Show simple item record

dc.contributor.authorHartley, Geoffrey L.
dc.date.accessioned2016-01-20T21:09:52Z
dc.date.available2016-01-20T21:09:52Z
dc.identifier.urihttp://hdl.handle.net/10464/8081
dc.description.abstractAlthough reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectNeuromuscular, Cerebral blood flow, carbon dioxide, heat stress, hypoxiaen_US
dc.titleThe Influence of Cerebral Blood Flow and Carbon Dioxide on Neuromuscular Responses During Environmental Stressen_US
dc.typeElectronic Thesis or Dissertationen
dc.degree.namePh.D. Applied Health Sciencesen_US
dc.degree.levelDoctoralen_US
dc.contributor.departmentApplied Health Sciences Programen_US
dc.degree.disciplineFaculty of Applied Health Sciencesen_US
refterms.dateFOA2021-08-01T01:47:55Z


Files in this item

Thumbnail
Name:
Brock_Hartley_Geoffrey_2015.pdf
Size:
1.908Mb
Format:
PDF
Description:
Thesis Document

This item appears in the following Collection(s)

Show simple item record