Digital Repository

Investigation into the determination of arsenic by direct current plasma atomic emission spectrometer

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Boampong, Charles. en_US
dc.date.accessioned 2009-07-09T18:38:40Z
dc.date.available 2009-07-09T18:38:40Z
dc.date.issued 1983-07-09T18:38:40Z
dc.identifier.uri http://hdl.handle.net/10464/1919
dc.description.abstract Improvements have been made on the currently available hydride generator system manufactured by SpectraMetrics Incorporated, because the system was found to be unsatisfactory with respect to the following: 1. the drying agent, anhydrous calcium chloride, 2. the special sample tube, 3. the direction of argon flow through the Buchner funnel when it came to dealing with real sample, that is, with reference only to aqueous extracts of soil samples. Changes that were made on the system included the replacement of anhydrous calcium chloride with anhydrous calcium sulphate and the replacement of the special sample tube with a modified one made from silica. Re-directing the flow of argon through the top of the Buchner funnel appeared to make the system compatible with aqueous extracts of soil samples. The interferences from 1000 ~g/mL of nickel(II) , cobalt(II), iron(III), copper(II) have been eliminated with the aid of 1.4 M hydrochloric acid and 1% (weight/volume) L-cystine. Greater than 90% recovery of 0.3 ~g/mL arsenic signal was achieved in each case. Furthermore, 103% of arsenic signal was accomplished in the presence of 1000 ~g/mL cadmium with 5 M Hel. tVhen each of the interferents was present in solution at 1000 ppm, a recovery of 85% was achieved by using 5 M hydrochloric acid and 3% (weight/volume) L-cystine. Without L-cystine and when 1.4 M hydrochloric acid was used, the recoveries were 0% (Ni), 0% (Co), 88% (Fe), 15% (Cu), 18% (Cd). Similarly, a solution containing 1000 ppm of each interferent gave a zero percent recovery of arsenic. The reduction of trivalent and pentavalent arsenic at a pH less than one has also been investigated and shown to be quantitative if peak areas are measured. The reproducibility determination of a 0.3 Vg/mL standard arsenic solution by hydride generation shows a relative standard deviation of 3.4%. The detection limits with and without Porapak Q have been found to be 0.6 ng/mL and 1.0 ng/mL, respectively. en_US
dc.language.iso eng en_US
dc.publisher Brock University en_US
dc.subject Arsenic. en_US
dc.subject Arsenic--Spectra. en_US
dc.subject Spectrometer. en_US
dc.subject Plasma radiation. en_US
dc.title Investigation into the determination of arsenic by direct current plasma atomic emission spectrometer en_US
dc.type Electronic Thesis or Dissertation en_US
dc.degree.name M.Sc. Chemistry en_US
dc.degree.level Masters en_US
dc.contributor.department Department of Chemistry en_US
dc.degree.discipline Faculty of Mathematics and Science en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search The Repository


Browse

My Account

Statistics


About the Digital Repository