Digital Repository

Some ecological effects of beaver upon the watersheds in the Porcupine Hills, Alberta /

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Sverre, S. F. S. en_US
dc.date.accessioned 2009-06-15T17:00:42Z
dc.date.available 2009-06-15T17:00:42Z
dc.date.issued 1972-06-15T17:00:42Z
dc.identifier.uri http://hdl.handle.net/10464/1618
dc.description.abstract This ecological investigation of the beaver (Castor canadensis canadensis Kuhl) was part of the Eastern Slopes (Alberta) Watershed Research program conducted during the summers of 1968 . 1969 . 1970. and 1971 . A soil particle size analysis indicated that soil heavy with clay was used by the beaver for construction purposes in the Porcupine Hills . Examples were given of the beaver controlling erosion with the construction of dams . and also causing erosion to occur . However . in general . the beaver slow down soil erosion and decrease the loss of soil from this region. The beaver utilized measureable amounts of herbaceous vegetation . However, the utilization of herbs by the beaver requires further investigation. A system of ex~sures and enclosures of herbaceous vegetation plots was used to study the utilization of sedges , grasses , and forbs . The beaver indicated stronger species preference for willow as compared to aspen . The size preference for willow was in the 1.0 to 10.0 centimeters basal diameter classes , while the beaver utilization of aspen indicated a preference for the largest trees with basal diameter greater than 20.0 centimeters. Willow was the most important plant in the low lying areas with regard to distribution, abundance and to produce sustained yield. The beaver used this plant for food and construction throughout the study area. The distribution of aspen was limited. and this species did not appear to produce more than one crop in the lifetime of a beaver colony. Nine out of 15 woody plant types were sampled by the beaver in this region. A plot-intercept transect technique was used for systematic vegetation sampling of the woody vegetation in six intensively studied watersheds. The beaver population of the Porcupine Hills region of SW-Alberta is believed to depend upon the chinooks. During the 1971 ground census, a total of 60 active beaver colonies were tallied on the 930 square kilometers large study area. The beaver of the region were not found to store large food caches during fall and winter, however, they are believed to collect feed periodically throughout the winter months. It was observed that the severe winter in 1968-69, reduced by 27 per cent the number of active beaver colonies within the study area. The Porcupine Hills region had 0.07 beaver colony per square kilometer in 1971, a low density of beaver colonies due to the rough topography of the area. However, the importance of the beaver ponds was somewhat clarified as they provide increased moisture, which lessens the fire damage, and store water for wildlife and cattle in the area. Meteorological data was collected by the author in collaboration with the Department of Transport. en_US
dc.description.abstract This ecological investigation of the beaver (Castor canadensis canadensis Kuhl) was part of the Eastern Slopes (Alberta) Watershed Research program conducted during the summers of 1968 . 1969 . 1970. and 1971 . A soil particle size analysis indicated that soil heavy with clay was used by the beaver for construction purposes in the Porcupine Hills . Examples were given of the beaver controlling erosion with the construction of dams . and also causing erosion to occur . However . in general . the beaver slow down soil erosion and decrease the loss of soil from this region. The beaver utilized measureable amounts of herbaceous vegetation . However, the utilization of herbs by the beaver requires further investigation. A system of ex~sures and enclosures of herbaceous vegetation plots was used to study the utilization of sedges , grasses , and forbs . The beaver indicated stronger species preference for willow as compared to aspen . The size preference for willow was in the 1.0 to 10.0 centimeters basal diameter classes , while the beaver utilization of aspen indicated a preference for the largest trees with basal diameter greater than 20.0 centimeters. Willow was the most important plant in the low lying areas with regard to distribution, abundance and to produce sustained yield. The beaver used this plant for food and construction throughout the study area. The distribution of aspen was limited. and this species did not appear to produce more than one crop in the lifetime of a beaver colony. Nine out of 15 woody plant types were sampled by the beaver in this region. A plot-intercept transect technique was used for systematic vegetation sampling of the woody vegetation in six intensively studied watersheds. The beaver population of the Porcupine Hills region of SW-Alberta is believed to depend upon the chinooks. During the 1971 ground census, a total of 60 active beaver colonies were tallied on the 930 square kilometers large study area. The beaver of the region were not found to store large food caches during fall and winter, however, they are believed to collect feed periodically throughout the winter months. It was observed that the severe winter in 1968-69, reduced by 27 per cent the number of active beaver colonies within the study area. The Porcupine Hills region had 0.07 beaver colony per square kilometer in 1971, a low density of beaver colonies due to the rough topography of the area. However, the importance of the beaver ponds was somewhat clarified as they provide increased moisture, which lessens the fire damage, and store water for wildlife and cattle in the area. Meteorological data was collected by the author in collaboration with the Department of Transport. en_US
dc.language.iso eng en_US
dc.publisher Brock University en_US
dc.subject Watersheds en_US
dc.subject Beavers. en_US
dc.title Some ecological effects of beaver upon the watersheds in the Porcupine Hills, Alberta / en_US
dc.type Electronic Thesis or Dissertation en_US
dc.degree.name M.Sc. Biological Sciences en_US
dc.degree.level Masters en_US
dc.contributor.department Department of Biological Sciences en_US
dc.degree.discipline Faculty of Mathematics and Science en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search The Repository


Browse

My Account

Statistics


About the Digital Repository