• Login
    View Item 
    •   Repository Home
    • Brock University Publications & Manuscripts
    • Faculty of Mathematics and Science
    • Biological Sciences
    • View Item
    •   Repository Home
    • Brock University Publications & Manuscripts
    • Faculty of Mathematics and Science
    • Biological Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Trematode Parasite Infection Affects Temperature Selection in Aquatic Host Snails

    Thumbnail
    View/Open
    Wang Tattersall Koprivnikar 2018 Trematode Snail.pdf (635.5Kb)
    Date
    2019-01
    Author
    Wang, Susan YS
    Tattersall, Glenn Jeffery
    Koprivnikar, Janet
    Metadata
    Show full item record
    Abstract
    Animals infected by parasites or pathogens can exhibit altered behaviors that may reduce the costs of infection to the host or represent manipulations that benefit the parasite. Given that temperature affects many critical physiological processes, changes in thermoregulatory behaviors are an important consideration for infected hosts, especially ectotherms. Here we examined the temperature choices of freshwater snails (Helisoma trivolvis) that were or were not infected by a trematode (flatworm) parasite (Echinostoma trivolvis). Active snails that explored the experimental temperature gradient differed in their thermal preference based on their infection status, as parasitized snails chose to position themselves at a significantly higher temperature (mean: 25.4°C) compared to those that were uninfected (mean: 23.3°C). Given that snails rarely eliminate established trematode infections, we suggest that this altered thermal preference shown by infected hosts likely benefits the parasite by increasing the odds of successful transmission, either through enhanced production and emergence of infectious stages or by increasing spatial overlap with the next hosts of the complex life cycle. Further studies that employ experimental infections to examine temperature selection at different time points will be needed to understand the extent of altered host thermal preferences, as well as the possible benefits to both host and parasite.
    URI
    http://hdl.handle.net/10464/13840
    Collections
    • Biological Sciences

    Brock University | Copyright © 2006-2015 
    Contact Us | Send Feedback
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Brock University | Copyright © 2006-2015 
    Contact Us | Send Feedback