Digital Repository

Factors affecting DNA uptake by mammalian cells

DSpace/Manakin Repository

Show simple item record Cheikha-Douaihy, Saiid en_US 2009-07-09T17:35:26Z 2009-07-09T17:35:26Z 1998-07-09T17:35:26Z
dc.description.abstract The ability to introduce DNA and express custom DNA sequences in bacteria opened the door for improvements in a large number of fields including agriculture, pharmacology, medicine, nutrition, etc. The ability to introduce foreign DNA sequences into mammalian cells in an efficient manner would have a large impact on therapeutic applications especially gene therapy. The methods in use today suffer from low efficiencies and sometimes toxicity. In this work a number of factors were evaluated for their effect onONA uptake efficiency. The factors studied included exposure to sublethal concentration of hydrogen peroxide which have been show to lead to destabilisation ofthe lysosomes. These exposures have proven to be very toxic to cells when combined with either the calcium phosphate or the lipofectAMINE® transfection methods. Another factor evaluated was exposure to Electro-Magnetic Fields (EMF). This was fuelled by the fact that EMF have been shown to mediate a number of effects on cell structure and/or physiology. EMF exposure by itself was not sufficient to induce the cells to pick up the DNA, therefore its effect on calcium phosphate and lipofectAMINE® was tested. Although some positive results were obtained, the variability of these results exceeded by far any observed enhancements which discouraged any further work on EMF. Also tested was the possible effect the presence of the cytomegalovirus (CMV) sequence might have on DNA uptake (based on previous results in this lab). It was found that the presence ofCMV in the DNA sequence does not enhance uptake or slow down degradation of the internalised DNA. The final factor tested was the effect of basic amino acids on transfection efficiency. It was found that arginine can enhance DNA uptake by about 170% v/ith calcium phosphate and about 200% with LipofectAMINE®. A model was proposed to explain the effect of arginine as well as the lack of effect from other amino acids. en_US
dc.language.iso eng en_US
dc.publisher Brock University en_US
dc.subject Nucleotide sequence. en_US
dc.subject Cells. en_US
dc.title Factors affecting DNA uptake by mammalian cells en_US
dc.type Electronic Thesis or Dissertation en_US M.Sc. Biological Sciences en_US Masters en_US
dc.contributor.department Department of Biological Sciences en_US Faculty of Mathematics and Science en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search The Repository


My Account


About the Digital Repository