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Abstract

According to the List Colouring Conjecture, if G is a multigraph then χ′(G) =

χ
′
l(G). In this thesis, we discuss a relaxed version of this conjecture that

every simple graph G is edge-(∆ + 1)-choosable as by Vizing’s Theorem

∆(G) ≤ χ
′(G) ≤ ∆(G) + 1. We prove that if G is a planar graph without

7-cycles with ∆(G) 6= 5, 6 or without adjacent 4-cycles with ∆(G) 6= 5, or

with no 3-cycles adjacent to 5-cycles, then G is edge-(∆ + 1)-choosable.
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Chapter 1
Introduction

A graph G is an ordered pair (V (G), E(G)) consisting of V (G), a set of

vertices and E(G) a set of unordered pair of vertices of G (not necessarily

distinct). If e is an edge joining two vertices u and v, then we denote the edge

e by uv and the vertices u and v are called the end vertices of e. Multiple

edges (also called parallel edges) are two or more edges with the same end

vertices. If a graph G has multiple edges, then it is called a multigraph. A

simple graph G has no multiple edges.

In this thesis, we consider simple planar graphs. A graph G is called

planar, if it can be embedded in the plane such that its edges intersect only

at their end vertices. Two edges are adjacent if they have one common end

vertex. This vertex is called incident to both edges. The degree of a vertex v

in a graph G, denoted by d(v), is the number of edges in G which are incident

to v. We denote the minimum and maximum degrees of the vertices of G by
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1.1 History 1

δ(G) and ∆(G), respectively.

An edge-colouring of graph G is an assignment of colours to all edges of

graph G such that adjacent edges are not assigned the same colours. The edge

chromatic number of graph G, denoted by χ′(G), is the minimum number

of colours needed to acheive an edge-colouring of graph G. Vizing’s theorem

states

Theorem 1. For a simple graph G, ∆(G) ≤ χ
′(G) ≤ ∆(G) + 1.

A generalized type of edge colouring is list-edge-colouring in which a list of

colours is assigned to each edge of G and each edge should be coloured with

an available colour on its list. The edge choice number of graph G, denoted by

χ
′
l(G), is the smallest integer k such that each list contains at least k colours

for every edge in G and a list-edge-colouring is achievable.

1.1 History

The following conjecture has been investigated independently by Vizing,

Gupta, Alberson and Collins, and Bollobás and Harris [JT95, HC92], and is

known as the List Colouring Conjecture which states

Conjecture 1. For all multigraphs G, χ′(G) = χ
′
l(G).

The conjecture has been proven for a few special cases, such as bipartite

multigraphs [Gal95], complete graphs with odd number of vertices [HJ97],

multicircuits [Woo99], outerplanar graphs [WL01a], and planar graphs with
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1.1 History 1

∆(G) ≥ 12 which can be embedded in a surface of non-negative characteris-

tic [BKW97]. In 1976, Vizing proposed a weaker conjecture [Kos92].

Conjecture 2. Every simple graph G is edge-(∆ + 1)-choosable.

This conjecture is a relaxed version of the List Colouring conjecture which

states for every simple graph G, the upper bound of edge choice number of

graph G is equal to the upper bound of the edge chromatic number of graph

G as by Vizing’s Theorem ∆(G) ≤ χ
′(G) ≤ ∆(G) + 1.

Harris showed if G is a graph with ∆(G) ≥ 3, then χ′
l(G) ≤ 2∆(G)− 2.

This implies that Conjecture 2 is true for graphs with ∆(G) = 3. Juvan,

Mohar, and S̃krekovski [JMŠ99] proved that the Vizing’s conjecture holds

for all graphs G with ∆(G) = 4. Conjecture 2 has also been proven for

other special cases such as complete graphs [HJ97], graphs with girth at least

8∆(G)(ln∆(G) + 1.1) [Kos92], and planar graphs with ∆(G) ≥ 9 [CH10]. In

March 2013, Bonamy improved the lower bound of 9 and proved Vizing’s

Conjecture holds for planar graphs with ∆(G) ≥ 8.

Vizing’s Conjecture has been studied extensively. Most of the known

results are for planar graphs. We provide a list of planar graphs that hold

Vizing’s Conjecture below.

[Wang et al. 2001] without 6-cycles with ∆ 6= 5 [WL01b]

[Wang and Lih 2002] without 5-cycles [WL02]

[Zhang and Wu 2004] triangle-free [ZW04]
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1.2 Overview 1

[Zhang and Wu 2004] without 4-cycles with ∆ 6= 5 [ZW04]

[Wang 2005] without 4-cycles with ∆ = 5 or without 6-cycles with

∆ = 5 [Wan05]

[Shen at al. 2008] without 4-cycles [SZHZ08]

[Cranston 2009] without adjacent triangle with ∆ 6= 5 [Cra09]

[Hou et al. 2009] without adjacent triangles with ∆ 6= 5 [HLC09]

[Hou et al. 2009] without 7-cycles with ∆ 6= 5, 6 [HLC09]

[Ma et al. 2011] without intersecting 4-cycles with ∆ 6= 5 [MWCZ11]

1.2 Overview

In this thesis, we apply the discharging method to show that Vizing’s Con-

jecture holds for 3 more cases. We correct some errors discovered in the

proof of edge-choosability of planar graphs without 7-cycles [HLC09]. Ma

et al. proved planar graphs G without intersecting 4-cycles with ∆(G) 6= 5

are edge-(∆ + 1)-choosable [MWCZ11]. We improve this result by proving

Vizing’s conjecture holds for planar graph G without adjacent 4-cycles with

∆(G) 6= 5. We will also prove that this conjecture holds for planar graphs

without 3-cycles adjacent to 5-cycles.

We have definitions and notations in Chapter 2 which will aid the reader

in understanding the language used in this thesis. In Chapter 3, we discuss
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1.2 Overview 1

past results and explain the tools that were used commonly in their proofs.

We introduce tree structure which is used in later chapters. We also prove

the following theorem by fixing the errors in its proof.

Theorem 2. Every planar graph G without 7-cycles is edge-k-choosable, where

k = max{8,∆(G) + 1}.

In Chapter 4, we prove the following theorems by using tree structure.

Theorem 3. Every planar graph G without adjacent 4-cycles is edge-k-

choosable, where k = max{7,∆(G) + 1}.

Theorem 4. Every planar graph G without 3-cycles adjacent to 5-cycles is

edge-k-choosable, where k = max{6,∆(G) + 1}.

In Chapter 5, we will explain the results we discuss in Chapter 3 and

Chapter 4. We also go through future questions that might be asked by

someone regarding edge-choosability of planar graphs without adjacent 4-

cycles with ∆(G) = 5 and planar graphs without 7-cycles with ∆(G) = 5, 6.
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Chapter 2
Preliminaries and Notions

In this chapter, we define terminology used in this thesis and will also discuss

in depth the special graphs mentioned in Section 1.1 that hold the List

Colouring Conjecture or Vizing’s Conjecture.

2.1 Special Families of Graphs

We mentioned certain types of graphs in the previous chapter. We define

these graphs here.

A complete graph is a simple graph in which any two vertices are adjacent

as shown in Figure 2.1. A complete graph with n vertices is denoted by Kn.

A bipartite graph is a graph whose vertex set can be divided into two

disjoint subsets A and B such that every edge has one end vertex in A and

one end vertex in B. If a bipartite graph is simple and every vertex in A is

joined to every vertex in B, then G is called a complete bipartite graph. A
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2.1 Special Families of Graphs 2

Figure 2.1: Complete Graph K6.

complete bipartite graph with sets of vertices A and B such that |A| = m

and |B| = n, is denoted by Km,n.

Figure 2.2: Complete Bipartite Graph K3,3.

Graph G is planar if it can be embedded in the plane such that its edges

do not intersect except at the end vertices. For example, Figure 2.3 is a planar

graph, since it can be embedded in the plane which is shown in Figure 2.5.

However, the graph shown in Figure 2.4 is not a planar graph.

Figure 2.3: Planar graph K4

If G is a planar graph, then any plane drawing of G divides the plane
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2.1 Special Families of Graphs 2

Figure 2.4: Non-planar graph.

Figure 2.5: Embedded planar graphs K4.

into regions, called faces. One of these faces is unbounded, and is called the

infinite face. The set of faces of graph G is denoted by F (G). An outerplanar

graph is a planar graph which can be embedded in such a way that all of the

vertices belong to the unbounded face of graph G. For example K4 is a planar

graph but it is not an outerplanar graph. However, Figure 2.6 is outerplanar.
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2.2 Vertex Degrees 2

Figure 2.6: Outerplanar graph.

2.2 Vertex Degrees

The degree of a vertex v ∈ V (G), denoted by dG(v) or shortly d(v), is the

number of vertices adjacent to v. A vertex v is called a k-vertex if d(v) = k or

k+-vertex if d(v) ≥ k. The maximum degree of a graph G, denoted by ∆(G),

and the minimum degree of graph G, denoted by δ(G), are the largest vertex

degree and smallest vertex degree in graph G, respectively. For example in

Figure 2.7, the maximum degree ∆(G) = 5 and minimum degree δ(G) = 3.

Figure 2.7: The maximum degree is 5 and minimum degree is 3.

The degree of a face f ∈ F (G) denoted by d(f), is the number of edges

on the boundary of f and each cut edge is counted twice. A face f ∈

F (G) is called a k-face or a k+-face if d(f) = k or d(f) ≥ k, respectively.
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2.2 Vertex Degrees 2

We use [d(v1), d(v2), . . . , d(vn)] to represent a face f ∈ F (G) with vertices

v1, v2, . . . , vn of the degrees d(v1), d(v2), . . . , d(vn), that lie on the boundary

of f in clockwise order. We also use [v1, v2, . . . , vn] to represent face f ∈ F (G)

as well.

A vertex v is incident to a face f if v lies on the boundary of face f .

For example, v is incident to a 5-face in Figure 2.8. Let mk(v) denote

v

f

Figure 2.8: Vertex v incident to 5-face f .

the number of k-faces incident to v for all v ∈ V (G) and nk(f) denote the

number of k-faces adjacent to face f for all f ∈ F (G).

For a face f ∈ F (G), let δ(f) denote the minimum degree of vertices

incident to f . For example in Figure 2.9, δ(f) = 2.

2 3

3 2
4

f

Figure 2.9: The degree of vertices are shown on vertices by numbers.
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2.3 Circuits, Paths and Cycles 2

2.3 Circuits, Paths and Cycles

A u− v path of length k is a sequence of k vertices starting at u and ending

at v, where consecutive vertices in the sequence are adjacent in graph G such

that each vertex is used at most once. A path of length k is denoted by Pk. A

circuit is a sequence of vertices starting at u and ending at the same vertex,

where consecutive vertices in the sequence are adjacent in graph G such that

each edge is used at most once. A cycle of length k is a closed path of length

k where the first and last vertices are the same. It is denoted by Ck. An even

cycle or an odd cycle is a cycle of length k where K is an even or odd integer,

respectively. A multicircuit is a multigraph whose underlying simple graph is

a circuit. If for each two vetices u, v in graph G, there is a path between u

and v then we call graph G a connected graph. A tree is a connected graph

without a cycle.

Two cycles are intersecting if they have an edge or a vertex in common.

Two cycles are adjacent if they have an edge in common. We discuss graphs

excluding adjacent 4-cycles in Section 4.1 and 3-cycles adjacent to 5-cycles in

Section 4.2.

Figure 2.10: Two intersecting C4.

11



2.4 Edge Colouring and List-edge-colouring 2

Figure 2.11: Two adjacent C4.

The minimum length of a cycle in a graph G is the girth of graph G.

2.4 Edge Colouring and List-edge-colouring

An edge-k-colouring of a graph G = (V,E) is a mapping c : E → {1, 2, . . . , k},

where {1, 2, . . . , k} is a set of colours. An edge-k-colouring is proper if adjacent

edges’ colours are different. A graph G is edge-k-colourable if it has a proper

edge-k-colouring. The edge chromatic number, denoted by χ
′(G), is the

smallest integer k such that G is edge-k-colourable. For example, for all

integer n, χ′(C2n) = 2 and χ′(C2n+1) = 3.

Proof. Consider an even cycle C2n = [v1, v2, . . . , v2n−1, v2n] and two distinct

colours α and β. We colour the edges v1v2, v3v4, . . . , v2n−1v2n with α and the

edges v2v3, v4v5, . . . , v2nv1 with β. This is an edge-2-colouring of C2n. We

need at least 2 colours to colour two adjacent edges of C2n and we showed an

edge-2-colouring of C2n, so χ
′(C2n) = 2 .

Also assume an odd cycle C2n+1 = [v1, v2, · · · , v2n−1, v2n, v2n+1] and three

distinct colours α, β and γ. We colour the edges v1v2, v3v4, . . . , v2n−1v2n with

α as well as the edges v2v3, v4v5, . . . , v2nv2n+1 with β. Then, for the edge
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2.4 Edge Colouring and List-edge-colouring 2

v2n+1v1, we have to colour this edge with the third colour γ. Since its adjacent

edges v1v2, v2nv2n+1 have been already coloured with α and β, respectively.

This is an edge-3-colouring of C2n+1. It has been proved that we need at least

3 colours to colour all edges in C2n+1 and we showed an edge-3-colouring of

C2n+1, so χ
′(C2n+1) = 3.

A generalized type of edge colouring is list-edge-colouring that lists the

colours L(e) that are assigned to each edge of G. A Graph G is edge-L-

colourable if it has proper edge colouring such as ψ that ψ(e) ∈ L(e) for all

edges e ∈ E(G). Graph G is edge-k-choosable if G is edge-L-colourable for

every edge assignment L satisfying |L(e)| ≥ k for all edges e ∈ E(G). The

edge choice number, denoted by χ′
l(G), is the smallest integer k such that G

is edge-k-choosable. It is clear that χ′
l(G) ≥ χ

′(G), since we have to colour

each edge of graph G with a colour from the list assigned to that edge. For

example, for all integer n, χ′
l(C2n) = 2. We prove this in following theorem.

Theorem 5. All even cycles C2n are edge-2-choosable [Gal95].

Proof. Consider an even cycle C2n = [v1, v2, . . . , v2n−1, v2n]. We discuss two

different cases to colour cycle C.

Case 1. There are two adjacent edges such that their assigned list of

colours are not the same. Without loss of generality, assume that v1v2, v2nv1

are those edges with different assigned lists. Since L(v1v2) 6= L(v2nv1), then

there is one colour such that α ∈ L(v1v2) and α /∈ L(v2nv1). Let us colour

13



2.4 Edge Colouring and List-edge-colouring 2

the edge v1v2 with α. Then colour v2v3, v3v4, · · · , v2n−1v2n, successively. We

claim there is still one colour available on L(v2nv1) for colouring this edge,

since α /∈ L(v2nv1).

Case 2. All edges have the same assigned list of colours L(e) = {α, β}.

Then we colour the edges v1v2, v3v4, . . . , v2n−1v2n with α and colour the edges

v2v3, v4v5, . . . , v2nv1 with β.

We will use Theorem 5 in following chapters.

14



Chapter 3
Review of Past Results

In this chapter, we review the methods used in past results concerned with

proving Vizing’s Conjecture for different cases of planar graphs. The two

common techniques used in almost all proofs I have ever seen discussing

edge-choosability of planar graphs, are the minimal counterexample and the

discharging methods. We apply these two methods in our proofs as well. We

briefly explain how these two methods work.

As you know, we are trying to prove Vizing’s Conjecture holds for some

certain planar graphs. For example, we are trying to prove Vizing’s Conjecture

holds for planar graphs X. We begin by assuming that the statement "Vizing’s

Conjecture holds for planar graphs X" is not true. Then there exists a planar

graph X that does not hold Vizing’s Conjecture. Since we are discussing finite

graphs in this thesis, then there exists a minimal counterexample. It means

if X is a minimal counterexample that does not hold Vizing’s Conjecture

15



3 Review of Past Results 3

and Y is a non-empty subgraph of X, then X − Y holds Vizing’s Conjecture.

The second method is the discharging method that was used to prove the

Four Colour Theorem. This method is commonly used to prove that a certain

class of planar graphs contains some subgraphs from a specified list. Then it

is proven planar graph X contains subgraph Y by discharging method. We

remove subgraph Y from graph X. Since X is a minimal counterexample,

then X − Y holds Vizing’s Conjecture. We try to colour subgraph Y as well.

Then we can say graph X holds Vizing’s Conjecture which is a contradiction.

We provide you with a list of two common unavoidable configurations in

all discussed planar graphs of past results below.

(1) an edge uv such that d(u) + d(v) ≤ ∆(G) + 2,

(2) an even cycle (3,∆, . . . , 3,∆).

We exclude these configurations of a minimal counterexample as well as

additional configurations called the bad subgraphs which are illustrated in

Figure 3.1.

In 2011, Ma et al. [MWCZ11] used a structure which will play a central

role in the discharging method used in our following proofs. Without using

this structure, we are not able to prove theorems mentioned in Section 1.2.

We call this structure tree structure which is explained in the following section.

16



3.1 Tree Structure 3
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Figure 3.1: Bad subgraphs, the degree of the vertices are shown by numbers.

3.1 Tree Structure

If G is a planar graph including neither an edge uv with d(u)+d(v) ≤ ∆(G)+2

nor an even cycle (3,∆, . . . , 3,∆), then for each 3-vertex of graph G two

adjacent ∆-vertices are considered in graph G such that two 3-vertices do not

share a common ∆-vertex. We prove this in Lemma 1 as follows.

Lemma 1. Let G be a planar graph that excludes the following configurations:

(1) an edge uv that d(u) + d(v) ≤ ∆(G) + 2,

(2) an even cycle (3,∆, . . . , 3,∆).

Let G′ be the subgraph of G induced by the edges incident to 3-vertices. We

claim G
′ contains a bipartite subgraph G′′ = (V ′′

1 , V
′′

2 , E(G′′)), such that for

each vertex v ∈ V ′′
1 , dG′′ (v) = 2 and for each vertex v ∈ V ′′

2 , dG′′ (v) = 1 .

Then for each edge uv ∈ E(G′′), dG(u) = 3 and dG(v) = ∆(G), v is called a

∆-master of u and u is called a 3-dependent of v.

17



3.1 Tree Structure 3

We emphasize that each ∆-vertex is ∆-master of at most one 3-dependent

vertex.

Proof. According to the assumption, G′ is the subgraph of G induced by

the edges incident to 3-vertices and it does not include an edge uv that

d(u) + d(v) ≤ ∆(G) + 2. Then for each edge uv ∈ G′ , d(u) + d(v) ≥ ∆(G) + 3.

Therefore, each edge in subgraph G′ is incident to a 3-vertex and a ∆-vertex

of graph G. Next we prove subgraph G
′ contains a bipartite subgraph

G
′′ = (V ′′

1 , V
′′

2 , E(G′′)), such that for each vertex v ∈ V ′′
1 , dG′′ (v) = 2 and for

each vertex v ∈ V ′′
2 , dG′′ (v) = 1.

We claim subgraph G′ has no odd cycles. By contradiction, we assume

that G′ has an odd cycle. Then this odd cycle contains an edge uv such that

either d(u) = d(v) = 3 or d(u) = d(v) = ∆(G) which is a contradiction, since

each edge of subgraph G′ is incident to a 3-vertex and a ∆-vertex of graph

G. By assumption, subgraph G′ has no even cycles as well. Thus, G′ is a

tree. Take one of the 3-vertices as its root and let G′ be a rooted tree. Each

3-vertex in this rooted tree is adjacent to two ∆-vertices as its children and

one ∆-vertex as its parent. Let us consider each 3-vertex except the root

vertex in G
′ and its children with their incident edges as well as the root

vertex and its two arbitrary children with their incident edges as subgraph G′′ ,

the set of all 3-vertices as V ′′
1 , and the set of all ∆-vertices as V ′′

2 . It is easy

to see each vertex v ∈ V ′′
1 , dG′′ (v) = 2 and each vertex v ∈ V ′′

2 , dG′′ (v) = 1.

Also for each edge uv ∈ E(G′′), dG(u) = 3 and dG(v) = ∆(G). That are

called 3-dependent of v and ∆-master of u, respectively. We claim that each

18



3.1 Tree Structure 3

∆-vertex is ∆-master of at most one 3-dependent vertex. Otherwise, there

are two 3-dependent vertices sharing a common ∆-master. Consider the cycle

incident to these vertices. Therefore, the length of this cycle is infinite or

an even integer number which are both contradiction to our assumptions.

Since graph G is considered a finite graph, it does not contain an even cycle

(3,∆, . . . , 3,∆) by assumption.

Figure 3.2: Tree structure, 3-vertices and ∆-vertices are shown by white
nodes and black nodes, respectively.

Tree structure provides a good source of weight for 3-dependent vertices,

since they have a shortage of weight and two ∆-master vertices take care of

them.

19



3.2 Edge-choosability of Planar Graphs Without 7-cycles 3

3-dependent

∆-master ∆-master

Figure 3.3: Each 3-dependent has two distinct ∆-masters.

3.2 Edge-choosability of Planar GraphsWith-

out 7-cycles

Hou, Liu and Cai [HLC09] proved that every planar graph G without 7-cycles

is edge-(∆ + 1)-choosable with ∆(G) ≥ 7. Hou et al. used the discharging

method to prove this case. They ignored the case that graphs may have a

non-simple 7-face as it is shown in Figure 3.4. Also they used observations

which are hard to be verified. We found counterexamples for observations

used in their proof. As their proof is not complete, we provide a new proof by

using tree structure and two simple observations which are verified easily.

Figure 3.4: Non-simple 7-face.
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3.2 Edge-choosability of Planar Graphs Without 7-cycles 3

Next we prove Theorem 2 of Chapter 1.2 which says planar graph G

without 7-cycles are edge-k-choosable where k = max{8,∆(G) + 1}.

Lemma 2. Consider a subgraph H of graph G to be one of the following

configurations:

(1) an edge uv ∈ E(G) with d(u) + d(v) ≤ max{9,∆(G) + 2} ;

(2) an even cycle (3,∆, . . . , 3,∆).

If G−H is edge-k-choosable, then G is edge-k-choosable.

Proof. We consider two different cases to prove Lemma 2:

Case 1. Consider an edge uv is a subgraphH inG such that d(u)+d(v) ≤

max{9,∆(G)+2}. We remove the subgraph H from graph G, according

to the assumption G −H is edge-k-choosable. We know there are at

most k − 1 = max{7,∆(G)} edges incident to u or v in G−H. As we

know for each edge assignment L, |L(uv)| ≥ k. Then there is at least

one colour available on edge uv which is different from the colours of

incident edges to u and v in G−H. So we can colour the edge uv with

this colour. Then G is edge-k-choosable.

Case 2. Consider subgraph H is an even cycle [v1, v2, . . . , v2n−1, v2n]

such that d(v1) = d(v3) = . . . = d(v2n−1) = 3 and d(v2) = d(v4) =

· · · = d(v2n) = ∆(G). For each edge assignment L of graph G, |L(e)| ≥

k ∀e ∈ E(G). We remove subgraph H from graph G, according

21



3.2 Edge-choosability of Planar Graphs Without 7-cycles 3

to the assumption that G − H is edge-k-choosable. Assume G − H

has an edge-L-colouring φ. Each edge of subgraph H is adjacent to

k − 2 = max{6,∆(G) − 1} edges in G −H, so there are at least two

colours available on each edge of H which are different from the colours

of incident edges to vertices of subgraph H in G − H. We assign

these available colours to edges of H by edge assignment L′ . Then

L
′(e) = L(e)\{φ(e′)|e′ ∈ G−H is adjacent to e in G} implies that

|L′(e)| ≥ 2 ∀e ∈ E(H). As it is proven in Theorem 5 of chapter 2, all

even cycles are edge-2-choosable [Gal95]. Then G is edge-k-choosable.

Corollary 1. If graph G is a minimal counterexample to Theorem 2, then

it includes neither an edge uv that d(u) + d(v) ≤ max{9,∆(G) + 2} nor an

even cycle (3,∆, . . . , 3,∆) by Lemma 2.

Properties of the minimal counterexample planar graphs without 7-cycle

that are not edge-k-choosable where k = max{8,∆(G) + 1} are discussed

below.

(P1) Graph G does not have any simple 7-face.

(P2) A k-vertex, where k ≥ 6, is not incident with five continuous triangles.

(P3) For each edge uv ∈ E(G), d(u) + d(v) ≥ max{10,∆(G) + 3}.

(P4) Each 3-dependent vertex has exactly two distinct ∆-master vertices by
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3.2 Edge-choosability of Planar Graphs Without 7-cycles 3

Figure 3.5: Five continuous triangles.

Lemma 1 [MWCZ11]. Also each ∆-vertex is ∆-master of at most one

3-dependent vertex.

Observation 1. Let v, u be two adjacent 5-vertices of G with m3(v) ≥ 4.

Since graph G has no 7-cycles, then m3(u) ≤ 3.

Observation 2. Let v, u be two adjacent 5-vertices of G with m3(v) ≥ 4. If

m3(u) = 3, then u is not incident to three continuous triangles. It is incident

to three 3-faces in the way shown in Figure 3.6 and it is incident to at most

one 4-face.

u

Figure 3.6: Vertex u with m3(u) = 3.

Figure 3.7: Three continuous triangles.
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3.2 Edge-choosability of Planar Graphs Without 7-cycles 3

We show that the minimal counterexample includes one of Lemma 2’s

configurations by using the discharging method.

Lemma 3. Let G be a planar graph without 7-cycles. Then G has one of the

following configurations:

(1) an edge uv ∈ E(G) with d(u) + d(v) ≤ max{9,∆(G) + 2};

(2) an even cycle (3,∆, . . . , 3,∆).

Proof. We prove this lemma by contradiction. Assume that G is a planar

graph without 7-cycles such that for each edge uv ∈ E(G), d(u) + d(v) ≥

max{10,∆ + 3} and it does not include an even cycle (3,∆, . . . , 3,∆). Thus,

we have δ(G) ≥ 3 by lacking configuration (1) of Lemma 3. We use the

discharging method to prove this lemma. We first define initial weights for

V (G) ∪ F (G) by w(v) = 3d(v)− 8 for each vertex of G and w(f) = d(f)− 8

for each face of G. Total sum of initial weight of vertices and faces is

w =
∑

x∈V (G)∪F (G)
w(x) =

∑
x∈V (G)

(3d(v)− 8) +
∑

x∈F (G)
(d(f)− 8) (3.1)

By handshaking lemma we have:

∑
x∈V (G)

(3d(v)− 8) = 6|E(G)|− 8|V (G)|,
∑

x∈F (G)
(d(f)− 8) = 2|E(G)|− 8|F (G)|

(3.2)

According to Euler’s Formula

w(x) = 8(|E(G)| − |V (G)| − |F (G)|) = −16 (3.3)
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3.2 Edge-choosability of Planar Graphs Without 7-cycles 3

We transfer weights from vertices to faces to make all new weights non-

negative for V (G) ∪ F (G). Through this redistribution the sum of weights

won’t be changed. Thus, the non-negative total sum of new weights leads to

a contradiction by the negative sum of initial weights according to Euler’s

formula. Hence the proof is complete.

We apply the following rules to transfer weight from vertices to faces and

denote new weights w∗(x) for x ∈ V (G) ∪ F (G):

(R1) From each ∆-master to its 3-dependent vertex, transfer 1.

(R2) From each 3-vertex to each of its incident faces f , transfer 1.

(R3) From each 4-vertex to each of its incident faces f , transfer 1.

(R4) From each 5-vertex to each of its incident 3-faces f , transfer



(i) 7/5 if m3(v) = 5;

(ii) 3/2 if m3(v) = 4;

(iii) 9/5 if m3(v) = 3;

(iv) 2 Otherwise.

(R5) From each 5-vertex to each of its incident faces f such that 4 ≤ d(f) ≤ 7,

transfer
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(i) 1 if d(f) = 4;

(ii) 3/5 if d(f) = 5;

(iii) 1/3 if 6 ≤ d(f) ≤ 7.

(R6) From each 6+-vertex to each of its incident face f , transfer:
2, if d(f)=3;

1, if 4 ≤ d(f) ≤ 7.

Now we show that w∗(x) is non-negative for all x ∈ V (G)∪F (G). Suppose

that v is a k−vertex. Therefore

• If k = 3, by considering property (P4) it has two ∆-masters and receives

weight from its ∆-masters. Then w∗(v) ≥ w(v) + 2× 1− 3× 1 = 0 by

(R1) and (R2).

• If k = 4 , w∗(v) ≥ w(v)− 4× 1 = 0 by (R3).

• If k = 5, we have the following cases:

– If m3(v) = 5, according to (i) of (R4) w∗(v) = w(v)− 5× 7/5 = 0.

– If m3(v) = 4, according to (ii) of (R4) and (R5), w∗(v) ≥ w(v)−

4× 3/2− 1 = 0.

– If m3(v) = 3, according to (iii) of (R4) and (R5) and Observation 2,

w∗(v) ≥ w(v)− 3× 9/5− 1− 3/5 = 0.
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– If m3(v) ≤ 2, according to (iv) of (R4) and (R5), w∗(v) ≥ w(v)−

2× 2− 3× 1 = 0.

• If k = 6, we consider the following cases:

– If m3(v) = 4, by (R6) w∗(v) ≥ w(v)− 4× 2− 2× 1 = 0.

– If k ≥ 7, by (R1) and (R6) w∗(v) = w(v) − m3(v) × 2 − (7 −

m3(v))− 1 ≥ w(v)− 13 = 0.

We show that w∗ is non-negative for all faces as well. Suppose that f is a

k−face.

• If k = 3, consider vertex v is incident to face f and gives minimum

weight to this face.

Case1. If face f receives 7/5 from vertex v, then by Observation 2 and (iii)

of (R4) this face receives at least 9/5 from other vertices. Thus

w∗(f) ≥ w(f) + 7/5 + 2× 9/5 = 0;

Case2. If face f receives 3/2 from vertex v, then by Observation 2 and (iii)

of (R4) this face receives at least 9/5 from other vertices. Thus

w∗(f) ≥ w(f) + 3/2 + 2× 9/5 > 0;

Case3. Otherwise, w∗(f) ≥ w(f) + 3× 9/5 > 0.

• If k = 4, then w∗(f) = w(f) + 4× 1 = 0.

• If k = 5, then w∗(f) ≥ w(f) + 5× 3/5 = 0.
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• If k = 6, then w∗(f) ≥ w(f) + 6× 1/3 = 0.

• If k = 7, then w∗(f) ≥ w(f) + 7× 1/3 > 0.

Therefore, Σx∈V (G)∪F (G)w
∗(x) ≥ 0. However, Σx∈V (G)∪F (G)w(x) = −16 by

Euler’s Formula which is a contradiction. Since we have transferred the weight

between vertices to faces, total weight is not changed. We draw this conclusion

that the minimal counterexample must contain either an edge uv ∈ E(G)

with d(u) + d(v) ≤ max{9,∆(G) + 2} or an even cycle (3,∆, · · · 3,∆) which

is a contradiction. Then planar graphs without 7-cycles with ∆(G) ≥ 7 are

edge-(∆ + 1)-choosable.

Corollary 2. It has been already proven that all graphs G with ∆(G) ≤ 4

are edge-(∆ + 1)-choosable. In this section, we proved all planar graphs G

without 7-cycles with ∆(G) ≥ 7 are edge-(∆ + 1)-choosable. Then all planar

graphs without 7-cycles with ∆(G) 6= 5, 6 are edge-(∆ + 1)-choosable.

28



Chapter 4
Our Results

In this chapter, we explain how Vizing’s Conjecture holds for two different

cases: planar graphs without adjacent 4-cycles and planar graphs with-

out 3-cycles adjacent to 5-cycles. As it is mentioned in Chapter 3, Ma et

al. [MWCZ11] proved all planar graphs G without intersecting 4-cyles with

∆(G) 6= 5 are edge-(∆ + 1)-choosable. We improve this result by proving

planar graphs G without adjacent 4-cycles with ∆(G) 6= 5 are edge-(∆ + 1)-

choosable in Section 4.1. We also prove Vizing’s conjecture holds for planar

graphs without 3-cycles adjacent to 5-cycles in Section 4.2.
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4.1 Edge-choosability of Planar Graphs Without Adjacent 4-cycles 4

4.1 Edge-choosability of Planar GraphsWith-

out Adjacent 4-cycles

First we determine forbidden figures from planar graphs without adjacent

4-cycles as shown in the following figure. A pair of adjacent 4-cycles with two

vertices and one edge in common and a pair of adjacent 4-cycles with three

vertices and one edge in common are shown in Figure 4.1.

Figure 4.1: Two adjacent 4-Cycles.

Next We prove Theorem 3 of Chapter 1. It says if G is a planar graph with-

out adjacent 4-cycles, then it is edge-k-choosable where k = max{7,∆(G)+1}.

By contradiction, there exists a minimal counterexample G that is not

edge-k-choosable. We prove G does not include certain subgraphs discussed

in Lemma 4.

Lemma 4. Consider a subgraph H of graph G to be one of the following

configurations.

(1) an edge uv ∈ E(G) with d(u) + d(v) ≤ max{8,∆(G) + 2};

(2) an even cycle (3,∆, . . . , 3,∆).

If G−H is edge-k-choosable, then G is edge-k-choosable.
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Proof. We consider two different cases to prove Lemma 4:

Case 1. Consider an edge uv is a subgraphH inG such that d(u)+d(v) ≤

max{8,∆(G)+2}. We remove subgraph H from graph G and according

to the assumption, G−H is edge-k-choosable. We know there are at

most k − 1 = max{6,∆(G)} edges incident to u and v in G−H. By

definition, we know for each edge assignment L, |L(uv)| ≥ k. Then

there is at least one colour available on L(uv) which is different from

the colours of incident edges to u and v in G−H. Therefore, the edge

uv can be coloured with this colour. Then graph G is edge-k-choosable.

Case 2. Consider an even cycle [v1, v2, . . . , v2n−1, v2n] as subgraph H

in G with d(v1) = d(v3) = . . . = d(v2n−1) = 3 and d(v2) = d(v4) =

· · · = d(v2n) = ∆(G). For each edge assignment L of graph G, |L(e)| ≥

∆(G) + 1 ∀e ∈ E(G). We remove subgraph H from graph G and

according to the assumption, G − H is edge-k-choosable. Assume

G−H has an edge-L-colouring φ. Each edge of subgraph H is adjacent

to k− 2 = max{5,∆(G)− 1} edges in G−H as each vertex is incident

to two edges in the even cycle. Therefore, there are at least two

colours available on each edge’s assigned list of H. We assign these

available colours to each edge of H by an edge assignment L′ . Then

L
′(e) = L(e)\{φ(e′)|e′ ∈ G−H is adjacent to e in G}. This implies

|L′(e)| ≥ 2 ∀e ∈ E(H). As it is proven in Theorem 5 of chapter 2,

all even cycles are edge-2-choosable [Gal95]. Then graph G is edge-k-
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choosable.

Corollary 3. If graph G is a minimal counterexample to Theorem 3, then

it includes neither an edge uv that d(u) + d(v) ≤ max{8,∆(G) + 2} nor an

even cycle (3,∆, . . . , 3,∆) by Lemma 4.

The properties of the minimal counterexample planar graph G without

adjacent 4-cycles which is not edge-k-choosable where k = max{7,∆(G) + 1},

are discussed below.

(P1) For any edge uv ∈ E(G), d(u) + d(v) ≥ max{9,∆(G) + 3}. Then

δ(G) ≥ 3 and each 3-vertex is adjacent to ∆-vertices where ∆(G) ≥ 6.

(P2) Each 3-dependent vertex has distinct two ∆-master vertices. This

property has been proven in Lemma 1 of chapter 3 [MWCZ11].

Next we prove this minimal counterexample includes either an edge uv

with d(u) + d(v) ≤ max{8,∆(G) + 2} or an even cycle (3,∆, . . . , 3,∆) by the

following lemma which is a contradiction.

Lemma 5. Let graph G be a minimal counterexample to Theorem 3. Then

graph G contains at least one of the following configurations:

(1) an edge uv ∈ E(G) with d(u) + d(v) ≤ k + 1 = max{8,∆(G) + 2};

(2) an even cycle (3,∆, . . . , 3,∆).
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Proof. Considering the properties discussed, this minimal counterexample

does not include neither an edge uv ∈ E(G) with d(u)+d(v) ≤ max{8,∆(G)+

2} nor an even cycle (3,∆, . . . , 3,∆). We use the discharging method to prove

such a minimal counterexample with those properties does not exist. We

define initial weight for vertices and faces of graph G. Next we transfer

weights between vertices and faces according to the discharging rules. Let w

denote the initial weight on V (G) ∪ F (G) by w(v) = d(v)− 4 for each vertex

of G and w(f) = d(f) − 4 for each face of G. The total sum of the initial

weight of the vertices and faces is -8 by Euler’s formula:

w =
∑

x∈V (G)∪F (G)
w(x) =

∑
x∈V (G)

(d(v)−4)+
∑

x∈F (G)
(d(f)−4) = −4(|V |−|E|+|F |) = −8

We transfer weights between vertices and faces to make all new weights

non-negative. We denote new weights by w∗(x) for all x ∈ V (G) ∪ F (G).

Through this redistribution, the sum of weights won’t be changed. Thus,

the non-negative total sum of new weights leads to a contradiction by the

negative sum of initial weights according to Euler’s formula. Hence the proof

is complete.

0 ≤
∑

x∈V ∪F

w∗(x) =
∑

x∈V ∪F

w(x) = −8

Considering Lemma 1 in chapter 3, each 3-dependent vertex has distinct

two ∆-master vertices from which receive weight. Also, if the planar graph

without adjacent 4-cycles does not include three continuous triangles, then
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4.1 Edge-choosability of Planar Graphs Without Adjacent 4-cycles 4

each k-vertex is incident to at most b2k/3c 3-faces.

Now we redistribute weights between vertices and faces based on the

following rules:

(R1) From each ∆-master to its 3-dependent, transfer 1/2.

(R2) From each 5-vertex to each incident 3-face f , transfer


(i) 1/3 if m3(v) = 3;

(ii) 1/2 if m3(v) ≤ 2.

(R3) From each 6-vertex to each incident 3-face f , transfer


(i) 1/3 if m3(v) = 4;

(ii) 1/2 if m3(v) ≤ 3.

(R4) From each 7+-vertex to each incident 3-face f , transfer 1/2.

(R5) From each 5+-face to each adjacent 3-face f , transfer 1/6.

Now we show that w∗(x) is non-negative for all x ∈ V (G)∪F (G). Suppose

that v is a k−vertex. We discuss different cases below.

• If k = 3, by Lemma 1 of Chapter 3 it has two distinct ∆-master vertices.

Then by (R1) w∗(v) = w(v) + 2× 1/2 = 0.

• If k = 4, it does not contribute in the discharging method and its weight

remains fixed. Then w∗(v) = w(v) = 0.
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• If k = 5, we know m3(v) ≤ 3. Then we have the following cases:

– If m3(v) = 3, vertex v gives 1/3 to each incident 3-face by (i) of

(R2). Thus, w∗(v) = w(v)− 3× 1/3 = 0.

– If m3(v) ≤ 2, by (ii) of (R2) w∗(v) ≥ w(v)− 2× 1/2 = 0.

• If k = 6, we know m3(v) ≤ 4 and it is ∆-master of at most one 3-

dependent by Lemma 1 of Chapter 3. Then we have the following

cases:

– If m3(v) = 4, then v gives 1/3 to each incident 3-face. Thus

w∗(v) = w(v)− 4× 1/3− 1/2 > 0 by (i) of (R3) and (R1).

– If m3(v) ≤ 3, then w∗(v) ≥ w(v) − 3 × 1/2 − 1/2 = 0 by (ii) of

(R3) and (R1).

• If k ≥ 7, we know m3(v) ≤ b2k/3c and it is ∆-master of at most one 3-

dependent by Lemma 1 of Chapter 3. w∗(v) ≥ w(v)−2k/3×1/2−1/2 >

0 by (R1) and (R4).

We show that w∗ is non-negative for all faces as well. Suppose that f is a

k−face.

• If k = 3, then we have the following cases:

– If f is adjacent to at least two 5+-faces, by (R5) and the fact that

each triangle has at least two 5+-vertices and they are giving at

least 1/3 weight to their incident face f , w∗(f) ≥ w(f) + 2× 1/6 +

2× 1/3 = 0;
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– If f is adjacent to at most one 5+-face and δ(f) ≤ 4, then consid-

ering the fact that two incident 5+-vertices are giving 1/2 to face

f , w∗(f) ≥ w(f) + 2× 1/2 = 0;

– Otherwise, f is adjacent to at most one 5+-face and δ(f) ≥ 5.

Then w∗(f) ≥ w(f) + 3× 1/3 = 0.

• If k = 4, it does not contribute in the discharging method and its weight

remains fixed, w∗(f) = w(f) = 0.

• If k ≥ 5, then w∗(f) ≥ w(f)− k × 1/6 = 5/6× k − 4 > 0.

Therefore, Σx∈V (G)∪F (G)w
∗(x) ≥ 0. However, Σx∈V (G)∪F (G)w(x) = −8 by

Euler’s Formula which is a contradiction. The proof is complete.

Then the minimal counterexample should include either an edge uv with

d(u) + d(v) ≤ max{8,∆(G) + 2} or an even cycle (3,∆, . . . , 3,∆) which is

contradiction to corollary 3. Therefore the minimal counterexample does

not exist. We conclude all planar graphs without adjacent 4-cycles are

edge-k-choosable where k = max{7,∆(G) + 1}.

Corollary 4. It has been already proven that all graphs G with ∆(G) ≤ 4 are

edge-(∆ + 1)-choosable. In this section, we proved planar graphs G without

adjacent 4-cycles with ∆(G) ≥ 6 are edge-(∆ + 1)-choosable. Then all planar

graphs G without adjacent 4-cycles with ∆(G) 6= 5 are edge-(∆ + 1)-choosable.
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4.2 Edge-choosability of Planar GraphsWith-

out Adjacent 3- and 5-cycles

We determine forbidden figures from planar graphs without 3-cycles adjacent

to 5-cycles as shown in the following figures. These figures show a 3-face

adjacent to a 5-cycle as well as a 3-face adjacent to a 5-face.

Figure 4.2: 3-Cycles adjacent to 5-Cycles.

In this section we prove Theorem 4. By contradiction, there exist a minimal

counterexample G which is a planar graph without 3-cycles adjacent to 5-

cycles and is not edge-k-choosable. We prove this minimal counterexample

does not contain the certain subgraphs discussed in the following lemma.

Lemma 6. Let graph G be a minimal counterexample to Theorem 4. Then

it does not contain the following subgraphs:

(1) an edge uv ∈ E(G) with d(u) + d(v) ≤ max{7,∆(G) + 2};

(2) an even cycle (3,∆, . . . , 3,∆);

(3) at least one of the bad subgraphs H in Figure 4.3.

Proof. By contradiction, we assume the minimal counterexample G contains

at least one of the above subgraphs. We discuss the following different cases.
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Figure 4.3: Bad subgraphs, the degree of the vertices are shown by numbers.

Case 1. Consider subgraph H is an edge uv that d(u) + d(v) ≤

max{7,∆(G) + 2}. We remove subgraph H from G. Since G is a

minimal counterexample, then G−H is edge-k-choosable. There are

at most k − 1 = max{5,∆(G)} edges incident to u and v in G − H.

According to the definition, for each edge assignment L, |L(uv)| ≥ k.

Then, there is at least one colour available on the list of colours assigned

to the edge uv which is different from the colours of incident edges to

u and v in G−H. Therefore, the edge uv could be coloured with this

colour. Then G is edge-k-choosable which is a contradiction to our

assumption.

Case 2. Consider graph G contains subgraph H = [v1, v2, . . . , v2n−1, v2n]

such that d(v1) = d(v3) = . . . = d(v2n−1) = 3 and d(v2) = d(v4) = · · · =

d(v2n) = ∆(G). For each edge assignment L and each edge of graph

G, |L(e)| ≥ k. We remove subgraph H from graph G. Since G is a
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minimal counterexample, then G−H is edge-k-choosable. Assume that

G −H has an edge-L-colouring φ. Since each edge in subgraph H is

adjacent to max{4,∆(G)− 1} edges in G−H, there are at least two

colours available on each edge of H. We assign these available colours

to edges of H by edge assignment L′ . Then L′(e) = L(e)\{φ(e′)|e′ ∈

G−H is adjacent to e in G} which implies |L′(e)| ≥ 2 ∀e ∈ E(H).

As it is proven in Lemma 1 of Chapter 2, all even cycles are edge-2-

choosable [Gal95]. Then G is edge-k-choosable which is a contradiction

to our assumption.

Case 3. Consider graph G contains the following bad subgraph H

with d(v1) = d(v2) = d(v4) = 4, d(v3) = 5. We remove subgraph H

3
3 2

2
4v1

v2

v3

v4

Figure 4.4: The number of colours available on each edge of bad subgraph H
are shown on each edge.

from graph G. Since G is a minimal counterexample, then G −H is

edge-k-choosable. For each edge assignment L of graph G such that

|L(e)| ≥ k ∀e ∈ E(G), G − H has an edge-L-colouring φ. For all

edges of H, we assign a list of available colours L′(e) = L(e)\{φ(e′)|e′ ∈

G−H is adjacent to e in G}. As it is shown in Figure 4.4, |L′(v1v2)| ≥

3, |L′(v1v4)| ≥ 3, |L′(v2v3)| ≥ 2, |L′(v3v4)| ≥ 2 and |L′(v2v4)| ≥ 4. We
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consider three different subcases.

Subcase 3.1. If α ∈ L′(v3v4) ∩ L′(v1v2), then we colour edges v1v2, v3v4

with α. Next we colour v2v3, v2v4, v1v4, successively.

Subcase 3.2. If L′(v2v4) = 4 and α ∈ L
′(v3v4) ∪ L′(v1v2) and α /∈

L
′(v2v4), then we colour the edge v3v4 with α, next we colour v2v3, v1v2,

v1v4, v2v4, successively.

Subcase 3.3. If L′(v2v4) ≥ 5, we can colour the edges v3v4, v2v3, v1v2, v1v4, v4v2,

successively.

Therefore, G is edge-k-choosable which is a contradiction to our as-

sumption.

We have another similar bad subgraph H with d(v1) = d(v2) = d(v3) =

4 = d(v4) = 4 which is illustrated in Figure 4.5. If planar graph G

contains this bad subgraph, the same argument as above is used to show

G is edge-k-choosable.

3
3 3

3
4v1

v2

v3

v4

Figure 4.5: The number of colours available on each edge of bad subgraph H
are shown on each edge.

We remove subgraph H from graph G. Since G is a minimal coun-

terexample, G −H is edge-k-choosable. For each edge assignment L
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of graph G such that |L(e)| ≥ k ∀e ∈ E(G), G − H has an edge-L-

colouring φ. For all edges of H, we assign a list of available colours

L
′(e) = L(e)\{φ(e′)|e′ ∈ G−H is adjacent to e in G}. As it is illus-

trated in Figure 4.5, |L′(v1v2)| ≥ 3, |L′(v1v4)| ≥ 3, |L′(v2v3)| ≥ 3,

|L′(v3v4)| ≥ 3 and |L′(v2v4)| ≥ 4. We could prove planar graph G

containing this bad subgraph H, is edge-k-choosable with the same

argument discussed above for Case 3 which is a contradiction to our

assumption.

Case 4. Consider graph G containing the following bad subgraph H

with d(v) = d(v1) = d(v3) = d(v5) = 5, d(v2) = d(v4) = 3. We remove
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Figure 4.6: The number of colours available on each edge of bad subgraph H
are shown on each edge.

subgraph H. Since G is a minimal counterexample, then G − H is

edge-k-choosable. Then for each edge assignment L of graph G that

|L(e)| ≥ k ∀e ∈ E(G), subgraph G−H has an edge-L-colouring φ.

For all edges of H, we assign a list of available colours L
′(e) =

L(e)\{φ(e′)|e′ ∈ G−H is adjacent to e in G}. As it is shown in Fig-

ure 4.6, |L′(vv1)| ≥ 3, |L′(vv3)| ≥ 3, |L′(vv5)| ≥ 3, |L′(v1v2)| ≥ 3,
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4.2 Edge-choosability of Planar Graphs Without Adjacent 3- and 5-cycles 4

|L′(v2v3)| ≥ 3, |L′(v4v5| ≥ 2, |L′(vv4)| ≥ 5 and |L′(vv2)| ≥ 6. We

consider three different subcases as follows:

Subcase 4.1. If α ∈ L
′(v2v3) ∩ L′(vv1), then we colour the edges

vv1, v2v3 with α. Next we colour the edges vv3, vv5, v4v5, vv4, vv2, v1v2,

successively.

Subcase 4.2. If L′(v2v3) ∩ L′(vv1) = φ and L
′(v1v2) = 3 , there is a

colour such as β in L′(v2v3) ∪ L′(vv1) and β /∈ L′(v1v2). Without loss

of generality we assume β ∈ L′(vv1) and we colour the edge vv1 with β.

Next we colour the edges vv3, vv5, v4v5, vv4, vv2, v2v3, v1v2, successively.

Subcase 4.3. If L′(v2v3) ∩ L′(vv1) = φ and L′(v1v2) ≥ 4, we can colour

the edges in this order vv1, vv3, vv5, v4v5, vv4, v2v3, vv2, v1v2. Then G is

edge-k-choosable which is a contradiction to our assumption.

Case 5. We consider graph G containing the following bad subgraph H

with d(v) = d(v1) = d(v3) = 5, d(v2) = 3 and d(v4) = d(v5) = 4.
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Figure 4.7: The number of colours available on each edge of bad subgraph H
are shown on each edge.

We remove subgraph H. Since G is a minimal counterexample, G−H
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4.2 Edge-choosability of Planar Graphs Without Adjacent 3- and 5-cycles 4

is edge-k-choosable. For each edge assignment L of graph G such

that |L(e)| ≥ k ∀e ∈ E(G), G − H has an edge-L-colouring φ.

For all edges of H, we assign a list of available colours L
′(e) =

L(e)\{φ(e′)|e′ ∈ G−H is adjacent to e in G}. As it is illustrated in

Figure 4.7, |L′(vv1)| ≥ 3, |L′(vv3)| ≥ 3, |L′(v1v2)| ≥ 3, |L′(v2v3)| ≥ 3,

|L′(v4v5| ≥ 2, |L′(vv4)| ≥ 4, |L′(vv5)| ≥ 4 and |L′(vv2)| ≥ 6. We

consider three different subcases as follows:

Subcase 5.1. If α ∈ L′(v2v3) ∩ L′(vv1), then we colour the edges vv1,

v2v3 with α.

Next we colour the edge vv4 with the colour which is not in the list of

colours assigned to the edge v4v5. Then colour edges vv3, vv5, v4v5, vv2, v1v2,

successively.

Subcase 5.2. If L′(v1v2) = 3 and β ∈ L
′(v2v3) ∪ L′(vv1) but β /∈

L
′(v1v2). Without loss of generality we assume β ∈ L′(vv1) and β /∈

L
′(v1v2). Next we colour the edge vv4 with a colour which is not

in the list of colours assigned to the edge v4v5. Then colour edges

vv3, vv5, vv4, v4v5, vv2, v2v3, v1v2, successively.

Subcase 5.3. If L′(v1v2) ≥ 4, then colour edge vv4 with a colour which

is not in the list of colours assigned to the edge v4v5. Then colour edges

in this order vv1, vv3, vv5, v4v5, v2v3, vv2, v1v2.

In all of the above subcases we assumed L′(v4v5) = 2. It is obvious if

L
′(v4v5) ≥ 3 we can still colour the edges in the same order. Then G is
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edge-k-choosable which is a contradiction to our assumption.

Case 6. We consider graph G containing the following bad subgraph H

with d(v) = d(v5) = d(v3) = 5, d(v4) = 3 and d(v1) = d(v2) = 4.
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Figure 4.8: The number of colours available on each edge of bad subgraph H
are shown on each edge.

We remove subgraph H. Since G is a minimal counterexample, then

G − H is edge-k-choosable. For each edge assignment L of graph

G, |L(e)| ≥ k ∀e ∈ E(G). Then G − H has an edge-L-colouring

φ. For all edges of H, we assign a list of available colours L′(e) =

L(e)\{φ(e′)|e′ ∈ G−H is adjacent to e in G}. As it is shown in Fig-

ure 4.8, |L′(vv1)| ≥ 4, |L′(vv3)| ≥ 3, |L′(v4v5| ≥ 2, |L′(v1v2)| ≥ 3,

|L′(vv5)| ≥ 3, |L′(v2v3)| ≥ 2 and |L′(vv2)| ≥ 5, |L′(vv4)| ≥ 5.

We consider three different subcases.

Subcase 6.1. If there is a colour α such that α ∈ L
′(v2v3) and α /∈

L
′(v1v2), then we colour the edge v2v3 with α. Next we colour the edge

vv5 with the colour which is not in the list of colours assigned to the

edge v4v5. Then colour edges vv3, vv1, vv2, v1v2, vv4, v4v5, successively.
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Subcase 6.2. If there is a colour β such that β ∈ L(v1v2) and β /∈ L(vv1),

then we colour the edge v1v2 with β. Next we colour the edge vv5 with

the colour which is not in the list of colour assigned to the edge v4v5.

Then colour the edges v2v3, vv3, vv2, vv1 ,vv4, v4v5, successively.

Subcase 6.3. Otherwise, γ ∈ L′(v2v3)∩L′(vv1). Then we colour the edges

v2v3, vv1 with γ. Next we colour the edges vv5, v4v5, vv3, vv4, vv2, v1v2,

successively.

In all of the above subcases we considered L′(v4v5) = 2. If L′(v4v5) ≥ 3,

it is obvious that we can colour all edges in the same order. Then G is

edge-k-choosable which is a contradiction to our assumption.

We have a similar bad subgraph H with d(v) = d(v5) = 5, d(v4) = 3

and d(v1) = d(v2) = d(v3) = 4 which is illustrated in Figure 4.9
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Figure 4.9: The number of colours available on each edge of bad subgraph H
are shown on each edge.

If G contains bad subgraph H, we remove subgraph H. Since G is a min-

imal counterexample, G−H is edge-k-choosable. As we know for each

edge assignment L of graph G, |L(e)| ≥ k ∀e ∈ E(G). Then G−H
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has an edge-L-colouring φ. For all edges of H, we assign a list of avail-

able colours L′(e) = L(e)\{φ(e′)|e′ ∈ G−H is adjacent to e in G}. As

it is shown in Figure 4.9, |L′(vv1)| ≥ 4, |L′(vv3)| ≥ 4, |L′(v4v5| ≥

2, |L′(v1v2)| ≥ 3, |L′(vv5)| ≥ 3, |L′(v2v3)| ≥ 3 and |L′(vv2)| ≥ 5,

|L′(vv4)| ≥ 5. We can colour subgraph H with the same argument

discussed above for Case 6. Then G is edge-k-choosable which is a

contradiction to our assumption.

Case 7. We consider graph G containing the following bad subgraph H

with d(v) = 3, d(v1) = d(v2) = d(v3) = 5.

2 2

2

4

44v3 v2

v1

v

Figure 4.10: The number of colours available on each edge of bad subgraph
H are shown on each edge.

According to the assumption that graph G is a minimal counterexample,

then we can colour the edges v1v2, v2v3, v1v3 which is a triangle with

lists of 2 colours assigned to each edge. Without loss of generality, we

colour edges v1v2, v2v3, v1v3 with colours α, β, γ, respectively. Assume

that we colour the edge vv1 with x and colour the edge vv2 with y. If

we could colour the edge vv3, then the proof is complete. Otherwise,

the list of colours assigned to the edge vv3 is {β, γ, x, y}. If there are

any available colours except {α, β, γ, x, y} on edges vv1, vv2, then we
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can colour one of these edges with that colour and one colour would

release on the edge vv3. Otherwise, the list of assigned colours to the

edges vv1, vv2 are {α, γ, x, y}, {α, β, x, y}, respectively.

Let L be an edge assignment of subgraph H and {i, j, k} = {1, 2, 3}.

Let define each pair of edges vvi, vjvk a pair of opposite edges. For all

pairs of opposite edges vvi, vjvk if L(vvi) ∩ L(vjvk) ⊂ {x, y}, then we

could colour all edges of subgraph H properly. Otherwise, for each edge

vivj the set of assigned colours to this edge is L(vivj) ⊂ {α, β, γ}.

Without loss of generality, we assume that L(vv2) ∩ L(v1v3) = {α}. If

γ ∈ L(v1v2) then we colour edges vv2, v1v3 with α and colour edges

v1v2, v2v3, vv1, vv3 with γ, β, x, y, respectively. Otherwise, L(v1v2) =

{α, β} and we discuss two different subcases below.

Subacse 7.1. Assume that L(v2v3) = {α, β} and the list of colours

assigned to the edges of subgraph H are shown in Figure 4.11. Then

{α, β} {α, β}

{α, γ}

{α, β, x, y}

{β, γ, x, y}{α, γ, x, y}
v1 v3

v2

v

Figure 4.11: Assignment lists of coloures to the edges of subgraph H.
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we colour the edges vv3, v1v2 with β and colour edges v2v3, v1v3, vv1, vv2

with α, γ, y, x, respectively.

Subacse 7.2. Assume that L(v2v3) = {β, γ} and the lists of colours

assigned to each edge of subgraph H are shown in Figure 4.12. Then

{α, β} {β, γ}

{α, γ}

{α, β, x, y}

{β, γ, x, y}{α, γ, x, y}
v1 v3

v2

v

Figure 4.12: Assignment lists of coloures to the edges of subgraph H.

we colour the edges vv3, v1v2 with β and colour edges v2v3, v1v3, vv1, vv2

with γ, α, y, x, respectively. Then graph G is edge-k-choosable which is

a contradiction to our assumption.

Next we prove the minimal counterexample G contains at least one of the

subgraphs discussed in Lemma 6 which is a contradiction.

Lemma 7. Let G be a minimal counterexample to Theorem 4, then it contains

at least one of the following configurations:

(1) an edge uv ∈ E(G) with d(u) + d(v) ≤ max{7,∆(G) + 2};
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(2) an even cycle (3,∆, . . . , 3,∆);

(3) at least one of the bad subgraphs in Figure 4.3.

Proof. We prove this lemma by contradiction. Consider the minimal coun-

terexample G does not include the above configurations. Then for each edge

uv ∈ E(G), d(u) + d(v) ≥ max{8,∆ + 3}. We use the discharging method to

prove this lemma.

Let us define the initial weight for V (G) ∪ F (G) by w(v) = d(v) − 4

for each vertex of G and w(f) = d(f) − 4 for each face of G. Considering

Lemma 1 of Chapter 3, each 3-dependent has exactly two distinct ∆-master

vertices. Also, since planar graph G does not have any 3-cycles adjacent to

5-cycles it does not include three continuous triangles. Hence, each k−vertex

is incident to at most b2k/3c 3-faces.

Total sum of the initial weight of vertices and faces is -8 by Euler’s formula:

w =
∑

x∈V (G)∪F (G)
w(x) =

∑
x∈V (G)

(d(v)−4)+
∑

x∈F (G)
(d(f)−4) = −4(|V |−|E|+|F |) = −8

We transfer weights between vertices and faces to make all new weights

non-negative for all vertices and faces in graph G. We denote new weights

by w∗(x) for all x ∈ V (G) ∪ F (G). Through this redistribution, the sum of

weights won’t be changed. Thus,the non-negative total sum of new weights

leads to a contradiction by the negative sum of initial weights according to

Euler’s formula. Hence the proof is complete.
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0 ≤
∑

x∈V ∪F

w∗(x) =
∑

x∈V ∪F

w(x) = −8

Considering Lemma 1 in chapter 3, each 3-dependent vertex has distinct

two ∆-master vertices from which receive weight. Also, since planar graphs

without 3-cycles adjacent to 5-cycles do not include three continuous triangles,

each k-vertex is incident to at most b2k/3c 3-faces.

We define a 5-vertex v of graph G as a special vertex if it is incident to

(5, 4, 4)-face and two adjacent (5, 5, 5)-face and (5, 5, 3)-face which is illustrated

in Figure 4.13.

v

3

5

5

4 4

Figure 4.13: Special 5-vertex v incident to three 3-faces, number on each
vertex shows the degrees of that vertex

Next we redistribute the weights between vertices and faces according to

the following rules:

(R1) From each ∆-master to its 3-dependent, transfer 1/2.
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(R2) From each 5-vertex v to each incident 3-face f , transfer



(i) 1
m3(v) if v is not a ∆-master;

(ii) 1/9 if f is a (5, 5, 5)−face;

(iii) 1/5 if f is a (5, 4, 4)−face and v is special vertex;

(iv) 1
2m3(v) Otherwise.

(R3) From each 6+−vertex to each incident 3-face transfer 1/3;

(R4) From each 6+-face to each adjacent 3-face f , transfer w(f)/n3(f).

Now we show that w∗(x) is non-negative for all x ∈ V (G) ∪ F (G). Suppose

that v is a k−vertex. Then

• If k = 3, it has two ∆-masters and it receives weight from them by (R1).

Then w∗(v) = w(v) + 2× 1/2 = 0.

• If k = 4, it doesn’t contribute in discharging rules and its weight remains

fixed. Then w∗(v) = w(v) = 0.

• If k = 5, we know m3(v) ≤ 3. Then we have the following cases:

– According to (R2) If v is not a ∆-master, then by (i) w∗(v) ≥

w(v)−m3(v)× 1/m3(v) = 0.

– If v is a ∆-master and it is not a special vertex, then w∗(v) ≥

w(v)− 1/2−m3(v)× 1/2m3(v) = 0 by (iv) of (R2) and (R1).

51



4.2 Edge-choosability of Planar Graphs Without Adjacent 3- and 5-cycles 4

– Otherwise, v is a ∆-master and it is a special vertex. Then

w∗(v) ≥ w(v)−1/2−1/5−1/9−1/6 > 0 by (ii), (iii), (iv) of (R2)

and (R1).

• If k ≥ 6, we know m3(v) ≤ b2k/3c and it is ∆-master of at most one 3-

dependent by (P2) of Lemma 1. Then w∗(v) ≥ w(v)−2k/3×1/3−1/2 >

0 by (R1) and (R3).

We show that w∗ is non-negative for all faces as well. Suppose that f is a

k−face. Then

• If k = 3, we have the following cases:

– If f is not adjacent to any other 3-faces, then by (R4)

w∗(f) ≥ w(f) + 3× 1/3 = 0;

– If f is adjacent to another 3-face f ′ , we know f is not a (4, 4, 4)−face

by excluding configuration (3) of Lemma 7. Then it should be

(4+, 4+, 5+) or (3, 5+, 5+). We consider the following cases:

Case 1. If f is a (5+, 5+, 5+)−face, it receives weight from adjacent

faces by (R4) and at least 1/9 from each incident 5+-vertex by (ii)

of (R2). Then w∗(f) ≥ w(f) + 3× 1/9 + 2× 1/3 = 0;

Case 2. If f is a (4, 5+, 5+)−face or a (3, 5+, 5+)−face, it receives

weight from adjacent faces by (R4) and at least 1/6 from each

incident 5+-vertex by (iv) of (R2). Then w∗(f) ≥ w(f) + 2× 1/6 +

2× 1/3 = 0;
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Case 3. Let denote face f by [u, v, w] such that d(u) = d(w) = 4

and d(v) = 5, then we have the following cases for vertex v:

∗ If uw is a common edge between two faces f and f ′ and v is

incident with at most two 3-faces, then f receives weight from

the adjacent 6+-face by (R4) and at least 1/4 from 5-vertex

by (iv) of (R2). Then w∗(f) ≥ w(f) + 2× 2/5 + 1/4 > 0;

∗ If uw is a common edge between two faces f and f
′ and v

is a special vertex, then by (R4) and (iii) of (R2) w∗(f) ≥

w(f) + 2× 2/5 + 1/5 = 0;

∗ If uw is a common edge between two faces f and f ′ and v is

incident to two adjacent (4, 5, 5), (3, 5, 5)-faces, then by (R4)

and (iv) of (R2) w∗(f) ≥ w(f) + 2/5 + 1/2 + 1/6 > 0;

∗ If uw is a common edge between two faces f and f ′ and v is

incident to two adjacent (4+, 4+, 4+)−faces, then by (R4) and

(i) of (R2) w∗(f) = w(f) + 1/3 + 2× 2/5 > 0;

∗ If uv is a common edge between two faces f and f
′ and

m3(v) = 2, then by (R4) and (iv) of (R2) w∗(f) ≥ w(f) +

2× 2/5 + 1/4 > 0;

∗ If uv is a common edge between two faces f and f
′ and

m3(v) = 3, then v is not adjacent to any 3-dependent due to

the lacking of bad subgraphs. Therefore, according to (R4)
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and (i) of (R2) w∗(f) ≥ w(f) + 2/5 + 1/3 + 1/3 > 0.

• If k = 4, 5, it does not contribute in the discharging method. Then

w∗(f) = w(f) = 0.

• If k ≥ 6, then by (R3) w∗(f) ≥ w(f)− n3(f)× w(f)/n3(f) = 0.

The proof of Lemma 7 is complete.

Therefore, the minimal counterexample G includes at least one of the

configurations discussed in Lemma 7 which is a contradiction to Lemma 6.

Then there does not exist a minimal counterexample. We conclude all planar

graphs without 3-cycles adjacent to 5-cycles with ∆(G) ≥ 5 are edge-(∆ + 1)-

choosable.

Corollary 5. It has already been proven that all graphs G with ∆(G) ≤ 4

are edge-(∆ + 1)-choosable. In this section, we proved all planar graphs

G without 3-cycles adjacent to 5-cycles with ∆(G) ≥ 5 are edge-(∆ + 1)-

choosable. Then all planar graphs without 3-cycles adjacent to 5-cycles are

edge-(∆ + 1)-choosable.
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Chapter 5
Conclusion

Proving Vizing’s Conjecture in general has not been achieved yet. This

conjecture has already been proven for some special cases. We improved some

of these previous results by proving planar graphs G without 7-cycles with

∆(G) 6= 5, 6, planar graphs G without adjacent 4-cycles with ∆(G) 6= 5, and

planar graphs without 3-cycles adjacent to 5-cycles are edge-(∆+1)-choosable.

One might ask why we did research on these cases. We explain below why we

studied those three cases.

As it is mentioned in Chapter 1, Vizing’s Conjecture holds for planar

graph G without adjacent triangles with ∆(G) 6= 5. First we tried to improve

this result by proving Vizing’s Conjecture is true for planar graphs G without

three continuous triangles with ∆(G) 6= 5. But through the discharging

method, we had a shortage of weight for 6-vertices and we could not provide

this shortage with a good source of weight. Therefore, we proved Vizing’s
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Conjecture holds for weaker cases including planar graphs without adjacent

4-cycles or planar graphs without 3-cycles adjacent to 5-cycles which do not

contain three continuous triangles. We also found an error in the proof of

Vizing’s Conjecture for the case of planar graphs without 7-cycles and proved

this case with a different approach.

Therefore, there are two questions left for further research regarding edge-

choosability of planar graphs. Is Vizing’s Conjecture true for planar graphs

without three continuous triangles? Also does Vizing’s Conjecture hold for

planar graphs G without adjacent 4-cycles with ∆(G) = 5 or planar graphs

without 7-cycles with ∆(G) = 5, 6? These are important questions that are

not resolved yet.
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