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Abstract

A complex network is an abstract representation of an intricate system of interrelated

elements where the patterns of connection hold significant meaning. One particular

complex network is a social network whereby the vertices represent people and edges

denote their daily interactions. Understanding social network dynamics can be vital

to the mitigation of disease spread as these networks model the interactions, and thus

avenues of spread, between individuals. To better understand complex networks, al-

gorithms which generate graphs exhibiting observed properties of real-world networks,

known as graph models, are often constructed. While various efforts to aid with the

construction of graph models have been proposed using statistical and probabilistic

methods, genetic programming (GP) has only recently been considered. However,

determining that a graph model of a complex network accurately describes the target

network(s) is not a trivial task as the graph models are often stochastic in nature and

the notion of similarity is dependent upon the expected behavior of the network.

This thesis examines a number of well-known network properties to determine

which measures best allowed networks generated by different graph models, and thus

the models themselves, to be distinguished. A proposed meta-analysis procedure

was used to demonstrate how these network measures interact when used together

as classifiers to determine network, and thus model, (dis)similarity. The analytical

results form the basis of the fitness evaluation for a GP system used to automatically

construct graph models for complex networks. The GP-based automatic inference sys-

tem was used to reproduce existing, well-known graph models as well as a real-world

network. Results indicated that the automatically inferred models exemplified func-

tional similarity when compared to their respective target networks. This approach

also showed promise when used to infer a model for a mammalian brain network.
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Chapter 1

Introduction

A complex network, as defined by Newman [1], is a collection of related elements in

which the emergent patterns of connections hold significant meaning. The elements

within such networks are the vertices of the network while the relationships or con-

nections among these entities form the edges. While often unmanageably large in

size, complex networks are referred to as complex due to their intricate and tightly

coupled structure and semantics, not their size alone [1]. The study of complex net-

works is a broad, inter-disciplinary research topic which brings together efforts from

computer science, mathematics, biology, the social sciences, and many others. For

example, socialization patterns have long been studied in the social sciences, and the

resulting networks are referred to as social networks. Social networks [2, 3, 4, 5],

dating back as early as the 1930’s [6], are used to study how people interact, learn,

and as a byproduct, can model the way in which infectious diseases are spread.

Imagine a scenario where a new, highly contagious disease is discovered. Under-

standing the network dynamics of a social network depicting the daily interactions

of individuals, whereby the constituent network elements are people and the connec-

tions between them denote their daily iterations, can be vital to the mitigation of

the spread of such a disease. By understanding how people interact, preventative

measures can be taken to select strategic recipients of vaccines. In fact, recent ef-

forts have used such an approach to propose and evaluate strategies of disease control

based on social networks [7]. Further examples of complex networks arise in both

natural and artificial contexts. Social networks, for example, are naturally occurring

networks in that they emerge as a result of a natural process, human interaction. A

further example of naturally occurring networks are biological networks, which aim to

describe biological processes such as protein-protein interaction [8, 9], predator-prey

relationships, i.e., food-webs [10, 11], and neural networks [12, 13]. Technological

1
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networks on the other hand, describe artificially constructed systems such as the In-

ternet [14, 15], power-grid networks [16], and even the spread of computer viruses

[17]. Clearly, complex networks arise in all sorts of applications, however, despite

their widespread use, complex networks are still not well understood.

By the very nature of their intricate connections, understanding both the struc-

ture and dynamics of growth is crucial to understanding complex networks as a whole.

However, one of the primary mechanisms used in over 250 years of graph theory [18],

visualization and manual inspection of networks [19], is impractical on the scale of

networks under consideration. Consider trying to visualize, for example, the human

brain which is estimated to have 86.1 billion neurons [20]. Surely, one cannot visualize

such a network meaningfully and thus the usefulness of visualization is lost when con-

sidering complex networks. Furthermore, analyzing the topological structure alone,

as visualization would encompass, is insufficient to claim an understanding of a com-

plex network as this ignores the semantics defining their growth and dynamics [21].

Comprehending a complex network effectively requires one to grasp the reasoning

behind the connections, i.e., how and why the connections formed as such. Devising

algorithms which explain the growth patterns of networks has been a topic of interest

for over 50 years [22]. Such algorithms are known as graph models and are capa-

ble of generating networks of arbitrary size which replicate statistical and structural

behaviors of networks.

Graph model algorithms have a tremendous number of applications across many

domains as they allow both interpolation of previous, captured states of a network

and the equally important extrapolation of future states. Recall the example above

in which social networks were considered for modeling the spread of diseases. Having

a graph model which accurately models the interaction of humans would allow for

simulations of its spread to be conducted on synthetic populations. A graph model

algorithm could also be used to generate populations of varying sizes and dynamics,

allowing the analysis of disease spread to be more rigorous with regards to popula-

tions types whereas the use of a single network limits the generality of such a study.

Consider, as a further example, the Internet when examining new protocols, i.e., sets

of digital rules. Although knowing how a particular protocol will run on the current

state of the Internet is necessary, the behavior on future states should also be taken

into consideration. With an accurate graph model describing the growth mechanics

of the Internet, the future structure can be approximated, facilitating a way to test

the protocol on (simulated) future states of the Internet. Furthermore, graph models

produce synthetic networks which facilitate a number of benefits over real networks.
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Synthetic networks allow for simulations to be performed, possibly even on subsets of

the entire network, in a sandbox environment. Similarly, the emergent effects of vari-

ous parameter alterations can be readily examined using graph models and synthetic

networks. Graph model algorithms proposed to model such real-world phenomenon

are often the result of years of intensive research and analysis. It is also important

to note that the graph model algorithms arising from such specific focus may not

be applicable outside of their intended domain as they tend to model only a single

property and neglect others [21, 23, 24].

While it would be ideal to have a graph model algorithm tailored to the network

being examined, such a situation is prohibited by the difficulty and time-consuming

process of constructing graph models, which has typically been done manually. To

produce a graph model model, i.e., simulate the growth of a network, one must under-

stand how the network grows. However, graph model algorithms are used to study the

growth of complex networks, thus we have arrived at a circular dependency – graph

models are a tool used to better understand complex networks but the construction of

appropriate graph models requires an understanding of the networks which they are

to model. This circular dependency which makes the construction of graph models

difficult has lead to a tendency of researchers to reuse existing models which may or

may not be fit for their particular application. While reusing existing graph models

is beneficial in the sense that previous analytics regarding the model are (typically)

readily available, the issue of model and parameter selection still exists. Furthermore,

a model selected to fit the current network may be a good fit but there is no guar-

antee that the growth mechanics will be similar. The selected model may accurately

describe the current state of the network but not future states as a result of emer-

gent behaviors attributed to differing growth mechanics between the model and the

network of interest.

While statistical methods which generate meta-models, often based on parameter

fitting mechanisms, have existed for quite some time [25, 26, 27, 28] and somewhat

alleviate the problem of parameterization, only recently has the topic of automatic

inference of graph models for complex networks been considered [29, 30, 31]. An

automated approach to the construction of graph models would significantly allevi-

ate many of the aforementioned drawbacks of reusing a known model. Ideally, an

automated approach would allow for a graph model to be directly tailored to the

growth dynamics of the target network, thereby negating the problem of selecting

an inappropriate, and thus unfit, existing model. Therefore, the utility value of con-

structing graph models automatically is undeniable. However, designing and using an
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automated approach to the inference of graph models is not without its own caveats.

With the above observations, the motivating factors for this research are as follows.

1. Graph model algorithms are crucial to understanding complex networks across

a wide variety of applications, but are difficult and time consuming to create.

Often, these algorithms are the culmination of many years of study and incorpo-

rate a substantial amount of expert knowledge in a specific domain. Facilitating

the accurate construction of graph model algorithms will greatly reduce the re-

search efforts needed to adequately model observed phenomenon. Furthermore,

automatically generated graph models would, ideally, be tailored to the specific

target network and would eliminate the necessity to make trade-off decisions

arising from the use of an existing model which may not be an ideal fit.

2. An ideal set of evaluation criteria is unknown and without a study of such

criteria, the search process of an automated approach may be misleading. That

is, without proper fitness evaluation of candidate models, the results of an

automated construction process may be even more unfit than existing models

when compared to their intended target. Thus, an analysis of network measures

used to both guide an automated approach, in the form of heuristics, and post-

validate the models is merited.

3. Many existing graph models, while different in principle, construct networks in

a similar way. That is, in one way or another, many construction techniques

can be described as follows. For some number of iterations, a new vertex is

added and a number of existing vertices are selected for consideration. For

each selected vertex, a connection may be formed in some fashion depending on

some criteria. Finally, actions which are direct result of forming a connection

(or not forming a connection) are performed. This process naturally leads to

a definition of a generalized graph model, which can be and, as shown later, is

used to aid in their automatic inference.

A well suited candidate for the automatic inference of complex networks is genetic

programming (GP) [32] due to its demonstrated ability to build complex, constructive

solutions even in poorly understood domains [33]. Genetic programming is a process

inspired by Darwinian evolution [34] to automatically generate computer programs

through repeated genetic operations in a survival-of-the-fittest evolutionary style.

However, the implementation of a genetic programming system for the automatic

inference of complex networks is not a trivial task. One major difficulty resides in
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the fitness evaluation of the evolved models. Since graph models cannot be directly

compared (see Chapter 5 for an explanation), they must be analyzed in terms of their

generated networks. However, what structural or statistical properties of networks are

best used to carry out this procedure? Similarly, how can an evolved graph model be

validated given that there may only be one target network for comparison? Designing

a fitness function, and thus the heuristic to guide the search process, is thus a major

challenge associated with the use of GP. An inappropriate choice of fitness may guide

the evolutionary process towards an unfit model, which leads to a further difficulty

– what is a good graph model and how can the “goodness” be determined? How

can one be reasonably sure that the graph model being used accurately describes the

target network? An even more fundamental challenge associated with the use of GP

lies in the definition of the language available to the evolutionary process. While GP

effectively evolves programs, it must be provided with a set of language elements, such

as functions, which can be used to this end. One must provide the GP system with a

set of language elements which is sufficiently expressive without being too biased to

specific networks yet not too unmanageably large as to complicate the search process.

This thesis provides an analysis of network measures to address the issue of de-

termining model similarity. The results of the analytic study of network measures

are then used as a basis of fitness evaluation in a genetic programming system for

the automatic construction of graph models for complex networks. The genetic pro-

gramming system is validating by evolving graph models for four well-known graph

models, namely the growing random model [35], the Barabasi-Albert model [35], the

Erdos-Reyni model [22], and the Forest-Fire model [36]. Furthermore, the GP system

is used to automatically infer a graph model for a real-world brain network of a cat

[12]. The results of the GP system are post-validated both by manual deconstruction

of their growth algorithms (in the case of the known models) and analytically by a

comparison of their structural and statistical properties.

1.1 Contributions

The major contributions of this work can be summarized as follows:

1. This thesis provides an analysis of ten measures of network similarity, and all

subsets thereof, for the purposes of quantifying the discriminatory power of each

set to distinguish networks generated by different models. Based on the results

of this analysis, a set of fitness functions for the GP system to use during the

evolution of graph models for complex networks is proposed.
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2. A recently proposed, object-oriented linear GP [37, 38] system is used which al-

lows the representation of a candidate graph model to be naturally decomposed

into an abstract form. This abstract representation serves as a generalized graph

model which expresses the network construction process of a graph in terms of

three logically distinct subprocesses.

3. This thesis proposes a GP language which allows recursively defined construc-

tion mechanisms to be built. These recursive construction mechanisms allow

for the rudimentary generation of community structures, as demonstrated when

inferring a model for the Forest-Fire model [36] in Section 8.4. Although not

intended to be a focus, this thesis presents the first attempt at evolving commu-

nity structure within the GP system without the use of an external mechanism.

Furthermore, this work presents the evolution of a graph model which gener-

ates networks exhibiting community structure for a real-world mammalian brain

network. Note that while a graph model for a cortical network has been au-

tomatically inferred elsewhere [30], this work differs in that the target network

used here is nearly twice as large.

1.2 Thesis Outline

The remainder of this thesis is structured as follows.

Chapter 2 introduces the topic of complex network research. A number of real-

world networks are examined, giving an overview of the broad, inter-disciplinary study

of networks. The representation of complex networks as graphs is described and a

variety of network measures used to quantify the behaviors of networks are presented.

Chapter 3 introduces the topic of graph models and a details a number of existing

graph models used to reproduce various properties observed in real-world networks.

Chapter 4 gives an overview of genetic programming and the various components

of the traditional algorithm. Various alternative paradigms are discussed, providing

justification for the recently proposed GP system used in this work.

Chapter 5 presents results an initial analysis on network measures introduced in

Chapter 2. A visualization of the spatial distribution quantifying the dissimilarity

between each measure is provided is provided.

Chapter 6 presents a more robust study of centrality measures whereby the net-

work measures are considered not only individually, but each possible subset of mea-

sures is examined to determine the discriminatory power of the set. This study



CHAPTER 1. INTRODUCTION 7

provides empirical evidence for the centrality measures selected as fitness functions.

Chapter 7 outlines the experimental procedures for the automatic inference of

graph models for complex networks. This chapter presents the fitness functions se-

lected, the GP language employed, as well a description of the generalized abstract

graph model which the GP representation used.

Chapters 8 and 9 present the experimental results and a detailed discussion of

using GP to automatically infer known graph models and a model for a real-world

cortical network, respectively. Observations regarding network measures from Chap-

ters 5 and 6 are incorporated, providing empirical evidence of their merit.

Finally, Chapter 10 offers concluding remarks and summarizes the major contribu-

tions and findings of this thesis. Furthermore, limitations of this work and potential

areas of future work are highlighted.



Chapter 2

Complex Networks and Network

Measures

Complex networks are a valuable tool used to represent and understand intricate

systems across many fields. Many complex networks arise naturally, such as social

networks as a result human behavior, while artificial networks, such as technological

networks, are engineered and have arisen as part of societal development. While the

underpinnings of complex network research have been largely rooted in graph theory,

the fields have diverged significantly. The study of complex networks focuses on large

networks, which limits the usefulness of graph theoretic approaches, many of which

are meant for relatively small networks [19]. To give a brief introduction to complex

networks and where they have been applied, this chapter gives an overview of four

categories of complex networks. Basic definitions of graph representation along with

various important properties of graphs are introduced. Finally, this chapter introduces

network measures which are used to quantify various characteristics of networks.

As later chapters (namely Chapters 5 and 6) will demonstrate, statistical methods

applied to the measures described here can be used to quantify the (dis)similarity of

networks and, by extension, graph models. While many of the measures described in

this chapter can be applied to directed and/or weighted networks, the measures are

defined in this chapter with respect to unweighted, undirected networks. Thus, the

reader is cautioned that assumptions made in various definitions may only hold for

such networks.

8
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2.1 Technological Networks

While many complex systems are a result of natural processes, this is not the case

with technological networks, as these networks have been engineered as a result of

technological growth. Such networks form the underlying infrastructure of modern

technological society [1]. Perhaps the most prominent complex network which falls

into the category of technological networks is the Internet1. The Internet consists

of a worldwide network of physical data connections between computers and thus

the vertices in such a network represent computers while the edges between them

represent physical data connections. The Internet makes for an excellent example of a

complex network due to its decentralized nature. No single organization is responsible

for determining the physical connections which make up the network, and thus the

Internet is considered to be self-organizing [39]. A byproduct of the decentralized,

self-organizational structure of the Internet is its robustness to lost connections caused

by power loss, equipment failure, traffic overload, etc.. A large number of alternative

pathways exist within the Internet to allow pathways which have been lost, whether

they be temporary or permanent, to autonomously be bypassed. In fact, about 0.3%

of routers (the hardware responsible for routing connections) regularly fail, which due

to the scale of the Internet is a significant number, and the nodes which contain the

largest number of connections are often subject to attack [40]. Furthermore, it is

not uncommon for small bits of information to be lost during transmission. Thus,

the Internet must be robust to a reasonable amount of data loss by being able to

reconstruct the original message in such a scenario. The robustness of the Internet is

a property which many models of the Internet do not exhibit despite its importance

[21].

A second well-known example of a technological network, with drastically different

structure and behavior, is a telephone network. Note that a telephone network refers

to the physical network of telephones, whereas the network of who calls whom would

be categorized as a social network (seen later). Telephone networks exhibit a much

different connection scheme than most networks as the connections between their

nodes are not permanent. Connections in telephone networks are only initiated when

needed, i.e., a connection is formed between telephones (the vertices) when a phone

call is placed between them. When a call is initiated, the network operators must

initiate a connection between the caller and the intended recipient for the call to

1Not be confused with the World Wide Web, the network of web pages and hyperlinks – such a
network is categorized as an information network (seen later).
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take place. Due to this connection scheme, the telephone network can be seen as

a fully connected network, as every phone can (in theory) call every other phone,

with the caveat that only a fraction of the such connections are present at any given

time. Caused by their geographical dependence, telephone networks, and similarly

the Internet, exhibit community structure [41] (see Section 2.8 for an overview of

community structure), where highly connected niches are formed with relatively few

connections between them. Such community structure can be used to form a simplified

meta-network representation whereby the communities form the vertices [41].

2.2 Social Networks

Interested in the social interactions of people, Moreno [6] is often credited as the

pioneer of the study of networks known today as social networks. Despite this credit,

antecedent work does exist [42, 43] which is, arguably, the precursor to Moreno’s

work. An example of the early work by Moreno consisted of the manual generation

of social networks, then called sociograms, to represent the friendship relationships of

schoolchildren. A result that was both interesting and inspiring was made: friendships

frequently existed among two boys or two girls, but friendships between a boy and a

girl were far less common. While studies involving friendship (or acquaintance) rela-

tionships are quite common [2, 44, 45, 46], the study of social networks encompasses

many more types of relationships. Further examples of social networks are scientific

collaboration networks [47, 48], sexual contact networks [49, 50], interactions of drug

users [51], and online communities, e.g. Facebook, [52].

One particular, groundbreaking study of social networks is known as Milgram’s

“small-world” experiment [45]. Milgram’s experiment was quite simple in nature,

but resulted in monumental observations regarding human society. Although several

variants of the experiment were performed, each variant followed a similar pattern. In

one particular variant [53], 296 randomly selected individuals in the state of Nebraska,

USA (196 individuals) and the city of Boston (100 individuals), MA, USA, were asked

to participate in the study. The purpose of the study was to create an acquaintance

chain from each individual to an arbitrarily chosen target person in the state of

Massachusetts, USA. Each of the participants was given a document outlining the

details of the experiment and was asked to forward the document to another recipient,

after affixing their name, with the stipulation that they must know this recipient

on a first-name basis. Of the 296 initially distributed documents, 64 reached the

target destination with an average of 5.2 intermediate steps along their pathways.
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Furthermore, 48% of the chains passed through the same three people before reaching

the destination. Thus, the term “small-world”, arising from these experiments, is used

to refer to networks which exhibit low average geodesic path lengths.

Data for social networks can be gathered in many different ways. Rapoport and

Horvath [54], for example, gathered information about friendships among schoolchil-

dren by providing a questionnaire. Although cumbersome, direct observation can be

used to construct social networks. An example of direct observation was Zachary’s

[2] karate club network, which was formed by observing the interactions of students

within a university karate club. As an equally cumbersome approach, Davis et al.

[55] used newspaper reports of social events to build a network of affiliations. A final

technique introduced here is coined as snowball sampling, whereby investigators probe

members of the target population. These members then recursively probe others, and

a “snowball” effect leads to a reasonable sample of the target population. This tech-

nique, while known to cause erroneous conclusions due to the noisy nature [1], is used

in hidden populations where standard techniques cannot be effectively applied. For

example, in the interaction networks of drug users [51], this sampling technique is

used due to the sensitive nature of the behaviors being examined.

2.3 Information Networks

Information networks are, as the name implies, networks of information flow. There

is a strong relationship between information networks and social networks as it is

completely reasonable, and intuitive, that information can be propagated by means

of a social network. Consider a network of email communications. Clearly, such a

network depicts a flow of information and could be considered an information net-

work. In a social context, emails are conversations occurring between individuals

and thus could be reasonably considered to be social networks. Many such examples

of networks overlapping these two categories exist, which causes a fuzzy boundary

between social networks information networks in these scenarios [1]. However, not all

information networks share such a close relationship with social networks. Consider,

for example, the World Wide Web (WWW), a global network of web pages (the ver-

tices) and hyperlinks (the edges) between them. While social networks can reside on

top of the WWW, e.g. Facebook, the WWW in and of itself is not a social network

but rather a network of information.

Citation networks, i.e., networks which depict the citations among academic pa-

pers, are a widely studied type of information network [56, 57, 58, 59] dating as early
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as 1965 [60]. Typically, an academic paper will reference one or more other papers,

which in turn reference other papers, the complete network of which forms a citation

network. In such networks, academic papers are the vertices and a (directed) edge is

placed between papers when one references the other. Note that by definition, cita-

tion networks typically will not have bidirectional edges as it is uncommon to have

papers which mutually cite each other. Citation networks often form a power-law

distribution where the proportions of citations for papers is extremely non-linear (see

Section 3.3 for a brief overview of power-law distributions). According to Newman [1],

about 47% of all papers have not been cited at all, while only 9% of the remaining

papers have two citations and only 6% have two citations. Furthermore, Newman

states that 21% of papers have more than 10 citations and only 1% have greater than

100 citations while one of the most highly cited papers (Lowry et al. [61]) has more

than 250,000.

2.4 Biological Networks

Biologists have recognized that many biological processes can be modeled using com-

plex networks. Biological networks are used as convenient representation whereby

the patterns of interaction between various biological process can be analyzed. The

most notable applications of biological networks can be loosely grouped into three

categories, namely biochemical networks, neural networks, and ecological networks.

Biochemical networks are used to represent molecular level processes occurring within

cells. One prominent biochemical network is that of the metabolic system, known as

a metabolic network. Metabolism is a chemical process by which nutrients are disas-

sembled by cells into building blocks which are then be reassembled to form molecules

necessary for various tasks [1]. Reassembling the blocks into usable molecules involves

a series of intermediate steps, the complete set of which form a metabolic network.

Neural networks arise from the study of the brains and nervous systems. The main

function of the brain is to process information, with its primary unit of processing

being known as the neuron. A neuron is a special type of cell which has multiple

inputs and generates a single output. To give the scale of neural networks, an adult

male brain is estimated to contain roughly 86.1 billion neurons and an additional

84.6 billion non-neural cells [20]. Due to the overwhelmingly large scale of neural

networks, it is common to examine them at a higher level by grouping cortical areas

into single vertices [12, 13, 62, 63].

The final type of biological networks introduced are ecological networks which
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model the various interactions between species. Consider a network where individual

species are the vertices and the edges represent predator-prey relationships. Networks

of this form are referred to as food webs and are typically directed networks, with an

edge originating from the prey and ending at the predator. The direction of the edges

is a conventional choice as food webs are commonly used to study the flow of energy

within ecosystems. When examining a food web network, it not uncommon for a

hierarchical community structure to arise [11, 64, 65]. Intuitively, ecological niches

will implicitly form community structures in such networks. In a similar fashion to the

grouping of neurons in neural networks, food webs are often simplified by grouping

related species together [1].

2.5 Representation of Graphs

A graph can be used as an abstraction of a complex network whereby the network

representation is reduced to include only information regarding the connection pat-

terns and little else [1]. A graph, G, is defined as G = (V,E), where V is the set of

vertices2 and E is the (mutli-)set of edges3, with respective sizes denoted by |V | = n

and |E| = m. An edge within a graph is represented by a pair such that an edge

between vertices v and u is denoted as (v, u). An undirected graph is a graph in which

all edges are assumed to be bidirectional, i.e., the edge pairs are not ordered, whereas

a directed graph refers to a graph without this assumption, i.e., the edges pairs are

ordered. More concretely, for an undirected graph, (v, u) ∈ E implies that the con-

nection between v and u is reciprocal, i.e., v is connected to u and u is connected to

v. However, with directed graphs, (v, u) ∈ E only implies that v is connected to u,

and not necessarily the reverse, although a reciprocal connection can still exist when

{(v, u), (u, v)} ⊆ E. An edge which connects a vertex to itself, i.e., (v, v), is referred

to as a self-edge or loop while edges between two vertices which exist more than once,

i.e., when {(v, u), (v, u)} ⊆ E, are referred to as multi-edges. A graph which exhibits

neither self-edges nor multi-edges is called a simple graph [1]. For the purposes of

this thesis, only undirected, simple graphs will be considered.

The degree of a vertex, k, is defined as the number of edges connected to it. For

example, a vertex v which is connected to two other vertices is said to have degree 2,

i.e., kv = 2. When considering directed networks, it is often necessary to distinguish

between the in-degree and out-degree of vertices, which correspond to the number

2Vertices are also commonly referred to as nodes, sites, and actors.
3Edges are also commonly referred to as links, bonds, and ties.
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of incoming and outgoing edges, respectively. Because every edge must have two

vertices associated with it, a noteworthy relation exists between the number of edges

and vertices in a graph given by

2m =
∑
v∈V

kv . (2.1)

Using Equation (2.1), the mean degree of a vertex, 〈k〉, can be readily obtained as

〈k〉 =
2m

n
. (2.2)

2.5.1 Paths

A path within a network refers to a sequence of vertices, P = (v1, v2, ..., vl), such that

for each consecutive pair of vertices (vi, vi+1) ∈ P there is an edge from vi to vi+1.

The length of a path is then defined as the number of edges traversed or, equivalently,

|P | − 1. While the general definition of a path allows the revisiting of vertices, a self-

avoiding path explicitly disallows such duplicated vertices and edges. A geodesic path

is a path of shortest length between two vertices. By definition, a geodesic path must

be self-avoiding as it is trivial to see that any non-avoiding path can be shortened by

removing the duplicated vertices/edges. While the geodesic paths themselves need

not be unique, the length of such paths between vertices v and u, denoted dvu, is

always well-defined. Vertices which are not connected to the remainder of the graph

are conventionally assigned an infinite geodesic path length [1].

2.5.2 Components

A component is a subset of vertices such that a path exists between every pair of

vertices within the subset. More concretely, a component is a subset of vertices such

that there is at least one path from each vertex to each other vertex within the subset

and that no other vertex within the graph can be added to the subset while preserving

this property [1]. Consider Figure 2.1, which depicts two distinct components, and

note that no path exists between vertices in the top component and vertices within

the bottom component. Thus, adding any vertex from the bottom component to the

subset of vertices in the top component would violate this property as no path would

exist to this vertex from the other vertices. A network in which there is only a single

component, i.e., there exists a path from every vertex to every other vertex, is said to

be connected while a network in which there exists multiple components, i.e., there
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Figure 2.1: Graph with two components.

exist at minimum two vertices in which no path exists between them, is said to be

disconnected.

2.6 Global Network Measures

In this section, four measures which assign a single value to the entire network are

presented. Such measures are considered for their ease of comparison. The informa-

tion provided by them, however, is somewhat limited as much of the intrinsic local

properties of individual vertices is disregarded. Nonetheless, networks which func-

tion in a similar fashion should be expected to have similar values for te following

measures.

2.6.1 Measures Based on Path Length

The longest geodesic path length in a network is referred to as the network diameter.

The eccentricity of a vertex is defined as the shortest path from that vertex to the

farthest other vertex in the graph, with the shortest such eccentricity referred to as

the network radius. Both the network radius and network diameter can be computed

in O(nm) time.

An alternative measure of network diameter, effective diameter, is defined by find-

ing the geodesic path length, d, such that 90% of geodesic path lengths are shorter

than d [36]. Note that since geodesic path lengths are natural numbers for un-

weighted networks, proportions are linearly interpolated between successive geodesic
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path lengths. Thus, the effective diameter can be thought of as the point in which

the linearly interpolated empirical distribution function is 0.9.

The average geodesic path length of a vertex v within a network containing n

vertices, denoted lv, is defined as

lv =
1

n

∑
u∈V

dvu . (2.3)

Extending this definition across an entire network, the average geodesic path length

of a network, denoted by l, is defined as the mean of all such geodesic path lengths

and is given as

l =
1

n

∑
v∈V

lv . (2.4)

Care must be taken as this definition (loosely) assumes that the network consists of a

single connected component. Note that by convention, vertices with no path between

them (i.e., they reside in different components) have an infinite geodesic path length

[1]. Thus, when calculating the average geodesic path length, it is common to only

include paths with non-infinite length [1]. The average geodesic path length can be

computed in O(nm) time.

2.6.2 Network Transitivity

Transitivity, an important property especially in social networks, is similar in principle

to the transitivity property of mathematical operators. To illustrate the notion of

transitivity, consider the mathematical operator “=”. In mathematics it is trivial to

see, using the colloquial definition of equality, that if a = b and b = c, it follows that

a = c. Such a relation is said to be transitive, that is, the relation between a and b,

and b and c implies a relationship between a and c.

The notion of transitivity arises in a network where it is the case that if vertex u

is connected to vertex v and vertex v is connected to vertex w, then vertex u is also

connected to vertex w, i.e., a triangular structure is formed by three vertices. The

proportion of connections which form such transitive relations are a useful measure of

network structure [1], known as the network transitivity or global clustering coefficient.

The transitivity is defined [1], informally, as

C =
(number of triangles)× 3

(number of connected triples)
(2.5)
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or, alternatively

C =
(number of triangles)× 6

(number of paths of length two)
(2.6)

where a connected triple refers to a triangle as above, with the caveat that only two

of the three edges need be present4. The factors of 3 and 6, respectively, account

for the redundant counting of the triangles with respect to the denominator measure.

That is, when counting the number of connected triples, each triangle accounts for

three such triples, while each triangle also accounts for six paths of length two. The

global transitivity can be calculated in O(m〈k〉2) time.

2.7 Measures of Centrality

A large amount of research effort has been devoted to the concept of centrality, which

stems from the idea that some vertices in a network are more important than others.

This concept follows naturally from the inherent semantics of networks. Centrality

refers to how central, or “important”, a vertex is within a network. The importance

of a vertex is, however, subjectively based on the perception of “importance”. As

such, many definitions of importance, and corresponding measures of centrality, have

been proposed. This section introduces a number of such measures of centrality.

2.7.1 Degree

The degree of a vertex, while quite possibly the simplest and most crude, leads to

a rather intuitive definition of importance. It is completely reasonable to assume

that a vertex which is connected to a large number of other vertices will have a large

influence on the network and, as such, is an important vertex within the network.

For example, in a social network, a highly influential person is typically one which

has a large number of connections thereby facilitating information to be disseminated

over a larger group of people. Similarly, in a citation network, a paper which has a

large number of citations is typically a very influential paper. As the degree of each

vertex can be computed in O(1) time, the degree distribution of the network can be

calculated in O(n) time.

4The third edge may or may not be present, but only two need be present to be considered a
connected triple.
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2.7.2 Betweenness Centrality

The betweenness centrality [66] of a vertex measures the extent to which it lies within

the shortest paths between vertices given by

xv =
∑
st

nvst
gst

(2.7)

where nvst is the number of geodesic paths between s and t which pass through v

and gst is the total number of geodesic paths from s to t. Vertices which have a

high betweenness can have considerable influence on the network as they possess a

sense of control over the flow of information within the network [1]. The betweenness

centrality differs from many other measures of centrality as it is not directly related

to the connectedness of vertices, but rather the extent to which the vertex is between

other vertices. The betweenness centrality can be calculated in O(nm) time.

2.7.3 Closeness Centrality

The average geodesic path length of a vertex, lv, given in Equation (2.3) can be

seen as a measure of centrality. However, the average geodesic path length would

assign unintuitive centrality scores in the sense that vertices which are more central,

i.e., closer to other vertices, are assigned lower scores. Therefore, it is common to

measure a vertices’ centrality as the inverse of lv. This inverse measure is known as

the closeness centrality [67], denoted Cv, and is calculated as

Cv =
1

lv
=

n∑
u∈V

dvu
. (2.8)

While the closeness centrality closely resembles a natural definition of importance,

it suffers from a major drawback – values within the measure have very little variance.

That is, the range of values in the closeness centrality tends to be small due to the fact

that geodesic paths typically increase logarithmically with network size [1]. This small

range of values makes it difficult to distinguish the centrality of vertices. Furthermore,

issues similar to those discussed in Section 2.6.1 arise when dealing with networks that

have more than one component. The closeness centrality can be calculated in O(nm)

time.



CHAPTER 2. COMPLEX NETWORKS AND NETWORK MEASURES 19

2.7.4 Local Transitivity

Following from the definition of the network transitivity in Section 2.6.2, a ratio of

transitivity can also be defined for each vertex in a network. The local transitivity, or

local clustering coefficient, is given by5 [1]

CCv =
(number of pairs of neighbors of v that are connected)

(number of pairs of neighbors of v)
. (2.9)

The numerator of Equation (2.9) is found by counting the number of distinct pairs of

the neighbors of vertex v that are connected. This quantity is divided by the number

of total number of pairs of neighbors, which can be alternatively given as kv(kv−1)
2

.

Similar to the network transitivity, the local transitivity can be computed in order

O(m〈k〉2) time.

The local transitivity has been empirically found to have a rough, inverse correla-

tion with degree [1]. Furthermore, the local transitivity is an indicator of “structural

holes” [68], which refers to the missing edges which, if present, would form a tran-

sitive relation. Such holes in the structure can cause degradations in the passing of

information through a network because of the lack of alternative pathways [68].

2.7.5 Eigenvector Centrality

Bonacich [69] proposed a measure of vertex importance based on the relative impor-

tance of its connections. That is, the eigenvector centrality score of a vertex is based

the centrality score of its neighbors with the justification that being connected to a

lower number of highly influential nodes in a network is fundamentally different than

being connected to a higher number of less influential nodes. In such a case, one can

argue that the node connected to fewer, highly influential nodes has more impact on

the network as whole.

The eigenvector centrality scores are calculated by solving the eigenvector equation

Ax = λx (2.10)

where A is the adjacency matrix of the graph. While there can be many eigenvalues

for which a solution to the above equation exists, the eigenvector corresponding to

the greatest eigenvalue is the desired vector of centrality scores. Note that the ith

component of this eigenvector is the centrality score of the ith vertex. The eigenvector

5While the notation Cv is commonly used for the local transitivity, CCv is used here to avoid
confusion with the closeness centrality.
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centrality can be computed in O(n) time.

2.7.6 PageRank

Brin and Page proposed PageRank [70] as a measure of a websites importance based

on the simulated behavior of a typical user of the web. The authors claim the PageR-

ank corresponded well with people’s subjective view of importance [70]. PageRank

was initially used by the Google search engine as a method of ranking each web link

based on the link’s relative probability of being visited. The PageRank algorithm

works on the analogy that a user will browse the web by following a random walk

of web pages, but also has a probability of randomly jumping to a new page. Thus,

PageRank corresponds to a random walk with occasional jumps. At each step of the

random walk, the probability of continuing is given by the damping factor, d, and the

probability of a random jump is thus (1− d). When the damping factor is 0, PageR-

ank is directly proportional to the degree, while a damping factor of 1 corresponds

to every step being a random jump, and thus the PageRank of every vertex will be
1
n

[71].

The PageRank of a vertex is recursively defined by the PageRank of its predeces-

sors, leading naturally to an iterative calculation process give by

PRv =
1− d
n

+ d

 ∑
u∈P (v)

PRu

|S(u)|

 (2.11)

where d is the damping factor, P (v) is the set of predecessors of vertex v (i.e., vertices

withe edges that point to v), and |S(u)| refers to the number of successors of vertex u

(i.e., vertices which are pointed to by u). Note that the importance of the predecessors

has a significant influence on the PageRank of a vertex, meaning that vertices with

a lower number of “important” connections may have a larger PageRank score than

vertices with more, less “important” connections. The PageRank measure can be

computed in O(nm) time.

Figure 2.2 demonstrates the PageRank scores on a small network. The percentages

on each vertex reflect the likelihood of reaching a node using a damping factor of

85% (or 0.85), i.e., the PageRank scores are expressed as percentages. A number

of noteworthy properties are demonstrated by this image. First, node C has fewer

connections than node E, but receives a higher score. This demonstrates that not all

connections are treated equally when calculating PageRank: the incoming connection

for node C is deemed more influential than all of the incoming connections of E
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Figure 2.2: PageRank scores expressed as percentages.

combined. The necessity for a damping factor is also demonstrated. The damping

factor allows nodes with no incoming connections, i.e., vertices which no random

walk could reach (unless they were the starting point), to be reached as a result of

the random jumps.

2.8 Community Structure

Often it is beneficial to divide a network into groups or clusters, whereby these clus-

ters have many inter-cluster edges and few edges between clusters. These clusters are

commonly referred to as communities and members of a community typically share

a closer relationship with other members of the same community than with members

from different communities. In a social network context, a community commonly

represents an organizational structure, or hierarchy, such as a department within a

university. Similarly, communities tend to also represent geographical regions as it is

more common to form friendships with individuals within close proximity. Commu-

nities within a web network may indicate similar content while a metabolic network

might have different functional units form distinct communities [1]. An example

demonstrating a network with its community structure highlighted can be found in

Figure 2.3.

The separation of a network into its respective communities is referred to as a

community detection algorithm. Note that a similar technique, known as graph par-

titioning, also separates graphs into clusters, however, with graph partitioning the

number of clusters to form is known in advance. Roughly speaking, community

detection is the process of dividing a network into distinct subdivisions, i.e., commu-
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Figure 2.3: The community structure of a friendship network within a UK university
faculty [3]. Each color represents a community detected by a modularity optimizing
method.

nities, such that there are many edges within communities and few edges between

communities. However, the definitions of “many” and “few” are subjective and have

lead to the proposal of a wide variety of community detection algorithms based on

various definitions [1].

A measure of how logically distinctly a community structure is separated from

the remainder of the vertices can be devised based on the density of edges between

communities, relative to the expected edge density in a null model with an equal

distribution of vertex degrees [1]. This measures is known as modularity and assigns

positive values to networks where there are more edges between vertices of the same

type, i.e., communities, than one can expect by random chance and, conversely, as-

signs negative values if there are less such edges than expected. Note that optimizing

the modularity is, by virtue, a method of detecting communities. However, finding the

optimal modularity takes exponential time and is thus infeasible in general [1]. One

common approach to community detection uses spectral properties of the network to

form a modularity matrix, of which an eigenanalysis is performed to subdivide the

network into communities based on the signs of the leading eigenvector [72]. This

algorithm, known as the leading eigenvector community detection algorithm, is used

later in this work to determine the number of communities within networks.
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Graph Models

A graph model is an algorithm which, as a result of execution, produces a graph that

exhibits properties of interest but is otherwise random [1]. Graph models are crucial

to the understanding of complex network behavior. Although complex networks, by

definition, have an intricate structure, many of these structural properties can be

replicated to some extent using very basic construction rules. Graph models are

typically stochastic or probabilistic algorithms which, through repeated execution,

are capable of producing a set of graphs that exhibit similarity in some fashion. The

similarity of the resulting graphs is dependent upon the context in which the model

was designed. That is, graphs produced by a model designed to replicate degree

distributions will exhibit similar degree distributions, while models meant to replicate

path lengths will generate graphs with similar path length distributions. However, the

degree distribution of a graph from the former will most likely differ from the degree

distribution of a graph produced by the latter, and vice versa when considering path

lengths. Note that a graph model is not expected to reproduce any specific graph, i.e.,

a graph model is not meant to generate isomorphic graphs, but rather to reproduce a

family of graphs which behave in a similar fashion with respect to certain properties.

Many graph models have been proposed to model various phenomenon not present in

random networks [35, 36, 73, 74]. This chapter introduces a variety of graph models

which, although some are quite simplistic in principle, are able to model a wide variety

of structural properties observed in real-world networks. A further, in-depth overview

of various graph models can be found in [1], [75], and [76].

23
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3.1 Erdos-Reyni Random Graph Model

Consider a graph model in which the number of vertices, n, and the (independent)

probability of an edge existing between each pair of vertices is given by p. Often

referred to as the Erdos-Reyni (ER) random graph model, such a model was first

studied by Solomonoff and Rapoport [77] in 1951, but is commonly associated with

Erdos and Reyni [22] due to their celebrated work involving the model. The Erdos-

Reyni model is quite possibly the simplest yet most widely studied graph model

[1]. More importantly, comparing the output of the Erdos-Reyni model to real-world

networks lead to the realization that complex networks are not truly random in nature

and that using a random graph model is problematic [1, 73]. The general algorithm,

as popularized by Erdos and Reyni, is given in Algorithm 1 and denoted as the ER

model. In Algorithm 1, a new vertex, v, is added each iteration and each existing

vertex, u, is considered for connection with an independent probability, p.

Algorithm 1 Erdos-Renyi Model

Require: 0 ≤ p ≤ 1
function ER(n, p)

for i← 1 to n do
v ← g.AddVertex( )
for j ← 1 to i do

if RandomDouble() < p then
u← g.GetVertex(j) // Vertex at index j
g.AddEdge(v, u)

end if
end for

end for
return g
end function

The ER model, while useful as a null-model for comparison, does not serve well

as a network model [1]. One clear shortcoming of random graphs is the lack of tran-

sitivity, which tends toward zero as the network size grows. Another problem lies in

the emergent patterns with regards to the degrees of vertices, which are unlike those

observed in real world networks. Since the edges are randomly assigned, there is no

correlation between the degrees of adjacent vertices, which prevents the emergence of

community structures. Furthermore, many real world networks exhibit right-tailed

degree distributions while random graphs exhibit Poisson distributions. In the follow-

ing section, a graph model proposed to exhibit the transitivity of real-world networks

is described.
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Figure 3.1: Graph constructed using the ER model with 100 vertices (p = 0.05).

3.2 Watts-Strogatz Small World Model

To alleviate the shortcomings of the random graph model with regards to the lack of

transitivity, Watts and Strogatz [73] proposed a model which exhibits a “small world”

[45] effect. Watts and Strogatz noted that many naturally occurring networks were

neither random nor regular, but rather fell somewhere between these two extremes

and often exhibited high clustering coefficients coupled with low average geodesic

path lengths [73]. Networks which exhibit such behaviors are classified as “small-

world” networks. The Watts-Strogatz (WS) model, shown in Algorithm 2, constructs

a network by first creating a ring structure where each vertex is connected to its

m0 nearest neighbors. Each of the initial connections are then rewired according to

probability p. By varying the rewire probability, the randomness of the network can

be controlled; when p = 0, an entirely regular network is constructed while setting

p= 1 generates a completely random network as every edge in the network is randomly

rewired.

While many real world networks, such as the neural network of the C. elegans

worm, the US power grid, and a collaborative network of film actors, have been

shown to exhibit a small-world effect [73], the WS model is known to generate degree

distributions which are unlike those of real-world networks [1]. However, this result

is not surprising as the WS model was proposed solely to replicate the transitivity

and average path lengths of networks. The following section outlines a model which

was proposed to replicate real-world degree distributions.
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Algorithm 2 Watts-Strogatz Small World Model

Require: 0 ≤ p ≤ 1
function WS(n,m0, p)

g ← RingGraph(n,m0) // Ring graph with n vertices connected to m0

neighbors
for 1 to |E| do

e← g.GetEdge(i) // Get the ith edge
if RandomDouble( ) < p then

e.Rewire( )
end if

end for
return g
end function

Figure 3.2: Graph constructed using the WS model with 100 vertices (m0 = 5, p =
0.15).
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3.3 Barabasi-Albert Model

The Barabasi-Albert (BA) [35] model is shown in Algorithm 3, where a new vertex v

is added each iteration and connects to m preferentially selected vertices, according

to Equation (3.1). The BA model was premised on two key properties of real-world

networks. The first property, growth, being that network sizes are rarely static – they

grow over time. The second, arguably more important, property was that highly con-

nected vertices have a higher probability of attaining new connections, a phenomenon

known as preferential attachment. The preferential attachment defines a sort of “rich

get richer” effect. The modeling of these two properties leads to the two defining

mechanisms of the BA model:

1. Growth: Starting with m0 initial vertices, create m < m0 new edges at each

time step. This is demonstrated in Algorithm 3 by a new vertex, v, being added

each iteration.

2. Preferential Attachment: The probability of connecting to a vertex u is depen-

dent upon the (in-)degree of u. An additional factor, known as the zero degree

appeal, is added to enable vertices with no connections to have a non-zero prob-

ability of attaining a new connection. The preferential attachment mechanism

is outlined in Equation (3.1), giving the calculation of a vertices relative proba-

bility of attaining a new connection. In Algorithm 3, the SelectVertex function

implements the preferential attachment mechanism according to Equation (3.1).

P (v → u) ∼ InDegree(u)α + z (3.1)

Algorithm 3 Barabasi-Albert Model

function BA(g, n,m, α, z) // An initial graph, g, is provided
for 1 to n do

v ← g.AddVertex( )
for 1 to m do

u← SelectVertex(α, z) // See Equation (3.1)
g.AddEdge(v, u)

end for
end for

return g
end function
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Figure 3.3: Graph constructed using the BA model with 100 vertices (m = 1, m0 = 0,
α = 1).

When α = 1, the BA model exhibits a particular type of degree distribution,

governed by a power law of the form

pk = Ck−α (3.2)

where k is a particular degree, pk denotes the probability of a vertex having degree

k, and α1, C are constants. Networks exhibiting such power-law distributions are

sometimes referred to as scale-free networks and are of particular interest due to

their tendency to arise in a variety of networks [1].

3.4 Growing Random Model

The growing random (GR) model was a null-model used by Barabasi and Albert [35]

to demonstrate that the emergent, scale-free behavior in their proposed model must

be attributed to the preferential attachment mechanism and not random chance. As

such, the GR model, demonstrated in Algorithm 4, is simply a BA model with the

removal of the preferential attachment selection mechanism. As Algorithm 4 depicts,

the GR model simply adds a new vertex, v, each iteration and randomly selects m

vertices to which v will form a connection.

1This is not to be confused with the α parameter of the BA model.
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Algorithm 4 Growing Random Model

function GR(g, n,m)
for 1 to n do

v ← g.AddVertex( )
for 1 to m do

u← g.RandomVertex( )
g.AddEdge(v, u)

end for
end for

return g
end function

Figure 3.4: Graph constructed using the GR model with 100 vertices (m = 1, m0 = 0).
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3.5 Aging Preferential Attachment Model

Dorogovtsev and Mendes [74] proposed an extension to the BA model, the Aging

Preferential Attachment (APA) model, whereby the preferential attachment mech-

anism is influenced by the age of vertices. However, the realization of the effect of

vertex age on the selection process had been previously noted by Price [60]. Price,

working on scientific citation networks, observed a phenomenon which he labeled the

“immediacy factor” of academic papers. This observation noted that recent papers

were more likely to attain new citations, while older papers were considered obsolete

and, as such, were much less likely to attain new citations. Thus, the probability

of connecting to a vertex u is proportional to both the (in-)degree and age of u, as

shown in Equation (3.3). Furthermore, it is common to define a number of bins for

the age – the age used in Equation (3.3) then becomes the binned of the vertex. The

APA model is presented in Algorithm 5. Note that the algorithm for the APA model

builds a network in the exact same manner as the BA model with the exception of

the influence of vertex age in the preferential attachment mechanism. That is, a new

vertex v is added each iteration and connects to m preferentially selected vertices,

according to Equation (3.3).

P (v → u) ∼ (InDegree(u)α + z)× (Age(u)β + y) (3.3)

Algorithm 5 Aging Preferential Attachment Model

function APA(g, n,m, α, z, β, y)
for 1 to n do

v ← g.AddVertex( )
for 1 to m do

u← SelectVertex(α, z, β, y) // See Equation (3.3)
g.AddEdge(v, u)

end for
end for

return g
end function

3.6 Forest Fire Model

Proposed by Leskovec et al. [36], the Forest Fire (FF) model generates networks based

on the spread patterns of forest fires. The model aims to incorporate the following
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Figure 3.5: Graph constructed using the APA model with 100 vertices (m = 1, α = 1,
z = 1, β = -1, y = 0, bins = 25).

properties observed in real-world networks: 1) heavy-tailed degree distributions, 2)

community structures, 3) power-law densification – the network becomes more dense

over time, according to a power-law, and 4) shrinking (effective) diameter (see Section

2.6.1).

Assuming p and r are the forward and backward-burning probabilities, respec-

tively, and v is a vertex joining the graph at time t > 1, a graph is generated as

follows:

1. v chooses m ambassador nodes at random and creates edges to each

2. For each ambassador node, w

(a) Generate two random numbers, x and y, from geometric distributions with

means p
1−p and 1

rp(1−rp) , respectively

(b) v selects x outgoing edges and y incoming edges incident to vertices which

are not yet visited, denoted w1, w2, ..., wx+y

� If there are not enough vertices to select, v selects the maximal number

possible

(c) v forms outgoing edges to w1, w2, ..., wx and recursively applies steps 2 to

each

Algorithm 6 presents the general algorithm for generating a graph according to

the forest fire model. Thia algorithm uses a queue data structure to simulate the re-
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cursive burning procedure where the number of successors and predecessors which are

connected to and subsequently added to the “burning” queue are selected according

to geometric distributions given by ρp and ρr.

Algorithm 6 Forest Fire Model

function FF(n,m, p, r)
g ← EmptyGraph( )
ρp ← GeometricDistribution( p

1−p)

ρr ← GeometricDistribution( 1
rp(1−rp))

for 1 to n do
v ← g.AddVertex( )
Q← Queue( )
for 1 to m do

w ← g.RandomVertex( )
Q.Enqueue(w)

end for
while Q.Count > 0 do // Recursive burning procedure

u← Q.Dequeue( )
for 1 to ρp.Sample() do // Forward burning

s← u.RandomSuccessor( )
g.AddEdge(v, s)
Q.Enqueue(s)

end for
for 1 to ρr.Sample() do // Backward burning

s← u.RandomPredecessor( )
g.AddEdge(v, s)
Q.Enqueue(s)

end for
end while

end for
return g
end function



CHAPTER 3. GRAPH MODELS 33

Figure 3.6: Graph constructed using the FF model with 100 vertices (m = 1, p =
0.37, r = 0.32

0.37
).



Chapter 4

Genetic Programming

Genetic programming (GP) [32] is an artificial intelligence paradigm which uses the

concept of Darwinian evolution [34] to automatically synthesize computer programs.

In genetic programming, a population of candidate programs, called chromosomes,

are evolved over some number of generations with the intention of producing a fit

program [33]. Inspired by natural evolution, the population of chromosomes undergo

a repeated process of fitness-based selection and application of genetic operators, as

visualized in Figure 4.1. Fitness of an individual in GP is typically determined by

a user-supplied procedure, thereby allowing the user to provide a heuristic which

guides the search process. The selection of this fitness function is vital to the perfor-

mance of the optimizer as an inappropriate fitness can hinder the search process. The

remainder of this chapter provides further information about the traditional genetic

programming paradigm as well as various alternative paradigms proposed to alleviate

the various drawbacks associated with traditional GP.

4.1 Representation

Genetic programming, as originally popularized by Koza [32], used a tree-based repre-

sentation analogous to a parse tree. Each element of the tree consists of some provided

Generate Initial 
Population of 

Programs

Evaluate Fitness 
of Each Program

Selection

Genetic 
Operators

· Crossover
· Mutation

Create New Population

Figure 4.1: Visualization of the genetic programming optimization procedure.
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Figure 4.2: A chromosome in tree-based GP. The lighter elements are functions while
the darker elements are terminals.

primitive; the collective set of such primitives is known as the language. The language

primitives are typically categorized into two distinct sets based on their arity. Lan-

guage elements which have non-zero arity, and typically perform data manipulation

operations, are known as functions. In contrast, a terminal refers to a language ele-

ment which is nullary, that is, it takes no arguments. Terminals often take the form

of constants or randomly generated values. To construct a program from such a tree

structure, child nodes are recursively applied as arguments to the parent node, start-

ing from the root. Figure 4.2 gives an example GP tree representing the expression

(3− (5× 2)) + 1. Note that by definition, leaf nodes must be terminals while non-leaf

nodes must necessarily be functions.

To begin the optimization process, a population of candidate programs, and thus

program trees, must be generated. A straightforward approach to construct a tree is

to select a root node and then recursively select additional nodes for each argument

in a predefined pattern, up to a specified depth. The depth of a node n refers to

the number of edges required to reach n from the root node. Note that by this

definition, the root node has a depth of 0. The depth of a tree is similarly defined as

the depth of the deepest leaf node. The maximum allowable depth of a GP tree is

typically provided as a user parameter. Although various techniques exist for creation

of initial trees, the two most common approaches are the full and grow methods [33].

The full method, as the name implies, attempts to create trees which are full, meaning

the depth of each leaf node is the maximum allowable depth. This is achieved by

recursively selecting from only the function set at each step until the depth limit is
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reached, at which point terminals are selected. In contrast, the grow method allows

for a wider variety of shapes and sizes. At each stage of the construction process, the

grow method selects from either the functions or terminals, subject to the maximum

depth. Thus, the grow method can construct trees which have nodes that are not at

the maximum depth.

Because the shapes of both construction methods are somewhat limited [32], a

procedure known as ramped half-and-half initialization is often used. The ramped

half and half procedure allows the user to define a range for the initial depth of trees,

whereby the construction mechanism “ramps” the maximum depth of the generated

trees along this range and constructs both grow and full trees. This procedure allows

for a much wider variety of sizes and shapes to be constructed in the initial population

[33].

Initially, the language elements used by GP systems were typeless, i.e., all elements

of a program had the same type. Strongly-typed GP [78] introduced the ability to

represent more sophisticated programs by facilitating the construction of trees with

more than one type. That is, each language element, including the arguments of

functions, have a type associated with them and the tree structure must adhere to

the compatibility of language elements based on their types. Thus, in a strongly

typed GP system, the set of suitable language elements available for selection at each

stage of the tree creation is context-sensitive.

4.2 Fitness-Based Selection

The genetic operators are applied to individuals which have been selection proba-

bilistically according to their fitness. This allows for a competitive evolution scheme

whereby more fit individuals are given a higher chance at having their genetic ma-

terial preserved through offspring. Therefore, the fitness evaluation of individuals

plays an important role in the search behavior. The selection pressure of a selection

operation describes the degree to which the fitness is used to select individuals. Op-

erators which exhibit strong selection pressure tend to create a skewed probability

distribution whereby individuals with preferable fitnesses are given a much higher

probability of selection while a weaker selection pressure provides a more even proba-

bility distribution for all individuals [33]. The two most common selection operators

in, which demonstrate drastically different selection pressures, are tournament and

roulette selection.

The tournament selection operator is premised, as the name implies, by a tour-
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nament style competition for selection. A number of individuals, denoted k, are

randomly chosen to participate in the “tournament”, the best of these k individuals

is taken as the selected individual. Such an operator is implicitly inherent to noise

due to the random selection, however, tournament selection effectively rescales the

fitness to maintain a constant selection pressure throughout the run [33]. Tournament

selection, due to the preferable selection pressure, is the selection operator employed

in this work.

4.3 Genetic Operators

Crossover is the process of recombining the genetic material of two or more chro-

mosomes to produce offspring. The selection of the chromosomes to be recombined

during crossover, known as the parents, is done probabilistically based on the fitness

of the chromosomes. This effectively allows more fit individuals to receive a higher

pressure for selection. The increased selection pressure causes a bias towards more fit

programs which, ideally, will create offspring with better fitness. Crossover on tree

based chromosomes is done by swapping randomly selected subtrees from the parents

adhering to the type constraints. The crossover procedure can be visualized in Figure

4.3.

While the crossover operator allows for large, drastic movements through the

search space early in the run, it can only recombine genetic material which is already

present in the population. Thus, if a language element which is necessary to construct

a correct solution does not exist in any individual in the population, GP with only

crossover will never find this correct solution. To facilitate the integration of new

genetic material, mutation is also performed during the evolutionary process. The

typical mutation operator is defined by randomly replacing a subtree of an individual

with another, randomly generating subtree. This allows for new genetic material to

be introduced and typically causes smaller, less drastic changes than crossover.

4.3.1 Replication

While crossover and mutation are used to produce new candidate chromosomes, some-

times it is beneficial to directly copy chromosomes to the next generation. As such,

some GP implementations make use of a replication operator which simply copies a

selected individual to the new population without altering its genetic material. A

common variant of replication, whereby some proportion of the most fit individuals
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Figure 4.3: Crossover operation on tree-based chromosomes. The selected subtrees
(shown in boxes) are swapped between the parents resulting in two offspring.

are copied to the new population, is known as elitism. Elitism allows the genetic

material of the best individuals to be preserved, and thus, prevents the fitness of the

best solution from degrading.

4.4 Alternate Genetic Programming Paradigms

GP has been shown to produce fit programs in a wide variety of different applications

such as symbolic regression [79, 80], circuit production [81], evolutionary art [82],

modeling [29, 30, 81, 83], and the construction of artificial agents [84, 85], among

others. Likewise, there have been a variety of methodologies introduced to extend

and enhance the capabilities of GP [86, 87]. This section presents an overview of the

most commonly used, non-traditional GP paradigms.

4.4.1 Linear Genetic Programming

Programs in linear GP are represented as a linear array of instructions [88], rather

than a tree structure. The linear representation, analogous to a sequence of instruc-
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tions, ultimately produces an imperative-styled program. Furthermore, the linear

representation creates a clear distinction between genotype and phenotype [89]. Many

techniques have been proposed for linear GP [90], each with their own advantages and

disadvantages. However, an important advantage of linear GP over traditional GP is

the ability to vary the destructiveness of crossover and mutation [87]. Furthermore,

the linear representation allows traditional crossover and mutation operators defined

for genetic algorithms to be employed.

4.4.2 Object-Oriented Genetic Programming

Object-oriented programming is a widely used programming paradigm where types

are represented as entities with behaviors. In the object-oriented paradigm, instances

of types, known as objects, are mutable by way of methods which are analogous

to behaviors. The object-oriented genetic programming (OOGP) methodology [86]

provides a framework to produce programs in such a paradigm. OOGP makes use of

a multi-tree representation, whereby a chromosome consisting of several trees, each

corresponding to a single method, is evolved. This multi-tree representation used

by OOGP allows the simultaneous optimization of multiple methods, leading to the

evolution of more complex programs.

4.4.3 Linear Object-Oriented GP

The structure of individuals in linear object-oriented GP [37] is inspired by both

linear GP and OOGP representations – individuals are constructed using a collection

of linear chromosomes. Each of these chromosomes directly translates to a method

in the resulting object, as seen in Figure 4.4. As such, this paradigm combines the

benefits of the linear and OOGP paradigms by allowing the simultaneous optimization

of multiple, imperative style methods. Furthermore, this GP paradigm allows the use

of partially-implemented classes, i.e., abstract classes, as a basis whereby the user may

incorporate their domain knowledge of the problem to provide the implementation of

methods where the desired functionality is known a priori. The GP system used in

this work is of this sort and further implementation details of the system, including

the crossover and mutation, are provided in Chapter 7.
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public class Class

{

public override void Foo(...)

{

...

}

...

public override int Bar(...)

{

...

}

}

Translation

Figure 4.4: Visualization of the genotype to phenotype translation in linear object-
oriented GP where a linear array of integers is translated to form a fully functional
object.



Chapter 5

Analysis of Network Properties

A natural issue to be addressed in the context of automatic inference of graph models

is how to evaluate the evolved models. Graph models cannot be directly compared for

two reasons: 1) it is well known in computability theory that determining if algorithms

produce the same output is impossible [91]; and 2) in real-world scenarios there will

not be a target model for comparison. Although replicating the underlying target

model exactly would be ideal, this would require knowledge of the target model,

therefore making the process of automated inference unnecessary. As Figure 5.1

demonstrates, the evaluation of graph models must be done by comparing the graphs

generated by each of the models.

Comparison of generated graphs allows insight about the respective models to be

made. However, Fan et al. [21] demonstrated that using only topological characteris-

tics to evaluate complex network models can be misleading. Their study demonstrated

this claim by showing instances where using topological measures to evaluate mod-
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Figure 5.1: Graph model comparison process.
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els of the Internet could lead to false conclusions – the examined models were able

to closely match the topological characteristics but were unable to replicate crucial

emergent properties of the network. Thus, one must be aware that an inferred model

may not be ideal with respect to all network properties, but rather only those used

to evaluate its similarity. As such, this chapter focuses on the analysis of network

properties and how they can be used to determine similarity.

Graph Models and Parameters

The six graph models examined, as well as the parameters used (see Chapter 3), are

given below.

BA Barabasi-Albert (m = 1, α = 1)

APA Aging Preferential Attachment (m = 1, α = 1, z = 1, β = -1, y = 0, bins = 25)

GR Growing Random (m = 1)

FF Forest Fire (m = 1, p = 0.37, r = 0.32
0.37

)

ER Erdos-Renyi (p = 0.05)

WS Watts-Strogatz / Small World (m = 5, p = 0.15)

5.1 Global Network Properties

This section examines global network properties, i.e., measures which assign a single

value to an entire network. Global properties are useful to quantify the overall struc-

ture and behavior of the network, such as the average geodesic path length which

provides a sense of the information propagation time, but are limited in that they

generally disregard the emergent local behaviors of individual vertices.

5.1.1 Average Geodesic Path Length

Figure 5.2 shows the average geodesic path length of each model using 1000 generated

graphs of varying sizes. An immediate observation with 100 vertex networks was the

amount of overlap between graphs from different models. For example, these plots

indicate that an average geodesic path length of 5.5 could be generated by any of the

BA, APA, or GR models. An even more extreme example lies in the APA and GR

models as the entire range of values for the GR graphs was enveloped by those from
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the APA model, while both models showed nearly identical median values. However,

the APA model demonstrated a larger variance, allowing both higher and lower path

lengths than those of the GR model to be generated.

As network sizes increased, all networks observed an increase in average geodesic

path length with the exception of the ER model, which demonstrated shrinking AGP

as network size increased. Both the FF and WS models demonstrated quite slow

growth of the AGP relative to the network size, with the FF model showing the

slower growth of the two. Neither of the FF or WS results are unexpected as the

models were designed to have a shrinking diameter and the small-world property,

respectively, both of which suggest slow growth of path lengths. Examining Figure

5.2d showed that the expected median of GR graphs grew quicker than that of APA

networks. Furthermore, the range of observed values for the GR model was no longer

completely enveloped by the APA model – at the 1000 vertex level, the GR model

was able to generate networks with a higher AGP than the APA model. Similarly, the

observed average geodesic path lengths for the FF model grew significantly quicker

than the ER model as the network size increased – even at the 250 vertex level, the

ER model was consistently producing significantly lower geodesic path length values

than the FF model.

The relative difference between the average geodesic path lengths was visualized

using MDS on 30 networks generated at various network sizes, shown in Figure A.1

(see Appendix A). The MDS procedure demonstrated that the relative difference

between the average geodesic path lengths from different models was quite small,

especially with 100 vertex networks. It is interesting to note that at all network sizes,

there were instances of the FF model which were more similar to WS networks than

other instances of the FF model. This same observation can be made for the BA, APA,

and GR networks, although the BA model becomes dissimilar more rapidly relative to

the APA and GR networks as the network sizes increase – there is no visible overlap at

the 500 and 1000 network sizes. Thus, the average geodesic path length of a network is

clearly insufficient to determine dissimilarity between smaller networks, especially the

preferential attachment networks. However, as these networks grew, their emergent

behaviors became more evident and their respective path lengths began to diverge.

5.1.2 Network Transitivity

Figure 5.3 shows the network transitivity ratio of each model using 1000 generated

graphs of varying sizes. It should be noted here that the preferential attachment
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Figure 5.2: Boxplots of the average geodesic path length.
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networks (BA, APA, GR) could not generate triangles1, thus their network transitivity

was always 0. An interesting immediate observation was made with the ER model

– the transitivity of the ER model was centered around 0.5 (note that 0.05 was the

probability of an edge existing between any two vertices) for all network sizes, with

a decreasing variance as the network size increased. At the 100 vertex level, shown

in Figure 5.3a, the observed median for the WS model was below the expected range

for the FF model. However, as Figure 5.3d depicts, the transitivity of the FF and

WS models becomes extremely similar for 1000 vertex networks with the entire range

of the WS model enveloped by the FF model. As expected, both the FF and WS

models showed significantly higher network transitivities than the ER model, while

both models showed shrinking network transitivities as the network size increased.

The above observations are further visualized by the application of MDS on net-

work transitivities of 30 networks generated at various network sizes, as depicted in

Figure A.2 (see Appendix A). The BA, APA, and GR networks all occupy a single

point as their differences were all 0. At all network sizes, the ER model was more

similar to the zero transitivity of the BA, APA, and GR models than it is to the FF

and WS models. However, as the network sizes increased, the network transitivities of

the FF and WS model both decreased which effectively shrunk the relative difference

between the ER and FF/WS models.

From these observations, it can be concluded that the network transitivity is not

an effective measure to quantify dissimilarity for the examined networks, especially

on the larger networks. The first reason being that three of the six models, by

definition, had no transitivity. For the same reason, this can be argued as both a

good and bad measure to use for these networks. That is, one can be assured that

any graph with a non-zero transitivity was not generated by the BA, APA, or GR

models, however, instances of these networks can never be distinguished with respect

to the network transitivity. Furthermore, the transitivity of the FF and WS models

became quite similar with 500 vertex network and nearly indistinguishable with 1000

vertex networks even though the generating mechanisms used by these models were

vastly different.

5.1.3 Network Diameter

Figure 5.4 shows the network diameter of each model using 1000 generated graphs

of varying sizes. Immediately, the network diameter stands out as being much more

1This is only true for the parameters used in this study. In general, each of these models can
produce non-zero network transitivities.
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Figure 5.3: Boxplots of network transitivity.
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similar between models than the previously examined measures. A large part of this

was due to the discrete nature of the diameter2. The network diameter is not a

continuous measure, thus the range of values which it can take is severely limited.

As such, we see that many networks can produce networks with the same diameter.

To illustrate this point, a 100 vertex network with a diameter of 13 could have been

reasonably produced, albeit not expected in the average case, by any of the BA, APA,

GR, or FF models.

As observed with the AGP measure, the APA and GR models were quite similar

with respect to the network diameter. With all network sizes, the range of values for

the GR model were completely enveloped by the APA model. Less similar than the

GR and APA models but more unexpectedly, the BA and FF models demonstrated

similar network diameters. However, the BA model demonstrated far quicker growth

with respect to the network diameter compared to the FF model. When examining

the 1000 vertex networks, it is seen that the FF model would consistently produce

networks with smaller diameters than the BA model. The reader is reminded here

that the network diameter of the FF was increasing with network size, even the FF

model was proposed to have shrinking diameters, due to an alternative definition of

diameter, referred to as the effective diameter, used by Leskovec et al. [36]. The ER

model demonstrated the smallest diameters for all network sizes, with the exception of

the 100 vertex networks, where the WS networks had significantly smaller diameters.

For all network sizes, the ER and WS models produced significantly shorter diameters

than the other networks. However, this is not unexpected as both the ER and WS

models had relatively small average geodesic path lengths.

Presented in Figure A.3 (see Appendix A) is the MDS procedure applied to the

network diameter of 30 networks generated at various network sizes. These plots

further reinforce the observation of the high degree of overlap between the diameters

for networks from different models. For each of the four network sizes, there existed

points which indicated no difference between instances of the BA and FF models, and

the BA, APA, GR models (with the exception of 1000 vertex networks, where the BA

did not overlap with either model). In contrast, the ER and WS models demonstrated

almost no overlap with any other model for any size networks, indicating that these

models consistently generated networks with distinct diameters relative to the other

models. Due to the discrete nature coupled with the high degree of overlap, the

diameter is concluded to be an extremely inefficient measure to quantify the both the

dissimilarity between networks generated by different models as well as the similarity

2This is only true, in general, for unweighted networks.
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Figure 5.4: Boxplots of network diameter.

between networks generated by the same model.

5.1.4 Network Radius

Figure 5.5 shows the network radius of each model using 1000 generated graphs of

varying sizes. As with the network diameter, values of the network radius are discrete,

leading to a high degree of overlap. Due to the related nature of the measures, the

results obtained using network radius were quite similar to those observed with net-

work diameter. Notably, the entire range of values for the GR model were enveloped

by the range for the APA model, with the interesting exception of the 1000 vertex

networks, where the two models produced nearly identical distributions of network

radii. As with the diameter, the radii of the ER and WS were the smallest of all

network models, with the ER model showing the smaller radii in general. However,
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on 100 vertex networks, as seen in Figure 5.5a, the ER had quite a large range of

possible radii, leading to a higher median that the WS model. While the BA and

FF models were quite similar with respect to the radius of the generated instances,

the BA model demonstrated slightly larger values than the FF for all network sizes.

Furthermore, most of the range of values for FF networks were within the expected

range for BA networks on all sizes. For all network sizes, the boxplots for the WS

model shown in Figure 5.5 were all straight lines, indicating that little to no variance

was observed in the networks generated by this model. A similar observation was

made for the ER model at network sizes of 250, 500, and 1000 vertices.

Presented in Figure A.4 (see Appendix A) is the MDS procedure applied to the

network radius of 30 networks generated at various network sizes. Again, these results

appeared quite similar to those obtained when the network diameter was examined.

However, one striking difference was in the number of distinct points visible – the

radius had far fewer such points. This suggested that the variance among instances

from all models was less than when the diameter was considered, i.e., there were less

values observed for the radius than for the diameter. Furthermore, the reduced vari-

ance among values observed with radius lead to the degree of overlap between graphs

generated by different models to be higher. Thus, the MDS procedure produced a

higher number of points situated directly on top of other points. In all cases, the

APA model had the largest number of distinct points on the MDS plot, with at least

six such points in every plot. The same argument against the similarity measuring

potential made for diameter can be made for radius; the low variance and high degree

of overlap leads to many cases of networks from different models being indistinguish-

able with respect to network radius. However, the radius is arguably a worse measure

than the diameter due to the smaller range of observed values.

5.2 Vertex Centrality Measures

In contrast to the measures examined in the previous section, this section examines

vertex centrality measures. While single measures for a network are beneficial for

reducing the problem of similarity to a comparison of singular values, they are limited

by the same nature. Assigning a single value to an entire network will, to a certain

extent, disregard the local properties of the constituent vertices in the network. With

some networks, the local properties of the vertices are crucial to the functionality

of the network. Fan et al. [21] demonstrated that models which best replicated

topological characteristics of the Internet, such as transitivity and distances, were
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Figure 5.5: Boxplots of network radius.
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Table 5.1: Critical Values for the KS Test Assuming a 95% Confidence Level

Sample Sizes Critical Value
100 0.19233
250 0.12164
500 0.08601
1000 0.06082

not necessarily the best models when more emergent, vertex level characteristics were

considered. As such, the focus of this section is to quantify the similarity of network

models using vertex centrality measures.

To quantify the similarity of network models using network measures, 1000 pair-

wise KS tests were performed between networks generated by each model. All tests

were performed at a 95% confidence level with the critical values presented in Table

5.1. A resulting D statistic below the critical threshold (bolded) signified that the

distributions were insignificantly different.

5.2.1 Degree Distribution

The average D statistic over 1000 pairwise KS tests of the degree distributions are

presented in Table 5.2. In all cases where networks from the same model were com-

pared (i.e., entries along the diagonal), the average KS statistic was well below the

critical value. This result indicated that the degree distribution was consistent for all

models. For each network size examined, the GR model showed the most consistent

networks while the FF and ER were by far the least consistent models – the FF model

being slightly worse than ER. Nonetheless, the average D statistic for the FF and ER

models was still well below the critical threshold at all network sizes.

Although the degree distribution was consistent among models, there were a num-

ber of observed cases where different models were deemed to have an insignificant

difference in their degree distributions. When the 100 vertex networks were exam-

ined, the BA, APA, and GR were all insignificantly different from each other. As

the network sizes grew to 250 vertices, the BA model became significantly different

from the GR model, but not the APA. At all network sizes, the APA and GR models

demonstrated insignificant differences. Furthermore, the degree distributions of the

APA and GR models become more similar, on average, as the network sizes increased.

With 100 vertex networks, the APA and GR models comparisons attained an average

D statistic of 0.069, while only differing by an average of 0.057 when 1000 vertex

networks were considered. However, with a few slight exceptions (e.g., comparing BA
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and FF models), each of the models became more distinct, and thus demonstrated

lower D statistics when compared to other models, as the network size increased. A

noteworthy example which was contrary to the general trend was observed for 250

vertex networks when comparing the ER and WS models. When the WS and ER

models were compared at the 100, 500, and 1000 vertex networks, the average D

statistics were 0.823, 0.984, and 1.000, respectively. Note that the values increase as

the network size increased. However, when 250 vertex networks were considered, the

average D statistic dropped to 0.427 – a value significantly lower than those observed

at other network sizes.

Examining the results of the MDS procedure applied to the degree distributions,

shown in Figure A.5 (see Appendix A), demonstrated the above observations in a

more visual fashion. A striking difference was observed when the MDS plot for degree

distribution was viewed in a comparative fashion to those produced using global

network measures – far more clustering was observed for the degree distribution.

However, the lack of relative difference between the BA, APA, and GR models lead

them to essentially form a single cluster in each of the four plots. Regardless of the

similarity between BA, APA, and GR networks, it was quite apparent that the degree

distribution was more suited to differentiate networks generated by different models.

5.2.2 Local Clustering Coefficient

Table 5.3 depicts the average D statistic observed for pairwise comparisons when the

local transitivity was considered. Due to the implicit relationship between the local

and the network transitivities, the results for local transitivity quite closely resembled

their network counterparts. As expected, the BA, APA, and GR models demonstrated

absolutely no local clustering, thus the distribution would be zero for each vertex caus-

ing each of these three models to be indistinguishable from one another. Despite this

expected shortcoming of the local clustering coefficient, the remaining three models

were easily distinguished using the local clustering coefficient. More specifically, each

of the comparisons between instances of the same models lead to average D statis-

tics which were below the critical value, albeit they were higher than those observed

with the degree distribution, while comparisons between different models were always

significantly above the critical threshold. These results indicated that the local clus-

tering coefficient was both consistent among each model and significantly different

between models.

Figure A.6 presents the MDS procedure applied to local clustering coefficient.
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Table 5.2: Average D Statistic - Degree Distribution

(a) 100 Vertices

BA APA GR FF ER WS
BA 0.050 0.120 0.165 0.481 0.710 0.952

APA 0.052 0.069 0.419 0.657 0.965
GR 0.045 0.401 0.636 0.977
FF 0.123 0.276 0.717
ER 0.105 0.823
WS 0.059

(b) 250 Vertices

BA APA GR FF ER WS
BA 0.032 0.113 0.164 0.481 0.940 0.952

APA 0.033 0.060 0.417 0.948 0.961
GR 0.029 0.399 0.960 0.973
FF 0.083 0.681 0.689
ER 0.071 0.427
WS 0.039

(c) 500 Vertices

BA APA GR FF ER WS
BA 0.023 0.112 0.165 0.480 0.987 0.951

APA 0.023 0.057 0.419 0.995 0.960
GR 0.021 0.399 0.999 0.972
FF 0.062 0.865 0.676
ER 0.053 0.984
WS 0.027

(d) 1000 Vertices

BA APA GR FF ER WS
BA 0.016 0.110 0.167 0.479 0.997 0.951

APA 0.016 0.057 0.423 0.999 0.960
GR 0.015 0.400 1.000 0.971
FF 0.046 0.948 0.667
ER 0.038 1.000
WS 0.019
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As seen in Figure A.6a, there is a relatively large variance in the local clustering

coefficients of the ER model compared to the other models, which all demonstrated

quite consistent distributions for this measure. However, as the network sizes increase,

the variance among instances of the ER model became more similar to those observed

in the FF and WS models. Interestingly, Figures A.6c and A.6d appeared quite

similar, which implied the relative difference among the networks did not have any

dramatic change when the network size increased from 500 to 1000 vertices.

In contrast to the network transitivity, the local clustering coefficient demon-

strated the qualities which a good measure of (dis)similarity should possess – consis-

tency among networks generated by the same model alongside significant differences

between networks generated by different models. Furthermore, the local transitivity

perfectly exemplifies how global network measures can disregard the local proper-

ties of the vertices. By comparing Figures A.2d and A.6d, it was noted that the

FF and WS models were far more similar when network transitivity was considered.

However, the differences in transitivity between these two models were much more

pronounced with the local clustering coefficient. This demonstrated that examining

networks with a finer grain, i.e., using vertex centrality measures, can provide more

information than network level properties.

5.2.3 Betweenness Centrality

Table 5.4 depicts the average D statistic observed for pairwise comparisons when be-

tweenness centrality was considered. In all instances the betweenness measure was

consistent among networks generated by the same model. However, with the 100

vertex networks, there were a number of instances where the average D statistic was

well below the critical threshold of 0.19233 while the networks being compared were

from different models. Although not terribly surprising due to their inherent struc-

tural similarities, each of the BA, APA, and GR networks demonstrated insignificant

differences, on average, from each other. Interestingly, both the APA and GR models

were insignificantly different from the FF model, on average, while the BA model was

significantly different. The FF, ER, and WS models were all significantly different

when 100 vertex networks were considered.

As the network size increased, the discriminatory power of the betweenness cen-

trality measure became more apparent. When 250 vertex networks were considered,

only the BA-APA and APA-GR comparisons obtained average D statistics below the

critical threshold. The BA-APA comparisons netted, on average, a D statistic of
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Table 5.3: Average D Statistic - Local Transitivity

(a) 100 Vertices

BA APA GR FF ER WS
BA 0.000 0.000 0.000 0.933 0.407 1.000

APA 0.000 0.000 0.936 0.409 1.000
GR 0.000 0.932 0.405 1.000
FF 0.136 0.879 0.570
ER 0.125 0.869
WS 0.155

(b) 250 Vertices

BA APA GR FF ER WS
BA 0.000 0.000 0.000 0.937 0.921 0.999

APA 0.000 0.000 0.936 0.922 0.999
GR 0.000 0.937 0.923 0.999
FF 0.090 0.929 0.553
ER 0.094 0.926
WS 0.097

(c) 500 Vertices

BA APA GR FF ER WS
BA 0.000 0.000 0.000 0.937 1.000 0.999

APA 0.000 0.000 0.937 1.000 0.999
GR 0.000 0.937 1.000 0.999
FF 0.066 0.936 0.535
ER 0.068 0.964
WS 0.070

(d) 1000 Vertices

BA APA GR FF ER WS
BA 0.000 0.000 0.000 0.938 1.000 0.999

APA 0.000 0.000 0.938 1.000 0.999
GR 0.000 0.938 1.000 0.999
FF 0.050 0.938 0.515
ER 0.054 0.979
WS 0.049
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0.120 – a value just marginally below the critical threshold of 0.12164. When 500

and 1000 vertex networks were considered, the only comparisons of different models

which attained an average D below the critical threshold were between the APA and

GR models. A noteworthy observation was made with respect to the BA, APA, and

GR models. Contrary to the general trend, the average D statistic obtained when

comparing models from each of these networks tended to decrease as the network size

increased. This indicated that the betweenness centrality of the BA, APA, and GR

models becomes more similar as network size increased. The largest such decrease

was observed between the BA and APA models, which were different by an average D

statistic of 0.133 on 100 vertex networks, while only different by an average of 0.112 on

1000 vertex networks – a 0.021 decrease in the average D statistic. As expected, the

remaining three models, namely FF, ER, and WS, tended to become more dissimilar

as network size increased.

Figure A.7 (see Appendix A) presents the MDS procedure applied to the between-

ness centralities. An immediate observation was the densification of the clusters as the

network size increased, reinforcing the previous observation of the increased discrim-

inatory power on larger networks. Furthermore, when Figure A.7a was considered, it

was apparent that the variance of the betweenness centrality was quite high among

the BA, APA, and GR networks. This can be explained by the models, in a stochas-

tic fashion, generating different numbers of hub nodes, causing major differences in

the betweenness centrality among instances of these networks to be observed. When

generating larger networks, the expected number of hub nodes stabilizes to an extent,

causing far less variance of the betweenness to be observed. Interestingly, as observed

with the degree distribution in Section 5.2.1, the ER and WS models appeared more

similar when 250 vertex networks were examined than on any other size. Table 5.4a

confirms that with betweenness centrality, the average D statistic when comparing

the ER and WS networks was 0.219, while on 100, 500, and 1000 vertex networks,

the average D statistic was 0.264, 0.494, and 0.714, respectively.

5.2.4 Closeness Centrality

Table 5.5 depicts the average D statistic observed for pairwise comparisons when

closeness centrality was considered. In contrast to the previously examined cen-

trality measures, the closeness centrality was completely ineffective as distinguishing

instances generated by both the same model and different models. When 100 vertex

networks were examined, the only model which demonstrated any consistency among



CHAPTER 5. ANALYSIS OF NETWORK PROPERTIES 57

Table 5.4: Average D Statistic - Betweenness Centrality

(a) 100 Vertices

BA APA GR FF ER WS
BA 0.058 0.133 0.168 0.282 0.622 0.665

APA 0.070 0.076 0.179 0.509 0.551
GR 0.062 0.156 0.456 0.499
FF 0.095 0.418 0.487
ER 0.108 0.264
WS 0.095

(b) 250 Vertices

BA APA GR FF ER WS
BA 0.038 0.120 0.167 0.291 0.665 0.664

APA 0.044 0.062 0.181 0.555 0.554
GR 0.039 0.147 0.500 0.500
FF 0.063 0.488 0.495
ER 0.064 0.219
WS 0.062

(c) 500 Vertices

BA APA GR FF ER WS
BA 0.027 0.115 0.167 0.298 0.666 0.666

APA 0.032 0.058 0.187 0.556 0.557
GR 0.028 0.145 0.500 0.501
FF 0.046 0.511 0.504
ER 0.046 0.494
WS 0.045

(d) 1000 Vertices

BA APA GR FF ER WS
BA 0.019 0.112 0.166 0.302 0.667 0.666

APA 0.023 0.057 0.194 0.557 0.557
GR 0.020 0.146 0.506 0.500
FF 0.036 0.527 0.514
ER 0.031 0.714
WS 0.032
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the closeness centrality, i.e., an average D statistic below the critical threshold, was

the WS model. This was, in fact, the only case where the average D statistic was

below the critical threshold for 100 vertex networks. When the results from larger

networks were examined, the ER model was noted to have obtained average D statis-

tics below the critical threshold when compared to itself on the 250, 500, and 1000

vertex networks while the same could be said for the WS model only when 250 and

500 vertex networks were considered. When 1000 vertex networks were considered,

the average D statistic between instances of the WS model was just marginally (i.e.,

0.00618) above the critical threshold.

When the MDS plots applied to closeness centrality, shown in Figure A.8 (see Ap-

pendix A) were considered, vastly different observations were made than with previous

measures. In general, there was not much visible clustering in the 100, 250, and 500

vertex network plots, while some clustering structure, indicating consistency among

instances from the models, became apparent in Figure A.8d. Although each of the

models became more distinct as network size increased, there was still an extremely

large relative variance among instances generated by the same model, especially when

the BA model was considered. The 100 vertex plot demonstrated a very large amount

of overlap, which indicated that there was relatively minute differences in closeness

centrality between the models, with the exception of the WS model, which was visibly

distinct from the other models. However as the network size increased, the FF and

WS networks were located much closer in proximity to each other.

With the above observations, it was quite apparent that closeness was not a suit-

able centrality measure for discriminating between networks generated by different

models. Furthermore, the closeness centrality was not consistent among networks

generated by the same model. Thus, in the context of this work, no valuable in-

formation could be obtained when the closeness centrality was used to measure the

(dis)similarity of networks.

5.2.5 PageRank

Table 5.6 depicts the average D statistic observed for pairwise comparisons when

PageRank was considered. With respect to all models, the PageRank measure was

consistent among networks generated by the same model. For all network sizes, the

BA model showed the least consistent values for PageRank, as demonstrated by the

highest average D statistic when compared to other instances from the BA model.

With the exception of the APA-GR comparisons on 100 and 250 vertex networks, the
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Table 5.5: Average D Statistic - Closeness Centrality

(a) 100 Vertices

BA APA GR FF ER WS
BA 0.330 0.630 0.654 0.482 0.686 0.991

APA 0.292 0.265 0.812 0.889 1.000
GR 0.234 0.823 0.906 1.000
FF 0.301 0.548 0.881
ER 0.643 0.947
WS 0.133

(b) 250 Vertices

BA APA GR FF ER WS
BA 0.284 0.674 0.723 0.554 0.998 0.994

APA 0.246 0.239 0.875 1.000 1.000
GR 0.202 0.901 1.000 1.000
FF 0.238 0.945 0.805
ER 0.108 0.921
WS 0.109

(c) 500 Vertices

BA APA GR FF ER WS
BA 0.254 0.673 0.767 0.631 1.000 0.996

APA 0.209 0.231 0.913 1.000 1.000
GR 0.178 0.941 1.000 1.000
FF 0.206 0.997 0.712
ER 0.080 1.000
WS 0.083

(d) 1000 Vertices

BA APA GR FF ER WS
BA 0.237 0.667 0.801 0.707 1.000 0.997

APA 0.182 0.250 0.935 1.000 1.000
GR 0.160 0.968 1.000 1.000
FF 0.163 1.000 0.592
ER 0.055 1.000
WS 0.067
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PageRank measure was significantly different, on average, among networks generated

by different models. Although the PageRank was, on average, insignificantly different

among instance of the APA and GR models when 100 and 250 vertex networks were

considered, the average D statistic was above the critical threshold when 500 and 1000

vertex networks were examined. However, the average D was still decreasing as the

network size increased. Similarly, the average D statistic for the BA-GR, BA-APA,

and ER-WS comparisons also decreased as the network size increased. Note that the

PageRank is one of the only measures which obtained an average D statistic above the

critical threshold when the APA and GR models were compared. More concretely,

the PageRank was the only measure which was consistent among instances of the

same model which was also significantly different among instances of the APA and

GR, although only for 500 and 1000 vertex networks.

Figure 5.6 presents the MDS procedure applied to the PageRank, which reinforces

the observations made regarding the average D statistic. With the exception of the

100 vertex networks (Figure 5.6a), the PageRank demonstrated compact, distinct

clusters. This effectively meant the PageRank was both consistent among networks

from the same model while being sufficiently different among networks generated by

different models. When the 100 vertex networks were considered, there was a lot

more visible overlap between instances from different models. However, even with

the 100 vertex networks, the PageRank was still an extremely effective discriminator

for different networks. When the plots for 500 and 1000 vertex networks were exam-

ined, the overlap of the ER and WS models was apparent. However, these models are

still, on average, significantly different when 500 and 100 vertex networks were con-

sidered. The visible similarity is attributed to two factors. Firstly, the WS and ER

models were quite similar when larger networks were considered – comparisons be-

tween these models resulted in an average D statistic of 0.107 and 0.094, respectively.

Furthermore, the reader is reminded that the distance in an MDS plot between points

represents a relative difference, not an absolute difference. Thus, the small distance

only signified the relative difference between instances of the ER and WS models was

much smaller compared to other models.

The above observations demonstrated the effectiveness of the PageRank measure

for discriminating networks generated by different networks. Even with the similarity

of the ER and WS models observed on the larger networks, the PageRank was the

best measure examined for quantifying (dis)similarity of networks.
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Table 5.6: Average D Statistic - PageRank

(a) 100 Vertices

BA APA GR FF ER WS
BA 0.152 0.209 0.272 0.332 0.532 0.661

APA 0.119 0.146 0.279 0.415 0.547
GR 0.105 0.267 0.363 0.498
FF 0.112 0.260 0.456
ER 0.110 0.289
WS 0.099

(b) 250 Vertices

BA APA GR FF ER WS
BA 0.101 0.181 0.253 0.313 0.623 0.663

APA 0.080 0.121 0.279 0.507 0.551
GR 0.069 0.278 0.453 0.497
FF 0.081 0.378 0.480
ER 0.073 0.182
WS 0.063

(c) 500 Vertices

BA APA GR FF ER WS
BA 0.075 0.167 0.243 0.309 0.657 0.663

APA 0.057 0.107 0.290 0.546 0.553
GR 0.050 0.291 0.490 0.498
FF 0.064 0.464 0.500
ER 0.055 0.107
WS 0.046

(d) 1000 Vertices

BA APA GR FF ER WS
BA 0.055 0.157 0.237 0.318 0.666 0.663

APA 0.041 0.101 0.305 0.556 0.555
GR 0.035 0.306 0.500 0.498
FF 0.052 0.536 0.519
ER 0.040 0.094
WS 0.032
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(a) 100 vertex networks. 93.04% variance ac-
counted for on each axis.
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counted for on each axis.
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accounted for on each axis.

Figure 5.6: MDS applied to PageRank for various network sizes.
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5.2.6 Eigenvector Centrality

Table 5.7 depicts the average D statistic observed for pairwise comparisons when

eigenvector centrality was considered. The eigenvector centrality measure was inef-

fective at distinguishing networks generated by different models. There were only

two comparisons which resulted in an average D statistic below the critical threshold,

namely when comparing networks from the FF model on 100 and 250 vertex networks

and comparing GR networks on 100 vertex networks. All other comparisons resulted

in an average D statistic above the critical threshold. In general, networks from the

same model became more similar (i.e., the average D decreased), while networks from

different models became more dissimilar as the network size increased. A noteworthy

exception from this trend was observed with the ER-WS comparison. The average

D statistic was significantly lower for the ER-WS comparisons when 250 and 500

networks were examined than with 100 and 1000 vertex networks. Interestingly, a

similar observation was made regarding the degree distribution, albeit the unexpected

similarity was only noted for 250 vertex networks. For all network sizes examined,

the FF model demonstrated the most consistency among networks with respect to

eigenvector centrality, while the BA model demonstrated the largest differences, on

average.

Figure A.9 (see Appendix A) presents the MDS procedure applied to the eigen-

vector centrality. Similar to the closeness centrality, shown in Figure A.8, a large

amount of overlap is depicted when the eigenvector centrality was considered. For

all network sizes examined, the BA, APA, GR, and FF models were essentially indis-

tinguishable – the networks from these models were all overlapped, and formed one

large cluster. Furthermore, no model, with respect to any size network, demonstrated

a compact cluster indicating consistency among the model. The relatively small dis-

tance between the networks from the ER and WS networks in Figures A.9b and A.9c

demonstrated the increased relative similarity on the mid-sized networks, as observed

with the average D statistic.

Thus, it can be safely concluded that the eigenvector centrality was completely

ineffective at quantifying (dis)similarity of networks. Furthermore, no valuable infor-

mation can be obtained by measuring and comparing the eigenvector centrality.
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Table 5.7: Average D Statistic - Eigenvector Centrality

(a) 100 Vertices

BA APA GR FF ER WS
BA 0.232 0.237 0.217 0.266 0.716 0.976

APA 0.217 0.245 0.246 0.701 0.954
GR 0.174 0.217 0.655 0.926
FF 0.158 0.537 0.820
ER 0.194 0.645
WS 0.225

(b) 250 Vertices

BA APA GR FF ER WS
BA 0.207 0.240 0.214 0.258 0.972 0.990

APA 0.192 0.272 0.280 0.939 0.979
GR 0.159 0.197 0.916 0.956
FF 0.118 0.817 0.876
ER 0.153 0.289
WS 0.194

(c) 500 Vertices

BA APA GR FF ER WS
BA 0.193 0.233 0.218 0.271 0.996 0.995

APA 0.172 0.302 0.318 0.992 0.989
GR 0.149 0.200 0.977 0.972
FF 0.092 0.918 0.906
ER 0.149 0.198
WS 0.180

(d) 1000 Vertices

BA APA GR FF ER WS
BA 0.182 0.237 0.226 0.291 0.999 0.998

APA 0.155 0.334 0.350 0.998 0.995
GR 0.135 0.208 0.994 0.982
FF 0.072 0.965 0.929
ER 0.137 0.531
WS 0.155



Chapter 6

Analysis of Network Property

Subsets

While the results from Chapter 5 demonstrated that a number of centrality measures

could be reasonably used to distinguish between networks generated by different mod-

els, how the measures interact was not considered. As such, the focus of this chapter

is to determine which network centrality measures, and subsets thereof, are most ca-

pable of distinguishing between graphs generated by different models. A good set of

measures should consistently and accurately be able to determine that a graph was

not generated by a given model, as the measures should provide significantly different

centrality values for graphs generated by different models. Similarly, a good set of

measures should have relatively consistent results among graphs generated the same

model.

6.1 Experimental Procedure

To evaluate a subset of measures, a meta-analysis procedure was carried out which

made use of Fisher’s method [92] to combine p-values. Furthermore, receiver operat-

ing characteristic (ROC) curves were generated to visualize the performance of the

best subsets of measures. This section outlines the experimental procedures used to

evaluate a subset of measures.

6.1.1 Fisher’s Method

Fisher’s method [92] is a meta-analysis test used to combine the p-values from in-

dependent hypothesis tests. The independent p-values are combined to form a test

65
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statistic using the formula

χ2
2k ∼ −2

k∑
i=1

ln(pi) (6.1)

where k is the number of independent tests being combined and pi is the p-value of

the i test. When the p-values of the independent tests are small, the test statistic is

large, suggesting the null hypotheses were not true for all of the independent tests.

In contrast, when the p-values are large, the test statistic is small and follows a chi-

squared distribution with 2k degrees of freedom. This property allows a p-value to

be attributed to χ2
2k, thus resulting in a combined p-value.

In the context of graph model evaluation, Fisher’s method was used to determine

similarity of networks, and thus their respective models, using a set of measures.

Thus, Fisher’s method was used to combine individual p-values, resulting from KS-

tests, to determine whether this set of measures agreed upon the null hypothesis of

similarity.

6.1.2 Combining the Performance of a Set of Measures

To determine the performance of a subset of measures, a method of combining perfor-

mance evaluations was necessary as each measure must be examined independently.

For this purpose, each centrality measure was calculated and compared to that of the

target network, the results of which were combined in various ways (i.e., using each

subset of measures) with Fisher’s method. In more detail, for a given target graph

G, model M , and set of measures F , N instances of M were generated. For each

of the N instances of M , all six centrality measure was calculated and compared,

using a KS test, to the corresponding centrality measure of the target graph, G. The

resulting p-values from the KS test, performed at a 95% confidence level using criti-

cal thresholds given in Table 5.1, were recorded. Once all instances of M had been

generated and compared to the target graph, the combination phase took place. The

power set (excluding the empty set) of F was generated, denoted by P≥1 (F ), in order

to examine all non-empty subsets of measures. For each subset of measures s, the p-

values from the KS tests belonging to the members of s were retrieved and combined

using Fisher’s method. Thus, for each subset of measures, a combined p-value was

generated. This procedure is demonstrated in Algorithm 7.

The procedure outlined in Algorithm 7 only compared a single target to a single

model. To compare multiple models to a single target graph, a meta analysis pro-
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Algorithm 7 Combining the Performance of a Set of Measures

function Combine(G,M,F,N) // G - target graph, M - graph model, F -
set of measures

for i from 1 to N do
gi ←M .generate()
for all f ∈ F do

p[f ].append(KS-Test(f(gi), f(G)))
end for

end for
for all s ∈ P≥1 (F ) do

result[s]← FishersMethod({p[x] | x ∈ s}) // Combine the p-values
for each measure in s

end for
return result
end function

cedure was used. This procedure, depicted in Algorithm 8, generated ROC curves

for each subset of measures. As ROC curves only plot the discriminatory power of a

binary classifier, a classification system had to be derived for this procedure to be ap-

plied. To construct such a classifier, an assumption was made that if two graphs were

generated by the same model, they would exhibit similar properties and thus, when

their centrality measures were compared, a high p-value would be obtained. Follow-

ing from this, a good subset of centrality measures should have, similarly, produced

a high p-value when the constituent p-values were combined using Fisher’s method.

If two graphs were produced by the same model, the p-value resulting from Fisher’s

method over each subset of measures was expected, ideally, to be 1. Conversely, if the

graphs were produced by different models, the p-value resulting from Fisher’s method

was expected, ideally, to be 0 for each subset of measures. This reasoning was used to

derive a binary classification system where the observed p-values from this procedure

were taken as an approximation (response) to the expected outcome, which allowed

the performance of each subset of measures to be examined using an ROC curve.

To further quantify the performance of each subset of measures, the area under the

curve (AUC) of each ROC curve was calculated. The AUC measure, while failing to

capture individual trade-off information about a classifier, reduces an ROC curve to a

single value which represents the general performance of the classifier. More formally,

the AUC of a classifier represents the probability that a randomly chosen positive

instance will be given a higher rank than a randomly chosen negative instance [93].

Similarly, due to the ranking system used when constructing an ROC curve, there

exists a close relationship between the AUC measure and the Mann-Whitney U test
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[94, 95]. In the context of this study, this property of AUC translates to the probability

that a graph G, originating from model M , will receive a higher p-value using Fisher’s

method when compared to graphs generated by M than when compared to graphs

which were not generated by M .

Algorithm 8 Meta Analysis

function MetaAnalysis(G, lM , F,N)
for all M ∈ lM do

results[M ]← Combine(G,M,F,N) // See Algorithm 7
if G ∈M then // If G was generated by M

expected[M ]← 1 // The expected p-value
else

expected[M ]← 0
end if

end for
for all s ∈ P≥1 (F ) do

Roc-Curve(expected, results.get(s)) // Compute an ROC curve using
the expected outcome and the observed Fisher’s p-values

end for
end function

6.2 Results

This section presents the results from experiments described in Section 6.1. Finer

grained results, depicting the ROC curves generated by the top ten sets of measures

when each model was used as a target are given in Appendix B. For the remainder

of this chapter, the following abbreviations are used to refer to each of the network

measures:

D – Degree distribution

LCC – Local clustering coefficient/transitivity

B – Betweenness centrality

C – Closeness centrality

PR – PageRank

EC – Eigenvector centrality
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These results were obtained by repeating the process outlined in Algorithm 8 using

a target graph generated by each of the six models, respectively, and aggregating the

results. These aggregated results demonstrated the overall classification power of

each of the centrality measure subsets. Figure 6.1 presents the ROC curve results

for various network sizes while Tables 6.1 – 6.5 outline the AUC measure for each

subset of measures. Two immediate observations were made using these results.

First, the PageRank and betweenness centrality measures, in some combination, had

attained the highest AUC for each network size. At each of the four network sizes, the

PageRank measure was included in each of the top five sets of measures. Furthermore,

PageRank was present in nine of the top ten measure sets for the 100, 250, and

500 vertex networks and eight of the top ten sets when 1000 vertex networks were

examined. Similarly, betweenness was present in at least five of the top ten fitness sets

for each network size. The discriminatory power of the betweenness and PageRank

measures further demonstrated the effectiveness of these measures, as observed in

Sections 5.2.3 and 5.2.5, respectively. The second observation, albeit more expected,

was that the networks were easier to distinguish as the network size increased. Note

that the highest AUC measured on 100 vertex networks was 0.974 – the same AUC

measure on the ninth best subset when 250 vertex networks were considered. Similar

observations regarding the relative differences among performance were made for each

of the network size increases.

6.2.1 Single Measure Sets

Table 6.1 presents the AUC results when the centrality measure were examined inde-

pendently. With all network sizes, the PageRank measure demonstrated the highest

AUC, with the degree and betweenness being only slightly lower, especially when the

larger networks were considered. The degree, betweenness, and PageRank measures

were immediately noted to have significantly higher AUC values than the other mea-

sures. As expected from the results in Sections 5.2.4 and 5.2.6, the closeness and

eigenvector centrality measures demonstrated the lowest AUC values on all network

sizes examined. When 100 and 150 vertex networks were considered, the closeness

centrality was worse than the eigenvector centrality. However, the opposite was true

with 500 and 1000 vertex networks – the eigenvector centrality performed worse than

the closeness centrality. Furthermore, with 1000 vertex networks, the eigenvector

centrality obtained an AUC of 0.593, only slightly (0.093) better than a completely
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Figure 6.1: ROC curves depicting the ten measure sets with the highest area under
the curve (AUC) values, shown in the legend, for various network sizes.
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Table 6.1: AUC for 1-Measure ROC Curves on Aggregated Results

(a) 100 Vertex Networks

Measure Set AUC
D 0.953

LCC 0.844
B 0.955
C 0.731

PR 0.974
EC 0.809

(b) 250 Vertex Networks

Measure Set AUC
D 0.968

LCC 0.850
B 0.974
C 0.682

PR 0.990
EC 0.687

(c) 500 Vertex Networks

Measure Set AUC
D 0.987

LCC 0.850
B 0.985
C 0.672

PR 0.994
EC 0.671

(d) 1000 Vertex Networks

Measure Set AUC
D 0.996

LCC 0.850
B 0.997
C 0.629

PR 0.999
EC 0.593

random classifier1. This further demonstrates the ineffectiveness of the eigenvector

centrality when used to compare networks. On all network sizes, the local transitiv-

ity measure demonstrated a moderate AUC value. With each network size examined,

the AUC for the local transitivity was significantly lower AUC than the degree, be-

tweenness, and PageRank measures, but significantly higher than the closeness and

eigenvector centrality measures. Interestingly, the AUC of the local transitivity was

0.850 for each of the 250, 500, and 1000 vertex network experiments, which demon-

strated this measure was quite consistent in terms of its discriminatory power as the

network size increased.

6.2.2 Two Measure Sets

When Table 6.2 was examined, it was observed that combining the betweenness and

PageRank lead to the highest AUC on all network sizes. Note that with 1000 vertex

networks, a tie was observed with the subset which combined the degree distribution

and PageRank measures. The subsets which contained one or more of the degree, be-

tweenness, and PageRank measures were, in general, the best classifiers. The subsets

which contained the local transitivity, especially when combined with the PageRank,

1A random classifier has an equal probability of ranking a positive event as positive or negative,
leading to an AUC of 0.5.
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also had relatively high AUC values. The local transitivity and PageRank set ob-

tained an AUC value at least as great, or greater than, the set containing degree

and betweenness on all network sizes. The lowest AUC values on each network were

observed, as expected, when the closeness and eigenvector centrality measures were

combined. However, with the exception of 1000 vertex networks, the AUC value when

the closeness and eigenvector centralities were combined was higher than when each

was considered individually. Although together they still perform significantly worse

than other measures, it was interesting to note that more information can be gath-

ered by using these measures in combination than either can provide individually –

this observation alone attests to the merit of examining the combinations of different

measures.

6.2.3 Three Measure Sets

Table 6.3 depicts the AUC value results when centrality measures were examined in

subsets of size three. Following previous observations, the subset with the degree,

betweenness, and PageRank measures had the highest AUC for each of the network

sizes considered. While the PageRank measure itself had a higher AUC (see Table

6.1) than the subset containing degree, betweenness, and PageRank, this subset had

a higher AUC than either of the degree or betweenness measures when considered in-

dependently. Again, this demonstrates how more discriminatory information is made

available when more than just a single measure is considered. This observation can

further be explained by Fisher’s method producing ”exaggerated” p-values when the

independent p-values are correlated2 [96]. The subset which attained the lowest AUC

on 100 vertex networks was the set containing betweenness, closeness, and eigenvec-

tor centrality, while the set containing local transitivity, closeness, and eigenvector

centrality obtained the lowest AUC values on each of the remaining network sizes

examined.

6.2.4 Four Measure Sets

The AUC results using subsets containing four measures are presented in Table 6.4.

Counter-intuitively, the highest AUC value for 100 vertex networks was tied between

two subsets of measures, one contained degree, betweenness, PageRank, and closeness

2The independent p-values are considered correlated as each of the degree, betweenness, and
PageRank measures demonstrated high p-values when comparing networks generated by the same
model while networks generated by different models obtained low p-values. Thus, these measure can
be reasonably considered to be correlated.
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Table 6.2: AUC for 2-Measure ROC Curves on Aggregated Results

(a) 100 Vertex Networks

Measure Set AUC
D, LCC 0.920

D, B 0.954
D, C 0.895

D, PR 0.969
D, EC 0.925

LCC, B 0.924
LCC, C 0.877

LCC, PR 0.954
LCC, EC 0.894

B, C 0.899
B, PR 0.973
B, EC 0.890
C, PR 0.905
C, EC 0.832

PR, EC 0.930

(b) 250 Vertex Networks

Measure Set AUC
D, LCC 0.948

D, B 0.970
D, C 0.879

D, PR 0.984
D, EC 0.870

LCC, B 0.954
LCC, C 0.857

LCC, PR 0.978
LCC, EC 0.837

B, C 0.877
B, PR 0.988
B, EC 0.856
C, PR 0.897
C, EC 0.692

PR, EC 0.893

(c) 500 Vertex Networks

Measure Set AUC
D, LCC 0.968

D, B 0.986
D, C 0.885

D, PR 0.994
D, EC 0.906

LCC, B 0.969
LCC, C 0.855

LCC, PR 0.990
LCC, EC 0.865

B, C 0.890
B, PR 0.995
B, EC 0.908
C, PR 0.894
C, EC 0.706

PR, EC 0.914

(d) 1000 Vertex Networks

Measure Set AUC
D, LCC 0.984

D, B 0.997
D, C 0.884

D, PR 0.999
D, EC 0.917

LCC, B 0.985
LCC, C 0.806

LCC, PR 0.997
LCC, EC 0.840

B, C 0.890
B, PR 0.999
B, EC 0.923
C, PR 0.872
C, EC 0.622

PR, EC 0.911
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Table 6.3: AUC for 3-Measure ROC Curves on Aggregated Results

(a) 100 Vertex Networks

Measure Set AUC

D, LCC, B 0.933
D, LCC, C 0.932

D, LCC, PR 0.952
D, LCC, EC 0.918

D, B, C 0.941
D, B, PR 0.968

D, B, EC 0.937
D, C, PR 0.947
D, C, EC 0.922

D, PR, EC 0.953
LCC, B, C 0.930

LCC, B, PR 0.957
LCC, B, EC 0.917
LCC, C, PR 0.940
LCC, C, EC 0.909

LCC, PR, EC 0.942
B, C, PR 0.937
B, C, EC 0.901

B, PR, EC 0.942
C, PR, EC 0.917

(b) 250 Vertex Networks

Measure Set AUC

D, LCC, B 0.959
D, LCC, C 0.933

D, LCC, PR 0.975
D, LCC, EC 0.925

D, B, C 0.945
D, B, PR 0.983

D, B, EC 0.940
D, C, PR 0.958
D, C, EC 0.862

D, PR, EC 0.955
LCC, B, C 0.934

LCC, B, PR 0.979
LCC, B, EC 0.921
LCC, C, PR 0.952
LCC, C, EC 0.834

LCC, PR, EC 0.946
B, C, PR 0.958
B, C, EC 0.845

B, PR, EC 0.956
C, PR, EC 0.868

(c) 500 Vertex Networks

Measure Set AUC

D, LCC, B 0.976
D, LCC, C 0.953

D, LCC, PR 0.989
D, LCC, EC 0.944

D, B, C 0.967
D, B, PR 0.994

D, B, EC 0.961
D, C, PR 0.969
D, C, EC 0.862

D, PR, EC 0.963
LCC, B, C 0.955

LCC, B, PR 0.990
LCC, B, EC 0.947
LCC, C, PR 0.964
LCC, C, EC 0.846

LCC, PR, EC 0.957
B, C, PR 0.967
B, C, EC 0.869

B, PR, EC 0.965
C, PR, EC 0.852

(d) 1000 Vertex Networks

Measure Set AUC

D, LCC, B 0.990
D, LCC, C 0.960

D, LCC, PR 0.997
D, LCC, EC 0.947

D, B, C 0.975
D, B, PR 0.999

D, B, EC 0.982
D, C, PR 0.972
D, C, EC 0.837

D, PR, EC 0.979
LCC, B, C 0.963

LCC, B, PR 0.997
LCC, B, EC 0.946
LCC, C, PR 0.958
LCC, C, EC 0.786

LCC, PR, EC 0.945
B, C, PR 0.975
B, C, EC 0.852

B, PR, EC 0.980
C, PR, EC 0.824
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while the other consisted of degree, betweenness, PageRank, and eigenvector central-

ity. For all other network sizes, the subset which obtained the highest AUC consisted

of, expectedly, the degree, betweenness, PageRank, and local transitivity measures.

Although with 100 vertex networks, the difference was extremely small (the subset

containing local transitivity had an AUC of only 0.002 lower than those with closeness

and eigenvector centrality), it was still unexpected for the subsets with closeness and

eigenvector centrality to have obtained higher AUC values. It was also noted that the

subsets which contained four measures all had AUC values above 0.9. The AUC of

the best subsets, however, were lower when four measures were combined than when

only three measures were combined.

6.2.5 Five Measure Sets and All Measures

For convenience, the subsets containing five measures, as well as the combination

containing all six measures, are presented together in Table 6.5. When five measures

were combined, the subset which obtained the highest AUC for each network size

was not consistent. When 100 vertex networks were considered, the subset which

contained the (abbreviations used for brevity) D, LCC, B, C, and PR measures along

with the subset which consisted of the D, B, C, PR, and EC measures obtained the

highest AUC value. Interestingly, when the sixth measure was added to the above two

subsets, the AUC did not decrease. When 250 vertex networks were considered, the

highest AUC was observed when the D, LCC, B, C, and PR measures were combined,

while the subset containing D, LCC, B, PR, and EC obtained the highest AUC on

500 vertex networks. Finally, with 1000 vertex networks, there was a tie for the

highest AUC between the subset containing the D, LCC, B, C, and PR measures

and the subset containing the D, LCC, B, PR, and EC measures. Note that with all

network sizes, the subset of measures which obtained the highest AUC values always

contained the degree, betweenness, and PageRank measures. In contrast, the lowest

AUC was always obtained by the subset which consisted of the D, LCC, B, C, and

EC measures.

6.2.6 Summary

In summary, when single measures are considered, the PageRank measure has the

most discriminatory power among the models examined. While PageRank being

the most explanatory was somewhat unintuitive, an explanation for this behavior is

due to the correlation between PageRank and degree in undirected networks. The
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Table 6.4: AUC for 4-Measure ROC Curves on Aggregated Results

(a) 100 Vertex Networks

Measure Set AUC
D, LCC, B, C 0.943

D, LCC, B, PR 0.954
D, LCC, B, EC 0.928
D, LCC, C, PR 0.951
D, LCC, C, EC 0.936

D, LCC, PR, EC 0.945
D, B, C, PR 0.956

D, B, C, EC 0.940
D, B, PR, EC 0.956

D, C, PR, EC 0.950
LCC, B, C, PR 0.949
LCC, B, C, EC 0.930

LCC, B, PR, EC 0.947
LCC, C, PR, EC 0.941

B, C, PR, EC 0.936

(b) 250 Vertex Networks

Measure Set AUC
D, LCC, B, C 0.955

D, LCC, B, PR 0.976
D, LCC, B, EC 0.949
D, LCC, C, PR 0.966
D, LCC, C, EC 0.927

D, LCC, PR, EC 0.962
D, B, C, PR 0.972
D, B, C, EC 0.937

D, B, PR, EC 0.969
D, C, PR, EC 0.948

LCC, B, C, PR 0.968
LCC, B, C, EC 0.921

LCC, B, PR, EC 0.964
LCC, C, PR, EC 0.940

B, C, PR, EC 0.949

(c) 500 Vertex Networks

Measure Set AUC
D, LCC, B, C 0.970

D, LCC, B, PR 0.989
D, LCC, B, EC 0.973
D, LCC, C, PR 0.979
D, LCC, C, EC 0.932

D, LCC, PR, EC 0.982
D, B, C, PR 0.983
D, B, C, EC 0.945

D, B, PR, EC 0.986
D, C, PR, EC 0.943

LCC, B, C, PR 0.981
LCC, B, C, EC 0.934

LCC, B, PR, EC 0.983
LCC, C, PR, EC 0.938

B, C, PR, EC 0.945

(d) 1000 Vertex Networks

Measure Set AUC
D, LCC, B, C 0.984

D, LCC, B, PR 0.997
D, LCC, B, EC 0.983
D, LCC, C, PR 0.991
D, LCC, C, EC 0.926

D, LCC, PR, EC 0.989
D, B, C, PR 0.994
D, B, C, EC 0.955

D, B, PR, EC 0.995
D, C, PR, EC 0.954

LCC, B, C, PR 0.992
LCC, B, C, EC 0.929

LCC, B, PR, EC 0.991
LCC, C, PR, EC 0.923

B, C, PR, EC 0.955
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Table 6.5: AUC for 5- and 6-Measure ROC Curves on Aggregated Results

(a) 100 Vertex Networks

Measure Set AUC
D, LCC, B, C, PR 0.954

D, LCC, B, C, EC 0.943
D, LCC, B, PR, EC 0.949
D, LCC, C, PR, EC 0.952
D, B, C, PR, EC 0.954
LCC, B, C, PR, EC 0.948

D, LCC, B, C, PR, EC 0.954

(b) 250 Vertex Networks

Measure Set AUC
D, LCC, B, C, PR 0.970

D, LCC, B, C, EC 0.947
D, LCC, B, PR, EC 0.967
D, LCC, C, PR, EC 0.958

D, B, C, PR, EC 0.964
LCC, B, C, PR, EC 0.959

D, LCC, B, C, PR, EC 0.963

(c) 500 Vertex Networks

Measure Set AUC
D, LCC, B, C, PR 0.982
D, LCC, B, C, EC 0.967

D, LCC, B, PR, EC 0.985
D, LCC, C, PR, EC 0.974

D, B, C, PR, EC 0.978
LCC, B, C, PR, EC 0.975

D, LCC, B, C, PR, EC 0.978

(d) 1000 Vertex Networks

Measure Set AUC
D, LCC, B, C, PR 0.993

D, LCC, B, C, EC 0.970
D, LCC, B, PR, EC 0.993

D, LCC, C, PR, EC 0.979
D, B, C, PR, EC 0.987

LCC, B, C, PR, EC 0.979
D, LCC, B, C, PR, EC 0.983

damping factor causes the correlation between degree and PageRank to exhibit some

variability, the amount of which depends upon the degree of the vertex [71]. Thus, the

PageRank measure amplifies the differences among the degrees of a network, causing

smaller differences in degree to be perceived as larger differences in PageRank. It

is interesting to note that the AUC values obtained when using PageRank alone

were higher than when subsets of measures were considered. This behavior can be

attributed to the way in which Fisher’s method combines p-values. Since PageRank

was the best single measure, it would have, in general, produced the highest p-value

when two networks from the same model were compared. Thus when lower p-values,

resulting from comparisons using other measures, were combined with the p-values for

PageRank, the combined p-value from Fisher’s method would be lower. This lower

combined p-value would be propagated to the meta-analysis, causing an apparent

decrease in the discriminatory power of the subset of measures.

When two measures were combined, it was noted that combining the betweenness

and PageRank measures would insignificantly change the AUC value relative to only

using the PageRank measure, namely the AUC was different by at most 0.002. When

three measures were considered, the subset which contained the degree, between-
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ness, and PageRank measures obtained the highest AUC. As the number of measures

combined was increased beyond three, the subsets which attained the highest AUC

became less intuitive. However, it was noted that the subsets which obtained the

highest AUC always contained the degree, betweenness, and PageRank measures.

Based on the previous observations, these three measures were used as measures of

evolutionary fitness within the GP system to construct graph models. The subse-

quent chapters detail how these measures were incorporated and demonstrates their

merit as fitness measures.



Chapter 7

Evolving Graph Models for

Complex Networks

The GP system used to infer graph models for complex networks was developed

using LinkableGP1 [38, 37]. The style of GP system used in this work differs from

the tree-based GP system used in previous work [29, 31] although the LinkableGP

system has been applied to the problem of inferring graph models [38]. Justification

for the choice of GP system is provided in the following section. Parameters used

by the GP system are presented with the experimental results in Chapters 8 and 9,

respectively. During the evolutionary process, the SwiftGraph1 library was used to

compute network measures. Target networks were generated using the igraph library

for network analysis [97].

7.1 LinkableGP

The LinkableGP system used in this work is based on a hybrid of two existing GP

paradigms, object-oriented GP to construct class-based programs and linear GP to

evolve imperative style methods (see Chapter 4 for an overview of these terms).

The LinkableGP system also proposed a mechanism whereby the user can supply

a partially-implemented class, i.e., an abstract class, to provide the implementa-

tion of methods where the desired functionality is known a priori. This partially-

implemented class allows for known implementation details to be included and el-

egantly combined with the unknown methods which are to be evolved by the GP

system. As such, the evolved program is a fully functional object which includes the

1LinkableGP and SwiftGraph were co-developed by the author as part of this thesis.
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a priori specified implementations.

Unlike a traditional GP tree structure, which represents a single function, individ-

uals in the LinkableGP population represent types or classes, which are implementa-

tions of a parent type. This parent type is provided by the user via an abstract class.

Due to its influence from both object-oriented and linear methodologies, individuals

are constructed using a collection of linear chromosomes. Each of these chromosomes

corresponds to a single abstract method defined in the parent type and can define its

own collection of language elements. Individual chromosomes are represented in a lin-

ear fashion by an array of integers and are used to construct a phenotype representing

the physical implementation of a method. The construction process is an iterative one

whereby each successive integer in the chromosome is used to select a suitable lan-

guage element. It should be noted that all operations in the LinkableGP system are

strongly typed [78]. Selection operations are performed by enumerating the suitable

language elements and using the respective chromosome value in a modulo fashion

as follows. Assume the chromosome value being used for selection is c and there are

m language elements which are suitable for selection, i.e., all their arguments can be

satisfied with the available terminals. The m suitable language elements are enumer-

ated and assigned identifiers {0, 1, 2, ...,m − 1}. The modulo selection proceeds by

returning the language element with identifier c mod m.

To construct a method, the first value from a chromosome is used to select a

function from the language such that all of its arguments can be satisfied. Successive

chromosome values are then used to select correctly-typed terminals to satisfy each

argument of the function. If the function selected for construction has a non-void

return type, the next chromosome value is used to select either a mutable variable

or a new variable to store the result of the function, which is then added to the set

of available terminals. Terminals in the LinkableGP system take the form of either

variables or constants. The initial set of terminals contains the user-specified con-

stant generators and any arguments to the method being constructed. The methods

arguments are immediately made available as (immutable) variables. New variables

can be created at any time during method construction. This means that the set of

terminals can drastically change during method construction. Note that while nested

functions cannot be explicitly constructed, their behavior can be replicated by stor-

ing the result of a function execution in a variable and then using this variable as

an argument for another function. The above construction process continues until all

chromosome values have been exhausted. In the event that all chromosome values

have been exhausted and the program being constructed is not complete, the chromo-
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some is extended to facilitate the completion of the method. That is, the construction

process guarantees a valid, type-safe program will be constructed, provided there are

sufficient language elements to do so. Finally, if the method being constructed has a

non-void return type, a single chromosome value is retained to select the return value

of the method. If there exists variables of the correct type, a selection operation is

performed to select the return type from such variables. If no variable of the correct

type is present, an additional function with the correct return type is constructed and

used as the return value of the method.

While graph models for complex networks have been automatically inferred us-

ing both tree-based [29, 30, 31] and LinkableGP [38] approaches, the motivations for

selecting the LinkableGP system were twofold. Firstly, due to the object-oriented

nature of LinkableGP, distinct areas of the evolved program can be logically sepa-

rated into methods which are simultaneously evolved. Each of these methods can

be provided with its own language elements similar to the concept of automatically

defined functions (ADFs) [33], thus eliminating the need for type-manipulations to

control the program flow. Furthermore, each method is only provided language ele-

ments related to its intended functionality, and so the search space is not muddled by

language elements which are irrelevant to the current context. The second motiva-

tion was provided by previous work (co-authored as part of this thesis) [38] whereby

a generalized graph model was proposed and demonstrated to be promising for the

evolution of graph models for complex networks.

The evolutionary capabilities of the LinkableGP system are provided by the use of

a typical, generational genetic algorithm which performs crossover, mutation, elitism,

and selection operations. However, the crossover and mutation operations were modi-

fied to work with the DNA structure. A proportion of the best performing individuals

from the previous generation are directly copied to the new population, via elitism,

while the remainder of the new population results from the offspring of genetic oper-

ations.

7.1.1 Genetic Operators

Crossover in LinkableGP, visualized in Figure 7.1, is a two phased operation. The

mating phase selects two parents using any standard selection operator (tournament

selection was used in this work) and constructs a random bit-mask to determine the

chromosomes which are to be initially inherited from each parent. Each bit in the

randomly generated bit-mask acts a parent discriminator, i.e., the chromosome at
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index i is selected from parent 1 or parent 2 based upon whether the bit at index i is

a 0 or 1. The mating phase is depicted in Figure 7.1a. Although this phase provides

a functional offspring, only the inheritance portion of crossover is accomplished. The

recombination occurs in the second phase.

Following the mating phase, mixing occurs on each chromosome of the child with

probability ρ. During the mixing phase, a chromosome in which the mixing occurs

is replaced by the offspring resulting from a one-point crossover operation between

the corresponding parent chromosomes. First, a random cut-point is selected. The

mixing phase then proceeds in one of two ways, with equal probability: 1) the genetic

material up to the cut-point is taken from parent 1 while the genetic material after

the cut-point is taken from parent 2, or, 2) the genetic material up to the cut-point

is taken from parent 2 while the genetic material after the cut-point is taken from

parent 1. The mixing phase is depicted in Figure 7.1b.

When mutation was applied to an individual, a mutation operation was performed

to only one of the individuals chromosomes, selected at random. Mutation was applied

according to the mutation rate in one of two places throughout the evolutionary

process. Each individual selected via the selection process, for which crossover is not

applied, had a chance of being mutated before it became a part of the new population.

Similarly, the mutation operator could be invoked on the offspring of the crossover

operation before they were placed in the new population. The mutation operator

used by the LinkableGP system had two possible operations, resize or random reset,

which could be performed when mutation was invoked. Each mutation operation had

an equal probability of being selected. The resize mutation allowed the chromosome

length to be altered, by either increasing or shrinking the length of the chromosome.

The random reset mutation would select a random location within the chromosome,

and regenerate the value at this location.

7.2 Representation

LinkableGP is a linear, object-oriented GP system which makes use of a user-supplied

abstract class to guide the search process. As such, an abstract class representing a

generalized graph model was provided to define the structure of the evolved mod-

els. Each abstract method within the supplied abstract class was evolved by the

GP system, ultimately resulting in a fully-functional, standalone graph model ob-

ject. To guide the evolution of graph models, LinkableGP was provided with the

generalized graph model shown in Algorithm 9. This generalized algorithm was con-
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Parent 1 Parent 2 Child (Intermediate)

9 6 2 3 5

2 6 6 1 4

3 8 9 2 8

4 7 5 1

7 7 9 3 4 8

3 2 6 51

0

1

Mask

3 8 9 2 8

3 2 6 5

4 7 5 1

(a) Phase 1: Mating. A mask value of 0 denotes the corresponding chromosome is inherited
from parent 1 while a mask value of 1 denotes the chromosome is inherited from parent 2.

Parent 1 Parent 2 Child (Final)

9 6 2 3 5

2 6 6 1 4

3 8 9 2 8

4 7 5 1

7 7 9 3 4 8

3 2 6 5

3 8 9 2 8

2 6 5 1

0.31

0.49

0.60

R1

0.26

0.72

N/A

R2

9 6 2 53

2

N/A

Cut

(b) Phase 2: Mixing, with ρ = 0.5. R1 < ρ denotes the mixing phase occurs. R2 < 0.5
denotes the first portion of the genetic material is taken from parent 1, while R2 ≥ 0.5
denotes the first portion of genetic material is taken from parent 2.

Figure 7.1: Visualization of the two-phase crossover operation in the LinkableGP
system applied to a three-chromosome individual. Genetic material is patterned ac-
cording to the parent to visually aid in following where the genetic material in the
offspring is inherited.

structed to be a more robust version of the initial generalized algorithm proposed

by Medland et al. [38]. Algorithm 9 depicts three abstract methods, namely Se-

lectVertices, CreateEdges, and SecondaryActions, each of which were evolved using

GP. The SelectVertices method was responsible for selecting potential target vertices

to which the newly created vertex could form an edge. The methods CreateEdges and

SecondaryActions were invoked for each vertex selected by SelectVertices. The Cre-

ateEdges method was responsible for creating edges to be added to the graph while

SecondaryActions was responsible for adding additional vertices to the collection, S,

and provided the means to generate recursively defined construction mechanisms.

The functions and terminals which were made available to each of these methods are

presented in Section 7.3.

7.3 Genetic Programming Language

Each of the three methods to be evolved by the GP system were assigned their own

set of language elements. The functions and terminals provided to each of these

abstract methods are described in detail below. All operations were strongly typed

and, contrary to most linear GP systems, no grammar is required.
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Algorithm 9 Generalized Graph Model

function Generate(t)
g ← EmptyGraph()
for i from 1 to t do

v ← NewVertex() // Create a new vertex
S ← SelectVertices(g)
AddEdges(g, v, S) // Execute the AddEdges subroutine, see below
g.AddVertex(v) // Added after processing to prevent self edges

end for
end function

function AddEdges(g, newV ertex, S)
while S is not empty do

v ← S.GetNext() // Get and remove the next element from the collec-
tion

E ← CreateEdges(newV ertex, v)
SecondaryActions(v, S)
for all e ∈ E do

g.AddEdge(e)
end for

end while
end function

7.3.1 SelectVertices Method

This section describes the language elements which were made available to the Se-

lectVertices method. The current graph being constructed was provided as an argu-

ment to this method and thus was available as a terminal to the functions in this

language. For each of the methods listed below, a specialized, taboo collection was

returned in either stack or queue form. That is, each method below had two formula-

tions – one which returned a stack and one which returned a queue. The collections

are referred to as taboo collections because each vertex added to the collection was

also added to a taboo list, preventing it from being added to the collection a second

time.

� TabooVertexCollection GetAll{Stack, Queue}(g) – Adds all vertices from

g to a taboo stack or queue.

� TabooVertexCollection GetRandom{Stack, Queue}(g) – Adds a ran-

dom vertex from g to a taboo stack or queue.

� TabooVertexCollection GetRandom{Stack, Queue}(g, n) – Adds n ran-
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dom vertices from g to a taboo stack or queue.

� TabooVertexCollection GetRoulette{Stack, Queue}(g, f) – Adds a ver-

tex from g, selected via roulette selection, to a taboo stack or queue where a

vertex evaluator function, f, is used to assign the probability of selection for

each vertex.

� TabooVertexCollection GetRoulette{Stack, Queue}(g, f, n) – Adds n

vertices from g, selected via roulette selection, to a taboo stack or queue where

a vertex evaluator function, f, is used to assign the probability of selection for

each vertex.

The following vertex evaluator functions were available to the selection process.

Each method below returns a function of type Vertex → Double, denoted FV→D, for

use in the selection functions above. That is, the method returns a function which

takes a vertex and returns a real value.

� FV→D GetDegree( ) – Returns a function which computes the degree of the

vertex.

� FV→D GetLocalTransitivity( ) – Returns a function which computes the

local transitivity ratio of the vertex.

� FV→D GetAge( ) – Returns a function which computes the age of the vertex.

The age is defined as the number of iterations which have passed since the

vertex was added to the graph.

The evaluator functions allow for much more robust selection procedures to be carried

out. For example, the use of GetRouletteQueue(g, f), where f is the GetDegree( )

function, would lead to a preferential attachment mechanism similar to the one seen

in the Barabasi-Albert model [35]. The following arithmetic operations, acting upon

evaluator functions, were also provided. Each operation below would take one or

more functions and return another function.

� FV→D Add(f1, f2) – Returns a function which computes the sum of f1 and f2

evaluated on a vertex, i.e., f1(v) + f2(v).

� FV→D Add(f, d) – Returns a function which computes 1 evaluated on a vertex

and adds a floating-point value d, i.e., f(v) + d.
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� FV→D Mult(f1, f2) – Returns a function which computes the product of f1

and f2 evaluated on a vertex, i.e., f1(v)× f2(v).

� FV→D Mult(f, d) – Returns a function which computes f evaluated on a vertex

and multiplies by the floating-point value d, i.e., f(v)× d.

� FV→D Pow(f, d) – Returns a function which computes f evaluated on a vertex

to the power of a floating-point value d, i.e., f(v)d.

� FV→D InversePow(f, d) – Returns a function which computes f evaluated on

a vertex to the inverse power of a floating-point value d, i.e., f(v)−d.

In addition to the above functions, two constant generators, used to produce

terminal values, were provided – one generated integers between 1 and 10 while the

other produced floating point values between 0.0 and 1.0, both inclusive.

7.3.2 CreateEdges Method

This section describes the language elements made available in the CreateEdges

method. The CreateEdges method had two parameters made available as termi-

nals, namely the newly constructed vertex and the vertex from the taboo collection

currently being considered for connection. Each of the functions below returned a

list of edges, which were added to the graph after the secondary selection took place.

Edges were not created immediately to prevent interference with the secondary vertex

selection.

� List<Edge>AddEdge(v1, v2) – Return a list with a single edge between v1

and v2.

� List<Edge>EmptyEdge( ) – A special function to signify that no edge was to

be created.

� List<Edge>AddEdgeWithProbability(v1, v2, p) – With probability p, re-

turn a list with a single edge between v1 and v2. Otherwise, an empty list is

returned.

� List<Edge>AddTriangle(v1, v2) – Returns a list with two edges forming a

triangle, if possible, which includes both v1 and v2. The first edge in the list

is between v1 and v2. If v2 has any neighbors, the second edge is between v1

and a randomly selected neighbor of v2. If v2 has no neighbors, a randomly
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selected neighbor of v1 is chosen, if any, and an edge is created between this

neighbor and v2. In the event that neither v1 nor v2 have neighbors, only the

edge between v1 and v2 is returned.

� List<Edge>AddTriangleWithProbability(v1, v2, p) – Returns a list with

an edge between v1 and v2. With probability p, attempts to create a second

edge, forming a triangle, in the same fashion as AddTriangle.

� List<Edge>Duplicate(v1, v2, p) – Returns a list of edges between v1 and

each neighbor of v2. With probability p, an edge is also created between v1 and

v2.

A random number generator which produced floating-point values between 0.0 and

1.0, inclusive, was also provided to generate the probability parameters, i.e., terminals,

used in the various functions.

7.3.3 SecondaryActions Method

The SecondaryActions method was responsible for performing actions as a direct

result of adding a vertex and/or edge(s). This method had two arguments available as

terminals, namely the current vertex being considered for connection and the (taboo)

collection of vertices for future consideration. For the purpose of this work, this

procedure was used only to add additional vertices to the taboo collection using the

function below. However, for more difficult inference problems, such as with weighted

networks, the SecondaryActions procedure could be used to alter connection weights

of existing edges when a new edge is added, analogous to diverting some traffic to the

new edge.

� void AddNeighbours(c, n, v) – Adds n randomly selected neighbors of

vertex v to the taboo collection c. This method had no return type.

To provide the number of neighbors, the following random integer providers were

available alongside two constant generators used to produce terminal values – one

which generated integers between 0 and 10 while the other produced floating point

values, used as probabilities, between 0.0 and 1.0, both inclusive.

� Integer GetRandomValue(a, b) – Returns a uniformly random integer be-

tween a and b, inclusive, where a and b are integer arguments.

� Integer GetGeometricValue(p) – Returns an integer generated according

to a geometric distribution with probability p.
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Figure 7.2: Plot of the KS test D statistic vs. the resulting p-value for various sample
sizes, assuming n1 = n2.

7.4 Fitness Evaluation

Figure 7.2 depicts the p-value of a KS test as a function of the D statistic for various

sample sizes (assuming n1 = n2). From this plot, it was clear that using the p-value

as a fitness measure can be problematic. While the p-value gives a stronger indication

of (dis)similarity, the range of possible values is limited. When such p-values are used

as during fitness evaluation, the resulting landscape has very little gradient to guide

the search which could cause poor performance. As Figure 7.2 demonstrates, the

p-value approaches 0 quite rapidly relative to the D statistic; even on the smallest,

100 vertex networks, the p-value becomes negligible when the D statistic is roughly

0.3 (i.e. a 30% difference between the empirical cumulative distribution functions

(ECDFs)). In terms of evolution, this means that a difference between the ECDF of

a target network and an evolved network of 30% would be nearly indistinguishable

from a difference of 100%.

Using the results from Chapters 5 and 6 alongside the above results, the following

three fitness measures were used during the evolutionary process.

f1 average KS test statistic comparing the degree distributions of the target graph
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and each of the generated graphs.

f2 average KS test statistic comparing the betweenness centrality distributions of

the target graph and each of the generated graphs.

f3 average KS test statistic comparing the PageRank of the target graph and each

of the generated graphs.



Chapter 8

Evolving Known Graph Models

In general, when inferring a graph model for a complex network, the graph model

used to construct the network is not known – if the model was known, why would one

attempt to infer it? The answer is to allow the results of the inference methodology

to easily validated against a known model. By evolving a graph model for a known

algorithm, the evolved model can be easily validated against both the network used

as a target, referred to as the target graph, as well as other networks generated by

the mode. This allows for much stronger conclusions to be made regarding the evo-

lutionary capabilities of the system. As such, this chapter discusses the evolution of

four known graph models.

Four of the previously examined graph models were used to generate target graphs

for the evolutionary process. The models and reasoning for selection is as follows.

The growing random model (GR) was selected due to its trivial construction process,

i.e., it was selected as a “toy” problem because of its simplicity. The Barabasi-Albert

(BA) model was selected as it exhibits a non-trivial method of vertex selection, namely

the preferential attachment mechanism. In contrast to the BA and GR models, the

Erdos-Reyni (ER) model does not create a static number of edges each iteration.

That is, the number of edges created each iteration is dependent upon the (constant)

probability of connection between vertices. This probability constant depicts another

motivation for including the ER model. Accurately evolving the ER model would

require the evolution of a floating-point constant, a known difficulty for traditional

GP systems [32] which has been explicitly addressed by the GP system used in this

work. Finally, the Forest-Fire model was selected for evolution as it exhibits a much

more complex construction mechanism than the other three models. To correctly

model the “burning” phenomena of the FF model, an evolved model would require

the use of the SecondaryActions method. Furthermore, the FF model is known to

90
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Table 8.1: GP Parameters.

Parameter Value
Runs 30
Population Size 50
Generations 50
Crossover Rate 80%
Mutation Rate 20%
Elitism 2 Individuals
Selection Tournament, k=3
Samples for Evaluation 1

Initial Chromosome Length
SelectVertices – 1 to 15

CreateEdges – 1 to 5
SecondaryActions – 1 to 15

exhibit community structure [36].

For each of the above models, a target graph was generated with 100, 250, and 500

vertices, producing twelve target graphs. The parameters used to generate the target

networks were the same as used in Chapter 5. For each target graph, the GP system

was run 30 times to produce a set of candidate models. The empirically-determined

parameters used during the GP evolution process are given in Table 8.1. Following

recent work involving the automatic inference of a graph model for the BA model

[38], the highest ranked model from the set of candidate models, selected using sum

of ranks, was taken as the final model. Further post-validation was then performed

to evaluate the performance of the final model. In all cases where KS test results are

presented, bold entries denote a D statistic below the corresponding critical threshold

given in Table 5.1, i.e., the KS test determined the distributions were insignificantly

different. For the interested reader, Appendix C provides more detailed results from

the GP system in the form of convergence plots and the raw GP output for 250

vertex experiments. The remainder of this chapter outlines the results of the above

experiments.

8.1 Evolving the Growing Random Model

A target graph was generated by the growing random model with each of 100, 250,

and 500 vertices. Table 8.2 presents a summary of the best evolved models from each

of the 30 runs. When the evolved solution fitnesses, demonstrated in Table 8.2, were

compared to the expected average D statistics, shown in Tables 5.2, 5.4, and 5.6,

respectively, the evolved models clearly depicted that the GR model was consistently
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Table 8.2: Summary of all 30 models evolved against a Growing Random graph.

Target Size Measure Min µ Max σ

100
Degree 0.000 0.012 0.030 0.005
Betweenness 0.020 0.033 0.040 0.005
PageRank 0.040 0.054 0.070 0.006

250
Degree 0.004 0.017 0.156 0.027
Betweenness 0.012 0.019 0.040 0.005
PageRank 0.032 0.042 0.168 0.024

500
Degree 0.004 0.016 0.114 0.025
Betweenness 0.010 0.026 0.292 0.052
PageRank 0.020 0.037 0.166 0.031

replicated with a high degree of accuracy. The best evolved models for each network

size are presented in Algorithms 10 to 12, respectively. Due to the simplicity of the

GR model, it was trivial to see that the evolved model for all 3 network sizes exhibited

identical behavior to that of the GR model. However, there were slight variations on

the construction process for each network size. Nonetheless, the evolved models each

selected a single vertex at random and connected to this vertex – exactly as the GR

model is defined.

The evolved GR100 model, shown in Algorithm 10, randomly selected a single

vertex using a stack and constructed an edge from the selected vertex to the new

vertex, which due to the lack of directionality in undirected networks, made no dif-

ference whatsoever in terms of the network structure. Table 8.3 presents the post

analysis statistics when 30 networks generated by the GR100 model were compared

to 30 networks generated by the GR model, n = 100. Post-analysis results further

demonstrated the similarity of the evolved and GR models. For all centrality mea-

sures examined, the average KS statistic was well below the critical threshold of

0.19233. Furthermore, the maximum observed D statistic for all measures was also

below the critical threshold. Note that while the average D statistic when compar-

ing the evolved and GR models was significantly higher than that of the degree and

betweenness measures, the observed average D statistic (0.103) was in line with the

expected value of 0.105, as shown in Table 5.6a. Another notable difference between

the evolved model and the true model was the largest observed average geodesic path

length. The largest path of the evolved model was significantly higher than that of

the true model. However, a network with such a high average geodesic path length

is clearly anomalous as this value is nearly 3 standard deviations from the mean.

To demonstrate the visual similarity of the evolved and target networks, Figure 8.1
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Table 8.3: Comparison of 100 vertex graphs generated by the GR100 model and the
Growing Random model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

GR100

Edges 99 99 99 0
AGP 5.666 6.569 7.939 0.463
CC 0 0 0 0

Growing Random
Edges 99 99 99 0
AGP 5.703 6.454 7.326 0.426
CC 0 0 0 0

Average D Statistic
KS Deg 0.010 0.004 0.080 0.017
KS Bet 0.030 0.058 0.090 0.016
KS PR 0.060 0.103 0.170 0.031

depicts a network generated by the evolved model alongside the target network.

Algorithm 10 Simplified GR100 Model

function SelectVertices(g)
S ← GetRandomStack(g)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdge(v, newV ertex)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

The evolved GR250 model, shown in Algorithm 11, used a stack to select a random

vertex and formed an edge from the new vertex to the selected vertex. The post anal-

ysis results comparing networks generated by the GR250 and GR models, presented

in Table 8.4, demonstrated the basic structural properties were insignificantly differ-

ent. While the average KS statistic for each centrality measure was well below the

critical threshold of 0.12164, the maximum observed statistic for the PageRank was

above this critical threshold. However, obtaining a D statistic for PageRank which

was higher than the threshold would be somewhat rare as the critical threshold was

roughly 2.5 standard deviations above the mean D statistic observed for PageRank.

A network generated by the evolved model alongside the target, shown in Figure 8.2,

provides a visual reinforcement of the similarity already noted analytically.
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(a) GR100 (b) Growing Random target, n = 100

Figure 8.1: Network generated by the GR100 model and the Growing Random target
network, n = 100.

Algorithm 11 Simplified GR250 Model

function SelectVertices(g)
S ← GetRandomStack(g)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdge(newV ertex, v)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

Table 8.4: Comparison of 250 vertex graphs generated by the GR250 model and the
Growing Random model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

GR250

Edges 249 249 249 0
AGP 7.418 8.422 10.064 0.541
CC 0 0 0 0

Growing Random
Edges 249 249 249 0
AGP 7.353 8.233 10.103 0.702
CC 0 0 0 0

Average D Statistic
KS Deg 0.012 0.027 0.064 0.011
KS Bet 0.020 0.041 0.064 0.011
KS PR 0.036 0.069 0.124 0.022
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(a) GR250 (b) Growing Random target, n = 250

Figure 8.2: Network generated by the GR250 model and the Growing Random target
network, n = 250.

Finally, the evolved GR500 model, shown in Algorithm 12, made use of a queue

structure which explicitly requested for 1 random vertex which was used as a target

for an edge from the newly created vertex. Note that the GR500 model actually

evolved the constant 1 to use when requesting vertices rather than using the implicit

single vertex selector. Table 8.5 presents the post-analysis results of this experiment.

Networks generated by the GR500 model were, on average, insignificantly different that

those produced by the Growing Random model when the degree, betweenness, and

PageRank measures were compared. In a similar fashion to that of the GR250 model,

there were instances of the GR500 model which would be considered significantly

different with respect to the PageRank when compared to true Growing Random

networks. Figure 8.3 depicts a network generated by the GR500 model alongside the

target network.

Algorithm 12 Simplified GR500 Model

function SelectVertices(g)
S ← GetRandomQueue(g, 1)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdge(newV ertex, v)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function
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Table 8.5: Comparison of 500 vertex graphs generated by the GR500 model and the
Growing Random model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

GR500

Edges 499 499 499 0
AGP 8.831 9.816 11.020 0.513
CC 0 0 0 0

Growing Random
Edges 499 499 499 0
AGP 8.572 9.731 10.891 0.549
CC 0 0 0 0

Average D Statistic
KS Deg 0.008 0.021 0.052 0.011
KS Bet 0.016 0.030 0.054 0.010
KS PR 0.030 0.051 0.094 0.016

(a) GR500 (b) Growing Random target, n = 500

Figure 8.3: Network generated by the GR500 model and the Growing Random target
network, n = 500.
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The results in this section clearly indicated that the GR model was able to be

both consistently and accurately inferred automatically by the GP system, regardless

of the target size. While simplistic in principle, this experiment provided experimen-

tal verification that a correct model could be inferred using the generalized graph

model, GP language, and fitness functions proposed for the experiments in this work.

The following sections depict the evolution of graph models which exhibit non-trivial

construction mechanisms like that of the GR model.

8.2 Evolving the Barabasi-Albert Model

This section describes the experiments performed using graphs generated by the BA

model as the target networks. Experiments were performed using 100, 250, and

500 vertex networks, respectively, as the target for evolution. Table 8.6 gives the

summary of the best evolved models from each of the 30 runs while Algorithms

13 to 15 present the best evolved model from each experiment. Manual inspection

of the evolved models demonstrated that each evolved model made use of a single

vertex selector in conjunction with the GetDegree vertex evaluator function, which

almost perfectly replicated the preferential attachment behavior of the BA model. In

contrast to the results from the GR model, the evolved models using a BA target

were not always fit models. More specifically, the average D statistics from these

experiments indicated that a fit model was not produced during each run for the

250 and 500 vertex networks. While the fitness values (i.e., the maximum observed

values) were always below the critical threshold the 100 vertex experiments, this

was not the case for 250 and 500 vertex experiments. Using a 250 vertex network

as a target, networks produced by evolved model were, on average, insignificantly

different than networks generated by the BA model while this was only the case

with betweenness when 500 networks were considered. Furthermore, the maximum

D statistic observed on both 250 and 500 vertex experiments was significantly above

the critical threshold, indicating that unfit models were produced during evolution.

Nonetheless, the following results indicate that a fit model was produced for each of

the target networks.

The best evolved when a 100 vertex graph generated by the BA model was used

as a target is presented in Algorithm 13. This model exemplified the use of the

GetDegree vertex evaluator function in conjunction with a single vertex, stack-

based, selector and a single edge formed between the new and selected vertices. Table

8.7 shows the results of the post-analysis procedure used to compare networks from
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Table 8.6: Summary of all 30 models evolved against a Barabasi-Albert graph.

Target Size Measure Min µ Max σ

100
Degree 0.010 0.045 0.070 0.018
Betweenness 0.020 0.062 0.110 0.027
PageRank 0.070 0.105 0.180 0.025

250
Degree 0.008 0.037 0.176 0.045
Betweenness 0.012 0.035 0.124 0.032
PageRank 0.060 0.088 0.260 0.051

500
Degree 0.006 0.126 0.660 0.130
Betweenness 0.010 0.085 0.214 0.056
PageRank 0.046 0.171 0.344 0.089

the BA model to networks from the evolved model. The differences between the

evolved model and the BA model were minimal. The mean and minimum observed

average geodesic path lengths were slightly higher for the evolved model than with the

true model, but were within a single standard deviation in both cases. Similarly, the

average D statistic for the PageRank measure was seemingly high, however, this value

was both below the critical threshold and corresponded precisely with the expected

value as seen in Chapter 5. The remaining centrality measures, namely degree and

betweenness, demonstrated average D statistics well within the expected values. By

definition, the transitivity of both the evolved and BA models was always zero. For

a visual comparison, a network generated by the evolved model and the BA model

are presented in Figure 8.4. Both networks depict a strongly connected, central hub

node along with a tree-like, branching structure.

Algorithm 13 Simplified BA100 Model

function SelectVertices(g)
f ← GetDegree( )
S ← GetRouletteStack(g, f)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdge(newV ertex, v)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function
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Table 8.7: Comparison of 100 vertex graphs generated by the BA100 model and the
Barabasi-Albert model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

BA100

Edges 99 99 99 0
AGP 3.947 4.806 5.843 0.481
CC 0 0 0 0

Barabasi-Albert
Edges 99 99 99 0
AGP 3.595 4.481 5.842 0.522
CC 0 0 0 0

Average D Statistic
Degree 0.020 0.053 0.100 0.020
Betweenness 0.030 0.066 0.140 0.024
PageRank 0.090 0.159 0.300 0.043

(a) BA100 (b) Barabasi-Albert target, n = 100

Figure 8.4: Network generated by the BA100 model and the Barabasi-Albert target
network, n = 100.
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Algorithm 14 presents the evolved model when a 250 vertex network generated

by the BA model was used as a target. As expected, the BA250 model made use

of the GetDegree evaluator alongside a single vertex selector and a standard edge

creator. Despite the small algorithmic differences, namely the selection container and

explicit vs. implicit number of nodes to be selected, the BA100 and BA250 models

behaved identically. The post-analysis results comparing the BA250 model to the

true BA model are presented in Table 8.8. As observed with smaller networks, the

average path lengths were slightly higher with the evolved networks than with the BA

networks. Each of the centrality measures were, on average, insignificantly different

between networks generated by the evolved and true models. Furthermore, the D

statistics observed when comparing evolved networks to BA networks closely matched

those expected when comparing networks from the BA model. Figure 8.5 depicts a

network generated by the evolved model alongside the target network.

Algorithm 14 Simplified BA250 Model

function SelectVertices(g)
f ← GetDegree( )
S ← GetRouletteQueue(g, 1, f)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdge(v, newV ertex)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

The best model evolved when a 500 vertex BA network was used as a target is

presented in Algorithm 15. The evolved model, like those evolved for smaller net-

works, GetDegree and single vertex selector to replicate the preferential attachment

mechanism from the BA model. Post-analysis results for the BA500 model are given

in Table 8.9. Due to the functionally identical models, the observations made for the

BA500 model are in line with the observations for smaller networks. Namely, the av-

erage geodesic path length was slightly, and reasonably, higher for the evolved model

and the centrality measures were nearly identical to those observed in Chapter 5 when

networks from the BA model were compared. However, with 500 vertex networks,

the maximum path length for the evolved model was quite a bit higher than observed
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Table 8.8: Comparison of 250 vertex graphs generated by the BA250 model and the
Barabasi-Albert model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

BA250

Edges 249 249 249 0
AGP 4.715 5.558 6.969 0.488
CC 0 0 0 0

Barabasi-Albert
Edges 249 249 249 0
AGP 4.326 5.610 6.627 0.539
CC 0 0 0 0

Average D Statistic
KS Deg 0.008 0.032 0.088 0.016
KS Bet 0.012 0.035 0.088 0.017
KS PR 0.064 0.104 0.172 0.027

(a) BA250 (b) Barabasi-Albert target, n = 250

Figure 8.5: Network generated by the BA250 model and the Barabasi-Albert target
network, n = 250.
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Table 8.9: Comparison of 500 vertex graphs generated by the BA500 model and the
Barabasi-Albert model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

BA500

Edges 499 499 499 0
AGP 5.497 6.353 7.640 0.560
CC 0 0 0 0

Barabasi-Albert
Edges 499 499 499 0
AGP 5.261 6.092 6.864 0.434
CC 0 0 0 0

Average D Statistic
KS Deg 0.010 0.023 0.050 0.011
KS Bet 0.012 0.026 0.050 0.009
KS PR 0.050 0.073 0.114 0.016

with the true model. For a visual comparison, Figure 8.6 presents a network gener-

ated by the BA500 model along with the target network. Visual comparison depicts

an extremely similar structure between the networks.

Algorithm 15 Simplified BA500 Model

function SelectVertices(g)
f ← GetDegree( )
S ← GetRouletteStack(g, f)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdge(v, newV ertex)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

The difference in average geodesic path lengths was noted for both 250 and 500

vertex networks. While individually, these result could most likely be attributed to

statistic chance, combined they seemed to suggest there was a difference between the

evolved models and the true model. This lead to a more detailed manual inspection of

the evolved models which determined an extremely subtle, yet noteworthy difference

between the evolved models and the BA model being uncovered. The difference

was attributed, somewhat surprisingly, to the fact that none of the evolved models

carried the notion of a zero-degree appeal. Intuitively, one would assume that the
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(a) BA500 (b) Barabasi-Albert target, n = 500

Figure 8.6: Network generated by the BA500 model and the Barabasi-Albert target
network, n = 500.

zero-degree appeal would have no effect on undirected networks as the notion of in-

degree would naturally be expected to deteriorate to simply degree. The degree of

a vertex in the BA model will always be non-zero as a vertex which is added to

the graph is immediately connected to another vertex and, thus, always has a non-

zero degree. Believed to be an implementation specific detail, this assumption does

not hold for igraph which uses the notion of in-degree (i.e., a concept of directed

networks) even when constructing undirected networks. While this subtle difference

between the target and evolved models did not cause any significant difference in

network structure or behavior, the observation was noted as it does depict a known

difference in models.

8.3 Evolving the Erdos-Reyni Model

This section describes the automatic inference of the Erdos-Reyni model. This model

is of particular difficulty as correctly modeling the Erdos-Reyni model would require

the evolution of a floating-point constant, a known difficulty for traditional GP sys-

tems [32]. Note that the GP system used in this work directly facilitates the evolution

of floating-point constants, not to be confused with the notion of an ephemeral ran-

dom constant, which is a substantial difference between this study and previous work

on the automatic inference of graph models [29]. A summary of the best evolved mod-

els is given in Table 8.10, which depicts that the ER model was significantly more

difficult to evolve than the previously examined models. When 100 vertex networks

were considered, nearly all the evolved models were insignificantly different with re-

spect to the degree, betweenness, and PageRank measures. Note that the maximal

D statistic observed in the betweenness distribution was significantly different than
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Table 8.10: Summary of all 30 models evolved against an Erdos-Reyni graph.

Target Size Measure Min µ Max σ

100
Degree 0.020 0.089 0.150 0.039
Betweenness 0.060 0.118 0.200 0.040
PageRank 0.050 0.113 0.180 0.036

250
Degree 0.024 0.146 0.332 0.077
Betweenness 0.032 0.132 0.180 0.049
PageRank 0.032 0.144 0.208 0.058

500
Degree 0.100 0.489 0.986 0.191
Betweenness 0.040 0.221 0.560 0.095
PageRank 0.046 0.264 0.438 0.085

that of a true ER network. However, the experiments with larger networks proved

even more difficult, with the average results being slightly above the critical threshold

on 250 vertex networks, and significantly above the critical for 500 vertex networks.

Due to the entirely random behavior of the ER model, the chaotic behavior of the ER

model became much more pronounced with the larger networks, leading to increased

difficulty of replicating the construction mechanism. Furthermore, one would expect

a much higher statistical variation with the larger networks, again providing more

difficulty for the system to model.

Algorithm 16 provides the best model evolved when a 100 vertex ER network

was used as the target graph. Immediately, the striking similarity to the true model

was noted. The evolved model, via the GetAllQueue method, selected all existing

vertices to be considered, then connected to each with a probability of 0.05072. Note

that the only difference between the evolved model and the ER model used to generate

the target was the 0.00072, i.e., 0.072%, difference in the connection probability. This

result demonstrated the ability of the GP system to not only infer the structure of

ER model, but also to infer the probability of connection between vertices with a

high degree of accuracy. The post-validation results, shown in Table 8.11, further

exemplified the functional similarity of the ER100 model and the true ER model.

The average number of edges, average geodesic path length, and clustering coefficient

were all extremely close between the evolved model and the true model. However,

the average number of edges as well as the maximum observed edges was higher for

the evolved model. The increased edges was a direct result of the higher connection

probability. Similarly, the slightly lower average geodesic path length was caused by

the increased number of edges. Each of the centrality measures demonstrated an

average D statistic, when the networks from the evolved model and true model were
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Table 8.11: Comparison of 100 vertex graphs generated by the ER100 model and the
Erdos-Reyni model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

ER100

Edges 214 246.833 280 13.643
AGP 2.855 3.013 3.237 0.084
CC 0.026 0.048 0.070 0.012

Erdos-Reyni
Edges 217 245.867 267 14.920
AGP 2.900 3.033 3.221 0.102
CC 0.024 0.051 0.067 0.010

Average D Statistic
KS Deg 0.030 0.099 0.220 0.041
KS Bet 0.060 0.107 0.160 0.030
KS PR 0.060 0.106 0.140 0.024

compared, which was extremely close to the expected value when comparing networks

from the ER model shown in Chapter 5. To further exemplify the similar structures,

Figure 8.7 depicts a network generated by the ER100 model alongside the Erdos-Reyni

target network with n = 100.

Algorithm 16 Simplified ER100 Model

function SelectVertices(g)
S ← GetAllQueue(g)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdgeWithProbability(v, newV ertex, 0.05072)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

Next, a 250 vertex network produced by the ER model was used as a target for the

GP system. The best inferred model is shown in Algorithm 16. The model inferred

with a 250 vertex network behaves nearly identical to the model inferred with a 100

vertex target. The ER250 model made use of the GetAllStack method, which allowed

every existing vertex to be considered for connection. Connections were formed with

a probability of 0.05173, slightly higher than with the ER100 model. The ER250 is thus

different from the true ER model only by the additional 0.00173, i.e., 0.173%, in the

connection probability between each vertex. However, as Table 8.12 demonstrates, the
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(a) ER100 (b) Erdos-Reyni target, n = 100

Figure 8.7: Network generated by the ER100 model and the Erdos-Reyni target net-
work, n = 100.

Table 8.12: Comparison of 250 vertex graphs generated by the ER250 model and the
Erdos-Reyni model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

ER250

Edges 1561 1607.833 1699 35.639
AGP 2.396 2.440 2.463 0.017
CC 0.046 0.051 0.056 0.003

Erdos-Reyni
Edges 1487 1563.600 1620 37.242
AGP 2.436 2.462 2.504 0.019
CC 0.045 0.050 0.056 0.003

Average D Statistic
KS Deg 0.036 0.081 0.192 0.0370
KS Bet 0.036 0.069 0.116 0.020
KS PR 0.048 0.079 0.124 0.015

evolved model generated networks which functioned extremely similar to their true

counterparts from the ER model. The evolved model would generate, on average,

roughly 44 more edges per network than the true model. This differences in edges

caused the average D statistic for the degree distribution to be slightly higher than

the expected value when networks from the ER were compared, but still well within

the critical region to be considered insignificantly different. Furthermore, the average

geodesic path length was again slightly smaller among networks from the evolved

model due to the increased edge density. Even with these slight differences, the

evolved model was an extremely good fit. For visual comparison, Figure8.8 presents

a network produced by the evolved model alongside the target network. Although,

due to the density of edges, not much useful information can be discerned visually

for these networks, it was still apparent that the networks had a visible structural

similarity.

A final experiment with the Erdos-Reyni model was performed by using a 500
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Algorithm 17 Simplified ER250 Model

function SelectVertices(g)
S ← GetAllStack(g)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdgeWithProbability(v, newV ertex, 0.05173)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

(a) ER250 (b) Erdos-Reyni target, n = 250

Figure 8.8: Network generated by the ER250 model and the Erdos-Reyni target net-
work, n = 250.
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vertex network as the target. The best evolved model, ER500, is presented in Al-

gorithm 18. Again, the evolved model was extremely similar in functionality to the

true model, with the only difference as a result of the connection probability. The

probability of the connection for the evolved 500 vertex model was 0.05350 – even

higher than that produced for the 250 vertex model. This is an effective difference

of 0.00350, or 0.350%, for the connection probability. Although this difference would

appear negligible, with such large networks the effect is much more pronounced. As

the post-analysis results in Table 8.13 demonstrated, the evolved model would pro-

duce roughly 422 more edges, on average, then the Erdos-Reyni model. Furthermore,

the minimum number of edges observed in a network generated by the evolved model

was 6529, while the maximum number produced by the ER model was only 6366.

This suggested that the ER model would need to produce a number of edges which

was approximately 4.63 standard deviations away from the mean to produce a net-

work with the minimum number of edges observed with the evolved model. Thus,

the 0.350% difference has a significant impact on networks of larger scale. The av-

erage geodesic path lengths, while slightly lower for the evolved model, are arguably

not significantly different. On average, the mean AGP was only 0.048 larger in the

true model than the evolved model. The transitivity was only slightly higher in the

evolved model, again as a result of the increased probability of connection. The be-

tweenness and PageRank measures were both, on average, well within the range to be

considered insignificantly different. The difference in degree distribution, on the other

hand, was nearly always above the critical threshold when networks were compared.

The increased number of edges would, in theory, cause the degree of each vertex to

increase, thus making the degree distribution significantly different from that of the

true model. Figure 8.9 depicts a network generated by the ER500 model along with

the target network produced by the Erdos-Reyni model with n = 500. Visibly, the

networks appear similar, however, this is due to the fact that no discernible structure

can be seen with such a high density of edges – each network shown has over 6000

edges.

8.3.1 Effective Difference in Connection Probabilities

While the connection probabilities for the Erdos-Reyni model evolved by the GP

system were quite close to the target value of 0.05, seemingly insignificant differences

in the probability can have large effects on the degree distribution of the networks,

especially as the network size grows. Note that the average D statistic for degree
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Algorithm 18 Simplified ER500 Model

function SelectVertices(g)
S ← GetAllStack(g)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddEdgeWithProbability(newV ertex, v, 0.05350)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

Table 8.13: Comparison of 500 vertex graphs generated by the ER500 model and the
Erdos-Reyni model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

ER500

Edges 6529 6660.767 6761 58.078
AGP 2.164 2.175 2.189 0.006
CC 0.051 0.053 0.054 0.001

Erdos-Reyni
Edges 6094 6238.300 6366 62.745
AGP 2.209 2.223 2.240 0.007
CC 0.048 0.050 0.052 0.001

Average D Statistic
KS Deg 0.080 0.145 0.224 0.033
KS Bet 0.044 0.069 0.090 0.013
KS PR 0.036 0.056 0.088 0.011

(a) ER500 (b) Erdos-Reyni target, n = 500

Figure 8.9: Network generated by the ER500 model and the Erdos-Reyni target net-
work, n = 500.



CHAPTER 8. EVOLVING KNOWN GRAPH MODELS 110

Table 8.14: Expected degree and number of edges for the Erdos-Reyni and evolved
models on various network sizes.

100 Vertices 250 Vertices 500 Vertices
Model Degree Edges Degree Edges Degree Edges

Erdos-Reyni 4.950 247.500 12.450 1556.250 24.950 6237.500
ER100 5.021 251.064 12.629 1578.660 25.309 6327.320
ER250 5.121 256.063 12.881 1610.096 25.813 6453.318
ER500 5.296 264.825 13.322 1665.188 26.697 6674.125

distribution between 500 vertex networks generated by the ER500 model and the true

model was 0.145 – significantly above the critical threshold of 0.08601 for samples

of this size. The largest difference in the connection probability, demonstrated by

the ER500 model, was 107% of the target probability. Thus, the expected degree and

number of edges generated by the ER500 will be 1.07 times larger than the true model.

Similarly, the probability evolved by the ER100 model, and thus the expected degree

and edges, was 1.014 times larger than the target, while the probability of the ER250

was 1.034 times larger.

To demonstrate the emergent differences in network structure of as a result of

these connection probabilities, Table 8.14 presents the expected degree of each vertex

alongside the expected number of edges in the network when the true Erdos-Reyni

(i.e., p = 0.05) and evolved models are used. Because the Erdos-Reyni model con-

structs networks in such a simple fashion and has been studied for a long period of

time, analytical results demonstrating the expected degree of a vertex and number

of edges can be readily calculated. The expected degree of a vertex, denoted by c, is

simply c = p(n− 1) while the expected number of edges, 〈m〉, is given by 〈m〉 = p
(
n
2

)
[1]. When 100 vertex networks were considered, the expected degree of each ver-

tex was relatively close; the worst evolved model (ER500) demonstrated an expected

difference in degree of only 0.346 when compared to the true model. However, this

small difference in degree lead to an expected difference of 17.325 edges on 100 vertex

networks. When examined on 500 vertex networks, the same two models had an

expected degree which differed by 1.747 for each vertex and an expected difference of

436.625 edges. In contrast, the best evolved model (ER500) had an expected differ-

ence of only 0.0359 for degree and 89.820 edges when the 500 vertex networks were

considered.

Regardless of the differences in connection probabilities and, as a result, the degree

distributions, the GP system was able to automatically infer the Erdos-Reyni model

at three different network sizes. While the evolved model using a 500 vertex target
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was significantly different with regards to the degree distribution, this problem could

be somewhat mitigated by the use of the ER100 model to generate larger networks.

However, doing so would only postpone the point in which the network size was large

enough for a significant difference in degree distribution to be apparent. Nonetheless,

these results from inferring the ER model demonstrated that connection probabilities

could be evolved, at minimum, to within 2 decimal places of their respective target.

For a GP system, this is quite an impressive feat; this alone provides a justification

of the merit of this approach to the automatic inference of graph models for complex

networks.

8.4 Evolving the Forest Fire Model

The final known model used as a target for automatic inference was the Forest Fire

model. This model was the most difficult known model used as a target for inference

and exhibits relatively complex construction mechanisms and emergent behaviors. For

a GP system, this model presents a number of challenges for automatic inference. The

Forest Fire models makes use a queue whereby vertices are enqueued for processing

based on a recursive “burning” procedure. This “burning” behavior is parametric in

the probability of spreading to adjacent vertices. Thus, a model evolved by the GP

system would be responsible for not only reproducing a recursive procedure, but also

discovering the probability of spread. Furthermore, the FF model exhibits community

structure, a known difficulty with the automatic inference of graph models for complex

networks [98].

A summary of the best evolved models from each run is given in Table 8.15. When

100 vertex networks were considered, the fitnesses of the evolved models were nearly

all insignificantly different when their networks were compared to the target network.

This demonstrated a consistency among the evolved models at this size. With the

larger networks, the average fitness of the evolved models degraded quite significantly.

The average fitness for the 250 vertex target network experiment was only below the

critical threshold for the betweenness while there was no fitness measure that was

below the average for the 500 vertex target experiment. However, with both the

250 and 500 vertex experiments, the minimum observed D statistic for each fitness

measure was below the critical threshold, which demonstrated that models with good

fitnesses were achieved, albeit not consistently. It should be noted here that due to

the multi-objective nature of the GP system, the minimum values presented in Table

8.15 were not necessarily observed by the same model. A more detailed look at the
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Table 8.15: Summary of all 30 models evolved against a Forest Fire graph.

Target Size Measure Min µ Max σ

100
Degree 0.040 0.131 0.190 0.055
Betweenness 0.050 0.072 0.140 0.017
PageRank 0.060 0.130 0.210 0.037

250
Degree 0.036 0.152 0.316 0.083
Betweenness 0.048 0.103 0.340 0.056
PageRank 0.044 0.138 0.296 0.081

500
Degree 0.064 0.179 0.334 0.065
Betweenness 0.058 0.116 0.296 0.052
PageRank 0.074 0.203 0.302 0.089

best model evolved at each network size is provided below.

First, a 100 vertex network generated by the Forest Fire model was used as a tar-

get for inference. The best evolved model, shown in Algorithm 19, has some similar

characteristics to the FF model. In the evolved model, a single random vertex was

selected via the GetRandomStack method, analogous to selection of an ambassador

node, while the SecondaryActions procedure depicted the use of AddNeighbours,

which effectively produced a recursive construction process. The FF model uses two

recursive burning mechanisms, to represent forward and backward burning, respec-

tively, whereas the evolved model did not. However, the evolved model compensated

for the reduction of vertices added to the “burning” list using the AddTriangle-

WithProbability edge creation function. The post-analysis results, presented in

Table 8.16, indicated that the FF100 produced networks which were functionally sim-

ilar to those produced by the FF model. The average number of edges differed by

less than 7 while the mean average geodesic path length was only different by 0.035

when networks produced by the evolved model and the target model were compared.

The average transitivity was nearly identical between the evolved model and the

target model. Furthermore, each of the 3 centrality measures were, on average, in-

significantly different among the evolved and FF models. Interestingly, the average

D statistic for both the degree and PageRank measures was noticeably lower than

would be expected for networks from the FF model, as demonstrated in Chapter 5.

The Forest Fire model is known to exhibit community structure, thus, a model

which creates functionally similar networks should also exhibit such community struc-

ture. As such, the evolved model was also compared to the target model by comparing

the number of communities detected in the generated networks by the leading eigen-

vector community detection algorithm [72]. The number of communities detected is
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presented alongside the structural properties, denoted Comm, in Table 8.16. The

results indicated that the evolved model was creating community structures which

closely resembled their target counterparts. The mean number of communities dif-

fered by an average of 0.500, well within a third of a standard deviation from the

respective means. Furthermore, the observed range for the number of communities

was nearly identical between the evolved and true models, with the evolved model

demonstrating a slightly larger range. The similarity between a network generated

by the evolved model and the target network is visualized in Figure 8.10. It can be

seen from these graphs that the networks exhibit similar structural and community

behaviors.

Algorithm 19 Simplified FF100 Model

function SelectVertices(g)
S ← GetRandomStack(g)
return S

end function

function CreateEdges(newV ertex, v)
E ← AddTriangleWithProbability(v, newV ertex, 0.46176)
return E

end function

function SecondaryActions(v, S)
a← GetGeometricValue(0.38883)
b← GetRandomValue(0, a)
AddNeighbours(S, b, v)

end function

(a) FF100 (b) Forest Fire target, n = 100

Figure 8.10: Network generated by the FF100 model and the Forest Fire target net-
work, n = 100.

Next, the GP system was used to infer a model against a 250 vertex network
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Table 8.16: Comparison of 100 vertex graphs generated by the FF100 model and the
Forest-Fire model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

FF100

Edges 200 260.567 334 30.658
AGP 3.101 3.665 4.575 0.326
CC 0.340 0.388 0.467 0.030
Comm 5 9.200 16 2.644

Forest Fire
Edges 200 267 366 41.745
AGP 3.03 3.700 4.661 0.352
CC 0.328 0.389 0.463 0.032
Comm 6 9.700 15 1.822

Average D Statistic
KS Deg 0.040 0.102 0.240 0.043
KS Bet 0.050 0.119 0.210 0.043
KS PR 0.060 0.098 0.160 0.028

generated by the FF model. Algorithm 20 depicts the best evolved model from this

experiment. Manual inspection of the evolved model indicated that the recursive

procedure was not replicated. The evolved model did, interestingly, make use of

the Duplicate method of edge creation which allowed for connections to be formed

to neighbors of the 3 randomly selected vertices. This construction mechanism, as

seen in Table 8.17, lead to some relatively large structural dissimilarities between

networks generated by the FF250 model and the target FF model. The networks

produced by the FF model contained, on average, more than 219 additional edges

when compared to the networks produced by the evolved model. The evolved model

also created a more regular distribution of edges, showing a standard deviation of only

37.245 while the FF model had a standard deviation of 160.934 when the number of

edges were measured. The evolved model generated networks which, on average,

had less than half of the transitivity of the FF networks. This experiment does

demonstrate an interesting result, however, in that the average D statistic for each of

the centrality measures were, on average, within the critical region when comparing

the evolved model to the FF model. That is, the evolved model was able to produce

insignificantly different distributions for the degree, betweenness, and PageRank of

vertices, but the evolved networks were constructed, and structured, quite different.

Figure 8.11 presents a network generated by the FF250 model alongside the target

network for this experiment. Immediately the number of isolate vertices (i.e., 15)

was noted in the evolved network. This phenomena also lead to the number of

communities being, arguably, misrepresented. The leading eigenvector community

detection algorithm labeled each of the isolated vertices as its own community, thereby
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Table 8.17: Comparison of 250 vertex graphs generated by the FF250 model and the
Forest Fire model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

FF250

Edges 522 603.133 689 37.245
AGP 3.397 3.592 3.831 0.093
CC 0.140 0.166 0.181 0.010
Comm 18 32.667 51 6.530

Forest Fire
Edges 629 822.300 1384 160.934
AGP 3.243 4.071 4.84 0.406
CC 0.303 0.343 0.407 0.027
Comm 7 14.100 21 3.428

Average D Statistic
KS Deg 0.060 0.107 0.188 0.032
KS Bet 0.056 0.093 0.124 0.020
KS PR 0.068 0.100 0.172 0.024

drastically increasing the number of communities detected. While even the connected

component of the evolved network did not visually replicate the community structure

of the target network, the statistics regarding the number of communities should be

considered along with this observation. In fact, when isolate vertices were disregarded

for the calculation of communities, the average number of communities was 15.200 –

significantly lower than the 32.667 when the isolate vertices were included.

Algorithm 20 Simplified FF250 Model

function SelectVertices(g)
S ← GetRandomStack(g, 3)
return S

end function

function CreateEdges(newV ertex, v)
E ← Duplicate(v, newV ertex, 0.41684)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

The final automatic inference experiment using the Forest Fire model as a target

was performed with a 500 vertex target. As algorithm 21 depicts, the FF500 model

differed from the FF250 model only in the probability of connecting to the vertex

which was being duplicated. The evolved model made use of the GetRandomStack
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(a) FF250 (b) Forest Fire target, n = 250

Figure 8.11: Networks generated by the FF250 model and the Forest Fire target
network, n = 250.

to select three vertices whose edges were to be duplicated by the use of the Duplicate

method. Each of the three vertices which were selected had a probability of being

connected to the new vertex of 0.42358, slightly higher than the 0.41684 observed with

the FF250 model. As such, the observations made when the post-analysis results, pre-

sented in Table 8.18, were considered are similar to those in the previous experiment.

Namely, the number of edges was significantly lower in the evolved model, the evolved

model demonstrated an average of 624.566 less edges per network than the FF model.

The mean average geodesic path length difference was relatively high at 0.383, with

the evolved model having the lower AGP values, while the transitivity of the evolved

networks was again less than half of the networks produced by the FF model. None

of the three centrality measures obtained an average D statistic below the critical

threshold, signifying that the networks exhibited significantly different distributions

for degree, betweenness, and PageRank. Figure 8.12 presents a network generated by

the evolved model as well as the target network for this experiment. Visual inspection

indicated that isolate vertices, expectedly so, were an issue with the evolved model.

The community structure was visibly different among the networks, even when only

the connected component of the evolved network was considered. The evolved model

would produce nearly three times the number of communities produced by the FF

model. However, when isolate vertices were disregarded, the FF500 model produced

an average of 19.900 communities per network.

8.4.1 Scalability of the FF100 Model

The previous results indicated that the FF100 model did replicate the recursive nature

of the FF model while the FF250 and FF500 models did not. Thus, a natural question
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Algorithm 21 Simplified FF500 Model

function SelectVertices(g)
S ← GetRandomStack(g, 3)
return S

end function

function CreateEdges(newV ertex, v)
E ← Duplicate(v, newV ertex, 0.42358)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

Table 8.18: Comparison of 500 vertex graphs generated by the FF500 model and the
Forest Fire model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

FF500

Edges 1190 1242.067 1315 34.690
AGP 3.805 3.929 4.018 0.051
CC 0.126 0.138 0.146 0.006
Comm 40 52.967 69 7.495

Forest Fire
Edges 1465 1866.633 2354 257.550
AGP 3.632 4.312 4.977 0.325
CC 0.269 0.299 0.333 0.015
Comm 5 18.033 29 6.083

Average D Statistic
KS Deg 0.062 0.110 0.174 0.030
KS Bet 0.052 0.090 0.144 0.024
KS PR 0.062 0.098 0.136 0.021

(a) FF500 (b) Forest Fire target, n = 500

Figure 8.12: Networks generated by the FF500 model and the Forest Fire target
network, n = 500.
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Table 8.19: Comparison of 250 vertex graphs generated by the FF100 model and the
Forest Fire model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

FF100

Edges 592 712.033 865 58.801
AGP 3.599 4.148 4.782 0.300
CC 0.294 0.336 0.382 0.020
Comm 9 14.333 22 3.111

Forest Fire
Edges 629 822.300 1384 160.934
AGP 3.243 4.071 4.840 0.406
CC 0.303 0.343 0.407 0.027
Comm 7 14.100 21 3.428

Average D Statistic
KS Deg 0.052 0.096 0.192 0.035
KS Bet 0.040 0.091 0.172 0.030
KS PR 0.052 0.081 0.136 0.023

to ask was how well the FF100 model replicated larger networks generated by the FF

model. As such, the FF100 was used to generate 250 and 500 vertex networks which

were then compared to networks generated by the FF model of the same respective

size. The results given below indicated that the FF100 model, while improvements

could be made, was able to reasonably replicate the behaviors of larger networks.

Table 8.19 provides the comparison of 250 vertex networks generated by the FF100

and FF models, respectively. While the average number of edges was significantly

lower, roughly 110, for the FF100 model, this had minimal impact on the other prop-

erties. The average geodesic path length differed by only 0.077 while the clustering

coefficient was, on average, only different by 0.007. The average and range of commu-

nities was comparable between the evolved networks and the FF networks. Each of

the centrality measures, while above what would be expected for comparing networks

from the FF model, observed an average statistic well below the critical threshold for

250 vertices. Thus, with the exception of the number of edges, the FF100 model pro-

duced networks which were extremely close in both structure and behavior to those

produced by the FF model when 250 vertex networks were considered. Examining

a network generated by the evolved model along with the target from the 250 ver-

tex inference experiments, presented in Figure 8.13, indicated that the FF100 model

was able to visibly replicate the target significantly better than the FF250 model (see

Figure 8.11).

Similarly, the FF100 model was used to generated 500 vertex networks which were

compared to networks generated by the FF model, the results of which are given in

Table 8.20. Note that the number of edges for the evolved model were significantly
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(a) FF100 (b) Forest Fire target, n = 250

Figure 8.13: Network generated by the FF100 model and the Forest Fire target net-
work, n = 250.

lower than the true FF model, with an average of over 402 less edges per network.

This reduction of edges lead to a relatively large increase in the AGP over the true

model, with the FF100 model producing networks which exhibited a mean AGP of

0.403 longer than the FF model. Interestingly, while there were less edges produced

by the evolved model, there was a somewhat higher clustering coefficient which re-

sulted from the AddTriangleWithProbability used to construct the edges. When

the number of communities detected were examined, the FF100 produced nearly 3

additional communities per network when compared to the FF model. While these

observations demonstrated that the basic structure of the networks was different, the

centrality measures were, on average, insignificantly different between networks pro-

duced by the models. This indicated that while the macro-properties of the networks

were different, the micro-properties visible at the vertex level were not significantly

different between the networks generated by the models. For visual comparison, a

500 vertex network generated by the FF100 model along with the 500 vertex target

network are presented in Figure 8.14.

In summary, this section presented the experiments performed to infer a graph

model when a network generated by the Forest Fire model was as the target network.

Results indicated that the model evolved against the 100 vertex target was a very fit

model while the results using the 250 and 500 vertex target networks, respectively,

lacked the recursive construction mechanism of the true FF model. The FF100 model

was demonstrated to accurately replicate networks with 250 vertices generated by the

FF model, with the exception of the number of edges. Furthermore, the FF100 model

replicated the centrality distributions of 500 vertex networks, but showed noticeable

differences in the macro, structural properties of the network.



CHAPTER 8. EVOLVING KNOWN GRAPH MODELS 120

Table 8.20: Comparison of 500 vertex graphs generated by the FF100 model and the
Forest Fire model. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

FF100

Edges 1258 1464.067 1645 87.45
AGP 4.201 4.715 5.543 0.288
CC 0.289 0.314 0.343 0.014
Comm 1 20.967 31 6.856

Forest Fire
Edges 1465 1866.633 2354 257.550
AGP 3.632 4.312 4.977 0.325
CC 0.269 0.299 0.333 0.015
Comm 5 18.033 29 6.083

Average D Statistic
KS Deg 0.034 0.074 0.118 0.020
KS Bet 0.036 0.075 0.120 0.019
KS PR 0.030 0.073 0.110 0.023

(a) FF100 (b) Forest Fire target, n = 500

Figure 8.14: Network generated by the FF100 model and the Forest Fire target net-
work, n = 500.
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8.5 Summary

These experiments in this chapter demonstrated the proposed GP system for the

automatic inference of graph models for complex networks was effective at replicating

known graph models. Evolved models were analyzed both manually, by inspecting the

models construction algorithms, and empirically by comparing networks generated by

the evolved models with their respective target models. Results indicated that the

evolved models were able to accurately replicate their respective targets, wit the

exception of the Forest Fire experiments with 250 and 500 vertex networks. However,

when the model evolved against a 100 vertex FF target was used to generate larger

networks, the resulting networks were significantly better at replicating the behaviors

of the FF model than the respective evolved models.

While this chapter demonstrated that known models could be replicated with high

degree of accuracy, the GP system should also be able to evolve a graph model for

a real-world complex network. As such, the following chapter presents the use of

the proposed GP system for the automatic inference of a graph model for the brain

network of a cat [12].



Chapter 9

Evolving a Model for a Cat Brain

This chapter briefly introduces the study of cortical networks as complex networks

and presents the results of the automatic inference of the brain network of a cat.

While Bailey et al. [30] have previously inferred a graph model for the cortical net-

work of a cat, this work differs from their study as the data set used in this study

is considerably larger; the data set used in Bailey’s work contained 52 vertices, rep-

resenting cortical areas, and 515 edges while the data set used in this work contains

95 vertices, representing both cortical and thalamic areas, and 1170 edges. The work

of Bailey et al. also made use of an external community detection mechanism and

simultaneously evolved two models, one for the community model and another to re-

produce the inter-community structure. The two models were then combined to form

a final, hierarchical model. In contrast to the work of Bailey et al., this chapter out-

lines an initial study of using a single evolved model to implicitly generate networks

which exhibit community structure. The results of this chapter are significant in that

they depict the first attempt, to the best of the author’s knowledge, at automati-

cally inferring a graph model for a real-world complex network exhibiting community

structure without the explicit, a priori detection of communities. Furthermore, the

results indicated that the functional structure of the cortical network of a cat can be

accurately replicated with a simple construction mechanism, as determined by the

GP system.

When inferring a graph model for a complex network where the target model is

unknown, as demonstrated in Figure 5.1, the process of model verification becomes

much more challenging. Verification of the model can no longer be done by manual

inspection, as the models inferred in the previous chapter allowed, and must rely

solely on the intrinsic properties of the network. Thus, the evolved model must be

used to generate networks which can be compared against the target network on

122
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features deemed important to the functionality of the target network. For example,

in the case of cortical networks, path length and community structure are believed

to be crucial to the functionality the network [99, 100], and thus, must be considered

when analyzing the evolved model.

9.1 Cortical Networks

Cortical networks are often considered to be small-world networks due to their low

average geodesic path lengths and high transitivity [63, 100, 99]. While the average

geodesic path length of cortical networks have been found to be comparable to ran-

dom networks, the transitivity is much too high to be formed by a random process

[63]. Stephan et al. [63] provided functional evidence of small-world behavior in mam-

malian cortical networks and demonstrated that there existed multiple, functionally

distinct, segregated regions within the cortex. The aforementioned results, among

others, have lead to cortical networks commonly being considered to be small-world

networks. Although Stam and Reijneveld [13], among others, have concluded that

the small-world architecture of the cortex plays a crucial role for information pro-

cessing, alternative observations have been made suggesting scale-free distributions,

and their emergent hubs, better model the robustness of cortical networks [101, 102].

Irrespective of the debate on which of these two model types best describe cortical

data, neither model has been able to accurately replicate both the path length dis-

tributions as well as the community structure crucial to the functionality of cortical

networks [99].

The cortical network of a cat was selected for the automatic inference of a model

due to its large presence in the literature as well as the previously mentioned inability

for existing models to replicate its behaviors. Furthermore, the cortical data of the

cat is regarded as one of the most complete data sets of its kind [99]. The data

set used in the following experiments was an implicitly directed data set, however, a

relaxed version was used whereby the directionality of edges was disregarded. The

relaxation of the edge direction within the data set was considered reasonable as a

majority of the connections were reciprocal, namely 88.74% with this particular data

set, which is a common property of cortical networks [103]. In the undirected form,

the data set used in this experiment contained 95 vertices and 1170 edges. Note that

both multi-edges and loops were removed from the data set. The following section

describes the results of the automatic inference of this cortical network.
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Table 9.1: Summary of all 30 models evolved against the cat brain network.

Measure Min µ Max σ
Degree 0.060 0.102 0.404 0.065
Betweenness 0.067 0.105 0.182 0.029
PageRank 0.060 0.081 0.144 0.018

9.2 The Evolved Cortical Model

The cat brain network was used as the target network for the automatic inference

system. The parameters for this experiment were the same as listed in Table 8.1, with

the exception of the samples for evolution was 3, i.e., during the fitness evaluation,

each candidate solution produced 3 networks which were compared to the target. A

summary of the best models produced during each run is given in Table 9.1. The

results from this table indicated that in a majority of the runs, an extremely fit model

was produced. More concretely, the difference in the betweenness and PageRank

measures was always below the KS critical threshold, at a 95% confidence level, of

0.19733. While the average of the D statistics produced when the degree distributions

were considered was well below the critical threshold, the maximum difference in

degree was quite large. Thus, there were evolved models which produced drastically

different degree distributions than that of the brain network. Note that the minimum

observed value was within one standard deviation of the mean, while the maximum

was nearly three standard deviations above the mean. This would suggest that the

large maximum was somewhat anomalous, and as such it can be safely concluded that,

in general, the evolved models were quite fit with respect to the fitness measures used.

While the model was fit with respect to the fitness measures used, a post-analysis

procedure was performed to determine the model’s ability to recreate the structure of

the cortical network. Algorithm 22 presents the best evolved model, selected via sum

of ranks on the evolution fitnesses [38]. The evolved model was surprisingly simple – it

selected 7 random vertices and used the Duplicate edge creation method to connect

to each neighbor of the selected vertices. The probability of connecting the newly

created vertex to the selected vertices was 0.73235, i.e., 73.235%. The SecondaryAc-

tions method had no effect whatsoever on the construction process. Initially it was

thought that such a simple model could not be a fit model. However, a post-analysis

procedure demonstrated that this model was strikingly similar to the target network.

Table 9.2 presents the post-analysis results. For reference, the structural proper-

ties of the cortical network are presented in Table 9.3. Comparing the properties of

the evolved model to those of the cortical network, the number of edges in the evolved
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model was on average 22.467 higher than the cortical network, however, this was well

within a single standard deviation. The average geodesic path lengths produced by

the evolved model were slightly lower than the cortical network, with an average dif-

ference of 0.062. Note that while the average geodesic path lengths were, arguably,

insignificantly different, in no instance did the evolved model generate an AGP which

was as high as that of the cortical network. The average clustering coefficient was

slightly higher, however, the value of 0.489 observed in the cortical network was still

a statistically likely value for the evolved model, being slightly over one standard

deviation away from the mean.

The community structure, known to be an important feature which represents

different modalities [12, 99, 100], was also replicated quite well by the evolved model.

The average number of communities which emerged in the evolved networks, as de-

termined by the leading eigenvector community detection algorithm [72], was 3.767

while all the networks had between 2 and 6 communities. Furthermore, the com-

munity structure is a feature which is missing in previous attempts to model cor-

tical networks [99]. The examined vertex-level centrality measures have also been

replicated extremely well, exemplified by the maximal D statistic observed for any

centrality measure, presented in Table 9.2, being well under the critical threshold

of 0.19733. Thus, the centrality measures were insignificantly different among all

networks generated by the evolved model when compared to the target network.

The number of pathways between cortical areas is believed to have an influence

on the processing behavior of the network, with longer pathways generally traveling

between different cortical areas [99]. Furthermore, the mixture of path lengths is

thought to produce both complex, fast information processing capabilities as well as

robustness in communication pathways [99]. Thus, a graph model which effectively

models a cortical network should posses similar path length distributions as the cor-

tical network. To compare the distribution of path lengths, Figure 9.1 presents a

density plot where the shortest paths of 30 networks generated networks are com-

pared to the target network. This figure demonstrated that the evolved model was

able to reproduce the path length distribution relatively well. The evolved model

produced, on average, slightly more paths of length 2 while producing slightly less

paths of length 3.

A single network generated by the evolved model, determined to be the most simi-

lar to the target using sum of ranks on the measured properties, was selected for closer

inspection. Table 9.3 presents the structural properties of the best network along with

the properties of the target network. These structural properties demonstrated that
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Algorithm 22 Simplified Evolved Model for the Cat Brain Network

function SelectVertices(g)
S ← GetRandomStack(g, 7)
return S

end function

function CreateEdges(newV ertex, v)
E ← Duplicate(v, newV ertex, 0.73235)
return E

end function

function SecondaryActions(v, S)
// Nothing is performed in SecondaryActions

end function

Table 9.2: Comparison of graphs generated by the evolved model and the cat brain
network. Values displayed are calculated over 30 generated graphs.

Measure Min µ Max σ

Evolved Model
Edges 1123 1192.467 1272 31.768
AGP 1.768 1.803 1.825 0.014
CC 0.477 0.504 0.520 0.011
Comm 2 3.767 6 0.971

Average D Statistic
KS Deg 0.063 0.110 0.158 0.021
KS Bet 0.063 0.109 0.158 0.024
KS PR 0.074 0.103 0.137 0.017
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Figure 9.1: Density of the shortest paths of the networks generated by the evolved
model and the cat brain network.
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Table 9.3: Basic properties of the best graph generated by the evolved model and the
cat brain network.

Measure Cat Brain Evolved
Edges 1170 1167
AGP 1.865 1.806
CC 0.489 0.491
Comm 4 4

the evolved model was capable of generating an extremely similar network to the tar-

get. Namely, the best network had only 3 less edges than the target and had an AGP

which was only 0.059 less than the cortical network. The clustering coefficient was

only 0.002 higher than the target, while the number of detected communities detected

was 4 for both networks. Visual inspection of the networks, presented in Figure 9.2,

demonstrated that both possessed a central region with a dense connection pattern.

Figure 9.3 and 9.3 presents the degree distributions of the target and evolved network,

respectively, while Figure 9.4 shows their respective ECDF plots. The bizarre degree

distribution of the cortical network was visibly well modeled, reinforced by a KS test

p-value of 0.991.

(a) Evolved (b) Brain network

Figure 9.2: Network generated by the evolved model and the cat brain network.

The betweenness centrality has been observed to be an important measure of dy-

namics in cortical networks [13], and is closely related to community structure of

complex networks in general [64]. The empirical cumulative distribution plot de-

picting the betweenness centrality of the evolved and target networks can be seen

in Figure 9.5. Similarly, the ECDF plots of the PageRank measure can be found in

Figure 9.6. KS tests for these distributions resulted in p-values of 0.788 and 0.959,

respectively which demonstrated that the distributions of both centrality measures

were insignificantly different among the evolved and target networks.
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Figure 9.3: Plot of the degree distributions of an evolved graph and the cat brain
network.
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Figure 9.4: ECDF plot of the degree distributions of an evolved graph and the cat
brain network. KS test: D = 0.063, p-value = 0.991.
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Figure 9.5: ECDF plot of the betweenness centrality of an evolved graph and the cat
brain network. KS test: D = 0.095, p-value = 0.788.
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network. KS test: D = 0.074, p-value = 0.959.
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This chapter outlined the experimental procedures used to automatically infer a

graph model for a real-world, cortical network of a cat. The evolved model was able

to replicate the structural and emergent behaviors of the target network. While not

the first real-world network to have a model automatically inferred for it (see Bailey

et al. [30]), this chapter does detail, to the best of this author’s knowledge, the

first attempt at generating a model for a real-world network which exhibits strong

community structure without the use of an external community detection mechanism.



Chapter 10

Conclusion

The major contributions of this thesis were threefold. First, this work provided

an in-depth study of the behaviors of network measures when used to quantify the

(dis)similarity of networks. The analytical results were formed using a combination of

multi-dimensional scaling to visualize the spatial distributions of each model as well

as through the use of a meta-analysis framework whereby the interactions of network

measures, when used in conjunction with one another, was examined. The analytical

results allowed insight to be made regarding evaluation criteria that demonstrates

the ability of a graph model to construct functionally similar networks to that of its

target.

The second major contribution of this work was the genetic programming (GP)

methodology applied to the automated construction of graph model algorithms. A

recently proposed GP methodology, namely linear object-oriented GP, was used in

this work as it was shown to be promising in the area of automated construction

of graph models for complex networks. The GP made use of a generalized graph

model algorithm to create a logical representation of the problem to guide the search

process.

Finally, the GP system facilitated the direct construction of community structure

within the evolved graph models. Previous research on the construction of graph

models, as seen in Chapter 9, made use of an external mechanism to detect, and thus

model, community structure. While not the first work to evolve community structure,

this work presented, to best of the author’s knowledge, an initial study of the first

GP system capable of directly constructing graph models which exhibit community

structure without the use of an external community detection mechanism.

Six well-known graph models were used to evaluate the discriminatory power of

ten network measures (four network-level and six vertex-level). The study of network

132
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measures indicated that network-level measures, i.e., those that assign a single value

to the entire network, did not convey enough model-specific information to effectively

discriminate between networks generated by different models. While useful for char-

acterizing the behavior of the network, these measures are too relaxed to be useful

when distinguishing networks generated by different models. Measures of vertex im-

portance, i.e., centrality measures, were much more important to the classification of

network behavior as they provided a great deal of information regarding the intrinsic

properties of the network. Results indicated that of the six examined centrality mea-

sures, the degree distribution, betweenness centrality, and PageRank were the most

effective for the context of quantifying the (dis)similarity of networks generated by

different graph models.

Using the degree, betweenness, and PageRank as measures of evolutionary fitness,

a GP system for the automatic construction of graph models was proposed. The GP

system was provided a single target network with the goal of evolving a graph model

algorithm that could construct networks which functioned in a similar fashion to the

provided target network. The GP system was used to automatically infer four well-

known graph models, namely the Growing Random, Barabasi-Albert, Erdos-Reyni,

and Forest-Fire models. Target networks from the models were generated with 100,

250, and 500 vertices, respectively, and used as the target networks within the GP

system. Evolved models were verified both by manual inspection of the algorithm and

by analytical verification of their functional similarity. Results indicated that these

well-known graph models could be evolved with striking accuracy. Finally, using the

aforementioned approach, a graph model was automatically inferred for a mammalian

cortical network, the results of which showed great promise. A noteworthy result was

that the community structure, known to be an important factor for the functionality

of cortical networks, was constructed effectively by the automatically inferred model.

While inspired by the work of Bailey et al. [29, 30, 31], this thesis differed from

the previous work in a number of ways. First and foremost, this thesis made use of

a drastically different GP paradigm, namely linear object-oriented GP, whereas the

work of Bailey et al. made use of traditional, tree-based GP. Due to the various differ-

ences between this work and that of Bailey et al. (e.g., the fitness measures and the

GP language), no conclusions can readily be made regarding which GP methodology

is more well-suited for the automatic construction of graph models. Two of the known

graph models used in this thesis, namely the Barabasi-Albert and Erdos-Reyni mod-

els, were also examined by Bailey et al., while the Growing Random and Forest Fire

models were not. The fitness measures used in this thesis differed significantly from
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those seen in Bailey et al.’s work as their measures were based on literary presence

while the fitness measures used in this thesis were based on the observed ability of

each measure to discriminate between networks generated by different models. The

results of the empirical study on network measures suggests that the fitness evaluation

scheme used in this thesis was an improvement over that of the previous work. How-

ever, this cannot be conclusively stated without a direct comparison between the two

fitness evaluation schemes. Finally, this thesis presented an initial study of directly

evolving graph models which were capable of constructing community structure. The

emergent community structure resulted from the ability to build recursively defined

construction mechanisms, facilitated by the new GP language in this work.

10.1 Future Work

Many avenues of future study have become apparent throughout the course of this

work. First and foremost, this thesis only addresses undirected, unweighted net-

works – the simplest types of networks. Undirected networks are a special case of

directed network whereby all edges are taken to be bidirectional. This is a reason-

able relaxation in some cases, particularly cortical networks where a large majority

of the edges are reciprocal [103]. Similarly, unweighted networks are a special case

of weighted networks where all weights are considered equal. While many of the el-

ements of this work can be applied to directed and weighted networks by taking the

respective analogues into account, it is unknown whether such an approach will lead

to reasonable results. Thus considering each of these network types will lead to much

more generalized insight on the automatic construction of graph models for complex

networks.

An immediate future study is to compare the results using the system proposed in

this work against that of the previous work [29, 30, 31]. As both the fitness evaluation

and the GP system used in this work differed from those used in previous work, the

effects of each the fitness evaluation and GP system independently should be an

avenue of future consideration. Namely, using the proposed fitness evaluation in the

tree-style system and, conversely, using the fitness evaluation of Bailey’s work within

the proposed GP system should be considered so the benefits of each can be properly

attributed.

Another topic of future interest lies in the way in which fitness is assigned. For

larger networks, network measures become quite expensive to calculate. Although

this can be alleviated by increasing the number of CPU processors available, such
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a solution is only scalable to a certain extent. An alternative approach may be

to sample the target network forming random walks which can then be used for

comparison. Research has shown that some centrality measures are stable when a

network is sampled [104], thus an investigation into this technique may be warranted

if larger networks are to be considered.

A goal of this work was to create graph models which were capable of capturing the

growth mechanics of a particular network. With this in mind, it may be beneficial

to use multiple snapshots of a target network, if possible, to have an idea of how

the structure evolved to its current state. This would allow the GP to evaluate not

only the ability to reconstruct a network similar to the current target, but also that

validate that a candidate model captures the target at previous snapshots.

The final area of future work to be discussed lies in the notion of community

structure. While this study provides an initial study of community structure directly

evolved by the GP system, many areas of improvement with regards to this exist.

First, the fitness evaluation of a candidate model did not explicitly account for com-

munity structure. Thus, the ability for the GP to evolve such community structures

was a byproduct, and not an intended feature. This leads to a further improvement

relating to community structure – the GP language. As community structure was

not a large focus of this thesis, little effort was put forth to create a language which

addressed the construction of communities. Although the language does facilitate a

recursive construction mechanism whereby communities can be formed, more focus

on the language elements with regards to communities will be highly beneficial.
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Appendix A

Supplementary Results for

Chapter 5

This Appendix presents MDS plots not included in Chapter 5. Figures A.1 through

A.4 present MDS applied to the global network measures while Figures A.5 through

A.9 depict the MDS procedure applied to all centrality measures, apart from PageR-

ank which was included in the thesis body. Discussions regarding the plots can be

found in Chapter 5. However, the plots are presented here for brevity within the

thesis itself. Each of the plots indicate the variance accounted for by each axis as a

measure of their goodness of fit.

146



APPENDIX A. SUPPLEMENTARY RESULTS FOR CHAPTER 5 147

●●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●●●●
●

●

●
●

●
●●

●
●●●

●●
●●

●●●●●●●●
●
●

●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●

−20 −10 0 10

−
20

−
10

0
10

20

●

●

●

Model

BA
APA
GR
FF
ER
WS

(a) 100 vertex networks. 98.63% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 98.85% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 98.59% variance ac-
counted for on each axis.
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(d) 1000 vertex networks. 97.78% variance
accounted for on each axis.

Figure A.1: MDS applied to average geodesic path length for various network sizes.
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(a) 100 vertex networks. 99.50% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 99.37% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 99.50% variance ac-
counted for on each axis.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●
●●●●

●●●● ●●●●●
●●

●●
●

●
●●●●

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

−
1

0
1

2

●

●

●

Model

BA
APA
GR
FF
ER
WS

(d) 1000 vertex networks. 99.80% variance
accounted for on each axis.

Figure A.2: MDS applied to network transitivity for various network sizes.
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(a) 100 vertex networks. 97.78% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 98.63% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 98.57% variance ac-
counted for on each axis.
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(d) 1000 vertex networks. 98.51% variance
accounted for on each axis.

Figure A.3: MDS applied to network diameter for various network sizes.
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(a) 100 vertex networks. 95.74% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 97.52% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 97.87% variance ac-
counted for on each axis.
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(d) 1000 vertex networks. 97.91% variance
accounted for on each axis.

Figure A.4: MDS applied to network radius for various network sizes.
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(a) 100 vertex networks. 97.57% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 96.32% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 95.42% variance ac-
counted for on each axis.
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(d) 1000 vertex networks. 95.65% variance
accounted for on each axis.

Figure A.5: MDS applied to degree distribution for various network sizes.
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(a) 100 vertex networks. 96.43% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 96.39% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 96.56% variance ac-
counted for on each axis.
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(d) 1000 vertex networks. 96.67% variance
accounted for on each axis.

Figure A.6: MDS applied to local clustering coefficient for various network sizes.



APPENDIX A. SUPPLEMENTARY RESULTS FOR CHAPTER 5 153

●
●
●

●

●●

●

●

●●

●

●●●
●

●
●

●

●
●

●
●
●

●●
●

●
●

●

●

●●
●

●
●

●
●

●

●

●
●

● ●●
●

●●
●

●●●
●
● ●

●
●

●
●

●●

●●
●●●
●●

●

●●●
●●
●

●

●
●

●

●

●●●
●

●

●●
●
●
●●

−2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0
1

2
3

●

●

●

Model

BA
APA
GR
FF
ER
WS

(a) 100 vertex networks. 96.74% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 96.91% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 93.01% variance ac-
counted for on each axis.
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(d) 1000 vertex networks. 92.84% variance
accounted for on each axis.

Figure A.7: MDS applied to betweenness centrality for various network sizes.
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(a) 100 vertex networks. 86.88% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 77.95% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 77.94% variance ac-
counted for on each axis.
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(d) 1000 vertex networks. 81.83% variance
accounted for on each axis.

Figure A.8: MDS applied to closeness centrality for various network sizes.
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(a) 100 vertex networks. 96.23% variance ac-
counted for on each axis.
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(b) 250 vertex networks. 97.91% variance ac-
counted for on each axis.
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(c) 500 vertex networks. 98.31% variance ac-
counted for on each axis.
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(d) 1000 vertex networks. 95.78% variance
accounted for on each axis.

Figure A.9: MDS applied to eigenvector centrality for various network sizes.



Appendix B

Supplementary Results for

Chapter 6

This appendix gives supplementary results to those in Chapter 6. Figures B.1 to B.6

present the results of the meta-analysis procedure applied against a target generated

by each of the six models model. Many of the plots, especially on the larger networks,

exemplified that perfect classifiers could be formed by some set of measures for most

models. In fact, the only model in which this was not true for 1000 vertex target

networks was the APA model, where the best classifier obtained an AUC of 0.999.

This is arguably an insignificantly difference, but nonetheless corresponds to a non-

perfect classifier. No further discussion of these results is given as they are only

provided for the interested reader.
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Figure B.1: ROC curves depicting the ten measure sets with the highest area under
the curve (AUC) values, shown in the legend, for various network sizes using a target
graph generated by the BA model.
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Figure B.2: ROC curves depicting the ten measure sets with the highest area under
the curve (AUC) values, shown in the legend, for various network sizes using a target
graph generated by the APA model.
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Figure B.3: ROC curves depicting the ten measure sets with the highest area under
the curve (AUC) values, shown in the legend, for various network sizes using a target
graph generated by the GR model.
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Figure B.4: ROC curves depicting the ten measure sets with the highest area under
the curve (AUC) values, shown in the legend, for various network sizes using a target
graph generated by the FF model.
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(d) 1000 vertex networks.

Figure B.5: ROC curves depicting the ten measure sets with the highest area under
the curve (AUC) values, shown in the legend, for various network sizes using a target
graph generated by the ER model.
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Figure B.6: ROC curves depicting the ten measure sets with the highest area under
the curve (AUC) values, shown in the legend, for various network sizes using a target
graph generated by the WS model.



Appendix C

Supplementary Results for

Chapter 8

This appendix presents supplementary results to those presented in Chapter 8. Sec-

tion C.1 provides convergence curves for 250 vertex experiments to give an overview

of the evolutionary behavior while Section C.2 shows the unsimplified results from the

GP system corresponding to the best evolved models for 250 vertex target networks.

C.1 Convergence Plots

Figures C.1 through C.4 provide convergence plots for the 250 vertex experiments

with the Growing Random (GR), Barabasi-Albert (BA), Erdos-Reyni (ER), and For-

est Fire (FF) models, respectively. Each plot shows the average fitness of the best

solution as well as the population average over 30 runs. Each fitness objective was a

minimization objective, with 0 being the ideal fitness. In general, these plots showed

that the best solutions converged after roughly 30 to 40 generations.

C.2 Raw Output from LinkableGP

This section provides the raw output, with spacing added for readability, from Link-

ableGP for the best evolved models using 250 vertex target networks. Note that each

of the GP results were a fully compilable (C#.NET v4.5) class, provided that the

language elements are present, which implemented an abstract class. The abstract

class, InferredUndirectedGraphModel, corresponded to the generalized graph model

given in Algorithm 9.
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(a) f1: KS test statistic – Degree
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(c) f3: KS test statistic – PageRank

Figure C.1: Convergence plots showing the average of the best and average fitnesses
over 30 runs using a 250 vertex GR target network.
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Figure C.2: Convergence plots showing the average of the best and average fitnesses
over 30 runs using a 250 vertex BA target network.
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(c) f3: KS test statistic – PageRank

Figure C.3: Convergence plots showing the average of the best and average fitnesses
over 30 runs using a 250 vertex ER target network.
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Figure C.4: Convergence plots showing the average of the best and average fitnesses
over 30 runs using a 250 vertex FF target network.
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C.2.1 Raw Output for GR250

public class AutoGeneratedClass : InferredUndirectedGraphModel

{

protected override TabooVertexCollection SelectVertices(IGraph g)

{

TabooVertexCollection a;

TabooVertexCollectionProvider TabooVertexCollectionProvider

= new TabooVertexCollectionProvider();

a = TabooVertexCollectionProvider.GetRandomStack(g);

return a;

}

protected override IEnumerable<IEdge> CreateEdges(IVertex newVertex,

IVertex v)

{

IEnumerable<IEdge> a;

EdgeCreator EdgeCreator = new EdgeCreator();

a = EdgeCreator.AddEdge(newVertex, v);

return a;

}

protected override void SecondaryActions(IVertex vertex,

TabooVertexCollection vertices)

{

int a;

ValueProvider ValueProvider = new ValueProvider();

a = ValueProvider.GetRandomValue(6, 7);

a = ValueProvider.GetRandomValue(5, 2);

}

}
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C.2.2 Raw Output for BA250

public class AutoGeneratedClass : ICoN.Modelling.InferredUndirectedGraphModel

{

protected override TabooVertexCollection SelectVertices(IGraph g)

{

Func<IVertex, double> b;

VertexPropertyProvider VertexPropertyProvider

= new VertexPropertyProvider();

TabooVertexCollection a;

TabooVertexCollectionProvider TabooVertexCollectionProvider

= new TabooVertexCollectionProvider();

a = TabooVertexCollectionProvider.GetRandomQueue(g, 4);

b = VertexPropertyProvider.GetDegree();

a = TabooVertexCollectionProvider.GetRouletteQueue(g, 1, b);

return a;

}

protected override IEnumerable<IEdge> CreateEdges(IVertex newVertex,

IVertex v)

{

IEnumerable<IEdge> a;

EdgeCreator EdgeCreator = new EdgeCreator();

a = EdgeCreator.AddEdge(v, newVertex);

return a;

}

protected override void SecondaryActions(IVertex vertex,

TabooVertexCollection vertices)

{

int b;

int a;

ValueProvider ValueProvider = new ValueProvider();

a = ValueProvider.GetRandomValue(6, 6);

b = ValueProvider.GetGeometricValue(0.794519253910761D);

}

}
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C.2.3 Raw Output for ER250

public class AutoGeneratedClass : InferredUndirectedGraphModel

{

protected override TabooVertexCollection SelectVertices(IGraph g)

{

TabooVertexCollection b;

TabooVertexCollection a;

TabooVertexCollectionProvider TabooVertexCollectionProvider

= new TabooVertexCollectionProvider();

a = TabooVertexCollectionProvider.GetRandomQueue(g);

b = TabooVertexCollectionProvider.GetAllStack(g);

a = TabooVertexCollectionProvider.GetAllQueue(g);

return b;

}

protected override IEnumerable<IEdge> CreateEdges(IVertex newVertex,

IVertex v)

{

IEnumerable<IEdge> a;

EdgeCreator EdgeCreator = new EdgeCreator();

a = EdgeCreator.AddEdgeWithProbability(v, newVertex,

0.051730603003748973D);

return a;

}

protected override void SecondaryActions(IVertex vertex,

TabooVertexCollection vertices)

{

SecondaryVertexProvider SecondaryVertexProvider

= new SecondaryVertexProvider();

int a;

ValueProvider ValueProvider = new ValueProvider();

a = ValueProvider.GetGeometricValue(0.2040185081791219D);

SecondaryVertexProvider.AddNeighbours(vertices, a, vertex);

SecondaryVertexProvider.AddNeighbours(vertices, 4, vertex);

}

}



APPENDIX C. SUPPLEMENTARY RESULTS FOR CHAPTER 8 171

C.2.4 Raw Output for FF250

public class AutoGeneratedClass : InferredUndirectedGraphModel

{

protected override TabooVertexCollection SelectVertices(IGraph g)

{

TabooVertexCollection a;

TabooVertexCollectionProvider TabooVertexCollectionProvider

= new TabooVertexCollectionProvider();

a = TabooVertexCollectionProvider.GetRandomStack(g, 3);

return a;

}

protected override IEnumerable<IEdge> CreateEdges(IVertex newVertex,

IVertex v)

{

IEnumerable<IEdge> a;

EdgeCreator EdgeCreator = new EdgeCreator();

a = EdgeCreator.Duplicate(v, newVertex, 0.41683564494216613D);

return a;

}

protected override void SecondaryActions(IVertex vertex,

TabooVertexCollection vertices)

{

int d;

int c;

int b;

int a;

ValueProvider ValueProvider = new ValueProvider();

a = ValueProvider.GetGeometricValue(0.16351415317669238D);

a = ValueProvider.GetRandomValue(a, a);

b = ValueProvider.GetGeometricValue(0.32204452078884677D);

c = ValueProvider.GetGeometricValue(0.10324204019421807D);

c = ValueProvider.GetRandomValue(b, a);

d = ValueProvider.GetGeometricValue(0.097357993059492665D);

}

}


