Show simple item record

dc.contributor.authorZhang, Wen Xiao
dc.date.accessioned2010-10-26T15:08:03Z
dc.date.available2010-10-26T15:08:03Z
dc.date.issued2010-10-26
dc.identifier.urihttp://hdl.handle.net/10464/3044
dc.description.abstractVitamin E is a well known fat soluble chain breaking antioxidant. It is a general tenn used to describe a family of eight stereoisomers of tocopherols. Selective retention of a-tocopherol in the human circulation system is regulated by the a -Tocopherol Transfer Protein (a-TIP). Using a fluorescently labelled a-tocopherol (NBD-a-Toc) synthesized in our laboratory, a fluorescence resonance energy transfer (FRET) assay was developed to monitor the kinetics of ligand transfer by a-hTTP in lipid vesicles. Preliminary results implied that NBD-a-Toe simply diffused from 6-His-a-hTTP to acceptor membranes since the kinetics of transfer were not responsive to a variety of conditions tested. After a series of trouble shooting experiments, we identified a minor contaminant, E coli. outer membrane porin F (OmpF) that co-purified with 6-His-a-hTTP from the metal affinity column as the source of the problem. In order to completely avoid OmpF contamination, a GST -a-hTTP fusion protein was purified from a glutathione agarose column followed by an on-column thrombin digestion to remove the GST tag. We then demonstrated that a-hTTP utilizes a collisional mechanism to deliver its ligand. Furthennore, a higher rate of a-tocopherol transfer to small unilamellar vesicles (SUV s) versus large unilamellar vesicles (LUV s) indicated that transfer is sensitive to membrane curvature. These findings suggest that ahTTP mediated a-Toc transfer is dominated by the hydrophobic nature of a-hTTP and the packing density of phospholipid head groups within acceptor membranes. Based on the calculated free energy change (dG) when a protein is transferred from water to the lipid bilayer, a model was generated to predict the orientation of a-hTTP when it interacts with lipid membranes. Guided by this model, several hydrophobic residues expected to penetrate deeply into the bilayer hydrophobic core, were mutated to either aspartate or alanine. Utilizing dual polarization interferometry and size exclusion vesicle binding assays, we identified the key residues for membrane binding to be F 165, F 169 and 1202. In addition, the rates of ligand transfer of the u-TTP mutants were directly correlated to their membrane binding capabilities, indicating that membrane binding was likely the rate limiting step in u-TTP mediated transfer of u-Toc. The propensity of u-TTP for highly curved membrane provides a connection to its colocalization with u-Toc in late endosomes.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectProtein bindingen_US
dc.subjectVitamin Een_US
dc.titleMechanism of tocopherol transfer by human α-tocopherol transfer protein (α-hTTP)en_US
dc.typeElectronic Thesis or Dissertationen_US
dc.degree.namePh.D. Biotechnologyen_US
dc.degree.levelDoctoralen_US
dc.contributor.departmentCentre for Biotechnologyen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record