Show simple item record

dc.contributor.authorGiordano, Bryan
dc.date.accessioned2019-01-30T20:34:56Z
dc.date.available2019-01-30T20:34:56Z
dc.identifier.urihttp://hdl.handle.net/10464/13912
dc.description.abstractThe resurgence of West Nile virus (WNV; Family Flaviviridae, genus Flavivirus) in Ontario, Canada in 2012 demonstrated that there is a great need for a reassessment of the local mosquito fauna, estimation of risk of WNV transmission, and the creation of effective arboviral awareness campaigns. A review of the current literature and collection databases revealed that there are 68 mosquito species known from Ontario (Chapter 2). Ten species were added to the list of species including Culex erraticus (Chapter 3) and Aedes albopictus (Chapter 4), both of which are capable of transmitting West Nile virus. Ae. albopictus was repeatedly collected from Windsor, Ontario in 2016 (Chapter 4). Immatures (n=78) were collected from tires, StyrofoamTM containers, and discarded garbage. Adult female (n=17) and male (n=2) specimens were collected from light traps (n=7) and Biogents-Sentinel traps (n=10). Additional specimens were obtained from Franklin County, Ohio. The generated gene tree and Bayesian cluster analysis grouped sequences described from Ohio and Windsor together on the same branches. Together these data suggest that the population in Windsor originated as a founder population of North American origin by means of human-aided dispersal. Mosquito abundance predication surfaces and seasonal distributions were attempted for each vector species to identify where and when vector species are most abundant in southern Ontario (Chapter 5). Spatial prediction surfaces using kriging were created for Aedes vexans, Aedes japonicus, Culex pipiens, Culex restuans, and Ochlerotatus trivittatus. Proximity to landscape variables was observed to improve model prediction. An epidemiological analysis of WNV human case prevalence and mosquito infection was conducted (Chapter 6). A strong quadratic relationship between the number of human cases and positive mosquito pools at the end of each year was observed (R2=0.9783, p < 0.001). Spearman rank correlation tests identified mosquito infection rates as the strongest predictors of human case prevalence at a one-week lag period. Average temperature was a strong predictor of mosquito infection rates. Cumulative positive Culex pools recorded by epidemiological week 34 is a sufficient action threshold for West Nile virus epidemics. These data have the potential to contribute to a more efficient West Nile virus awareness campaign.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectWest Nile virusen_US
dc.subjectepidemiologyen_US
dc.subjectbiogeographyen_US
dc.subjectrange expansionen_US
dc.subjectinvasive speciesen_US
dc.titleTransmission Dynamics and Epidemiology of West Nile Virus in Ontario, Canadaen_US
dc.typeElectronic Thesis or Dissertationen_US
dc.degree.namePh.D. Biotechnologyen_US
dc.degree.levelDoctoralen_US
dc.contributor.departmentCentre for Biotechnologyen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record