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Abstract

Volume(density)-independent pair-potentials cannot describe metallic cohesion ad-

equately as the presence of the free electron gas renders the total energy strongly

dependent on the electron density. The embedded atom method (EAM) addresses

this issue by replacing part of the total energy with an explicitly density-dependent

term called the embedding function. Finnis and Sinclair proposed a model where the

embedding function is taken to be proportional to the square root of the electron

density. Models of this type are known as Finnis-Sinclair many body potentials.

In this work we study a particular parametrization of the Finnis-Sinclair type

potential, called the ”Sutton-Chen” model, and a later version, called the ”Quantum

Sutton-Chen” model, to study the phonon spectra and the temperature variation

thermodynamic properties of fcc metals. Both models give poor results for thermal

expansion, which can be traced to rapid softening of transverse phonon frequencies

with increasing lattice parameter. We identify the power law decay of the electron

density with distance assumed by the model as the main cause of this behaviour and

show that an exponentially decaying form of charge density improves the results sig-

nificantly. Results for Sutton-Chen and our improved version of Sutton-Chen models

are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are

the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic

and isothermal bulk moduli, atomic root-mean-square displacement and Grüneisen

parameter. For the sake of comparison we have also considered two other models

where the distance-dependence of the charge density is an exponential multiplied by

polynomials. None of these models exhibits the instability against thermal expansion

(premature melting) as shown by the Sutton-Chen model.

We also present results obtained via pure pair potential models, in order to identify

advantages and disadvantages of methods used to obtain the parameters of these

potentials.
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Chapter 1

Introduction

Pair potentials have been used to study a wide range of properties of metals includ-

ing bulk, surface and atomic cluster properties. Their computational simplicity and

tractability make them well suited to atomistic level computer simulations as well.

The general form of such a potential is a sum of two pairwise terms, one repulsive and

the other attractive. Many different potentials of this form have been proposed and

studied for various metals. This work can be divided into two parts: the first analyzes

two pair-potentials in their ability to reproduce various thermodynamic properties of

noble metals Cu, Ag and Au.

Going beyond the simple pair-potentials requires the inclusion of many-body inter-

actions. The Sutton and Chen [18] potential is an example of this that was developed

through the Embedded-Atom Method (EAM). The second part of this work will look

at this and its updated version, the Quantum Sutton-Chen potential, in detail. The

EAM represents each atom as being embedded in a host electron density that is the

sum of all neighbouring charge densities. This form of potential offers a solution to

the major limitations of pair potentials that will be discussed in the next section while

retaining much of the mathematical simplicity. Since these EAM potentials have a

repulsive branch that is of the same form as that in a pair potential, it is useful to

1
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have some understanding of how different forms of this term affects results. This was

the motivation for first studying pair-potentials.

The Sutton-Chen and Quantum Sutton-Chen potentials have been analyzed in

various applications. For instance, Liem and Chan have used the Sutton-Chen po-

tential to study adsorption of platinum on graphite walls [19]; Kimura et al. have

applied their Quantum Sutton-Chen model to predict viscosity in Au-Cu alloys [20] as

well as glass formation and crystallization in Cu-Ag and Cu-Ni alloys [21]; Caixing et

al. have studied the rapid solidification of Cu70Ni30 using the Sutton-Chen model in

molecular dynamics (MD) simulations [22]; Akbarzadeh et al. applied the Quantum

Sutton-Chen model to calculate the surface energy of platinum nanoparticles via MD

simulations [23].

There are many models other than the Sutton-Chen; Ryu et al. have taken another

modified EAM potential and altered it to improve results for the melting point and

latent heat predictions of Au and Si [24]. Metal alloying was studied by Groh et al.

using another modified EAM potential by combining the potentials of pure elements

[25]. Lee et al. have analyzed some methods of simulating material systems using a

modified EAM potential [26].

This work is the first exhaustive study of the thermodynamic properties as pre-

dicted by the Sutton-Chen type potentials over a wide temperature range. In the

original Sutton-Chen potential, both the attractive and repulsive contributions have

a power-law form while the modified version has an exponential decay as the attrac-

tive part. This choice was motivated by results of charge density decay from Density

Functional Theory and Hartree-Fock calculations [17, 27]. Also, in the case of the

Sutton-Chen potential, the thermal expansion coefficient is greatly overestimated for

Cu, Ag, Au and Pt. While the quantum version fares better in most cases, the re-

sults are still unsatisfactory. Because of this, a modified Sutton-Chen potential is

developed to attempt to improve results while changing the form of the potential as
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little as possible. Significant improvement is seen in nearly all the properties studied:

phonon spectra, thermal expansion coefficient, adiabatic and isothermal bulk modu-

lus and isobaric heat capacity. Two other potentials by Cleri & Rosato [28] and Dai

et al. [29] that have an exponential form are included for comparison.

1.1 Pair Potentials

Simple pair potentials are fundamentally limited in some respects. A central-force pair

potential will always predict elastic constants C12 = C44 for cubic systems [12, 39].

The energy required to move an atom from the bulk of a crystal to the surface

is known as the vacancy formation energy; the energy to move an atom from the

surface to infinity is the cohesive (also sublimation) energy. Pure pair-potentials

will always predict these two energies to be equal. In reality the vacancy formation

energy is approximately 1/4 to 1/3 the cohesive energy [30]. Pair potentials also

lack any environmental dependence (no distinction between surface and bulk atom

bond strength is possible) and as such are not suitable for calculating properties of

defects and surface interactions. Some attempts have been made to overcome these

limitations such as including a volume-dependent term along with the potential energy

function [31]. This improves the results of pair potentials to an extent by correctly

reproducing the elastic constant relations and some other properties. However, these

potentials are still not suitable for studies of surfaces and interfaces since the volume

of the sample at these areas is unclear. Further, still not included is any angular

dependence of the bonds and there is no fundamental theoretical backing for adding

such volume-dependent terms.

The two pair potentials studied in this work are the Morse [2] and the Erkoç [3]

potential, both of which are empirical. They are applied to Cu, Ag and Au in order

to determine if either parametrization scheme yields consistently better results.
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Morse Potential

The Morse 3-parameter potential has the form

U(r) = D(e−2α(r−r0) − 2e−α(r−r0)) (1.1.1)

where D, α and r0 are adjustable parameters. It has been used to study the formation

energy of point and line defects [2]. This potential has been parametrized for metallic

systems truncated at distances ranging from nearest to twelfth-nearest neighbours.

The parameters were determined by fitting the potential to the sublimation energy at

zero temperature, the equilibrium lattice parameter and the compressibility at zero

temperature and pressure. A second set of parameters for Cu and Au was derived

by setting the total energy equal to the vacancy formation energy rather than the

sublimation energy. The motivation for this parametrization scheme was an overes-

timation of the vacancy formation energy calculated from the initial parameter set.

While these two values should be equal in theory for a pair-potential, experimental

values differ leading to unique values for the parameters. Parameters for the first,

sixth and 12th-nearest neighbour potential are given in Table 1.1.

Erkoç Potential

The Erkoc potential contains eight parameters and has the form [3]:

U(r) =
D21A1e

−α1r2

rλ1

+
D22A2e

−α2r2

rλ2

(1.1.2)

It is formed from pair interactions by fitting the pair potential function to the exper-

imentally determined curve of a metallic dimer [32]. Six of the eight parameters are

fit to this curve while the remaining two (D21 and D22) are used as scaling parame-

ters determined by fitting the potential to the equilibrium lattice parameter and bulk

cohesive energy. While the pairs of parameters D2x and Ax could be combined into

a single constant each, having them written separately highlights the fitting process.
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Table 1.1: Parameters for the Morse potential. The letters in parentheses beside
the element name indicate whether cohesive (coh) or vacancy (vac) formation energy
was used in the fitting. The numbers within these parentheses indicate the number
of neighbor shells used in the calculation of the parameters. For Ag, only one pa-
rameter set was available which was taken from [1]. The remaining parameters are
from Cotterill and Doyama [2] based on cohesive energy, lattice parameter and bulk
modulus.

Metal D (eV) α (Å−1) r0 (Å)
Cu (coh,1) 0.58922 1.35438 2.54756
Cu (coh,6) 0.32688 1.27234 2.89360
Cu (coh,12) 0.32365 1.29415 2.91331
Cu (vac,1) 0.19500 2.342508 2.547564
Cu (vac,6) 0.170073 2.321248 2.592091
Cu (vac,12) 0.170002 2.321628 2.592351
Au (coh,1) 0.603392 1.481405 2.874127
Au (coh,6) 0.420915 1.439041 3.065135
Au (coh,12) 0.418841 1.444322 3.071131
Au (vac,1) 0.163333 2.847319 2.874127
Au (vac,6) 0.156342 2.839503 2.885484
Au (vac,12) 0.156340 2.839513 2.885490
Ag (coh,12) 0.3294 1.3939 3.096
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Table 1.2: Parameters for the Erkoç potential. This potential was first fit to the
experimentally determined curve of each elemental dimer. The terms in the potential
were then scaled by fitting to equilibrium lattice parameter and cohesive energy for
a lattice sum up to eight neighbour shells. Parameters taken from [3] and [1].

Parameter Cu Au Ag
D21 0.436092895 0.888911352 1.00610152
A1 (eV) 110.766008 345.923364 220.262366
λ1 2.09045946 1.04289230 1.72376253
α1 (Å−2) 0.394142248 0.750775965 0.673011507
D22 0.245082238 0.254280292 0.221234242
A2 (eV) -46.1649783 -38.9245908 -26.0811795
λ2 1.49853083 1.05974062 1.81484791
α2 (Å−2) 0.207225507 0.229377368 0.120620395

The parameters are given in Table 1.2. This potential was used to study structural

stability and energetics of 3 to 7 atom micro-clusters [3] as well as calculate the elas-

tic constants and bulk moduli of several elements. It is interesting to compare the

success of these two potentials with regards to bulk properties given that the Morse

potential was fit to such properties whereas the Erkoç potential was not.

1.2 Embedded Atom Method

The embedded atom method was first introduced my Daw and Baskes [33] and is one

attempt to overcome some of the limitations of pair potentials in the description of

metals. The general form of the total energy of a monatomic crystal is

Utot = ǫ

[

1

2

∑

i,j 6=i

V (rij) +
∑

i

F (ρi)

]

(1.2.1)

where V (r) is a pairwise repulsive term accounting for the core-core and Pauli repul-

sive forces and F (ρ) is a many-body attractive term that can generally be expressed

as a sum:

ρi =
∑

j 6=i

φ(rij) (1.2.2)
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F (ρ) may be interpreted in several ways: in the original work by Daw and Baskes

[33] it represents the energy required to embed an atom into a host electron density

ρ(r). This local density is formed from a rigid superposition of the neighbouring

atomic charge densities which are assumed to be spherically symmetric. In this way

it captures the many-body effects that are lacking in pair potentials. An alternate

interpretation of this term (from the view of tight-binding theory) is that it repre-

sents the total band energy—a sum of ”hopping” integrals in the case of transition

metal d-band electrons [4]. Mathematically, however, the two views are equivalent

and provide a straightforward way to include the electronic contribution to metallic

bonding without going through an entire band structure calculation.

There are several different functional forms of F (ρ), each with various points of

justification. Mei and Davenport, for example, used the following form [34]

F (ρ) =− Ec

[

1− α

β
ln

[

ρ

ρe

]] [

ρ

ρe

]α/β

+
1

2
φe

∑

x

sxe
−(px−1)γ (1.2.3)

×
[

1 + (px − 1)δ − px
δ

β
ln

[

ρ

ρe

]] [

ρ

ρe

]px
γ
β

with α = (9BeΩe/Ec)
1/2 (where Be is the equilibrium bulk modulus, Ωe is the atomic

volume and Ec is the cohesive energy), β, γ, δ, ρe and φe being parameters, sx being

the number of atoms in neighbour shell x and px =
√
x. This choice for the density

function was motivated by the fact that for most metals the total energy per atom is

well represented by [35]

E(r1) = −Ec [1 + α(r1/r1e − 1)] e−α(r1/r1e−1) (1.2.4)

where r1 is the nearest-neighbour distance (r1e at equilibrium), Ec is the cohesive

energy and α is given above. Subtracting from this a suitable repulsive two-body

term (in this case, one of similar form to Eq. (1.2.4)) yields the basis for finding



CHAPTER 1. INTRODUCTION 8

F (ρ). The total density was assumed to be exponential: ρ = ρeexp[−β(r1/r1e − 1)]

[34]. This form is only analytic for nearest-neighbour interactions, however, and must

be replaced with a parametrized function to extend the interaction to further atoms.

Following this procedure results in the density function F (ρ) given by Eq. (1.2.3).

Since the scaled binding energy of many metals falls on the same curve, only values

for cohesive energy, bulk modulus and lattice parameter at equilibrium density are

required in order to determine the energy-density relation over the whole range of

densities [35].

Another form of F (ρ) used by Baskes [36] to model covalent bonding in silicon is

F (ρ) = −E0

(

ρ

ρe

)

ln

(

ρ

ρe

)

(1.2.5)

E0 being the cohesive energy and ρe is the equilibium electron density. The justi-

fication for this comes from the fact that the change in first-neighbour distance for

silicon is approximately proportional to the logarithm of the change in the number

of neighbours [36]. That is, r − r0 = β ln(n/n1) with r0 being the nearest-neighbour

distance, β a constant and n/n1 the ratio of the number of nearest neighbours to that

of the reference structure (diamond silicon). There is not, however, any theoretical

backing for choosing this function.

From the results of tight-binding theory comes another density function that is a

simple square-root function [4]:

F (ρi) = −c
√
ρi (1.2.6)

This is a result that comes from the second-moment approximation of the local density

of states in transition metals [35] where the second moment of the density of states is

µ2 =

∫ ∞

−∞

E2D(E)dE (1.2.7)

D(E) is the density of states at energy E. This approximation is based on the
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Table 1.3: Parameters for the Sutton-Chen potential. Cohesive energy and lattice
parameter were fit exactly while m and n were restricted to integers that best repro-
duced the bulk modulus and elastic constants. Values taken from [4]

Metal m n ǫ (eV) c a (Å)
Cu 6 9 1.2382× 10−2 39.432 3.6100
Ag 6 12 2.5415× 10−3 144.41 4.0900
Au 8 10 1.2793× 10−2 34.408 4.0800
Pt 8 10 1.9833× 10−2 34.408 3.9200

Friedel model [30] which assumes that the metallic bonding in transition metals is

dominated by the d-electrons. The density of states of these electrons is then assumed

to be rectangular with a width W and height of 5/W , so that the total number of

states is 5 per atom (corresponding to the 5 unique d-orbitals). The root-mean-

square bandwidth can be shown to be proportional to the square-root of the second

moment of the density of states [37]. Limiting the interaction to nearest-neighbours

and assuming all the orbitals are identical yields a bond energy that is proportional

to the second moment of the density of states. This has the consequence that the

energy per bond decreases as the coordination number increases [38]:

Ebond

z
=

c
√
ρ

z
=

ξ
√
z

z
=

ξ√
z

(1.2.8)

using z as the coordination number and ξ as a term representing individual atomic

contributions to the attractive energy. Such a scheme can be used when dealing with

the nearest-neighbour shell where the distances to the reference atom are the same.

From this alone it can be seen that such a model should be superior to pure pair-

potentials for studying surface and defect properties. This square-root form is used

by Sutton and Chen in their potential and is the one that will be analyzed in detail

in this work.
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1.2.1 The Sutton-Chen Potential

Sutton and Chen [18] used the following power-law form for the pairwise repulsive

part of their potential

V (r) = (a/r)n (1.2.9)

(with n restricted to integer values) and chose the aforementioned
√
ρ density func-

tion. ρi(r) in this case was also chosen to be a power-law function, so that

ρi(rij) =
∑

j 6=i

φj(rij) =
∑

j 6=i

(a/rij)
m (1.2.10)

where m is also restricted to integer values and n > m always. The total energy is

then

Utot = ǫ
∑

i





∑

j 6=i

(

a

rij

)n

− c

(

∑

j 6=i

(

a

rij

)m
)1/2



 (1.2.11)

with the indices i and j running over all lattice sites. The justification for using this

form comes from several key points. Sutton and Chen developed this potential to

study clusters of atoms at both near and far ranges. In order to accommodate this,

the potential was required to have N -body effects at close ranges and smoothly fall

off to an r−6–like van der Waals tail at long ranges. This behaviour is approximately

valid only at long ranges as shown in [18]. Additionally, the many-body term can be

rewritten as a convenient summation

F (ρ) = −c

(

a

r0

)m/2(

s1 +
s2√
2
+

s3√
3
+ . . .

)1/2

(1.2.12)

where r0 is the nearest-neighbour distance and sx is the number of atoms in

neighbour shell x. The summation shown applies to a FCC lattice since the distance

of neighbour shell x is determined by r0
√
x. This expression holds as long as the

lattice is in an undeformed state or is isotropically strained (in which case it can be

described by a change in r0). It is also quite a simple potential, being chiefly defined by

the two parameters n and m while ǫ and a simply define the energy and length scales,
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Table 1.4: Parameters for the Quantum Sutton-Chen potential from [5]. Cohesive
energy and lattice parameter were fit exactly whilem and n were restricted to integers
that best reproduced the bulk modulus, phonon frequencies and elastic constants.

Metal m n ǫ c a (Å)
Cu 5 10 5.7921× 10−3 84.843 3.6030
Ag 6 11 3.9450× 10−3 96.524 4.0691
Au 8 11 7.8052× 10−3 53.581 4.0651
Pt 7 11 9.7894× 10−3 71.336 3.9163

respectively. If m and n are found to be the same for two metals, c will also then be

the same. a was chosen to be the lattice parameter at room temperature leaving four

parameters to be fitted. Values for these were determined by fitting the potential to

the experimental cohesive energy and lattice parameter exactly. Fitting to the bulk

modulus was not done exactly but rather in such a way as to best reproduce it and

C11, C12 and C44 while keeping m and n restricted to integer values. m was further

restricted to be larger than 5 so that the potential did not have too long an interaction

range to be useable in computer simulations. The parameters for Cu, Ag, Au and Pt

are given in Table 1.3.

The Sutton-Chen potential has been revised by Kimura et al. [5] who have in-

cluded quantum corrections. Their idea was to re-parametrize the potential by in-

cluding the zero-point energy of the lattice in the free energy. Parameters c and ǫ

were determined by equating the free energy to the cohesive energy when the lattice

parameter is equal to its experimental value at 0K. This produced a number of candi-

date sets of parameters n and m. Choices for these were then determined by selecting

those integer values that best reproduced the elastic constants, bulk modulus and

phonon frequencies. Values for these parameters for the metals considered are given

in Table 1.4.

Motivated by some unsatisfactory results of the Sutton-Chen potential and, to a

lesser extent, the quantum Sutton-Chen potential (particularly for the thermal expan-
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sion coefficient and heat capacity), we developed a modified version of the potential.

The aim was to improve results while making minimal changes to the potential. It

is shown in Chapter 4 that the electron density of atoms is better represented by an

exponential decay at distances close to the nearest-neighbour separation, a result that

clearly cannot be described by the power-law interaction present in the Sutton-Chen

potential. Because the force constants required to calculate phonon frequencies (and

hence other dynamical properties) are directly related to the derivatives of the em-

bedding function, the form of that function is critical in describing those properties.

Thus the exponential form chosen for the density is:

ρi =
∑

j 6=i

e−α(rij/a−1) (1.2.13)

with a once again being the length scaling parameter (chosen to be the lattice constant

at room temperature) and α is an adjustable parameter.

The second chapter of this work details the theoretical background required to cal-

culate various thermodynamical properties. Following this are results for the Morse,

Erkoç and both Sutton-Chen potentials. In the fourth chapter, the motivation and

derivation of the Modified Sutton-Chen potential is outlined. The fifth introduces

two other potentials that employ an exponential density function. The sixth and

final chapter discusses the results of this work.



Chapter 2

Theory and Calculations

2.1 Phonon Dispersion Curves

2.1.1 Theory of Lattice Vibrations

To calculate the phonon dispersion curves, it is sufficient to consider a primitive

crystal without loss of generality. Employing a periodic primitive cell and an infinitely

extended crystal, displacement of each atom i from its equilibrium position re(i) by

the vector u(i) may be expressed as

r(i) = re(i) + u(i) (2.1.1)

with components given by

rα(i) = rαe (i) + uα(i) (2.1.2)

where α = x, y, z. The total energy of the crystal can then be written as

T =
∑

i,α

1

2
Miu̇

2
α(l) (2.1.3)

where M(i) is the mass of atom i and the summation is carried out over all atoms in

the crystal. The total potential energy of the crystal is taken to be Φ [40], a function

13
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of the instantaneous positions of all the atoms in the crystal. This function can be

expanded into a Taylor series of the atomic displacements u(i):

Φ = Φe +
∑

i,α

Φα(i)uα(i) +
1

2

∑

i,j
α,β

Φαβ(i, j)uα(i)uβ(j)

+
1

3!

∑

i,j,k
α,β,γ

Φαβγ(i, j, k)uα(i)uβ(j)uγ(k) + . . . (2.1.4)

with Φe representing the energy of the crystal when all atoms are in their rest po-

sitions. Subsequent terms in the expansion involve derivatives of the potential with

respect to atomic displacements, so that:

Φα(i) =
∂Φ

∂uα(i)

∣

∣

∣

∣

e

(2.1.5)

Φαβ(i, j) =
∂2Φ

∂uα(i)∂uβ(j)

∣

∣

∣

∣

e

(2.1.6)

Φαβγ(i, j, k) =
∂3Φ

∂uα(i)∂uβ(j)∂uγ(k)

∣

∣

∣

∣

e

(2.1.7)

where the derivatives are evaluated with all atoms in their equilibrium positions. The

coefficients Φαβ(i, j) are known as the atomic force constants of the crystal. The

coefficients in 2.1.4 are symmetric, such that

Φαβ(i, j) = Φβα(j, i) (2.1.8)

Φαβγ(i, j, k) = Φβαγ(j, i, k) = Φγαβ(k, i, j) = Φαγβ(k, j, i)

= Φγβα(i, k, j) (and all other permutations) (2.1.9)

since the order of a mixed partial derivative is not important. From the definition

of Eq. 2.1.5, it is clear that Φα(i) is the negative of the force acting on the particle

at r(i) in the α direction. In equilibrium, this term must be zero since the net force
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on any individual atom must be zero:

Φα(i) = − Fα(i)|e (2.1.10)

Fα(i) denotes the Cartesian component α of a force F(i) on an atom at r(i). An

extension of this interpretation of 2.1.5 can be applied to 2.1.6: it is the negative rate

of change of the force in direction α on atom i with respect to displacement of atom

j in the β direction, all other atoms remaining in their equilibrium positions. It can

be written as

Φαβ(i, j) = − ∂Fα(i)

∂uβ(j)

∣

∣

∣

∣

e

(2.1.11)

A number of conditions may be imposed on the force constants by subjecting the

lattice as a whole to an infinitesimal rigid body translation v. The potential and

its derivatives must remain unchanged since these term all depend on the relative

separation of atoms. Because of this, the following must hold [41]:

∑

i

Φα(i) = 0 (2.1.12)

∑

i

Φαβ(i, j) =
∑

j

Φαβ(i, j) = 0 (2.1.13)

∑

i

Φαβγ(i, j, k) =
∑

j

Φαβγ(i, j, k) =
∑

k

Φαβγ(i, j, k) = 0 (2.1.14)

and so on for higher order terms.

The hamiltonian for the crystal is simply the sum of the kinetic and potential

energies:

H = T +Φ (2.1.15)

Working in the harmonic approximation, where all terms in the expansion of Φ (2.1.4)

with derivatives of higher order than 2 are neglected, the vibrational Hamiltonian
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takes the form

H = Φe +
1

2

∑

α,i

Miu̇
2
α(i) +

1

2

∑

i,j
α,β

Φαβ(i, j)uα(i)uβ(j) (2.1.16)

If we write the momentum of the lth atom as p(l) with components pi(l), equation

2.1.16 may be written as

H = Φe +
∑

α,i

p2α(i)

2Mi

+
1

2

∑

i,j
α,β

Φα,β(i, j)uα(i)uβ(j) (2.1.17)

and from this a set of equations of motion may be obtained:

Miüα(i) = − ∂Φ

∂uα(i)
= −

∑

j,β

Φαβ(i, j)uβ(j) (2.1.18)

These form a set of simultaneous linear differential equations whose solutions may

be simplified by the use of periodic boundary conditions and the constraints on the

atomic force constants that follow from symmetries of the crystal. These restrictions

come from the fact that the potential energy must be independent of rigid translations

and rotations of the crystal as well as reflections in any symmetry planes. Solutions

to this set of equations are then chosen to be

uα(i) =
1√
Mi

eα(i|ks)e
−iωs(k)t+ik·r(l) (2.1.19)

The vector k is called the wave vector and it has magnitude 2π divided by the

wavelength of an elastic wave propagating through the medium. Its direction is of

course in the direction of propagation of the wave. The subscript s denotes the

polarization of the phonons and takes one of three values (1,2,3) in a 3-dimensional

crystal. The coefficients eα(i|ks) satisfy

ω2
s(k)eα(i|ks) =

∑

j,β

Dαβ(i, j|k)eβ(j|ks) (2.1.20)
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where Dαβ(i, j|k) is the dynamical matrix and is given by:

Dαβ(i, j|k) =
1

√

MiMj

∑

j

Φαβ(i, j)e
−ik·(r(i)−r(j)) (2.1.21)

D is a hermitian matrix and has the following properties:

Dαβ(i, j|k) = D∗
αβ(j, i|k) (2.1.22)

Dαβ(i, j| − k) = D∗
αβ(i, j|k) (2.1.23)

In order to obtain a non-trivial solution to Eq. 2.1.20, the determinant of coefficients

must vanish:
∣

∣Dαβ(i, j|k)− ω2
s(k)δαβδij

∣

∣ = 0 (2.1.24)

which is a 3 × 3 secular equation. The roots of the eigenvalues of the dynamical

matrix are the phonon frequencies ωs(k) which of course have three values for each

value of k.

Since Eq. 2.1.20 defines eα(i|ks) only to within an arbitrary constant, they are

also assumed to satisfy orthonormality and closure conditions:

∑

α

e∗α(i|ks)eα(i|ks′) = δss′ (2.1.25)

∑

s

e∗α(i|ks)eβ(j|ks) = δαβδij (2.1.26)

In the following sections, calculations involving derivatives with respect to atomic

positions ri are used in place of the atomic displacements u(i) for clarity. Because

the two are related linearly, the results remain unaffected.

2.1.2 Phonon Frequencies

We now apply the theory of phonon vibration to the Sutton-Chen potential, keeping

the notation of the previous section. Beginning with the general form of the total
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energy from Eq. 1.2.1 and using 1.2.6, the potential between any pair of atoms i, j is

Φ = ǫ
[

V (rij)− c
√
ρi
]

(2.1.27)

where rij = |rj − ri|.

Following the expansion in Eq. 2.1.4, the first term is

Φα(i, j) = ǫ

[

∂V (rij)

∂rαij
− c

∂

∂rαij

(

ρ
1/2
i

)

]

(2.1.28)

which using Eq. 1.2.2 then becomes

Φα(i, j) = ǫ

[

V ′(rij)
rαij
rij

− c

2ρ
1/2
i

(

∑

k 6=j

φ′(rjk)
rαjk
rjk

)]

(2.1.29)

with the primes denoting derivatives with respect to the functions’ variables and

rαij = rαj − rαi (the distance between atoms i and j). The first derivative does not

appear in the dynamical matrix, however, because at equilibrium the net force on

each atom is zero. The second derivative is required and it is given below:

Φαβ(i, j) = −ǫ

[

(

V ′′
ij − V ′

ij

)rαijr
β
ij

r2ij
+ V ′

ij

δαβ
r2ij

]

− ǫc

4ρ
3/2
i

(

∑

k 6=i

φ′
ij

rαik
rik

)

φ′
ij

rβij
rij

+
ǫc

2ρ
1/2
i

[

(

φ′′
ij − φ′

ij

)rαijr
β
ij

r2ij
+ φ′

ij

δαβ
r2ij

]

+
ǫc

4ρ
3/2
j

φ′
ij

rαij
rij

(

∑

k 6=j

φ′
jk

rβjk
rjk

)

+
ǫc

2ρ
1/2
j

[

(

φ′′
ij − φ′

ij

)rαijr
β
ij

r2ij
+ φ′

ij

δαβ
r2ij

]

+
1

4

∑

k 6=i,j

[

ǫc

ρ
3/2
k

(

φ′
ik

rαik
rik

φ′
jk

rβjk
rjk

)

]

(2.1.30)

From Eqs. 1.2.9 and 1.2.10 we have:

V ′
ij = V ′(rij) = −n

an

rn+1
ij

(2.1.31)

V ′′
ij = V ′′(rij) = (n2 + n)

an

rn+2
ij

(2.1.32)

φ′
ij = φ′(rij) = −m

am

rm+1
ij

(2.1.33)

φ′′
ij = φ′′(rij) = (m2 +m)

am

rm+2
ij

(2.1.34)
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Using Eq. 2.1.13, it can be seen that

Φαβ(i, i) = −
∑

j 6=i

Φ(i, j) (2.1.35)

which means that Eq. 2.1.21 may be rewritten:

Dαβ(i, j|k) =
1

√

MiMj

∑

j

Φαβ(i, j)e
−ik·(r(i)−r(j))

=
1

√

MiMj

[

Φαβ(i, i) +
∑

j 6=i

Φαβ(i, j)e
−ik·(r(i)−r(j))

]

(2.1.36)

=
1

√

MiMj

∑

j 6=i

[

Φαβ(i, j)e
−ik·(r(i)−r(j)) − 1

]

Combining this result with Eq. 2.1.30 allows one to calculate the dynamical matrix

for this model. Eight neighbour shells were included in the calculations for the Sutton-

Chen and Quantum Sutton-Chen potentials (a total of 141 atoms) while the Modified

Sutton-Chen utilized six shells (87 atoms). Solving the secular equation (2.1.24) then

leads to the phonon frequencies by simply taking the square-root of the eigenvalues.

In the case of pair potentials, Eq. 2.1.30 reduces to

Φαβ(i, j) = −ǫ

[

(

V ′′
ij − V ′

ij

)rαijr
β
ij

r2ij
+ V ′

ij

δαβ
r2ij

]

(2.1.37)

Also true for pair-potentials is a simplified calculation of the elements of the 3 × 3

dynamical matrix via [42]

Dii =
8

M

∑

s

ns

48

∑

j

αs
j

{

2− Cs
j,i

[

Cs
j+1,i+1C

s
j+2,i+2 + Cs

j+2,i+1C
s
j+1,i+2

]}

Di,i+1 =
8

M

∑

s

ns

48

∑

j

βs
jC

s
j,i+2

[

Ss
j+1,iS

s
j+2,i+1 + Ss

j+2,iS
s
j+1,i+1

]

(2.1.38)

where

Cs
j,i = cos(πahs

jki), Ss
j,i = sin(πahs

jki) (2.1.39)

ns is the number of neighbours in shell s, M is the atomic mass and αs
j and βs

j are

the atomic force constants. hs
j are the atomic position vector components and the ki
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are the components of the incident wavevector k. Subscripts of the form i + 1 and

i+ 2 whose values are greater than 3 are interpreted as i− 2 and i− 1, respectively

(likewise for j).

In order to make use of these frequencies for computing dynamical properties, a

continuum of points describing the First Brillouin Zone (FBZ) would theoretically be

required. In practice, one uses a mesh of points to approximate the FBZ; in this work

a 20×20×20-point mesh was used. For each of these k-values, the dynamical matrix

was computed and the eigenvalues obtained.

2.2 Thermodynamical Properties

2.2.1 Zero-Point Energy

To determine the zero-point energy of the vibrational Hamiltonian, we begin with the

introduction of a pair of operators, b†
ks

and bks
. These are the phonon creation and

annihilation operators, respectively. They satisfy the commutation relations

[

bks
, bk′

s′

]

=
[

b†
ks
, b†

k′
s′

]

= 0 (2.2.1)

[

bks
, b†

k′
s′

]

= ∆(k− k′)δss′ (2.2.2)

where

∆(k) =
1

N

∑

i

eik·ri (2.2.3)

It is convenient to use expansions of uα
i and pαi in terms of plane waves, so that

uα
i =

(

~

2NMi

)1/2
∑

ks

1
√

ωs(k)
eα(i|ks)e

ik·ri

[

bks
+ b†−ks

]

(2.2.4)

pαi = −i

(

~Mi

2N

)1/2
∑

ks

√

ωs(k)eα(i|ks)e
ik·ri

[

bks
− b†−ks

]

(2.2.5)
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where ~ is the reduced Planck’s constant, N is the number of primitive cells in a

parallelepiped which fills all of the crystal space (without gaps or overlap), ri is the

displacement between the reference atom and atom i and k and k′ are restricted to

lie inside the FBZ. The derivation of the above is similar to that of the raising and

lowering operators of the simple harmonic oscillator [41]. Making use of these new

operators yields the following expression for the Hamiltonian:

H =
∑

ks

~ωs(k)

[

b†
ks
bks

+
1

2

]

(2.2.6)

Defining the ground state as

bks
|0〉 = 0 (2.2.7)

for all ks, the solutions to the Hamiltonian (2.2.6) can be written:

|ns1(k1), . . . , ns3(k1), . . . , ns1(kN , . . . , ns3(kN)〉

=

(

N
∏

k

3
∏

s=1

(nks
)!

)−1/2 N
∏

k

3
∏

s=1

(b†
ks
)nks |0〉 (2.2.8)

with energy eigenvalues

E(nks
) =

N
∑

k

3
∑

s=1

~ωs(k)

[

nks
+

1

2

]

(2.2.9)

where nks
= 0, 1, 2, . . . is the number of phonons of frequency ωs(k) present in state

(2.2.8). Looking at Eq. 2.2.9, the zero-point energy is clearly the energy when nks
= 0,

E0 =
∑

ks

1

2
~ωs(k) (2.2.10)

2.2.2 Linear Thermal Expansion

Derivation of the thermodynamical functions of a crystal in the harmonic approxi-

mation begins with the partition function:

Z = Tr{e−βH} (2.2.11)
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with H being the Hamiltonian and β = 1/kBT (where kB is Boltzmann’s constant

and T is the absolute temperature). Working in the space in which H is diagonal,

the partition function can be written as

Z =
∞
∑

nk1
s1=0

· · ·
∞
∑

nkNs3
=0

exp

{

−β
∑

ks

~ωs(k)

[

nks
+

1

2

]

}

=
∏

ks

e−
1

2
β~ωs(k)

1− e−β~ωs(k)
(2.2.12)

When working with thermodynamic properties of materials at equilibrium, the Helm-

holtz free energy is most useful since those properties depend on the minimum of that

energy. It is formally defined as

F = U − TS (2.2.13)

where U is the internal energy and S is the entropy of the system. In dealing with

phonon vibrational energy, it can also be related to the partition function via

Fvib = −kBT logZ = kBT
∑

ks

log
[

2sinh
~ωs(k)

2kBT

]

(2.2.14)

Using Eq. 2.2.13, the differential energy can be expressed as

dF = −SdT − PdV + µdN (2.2.15)

where the relation

dS =
1

T
(dU + PdV − µdN) (2.2.16)

was used [43]. Since in our case the number of particles is constant, dN = 0 and the

following relation for entropy emerges:

S = −
(

∂F

∂T

)

V

(2.2.17)
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Making use of Eq. 2.2.14,

Svib = kB
∑

ks

[

~ωs(k)

2kBT
coth

(

~ωs(k)

2kBT

)

− log

{

2sinh
(

~ωs(k)

2kBT

)

}

]

(2.2.18)

Combining Eqs. 2.2.14 and 2.2.18 yields

Uvib = Fvib + TSvib =
∑

ks

1

2
~ωs(k)coth

(

~ωs(k)

2kBT

)

(2.2.19)

Having an expression for the vibrational contribution to the internal energy, we now

add to it the static energy of the crystal to obtain the full Helmholtz free energy at

temperature T and volume V (or equivalently at lattice parameter a):

F (a, T ) = Utot + Fvib(a, T ) = Utot + kBT
∑

ks

log
{

2sinh
~ωs(k, a)

2kBT

}

(2.2.20)

Utot is the static crystal contribution to the energy. The vibration free energy Fvib is

an explicit function of T and an implicit function of a through the phonon frequencies

ωs(k, a). The contribution to the free energy from the electron gas has been neglected

since it is small and insignificant below about 10K [12].

Given that there is zero pressure on the crystal, the equilibrium lattice parameter

at a temperature T can be determined by minimizing the free energy as follows:

(

∂F (a, T )

∂a

)

T

=
∂U

∂a
+

(

∂Fvib(a, T )

∂a

)

T

= 0 (2.2.21)

When working with this expression, it is convenient to express it in terms of the

energy per atom rather than the total energy. As was stated in the previous section,

the summation of the k vectors is carried out on a 20 × 20 × 20-point mesh in the

FBZ to determine the vibrational contribution to the free energy. This is carried out

for each value of T over a range from nearly 0K to 1250K in increments of 10K. The

lattice parameter is varied at each value of T until (2.2.21) is satisfied. This value of

a is then taken to be the equilibrium lattice parameter at that T and labeled ae(T ).
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The linear thermal expansion coefficient can then be determined using

α(T ) =
1

ae(T )

(

dae(T )

dT

)

P

(2.2.22)

However, in order to compare theoretical results with those obtained from experiment,

a rescaled version of Eq. 2.2.22 is used:

α(T ) =
1

ae(Tc)

(

dae(T )

dT

)

P

(2.2.23)

where Tc is a reference temperature, set to 293K for the results in this work.

2.2.3 Isothermal Bulk Modulus

The isothermal bulk modulus describes a substance’s resistance to compression and

is the inverse of the isothermal compressibility. Deriving an expression for BT , the

bulk modulus in question, begins by obtaining the equation of state for the system.

At a given T and V , the pressure is given by

P = −
(

∂F

∂V

)

T

(2.2.24)

The bulk modulus has volume dependence given by [43]

BT = −V

(

∂P

∂V

)

T

(2.2.25)

which when combined with 2.2.24 yields:

BT = V

(

∂2F

∂V 2

)

T

= V

(

∂2U

∂V 2

)

T

+ V

(

∂2Fvib(a, T )

∂V 2

)

T

(2.2.26)

It is convenient to express this derivative in terms of lattice parameter rather than

volume, a modification that can be achieved by using the volume per atom in a FCC
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crystal:

V =
1

4
a3 (2.2.27)

∂V

∂a
=

3

4
a2 (2.2.28)

and so,

∂V =
3

4
a2∂a (2.2.29)

Eq. 2.2.26 then becomes

BT =
4

9a

[(

∂2U

∂a2

)

T

+

(

∂2Fvib(a, T )

∂a2

)

T

]

(2.2.30)

and is calculated numerically since the a dependence of Fvib(a, T ) is implicit in the

phonon frequencies.

2.2.4 Heat Capacity CV and CP

Eq. 2.2.19 can be used to determine the specific heat at constant volume of the

crystal, CV .

CV =
∑

k,s

CV (ks) =

(

∂U

∂T

)

V

= kB
∑

ks

(

~ωs(k)

2kBT

)2
1

sinh2[~ωs(k)/2kBT ]
(2.2.31)

This accounts for the phonon contribution to the specific heat but neglects the elec-

tronic contribution. This must be added separately:

CV = Cph
V + Cel

V (2.2.32)

The electronic contribution can be calculated using the density of states at the Fermi

level as was done previously in [44] using the STUTTGART TB-LMTO-ASA pro-

gram.

The specific heat at constant pressure, CP , is related to that at constant volume
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by

CP − CV = −T

(

∂V

∂T

)2

T

(

∂P

∂V

)

T

(2.2.33)

which can be written

CP − CV = α2
VBTV T (2.2.34)

by using the definition of the volume thermal expansion:

αV =
1

V

(

∂V

∂T

)

P

(2.2.35)

The volume thermal expansion coefficient is simply derived from the linear thermal

expansion coefficient via αV = 3α. Once again converting Eq. 2.2.34 into an ex-

pression involving lattice parameter rather than volume and adding in the electronic

contribution yields

CP = Cph
V + Cel

V +
9a3

4
α2BTT (2.2.36)

Once again the calculation is done by using a set number of irreducible points in the

FBZ to carry out the summation over the phonon frequencies. This allows the third

term in Eq. 2.2.36 to be determined, at which point it is added to the other two

terms to obtain the results for the temperature-dependent CP .

2.2.5 Adiabatic Bulk Modulus

Starting with the adiabatic compressibility [43],

KS(T ) = − 1

V

(

∂V

∂P

)

S

(2.2.37)

the adiabatic bulk modulus can be written as the reciprocal of the compressibility:

BS(T ) =
(

KS(T )
)−1

= −V

(

∂P

∂V

)

S

(2.2.38)
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Similarly, the isothermal compressibility is

K(T ) = − 1

V

(

∂V

∂P

)

T

(2.2.39)

which is of course the reciprocal of the isothermal bulk modulus. It can then be

shown [43] that

K(T )−KS(T ) =
TV α2

V (T )

CP

(2.2.40)

which can be combined with Eq. 2.2.34 to yield

CP (K(T )−KS(T )) = K(T )(CP − CV ) (2.2.41)

and so,

BS(T ) =
CP

CV

B(T ) (2.2.42)

2.2.6 Grünesien Parameter

The Grüneisen parameter describes the relative rate of change of phonon frequencies

with volume. It can be derived beginning with the equation of state:

P = −
(

∂F

∂V

)

T

= −∂U(a)

∂V
+

1

V

∑

k,s

γs(k)ǫ(ωs(k)) (2.2.43)

where the Grüneisen parameter γs(k) for each phonon mode s with wavevector k is

given by

γs(k) = − V

ωs(k)

∂ωs(k)

∂V
(2.2.44)

The mean vibrational energy, ǫ, of the phonon modes is

ǫ
(

ωs(k)
)

= ~ωs(k)

[

1

2
+

1

e~ωs(k)/kBT − 1

]

(2.2.45)

The overall Grüneisen parameter is taken as an average of the individual parameters

for each vibrational mode. These are weighted by the isochoric heat capacity CV (k, s)
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of each phonon mode. Thus,

γ(T ) =

∑

k,s γs(k)CV (k, s)
∑

k,s CV (k, s)
(2.2.46)

whre the weight factors CV (k, s) are calculated using Eq. 2.2.31. Due to the difficulty

in experimentally measuring this parameter, the available data is limited. It can also

be calculated using several bulk properties of the solid, as shown below:

γ =
α

BTCV ρ
(2.2.47)

where ρ is the density of the solid and the other variables are as they were defined

previously. This is a less accurate definition of γ, however, due to the fact that all

phonon modes are implicitly given equal weight.

2.2.7 Root-Mean-Square Displacement

The root-mean-square (RMS) displacement of atoms in a crystal describes the (ther-

mally averaged) deviation of their positions from equilibrium values. Such an expres-

sion can be derived from the partition function and is given by [40]

〈

ū2
〉

T
=
∑

k,s

~

2Mωs(k)
coth

(

β~ωs(k)

2

)

(2.2.48)

This can be a useful tool for predicting melting temperatures of solids, as was first

discussed by Lindemann [45]. He stated that RMS displacement of atoms in a crystal

in excess of 10 − 12% of the nearest-neighbour distance can be interpreted as the

beginning of melting. Because this value is only an estimate of when melting should

occur, one cannot fault a potential for not reproducing this result exactly. Only large

deviation from it may be considered significant.



Chapter 3

Results

3.1 Pair-Potentials

Shown in Figs. 3.1 to 3.21 are the phonon dispersion curves, thermal expansion

coefficient, adiabatic and isothermal bulk moduli, specific heat at constant pressure,

Grüneisen parameter and root-mean-square displacement as a function of temperature

for the Morse and Erkoç potentials. The Morse potential has two sets of parameters

associated with it, one determined using the vacancy formation energy and the other

using sublimation energy. They are denoted Morse-V and Morse-S, respectively. In

the following calculations the interaction range of the potentials was extended to

include up to twelve neighbour shells.

For both Cu and Ag, the Erkoç potential performs significantly better than the

Morse-V and Morse-S when predicting the phonon dispersion curves. For Cu, the

Erkoç predicts frequencies that are 4% too high at the X-point while the Morse-V

and Morse-S overestimate the values by 14% and 40%, respectively. The slopes of

these curves near the zone center are considerably lower for the Erkoç, however. Ag

presents a similar situation where the Erkoç predicts frequencies 9% too high in the

[100] direction while the Morse-S is far higher at 39% at the X-point. The situation

29
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Figure 3.1: Phonon dispersion curves for Cu as calculated using the Morse and Erkoç
potentials. Experimental data taken from [6].
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Figure 3.2: Phonon dispersion curves for Ag as calculated using the Morse and Erkoç
potentials. Experimental data taken from [7].
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Figure 3.3: Phonon dispersion curves for Au as calculated using the Morse and Erkoç
potentials. Experimental data taken from [8].

changes for Au where the Morse-V is now closest to experiment, albeit only just. All

calculated curves are far too high for the transverse branches, particularly in the [100]

direction. The Morse-V is nearest with a 21% overestimation.
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Figure 3.4: Thermal expansion coefficient for Cu as calculated using the Morse and
Erkoç potentials. Experimental data taken from [9].

0 100 200 300 400 500
Temperature (K)

0

0.5

1

1.5

2

B
S (

10
11

P
a)

Exp Data
Morse-V
Morse-S
Erkoç

Figure 3.5: Adiabatic bulk modulus for Cu as calculated using the Morse and Erkoç
potentials. Experimental data taken from [10].
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Figure 3.6: Isothermal bulk modulus for Cu as calculated using the Morse and Erkoç
potentials. Experimental data taken from [11] and [12].
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Figure 3.7: Specific heat at constant pressure for Cu as calculated using the Morse
and Erkoç potentials. Experimental data taken from [13].
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Figure 3.8: Grüneisen parameter for Cu as calculated using the Morse and Erkoç
potentials. Experimental data taken from [14].
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Figure 3.9: Atomic root-mean-square displacement for Cu as calculated using the
Morse and Erkoç potentials.
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Figure 3.10: Thermal expansion coefficient for Ag as calculated using the Morse and
Erkoç potentials. Experimental data taken from [9].
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Figure 3.11: Adiabatic bulk modulus for Ag as calculated using the Morse and Erkoç
potentials. Experimental data taken from [15].
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Figure 3.12: Isothermal bulk modulus for Ag as calculated using the Morse and Erkoç
potentials. Experimental data taken from [11] and [12].
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Figure 3.13: Specific heat at constant pressure for Ag as calculated using the Morse
and Erkoç potentials. Experimental data taken from [13].
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Figure 3.14: Grüneisen parameter for Ag as calculated using the Morse and Erkoç
potentials. Experimental data taken from [14].
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Figure 3.15: Atomic root-mean-square displacement for Ag as calculated using the
Morse and Erkoç potentials.
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Figure 3.16: Thermal expansion coefficient for Au as calculated using the Morse and
Erkoç potentials. Experimental data taken from [9].
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Figure 3.17: Adiabatic bulk modulus for Au as calculated using the Morse and Erkoç
potentials. Experimental data taken from [15].
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Figure 3.18: Isothermal bulk modulus for Au as calculated using the Morse and Erkoç
potentials. Experimental data taken from [11] and [12].

As can be seen in the results, each potential has its strengths and weaknesses. The

Erkoç potential performs very well for predicting the thermal expansion coefficients

and heat capacities of all metals considered here. The Morse potential, however, bet-

ter describes the bulk moduli in all cases. This can be explained by the way the two

models were fitted to determine their parameters. The Erkoç potential was not fit to

bulk properties at all; six of the eight parameters were fit to the potential curve of

a dimer of each element while the remaining two parameters were determined by a

many-body fitting to equilibrium lattice parameter and cohesive energy. This is the

only way that many-body effects are captured in this potential. The Morse poten-

tial was fit directly to the experimentally determined compressibility of each metal,

thereby immediately guaranteeing that the bulk modulus will be well represented also

(since one is the reciprocal of the other). Evidently this sort of fitting fails to properly

represent the thermal expansion coefficient. It seems that having more parameters

does improve results overall, as evidenced by the superior performance of the Erkoç

potential in most cases.
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Figure 3.19: Specific heat at constant pressure for Au as calculated using the Morse
and Erkoç potentials. Experimental data taken from [13].
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Figure 3.20: Grüneisen parameter for Au as calculated using the Morse and Erkoç
potentials. Experimental data taken from [16].
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Figure 3.21: Atomic root-mean-square displacement for Au as calculated using the
Morse and Erkoç potentials.

3.2 EAM Results

Sutton-Chen and Quantum Sutton-Chen

Results for the Sutton-Chen and Quantum Sutton-Chen are plotted in Figs. 3.22 to

3.49. The Sutton-Chen potential results are denoted by SC and the Quantum Sutton-

Chen results are denoted by Q-SC. As was done by Kimura et al., the interaction range

is taken to include eight neighbour shells (a distance of two lattice parameters).

The predicted phonon dispersion curves for the Sutton-Chen and Quantum Sutton-

Chen potentials are given in Figs. 3.22 to 3.25. The SC potential does not predict

the phonon frequencies very well in the symmetry directions shown here. For Cu,

values are 16% too low at the X-point in the [100] longitudinal branch. They are 7%

too high for Ag, 35% too low for Au and 32% too low for Pt. The QSC improves

on these results quite dramatically: the longitudinal branch in the [100] direction is

3.7% too low for Cu, 4% for Ag, 23% for Au and 11% for Pt. Compared with the

pair-potential results, the QSC performs slightly better for Cu and Ag. The situation

for Au is different since there are large discrepancies between calculations and exper-
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Figure 3.22: Phonon dispersion curves for Cu as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [6].
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Figure 3.23: Phonon dispersion curves for Ag as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [7].
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Figure 3.24: Phonon dispersion curves for Au as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [8].
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Figure 3.25: Phonon dispersion curves for Pt as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [8].
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Figure 3.26: Thermal expansion coefficient for Cu as calculated using the Sutton-
Chen and Quantum Sutton-Chen potentials. Experimental data taken from [9].

iment for different branches. The Morse-V potential fares better for the longitudinal

[100] branch while the many-body QSC performs better on the transverse branch in

the same direction.

The Quantum Sutton-Chen potential shows marked improvement over the Sutton-

Chen in all properties studied here for all metals except Ag. The thermal expansion

coefficient is still overestimated in both cases, however. The predicted melting point

of Cu ranges from 550K to 700K for the Sutton-Chen potential and 700K to 800K for

the Quantum Sutton-Chen potential. Neither of these agrees with the actual value

of 1358K.
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Figure 3.27: Adiabatic bulk modulus for Cu as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [10].
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Figure 3.28: Isothermal bulk modulus for Cu as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [11] and [12].
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Figure 3.29: Specific heat at constant pressure for Cu as calculated using the Sutton-
Chen and Quantum Sutton-Chen potentials. Experimental data taken from [13].
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Figure 3.30: Grüneisen parameter for Cu as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [14].
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Figure 3.31: Atomic root-mean-square displacement for Cu as calculated using the
Sutton-Chen and Quantum Sutton-Chen potentials.
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Figure 3.32: Thermal expansion coefficient for Ag as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [9].
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Figure 3.33: Adiabatic bulk modulus for Ag as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [15].
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Figure 3.34: Isothermal bulk modulus for Ag as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [11] and [12].
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Figure 3.35: Specific heat at constant pressure for Ag as calculated using the Sutton-
Chen and Quantum Sutton-Chen potentials. Experimental data taken from [13].
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Figure 3.36: Grüneisen parameter for Ag as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [14].
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Figure 3.37: Atomic root-mean-square displacement for Ag as calculated using the
Sutton-Chen and Quantum Sutton-Chen potentials.
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Figure 3.38: Thermal expansion coefficient for Au as calculated using the Sutton-
Chen and Quantum Sutton-Chen potentials. Experimental data taken from [9].
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Figure 3.39: Adiabatic bulk modulus for Au as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [15].

Au was seen to be a particularly difficult element to properly predict and the

situation is unchanged with these potentials. The thermal expansion coefficient is

largely overestimated, about 3 times larger than experiment for the SC and nearly

twice as large for Q-SC potential at 300K. The adiabatic bulk modulus is 25% too

low for the SC and 10% too low for the Q-SC case.
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Figure 3.40: Isothermal bulk modulus for Au as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [11] and [12].
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Figure 3.41: Specific heat at constant pressure for Au as calculated using the Sutton-
Chen and Quantum Sutton-Chen potentials. Experimental data taken from [13].
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Figure 3.42: Grüneisen parameter for Au as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [16].
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Figure 3.43: Atomic root-mean-square displacement for Au as calculated using the
Sutton-Chen and Quantum Sutton-Chen potentials.
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Figure 3.44: Thermal expansion coefficient for Pt as calculated using the Sutton-Chen
and Quantum Sutton-Chen potentials. Experimental data taken from [9].

Since Pt is not in the same group as the other three studied in this work, it can give

further insight into these potentials. Here the Q-SC shows a dramatic improvement

over the SC potential in all areas except isothermal bulk modulus where it is difficult

to decide the superior result. Specific heat is particularly well described by the Q-SC.

A trend can be identified here where the thermal expansion coefficient is much too

high with these potentials. CP is also seen to diverge at higher temperatures in a

similar manner for the unmodified SC potential.
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Figure 3.45: Adiabatic bulk modulus for Pt as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [15].
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Figure 3.46: Isothermal bulk modulus for Pt as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [11] and [12].
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Figure 3.47: Specific heat at constant pressure for Pt as calculated using the Sutton-
Chen and Quantum Sutton-Chen potentials. Experimental data taken from [13].
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Figure 3.48: Grüneisen parameter for Pt as calculated using the Sutton-Chen and
Quantum Sutton-Chen potentials. Experimental data taken from [16].
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Figure 3.49: Atomic root-mean-square displacement for Pt as calculated using the
Sutton-Chen and Quantum Sutton-Chen potentials.



Chapter 4

Modified Sutton-Chen Potential

4.1 Motivation

From the results of the previous section it can be seen that there is an inherent

instability in the Sutton-Chen (SC) potential at high temperatures. The results for

thermal expansion are overestimated which in turn causes the same for the heat

capacity. Both isothermal and adiabatic bulk moduli are underestimated. One must

then conclude that the potential predicts the metals to soften more rapidly than is

experimentally observed. This comes from a decrease in the phonon frequencies with

temperature at an overestimated rate.

The Quantum Sutton-Chen (QSC) potential does improve the situation quite

dramatically; in nearly all cases, the results are a closer fit to the experimental values.

Including quantum effects meant the calculations must also account for the zero-point

energy, which is a small contribution to the free energy and appears as follows at 0K

[5]:

F0 = Utot +
∑

k,s

1

2
~ωs(k) (4.1.1)

For temperatures above 0K, the free energy regains the vibrational term present in

Eq. 2.2.20. Neglecting these small corrections to the potential, the QSC is essentially

58
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a re-parametrized version of the original SC potential. While the results are improved,

there is still evidence of instability at higher temperatures in the form of the diverging

thermal expansion coefficient. The re-parametrization has shifted the divergence

further up in the temperature range, but it is still present. This supports the idea

that there is a fundamental issue with this potential that cannot be resolved by simply

changing the parameters.

T. Çağin et al. [46] have done some molecular dynamics simulations using the

SC potential and found results that agree with those found in this work, namely that

the thermal expansion is overestimated. The conclusion they drew is that it must

be a parametrization issue that causes the results to disagree [46]. Since there is

essentially an alternate parametrization scheme provided by [5], we may decide if this

is indeed the case. Again, the results are improved with the alternate parameters

but the issues with the potential are not resolved. The thermal expansion coefficient

is still predicted to be significantly larger than is experimentally measured and the

high-temperature divergence still exists. In the case of Ag, the new parametrization

scheme actually worsens the situation. It is therefore our conclusion that it is the

form of the potential that is at the root of this issue rather than the specific choice

of parameters.

4.2 Derivation

Based on theoretical arguments with support from the results of Cleri & Rosato and

Dai et al. that will be discussed in the next chapter, we believe that an exponential

decay of the electron density would provide a more physically realistic picture of

metals and hence also a better fit to experimental results. In order to make the most

meaningful comparison to the original SC potential, the number of parameters is kept

the same and only the density function is altered. Of course, the square-root form of
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the density function is unchanged as well. The new function has the form

ρi =
∑

j 6=i

e−α(rij/a−1) (4.2.1)

where α is an adjustable parameter and a is the same length scaling unit used in the

repulsive term (chosen to be the lattice parameter at room temperature). The full

potential is then

U(rij) = ǫ





∑

j 6=i

(

a

rij

)n

− c

(

∑

j 6=i

e−α(rij/a−1)

)1/2


 (4.2.2)

where ǫ, c, n and α are adjustable parameters. Inclusion of the factor of eα in the

density function is simply a choice of convenience as this resulted in values for c that

were closer to those used in the QSC model. Since now there is only one exponent

(n), the restriction that it must be an integer is lifted. Initially this restriction was

imposed to allow the parameters to be transferred from one metal to another by

changing ǫ and a, provided the crystal structure and the exponents n and m were

the same for both metals. Because there is no physical reason for this restriction, we

decide to work without it. Also due to the change of ρi, the density function can no

longer be expressed as a convenient summation as it appears in Eq. 1.2.12.

It is worth noting that Mei and Davenport used a polynomial fit for the density

function in an attempt to produce an overall exponential decay. This was motivated

by Hartree-Fock calculations [27] that have shown the electron density to be well

approximated by the function

ρ = ρee
−β(r1/r1e−1) (4.2.3)

when r1 is not far from r1e, the equilibrium nearest-neighbour distance. This issue

here is that this is an overall charge density, so that the individual charge densities

cannot be expressed in such a form for any neighbour sum beyond the first. A sum

of exponential functions cannot be expressed as a single exponential function. The
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solution Mei and Davenport proposed was to use a polynomial fit:

∑

m

smf(rm) = ρee
−β(r1/r1e−1) (4.2.4)

where f(r) is chosen to be a parametrized function that satisfies Eq. 4.2.4. It was

chosen to be a power-law type polynomial of the form

f(r) = fe

k
∑

l=0

cl

(r1e
r

)l

(4.2.5)

where fe and cl are constants. With this form a sum over k neighbour shells would

appear as an overall exponential decay. Such a decay is desirable because as can be

seen in Fig. 4.1, the charge density decay of Cu as calculated using Density Functional

Theory (DFT) can be fit very well by an exponential function. A power-law decay

function is also fit to the same curve for comparison. It is evident that the exponential

function is a closer fit to the data than the power-law function, suggesting this is a

more physically accurate description.

Even the parametrized polynomial fit of Mei and Davenport, Eq. 4.2.5, can be

very well represented by a single exponential function. A comparison of the two is

shown in Fig. 4.2. Also included in the plot is a function of the same form as that

used by Sutton and Chen for comparison. The exponential function is quite close to

the function used by Mei and Davenport while the power-law decay of Sutton and

Chen shows a noticeable deviation in its curvature. This was further motivation for

choosing the simple exponential decay for the modified model.

What we have, then, is a Modified Sutton-Chen (MSC) potential that retains the

same essential characteristics: four parameters, simple mathematical form and the

square-root density function. In order to determine appropriate values for the four

parameters, a damped least-squares fitting was done using the Levenberg-Marquardt

algorithm [47]. Four properties were chosen for the fitting: cohesive energy, equi-

librium lattice parameter, isothermal bulk modulus and elastic constant C11. The
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Figure 4.1: Charge density as a function of distance in Cu. Power-law and exponential
functions are fit to the charge density decay with distance as predicted by Density
Functional Theory. DFT calculations taken from [17].

fitting was done at 300K so that room-temperature values for these properties were

used and the interaction range was extended up to sixth-nearest neighbours. It was

found that going beyond the sixth neighbour shell yielded only very small changes

to the results at the cost of greatly increased computing time (primarily due to the

three-body interactions present in Eq. 2.1.30).

It is, of course, possible to have multiple sets of parameters that satisfy the condi-

tions at 300K. In this event, parameters that gave best results at higher temperatures

were selected. The parameters for the MSC potential are given in Table 4.1. It should

be noted, however, that for the case of Au only three of the four properties were fit-

ted (bulk modulus was not fitted exactly). The reason for this is simply that the

fitting algorithm could not converge on a set of values for the parameters that would

correctly reproduce all of the properties. This may be a sign that this potential is

unable to capture the more complex bonding character of Au involving s-d orbital
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Figure 4.2: Comparison of charge density decays of Cu from various models. Included
are the results of Mei and Davenport (a polynomial decay) and an exponential decay
of the type used in the Modified Sutton-Chen potential.

hybridization [28], [48]. Some results for Au were not reproduced accurately as a

result. It is worth noting that Au is a particularly difficult metal to describe with

such a potential, as can be seen from the previous results of this work.

Results for the MSC potential are given in Figs. 4.3 to 4.30 and are plotted with

those of the SC and QSC potentials for comparison.

Referring to Fig. 4.3, it can be seen that the MSC does not improve significantly

on the QSC results, being slightly closer to experiment in the [100] transverse branch

(4% too high versus 5% too low) but slightly further in the longitudinal (10% too

high compared to 3.7% too low) at the zone boundary. The slopes of the curves near

the zone center are better represented by the MSC, however. The situation is quite

similar for Ag where the MSC is 1% to the transverse branch in the [100] direction

but 2% further in the longitudinal. The reverse is true in the [111] direction. Despite

being fit to only three of the four chosen properties, the results for Au are significantly
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Table 4.1: Parameters for the Modified Sutton-Chen potential. Parameters were fit to
cohesive energy, lattice parameter, elastic constant C11 and isothermal bulk modulus
in all cases except for Au where fitting to bulk modulus was not possible.

Metal ǫ (eV) c n α a (Å)
Cu 2.23462× 10−3 220.509 11.6386 5.56463 3.6150
Ag 2.19855× 10−3 147.145 11.9227 7.82127 4.0860
Au 9.57463× 10−3 38.2201 10.2109 10.3061 4.0790
Pt 8.27886× 10−3 71.9841 11.2309 9.33477 3.9240
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Figure 4.3: Phonon dispersion curves for Cu as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [6].
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Figure 4.4: Phonon dispersion curves for Ag as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [6].
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Figure 4.5: Phonon dispersion curves for Au as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [6].
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Figure 4.6: Phonon dispersion curves for Pt as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [6].

improved for the MSC compared to both the SC and QSC. The transverse branches

are reproduced almost exactly in all cases except the T2 branch in the [110] direction.

In the [100] direction, the longitudinal branch is 19% too low at the X-point compared

with the QSC result being 23% too low. For Pt the results again favour the MSC

which overestimates the [100] longitudinal branch by 1.5% compared to the QSC’s

11% underestimation at the zone boundary. Both the QSC and MSC are 5% from

experiment in the transverse branch of the same direction. Phonons in the [111]

direction are best reproduced by the MSC potential.

Comparing these phonon calculations to those of the pair-potentials, it is difficult

to determine which method is best overall. The Erkoç potential does well for Cu at

the zone boundaries but the slopes near the zone center are too low. This also leads

to poor results for the bulk modulus and elastic constants since they are directly

related to the slopes of the dispersion curves [49]. Au is overall best represented by

the MSC potential, though none of the models considered thus far are very accurate
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Figure 4.7: Thermal expansion coefficient for Cu as calculated using the Modified
Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen po-
tentials are included for comparison. Experimental data taken from [9].

over the entire spectrum. As for Ag, the QSC and MSC fare about equally well and

do improve over the pair-potential results.

Cu is often seen as a benchmark for inter-atomic potentials because certain prop-

erties can be well represented even by pair-potential models [50]. Despite this, the

results for the thermal expansion coefficient of Cu do not agree with experimental

data for the MSC as well as the SC and QSC potentials. It is 35% too large for the

MSC, 62% too large for the QSC and nearly double the experimental value for the

SC at 300K. Results for the phonon dispersion curves are mixed. The longitudinal

branches are better represented by the QSC potential, but most of the transverse are

better predicted by the MSC. The slopes of the dispersion curves at low k-values are

fit well by the MSC. This is to be expected because this potential was directly fit

to C11, a quantity that depends on the slopes of the dispersion curves near the FBZ

center [28]. The isothermal bulk modulus is better represented by the MSC since

it was directly fit to this quantity. The adiabatic case is slightly different, however,

since the SC underestimates it by 8% while the MSC overestimates it by 3% at 300K.
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Figure 4.8: Adiabatic bulk modulus for Cu as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [10].
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Figure 4.9: Isothermal bulk modulus for Cu as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [11] and [12].
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Figure 4.10: Specific heat at constant pressure for Cu as calculated using the Modi-
fied Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen
potentials are included for comparison. Experimental data taken from [13].
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Figure 4.11: Grüneisen parameter for Cu as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [14].
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Figure 4.12: Atomic root-mean-square displacement for Cu as calculated using the
Modified Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-
Chen potentials are included for comparison.

The QSC underestimates it further by 9%. Experimental data is very limited for the

Grüneisen parameter and what there is often has a significant error margin associated

with it. The MSC predicts a value that is 10% too large at 300K while the SC and

QSC predict values that are 49% and 17% too large, respectively.

Ag is unique in this study since it is the only element where most results of

the QSC are actually further from experiment than those of the SC potential. The

MSC does offer modest improvement in most ways, though the phonon spectrum

is not consistently better represented. Both the longitudinal and transverse modes

are 8% too large at the X-point for the MSC. The QSC does fare better here than

the SC overall, with nearly exact agreement for the transverse branch in the [111]

direction. None of the potentials predict the path X-W-X very accurately. The

thermal expansion coefficient too large in all cases once again: 36% for the MSC,

58% for the SC and 66% for the QSC. The isothermal and adiabatic bulk moduli are

best predicted by the MSC, with 1% and 2% deviation from experiment, respectively.

Isobaric heat capacity is nearly identical for all three potentials up to about 300K
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Figure 4.13: Thermal expansion coefficient for Ag as calculated using the Modified
Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen po-
tentials are included for comparison. Experimental data taken from [9].
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Figure 4.14: Adiabatic bulk modulus for Ag as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [10].
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Figure 4.15: Isothermal bulk modulus for Ag as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [11] and [12].
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Figure 4.16: Specific heat at constant pressure for Ag as calculated using the Modi-
fied Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen
potentials are included for comparison. Experimental data taken from [13].
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Figure 4.17: Grüneisen parameter for Ag as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [14].
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Figure 4.18: Atomic root-mean-square displacement for Ag as calculated using the
Modified Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-
Chen potentials are included for comparison.



CHAPTER 4. MODIFIED SUTTON-CHEN POTENTIAL 74

0 250 500 750 1000 1250
Temperature (K)

0.0

2.0×10
-5

4.0×10
-5

6.0×10
-5

8.0×10
-5

α 
(K

-1
)

SC
Q-SC
M-SC
Exp. Data

Figure 4.19: Thermal expansion coefficient for Au as calculated using the Modified
Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen po-
tentials are included for comparison. Experimental data taken from [9].

beyond which the MSC remains closest to experimental values.

Results for Au are noteworthy since this was the only element where four param-

eters were fit to three experimental properties. When attempting to fit to all four

experimental properties, achieving convergence of the parameters proved impossible.

Because of this, fitting to isothermal bulk modulus was omitted. Even so, results are

largely improved over the SC and QSC potentials for most properties. As expected,

the bulk moduli are only about as accurate as those predicted by the QSC and their

curves cross over at one point in the range 100-180K. The thermal expansion coef-

ficient is still 50% too large for the MSC at 300K, though it does improve on both

the SC and QSC results (which are 190% and 93% too large, respectively). Phonon

spectra are very well represented by the MSC for all lower transverse branches in

the symmetry directions. The longitudinal modes, while improved over the other

potentials, are still 17% too low in the [100] direction for example.

The results for Pt are improved in nearly all properties with the MSC potential.

The thermal expansion deviates from experiment by 37% at 300K for the MSC, 75%
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Figure 4.20: Adiabatic bulk modulus for Au as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [10].
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Figure 4.21: Isothermal bulk modulus for Au as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [11] and [12].
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Figure 4.22: Specific heat at constant pressure for Au as calculated using the Modi-
fied Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen
potentials are included for comparison. Experimental data taken from [13].
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Figure 4.23: Grüneisen parameter for Au as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [16].



CHAPTER 4. MODIFIED SUTTON-CHEN POTENTIAL 77

0 250 500 750 1000 1250
Temperature (K)

0

5

10

15

20

25

R
M

S
 D

is
pl

ac
em

en
t (

%
 N

N
 d

is
ta

nc
e)

SC
Q-SC
M-SC

Figure 4.24: Atomic root-mean-square displacement for Au as calculated using the
Modified Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-
Chen potentials are included for comparison.
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Figure 4.25: Thermal expansion coefficient for Pt as calculated using the Modified
Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen po-
tentials are included for comparison. Experimental data taken from [9].
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Figure 4.26: Adiabatic bulk modulus for Pt as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [10].
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Figure 4.27: Isothermal bulk modulus for Pt as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [11] and [12].
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Figure 4.28: Specific heat at constant pressure for Pt as calculated using the Modi-
fied Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen
potentials are included for comparison. Experimental data taken from [13].
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Figure 4.29: Grüneisen parameter for Pt as calculated using the Modified Sutton-
Chen potential. Results for the Sutton-Chen and Quantum Sutton-Chen potentials
are included for comparison. Experimental data taken from [16].
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Figure 4.30: Atomic root-mean-square displacement for Pt as calculated using the
Modified Sutton-Chen potential. Results for the Sutton-Chen and Quantum Sutton-
Chen potentials are included for comparison.

for the QSC and 168% for the SC potential. Isobaric specific heat is slightly too low

at temperatures in the range 0-750K but agrees well with experiment beyond that.

Due to limited availability of experimental data for the adiabatic bulk modulus, it

is difficult to compare the potentials in this case. The isothermal bulk modulus is

better represented by the MSC than both the SC and QSC, however. At 300K the

MSC predicts a BT that is 7% too large, while the SC is 17% too low and the QSC

is 10% too low. Phonon curves are improved in all branches and agree very well with

experiment in the [111] direction in particular.

The calculated elastic constants for the Morse, Erkoç and Sutton-Chen–type po-

tentials are given in Tables 4.2 to 4.5. All values are given at 0K.

C11 is generally well represented by the MSC potential, as one would expect

given that it was fit to this constant. The fitting was done at 300K rather than

0K, however, which does lead to some (expected) discrepancies in the results. In all

cases, C11 is slightly overestimated at 0K by the MSC while C12 is slightly too low.

It is very close in Cu and Ag, being 1% and 3% too low, respectively. C12 is best
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Table 4.2: Elastic constants C11, C12 and C44 at 0K for Cu as calculated with the
Morse, Erkoç, Sutton-Chen, Quantum Sutton-Chen and Modified Sutton-Chen mod-
els. Experimental data taken from [5]. All values expressed in units of 1011Pa.

Cu C11 C12 C44

Exp. 1.7620 1.2494 0.8177
Morse-V 1.7523 1.0274 1.0274
Morse-S 1.6291 1.1444 1.1444
Erkoç 0.8630 0.6368 0.6368
SC 1.6451 1.2526 0.5639

Q-SC 1.6447 1.1451 0.7101
M-SC 1.8438 1.2333 0.9060

Table 4.3: Elastic constants C11, C12 and C44 at 0K for Ag as calculated with the
Morse, Erkoç, Sutton-Chen, Quantum Sutton-Chen and Modified Sutton-Chen mod-
els. Experimental data taken from [5]. All values expressed in units of 1011Pa.

Ag C11 C12 C44

Exp. 1.3149 0.9733 0.5109
Morse-S 1.2407 0.8472 0.8472
Erkoç 0.9203 0.5757 0.5757
SC 1.3692 0.9308 0.5746

Q-SC 1.2698 0.8905 0.5113
M-SC 1.4028 0.9493 0.6184

Table 4.4: Elastic constants C11, C12 and C44 at 0K for Au as calculated with the
Morse, Erkoç, Sutton-Chen, Quantum Sutton-Chen and Modified Sutton-Chen mod-
els. Experimental data taken from [5]. All values expressed in units of 1011Pa.

Au C11 C12 C44

Exp. 2.0163 1.6967 0.4544
Morse-V 1.7399 0.9369 0.9369
Morse-S 1.6445 1.1087 1.1087
Erkoç 1.6389 0.9917 0.9917
SC 1.7763 1.4554 0.4178

Q-SC 2.0706 1.5976 0.5987
M-SC 2.0661 1.5355 0.6739
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Table 4.5: Elastic constants C11, C12 and C44 at 0K for Pt as calculated with the
Sutton-Chen, Quantum Sutton-Chen and Modified Sutton-Chen models. Experi-
mental data taken from [5]. All values expressed in units of 1011Pa.

Pt C11 C12 C44

Exp. 3.5800 2.5360 0.7740
SC 3.0810 2.5250 0.7241

Q-SC 3.2193 2.3577 1.1272
M-SC 3.5848 2.5083 1.3847

reproduced by the QSC for Au and by the SC for Pt. The only instance where a

pair potential produces the best result is C11 for Cu where the Morse-V is less than

1% from experiment. Overall the Sutton-Chen–type potentials perform considerably

better here than the pair potentials. One key factor supporting this is that the Cauchy

equality (C12 = C44) is of course maintained by pair-potentials but violated by the

many-body potentials, as is the case in real metallic systems [46].



Chapter 5

Tight-Binding Potentials

The Potentials of Cleri-Rosato and Dai et al.

We will now briefly examine the results of two tight-binding potentials, both employ-

ing the square-root density function; those of F. Cleri & V. Rosato [28] and X. Dai

et al. [29]. The potential used by Cleri & Rosato (CR) was extended to include up

to fifth-neighbour interactions and has the form

U(rij) =
∑

j

Aije
−pij(rij/rij0 −1) −

[

∑

j

ξ2ije
−2qij(rij/rij0 −1)

]1/2

(5.0.1)

whereAij, pij, ξij and qij are groups of parameters that depend on the elements present

in the solid (they each reduce to one value for pure solids). rij0 is the nearest-neighbour

distance between atoms i and j which again reduces to one value for solids composed of

one element. ξ is interpreted as an effective hopping integral that describes the overlap

of the bonding orbitals. Values for these parameters for the elements considered here

are given in Table 5.1.

Regarding the results for the phonon dispersion curves for Cu, the Dai et al. po-

tential is better overall, though it does overestimate the longitudinal frequency in

the [100] direction at the X-point by 10%. The CR is below experimental values by

83
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Figure 5.1: Phonon dispersion curves for Cu as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [6].
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Figure 5.2: Phonon dispersion curves for Ag as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [7].
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Figure 5.3: Phonon dispersion curves for Au as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [8].
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Figure 5.4: Phonon dispersion curves for Pt as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [8].
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Table 5.1: Parameters for the Cleri-Rosato potential. Fitting was done to the ex-
perimental cohesive energy, lattice parameter and elastic constants. The range of
interactions was limited to fifth-neighbours.

Metal A (eV) ξ (eV) p q
Cu 0.0855 1.224 10.960 2.278
Ag 0.1028 1.178 10.928 3.139
Au 0.2061 1.790 10.229 4.036
Pt 0.2975 2.695 10.612 4.004

9% in the same branch. The slopes of the dispersion curves near the zone center are

better represented by the Dai potential, particularly in the [111] direction. Each of

the branches in the [100] direction for Ag are well represented by one of the poten-

tials: CR does well in the longitudinal direction while Dai performs better in the

transverse. The well-matched branches are within 1% of experimental values in each

case. The situation is similar in the [111] direction, though the Dai potential does not

deviate as much. Phonons in Au are predicted quite well by the CR potential in the

[100] direction with a deviation of 3.5% in the longitudinal and 5% in the transverse

direction. This is a significant improvement over both the pair-potentials and also

the SC and QSC models. The Dai potential does not perform very well here with

a 23% underestimation of the longitudinal branch. Pt is predicted similarly with a

maximum deviation of 8% for the CR at the X-point and 25% for the Dai potential.

Again the CR performs slightly better than both the SC and QSC.

Results for thermal expansion, heat capacities, bulk moduli and RMS displace-

ment are given in Figs. 5.1 to 5.28. There is significant improvement in most cases

over the original SC and even QSC potentials. It is impossible to definitively state

that this is due to the change in the density function since the entire potential has

been changed. However, this, combined with the theoretical backing that the charge

density in metals should decay faster than a power-law decay, suggests that an expo-

nential function would be more appropriate.
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Figure 5.5: Thermal expansion coefficient for Cu as calculated using the Cleri-Rosato
and Dai et al. potentials. Experimental data taken from [9].
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Figure 5.6: Adiabatic bulk modulus for Cu as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [10].
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Figure 5.7: Isothermal bulk modulus for Cu as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [11] and [12].
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Figure 5.8: Specific heat at constant pressure for Cu as calculated using the Cleri-
Rosato and Dai et al. potentials. Experimental data taken from [13].
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Figure 5.9: Grüneisen parameter for Cu as calculated using the Cleri-Rosato and Dai
et al. potentials. Experimental data taken from [14].
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Figure 5.10: Atomic root-mean-square displacement for Cu as calculated using the
Cleri-Rosato and Dai et al. potentials.
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Figure 5.11: Thermal expansion coefficient for Ag as calculated using the Cleri-Rosato
and Dai et al. potentials. Experimental data taken from [9].
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Figure 5.12: Adiabatic bulk modulus for Ag as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [15].
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Figure 5.13: Isothermal bulk modulus for Ag as calculated using the Cleri-Rosato
and Dai et al. potentials. Experimental data taken from [11] and [12].
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Figure 5.14: Specific heat at constant pressure for Ag as calculated using the Cleri-
Rosato and Dai et al. potentials. Experimental data taken from [13].
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Figure 5.15: Grüneisen parameter for Ag as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [14].
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Figure 5.16: Atomic root-mean-square displacement for Ag as calculated using the
Cleri-Rosato and Dai et al. potentials.
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The potential used by Dai et al. (Dai) is given by

U(rij) =
∑

j

(rij − rc1)
m(x0 + x1rij + x2r

2
ij + x3r

3
ij + x4r

4
ij)

−
[

∑

j

α(r − rc2)
ne−β(rij/r0−1)

]1/2

(5.0.2)

with the conditions that the first term is zero if rij > rc1 and the second term is

zero if rij > rc2. The parameters are x0 through x4, m, n, α and β. In this case

r0 is also treated as an adjustable parameter. rc1 and rc2 are clearly cutoff distances

which can also be adjusted during the fitting procedure [29]. Since the pairwise

repulsive term in 5.0.2 does not decay to zero at long ranges, such a cutoff is required

in order to ensure stability of the crystal. For the FCC metals, the chosen cutoff

radii were the fourth and seventh nearest-neighbours for the repulsive and cohesive

terms, respectively. Fitting was done by matching calculated cohesive energy, lattice

parameter and elastic constants to experimental values. Also used were the conditions

that, at equilibrium, the first derivative of the potential and the stress of each unit

cell is zero:

dE(rij)|rij=r0
= 0 (5.0.3)

σ(rij)|rij=r0
= 0 (5.0.4)

Values for the parameters are given in Table 5.2
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Table 5.2: Parameters for the Dai et al. potential. Fitting was done to the experimen-
tal cohesive energy, lattice parameter and elastic constants as well as the conditions
that the first derivative of the potential and stress of each unit cell be zero at equi-
librium. The range of interactions was limited to fourth-neighbours for the repulsive
part and seventh-neighbours for the cohesive part.

Parameter Cu Ag Au Pt
m 4 4 4 4
n 6 6 6 6
rc1(Å) 6.100 6.375 6.400 6.440
rc2(Å) 7.800 7.950 8.500 8.500

x0(eVÅ
−m

) 0.123554 0.235139 0.346813 0.362085

x1(eVÅ
−m−1

) -0.134361 -0.247471 -0.350701 -0.378121

x2(eVÅ
−m−2

) 0.0543818 0.0983304 0.133662 0.149113

x3(10
−2eVÅ

−m−3
) -0.981194 -1.748544 -2.273741 -2.610984

x4(10
−3eVÅ

−m−4
) 0.675816 1.174278 1.456262 1.706176

α(10−4eV2Å
−n

) 0.656618 0.805877 1.011750 2.678379
β 1.836569 2.951121 5.580155 4.354578
r0(Å) 2.552655 2.892067 2.884996 2.771859
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Figure 5.17: Thermal expansion coefficient for Au as calculated using the Cleri-Rosato
and Dai et al. potentials. Experimental data taken from [9].
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Figure 5.18: Adiabatic bulk modulus for Au as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [15].
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Figure 5.19: Isothermal bulk modulus for Au as calculated using the Cleri-Rosato
and Dai et al. potentials. Experimental data taken from [11] and [12].
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Figure 5.20: Specific heat at constant pressure for Au as calculated using the Cleri-
Rosato and Dai et al. potentials. Experimental data taken from [13].
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Figure 5.21: Grüneisen parameter for Au as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [16].
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Figure 5.22: Atomic root-mean-square displacement for Au as calculated using the
Cleri-Rosato and Dai et al. potentials.
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Figure 5.23: Thermal expansion coefficient for Pt as calculated using the Cleri-Rosato
and Dai et al. potentials. Experimental data taken from [9].
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Figure 5.24: Adiabatic bulk modulus for Pt as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [15].
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Figure 5.25: Isothermal bulk modulus for Pt as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [11] and [12].
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Figure 5.26: Specific heat at constant pressure for Pt as calculated using the Cleri-
Rosato and Dai et al. potentials. Experimental data taken from [13].
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Figure 5.27: Grüneisen parameter for Pt as calculated using the Cleri-Rosato and
Dai et al. potentials. Experimental data taken from [16].
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Figure 5.28: Atomic root-mean-square displacement for Pt as calculated using the
Cleri-Rosato and Dai et al. potentials.



Chapter 6

Discussion and Conclusions

The analytic embedding function of Sutton and Chen [18] and its modified counterpart

[5] were applied to to calculate the phonon dispersion curves and other thermody-

namic properties of the FCC metals Cu, Ag, Au and Pt. Also studied was a modified

version of the potential where the density function was chosen to have an exponential

form rather than power-law. Selecting this form of the density was motivated in part

by the results of Dai et al. [29] and Cleri & Rosato [28] who both used an exponential

form for their potentials. Also discussed was the fact that the charge density as a

function of distance, as calculated using Density Functional Theory and Hartree-Fock

methods, is better described by an exponential decay than a power-law function. As

is seen in the results for various thermodynamic properties, this form of potential

performs quite well. The repulsive part of the potential was left unchanged (though

the exponent was re-fit) in an attempt to show that the instability of the potential

at higher temperature is due to this slower decay of the charge density. The modified

Sutton-Chen potential was fit to cohesive energy, lattice parameter, bulk modulus

and elastic constants at room temperature.

The results for thermal expansion are overestimated for every metal considered

here, regardless of which specific Sutton-Chen–type potential was used. Most results

101
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do improve, however, when moving from the original Sutton-Chen form to the quan-

tum corrected one for all metals except Ag. Further improvement is seen with the

modified Sutton-Chen potential in nearly all cases. Results for the Cleri-Rosato po-

tential are overall quite good, though for Au the thermal expansion is 41% too low at

300K. Both the adiabatic and isothermal bulk moduli are also underestimated for Au

by 5% and 7% at 300K, respectively. The Dai et al. potential fares better here, being

2% too large for the adiabatic case and 5% for the isothermal. Results for the thermal

expansion coefficient are relatively poor, being underestimated by 60% at 300K. For

the remaining elements the results are much improved which once again highlights

the difficulty in accurately reproducing the thermodynamic properties of Au. A mod-

ified version of the EAM, named the MAEAM (Modified Analytic Embedded Atom

Method), shows promising results for Cu, Ag and Au. It was introduced by Xie et al.

[51] and shows good results for phonon dispersion curves in the symmetry directions

for the noble metals. Essentially, this potential includes a term accounting for the

non-spherical distribution of electrons and nonlinear superposition of electron charge

densities.

Cases where only pure pair-potentials were used offered some insight into the effect

of different fitting schemes. The Erkoç potential very accurately predicted the thermal

expansion coefficient and isobaric heat capacity of Cu, Ag and Au. Results for bulk

properties were quite poor, however. This is likely due to the fact that this potential

was not fit to bulk properties at all and was instead first fit to the potential curve

of a dimer. After this the two terms of the potential were scaled by coefficients so

that the equilibrium lattice parameter and cohesive energy were correctly reproduced.

Further testing was done by examining the behavior of this potential with regards

to stability in three to seven atom micro-clusters. The Morse potential was fit to

bulk properties and thus predicts them quite well. Phonon spectra, heat capacity

and thermal expansion were not well predicted, however.
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Based on the results in this work, one can conclude that an exponential function

better describes the charge density decay in (at least) the metals considered here.

The modification to the Sutton-Chen potential yielded consistent improvement over

the SC and QSC potentials in nearly every thermodynamic calculation. The only

exceptions are the phonon spectra where the MSC was not universally better than the

QSC. It is possible that changing the exponent of the repulsive term in the potential

may partially account for the improved results. However, the QSC is essentially a re-

parametrized version of the SC potential already. This provides insight into the sort

of improvement that can be expected simply by changing the parameters. The MSC

provides significant improvement over even this re-parametrized potential, suggesting

that the improvement is largely due to the change in the density function and not

simply due to a change in parameters. A good example of this is Ag where the

QSC results were further from experiment than those of the SC. The MSC showed

improvement over both of those.

Further improvement is likely to be gained if the repulsive contribution to the

potential is also changed to an exponential function. This could be a topic for further

study. Another possibility would be to include higher moments than the second in

the density of states. This would of course change F (ρ) completely but may yield

improved results.
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