Show simple item record

dc.contributor.authorLenarcic, Adam
dc.date.accessioned2012-04-03T17:12:16Z
dc.date.available2012-04-03T17:12:16Z
dc.date.issued2012-04-03
dc.identifier.urihttp://hdl.handle.net/10464/3958
dc.description.abstractThe representation of a perceptual scene by a computer is usually limited to numbers representing dimensions and colours. The theory of affordances attempted to provide a new way of representing an environment, with respect to a particular agent. The view was introduced as part of an entire field of psychology labeled as 'ecological,' which has since branched into computer science through the field of robotics, and formal methods. This thesis will describe the concept of affordances, review several existing formalizations, and take a brief look at applications to robotics. The formalizations put forth in the last 20 years have no agreed upon structure, only that both the agent and the environment must be taken in relation to one another. Situation theory has also been evolving since its inception in 1983 by Barwise & Perry. The theory provided a formal way to represent any arbitrary piece of information in terms of relations. This thesis will take a toy version of situation theory published in CSLI lecture notes no. 22, and add to the given ontologies. This thesis extends the given ontologies to include specialized affordance types, and individual object types. This allows for the definition of semantic objects called environments, which support a situation and a set of affordances, and niches which refer to a set of actions for an individual. Finally, a possible way for an environment to change into a new environment is suggested via the activation of an affordance.en_US
dc.subjectGibson, James Jerome, 1904-en_US
dc.subjectRoboticsen_US
dc.subjectVisual perceptionen_US
dc.subjectDepth perceptionen_US
dc.titleFormalizing affordances in situationen_US
dc.degree.nameM.Sc. Computer Scienceen_US
dc.degree.levelMastersen_US
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record