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Abstract 

 

For the past 20 years, researchers have applied the Kalman filter to the modeling and 

forecasting the term structure of interest rates. Despite its impressive performance in 

in-sample fitting yield curves, little research has focused on the out-of-sample forecast of 

yield curves using the Kalman filter. The goal of this thesis is to develop a unified 

dynamic model based on Diebold and Li (2006) and Nelson and Siegel’s (1987) 

three-factor model, and estimate this dynamic model using the Kalman filter. We compare 

both in-sample and out-of-sample performance of our dynamic methods with various 

other models in the literature. We find that our dynamic model dominates existing models 

in medium- and long-horizon yield curve predictions. However, the dynamic model 

should be used with caution when forecasting short maturity yields on a short time 

horizon.   

Keywords: yield curve, dynamic model, Kalman filter, Nelson and Siegel model 
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1. Introduction 

The yield curve, also called the term structure of the interest rate, is the series of interest 

rates ordered by time to maturity (e.g., one month, three months) for a given time. It 

shows the relationship between the yield and the term of debt for a given borrower in a 

given currency. Compared with the term structure of a company’s bond, the yield curve 

on government instruments can reflect wide economic shocks and changes in government 

policies in a given period. Yield curves can provide useful information for bond pricing, 

bond portfolio management, and government policy formulation. Therefore, an accurate 

and compendious term structure model is helpful in understanding how yield curves and 

related fields work. 

 In the past 30 years, researchers developed well in both theoretical models of yield 

curves and the econometric estimation of these models. Two popular groups of term 

structure models, dynamic models and static models, are proven the advantages on fitting 

the historical yield curve data into models (Fabozzi, 2002). There are two approaches in 

the dynamic models: no-arbitrage models and affine equilibrium models. Arbitrage-free 

models are built to be consistent with the observed yield curves of government bond and 

market bond prices. They are subsequently used to price other fixed-income products, 

such as interest rate derivatives, based on information that can be extracted from the 

models (Martellini, Priaulet, & Priaulet, 2003). This approach focuses more on fitting the 

yield curve at a given point of time. In contrast, affine equilibrium models focus on 

modeling the dynamics of the instantaneous rate under various assumptions about the risk 

premium, such as they hypothesize that interest rates, at any point in time, are a 

time-invariant linear function of a small set of common factors (Brandt and Chapman, 

2008). Prominent contributions in the dynamic models include Vasicek (1977), Cox, 

Ingersoll, & Ross (1985), Hull & White (1990), Heath, Jarrow, & Morton (1992), Duffie 

& Kan (1996). Compared with dynamic models, static models do not allow for the 

volatility of interest rates to be incorporated into the model. One widely applied static 

model is the Nelson-Siegel three-factor model (1987) which extract the entire yield curve 

period to period into a three dimension exponential framework. Interest point is that 

Diebold and Li (2006) find although this model is mainly focus on a given point of time, 

the three factors can be interpreted as three latent variables, so that makes the original 
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Nelson-Siegel three-factor model (1987) evolve dynamically. 

For the development of econometric estimation of term structure models, one of the 

important achievements is using the Kalman filter in the estimation process. The Kalman 

filter is first developed by R.E. Kalman in 1960 and it is widely implemented in 

engineering prior introduced to business. According to Babbs and Nowman (1999), the 

application of the Kalman filter to estimate the term structure models by using 

cross-sectional and/or time-series data has occurred since the 1990s. It particular, it was 

developed by Pennacchi (1991), Lund (1994, 1999), Chen and Scott (1995), Duan and 

Simonato (1995), Ball and Torous (1996), Geyear and Pichler (1996), and Jegadeesh and 

Pennacchi (1996). Compared with other estimation methods, the most important 

advantage of using state-space models and the Kalman filter is that it allows the 

underlying state variables to be handled as unobserved value and estimated as in a whole 

process versus using a proxy number. Therefore, this method can correctly capture the 

moving trend of these underlying state variables and return a trustworthy result. Since 

one of the major application of the Kalman filter in yield curves is as a tool to provide 

in-sample estimation and previous research, including Babbs and Nowman (1999) and 

Duffee and Stanton (2012), shows that the Kalman filter can provide very impressive 

in-sample results, it can be concluded that the Kalman filter is a highly efficient tool for 

analyzing historical yield curve data. 

However, despite the significant progress in developing both term structure models 

and their estimation methods, there is not a consistent result to show which models and 

estimation methods also can provide precise forecasting results of yield curves. The 

forecasting term structure is important because it can provide valuable information for 

bond portfolio management, derivative pricing and risk management. The no-arbitrage 

model literatures which involve the yield curves forecasting are inconsistent. Favero, Niu, 

and Sala (2009) indicated that no-arbitrage models are more useful to predict yield curves 

in shorter horizons. However, Moench (2008) argue that his arbitrage-free model can 

only deliver better forecasts at longer forecasting horizons. We found that the 

out-of-sample results of this group of term structure models are highly depending on the 

data set they chosen, in another sentence, the forecasting ability of arbitrage-free model is 

poor due to the lack of robustness. The affine equilibrium models, similarly, also forecast 

poorly. Dai and Singleton (2000) and Duffee (2002) shows that the equilibrium even 

cannot beat the simple random walk at all. Duffee (2002) also concluded that the failure 
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of affine equilibrium models in forecasting future yields is driven by one of their key 

features, which is that compensation for risk is a multiple of the variance of the risk. Thus, 

risk compensation cannot vary independently of interest rate volatility. Because of the 

poor performance of dynamic models, Diebold and Li (2006) presented a new approach 

that involves dynamic factors based on the Nelson-Siegel three-factor model (1987). 

They conducted both the in-sample and the out-of-sample test results are very 

encouraging. However, their method has an unavoidable shortcoming, which they assume 

one important variable, exponential decay rate, as a constant number. A higher 

exponential decay rate means a faster decay speed of slope and curvature of yield curves, 

so that means the curves will become flatter. Therefore, the exponential decay rate is an 

important dynamic factor related to the yield curves’ shape, which is a crucial indicator of 

economy environment. 

Our purpose is to find an approach which can provide precise and consistent 

forecasting results under different situations. Doing so is important because it can provide 

valuable guideline for both academic and practical issues. According to Piazzesi (2003), 

understanding the movement of yield curves and predict it future trend are crucial for the 

studies of monetary policy, debt policy and derivative pricing and hedging constitute, 

related papers including Bladuzzi et al. (1996), Duffie and Pan & Singleton (2000). 

Besides the contributions to the academic aspect, forecasting yield curves also can 

support practical issues, such as bond portfolio management, evaluating the economy 

environment. Related newspaper and government articles including Evans (2010), 

Mccarthy (2011), Goodman (2013), Haubrich & Waiwood (2013) and Lin (2013). 

In this thesis, we develop a unified dynamic factor approach, which is based on 

Diebold and Li’s (2006) method to forecast the dynamic movement of yield curves for 

government bonds. We will use a state-space model and the Kalman filter to extract the 

three factors of the yield curve and test the effects of the three factors on forecasting yield 

curves. We present Monte Carlo simulation tests to examine the validity of our dynamic 

model and test the in-sample fit by using U.S. yield curve data. We also compare the 

out-of-sample forecasting performance of our method against Diebold and Li’s method 

(2006) and other common statistical models, such as random walk, slope regression, 

AR(1) and VAR(1).  

Our in-sample results show that our dynamic model can precisely fit the historical 
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yield curves data. Compare with the in-sample results of the method of Diebold and Li 

(2006), our approach get more accurate results due to the high efficient performance of 

the Kalman filter. Our out-of-sample results show that compare with other various models, 

we can provide much improved forecasting results, especially in the long term forecasting 

period. However, the forecasting results of short maturities yields in a short forecasting 

horizon are not as good as the long term. Furthermore, we also found that our dynamic 

model can successfully capture the movement of the exponential decay rate. That means 

we can easily predict the shape of future yield curves just based on the historical 

exponential decay rate.  

The major contribution of our thesis is that we introduce a dynamic approach which 

can produce both impressive in-sample fitting and out-of-sample results. We estimate the 

three factors and the exponential decay rate of the Nelson-Siegel three-factor model 

(1987) and find that not only the three factors can be interpreted as three latent values, but 

also the exponential decay rate is also a crucial factor which represents the dynamic 

movement of the shape of yield curves. Furthermore, it is also worth to mention that 

although the Kalman filter is widely used in estimating term structure model, it should be 

applied in caution to forecasting yield curves related issues because this estimation 

method trades off robustness to maintain the high efficiency.  

 We proceed as follows. In section 2, we describe our empirical model and other 

related methods of the model. In section 3, we introduce our data. In section 4, we present 

our analysis results and interpretation of these results. 
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(3) 

(2) 

(1) 

2. Methodology 

In this section, we describe the models used for this thesis, including the original Nelson 

and Siegel three-factor model and the alternative method developed by Diebold and Li 

(2006). We will also discuss each factor of the model and show how the yield curve will 

be influenced by changes in these factors. Last, we will show how the model can be 

transferred into a state-space model and how the Kalman filter estimates the state-space 

model. 

2.1 Empirical Models 

Nelson and Siegel (1987) introduced “a simple, parsimonious three factor model that is 

flexible enough to represent the range of shapes generally associated with yield curves” 

(p. 473). They found that during 1981-1983 the model could explain most of the 

variations in yield curves across different maturities. Movement of the parameters 

through time reflects and can confirm a change in Federal Reserve monetary policy in 

late 1982. According to Nelson and Siegel (1987), this model can successfully fit U.S. 

government bond yields and predict the price of a long-term Treasury bond. The 

instantaneous forward rate at maturity 𝜏 is given by the solution to a second-order 

differential equation with real and unreal roots, 

𝑓𝑡(𝜏) = 𝛽1𝑡 + 𝛽2𝑡𝑒
−𝜆𝑡𝜏 + 𝛽3𝑡𝜆𝑡𝑒

−𝜆𝑡𝜏,  

and yield to maturity, yt, is the average of the forward rates, 

𝑦𝑡(𝜏) =
1

𝜏
∫ 𝑓(𝑥)𝑑𝑥,

𝜏

0

 

so the term structure model can be expressed as, 

𝑦𝑡(𝜏) = 𝑏1𝑡 + 𝑏2𝑡 (
1 − 𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
) + 𝑏3𝑡(𝑒

−𝜆𝑡𝜏). 

Diebold and Li (2006) changed the original Nelson and Siegel three-factor model. They 

combined the original second and third factor loadings as the new third factor loadings 

and left the second one unchanged. Therefore, the yield model is converted as, 
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(4) 

 

𝑦𝑡(𝜏) = 𝛽1𝑡 + 𝛽2𝑡 (
1 − 𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
) + 𝛽3𝑡 (

1 − 𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
− 𝑒−𝜆𝑡𝜏). 

where,  

𝑦𝑡(𝜏) = the yield of a bond for τ maturity at time t, 

𝛽1𝑡 = the parameter of level at time t, 

𝛽2𝑡 = the parameter of slope at time t, 

𝜆𝑡 = the exponential decay rate,  

𝛽3𝑡 = the parameter of curvature at time t, 

(
1−𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
) = the factor loading of the slope of the yield curve or the short-term 

expression, 

(
1−𝑒−𝜆𝑡𝜏

𝜆𝑡𝜏
− 𝑒−𝜆𝑡𝜏) = the factor loading of the curvature of the yield curve or the 

medium-term expression. 

Nelson and Siegel (1987) suggested that the yield curve is flexible enough to 

represent the general shape of yield curves, including monotonic, humped, and S shaped. 

In Figure 3, we plot different shapes of yield curves by setting λ=1, b1t =1, b2t =b3t -1, and 

b3t from -12 to 12 with equal increments of 2. 

 

(Insert Figure 1) 

 

According to Diebold and Li (2006), the three time-varying parameters, β1t, β2t, and 

β3t, can be interpreted as three factors of short-term, medium-term, and long-term 

components. The long-term component is a constant that does not decay to zero in the 

limit. The medium-term curve is the only function within this model that starts out at zero 

and decays to zero. The short-term curve has the fastest decay of all functions within the 

model that decay monotonically to zero. All the yield curves with monotonic and humped 

shapes can be built by choosing different weights for these components appropriately as 
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shown in Figure 3. As a result, Nelson and Siegel (1987) concluded that a high 

correlation exists between the present value of a long-term bond implied by the fitted 

curves and the actual reported price of the bond. 

The long-term factor, β1t, governs the yield curve level. Changing this factor will lead 

to changes in all yields equally. Thus, it changes the level of the yield curves. Diebold 

and Li (2006) suggested the medium-term component as the slope of the yield curves. 

This component will decay based on λ, the exponential decay rate, through time to 

maturity. A higher exponential decay rate will lead to faster decay. An increase in the 

short-term factor, β2t, increases short yields more than long yields because the short rates 

load on β2t more heavily, thereby changing the slope of the yield curve. With regard to 

loading the medium-term factor, β3t, changing it will change the medium-term yield curve, 

but have little influence on the short-term or long-term curve. Thus, increasing β3t will 

also increase the curvature of the yield curve. 

In Figure 4 and Figure 5, we present the three factor loadings of both the forward rate 

curve and the yield curve for the Nelson and Siegel model by setting λ as 0.3333. 

 

(Insert Figure 2 and Figure 3) 

 

 The exponential decay rate, λ, is a factor to show the speed of slope and curvature 

decay to 0. According to Diebold and Li (2006), a larger λ represents a rapid speed to 

decay while a lower λ means a slow decay rate. Therefore, a large λ will fit the curvature 

well for a short time to maturity and a small λ is more suited for the curvature of a long 

time to maturity. Based on Annaert, Claes, De Ceuster, and Zhang (2012), the exponential 

decay determines not only the decay rate of the slope and curvature, but also the location 

of the maximum/minimum value of the curvature and the location of the hump/trough of 

the yield curve.  

 We present both slope and curvature of the forward rate curve and the yield curve by 

setting different levels of λ in Figure 6, Figure 7, Figure 8, and Figure 9. Note that the 

hump/trough of the yield curve can be determined by maximizing the curvature (Annaert, 

Claes, De Ceuster, & Zhang, 2012). The curvature can be maximized when τ=1/λ in the 

forward rate curve. However, the curvature of the yield curve will be maximized when 
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τ>1/λ. Therefore, the location of the hump/trough of the yield curve can be determined 

directly by λ. This is the method Fabozzi, Martellini, and Priaulet (2005) and Diebold and 

Li (2006) used. In their work, Fabozzi, Martellini, and Priaulet (2005) set the λ as 0.3333 

for yearly maturity and Diebold and Li (2006) fixed the λ as 0.0609 for monthly maturity. 

 

(Insert Figures 4, 5, 6, and 7) 

 

 The next step is to transfer this original model to a state-space model so that we can 

apply the Kalman filter and extract the three factors and λ. Based on the arguments 

mentioned, we used AR(1) to capture the time-series dynamics of the factors of the 

Nelson-Siegel three-factor model. According to Kim and Nelson (1999), the state-space 

models have two equations: measurement and transition. We will discuss these two 

equations in detail in this part. The sample data, which were used to apply a sample test 

in this proposal, have nine observations for a given time. These observations have 

different yields for different tenors, or times to maturity, at time t. The tenors are 1 month, 

3 months, 6 months, 12 months, 24 months, 36 months, 60 months, 84 months, and 120 

months to maturity. We transferred the Nelson and Siegel three-factor model (modified 

version by Diebold and Li (2006)) to a matrix equation, called the measurement or 

observation equation, 
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and since AR(1) is applied, the three transition equations of dynamic factors are required, 
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Note that ε and θ are standard errors of these equations. These two matrix equations will 

be the key components of the dynamic factor model. We applied maximum likelihood to 

estimate the parameters and test the significance of parameters in the Kalman filter. 

2.2 Kalman Filter 

According to Kalman (1960), there are two main steps, the prediction step and the 

updating step, in the Kalman filter algorithm. In the prediction step, the Kalman filter 

estimates parameters based on current information, or state variables; thus, it can 

compute expected outcomes based on the estimated parameters. Expected outcomes 

include estimation errors, such as random noise, but these errors can be calculated. These 

prediction errors contain additional information so that a more accurate inference can be 

made. Therefore, estimations can be updated by using a weighted average method, which 

means that the higher certainty of estimated results will be assigned more weight, and this 

weight is called the Kalman gain (Kim & Nelson, 1999). 

To be more specific, at the beginning of time t, the means and variance of three betas 

can be calculated based on the beginning information It-1. According to He, Huh, and Lee 

(2010), there are two steps, as follows: 

Step 1. Producing a forecast of three betas (βt) based on It-1 in a conditional distribution 

βt|It-1~N(βt|t-1,Pt|t-1). The vector of ex ante expectations of the unobserved three factors of 

the Nelson and Siegel three-factor model can be calculated as βt|t-1=µ+Fβt-1|t-1. Note that 

the µ is the vector of the average of the three unobserved factors, and F is the matrix of 

auto regression (AR(1)). Then, the ex ante constant expected covariance matrix of βt can 

be given by Pt|t-1=FPt-1|t-1F’+Q, while Q is the vector of errors. The βt|t-1 is the minimum 

mean squared error (MMSE) estimator βt with respect to Pt|t-1. The MMSE is a 

well-established result of the Kalman filter. Therefore, the conditional structure of the 

model has time-varying expected factors, a constant conditional covariance matrix, and 

constant factor loadings (H). (We assume that the λ remains unchanged within a finite 

(6) 
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sample.) At the end of time t, the conditional means and variances of the unobserved β1t, 

β2t, and β3t can be observed from the real-time yield curve data. Based on Kim and Nelson 

(1999), this step is called the prediction step; it can be written as four formulas,  

𝛽𝑡|𝑡−1 = �̅� + 𝐹𝛽𝑡−1|𝑡−1, 

𝑃𝑡|𝑡−1 = 𝐹𝑃𝑡−1|𝑡−1𝐹
′ + 𝑄, 

𝜂𝑡|𝑡−1 = 𝑦𝑡 − 𝑦𝑡|𝑡−1, 

ℎ𝑡|𝑡−1 = 𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡
′ + 𝑅. 

where ŋt|t-1 is the vector of prediction error of the yield curves, and ht|t-1 is the variance 

covariance matrix of the forecast error.  

Step 2. Updating the inference about βt based on It in a condition distribution 

βt|It~N(βt|t,Pt|t). In this step, the vector of ex post expectations of the unobserved three 

factors of the Nelson and Siegel three-factor model is given by βt|t=βt|t-1+Ktŋt|t-1, where Kt 

is the Kalman gain, given by Kt=Pt|t-1H’th
-1

t|t-1. Similarly, the ex post constant expected 

covariance matrix of βt will be given by Pt|t=Pt|t-1-KtHtPt|t-1. Therefore, the Pt|t is the 

MMSE estimator βt with respect to Pt|t. Based on Kim and Nelson (1999), this is the 

updating step; it can be written as two formulas, 

𝛽𝑡|𝑡 = 𝛽𝑡|𝑡−1 + 𝐾𝑡𝜂𝑡|𝑡−1, 

𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 − 𝐾𝑡𝐻𝑡𝑃𝑡|𝑡−1. 

 In the filtering process, the βt|t is extracted to minimize the variance in tracking errors, 

which is βt-βt|t, reflecting the MMSE property. According to He, Huh, and Lee (2010), the 

βt|t is a mimic of βt in the MMSE sense. Therefore, the ex post expected factors will 

replace the unobserved true factors in a finite sample of yield curves. 

2.3 Simulation 

We used the simulation process to test the validity of using the Kalman filter and 

state-space model. We generated a series of data through the Nelson and Siegel 

three-factor model (1987) by setting a fixed λ and AR(1) for three factors. We also set the 

initial value of three betas before the data-generating process. After that, we applied our 

dynamic method to estimate λ and AR(1) of the three betas and tested the difference 
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between the setting value and the estimation value. If the test result was insignificant, we 

concluded that there was no difference between our estimation and the initial fixed value. 

Therefore, the validity of our method can be proved. The process was repeated 1000 

times based on the Monte Carlo simulation method and the sample size of generated data 

for each sample path is 200. 

2.4 Out-of-Sample 

During the forecasting process, we applied the moving window method. We use the 

historical data in the window to estimate factors of Nelson-Siegel three-factor model 

(1987), then we do one-step ahead forecasting (1-, 3-, 6- and 12-month ahead) based on 

our estimations and calculate the mean square errors between the forecast results and the 

historical data which is out of the window. The window size is 5 year and both the 

starting date and ending data will move along with the forecasting process. We compare 

the forecasting results of our dynamic approach with various other methods and models, 

including Diebold and Li (2006), random walk, slope regression, AR(1) and VAR(1). 

Below we describe how to generate forecast results by using each model. Please note that 

h is the forecast period, where h=1, 3, 6, and 12. 

(1) Random Walk: 

�̂�𝑡+ℎ 𝑡⁄ (𝜏) = 𝑦𝑡(𝜏). 

The forecast is always no change. 

(2) Slope Regression: 

�̂�𝑡+ℎ 𝑡⁄ (𝜏) − 𝑦𝑡(𝜏) = �̂�(𝜏) + 𝛾(𝜏)(𝑦𝑡(𝜏) − (𝑦𝑡(1)). 

The forecasted yield change is based on the regression of historical yield curve 

changes in slope. 

(3) AR(1) on Yield Curves: 

�̂�𝑡+ℎ 𝑡⁄ (𝜏) = �̂�(𝜏) + 𝛾(𝜏)𝑦𝑡(𝜏). 

(4) VAR(1) on Yield Curves:  

�̂�𝑡+ℎ 𝑡⁄ = �̂� + �̂�𝑦𝑡. 

Where 𝑦𝑡 = [𝑦𝑡(3), 𝑦𝑡(12), 𝑦𝑡(36), 𝑦𝑡(60), 𝑦𝑡(120)]
′. 
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3. Data 

There are two sample sets, 10-year data set and 30-year data set, in our analysis. We 

collected historical end-of-month U.S. constant-maturity Treasury rates data from July 

2001 through December 2012 for 10-year data set and January 1983 through December 

2012 for 30-year data set, downloaded from DataStream. The maturities of the 10-year 

data set were 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, and 

10 years and The maturities of the 30-year data set were 3 months, 6 months, 1 year, 2 

years, 3 years, 5 years, 7 years, and 10 years. These data sets are prepared by the U.S. 

Department of the Treasury. Based on the Treasury’s (2009) description, they estimated 

the yield curve daily by using a quasi-cubic hermite spline model, with inputs of the 

close-of-business bid yields for on-the-run securities. Since on-the-run securities are 

traded close to their par value, after input to this quasi-cubic hermite spline algorithm, the 

resulting yield curve data can be considered the return of actual par value. 

 We choose yield curves of U.S. government bond rather than other countries because 

U.S. government classifies its bonds to three groups based on maturities, including 

Treasury Bill (T-Bill), Treasury Note (T-Note) and Treasury Bond (T-Bond). The T-Bill 

represents the short maturities (within 1 year), the T-Note represents the middle maturities 

(from 1 year to 10 year) and the T-Bond represents the long maturities (over 10 year). 

This cleared classification can help us to determine the forecasting abilities of our 

dynamic approach and other methods under different maturities. Since the long maturities 

are more stable compare with the medium and short maturities, we choose the maximum 

maturity is 10 year to better reflect the volatility of yield curves. The two data sets, 

10-year and 30-year, are used for check the performance of our approach under different 

lengths of data. 

 Table 1 shows the descriptive statistics of the two samples of U.S. yield curve data. 

Both the mean of the yield curve is upward sloping, and the long maturity rates are much 

more stable than short maturity rates. We also present both the 3-D plot of the two sample 

sets in Figure 1 and 2. 

 

(Insert Table 1) 

(Insert Figures 8 and 9) 
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4. Result and Discussion 

In this section, we present our results, including simulation, in-sample fit, the exponential 

decay rate and out-of-sample forecast. Both the in-sample fit results and exponential 

decay rate results are only based on 10-year data set, but we present out-of-sample results 

for both 10-year and 30-year data set. We also discuss these results in detail. 

4.1 Simulation 

 Recall that we applied Monte Carlo Simulation to verify the validity of our dynamic 

approach. We used the original Nelson-Siegel three-factor model (1987) to do the data 

generating process by fixing the AR(1) of three betas and the exponential decay rate. The 

total sample paths are 1000 and the sample size of each sample path is 200. After the data 

generating process, we process the generated data into our dynamic approach to estimate 

the AR(1) of three factors and λ to compare if there are significant differences between 

the fixed value and our estimations.  

Table 2 presents the estimation results of the simulation data. The null hypothesis for 

the Monte Carlo test is the estimation values and is no different from the settled value. All 

the results were insignificant, so we can conclude that our estimation has no differences 

with the settled value. Our results show that our method can estimate λ and track the 

trend of β1, β2, and β3 correctly. 

 

(Insert Table 2) 

 

4.2 In-Sample Fit 

 Since the validity of our method was proven by using the simulation data, we could 

fit the real-world yield curve data by using the Nelson and Siegel three-factor model. By 

applying the state-space model and the Kalman filter, we extracted the β1t, β2t, and β3t and 

λ in a unified process. Table 3 shows the statistical results of the estimates of β1t, β2t, and 

β3t. The mean value of β1t is 5.501, and the level factor is the second most persistent 
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factor based on its auto regression value. The mean value of the slope is -3.393; the 

negative value means a positive slope, and it is the most persistent factor since the auto 

regression value is the highest value. The curvature factor is the least persistent factor and 

it is also the most highly variable relative to its mean. Table 4 shows the estimation of λ 

and its test result. The value of λ is 0.0397, and it is highly significant since the test value 

is 36.0909. In our estimation, the value of λ is much less than 0.0609, which is the fixed 

value used in Diebold and Li’s (2006) method. The difference between our λ results and 

the fixed value is around 1/3; this is a high difference that should lead to the difference 

between actual value of the three factors and the estimated value of Diebold and Li’s 

method. 

 

(Insert Tables 3 and 4) 

 

 Figure 10 shows the plot of the average yield curve graph for both actual data and the 

fitted, or model-based, data. The two sets are quite close in this plot. This means that our 

estimation process can provide a reasonably reliable and tractable fitting result based on 

the historical yield curve data. 

  

(Insert Figure 10) 

 

 Similar to Figure 10, Figure 11 presents four different yield curve graphs for both 

actual data and model-based data by randomly selected date. These yield curves have 

different shapes, including upward sloping, flat, humped, and inverted hump. Our 

dynamic method can capture the changing of shapes and provide good replication of a 

variety of yield curve shapes. Different from the average yield curve plot, not all graphs 

show a perfect fit between actual data and fitted data. For example, the actual and 

estimated results in the yield curve chart for September 2002 are perfectly fitted to each 

other, but in the graph for October 2008, there are some difficulties in fitting perfectly in 

a short time to maturity. The residual value is 0.32 for one-month maturity, which is the 

highest error of the entire sample, is still in a reasonable range. Therefore, we concluded 

that the overall fit is good. 
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(Insert Figure 11) 

 

 Figure 12 presents the plot of β1, β2, and β3 over time. The three factors are also 

represented as level, slope, and curvature, as discussed earlier. Since the level factor 

indicates the long-term trend of yield curves, it should be more persistent than other two 

factors. This can be proven from the plot. The slope factor, β2, is negative most of the 

time. Since the slope of yield curves is -β2, one can conclude that most of the time the 

yield curves have a positive slope. For the curvature factor, the higher curvature means 

the more convex/concave the yield curve. The yield curve will be flatter in the middle if 

the curvature is close to 0. We found that during July 2005 to July 2007, both the slope 

factor and the curvature factor were close to 0. This means the yield curves should be 

almost a flat line during that period. We verified this by randomly picking two yield 

curves and plotting them, shown in Figure 13, from that period. 

 

(Insert Figure 12 and Figure 13) 

 

Since the λ of our extracted value is significantly different from the fixed value set 

by Diebold and Li (2006), we also plotted the three factors extracted by using both our λ 

and Diebold and Li’s λ in Figure 14. Although the trends of all three factors are the same 

using the two different approaches, it is clear that the actual value of the three factors 

between these two methods differs. However, the simulation test shows that our dynamic 

method can produce consistent estimation results with actual value. Therefore, we can 

conclude that Diebold and Li’s (2006) estimators differ from the actual factors since the 

fixed value of λ is not same as the actual value. Therefore, Diebold and Li’s method has 

limitations. When applying their method, the λ must be fixed carefully. If the λ cannot be 

assumed correctly while using Diebold and Li’s (2006) method, the estimation of the 

three factors is not the actual value, and it will lead to an estimation process that is also 

meaningless. We will discuss this point in more detail in the next part. 
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(Insert Figure 14) 

 

4.3 Exponential Decay Rate 

To estimate the exponential decay rate, we use 10-year data set and 5-year window 

size. We assume the exponential decay rate would remain unchanged in the window. 

Then we extract all λ based on the moving window method. The date range of λ is from 

January 2006 through December 2012.  

 

(Insert Table 5) 

 

In Table 5, we list the descriptive statistics of estimated λ. The mean of λ is 0.0435, 

the maximum is 0.0563, and the minimum value is 0.0329. The standard error of λ is 

0.0011; this means the 95% confidence interval should be between 0.0375 and 0.0419. 

Since 0.0609 is much higher than the upper endpoint of the confidence interval, even 

much higher than the maximum value of λ, the question we introduced earlier appeared. 

If we estimate β1, β2, and β3 by using OLS as the λ fixed at 0.0609, we can hardly 

interpret that the β1, β2, and β3 as the level, slope, and curvature of the yield curves of this 

period. Therefore, estimating all three betas and λ at the same time is necessary not only 

from an empirical perspective, which means getting better in-sample fitting results, but 

also from a theoretical point of view. 

 

(Insert Figure 15) 

 

 Figure 15 presents the dot plot of all the values of λ and their trend lines. The trend 

line of λ is downward sloping. This indicates that the decay speed of both the slope and 

curvature are decreasing. The high decay rate means that the slope and curvature factors 

will decay to 0 faster than the low decay rate. Therefore, compared with yield curves at 

the beginning, the latter yield curves are steeper and have a higher degree of bend 

because of the lower decay rate. To verify this, we picked two yield curves in Figure 16. 
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The left yield curve has a larger λ, and the right has a smaller λ. It is clear that the left 

yield curve is much flatter than the right yield curve.  

 

(Insert Figure 16) 

 

 Therefore, one of advantages of our dynamic approach is that we can capture the 

trend of the exponential rate of Nelson-Siegel three-factor model (1987). It is a crucial 

topic now since it can reflect the shape of yield curves. Thus, we can predict the future 

shape of yield curves only based on λ. Economists believe that the shape of yield curves 

is one important signal of future economy. A steeper yield curve is usually representing a 

coming out of recession economy since investors have faith on the long term return. A 

flatter yield curve is usually a signal of slow growth or stable economy since most 

investors believe the current return is same with the long term return. An inverse yield 

curve, which is not common, reflect the recession economy because investors have no 

faith about future return, so they are only focusing on short term. 

4.4 Out-of-Sample Forecast 

Based on the in-sample results, we concluded that our dynamic model can provide 

impressive fitting efficiency. However, a good method not only should show strength in 

in-sample fit, but also must provide good ability in forecasting results. Thus, we 

examined the out-of-sample and in-sample tests to compare the results to those of 

Diebold and Li (2006). The purpose of this examination was to check the efficiency and 

robustness of applying the state-space model and the Kalman filter to estimate the 

parameters of the Nelson and Siegel three-factor model.  

 Table 6 presents the mean square errors (MSEs) of in-sample fit and out-of-sample 

tests for both our dynamic process and the Diebold and Li method. The t-test results show 

the comparison of the MSEs of our process against Diebold and Li’s in different 

maturities. The positive t-test results indicate that the MSEs of our model are larger than 

those from Diebold and Li, in other words, worse performance. The negative MSEs, in 

contrast, demonstrate the superior performance of our model versus Diebold and Li's 

approach.  
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 At first, we only examined the out-of-sample tests of the two models to compare 

their forecasting performance. We expected our method to obtain results that dominated 

those of the Diebold and Li method. However, the results were not as good as we 

expected. For short-period forecasting (one month and three months ahead), our results 

are not good as Diebold and Li's in the short time to maturity; however, our results are 

much improved on the medium and long time to maturity. For the middle-period 

forecasting (six months ahead), almost all the MSEs of our results are better than Diebold 

and Li’s, and the t-test also shows that most of our superior MSEs are significant at the 

85% and 90% levels. For long-period forecasting (one year ahead), our results dominate 

Diebold and Li's except for 10 years to maturity, and most of the predicted MSEs are 

significant at the 99% level.  

Compared with the Diebold and Li method, our dynamic process can generate better 

performance in long and medium forecasting periods, but not in short forecasting periods. 

Because the contradiction of efficiency (in-sample fit) and robustness (out-of-sample 

forecasting) may have existed, we presented four in-sample tests for the same time 

periods as the forecasting periods to compare the efficiency of the two methods.  Based 

on the results of both in-sample fit and out-of-sample tests, we found that the 

contradiction of efficiency and robustness is real in short forecasting periods. For 

example, the t-test result of out-of-sample forecasting for one month to maturity of the 

one-month-ahead forecasting period is 3.3914. In contrast, the t-test result of in-sample fit 

for the same time to maturity and forecasting period is -17.2458. For other maturities of 

different forecasting periods (one month ahead and three months ahead), some results 

also show the existence of the contradiction. These findings indicate that during 

short-term forecasting periods, the high-efficiency estimation method may not be the best 

choice if short maturity yields need to be predicted. A simple model that has a lower 

estimation efficiency level may provide relatively good forecasting results.  

 

(Insert Table 6) 

 

 To answer the question of why the Kalman filter and state-space model will lead to 

poor short-maturity prediction performance in short prediction periods, we go back to the 

basic working principle of the Kalman filter in the engineering fields, especially in 
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navigation systems. According to Welch and Bishop (2006), the Kalman filter is an 

efficient recursive process to minimize MSEs. Based on the operating principle of 

navigation systems, the Kalman filter is used to reduce the rapid changes in locations 

caused by random noise. Thus, when a drift of real location occurs, the Kalman filter can 

pull the position back to the real location smoothly.  

The working principle of navigation explains how the Kalman filter is used to reduce 

noise and produce reasonably smooth prediction results. Similar to a navigation system, 

rapid changes in yields, especially for short maturities, are caused by many reasons; for 

example, the government might reduce the interest rate by 0.5 percent. The Kalman filter 

should also reduce this kind of random noise because of its high efficiency. However, 

that will lead to high forecasting errors because most of the noise, which influences the 

short-term yields, has been eliminated by the Kalman filter. The long-term forecasting 

yields will not be affected since the Kalman filter will produce a smooth long-term 

forecast based on historical yield curves. This may explain why our dynamic model can 

obtain impressive results in long-term forecasting, but relatively poor performance in 

short-term predictions. 

 

(Insert Table 7) 

 

 To verify this, we found estimation errors when a series of rapid changes to yields 

was happening (see Table 7). During data of the above part of the table, U.S. yields are 

moving at a regular phase. At that time, our approach can produce better forecasting 

results. However, during the date of below part of the table, the U.S. was suffering a 

financial crisis. That is why its yields are decreasing so rapidly. When a rapidly 

decreasing begins, the error in our method is higher than in Diebold and Li's. Because 

most random noise is eliminated by the Kalman filter, a change in yields is caused by 

random noise and thus the estimation error of our model should be higher. Therefore, the 

working principle of the Kalman filter can explain why efficiency and robustness are 

contradictory in our situation.  

 Diebold and Li (2006) also indicated a similar reason why their method cannot beat 

common statistical models in the short-term forecasting period. According to Diebold and 
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Li (2006), the performance of one-month-ahead forecasts using the Nelson and Siegel 

three-factor model does not dominate other models. However, the 12-month-ahead 

forecasts are much improved. Diebold and Li (2006) believed that one-month-ahead 

forecasts can be influenced by many sources, and some of these sources can be 

eliminated. This explanation is consistent with the contradiction of efficiency and 

robustness we have encountered before. The next step is to pick models, shown to 

provide good forecasting results in Diebold and Li’s work (2006), to perform an 

out-of-sample test with our dynamic method. The forecast period is 2 months ahead, 3 

months ahead, 6 months ahead, and 12 months ahead. The results are shown in Tables 8 

through 11. 

 

(Insert Tables 8, 9, 10, and 11) 

 

As with the out-of-sample forecasting results of the Diebold and Li (2006) method, 

the medium- and long-term forecasting power is very strong in our dynamic method 

versus other models. However, the short maturity of short-period forecasting still shows 

poor performance. Therefore, combined with the results from Diebold and Li (2006), we 

can conclude that the Nelson and Siegel three-factor model is a high-efficiency model, 

especially for short maturities. In the meantime, the forecasting results of the Nelson and 

Siegel model are also impressive. The good long forecasting performance has an 

attractive application in active bond trading. Furthermore, except for the short maturity of 

short-term forecasting periods, our dynamic method also shows highly improved 

forecasting ability versus the Diebold and Li (2006) method. 

The long term forecasting of yield curves are more important than the short horizon 

forecasting in many practical issues. Diebold et al. (1998) and Diebold et al. (1999) 

respectively show that the importance of interest rate point forecasting and interest rate 

density forecasting for bond portfolio management, derivatives pricing and risk 

management. The better 12-month-ahead forecasting provide valuable information for 

both the vantage point of active bond trading and the vantage point of credit portfolio risk 

management. Lin (2013) indicates that the rolldown trading strategy is highly profitable 

when yield gap is high between different maturities. Our results can provide attractive 

supporting for bond traders. 
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(Insert Table 12) 

 

To ensure the robustness of long term forecasting ability of our dynamic approach, 

we also present 12-month-ahead forecasting and 24-month-ahead forecasting by applying 

the 30-year data set. In Table 12, we can see that the difference between MSE of our 

dynamic approach and method of Diebold and Li (2006) are highly significant. The MSE 

of our results are much reduced compare with the competitor’s results. The results show 

that our method are also much improved from Diebold and Li under the 30-year data set. 

It shows that the long horizon forecasting ability of our method can stay at a high level 

under different situations. 

 

(Insert Table 13) 

    

 It is worth noting that in the 12-month forecast period the random walk method 

obtains very good out-of-sample results in the 10-year data set. However, this does not 

mean that the random walk can produce very good forecasting results in long-term 

forecast periods. Since the random walk method is never changed along with the length 

of forecasting horizon, forecasting errors are highly based on the fluctuation of the data 

set during the forecast period. During the 12-month forecast period, the actual yield data 

are stable. Only a few fluctuations are seen at the beginning of the forecast period. This is 

why the random walk can provide extremely good long horizon forecasting results during 

this period. Had the data set of the forecast period frequently fluctuated, the random walk 

would not have produced as good a long term forecasting result as it would in stable 

periods. To verify that, we do 24-month-ahead forecasting test between our dynamic 

method and random walk. We choose T-Bill yields to test because the short maturities are 

more volatile than long maturities. The results (see Table 13) show that when sample 

yields are frequently fluctuated, the long term forecasting ability of our dynamic method 

can easily beat the random walk.  
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6. Conclusion 

In this thesis, we have developed a unified dynamic factor process based on Diebold 

and Li’s alternative Nelson and Siegel three-factor model to forecast the dynamic 

movement of yield curves. We applied the state-space model and the Kalman filter to 

extract and estimate factors of our model. We used Monte Carlo simulation to test the 

validity of our dynamic approach and U.S. yield curve data to present both in-sample fit 

and out-of-sample forecast results to compare our approach with other approaches and 

models, including Diebold and Li’s method and common statistical models.  

We found that our dynamic method can provide accuracy and tractable results to 

estimate the three factors and the exponential decay rate of the Nelson and Siegel 

three-factor model. Applying the Kalman filter to the Nelson and Siegel model is an 

efficient, tractable, and accurate method which can fit the historical yield curves well. 

This is consistent with previous literature. Our dynamic approach not only is an efficient 

method that can provide very good in-sample fit when estimating term structure models, 

but also can produce satisfying out-of-sample forecasting results, especially for the long 

forecasting horizontal. The good long term forecasting ability of our method can provide 

crucial information for investors and governments to use in solving real-world practical 

issues, including bond pricing, bond management, and growth in gross domestic product. 

Based on our results, applying the Kalman filter and the state-space model as an 

estimation method can do very well both in-sample estimation and out-of-sample 

forecasting. However, it is worthy to note that although the results by applying the 

Kalman filter of both previous literature and our method are impressive, we find that the 

Kalman filter should be used in caution when applying it to term structure models to 

solve short term yield curve prediction because in short term forecasting, the Kalman 

filter trades off robustness to maintain a high efficiency. 

It is also worth noting that our dynamic method can extract three factors and the 

exponential decay rate in a unified process so that we can overcome the estimation gap, 

which assumes the exponential decay rate as a constant value, of the Diebold and Li 

(2006) method. We found that the fixed value of the exponential decay rate does not work 

all the time. If the value is not fixed in a reasonable range, the estimates of the three 

factors will also drift from their true value. That will make the estimation process 
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meaningless from a theoretical perspective. Therefore, fixing the exponential decay rate 

may not be a good choice when dealing with research problems that need to find an 

accurate value of the three factors of the Nelson and Siegel three-factor model (1987). 

Moreover, the exponential decay rate is a crucial signal of the shape of yield curves, 

which economists consider one of the major indicator of future economy environment. 

Since Diebold and Li (2006) fix the number of the exponential decay rate, their method 

cannot capture the movement of the shape of yield curves. Thus, one of advantages of our 

dynamic approach is that it can successful estimate the exponential decay rate and 

provide the future trend of yield curve shapes to help economists to predict future 

economy and help governments to decide their policies.  
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Figure 1. Different shapes of yield curves can be modeled using the Nelson and Siegel 

three-factor model (1987). 

 

 

  

 

 

 

Figure 2. Three-factor loadings of the forward rate curve. 
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Figure 3. Three-factor loadings of the yield curve. 

 

 

 

 

 

 

 

 

Figure 4. Slope of the forward rate curve. 
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Figure 5. Slope of the yield curve. 

 

 

 

 

 

 

  

 

Figure 6. Curvature of the forward rate curve. 
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Figure 7. Curvature of the yield curve. 
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Figure 8. 3-D plots of 10-year yield curves.  
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Figure 9. 3-D plots of 30-year yield curves.  
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Figure 10. Actual and fitted average yield curve. 
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Note: The lines present the yield curves of actual data, and the dots represent the fitted 

data. 

 

Figure 11. Actual and fitted yield curve on selected dates. 
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Figure 12. Plot of the estimation values of the three factors of the Nelson and Siegel 

three-factor model (1987). 

 

 

 

 

 

 

       

Figure 13. Yield curves on random selected dates. 
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Figure 14. Plots of the three factors using our dynamic method and Diebold and Li’s 

(2006) method. 

 

 

 

Figure 15. Trend line of the λ based on a five-year estimation window.  
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Figure 16. Yield curves on selected dates. 
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Table 1. Descriptive statistics of U.S. yield curve data. (10- and 30-year data set) 

These two tables present descriptive statistics for monthly yields at different maturities. 

The sample period of first table is from July 2001 through December 2012. The sample 

period of second table is from January 1983 through December 2012. The last column is 

the AR(1) of yields of each maturity. 

Maturity (Months) Mean Std. Dev. Minimum Maximum �̂�(1) 

1 1.6517 1.6743 0.00 5.21 0.9887 

3 1.7135 1.6999 0.01 5.16 0.9918 

6 1.8404 1.7283 0.04 5.27 0.9940 

12 1.9617 1.6698 0.10 5.22 0.9940 

24 2.2359 1.5538 0.21 5.12 0.9909 

36 2.4985 1.4615 0.33 5.09 0.9887 

60 3.0236 1.2820 0.62 5.07 0.9866 

84 3.4272 1.1296 0.98 5.14 0.9838 

120 3.8064 0.9655 1.53 5.28 0.9789 

 

Maturity (Months) Mean Std. Dev. Minimum Maximum �̂�(1) 

3 4.3919 2.7765 0.01 10.90 0.9973 

6 4.5766 2.8455 0.04 11.37 0.9972 

12 4.7552 2.8924 0.10 12.08 0.9969 

24 5.1394 2.9570 0.21 12.91 0.9965 

36 5.3601 2.9127 0.33 13.18 0.9962 

60 5.7320 2.7846 0.62 13.48 0.9961 

84 6.0193 2.6847 0.98 13.56 0.9959 

120 6.2201 2.5529 1.53 13.56 0.9953 
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Table 2. Estimated results of simulation data. 

This table presents the setting value and estimation value of λ and auto regression of β1, 

β2, and β3. The maturities for simulation data are 1, 6, 12, 24, 36, 60, 84, and 120 months.  

Factor Setting Value Mean Std. Dev. Mean Std. Err Test 

λ 0.60 0.57 0.0237 0.0204 -1.4763 

AR1(β1) 0.92 0.92 0.0275 0.0380 -0.0571 

AR1(β2) 0.95 0.94 0.0258 0.0315 -0.4561 

AR1(β3) 0.93 0.88 0.0383 0.0390 -1.2076 

 

 

 

 

 

 

 

Table 3. Descriptive statistics of the estimated three factors. 

This table presents the descriptive statistics for the three factors in the Nelson and Siegel 

three-factor model by using monthly yield curve data from July 2001 through December 

2012. The last three columns are the sample auto correlations of the latent period of 1, 12, 

and 30 months. 

Factor Mean Std. Dev. Minimum Maximum �̂�(1) �̂�(12) �̂�(30) 

�̂�1𝑡 5.051 1.023 2.341 6.530 0.958 0.358 -0.333 

�̂�2𝑡 -3.393 2.014 -6.289 0.431 0.982 0.587 -0.450 

�̂�3𝑡 -2.538 2.280 -6.637 1.879 0.941 0.425 -0.136 
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Table 4. Descriptive statistics of estimated λ of in-sample test. 

This table presents the descriptive statistics for the λ in the Nelson and Siegel three-factor 

model by using monthly yield curve data from July 2001 through December 2012.  

Factor Estimation Standard Error Test 

λ 0.0397 0.0011 36.0909*** 

 

 

 

 

 

 

 

 

 

 

Table 5. Descriptive statistics of estimated λ of out-of-sample test. 

This table presents the descriptive statistics for the λ based on a five-year estimation 

window from January 2006 through December 2012.  

 Mean Std. Dev. Maximum Minimum 

λ 0.0435 0.0069 0.0563 0.0329 
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Table 6. Estimation errors of dynamic model and the Diebold and Li’s (2006) method. 

This table presents the MSEs of in-sample fit and out-of-sample test for both dynamic 

method and the Diebold and Li process. The t-test is the comparison of MSEs of the two 

methods. We present the out-of-sample results based on four different prediction periods: 

1 month ahead, 3 months ahead, 6 months ahead, and 12 months ahead. We define 

forecast errors at t+1 as 𝑦𝑡+1(𝜏) − �̂�𝑡+1 𝑡⁄ (𝜏). 

 
MSE of Out-of-Sample Test 

 

MSE of In-Sample Fit 

Maturity Dynamic Diebold T-Test Dynamic Diebold T-Test 

July, 2006-December, 2012 

1month 0.1352 0.0859 3.3914*** 
 

0.0094 0.0125 -17.2458*** 

3months 0.0711 0.0444 3.7246*** 
 

0.0000 0.0019 -25.8208*** 

6months 0.0608 0.0603 0.0871 
 

0.0159 0.0132 14.9003*** 

1year 0.1271 0.1705 -7.6507*** 
 

0.0151 0.0152 -0.2275 

2years 0.1271 0.1481 -3.5926*** 
 

0.0023 0.0023 0.0575 

3years 0.3325 0.3079 2.1204** 
 

0.0007 0.0088 -58.8429*** 

5years 0.2335 0.1918 3.5667*** 
 

0.0016 0.0136 -69.2747*** 

7years 0.2092 0.2144 -0.6927 
 

0.0000 0.0023 -68.3298*** 

10years 0.4151 0.5983 -10.3725*** 
 

0.0267 0.0158 20.0991*** 

        
September, 2006-December, 2012 

1month 0.4991 0.4219 2.3725** 
 

0.0092 0.0126 -17.8959*** 

3months 0.3621 0.3048 2.2905** 
 

0.0000 0.0019 -24.9602*** 

6months 0.3109 0.3023 0.3823 
 

0.0156 0.0131 13.4934*** 

1year 0.3287 0.3996 -3.0276*** 
 

0.0151 0.0154 -1.5689 

2years 0.3379 0.3782 -1.4719 
 

0.0023 0.0023 -0.9801 

3years 0.4150 0.4286 -0.5788 
 

0.0008 0.0089 -57.8599*** 

5years 0.3439 0.3144 1.4290 
 

0.0017 0.0140 -68.7118*** 

7years 0.2722 0.2709 0.0864  0.0000 0.0024 -68.0297*** 

10years 0.3805 0.5312 -5.1009***  0.0275 0.0161 20.0378*** 

  
       

December, 2006-December, 2012 

1month 1.0964 1.2490 -1.4329 
 

0.0088 0.0125 -19.0504*** 
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3months 0.8877 1.0162 -1.3801 
 

0.0000 0.0019 -23.4011*** 

6months 0.7726 0.9385 -1.8625* 
 

0.0153 0.0130 11.8123*** 

1year 0.6399 0.8786 -2.8679*** 
 

0.0151 0.0158 -3.0986*** 

2years 0.6199 0.7564 -1.7330* 
 

0.0023 0.0023 0.1578 

3years 0.5109 0.6038 -1.6432 
 

0.0008 0.0091 -55.9473*** 

5years 0.4909 0.4703 0.4740 
 

0.0017 0.0145 -68.0871*** 

7years 0.3856 0.3427 1.4249 
 

0.0000 0.0025 -67.7652*** 

10years 0.3762 0.4197 -1.3348 
 

0.0285 0.0166 19.7652*** 

  
       

June, 2007-December, 2012 

1month 2.4579 4.3528 -4.2738*** 
 

0.0084 0.0128 -20.1930*** 

3months 2.0824 3.7416 -4.2477*** 
 

0.0000 0.0020 -21.3294*** 

6months 1.8173 3.3321 -4.3304*** 
 

0.0152 0.0131 9.7291*** 

1years 1.4171 2.7187 -4.4809*** 
 

0.0152 0.0166 -5.5426*** 

2years 1.2847 2.0955 -3.6730*** 
 

0.0023 0.0024 -1.5757 

3years 0.7572 1.2653 -3.5350*** 
 

0.0010 0.0096 -52.8695*** 

5years 0.7141 0.8830 -1.8262* 
 

0.0019 0.0157 -66.9545*** 

7years 0.5212 0.5362 -0.2489 
 

0.0000 0.0027 -67.3707*** 

10years 0.3414 0.3088 0.7160 
 

0.0312 0.0179 19.5194*** 

*** represents 99% level of significance, while ** represents 95% level of significance, 

and * represents 90% level of significance. 
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Table 7. Estimation errors of both dynamic method and Diebold and Li (2006) approach 

on selected dates. 

This table presents two groups of estimation errors of dynamic method and the Diebold 

and Li process from March 2007 through May 2007 and from December 2007 to 

February 2008 for one-month-ahead forecasting. The time to maturity is three month. 

Date Actual Yield Square Error (Dynamic) Square Error (Diebold and Li) 

Mar, 07 5.10 0.0003 0.0265 

Apr, 07 5.07 0.0000 0.0308 

May, 07 4.98 0.0002 0.0152 

Dec, 07 3.34 0.1302 0.0792 

Jan, 08 2.84 0.3993 0.1093 

Feb, 08 2.10 0.8931 0.6510 

 

 

 

 

 

 

 

 

 

 

 

 



Forecasting the Yield Curve of Government Bonds: A Comparative Study 

45 

 

Table 8. 1-month-ahead out-of-sample forecasting errors. 

This table presents the 1-month-ahead out-of-sample forecasting results, including mean, 

standard deviation, and the mean square error. The estimation window is five years, and 

the forecasting period is from July 2006 through December 2012.  

Maturity Mean Std. Dev. MSE 

Nelson and Siegel three-factor model (dynamic method) 

3 months 1.5298 1.9248 0.0711 

1 year 1.6115 1.8100 0.1271 

3 years 2.0889 1.5194 0.3325 

5 years 2.5990 1.2801 0.2335 

10 years 3.4472 0.9398 0.4151 

    

Nelson and Siegel three-factor model (Diebold and Li’s method) 

3 months 1.4662 1.9923 0.0444 

1 year 1.5336 1.9232 0.1705 

3 years 2.1196 1.5829 0.3079 

5 years 2.6490 1.3117 0.1918 

10 years 3.3197 1.0262 0.5983 

    

Random Walk    

3 months 1.4168 1.9616 0.0362 

1 year 1.6040 1.8964 0.1431 

3 years 2.0017 1.5855 0.3750 

5 years 2.5154 1.3686 0.2743 

10 years 3.3876 1.0085 0.5068 

    

Slope Regression    

3 months 1.3821 2.0046 0.0474 

1 year 1.5809 1.9149 0.1610 

3 years 1.9900 1.6362 0.4111 

5 years 2.5035 1.4169 0.3102 

10 years 3.3723 1.0397 0.5489 
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AR(1) on Yield Curves    

3 months 1.3711 1.9517 0.0571 

1 year 1.5577 1.8841 0.1343 

3 years 1.9578 1.5872 0.4180 

5 years 2.4747 1.3861 0.3120 

10 years 3.3552 1.0444 0.5666 

    

VAR(1) on Yield Curves    

3 months 1.3591 2.0004 0.0479 

1 year 1.5668 1.9081 0.1514 

3 years 2.0068 1.5761 0.3862 

5 years 2.5392 1.3378 0.2506 

10 years 3.4153 0.9667 0.4625 
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Table 9. 3-month-ahead out-of-sample forecasting errors. 

This table presents the 3-month-ahead out-of-sample forecasting results, including mean, 

standard deviation, and the mean square error. The estimation window is five years, and 

the forecasting period is from September 2006 through December 2012.  

Maturity Mean Std. Dev. MSE 

Nelson and Siegel three-factor model (dynamic method) 

3 months 1.6532 1.8460 0.3621 

1 year 1.7558 1.7196 0.3287 

3 years 2.2536 1.4146 0.4150 

5 years 2.7611 1.1647 0.3439 

10 years 3.5870 0.7896 0.3805 

    

Nelson and Siegel three-factor model (Diebold and Li’s method) 

3 months 1.5564 2.0750 0.3048 

1 year 1.6417 1.9812 0.3996 

3 years 2.2387 1.5938 0.4286 

5 years 2.7647 1.2899 0.3144 

10 years 3.4267 0.9573 0.5312 

    

Random Walk    

3 months 1.4516 1.9755 0.1731 

1 year 1.6414 1.9071 0.3233 

3 years 2.0447 1.5835 0.4808 

5 years 2.5634 1.3534 0.4072 

10 years 3.4320 0.9829 0.5629 

    

Slope Regression    

3 months 1.4044 2.0582 0.2248 

1 year 1.6038 1.9547 0.3991 

3 years 2.0333 1.7083 0.5812 

5 years 2.5489 1.4692 0.4987 

10 years 3.4066 1.0572 0.6529 
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AR(1) on Yield Curves    

3 months 1.3190 1.9840 0.2260 

1 year 1.5071 1.9192 0.4181 

3 years 1.9172 1.6435 0.7143 

5 years 2.4451 1.4579 0.6308 

10 years 3.3390 1.1355 0.8382 

    

VAR(1) on Yield Curves    

3 months 1.3804 2.0364 0.2661 

1 year 1.6775 1.9047 0.3797 

3 years 2.2336 1.5101 0.3731 

5 years 2.7500 1.2453 0.3198 

10 years 3.5761 0.8394 0.4140 
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Table 10. 6-month-ahead out-of-sample forecasting errors. 

We present the 6-month-ahead out-of-sample forecasting results, including mean, 

standard deviation, and the mean square error. The estimation window is five years, and 

the forecasting period is from December 2006 through December 2012. 

Maturity Mean Std. Dev. MSE 

Nelson and Siegel three-factor model (dynamic method) 

3 months 1.8005 1.7266 0.8877 

1 year 1.9278 1.5920 0.6399 

3 years 2.4492 1.2853 0.5109 

5 years 2.9527 1.0385 0.4909 

10 years 3.7496 0.6550 0.3762 

    

Nelson and Siegel three-factor model (Diebold and Li’s method) 

3 months 1.7067 2.1915 1.0162 

1 year 1.8138 2.0596 0.8786 

3 years 2.4193 1.6026 0.6038 

5 years 2.9364 1.2522 0.4703 

10 years 3.5815 0.8517 0.4197 

    

Random Walk    

3 months 1.5070 1.9966 0.5354 

1 year 1.7014 1.9226 0.6343 

3 years 2.1145 1.5770 0.6670 

5 years 2.6414 1.3236 0.6057 

10 years 3.5055 0.9313 0.6170 

    

Slope Regression    

3 months 1.4358 2.1292 0.6690 

1 year 1.6486 2.0009 0.7823 

3 years 2.1075 1.7731 0.8507 

5 years 2.6319 1.5056 0.7507 

10 years 3.4791 1.0502 0.7347 
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AR(1) on Yield Curves    

3 months 1.2526 2.0973 0.5124 

1 year 1.4412 2.0149 0.8847 

3 years 1.8691 1.7346 1.4511 

5 years 2.4214 1.5683 1.4263 

10 years 3.3452 1.2504 1.4112 

    

VAR(1) on Yield Curves    

3 months 1.4264 2.1961 0.8914 

1 year 1.8402 2.0172 0.9612 

3 years 2.4831 1.4898 0.7805 

5 years 3.0557 1.1706 0.8150 

10 years 3.8387 0.7662 0.6001 
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Table 11. 12-month-ahead out-of-sample forecasting errors. 

This table presents the 12-month-ahead out-of-sample forecasting results, including mean, 

standard deviation, and the mean square error. The estimation window is five years, and 

the forecasting period is from June 2007 through December 2012. 

Maturity Mean Std. Dev. MSE 

Nelson and Siegel three-factor model (dynamic method) 

3 months 1.9852 1.4941 2.0824 

1 year 2.1455 1.3614 1.4171 

3 years 2.6933 1.0830 0.7572 

5 years 3.1839 0.8685 0.7141 

10 years 3.9265 0.5373 0.3414 

    

Nelson and Siegel three-factor model (Diebold and Li’s method) 

3 months 1.9958 2.4356 3.7416 

1 year 2.1296 2.2289 2.7187 

3 years 2.7252 1.6504 1.2653 

5 years 3.2108 1.2317 0.8830 

10 years 3.8085 0.7397 0.3088 

    

Random Walk    

3 months 1.6351 2.0362 1.8582 

1 year 1.8384 1.9495 1.5050 

3 years 2.2672 1.5573 0.6992 

5 years 2.8025 1.2608 0.5880 

10 years 3.6466 0.8351 0.4224 

    

Slope Regression    

3 months 1.5331 2.2409 2.1270 

1 year 1.7738 2.0614 1.6636 

3 years 2.2936 1.8143 1.0147 

5 years 2.8292 1.5020 0.8195 

10 years 3.6421 0.9964 0.5276 
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AR(1) on Yield Curves    

3 months 1.1980 2.5699 2.1797 

1 year 1.3707 2.3637 1.8849 

3 years 1.8426 1.8562 1.2319 

5 years 2.4702 1.5597 0.9835 

10 years 3.4550 1.1337 0.8403 

    

VAR(1) on Yield Curves    

3 months 1.9170 2.5212 4.1984 

1 year 2.1359 2.3895 3.4959 

3 years 2.5534 1.7846 1.4108 

5 years 2.9458 1.3285 0.7770 

10 years 3.6002 0.8454 0.4869 
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Table 12. Forecasting errors of dynamic model and the Diebold and Li’s (2006) method. 

This table presents the MSEs of 24-month-ahead out-of-sample test for both dynamic 

method and the Diebold and Li’s (2006) process. The sample is 30-year data set and the 

window size is 5-year. The t-test is the comparison of MSEs of the two methods. We 

define forecast errors at t+1 as 𝑦𝑡+1(𝜏) − �̂�𝑡+1 𝑡⁄ (𝜏). 

Maturity MSE of dynamic MSE of Diebold T-Test 

3 months 4.7713 9.2757 -9.3666*** 

6 months 4.6823 8.6828 -9.4780*** 

1 year 4.5214 7.7256 -9.3535*** 

2 years 3.8309 5.8399 -8.4503*** 

3 years 3.3804 4.6339 -7.1982*** 

5 years 2.5393 2.9633 -4.0456*** 

10 years 2.0205 2.0999 -1.0906 

*** represents 99% level of significance. 

 

 

 

 

Table 13. Forecasting errors of dynamic model and the random walk. 

This table presents the MSEs of 24-month-ahead out-of-sample test for both dynamic 

method and the random walk. The sample is 30-year data set and the window size is 

5-year for dynamic aproach. The t-test is the comparison of MSEs of the two methods. 

We define forecast errors at t+1 as 𝑦𝑡+1(𝜏) − �̂�𝑡+1 𝑡⁄ (𝜏). 

Maturity MSE of dynamic MSE of random walk T-Test 

3 months 4.7713 5.7133 -3.4634*** 

6 months 4.6823 5.7197 -3.7575*** 

1 year 4.5214 5.1660 -2.4690*** 

*** represents 99% level of significance. 


