Show simple item record

dc.contributor.authorJohnson, Michael Fergus.en_US
dc.date.accessioned2009-07-09T18:54:25Z
dc.date.available2009-07-09T18:54:25Z
dc.date.issued1998-07-09T18:54:25Z
dc.identifier.urihttp://hdl.handle.net/10464/2199
dc.description.abstractThe lower Silurian Whirlpool Sandstone is composed of two main units: a fluvial unit and an estuarine to transitional marine unit. The lowermost unit is made up of sandy braided fluvial deposits, in shallow valleys, that flowed towards the northwest. The fluvial channels are largely filled by cross-bedded, well sorted, quartzose sands, with little ripple crosslaminated or overbank shales. Erosionally overlying this lower unit are brackish water to marine deposits. In the east, this unit consists of estuarine channels and tidal flat deposits. The channels consist of fluvial sands at the base, changing upwards into brackish and tidally influenced channelized sandstones and shales. The estuarine channels flowed to the southwest. Westwards, the unit contains backbarrier facies with extensive washover deposits. Separating the backbarrier facies from shoreface sandstone facies to the west, are barrier island sands represented by barrier-foreshore facies. The barrier islands are dissected by tidal inlets characterized by fining upward abandonment sequences. Inlet deposits are also present west of the barrier island, abandoned by transgression on the shoreface. The sandy marine deposits are replaced to the west by carbonates of the Manitoulin Limestone. During the latest Ordovician, a hiatus in crustal loading during the Taconic Orogeny led to erosional offloading and crustal rebound, the eroded material distributed towards the west, northwest and north as the terrestrial deposits of the fluvial Whirlpool. The "anti-peripheral bulge" of the rebound interfered with the peripheral bulge of the Michigan Basin, nulling the Algonquin Arch, and allowing the detritus of the fluvial Whirlpool to spread onto the Algonquin Arch. The Taconic Orogeny resumed in the earliest Silurian with crustal loading to the south and southeast, and causing tilting of the surface slope in subsurface Lake Erie towards the ii southwest. Lowstand terrestrial deposits were scoured into the new slope. The new crustal loading also reactivated the peripheral bulge of the Appalachian Basin, allowing it to interact with the bulge of the Michigan Basin, raising the Algonquin Arch. The crustal loading depressed the Appalachian basin and allowed transgression to occur. The renewed Algonquin Arch allowed the early Silurian transgression to proceed up two slopes, one to the east and one to the west. The transgression to the east entered the lowstand valleys and created the estuarine Whirlpool. The rising arch caused progradation of the Manitoulin carbonates upon shoreface facies of the Whirlpool Sandstone and upon offshore facies of the Cabot Head Formation. Further crustal loading caused basin subsidence and rapid transgression, abandoning the Whirlpool estuary in an offshore setting.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectSandstone--Erie, Lake.en_US
dc.subjectGeology, Stratigraphic|ySilurian.en_US
dc.subjectGeology--Erie, Lake.en_US
dc.subjectSedimentology.en_US
dc.titleThe sedimentology of the lower Silurian whirlpool sandstone in subsurface Lake Erie, Ontarioen_US
dc.typeElectronic Thesis or Dissertationen
dc.degree.nameM.Sc. Earth Sciencesen_US
dc.degree.levelMastersen_US
dc.contributor.departmentDepartment of Earth Sciencesen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US
refterms.dateFOA2021-07-30T02:06:20Z


Files in this item

Thumbnail
Name:
Brock_Johnson_Michael_1998.pdf
Size:
15.56Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record