Digital Repository

X-ray diffraction of a gram-negative bacterial membrane mimetic

DSpace/Manakin Repository

Show simple item record Razavi, Panteha. en_US 2010-01-28T15:55:31Z 2010-01-28T15:55:31Z 2009-01-28T15:55:31Z
dc.description.abstract This thesis applies x-ray diffraction to measure he membrane structure of lipopolysaccharides and to develop a better model of a LPS bacterial melilbrane that can be used for biophysical research on antibiotics that attack cell membranes. \iVe ha'e Inodified the Physics department x-ray machine for use 3.'3 a thin film diffractometer, and have lesigned a new temperature and relative humidity controlled sample cell.\Ve tested the sample eel: by measuring the one-dimensional electron density profiles of bilayers of pope with 0%, 1%, 1G :VcJ, and 100% by weight lipo-polysaccharide from Pse'udo'lTwna aeTuginosa. Background VVe now know that traditional p,ntibiotics ,I,re losing their effectiveness against ever-evolving bacteria. This is because traditional antibiotic: work against specific targets within the bacterial cell, and with genetic mutations over time, themtibiotic no longer works. One possible solution are antimicrobial peptides. These are short proteins that are part of the immune systems of many animals, and some of them attack bacteria directly at the membrane of the cell, causing the bacterium to rupture and die. Since the membranes of most bacteria share common structural features, and these featuret, are unlikely to evolve very much, these peptides should effectively kill many types of bacteria wi Lhout much evolved resistance. But why do these peptides kill bacterial cel: '3 , but not the cells of the host animal? For gramnegative bacteria, the most likely reason is that t Ileir outer membrane is made of lipopolysaccharides (LPS), which is very different from an animal :;ell membrane. Up to now, what we knovv about how these peptides work was likely done with r !10spholipid models of animal cell membranes, and not with the more complex lipopolysa,echaricies, If we want to make better pepticies, ones that we can use to fight all types of infection, we need a more accurate molecular picture of how they \vork. This will hopefully be one step forward to the ( esign of better treatments for bacterial infections. en_US
dc.language.iso eng en_US
dc.publisher Brock University en_US
dc.subject Endotoxins. en_US
dc.subject Antibiotics--Research. en_US
dc.title X-ray diffraction of a gram-negative bacterial membrane mimetic en_US
dc.type Electronic Thesis or Dissertation en_US M.Sc. Physics en_US Masters en_US
dc.contributor.department Department of Physics en_US Faculty of Mathematics and Science en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search The Repository


My Account


About the Digital Repository