Show simple item record

dc.contributor.authorMillar, Monte J.en_US
dc.date.accessioned2009-05-21T12:53:14Z
dc.date.available2009-05-21T12:53:14Z
dc.date.issued1999-05-21T12:53:14Z
dc.identifier.urihttp://hdl.handle.net/10464/1242
dc.description.abstractThe work to be presented herein illustrates several important facts. First, the synthesis of BIBOL (19), a 1,4-diol derived from the monoterpene camphor has allowed us to demonstrate that oxidative dimerizations of enolates can, and do proceed with nearly complete diastereoselectivity under kinetically controlled conditions. The yield of BIBOL is now 50% on average, with a 10% yield of a second diastereomer, which is likely the result of a non-kinetic hydride reduction, thereby affording the epimeric alcohol, 20, coupled on the exo face of camphor. This implies the production of 60% of a single coupling diastereomer. No other diastereomers from the reduction were observed. The utility of BEBOL has been illustrated in early asymmetric additions of diethylzinc to aryl aldehydes, with e.e.'s as high as 25-30%. '^' To further the oxidative coupling work, the same methodology which gave rise to BIBOL was applied to the chiral pool ketone, menthone. Interestingly, this gave an excellent yield of the a-halohydrin (31), which is the result of a chlorination of menthone. This result clearly indicates the high stereoselectivity of the process regardless of the outcome, and has illustrated an interesting dichotomy between camphor and menthone. The utility of the chlorination product as a precursor other chiral ligands is currently being investigated. > ' Finally, a new series of 1,3-diols as well as a new aminoalcohol have successfully been synthesized from highly diastereoselective aldol/mannich reactions. Early studies have indicated their potential in asymmetric catalysis, while employing pi-stack interactions as a means of controlling enantioselective aldol reactions.en_US
dc.language.isoengen_US
dc.publisherBrock Universityen_US
dc.subjectAsymmetric synthesis.en_US
dc.subjectCatalysis.en_US
dc.subjectLigands.en_US
dc.subjectMonoterpenes.en_US
dc.subjectAlcohols.en_US
dc.titleDesign and synthesis of new monoterpenoid derived ligands for asymmetric catalysis /en_US
dc.typeElectronic Thesis or Dissertationen_US
dc.degree.nameM.Sc. Chemistryen_US
dc.degree.levelMastersen_US
dc.contributor.departmentDepartment of Chemistryen_US
dc.degree.disciplineFaculty of Mathematics and Scienceen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record