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Highlights 
 
 Proposed proximate and ultimate origins of endothermy in vertebrates are 

numerous. 
 In this context, all possible heat generation and heat conservation capacities 

need to be considered. 
 The reproductive capacity/parent care model for endothermy has received 

recent support from tegu lizards. 
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Abstract 
 
Extant endotherms have high rates of metabolism, elevated body temperatures, 

usually tight control over body temperature, and a reasonable scope for further 

increases in metabolism through locomotor activity. Vertebrate ectotherms, on the 

other hand, rely on behavioural thermoregulation and cardiovascular adjustments 

to facilitate warming, and generally lack specific biochemical and cellular 

mechanisms for sustained, elevated metabolism. Nevertheless, the ancestral 

condition to endothermy is thought to resemble that of many extant reptiles, which 

raises the question of the origins and selection pressures relevant to the transitional 

state. Numerous hypotheses have emerged to explain the multiple origins of 

endothermy in vertebrates, including thermoregulatory, locomotory, and 

reproductive activity as possible drivers for these sustained and elevated metabolic 

rates. In this article, I discuss recent evidence for facultative endothermy in an 

extant lepidosaur, the tegu lizard. Since lepidosaurs are a sister group to the 

archosaurs, understanding how a novel form of endothermy evolved will open up 

opportunities to test the compatibility or incompatibility of the various endothermy 

hypotheses, with potential to elucidate and resolve long contentious ideas in 

evolutionary physiology. 

 

Keywords: Evolution of endothermy; Body temperature; Parental care; Activity 

capacity; Assimilation capacity 
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The evolution of endothermy has long interested zoologists, driven in part by an 

interest in the reconstruction of dinosaur physiology, but also perhaps because 

being warm is so strongly ingrained in the human condition. Two major groups 

within the vertebrates, birds and mammals, exhibit elevated rates of basal 

metabolism that sustain their high body temperatures; however, phylogenetic 

evidence supports separate origins for their endothermic physiology, in lineages 

separated by approximately 320 million years (Farmer, 2016) (Fig. 1). The reason 

why the origin of endothermy is such an interesting evolutionary question is tied up 

with explaining how an energetically expensive strategy originated and competed 

alongside less intensive energetic strategies. High rates of metabolism demand high 

rates of foraging, and in resource-limited environments, these strategies would be 

expected to have relatively lower fitness unless the benefits outweigh the costs. 

Investigating the context within which endothermy arose has involved competing 

and overlapping concepts to construct viable hypotheses to test in extant animals. In 

short, the arguments can be distilled down to whether a capacity for an enhanced 

locomotor-based muscle activity evolved prior to an enhanced visceral organ 

metabolism. Other arguments related to cardiovascular and respiratory capacity 

driving endothermy focus on the supply side of the oxygen cascade (Hillman and 

Hedrick, 2015) rather than the demand side; in a proto-endothermic ancestor, it is 

the latter which is more likely subject to direct selection on behaviours related to 

survival and reproduction, since the cardio-respiratory system already has inherent 

scope available. To date, much attention has been paid to the obvious physiological 

conditions supporting extant endothermy, namely the elevated metabolic, 

cardiovascular and respiratory capacity of birds and mammals. The challenge to the 

field, however, is that endothermy in extant birds and mammals is highly derived, 

and assessing its origins requires hypotheses that incorporate both proximate and 

ultimate causation. One might argue that we have been too focused on proximate 

mechanisms, while assuming the ultimate causes are either already known or not 

germane. Although augmented cardiovascular and respiratory capacities are clearly 

required for modern mammals and birds, these endotherms are also efficient at 

retaining body heat through convergently evolved insulation (i.e., fur and feathers). 
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Thus, making inferences regarding endothermy requires consideration of the 

capacity to produce, as well as the capacity to conserve, body heat (McNab, 1978). 

For example, rattlesnakes fed meals up to 50% of their body mass raised their 

metabolism enormously (~10x) for days at a time, yet achieved only a modest 

amount (T ~ < 2 °C) of warming (Tattersall et al., 2004). Similarly, varanid lizards, 

renowned for their elevated aerobic capacities, were exercised and fed large meals, 

in order to augment metabolic rate significantly, but without substantial change (T 

~1 °C) in Tb, which led to the conclusion that thermal conductance can be high and 

thermoregulation per se is not a sufficient driver for the evolution of endothermy 

(Bennett et al., 2000). 

Apart from activity or thermoregulation, an alternative hypothesis involves 

reproductive capacity, with extension to parental care, as a driver for endothermy. 

Farmer (1998) posited that the initial selective advantage of endothermy in both the 

avian and mammalian lineages was its usefulness as an adaptation for improving 

parental care (warming embryos and hatchlings), and that the initial mechanism for 

thermogenesis would have been the increased biosynthesis that accompanies 

reproduction. Body heat, or endothermy, would thus be a by-product of a 

reproductive trait. Farmer (2001) also predicted that burrowing animals could quite 

effectively conserve any metabolic heat production, even if they lack their own 

insulation. Recently we demonstrated that tegu lizards exhibit an elevated body 

temperature during the reproductive season (Tattersall et al., 2016) (Fig. 1), 

consistent with the reproductive capacity/parental care model for endothermy. 

Their rise in body temperature could not be explained by heat retention from 

basking nor from digestion-related thermogenesis, since the endothermy occurs 

toward the end of the hibernation fast while within an underground burrow, and 

accompanies the surge in reproductive and thyroid hormones that precede the 

reproductive season. Interestingly, thermogenesis associated with reproduction 

also occurs in the echidna, a mammalian protoendotherm (Grigg et al., 2004) which 

allows for stable body temperatures (Nicol and Andersen, 2006). In reptiles, only 

pythons are known to exhibit thermogenesis associated with reproduction, which 
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appears restricted to female egg incubation (Harlow and Grigg, 1984). On the other 

hand, in tegu lizards, both sexes exhibit facultative endothermy; males establish and 

defend territories and show large changes in secondary sexual characteristics, 

whereas females appear to remain with their eggs for a period of time following 

laying, possibly enhancing embryo development. Significantly, this discovery is 

inconsistent with the assimilation capacity model for endothermy (Koteja, 2000), 

which places emphasis on selection for higher metabolism to aid foraging and 

parental feeding (i.e., post-reproductive events), and also not directly supportive of 

the activity capacity model for endothermy origins (Bennett and Ruben, 1979), in 

the sense that the elevated metabolism is not associated with movement, activity, or 

foraging. 

Nevertheless, much remains to be investigated to fully resolve these questions. Do 

tegus sustain this endothermy throughout the incubation period? Does nest 

guarding provide thermal benefits to the developing embryos? Discovering the 

tissue localisation for the facultative thermogenesis, its hormonal control, and, most 

importantly, the fitness consequences of endothermy in a normally ectothermic 

lizard would bring clarity to the reproductive capacity/parental care model for 

endothermy. Tegus also are an interesting model in other regards. Since both sexes 

adopt endothermy, this extends the reproductive hypothesis to traits related to 

mate competition well known for its potential to drive positive selection on traits 

that enhance reproductive fitness. 
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Figure Captions 
 

Fig. 1. (A) Phylogenetic relationship of the amniotes showing the lepidosaurs 

(includes Sphenodontia and Squamata) as sister group to the archosaurs (dashed 

line); extant endotherms are shown in red, ectotherms in blue, and turtle placement 

is currently contentious depending on whether morphological or molecular data are 

used (Hedges, 2012). (B) Thermal conductance of vertebrates decreases with body 

size due to thermal inertia (McNab, 1978), and differs between reptiles (blue area) 

and mammals (red area) due to differences in insulation and greater vascular 

control; however, the tegu lizard (Salvatore) thermal conductance is more similar to 

that of mammals than that of other reptiles. (C) Tegu lizards are normally 

ectothermic, with heart rates (data obtained from a year-long study of tegus in their 

burrows at the coldest time of the day) following a typical biochemical sensitivity 

where Q10 = 1.7. This heart rate/temperature relationship (if holding temperature 

constant; dotted lines in C) shifts when tegus enter the reproductive period, with 

heart rates (proxy for metabolic rate) rising ~2x during arousal from hibernation 

and 3–5x during the reproductive period. (D) Elevated body temperatures (Tbody–

Tburrow) result from the seasonal shift to higher rates of metabolism in the breeding 

season, but are driven by metabolism, not basking or heat storage. (E–F) Tegu 

lizards are typically ectothermic (Tb–Tambient ~0–2 °C) outside of the breeding 

season or if unable to enter the burrow at night (E; thermal image taken at 6 am 

prior to sunrise), whereas inside their burrows, they can sustain body temperatures 

up to 10 °C higher than the burrow (F; thermal image of two co-habiting tegu lizards 

of slightly different body temperatures), resulting in a facultative endothermy 

derived from a combination of enhanced metabolism and control over thermal 

conductance. All data from tegu lizards in (C–F) derived from Sanders et al. (2015), 

Piercy et al. (2015), and Tattersall et al. (2016). 
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