Digital Repository

Zero-sum problems in finite cyclic groups

DSpace/Manakin Repository

Show simple item record Plyley, Chris. en_US 2010-01-28T15:55:31Z 2010-01-28T15:55:31Z 2009-01-28T15:55:31Z
dc.description.abstract The purpose of this thesis is to investigate some open problems in the area of combinatorial number theory referred to as zero-sum theory. A zero-sequence in a finite cyclic group G is said to have the basic property if it is equivalent under group automorphism to one which has sum precisely IGI when this sum is viewed as an integer. This thesis investigates two major problems, the first of which is referred to as the basic pair problem. This problem seeks to determine conditions for which every zero-sequence of a given length in a finite abelian group has the basic property. We resolve an open problem regarding basic pairs in cyclic groups by demonstrating that every sequence of length four in Zp has the basic property, and we conjecture on the complete solution of this problem. The second problem is a 1988 conjecture of Kleitman and Lemke, part of which claims that every sequence of length n in Zn has a subsequence with the basic property. If one considers the special case where n is an odd integer we believe this conjecture to hold true. We verify this is the case for all prime integers less than 40, and all odd integers less than 26. In addition, we resolve the Kleitman-Lemke conjecture for general n in the negative. That is, we demonstrate a sequence in any finite abelian group isomorphic to Z2p (for p ~ 11 a prime) containing no subsequence with the basic property. These results, as well as the results found along the way, contribute to many other problems in zero-sum theory. en_US
dc.language.iso eng en_US
dc.publisher Brock University en_US
dc.subject Combinatorial number theory. en_US
dc.subject Combinatorial analysis. en_US
dc.subject Game theory. en_US
dc.title Zero-sum problems in finite cyclic groups en_US
dc.type Electronic Thesis or Dissertation en_US M.Sc. Mathematics and Statistics en_US
dc.contributor.department Department of Mathematics en_US Faculty of Mathematics and Science en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search The Repository


My Account


About the Digital Repository