramers-Kronig Real Conductivity

The results of the KK analysis on optical conductivities are shown graphically in figures 4.2.4 and 4.2.5. There are only three modes visible because the c-mode parameters are quite similar to a1 and they overlap. The mode that softens occurs between 150 and 200 cm$^{-1}$ at temperatures between 4 and 300K. The peak of the mode that softens becomes markedly higher as temperature decreases. The peak of the mode that softens is much higher than the other two modes which are roughly the same height. In general, all modes become narrower as temperature decreases reflecting a decrease in Γ or the scattering parameter. There appear to be four impurity modes that increase in oscillator strength with co-doping level centered near $\omega \approx 136, 447, 654$ and 793 cm$^{-1}$. It is interesting to note that four Raman active modes were previously observed in Rutile [98] at $\omega \approx 143, 447, 612$ and 826 cm$^{-1}$. It is possible that the co-doping process breaks lattice symmetry which causes the Raman active modes to develop a dipole moment and become weakly IR active.

Figures 4.3.1, 4.3.2 and 4.3.3 emphasize the mode that softens. At 4 and 300K (see figure 4.3.3) the peaks of the 10% co-doped sample are noticeably asymmetric - more sharply increasing on the left side of the peak and more gently decreasing on the right side. These peaks are also broader than those for undoped and 5% co-doped samples indicating an increase in scattering rate. An additional structure is visible \sim130 cm$^{-1}$ in the co-doped
samples, but not the undoped sample. This feature is not temperature dependent and is not a soft mode.

Figure 4.2.4: KK Real Conductivity versus Temperature for Un-Doped TiO$_2$

Figure 4.2.4: KK Real Conductivity versus Temperature for Un-Doped TiO$_2$
Figure 4.2.5: Real Conductivity for TiO$_2$, co-doped 5%, co-doped 10% at 4K

Permittivity

The results of the KK analysis on permittivity at 4 and 300 K are shown in figure 4.2.6. Similar results occur for temperatures between 4 and 300 K. Note that co-doping actually
decreases the permittivity for frequencies below the mode that softens.

![Figure 4.2.6: Comparison of Permittivity using Kramers-Kronig Analysis](image)

Figure 4.2.6: Comparison of Permittivity using Kramers-Kronig Analysis

4.3 Effect of Doping on the Mode that Softens

As temperature increases (or decreases) monotonically a lattice may undergo a change in structure. A soft phonon is a phonon which shows a decrease in frequency as the tran-
sition temperature is approached \([99, 100]\). In particular, \((\omega^2) \propto T - T_c\) \([101]\) where \(T_c\) is the critical temperature at which the transition occurs. The Lyddane-Sachs-Teller equation \([76]\)

\[
\frac{\omega^2}{\omega^2_T} = \frac{\varepsilon(0)}{\varepsilon(\infty)}
\]

implies that as \(\omega_T \to 0\), \(\varepsilon(0) \to \infty\). The Fresnel equations 2.4.11 and 2.4.12 relate the reflectance \(R\) and the dielectric function \(\varepsilon\). As \(\varepsilon(0) \to \infty\), \(R(0) \to 1\). Putting all these relations together gives that as the temperature approaches the critical temperature, the reflectance at \(\omega = 0\) approaches 1. Soft phonons are associated with phase transitions or changes in crystal structure and are important to the study of ferroelectric structure (for examples see \([100, 102–107]\)).

Figure 4.3.1: The KK real conductivity of TiO\(_2\) 4K-300K measurements.
Figure 4.3.2: The KK real conductivity of CD 5% 4K-300K measurements.
Figure 4.3.3: A new mode appears at \(\sim 130 \text{cm}^{-1} \) most noticeably in the 4.2K measurement.

The 5\% and 10\% figures show the mode as discussed above appearing at \(\sim 136 \text{cm}^{-1} \) in the 200K, 100K, and 4K measurements. The frequency of this impurity induced mode is temperature independent and therefore is not soft.
Figure 4.3.4 shows the decrease of the softening-mode frequency between 300K and 4.2K in all three doping levels. From this it can be seen ω_{TO} is almost independent of doping level. However, the height of the peak is decreased by increased doping level. In all cases the height decreases at higher temperature and the order of the peaks is preserved. At the 10% level there is a widening of the peak and a lowering of the height. This is expected because the electrons are interacting with a higher amount of impurities and lattice defects. The TiO$_2$ peak is higher than the CD 5% peak, which is higher than the CD 10% peak. Co-doping decreases the real conductivity. Co-doping at 10% reduces the real conductivity disproportionately more than co-doping at 5%. This may be due to the co-doping causing defects in the basic TiO$_2$ lattice and localizing hopping electrons [1] which will tend to reduce the real conductivity.
The spectral weight for the mode that softens was calculated via eq. 4.3.1 where the real conductivity outside the interval [75, 350] is presumed to be 0 and does not affect the value of the integral. The peak for all temperatures remains inside this frequency region and the same interval of integration may be used.

\[W = \int_{75}^{350} \sigma_1(\omega) d\omega \] (4.3.1)

Figure 4.3.5: Comparison of spectral weights among all doping levels as related to temperature. Spectral weights calculated by integrating from 75 to 350 cm\(^{-1}\).

Fig. 4.3.5 shows the results of calculating the spectral weight for TiO\(_2\), CD 5%, and CD 10% at 4, 100, 200, and 300K.

Recall eq. 4.3.1 for the spectral weight. In general

\[W = \int_{-\infty}^{\infty} \sigma_1(\omega) d\omega \] (4.3.2)

The sum rule for conductivity gives that
\begin{equation}
\int_{0}^{\infty} \sigma_1(\omega) d\omega = \frac{\pi e^2 n}{2m} \tag{4.3.3}
\end{equation}

where \(e \) is the charge of an electron, \(m \) is the (normal) mass of an electron, and \(n \) is the number of electrons (see [76]). Therefore, the spectral weights calculated by eq. 4.3.1 are approximations of \(\pi e^2 n \). The decrease in spectral weight is difficult to understand but may be due to differences in porosity in the sample as will be discussed below. TiO\(_2\) is less dense than CD 5\% so the decrease in spectral weight may be a real effect. The CD 10\% is less dense than the CD 5\% so this effect could be due to a combination of porosity and doping.

Lichtenecker Adjustment to the Factorized Model

Table 4.3.1 shows that the ceramic pellets studied were somewhat porous. This means the effective dielectric function of the pellet comes not only from co-doped grains of TiO\(_2\), but also from “grains” of air. The Lichtenecker model [108, 109] gives a way to calculate an effective dielectric function for porous ceramics comprised of multiple media. The ceramic pellets in this work are modelled as formed by “grains” (a) with c-axis perpendicular to polarized light, (b) with c-axis parallel to polarized light, and (c) of air.

<table>
<thead>
<tr>
<th>Sample</th>
<th>IR</th>
<th>Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO(_2)</td>
<td>1300°C</td>
<td>p = 0.16 ± 0.02</td>
</tr>
<tr>
<td>CD 5%</td>
<td>1450°C</td>
<td>p = 0.17 ± 0.02</td>
</tr>
<tr>
<td>CD 10%</td>
<td>1450°C</td>
<td>p = 0.24 ± 0.02</td>
</tr>
</tbody>
</table>

Table 4.3.1: Sintering Temperatures and Porosity. The porosity was estimated from the pellet mass and geometry and by comparing the measured and theoretical mass densities.

For a non-porous ceramic pellet the Lichtenecker model gives the dielectric function as

\[
\varepsilon_{\text{effective}}^\alpha = \frac{2}{3} \varepsilon_a^\alpha + \frac{1}{3} \varepsilon_c^\alpha \tag{4.3.4}
\]

The superscript \(\alpha \) is an exponent that serves as a fitting parameter. \(\alpha \) is related to the topology of the grains and whether or not the phase is percolated [109]. The coefficients \(\frac{2}{3} \) and \(\frac{1}{3} \) are weights given to the two modes because there are two directions perpendicular to the c-axis (the a mode) and only one direction parallel to the c-axis (c-mode). The dielectric functions \(\varepsilon_a \) and \(\varepsilon_c \) are modelled by the factorized model equation 4.1.1 [108].
For a porous ceramic pellet the “air grains” are added as

\[
\varepsilon_{\text{effective}}^\alpha = \left(\frac{2}{3} \varepsilon_a^\alpha + \frac{1}{3} \varepsilon_c^\alpha \right) (1 - p) + p \varepsilon_{\text{air}}^\alpha
\]

\[
\varepsilon_{\text{effective}}^\alpha = \frac{2}{3} (1 - p) \varepsilon_a^\alpha + \frac{1}{3} (1 - p) \varepsilon_c^\alpha + p \varepsilon_{\text{air}}^\alpha \quad (4.3.5)
\]

where \(p \) is the porosity. Equation 4.3.5 reduces to the equations for a non-porous ceramic when \(p = 0 \) (no air pores) and a sample of all air when \(p = 1 \) (no ceramic grains). Consider \(\varepsilon_a \). Equation 4.3.5 shows that the contribution of \(\varepsilon_a \) to the overall \(\varepsilon \) is reduced by a factor \(1 - p \). This has the effect of making the “a” oscillators’ strength appear to be weakened. Similarly the “c” oscillator strength appears to be weakened. Overall, equation 4.3.5 shows that as porosity increases the effective dielectric function tends toward that of air (\(\varepsilon_{\text{air}} \approx 1 \)).

Fig. 4.3.6 shows the effect of porosity on \(\varepsilon_1 \) for a range of values of \(p \) that include values shown in table 4.3.1. Nuzhnyy et al. [108] show detailed graphs (their fig. 5) of the effect of porosity and \(\alpha \) on \(\varepsilon_1 (= \text{Re}(\varepsilon)) \) for Pb\((\text{Mg}_1\text{Nb}_{2/3})_3\)O\(_3\). Conductivity and reflectance and can be determined from the dielectric function \(\varepsilon \). Therefore, the effects of porosity on conductivity and reflectance can be deduced from the dielectric function. These effects are shown in figs. 4.3.7 and 4.3.8.

Assuming \(\alpha = 1 \) equation 4.3.5 becomes

\[
\varepsilon_{\text{eff}} = \frac{2}{3} (1 - p) \varepsilon_a + \frac{1}{3} (1 - p) \varepsilon_c + p \varepsilon_{\text{air}} \quad (4.3.6)
\]

Consider

\[
\frac{\partial}{\partial p} \varepsilon_{\text{eff}} = \frac{\partial}{\partial p} \left[\frac{2}{3} (1 - p) \varepsilon_a + \frac{1}{3} (1 - p) \varepsilon_c + p \varepsilon_{\text{air}} \right]
\]

\[
= -\frac{2}{3} \varepsilon_a - \frac{1}{3} \varepsilon_c + \varepsilon_{\text{air}}
\]

\[
= \varepsilon_{\text{air}} - \varepsilon_{\text{non-porous}}
\]

This shows that if \(\text{Re} \{ \varepsilon_{\text{non-porous}} > \varepsilon_{\text{air}} \} \), then \(\text{Re} \{ \varepsilon_{\text{eff}} \} \) is decreasing and if \(\text{Re} \{ \varepsilon_{\text{non-porous}} < \varepsilon_{\text{air}} \} \), then \(\text{Re} \{ \varepsilon_{\text{eff}} \} \) is increasing. The second partial derivative with respect to \(p \) is 0; therefore,
the rate of decrease (or increase) is constant. At $\varepsilon_{\text{non-porous}} = \varepsilon_{\text{air}}$, ε_{eff} is non-changing with respect to porosity. These equations mean that the effect of changing p at $\alpha = 1$ is as follows. For $\varepsilon_1 < 1$ as p increases, ε_1 decreases linearly in p. For $\varepsilon_1 > 1$ as p increases, ε_1 increases linearly in p. In other words, ε_1 tends to get closer to the real axis $\varepsilon_1 = 0$ as p increases. Fig. 4.3.6 graphically shows this effect for a hypothetical single oscillator using the factorized model. Similar statements can be made for the imaginary part of ε_{eff}.

Figure 4.3.6: Effect of porosity on ε_1, assumes factorized model for both ε_a and ε_c. In the “a” direction there is one oscillator: $\omega_{TO} = 150 \text{ cm}^{-1}, \Gamma_{TO} = 15 \text{ cm}^{-1}, \omega_{LO} = 5000 \text{ cm}^{-1}, \Gamma_{LO} = 15 \text{ cm}^{-1}, \varepsilon_{\infty} = 6.843$. In the “c” direction there is one oscillator: $\omega_{TO} = 150 \text{ cm}^{-1}, \Gamma_{TO} = 15 \text{ cm}^{-1}, \omega_{LO} = 5000 \text{ cm}^{-1}, \Gamma_{LO} = 15 \text{ cm}^{-1}, \varepsilon_{\infty} = 8.427$.
The real conductivity is given by

\[\sigma_1(\omega) = \varepsilon_0 \omega \varepsilon_2(\omega) \]

For a porous ceramic

\[
\sigma_{\text{eff},1}(\omega) = \varepsilon_0 \omega \varepsilon_{\text{eff},2}(\omega)
\]

\[
= \varepsilon_0 \omega \left[\frac{2}{3} (1 - p) \varepsilon_{a,2} + \frac{1}{3} (1 - p) \varepsilon_{c,2} + p \varepsilon_{\text{air},2} \right]
\]

\[
= \varepsilon_0 \omega \left[\frac{2}{3} (1 - p) \varepsilon_{a,2} + \frac{1}{3} (1 - p) \varepsilon_{c,2} + 0 \right]
\]

\[
= \varepsilon_0 \omega \left[\frac{2}{3} (1 - p) \varepsilon_{a,2} + \frac{1}{3} (1 - p) \varepsilon_{c,2} \right]
\]

\[
= (1 - p) \varepsilon_0 \omega \left[\frac{2}{3} \varepsilon_{a,2} + \frac{1}{3} \varepsilon_{c,2} \right]
\]

\[
= (1 - p) \varepsilon_0 \omega \varepsilon_{\text{non-porous-ceramic},2}(\omega)
\]

which finally gives

\[\sigma_{\text{eff},1}(\omega) = (1 - p) \sigma_{\text{non-porous-ceramic},1}(\omega) \] (4.3.7)

Equation 4.3.7 shows that effective conductivity decreases linearly as porosity increases. Fig. 4.3.7 illustrates this effect for a hypothetical single oscillator using the factorized model (as before).
Figure 4.3.7: Effect of porosity on σ_1. Same model as used in fig. 4.3.6.

Apply the definition of spectral weight, equation 4.3.2, to equation 4.3.7 to get the spectral weight of a porous ceramic in terms of a non-porous ceramic.

$$\int_{-\infty}^{\infty} \sigma_{\text{eff},1}(\omega) d\omega = (1 - p) \int_{-\infty}^{\infty} \sigma_{\text{non-porous- ceramic},1}(\omega) d\omega$$

Let $W(p)$ denote the spectral weight of a ceramic with porosity p. The above equation becomes

$$W(p) = (1 - p)W(0) \quad (4.3.8)$$

Taking the partial derivative of W with respect to p gives

$$\frac{\partial W}{\partial p} = -W(0)$$
which shows that the spectral weight of a porous ceramic is decreasing at a constant rate as a function of porosity.

The reflectance R approaches 0 as porosity approaches 1. Fig. 4.3.8 illustrates this effect for a hypothetical single oscillator using the factorized model. The difference in spectral weight between 5% and 10% co-doped samples (fig. 4.3.5) could be due to a difference in porosity. More work needs to be done to investigate this observation.

Figure 4.3.8: Effect of porosity on reflectance. Same model as used in fig. 4.3.6.
Chapter 5

Conclusions

This thesis work studied rutile TiO$_2$ co-doped with In (electron acceptor) and Nb (electron donor) at 5\% and 10\% to explore the effect of co-doping on the infrared active (IR) modes and the complex dielectric response function between 50 and 8000 cm$^{-1}$ (1.5 - 240 THz).

Co-doping rutile appears to decrease the permittivity at frequencies just below the mode that softens. It appears that the increase in permittivity recently observed elsewhere [1] is not caused by doping induced changes to the phonon modes. The overall effect of co-doping is to make the sample less reflective and this effect is strongest in the region surrounding the second band. In 10\% co-doped rutile this region looks like a dip in the spectrum. For all levels of co-doping the first band is a mode that softens. The amount of doping does not affect the frequency of the mode that softens. The second and third bands do not shift significantly with decreasing temperature and, therefore, are hard modes.

Co-doping appears to introduce four new, impurity, phonon modes (seen in fig. 4.2.5) that increase in oscillator strength with increasing co-doping level. These modes are centered near $\omega \approx 136, 447, 654$ and 793 cm$^{-1}$. It is interesting to note that these IR active modes are close to four Raman active modes previously observed in rutile at $\omega \approx 143, 447, 612$ and 826 cm$^{-1}$. It is possible that the co-doping process causes the Raman modes to develop a dipole moment and become weakly IR active.

The spectral weight decreases with increasing co-doping. The decrease in spectral weight may be due to an increase in porosity which may be due to the increase in co-doping. The Lichtenecker model implies that ε_1 and σ_1 will decrease as porosity increases. Therefore, it is possible that the decrease of ε_1 and σ_1 for frequencies below the mode that softens is due to an increase in porosity resulting from the co-doping.
Bibliography

[17] Jinglei Li, Fei Li, Chao Li, Guang Yang, Zhuo Xu, and Shujun Zhang. Evi-
dences of grain boundary capacitance effect on the colossal dielectric permittivity
in (Nb+In) co-doped TiO$_2$ ceramics. *Scientific Reports*, 5, February 2015. doi:
10.1038/srep08295.

[18] F. Matteucci, G. Cruciani, M. Dondi, and M. Raimondo. The role of counterions

Sirenko, and Z. Mao. Colossal permittivity induced by lattice mirror reflection sym-
metry breaking in Ba$_7$Ir$_3$O$_{13+x}$ (0 <= x <= 1.5) epitaxial thin films. In *APS Meeting

[20] Osamu Tonomura, Tomoko Sekiguchi, Naomi Inada, Tomoyuki Hamada, Hiroshi
Miki, and Kazuyoshi Torii. Band Engineering of Ru/Rutile-TiO$_2$/Ru Capacitors by

Conductivity of Polycrystalline Materials. *Inorganic Materials*, 46(12):1365–1368,
2010.

[22] Chafe Cheballah, Zarel Valdez-Nava, Lionel Laudebat, Thierry Lebey, Pierre Bidan,
Sombel Diaham, and Sophie Guillemet-Fritsch. Dielectric Properties of Colossal

[23] Hyuksu Han, Dipankar Ghosh, Jacob L. Jones, and Juan C. Nino. Colossal Permit-
tivity in Microwave-Sintered Barium Titanate and Effect of Annealing on Dielectric

[24] Hyuksu Han, Christophe Voisin, Sophie Guillemet-Fritsch, Pascal Dufour,
Christophe Tenailleau, Christopher Turner, and Juan C. Nino. Origin of colossal
permittivity in BaTiO$_3$ via broadband dielectric spectroscopy. *Journal of Applied

[44] Mehmet A. Akbas and Peter K. Davies. Structure and Dielectric Properties of the Ba(Mg\textsubscript{1/3}Nb\textsubscript{2/3})O\textsubscript{3}-La(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3} System. *Journal of the American Ceramic Society*, 81(8):2205–2208, 1998.

[45] Liang Chai and Peter K. Davies. Formation and Structural Characterization of 1:1 Ordered Perovskites in the Ba(Zn\textsubscript{1/3}Ta\textsubscript{2/3})O\textsubscript{3}-BaZrO\textsubscript{3} System. *Journal of the American Ceramic Society*, 80(12):3193–3198, 1997.

[52] Yong Jun Wu, Shao Hua Su, Ji Peng Cheng, and Xiang Ming Chen. Spark Plasma Sintering of Barium Zirconate Titanate/Carbon Nanotube Composites with Colossal

[97] Dr. C.C. Homes. personal communication, April 2017.

Appendix A

Phonons

Lattice vibrations contain energy. This vibrational energy is quantized [76]. In an analogy with the energy quanta of electromagnetic field vibrations, which are called photons, the energy quanta of lattice vibrations are called phonons. The vibrations lead to waves in the lattice of the solid (mechanical elastic waves), which result in displacements of the atoms from their equilibrium position. Transverse waves are those in which the atomic displacements are orthogonal to the direction of the propagation of the wave (Fig. A.0.1). Longitudinal waves are those in which the atomic displacements are parallel to the direction of the propagation of the wave (fig. A.0.2). In three dimensional solids there are two transverse vibrational modes.

Figure A.0.1: Transverse Wave
The 5X5 grid on the left shows the equilibrium position of the atoms in the lattice. K is the wave vector and shows the direction of the propagation of the phonon.
The 5X5 grid on the top shows the equilibrium position of the atoms in the lattice. K is the wave vector and shows the direction of the propagation of the phonon.

The transverse waves can be stimulated by the electric field of visible light in which case the mode is called a transverse optical mode. Transverse waves can also be stimulated at lower frequencies in which case the mode is called a transverse acoustical mode[76]. Similarly, we have longitudinal optical and acoustical modes.
Appendix B

Group Theory Predictions

The symmetry operations on an octahedron (see [86]):

(a) rotations about the axes perpendicular to each of the 8 triangular faces - 8 axes each one consisting of $\frac{2\pi}{3}$ rotations; named C_3

(b) rotations about the axes passing through the six vertices (and through the center) of the octahedron - 6 axes each one consisting of $\frac{\pi}{2}$ rotations; named C_4

(c) rotations about the axes passing through the six vertices (and through the center) of the octahedron - 6 axes each one consisting of π rotations. A rotation of π does not give the same configuration as a rotation of $\frac{\pi}{2}$. Therefore, this set of rotations is different from the set in (b). However, a rotation of π about a vertex V will give the same configuration as a rotation of $\frac{\pi}{2}$ about the opposite vertex. Therefore, instead of six C_2 rotations there are three. A rotation C_2 equals two successive C_4 rotations, i.e. $(C_4)^2$.

(d) rotations about axes passing through the midpoints of the edges - 3 axes each one consisting of π rotations; also named C_2

(e) an inversion through the center of the octahedron; named i (not the same as the imaginary number $\sqrt{-1}$)

(f) “do nothing” or leave the octahedron alone; named e (or E)

These symmetry operations form a group, Group O_h. Note that the operations and not the vertices of the octahedron are the elements of the group O.

Figure B.0.1: From [86]
Inversion symmetry operations that preserve the same sign are called even and are labelled with a subscript g (German “gerade” meaning even). Inversion operations that change sign are called odd and are labelled with a subscript u (German “ungerade” meaning not-even or odd).

Group elements (the rotation and inversion operations) can be represented by square matrices and the operations on the octahedron are calculated by the usual matrix multiplication. This set of matrices is called a representation. The set of matrices (the representation) representing the group elements is not unique. For instance, applying the same matrix similarity transform on all of the matrices will produce another set of matrices which is also a representation of the group. A similarity transformation can reduce the matrix to a simpler one consisting of a diagonal composed of smaller square matrices - block diagonalize all the matrices. These smaller blocks can be used as matrices in of themselves as a representation. If it is impossible to block diagonalize all of the matrices in a representation using the same similarity transformation, then the representation is called irreducible.

From linear algebra it is known that the trace of a matrix is invariant under similarity transformations. This means that different but similar representations have the same set of traces. The trace of a matrix in a representation is called the character of the matrix. The irreducible representations can be characterized by the set of traces of the matrices in the representation. In this way, the irreducible representations and their relationships among the symmetry operations can be characterized by a table of traces called a character table.

It is not necessary to list an actual matrix representing a specific operation. It is important to note that there are several irreducible representations for a group. For Group O_h there are 10 distinct irreducible representations. Character tables are widely published so it is not necessary to calculate them.

The character tables are very important because it is possible to calculate some properties of the symmetry group by using simple arithmetic on the characters in the character table and not have to do any matrix operations.

Infrared active modes involve excitations of dipoles; that is, displacements of atoms and electrons. Displacement is a vector and vectors change sign under inversion. That means symmetry operations on the Schrodinger equation involving dipole displacements are odd or ungerade. Therefore, vibrational modes that are ungerade can be infrared-active [86].

The Raman effect involves the polarizability tensor which is a second rank, symmetric tensor. In this kind of tensor the components are quadratics which do not change sign under inversion. The symmetry operations on the Schrodinger equation are even or gerade. Therefore, vibrational modes that are gerade can be Raman active [86].

Note that a vibrational mode cannot be both gerade and ungerade simultaneously. This
means an infrared active mode cannot be Raman active and a Raman active mode cannot be infrared active. This is what is meant when it is said that infrared and Raman spectroscopy are complementary techniques.

The application of group theory shows that the infrared-active modes of vibration of the rutile crystal are A_{2u} and E_u. Infrared radiation excites dipole moments. Dipoles involve the spatial displacement of charge where displacement involves the coordinate functions (x, y, z). The unit cell of the rutile form of TiO$_2$ is a body-centered tetragonal structure. The symmetry of this structure is the D_{4h} point group[86]. In this symmetry group the basis functions (x, y, z) correspond to the irreducible representations A_{2u} and E_u. This means the excitation of dipole moments occurs for vibrational modes that show A_{2u} and E_u symmetry. Therefore, infrared radiation excites the vibrational modes A_{2u} and E_u in rutile, or the A_{2u} and E_u modes are infrared active. For a detailed explanation of the application of group theory to solids see [86, 88].