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Abstract

In this work, we consider the properties of planar topological defects in unconventional

superconductors. Specifically, we calculate microscopically the interaction energy of do-

main walls separating degenerate ground states in a chiral p-wave fermionic superfluid.

The interaction is mediated by the quasiparticles experiencing Andreev scattering at the

domain walls. As a by-product, we derive a useful general expression for the free energy

of an arbitrary nonuniform texture of the order parameter in terms of the quasiparticle

scattering matrix.

The thesis is structured as follows. We begin with a historical review of the theories

of superconductivity (Sec. 1.1), which led the way to the celebrated Bardeen-Cooper-

Schrieffer (BCS) theory (Sec. 1.3). Then we proceed to the treatment of superconductors

with so-called “unconventional pairing” in Sec. 1.4, and in Sec. 1.5 we introduce the spe-

cific case of chiral p-wave superconductivity. After introducing in Sec. 2 the domain wall

(DW) model that will be considered throughout the work, we derive the Bogoliubov-de

Gennes (BdG) equations in Sec. 3.1, which determine the quasiparticle excitation spec-

trum for a nonuniform superconductor. In this work, we use the semiclassical (Andreev)

approximation, and solve the Andreev equations (which are a particular case of the BdG

equations) in Sec. 4 to determine the quasiparticle spectrum for both the single- and

two-DW textures. The Andreev equations are derived in Sec. 3.2, and the formal prop-

erties of the Andreev scattering coefficients are discussed in the following subsection. In

Sec. 5, we use the transfer matrix method to relate the interaction energy of the DWs

to the scattering matrix of the Bogoliubov quasiparticles. This facilitates the derivation

of an analytical expression for the interaction energy between the two DWs in Sec. 5.3.

Finally, to illustrate the general applicability our method, we apply it in Sec. 6 to the

interaction between phase solitons in a two-band s-wave superconductor.
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1 INTRODUCTION 1

1 Introduction

In this section, we provide the reader with a brief introduction into the important aspects

of superconductivity. We investigate the basic experimental behaviour of superconduct-

ing materials; as well as a give an overview of the proposed theories that led the way to

our current understanding, the shortcomings of these theories, and the challenges faced

at the time by the physicists who pioneered the field. This section is not a complete

overview of the field of superconductivity, and should be taken solely as an introduction

to the concepts therein.

1.1 A tour through the history

Superconductors (SCs) were first discovered by Dutch physicist H. Kamerlingh Onnes in

1911 [1], and amazingly about a dozen Nobel Prizes in physics have been awarded in this

field alone since. These materials currently have many useful physical applications, and

in particular, they are vital in the function of nuclear magnetic resonance (NMR) spec-

trometers, magnetic resonance imaging (MRI), and particle accelerators. They also have

wonderful potential applications, which include high-speed magnetic levitating trains, as

well as possibly reducing the world’s electrical power consumption. Since they are elec-

trically more efficient than the current materials in use, if SCs could cost-effectively be

implemented into the world’s electrical power grid, power could potentially be sent long

distances without the large losses due to heat dissipation, helping to sustain the world’s

increasing power needs.

Superconductors are a class of materials in which quantum mechanics manifests itself

in spectacular electric and magnetic properties on the macroscopic scale. In contrast to

normal metals, which have a finite electrical resistance even at zero temperature, Kamer-

lingh Onnes discovered that superconductors behave like metals at high temperatures,

but exhibit the onset of zero electrical resistivity below a certain critical temperature,

Tc, as illustrated in Fig. 1. Experimentally, typical values of the resistivity of materials

in the superconducting state are ρ < 10−23 Ohm·cm [2], which is orders of magnitude

smaller than the resistivity in normal metals.

SCs also exhibit perfect diamagnetism through a phenomenon known as the Meissner

effect, discovered in 1933 by Meissner and Ochsenfeld [3]. A normal metal preserves

the initial magnetic flux when an external field is held constant and the temperature is

lowered (Fig. 2). In contrast, once the transition temperature is reached in a supercon-

ductor, the magnetic field is completely expelled from the bulk of the material via the

formation of dissipationless screening currents. Since the magnetic induction B = 0 in
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Figure 1: The resistance as a function of temperature for a normal metal and a super-
conductor. Reproduced from Ref. [4].

Figure 2: The Meissner effect in a superconducting material, reproduced from Ref. [5].
Above Tc, a SC behaves like a normal metal, while below Tc, it expels the magnetic field
from its interior, as in the image on the right. In contrast, a normal metal preserves the
initial flux at all temperatures.

the interior of the SC, it follows from the Maxwell equation that the supercurrent is also

zero in the bulk of the sample, and thus the screening currents only flow near the surface.

A superconductor is not just an ideal conductor, and this becomes clear by considering

in detail the magnetic response of an ideal conductor. Since the resistivity ρ = 0, it

follows from Ohm’s law, j = (1/ρ)E, that E = 0. From the Maxwell equation, one

has ∂B/∂t = 0 → B(t) = B(0), and consequently, if one fixes the temperature while

altering the external magnetic field, an ideal conductor will preserve the initial flux. In

a material which is in the superconducting state, the magnetic induction is zero in the

interior of the SC, regardless of the initial flux.

The experiments also show that there is a maximum external magnetic field, known

as the critical field Hc, beyond which superconductivity is destroyed. This idea can be
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understood by considering the following argument: according to the microscopic theory

of superconductivity proposed by Bardeen, Cooper, and Schrieffer (BCS theory), which

is described below, superconductivity is associated with the effective formation of pairs

of electrons, known as Cooper pairs. The screening supercurrent is generated by these

Cooper pairs, which create an opposing field to cancel the interior flux. There is a

maximum supercurrent which can be sustained because there is a maximum velocity

at which the Cooper pairs can remain correlated. We see that the maximum velocity

is therefore connected to the maximum strength of the Meissner screening field that

is created. Beyond this velocity, the pairs “break up”, and thus there is a maximum

external field at which superconductivity can be maintained.

There is a compelling energy reason why materials should enter the superconducting

state, i.e. it is the thermodynamically advantageous state of the system. To formally

illustrate this, one introduces the condensation energy Econd(T ), which is the energy

gained per unit volume when the system enters the superconducting state. In terms

of the free energies (per unit volume) of the normal and superconducting states, the

condensation energy is given by:

Econd(T ) = fn(T,H = 0)− fs(T,H = 0),

and we expect this quantity to be greater than zero for T < Tc. One can relate the

condensation energy to the critical field Hc at which the superconductivity is destroyed,

since, by definition, this is the field at which the normal and superconducting free energy

densities are equal: fn(T,Hc) = fs(T,Hc). Therefore the condensation energy takes the

following form:

Econd =
H2
c (T )

8π
. (1.1)

We see that one can directly probe the energy gain at the transition into the supercon-

ducting state simply by measuring the critical field.

Depending on the details of the response to an applied magnetic field, superconduc-

tors fall into two distinct categories. Type-I SCs are materials which exhibit the complete

Meissner effect, as explained above, as well as a first order transition into the supercon-

ducting state at nonzero magnetic field. The phase diagram of a type-I SC is given in

Fig. 3. The latent heat in this first order transition is related to the condensation energy,

and since Hc = 0 at T = Tc, it follows that Econd = 0, and the phase transition becomes

second order (or continuous) at the critical temperature. The materials that were primar-

ily studied in the 1920’s and 1930’s, such as Hg, Pb, and Sn, are type-I SCs. It turns out,

however, that these materials are rather an exception to the world of superconductivity,
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Figure 3: Phase diagram of a type-I superconductor. Reproduced from Ref. [6].

Figure 4: Phase diagram of a type-II SC [6], illustrating the lower and upper critical
fields.

and that this type of response is observed mostly in “clean” elemental metals (excluding

Nb). The vast majority of SCs, including all superconducting alloys, exhibit a type-II

response below Tc.

The phase diagram of a typical type-II SC is presented in Fig. 4. Unlike in the type-I

case, there are two transition lines, which separate three distinct phases of the material.

The upper critical field Hc2 separates the normal state from an unusual superconducting

state called the mixed, or Abrikosov, state; the lower critical field Hc1 separates the mixed

state from the Meissner state, where the complete Meissner effect is observed. There is

no latent heat associated with the transition from either the normal state to the mixed

state, or from the mixed state to the complete Meissner state, i.e. both transitions are

continuous in both zero and nonzero magnetic field.

In the mixed state, the incomplete Meissner effect is observed, and thus B 6= 0 in

the interior of the SC. In fact, the magnetic field penetrates the bulk of the sample by

forming a periodic array of normal cores (Abrikosov vortices [7]), which is typically in a
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Figure 5: Abrikosov vortices in the mixed state, retrieved from Ref. [8]. The magnetic
field (red) penetrates the normal cores, and the circulating supercurrent (yellow) screens
the bulk of the sample. The screening currents from different vortices interact with each
other and this leads to forces between the vortices, as illustrated by the black arrows.

hexagonal pattern. The superconductivity is destroyed at the cores, which are surrounded

by a dissipationless circulating current that screens the magnetic field, as illustrated in

Fig. 5. This results in a magnetic induction which is maximum near the core and decays

exponentially away from it.

Abrikosov developed the theoretical idea of this mixed state in the early 1950’s, well

before the microscopic BCS theory was developed. He published his work in 1957, around

the same time the BCS theory emerged, and after his work was experimentally confirmed,

he was awarded the Nobel Prize in physics in 2003.

Before introducing the BCS theory, we give an overview of some other concepts that

helped lead to our current understanding of the field of superconductivity. It is useful

for the reader to keep in mind that in the late 1930’s physicists didn’t know anything

about Cooper pairs and could not fathom the microscopic nature of superconductivity.

Over the years, various models were proposed to explain the mechanisms behind this

phenomenon, but it wasn’t until the BCS theory arrived in 1957 that we had a truly

microscopic theory which explained the physical properties of SCs.

The London model [9], proposed in 1935 by F. and H. London, was purely phenomeno-

logical (i.e. it was designed to explain experiments without microscopically justifying all

of the concepts or parameters in the theory). The basic assumption in this theory is that

there are two types of charge carriers in a superconductor, in contrast to the electron

quasiparticles in a normal metal. In a superconductor, it was assumed that “normal”
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electrons are responsible for the dissipative normal current, which is proportional to the

electric field according to Ohm’s law: jn = ennvn = σE. Here e is the electron charge,

vn is the velocity of normal electrons, σ = 1/ρ is the conductivity, E is the electric field,

and nn is the density of the normal electrons.

In contrast, the “superconducting” electrons were assumed to respond to the external

magnetic field and create persistent screening currents given by the expression js = ensvs,

where ns is the number density and vs is the velocity of the superconducting electrons.

The total density of electrons is then given by n = nn + ns. It is important to note

that in this theory, ns is a phenomenological parameter that cannot be derived from first

principles. It is possible for both nn and ns to be non-uniform, and it is assumed that

ns = 0 in the normal state. On the contrary, in the absence of an electric field, it follows

that the total contribution to the current is the supercurrent js.

The key assumption in the London theory is that the contribution to the free en-

ergy associated with the motion of the superconducting electrons can be written in the

following way:

Ecurrent =
1

2

∫
d3r nsmv

2
s ,

where m is the electron mass, and ns and vs were introduced above. Physically, Ecurrent

takes place against the background of the Fermi distribution, i.e. it is the “extra” energy

that comes from the motion of the superconducting electrons as a whole. Using the

London expression for the supercurrent above, we have the following formula for the

kinetic energy associated with the supercurrent:

Ecurrent =
1

2

m

e2ns

∫
d3r j2

s .

By invoking the Maxwell equation ∇×B = (4π/c)js, and after variational minimization

of the total free energy with respect to the magnetic induction, one arrives at the London

equation:

∇2B =
1

λ2
L

B. (1.2)

In this last expression, the magnetic induction satisfies the boundary condition B = H

far away from the superconductor, and λL = (mc2/4πe2ns)
1/2 is the London penetration

depth. In the normal state, ns = 0 and thus λL =∞, orB = H everywhere, as expected.

By appropriately manipulating the London equation, one can relate the supercurrent

to the vector potential A, where B = ∇×A, as follows:

js(r) = −e
2ns
mc

A(r). (1.3)
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This linear dependence on the vector potential is different from what we see in a nor-

mal metal, where j = σE = −(σ/c)∂A/∂t. This is one of the defining features of

superconductivity.

We consider the solution to the London equation (1.2) for the simplest geometry,

which is a planar normal-superconducting interface (taken to be in the yz-plane, i.e.

perpendicular to the x-axis), in the presence of an external magnetic field parallel to the

interface, i.e. H = Hẑ. It follows from Eq. (1.2), along with the boundary condition

B(x) = H far from the SC, that B(x) = He−x/λL in the superconducting material.

Furthermore, it follows from the Maxwell equation that the supercurrent js has the same

exponential dependence as the magnetic induction, and thus the magnetic response of the

SC is limited to a region of thickness λL. In other words, B(x) falls to 1/e of its original

value at the depth λL into the sample. In the more general case, a quick inspection of

the London equation reveals that the latter lends itself to some sort of exponentially-

dependent solution, which is indeed consistent with the Meissner effect. The magnetic

field falls off exponentially into the sample, characterized by the magnetic penetration

depth, λL. It follows that the screening current also falls off exponentially and thus the

current only flows near the surface. Consequently, the magnetic induction is zero in the

bulk of the superconductor as expected.

While the London theory does reproduce the Meissner effect, one of the shortcomings

of this theory is that the value of ns remains undefined (though a natural upper limit

is n, the total density of conduction electrons). Alleviating this problem requires a full

microscopic theory. This ambiguity becomes particularly important when comparing

calculations with measurements of the penetration depths in superconducting materials.

Experimentally, the temperature dependence of the penetration depth is given by

λ(T ) ' λ(0)[1− (T/Tc)
4]−1/2.

We see that this expression diverges at the critical temperature Tc; however, comparisons

of radio frequency penetration depths of samples in the normal and superconducting

states have shown that the superconducting penetration depths are always larger than

λL, even after an extrapolation of the data to T = 0 [10]. In order to quantitatively

address this excess penetration depth, Pippard developed a nonlocal generalization of

the London theory, wherein another characteristic length scale of superconductors, the

coherence length, was introduced [11].

The most general relation between the supercurrent and the vector potential is in-

deed a nonlocal one, and it was proposed by Pippard that the ith component of the
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supercurrent can be expressed in the following form:

ji(r) = −
∫
d3r′ Qij(r − r′)Aj(r′), (1.4)

where Qij is the current-response kernel. We note that the current at point r is still

linear in A, but it is now determined by A at various other points r′. One can recover

the local (London) relation for the supercurrent in the limit Qij(R) = (e2ns/mc)δijδ(R),

where R = r − r′.
Pippard argued that, since the sample goes superconducting, there must be a char-

acteristic temperature scale set by Tc, and consequently there is an energy scale set by

kBTc, where kB is the Boltzmann constant. He pointed out that since Tc is small, this

energy scale is much less than the Fermi energy εF in metals, and thus only electrons near

the Fermi surface (within a thin shell of thickness kBTc) can play a major role in super-

conductivity. The thickness of this shell in momentum space is given by ∆p ∼ kBTc/vF ,

where vF is the Fermi speed. Pippard further argued that the superconducting wave-

function should have a characteristic dimension, which could be estimated by uncertainty

principle arguments. It follows from the Heisenberg uncertainty relation ∆x∆p ∼ ~ that

∆x ∼ ~vF/kBTc. This allows one to introduce the coherence length

ξ0 = a
~vF
kBTc

, (1.5)

where a ∼ 1 is a dimensionless constant. Typical values of the Pippard coherence length

are of the order of 10−5 − 10−7 cm [12], which is much larger than the interelectron

distance n−1/3.

Below we will show that ξ0 physically corresponds to the size of a Cooper pair, i.e. to

the size of the wavepacket of the paired charge carriers in superconductors. As a result,

one would expect a weakened supercurrent response to a vector potential A(r) which

decreases over a volume of radius ξ0 about the point of interest. Because of this, ξ0

plays a role analogous to the mean free path ` in the nonlocal electrodynamics of normal

metals [10]. If the ordinary mean free path is less than ξ0, we would expect an even more

weakened response to an applied field. By collecting these ideas together, Pippard used

the following expression for the current response kernel:

Qij(R) =
3nse

2

4πmcξ0

RiRj

R4
e−R/ξ. (1.6)

In this last expression, ξ is the coherence length in the presence of scattering, which is
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given by
1

ξ
=

1

ξ0

+
1

`
. (1.7)

Using Eq. (1.6) in the nonlocal relation for the supercurrent, Eq. (1.4), Pippard was

able to fit experimental data for Sn and Al with the choice of the single parameter

a = 0.15 in Eq. (1.5) [13]. With the development of the BCS theory, it was microscopically

determined that this is indeed the correct form, with a ' 0.18 [10].

To conclude the Pippard theory, we remark on the fact that one can characterize

superconducting materials based on the ratio of their penetration depth λ to the coher-

ence length. Since the vector potential changes on the scale of the penetration depth,

and the size of the Cooper pairs is characterized by ξ0, it follows that if λ � ξ0, then

this is a local response and the London theory applies. As a result, these types of su-

perconductors are coined “London SCs”, and λ = λL. On the other hand, if λ � ξ0,

which is the case in clean materials, electrons are correlated over large distances and feel

the effects of other electrons, leading to a non-local response. Consequently the London

theory fails here, and these types of materials are called “Pippard SCs”. One can show

that in this case λ = λP ' const(ξ0λ
2
L)1/3 � λL, see Ref. [10]. If ξ0 � λ(T = 0),

one will have a London SC at all temperatures, but since the Pippard penetration depth

λP diverges at the critical temperature due to its dependence on ns, a Pippard SC will

become a London SC close to T = Tc. Therefore all SCs become London SCs close to

the transition temperature. If one introduces impurities into the system, the coherence

length decreases as the mean free path decreases, see Eq. (1.7), and eventually ξ � λ

and one will have a London SC. This classification is not to be confused with type-I and

type-II SCs, which depend on the material and not the temperature.

While the Pippard nonlocal relation for the supercurrent addresses the excess pene-

tration depth that is not accounted for in the London theory, there are additional short-

comings of the latter that are not solved by the Pippard model alone. In particular, the

linear relation between the supercurrent and the vector potential, see Eq. (1.4), poses a

complication since it should be gauge-invariant, but is evidently not. Fortunately, this is-

sue can be fixed using a quantum-mechanical generalization of the London theory, which

was done by Ginzburg and Landau in 1950 [14].

In the Ginzburg-Landau (GL) theory, one works with the wavefunction of the super-

conducting charge carriers in a system. Essentially, Ginzburg and Landau applied the

Landau theory of continuous phase transitions to SCs, and the central idea in this theory

is that there is an order parameter which is zero in the normal state and nonzero in the

superconducting state. One takes the order parameter in this system to be the wavefunc-
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tion, ψ(r), of the superconducting electrons and the assumption is that ns(r) = γ|ψ(r)|2,

where γ is a coefficient. Since the wavefunction is complex, we have ψ(r) = |ψ(r)|eiϕ(r),

and this additional degree of freedom resulting from the phase ϕ(r) allows one to fix the

gauge invariance of the supercurrent.

In this approach, one obtains the supercurrent by taking the variational derivative of

the energy with respect to the vector potential:

js(r) = −c δE

δA(r)
.

The energy E = 〈Ĥ〉 is a functional of the vector potential, i.e. E =
∫
d3r ψ∗Ĥψ, where

we take the Hamiltonian to have the form:

Ĥ =
1

2M

(
p̂− q

c
A
)2

.

In this last expression, M is the mass of the superconducting carriers of charge q, and

p̂ = −i~∇ is the canonical momentum. It then follows that the supercurrent has the

following form:

js =
i~q
2M

[(∇ψ∗)ψ − ψ∗(∇ψ)]− q2

Mc
A|ψ|2,

which is similar to the usual quantum-mechanical expression for the current density.

Using the amplitude-phase representation for the wavefunction, we have:

js =
ns
γ

q2

Mc

(
~c
q

∂ϕ

∂r
−A

)
, (1.8)

where we have used the GL assumption that γ|ψ|2 = ns in this last equality. In the

uniform case, Eq. (1.8) reduces to js = −(nsq
2/γMc)A.

Since the energy cannot change in a gauge transformation A→ A+ ∇f , where f is

a scalar function, it follows from the Schrödinger equation that in such a transformation,

the phase of the wavefunction must be twisted: ψ(r) → ψ(r) exp(iqf/~c). Because of

this phase-twisting, one can easily check that the gauge invariance of the supercurrent is

restored in Eq. (1.8). While we have seemingly sorted out most of the kinks in the London

theory, we should note that one still cannot calculate q and M from first principles, and

the remaining parameters of the theory must be obtained from experiments.

The flux quantization experiments [15] were performed in 1961 and provided, in ad-

dition to profound results, a confirmation for the BCS theory that was developed four

years prior. As we shall see, the results of these experiments can be directly derived from

the GL theory, if the superconducting carriers are Cooper pairs. A typical experiment
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involved a large superconductor with a cylindrical hole in it, in the presence of an external

magnetic field oriented parallel to the cylindrical axis. The field was turned on at T > Tc,

and then the system was cooled in constant field to T < Tc, where the sample becomes

superconducting, exhibiting the Meissner effect. Measurements of the flux trapped inside

the cavity revealed that it is quantized: |Φ/nΦ0| = 1, i.e. Φ = nΦ0, where n is an integer,

and Φ0 = hc/2e ' 2.07 × 10−7 G/cm2 is the superconducting magnetic flux quantum.

We note that throughout the GL theory, e will denote the absolute value of the electron

charge.

To provide a theoretical foundation for the results of the flux quantization experi-

ments, one can calculate the flux Φ that is captured in the cylindrical cavity when the

sample goes superconducting. We begin by integrating the circulation of supercurrent

around an arbitrarily large loop, C, enclosing the normal cavity, and from Eq. (1.8), we

have: ∮
C

js · d` =
nse

2

mc

∮
C

d` ·
(
~c
q

∂ϕ

∂r
−A

)
. (1.9)

Since we are free to choose the contour, we can take it to be far outside the penetration

depth, where js = 0. On the other hand,
∮
C
A · d` =

∫
S
B · dS = Φ, where S is the

surface whose boundary is C. It follows from Eq. (1.9) that the flux trapped inside the

cavity takes the following form:

Φ =
~c
q

∮
C

d` ·∇ϕ. (1.10)

Since ψ is a single-valued function, when you wind the function around a loop and

return to the same point, ψ must stay the same. This can only happen if the phase ϕ

changes by multiples of 2π as you wind the wavefunction. Consequently, we must have∮
C
d` ·∇ϕ = ϕ(r2)−ϕ(r1) = 2πn, where n is an integer, and r2 = r1. We see that while

ψ must be the same, ϕ is free to vary as explained, and this is one of the first topological

arguments in theoretical physics, i.e. that the topology of ψ may be non-trivial. It follows

from these arguments that the flux is indeed quantized:

Φ =
nhc

q
= nΦ0

2e

q
. (1.11)

Since we know from the flux quantization experiments that |Φ/nΦ0| = 1, we must have

|q| = 2e, where e is the absolute value of the electron charge. Furthermore, because the

current is carried by electrons, it directly follows that q = −2e. It is natural to assume

if q = −2e that M = 2m, where m is the single electron mass, and this is precisely

the result one would expect from the microscopic BCS theory. We can then calculate
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the constant γ from the GL assumption, and we find that γ = 2, and thus ns = 2|ψ|2.

When Ginzburg and Landau first developed this theory, nearly seven years before the

emergence of the BCS theory, they did not know about the existence of Cooper pairs.

Like other physicists at the time, they could only fathom that the charge carriers in SCs

were single electrons, and consequently they assumed that q = −e, M = m and therefore

γ = 1 ⇒ |ψ|2 = ns. We now know from the BCS theory that the correct choice for the

parameters is as described above.

When the GL theory was first proposed, its importance was not generally appreciated

in the Western literature because it appeared to be of a purely phenomenological nature

[10]. It wasn’t until Gor’kov derived it microscopically from the BCS model in 1959 that

the GL theory started to gain wide acceptance [16]. In general, the power of the GL

theory manifests itself in the way it simplifies the understanding of nonuniform systems.

To determine the order parameter in this theory, one expands the free energy in

powers of ψ, taking into account the symmetry requirements of the system. Since it is

assumed in this theory that T is close to Tc, ψ is assumed to be small, and one can

neglect higher-order terms in the expansion. In the simplest case of singlet s-wave order

parameter (the precise definition will be introduced below) in zero magnetic field, the

GL free energy can be written as F =
∫
d3r fs, where the free energy density is given by

the following expression:

fs = fn + α|ψ|2 +
β

2
|ψ|4 +K|∇ψ|2. (1.12)

Here fn is the free energy density in the normal state, α = a(T − Tc) with a > 0, and

both β and K are positive constants. We note that K = ~2/2M , where M = 2m is

the mass of Cooper pairs, and so the last term in expression (1.12) has the form of the

kinetic energy associated with the wavefunction ψ. As we will show later in this section,

it is possible for a superconducting system to have a multi-component order parameter.

We will address the free energy expansions in more detail for these cases, particularly,

for the chiral p-wave pairing in Appendix A, and for the two-band singlet s-wave order

parameter in Appendix B.

In a uniform superconductor, the last term in Eq. (1.12) is zero, and thus fs does not

depend on the phase of the wavefunction. Consequently, the superconducting free energy

has an infinite degeneracy with respect to the phase. One can determine the magnitude

of the order parameter through variational minimization of the free energy with respect

to |ψ|. In this case, one finds that the minimum in the free energy corresponds to

|ψ| = ψ0 =
√
a(Tc − T )/β, and the free energy difference between the normal and
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superconducting states then takes the form:

∆f = fs − fn = −a
2(T − Tc)2

2β
, (1.13)

which is evidently less than zero, as expected. The expression above is nothing other than

the condensation energy, and from the definition of the latter, see Eq. (1.1), it follows

that one can relate the critical field to the parameters in expression (1.13) as follows:

Hc(T ) =

√
4πa2

β
(Tc − T ). (1.14)

We note that this linear dependence is valid at least for the type-I materials near the

critical temperature. Furthermore, we should note that the results from the GL theory

are valid only near the critical temperature, where the order parameter is small, as it

grows continuously from zero at T > Tc to a finite value at T < Tc.

One can differentiate expression (1.13) with respect to temperature to easily reproduce

the jump in the specific heat at T = Tc. In this way, we find:

∆C = (Cs − Cn)|T=Tc
=
a2

β
Tc. (1.15)

As we shall see in Sec. 1.3, the BCS model leads to the same result, but after a much

more laborious calculation.

The real power of the GL theory comes into effect in the nonuniform systems, i.e.

ψ = ψ(r), and this is the topic we now address. In the general case, one can also include a

magnetic field into the GL theory by making the replacement −i~∇→ −i~∇+(2e/c)A,

and adding the magnetic field energy to Eq. (1.12). After variational minimization of the

resulting expression (the general GL functional) with respect to the wavefunction ψ, one

obtains the following nonlinear differential equation, known as the GL equation:

αψ + β|ψ|2ψ −KD2ψ = 0. (1.16)

In this last expression, D = ∇ + i(2e/~c)A is the long derivative. One can obtain a

solution for the pair wavefunction by solving the GL equation, subject to the appropriate

boundary conditions (see, for example, Ref. [10]).

Through the variational minimization of the general GL functional with respect to

the vector potential, one can recover the Maxwell equation ∇ × B = (4π/c)js, where
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the supercurrent is given by the following expression:

js = −2e

~
K

{
i [(∇ψ∗)ψ − ψ∗(∇ψ)] +

4e

~c
|ψ|2A

}
. (1.17)

We see that this last expression has the identical form for the supercurrent calculated

earlier in this section. We note also that the total contribution to the current is indeed

only the supercurrent since excitations do not play a role in the GL theory, and it is the

excitations which are responsible for the normal current. One can recover the London

supercurrent, see Eq. (1.3), by using the phase-amplitude form for the wavefunction ψ =

|ψ(r)|eiφ(r), and taking |ψ(r)| = ψ0, where ψ0 is defined above. Furthermore, neglecting

the variation in φ, we find that the supercurrents have the same form if ns = 2ψ2
0.

To gain more insight into the structure of the GL equation, it is useful to introduce

its dimensionless form. This is accomplished by defining the dimensionless order param-

eter f(r) = ψ(r)/ψ0, where ψ0 =
√
|α|/β is the order parameter in the uniform state

introduced above. In this way, we can rewrite the GL equation (1.16) in the following

dimensionless form:

−ξ2

(
∇ + i

2e

~c
A

)2

f − f + |f |2f = 0, (1.18)

where

ξ(T ) =

√
K

|α|
=

√
K

a(Tc − T )
, (1.19)

is the GL correlation length. We note that, despite a similar notation, ξ is not the same

as the Pippard coherence length ξ0. This can be understood by considering the fact that

ξ is temperature-dependent, while the size of a Cooper pair is essentially temperature-

independent. It does turn out, however, that ξ(T ) ≈ ξ0 for pure materials in the limit

T � Tc [10]. Physically, ξ(T ) characterizes the response of the wavefunction, i.e. a small

disturbance of ψ from ψ0 will decay in a characteristic length of the order of ξ(T ) [10].

We see from Eq. (1.19) that at the critical temperature, ξ(T ) diverges, which tells us

that fluctuations in ψ are felt over large distances in this limit.

One can also use the dimensionless formalism to rewrite the supercurrent in Eq. (1.17)

as follows:

js = i
c

4π

Φ0

4πλ2
[f ∗(Df)− (Df ∗)f ] , (1.20)

where

λ =

√
mc2

8πe2

β

|α|
(1.21)

is the GL penetration depth. Using the relation ns = 2ψ2
0 = 2|α|/β, we see that one can
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reproduce the London penetration depth in the GL theory: λ = λL =
√
mc2/4πe2ns.

The penetration depth characterizes the response of the supercurrent. In fact, λ is the

characteristic scale over which the magnetic induction decays inside a superconducting

material.

It turns out that one can use the ratio of the length scales, λ and ξ, to understand the

distinction between type-I and type-II superconducting materials. We introduce the GL

parameter κ = λ/ξ, and note that while both λ and ξ individually diverge at T → Tc, κ

is temperature-independent and depends only on the material parameters.

One can determine the structure of the mixed state in a type-II SC by noting that,

since the phase transition is continuous at Hc2, the order parameter is small, which allows

one to neglect the nonlinear term in Eq. (1.16) and solve it. This was done by Abrikosov

in 1957, and he determined that the upper critical field Hc2 has the following form:

Hc2(T ) =
Φ0

2πξ2
, (1.22)

where Φ0 is the superconducting magnetic flux quantum introduced previously. Using the

expressions (1.19) and (1.21), one can rewrite the critical field Hc(T ), see Eq. (1.14), in

terms of the GL parameters as Hc = Φ0/2
√

2πξλ. Taking the ratio of this last expression

with Eq. (1.22) we obtain:
Hc2

Hc

=
√

2κ, (1.23)

and so we see that if κ > 1/
√

2 then Hc2 > Hc, and one will not be able to measure

Hc, since the phase transition is pre-empted by Hc2. This allows one to make a clear

distinction between the type-I and type-II SCs as follows:

κ >
1√
2
, type-II

κ <
1√
2
, type-I.

The last topic we review before describing the BCS theory are the results of specific

heat measurements on SCs. As we shall see in the next subsection, there is an energy gap

∆ in the spectrum of quasiparticle excitations in SCs, which leads to an exponentially-

dependent specific heat in the superconducting state, i.e. C(T ) ∼ exp(−∆/kBT ). In

contrast, the specific heat of a normal metal is described by the expression C(T ) =

(π2kBT )/2TF , where TF is the Fermi temperature, assuming a free electron gas with

no interactions. It is very hard to separate the electronic specific heat from the lattice

vibrations at finite temperatures, as one is searching for an exponentially small quantity
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in a huge sea of phonons. However, precise measurements of the specific heat by Corak et

al. [17] showed that well below Tc, a good fit to the specific heat is C(T ) ∼ exp(−bTc/T ),

where b ∼ 1.5. Such an exponential dependence implies that ∆ ≈ 1.5kBTc is the minimum

excitation energy per particle, and can in fact be interpreted as an energy gap. If the

gap goes to zero at isolated points or lines on the Fermi surface (gap nodes), which is

the case in some of the novel SCs, then the specific heat exhibits a power-law behaviour

[18].

At around the same time of the thermodynamic measurements, the electromagnetic

absorption in superconductors was measured by Glover and Tinkham [19]. They found

that the Cooper pairs break up at the frequencies above the absorption edge ωg, where

~ωg = 2∆, leading to the onset of real electromagnetic absorption. These results could

be interpreted as follows: the photons destroy the bound pairs of electrons and create

pairs of unbound excitations, corresponding to a minimum excitation energy of 2∆.

We see that the spectroscopic measurement gives the total energy required to create a

pair of excitations, while the thermal experiments measure the energy per one excitation

[10]. As we shall see below, one of the key predicitions of the BCS theory is that there is a

minimum energy 2∆(T ) required to break a pair, creating two quasiparticle excitations.

This agreement with the electromagnetic absorption measurements provided one of the

most decisive early verifications of the BCS theory [10].

It is easy from this point for one to conclude that all of the experimental evidence

we have reviewed necessarily points to the formation of coherent pairs of electrons in a

superconductor. However, if this is the case, two questions immediately arise. Namely,

since electrons repel each other, what could possibly be the mechanism of attractive in-

teraction? Secondly, assuming that there is an interaction which overcomes the Coulomb

repulsion, can it create bound states? Both of these questions are answered in the next

subsection.

1.2 Cooper pairs

In 1956, Cooper developed an ingenious theory [20] which led the way for the fully fledged

many-body BCS theory. He demonstrated that it is indeed theoretically possible for two

electrons to form a bound state. It is well known in quantum mechanics that in three

dimensions, there is a threshold for the strength of the attractive interaction between

two particles in order for them to form a bound pair. However, Cooper realized that

the pairs are formed not in a vacuum, but rather in the presence of the Fermi sea. He

pictured this toy problem as a “frozen” Fermi sea, whose only purpose is to cut out some
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states from the momentum space, due to the Pauli exclusion principle. In this setup,

all states below the Fermi momentum pF = ~kF (with kF the Fermi wavevector) are

filled, and all above are empty. Cooper considered what would happen if one were to

add two additional electrons which can interact only with each other. As we will see,

in the presence of an arbitrarily weak attraction, the Fermi sea is unstable against the

formation of bound states of electrons, or Cooper pairs.

To prove this, we consider the Schrödinger equation for a two-particle wavefunction,

which has the following form:

− ~2

2m

(
∂2

∂r2
1

+
∂2

∂r2
2

)
ψ + V (r1 − r2)ψ = Eψ, (1.24)

where V (r1 − r2) is an attractive interaction between particles 1 and 2. Because the

two electrons can pair in different ways, there are four possible “spin channels”, and the

wavefunction is in general a superposition of all four of them:

ψ(1, 2) ≡ ψ(r1σ1, r2σ2) = ψs(r1, r2)|S = 0, Sz = 0〉,

+ ψ
(+1)
t (r1, r2)|S = 1, Sz = 1〉,

+ ψ
(0)
t (r1, r2)|S = 1, Sz = 0〉,

+ ψ
(−1)
t (r1, r2)|S = 1, Sz = −1〉. (1.25)

Here the subscript s corresponds to the spin-singlet state with total spin S = 0, and

its z-projection Sz = 0, and subscript t denotes the triplet state with total spin S = 1.

There are three possible z-projections for S = 1, i.e. Sz = −1, 0, 1, and the amplitudes of

the triplet wavefunctions are labelled with a superscript to denote the value of Sz. The

two-particle spin states can be expressed in terms of the eigenfunctions, | ↑〉 and | ↓〉, of

the single-electron z-projection spin operator ŝz as follows:

|S = 0, Sz = 0〉 =
| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2√

2
,

|S = 1, Sz = 1〉 = | ↑〉1| ↑〉2,
(1.26)

|S = 1, Sz = 0〉 =
| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2√

2
,

|S = 1, Sz = −1〉 = | ↓〉1| ↓〉2.

To proceed further, we use the anti-symmetrization exchange requirements for fermions,

namely ψ(1, 2) = −ψ(2, 1). Since the singlet spin state (S = 0) is anti-symmetric, see

Eq. (1.26), it follows that the orbital part of the wavefunction is symmetric: ψs(r1, r2) =
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ψs(r2, r1). Furthermore, because the triplet spin states are symmetric with respect to

spin exchange, it follows that the orbital triplet amplitudes must be antisymmetric with

respect to coordinate exchange.

For simplicity, we assume that the interaction potential V is spin-independent, and

also a local function of r1 − r2, so that it is only nonzero when the two particles are

sufficiently close together. We expect the strongest interaction when r1 = r2, and since

the triplet amplitudes are antisymmetric with respect to particle exchange, we have in

this case ψ
(Sz)
t (r1, r1) = −ψ(Sz)

t (r1, r1), which can only happen if ψ
(Sz)
t = 0. Therefore it

follows that only electrons in the singlet pairing state form the bound pairs. We see that

the triplet pairing does not correspond to the lowest energy if the attraction is a localized

one; however, nonlocal interactions do exist in real materials, and so the spin-triplet state

can be realized.

In the absence of interaction between the two electrons, their minimum energy is 2εF ,

where εF = ~2k2
F/2m is the Fermi energy. In the presence of an attractive interaction,

we can write the energy of the two electrons as E = ~2k2
F/m + ε, where ε < 0 since the

electrons form a bound state. Because the potential depends on the difference between

the two electron positions, it is natural to change into the centre-of-mass coordinate

R = (r1 + r2)/2, and the relative coordinate r = r1 − r2. Then we can represent

the wavefunction in terms of these coordinates, ψ(r1, r2) → ψ̃(R, r), and rewrite the

Schrödinger equation (1.24) as follows:

− ~2

4m

∂2ψ̃

∂R2
− ~2

m

∂2ψ̃

∂r2
+ V (r)ψ̃ =

(
~2k2

F

m
+ ε

)
ψ̃. (1.27)

Since there is no R dependence in the interaction, the dependence of the wavefunction

on R corresponds to that of a free particle. We can therefore look for solutions of the

two-particle wavefunction which have the form ψ̃(r,R) = eiq·Rψ(r), where q is the

centre-of-mass momentum of the pair. Substituting this form for ψ̃ into Eq. (1.27), one

obtains a kinetic energy associated with the translational motion of the pair centre-of-

mass, given by ~2q2/4m. The lowest energy clearly corresponds to q = 0, and in this

case we obtain ψ̃(r,R) = ψ(r), along with the following Schrödinger equation:

−~2

m

∂2ψ

∂r2
+ V (r)ψ =

(
~2k2

F

m
+ ε

)
ψ. (1.28)

Since the Fermi sea, which is a momentum-space concept, plays a major role in the

theory of superconductivity, it is convenient to transform everything into the momentum

representation. The coordinate-space representation of the pair wavefunction is related
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to the wavefunction in the momentum space, g(k), as follows:

ψ(r) =

∫
d3k

(2π)3
g(k)eik·r, (1.29)

and the potential can be transformed in a similar manner:

V (r) =

∫
d3q

(2π)3
V (q)eiq·r. (1.30)

Due to the Pauli exclusion principle, it follows that g(k) = 0 for |k| < kF , since all of

the states below the Fermi level are filled. We should point out that since r = r1 − r2,

Eq. (1.29) tells us that the momenta of electrons 1 and 2 are equal in magnitude and

opposite in direction. Furthermore, since the pair wavefunction ψ(r) must be symmetric

with respect to particle exchange (r → −r), it follows that g(k) = g(−k).

After substituting Eqs. (1.29) and (1.30) into Eq. (1.28), and manipulating the re-

sulting expression, we find that the Schrödinger equation in the momentum space takes

the following form:

[2ξ(k)− ε] g(k) +

∫
d3k′

(2π)3
V (k − k′)g(k′) = 0. (1.31)

Here we have introduced a new variable

ξ(k) =
~2k2

2m
− ~2k2

F

2m
,

which has the meaning of the kinetic energy measured from the Fermi energy.

To proceed further, we must know the analytical form of the pairing potential V (k−
k′). We assume an isotropic system and then the potential can be expanded in terms of

the spherical harmonics as follows:

V (k − k′) =
∞∑
`=0

V`(k, k
′)

+∑̀
m=−`

Y`m(θ, ϕ)Y ∗`m(θ′, ϕ′), (1.32)

where Y`m are the spherical harmonics corresponding to angular momentum ` and its

z-projection m, and θ, ϕ are the usual polar angles. In the anisotropic case, i.e. in the

presence of a crystal lattice field, the potential is expanded slightly differently, and this

is discussed in more detail in Sec. 1.4.

We substitute the expression (1.32) for the potential into the Schrödinger equation

(1.31), and seek solutions for g(k) of the form g(k) = g(k, k̂) =
∑

`,m g`m(k)Y`m(k̂). The
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parity of the spherical harmonics is given by the relation Y`m(−k̂) = (−1)`Y`m(k̂), and

therefore, from the symmetry requirement g(k) = g(−k), it follows that ` must take only

even values. Using this expansion for g(k) in the Schrödinger equation (1.31), along with

the orthonormality of the spherical harmonics, we obtain the following expression:

[2ξ(k)− ε] g`m(k) +
1

2π2

∫ ∞
0

dk′k′
2
V`(k, k

′)g`m(k′) = 0. (1.33)

We see from this last equation that different ` channels can be considered separately.

The orbital angular momentum ` = 0 corresponds to the s-wave pairing, which is the

case considered in the BCS theory, see the following subsection. To date, the only even

orbital angular momentum states which have been found in real-life materials are the

s-wave pairing, coined “conventional SCs”, and the d-wave pairing, found in the high-Tc

SCs.

To make analytical progress, we make the assumption, following Cooper [20], that the

two electrons are attracted to each other only if they are sufficiently close to the Fermi

surface, and that the interaction is constant within this thin energy shell. The pairing

interaction can then be expressed as follows:

V`(k, k
′) =

−V`, 0 < ξ(k), ξ(k′) < εc

0, otherwise
,

where V` > 0 is a constant, and εc � εF is the cutoff energy. Using this assumption,

it becomes evident that the Fourier-transformed particle wavefunction has the following

form:

g`m(k) = g`mΘ(ξk)Θ(εc − ξk)
1

2ξk − ε
, (1.34)

where g`m is a constant, Θ(x) is the Heaviside step function, and ξk = ξ(k). We substi-

tute this form for g`m(k) into the Schrödinger equation (1.33), and after calculating the

integrals, Eq. (1.33) yields
1

NFV`
=

1

2
ln

(
2εc
|ε|

+ 1

)
, (1.35)

where NF = mkF/2π
2~2 is the density of states at the Fermi surface in three dimensions,

and ε < 0 is the energy of the bound state of the electrons measured from 2εF .

In the “weak-coupling approximation”, the dimensionless constant NFV` is small.

This corresponds to a weak attraction, which happens to be an excellent approximation

in most superconductors. In this limit, we can analytically solve for ε, and find the
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following result:

ε = −2εce
−2/NFV` . (1.36)

One can therefore conclude that there is a bound state, called a Cooper pair, at arbitrarily

weak attraction, since this last equation is nonzero for any value of V`. We also note from

Eq. (1.36) that the energy of the bound state is a non-analytic function of the coupling

constant, i.e. its derivative at V` = 0 is divergent. This non-analyticity means that

one cannot treat the interaction as a small perturbation, and consequently it cannot

be reproduced from the perturbation theory. While Cooper’s theorem treats only two

interacting electrons in the presence of a Fermi sea, these conclusions survive even in the

more general many-body BCS theory.

We have now demonstrated that the Fermi system is unstable toward the formation

of Cooper pairs. Each of the different ` channels corresponds to a different bound state

energy, and the superconductivity is pre-empted by the channel with the strongest in-

teractive potential. In conventional (singlet s-wave) SCs, it is V0 which gives the largest

negative bound state energy. In contrast, in the high-Tc SCs, the strongest attraction

occurs in the d-wave channel.

Now that we know that electrons can form Cooper pairs, one might wonder how to

quantitatively determine the spatial extent of these pairs. To estimate this quantity,

one can compute the root-mean-square displacement corresponding to the ground state

wavefunction ψ(r) introduced above:

√
〈r2〉 =

√∫
d3r r2|ψ|2∫
d3r|ψ|2

.

Using the Parceval theorem in the denominator of this last expression, as well as differ-

entiation with respect to k in the inverse Fourier transform of ψ(r) in the numerator,

this last relation can be written as follows:

〈r2〉 =

∫
d3k

∣∣ ∂g
∂k

∣∣2∫
d3k|g|2

, (1.37)

where g(k) is defined by Eq. (1.29). Using the solution for the Fourier-transformed pair

wavefunction, see Eq. (1.34), and evaluating the integrals, we find that the size of a

Cooper pair is given by √
〈r2〉 =

2√
3

~vF
|ε|

. (1.38)

While the Cooper problem is not a many-body theory, it is indeed true that in the many-
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body system, |ε| ∼ kBTc. Consequenty, expression (1.38) tells us that the size of a Cooper

pair is of the order ~vF/kBTc ∼ ξ0, where ξ0 is the Pippard coherence length.

One might ponder about the origin of the attractive interaction between electrons

that arises in superconductors, especially because this interaction must somehow over-

come the strong Coulomb repulsion between the two equivalent charges. It is important

to note that when we consider electrons in a metal, we need to focus not on the properties

of bare electrons, but instead on quasiparticles, or “dressed” electrons. A quasiparticle

is an excitation which results from an electron moving through a surrounding exchange-

correlation hole [21]. If two electrons have parallel spin, it is necessary from the Pauli

exclusion principle that the probability of finding the two electrons near each other is

zero, and this is known as the “exchange hole”. On the other hand, the Coulomb re-

pulsion necessitates a high energy cost associated with two electrons being near each

other regardless of their spin, and this is defined as the “correlation hole”. The physical

manifestation of the exchange-correlation hole is that, as an electron moves through a

crystal lattice, the other electrons must move out of the way.

If one considers an electron and its surrounding exchange-correlation hole in a metal,

it turns out that the effective Coulomb force on the quasiparticles is greatly reduced

by an exponential screening factor. While we direct the reader to standard references

such as Refs. [10] or [21] for more detail, we note that one can show that the Coulomb

interaction is never attractive, even in the presence of screening. This means that there

must be another mechanism of attraction between the electrons in superconductors.

One such mechanism can come from the interaction of electrons with the crystal lattice

vibrations (phonons), and can be understood by considering the following qualitative

picture. As an electron passes through a lattice of massive positive ions, the ions are

attracted to the electron’s negative charge, and consequently they are displaced from

their equilibrium positions. This forms a cloud of positive charge that remains long

after the electron has passed through because the massive ions move slowly compared

to the light electrons. When a second electron moves through the crystal lattice, these

ions will still be displaced from their equilibrium positions, and the second electron will

be attracted to the lingering cloud of positive charge. Since the first electron is long

gone, there is no Coulomb repulsion between the two electrons, and we see that it is the

retarded nature of the phonon interaction that allows for the suppression of the Coulomb

repulsion.

The phonon-mediated interaction can be thought of as being accompanied by an ex-

change of a phonon between the two electrons. Qualitatively, the ions in a crystal lattice

vibrate about their equilibrium positions in quantized modes, leading to a periodic modu-
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lation of the potential experienced by the electrons, which is characterized by wavelength

λ = 2π/|qph|, where qph is the wavevector of the phonon [21]. This periodic modulation

of the potential causes the electrons to undergo diffraction, and so an electron is scat-

tered from the momentum state characterized by k into one with k′ = k + qph. This

extra momentum comes from the absorption of a phonon with momentum ~qph, or from

the creation of one with momentum −~qph, and thus one can conclude that an electron

excites a phonon in a crystal lattice in this process.

Qualitatively, one of the electrons “emits” a phonon which propagates for a period

of time in the solid, until another electron “absorbs” it. The net effect is to transfer

momentum ~qph from one electron to the other. One can say that electron 1 is scattered

from state k1 to k′1 = k1 − qph, and the second electron is scattered from k2 to k′2 =

k2 + qph. The phonon is then characterized by wavevector qph = k1 − k′1 = k′2 − k2, and

a frequency ω(q).

While the full treatment of the effective interaction between electrons due to the

phonon exchange is too complex for analytical calculation, one can make progress by

using a simple approximation. Specifically, we neglect the dependence on the wavevector

qph and the phonon branch, and approximate the interaction by one which effectively

averages over all the wavevectors [21]. In this way, we obtain the following expression for

the interaction:

Veff(q, ω) = |geff |2
1

ω2 − ω2
D

, (1.39)

where ωD is a typical phonon frequency, which we take to be the Debye frequency. We

see that the expression (1.39) is attractive for phonon frequencies ω < ωD, and thus the

electron-phonon interaction can indeed provide the mechanism for attraction beween the

two electrons.

Since only the electrons within ±kBT of the Fermi energy play a role at low temper-

atures, all of the typical energy or frequency scales are much smaller than ~ωD. This

motivates our final, simplified form for the interaction [21]:

Veff(q, ω) = −|geff |2, |ω| < ωD. (1.40)

As we shall see in the next section, this last expression has an equivalent form to the

BCS pairing potential. In the effective Hamiltonian corresponding to the “scattering”

interaction characterized by Eq. (1.40), it is important to note that one is concerned

only with electrons in which all of the kinetic energies ε(k) lie within ±~ωD of the Fermi

energy, where the interaction is attractive.

How the idea arose that lattice vibrations may play an important role in superconduc-
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tivity is an interesting topic in itself. Experiments [22] have shown that if one replaces the

atoms in a SC with their isotopes, the critical temperature Tc will change with the mass of

the atoms due to a phenomenon known as the “isotope effect”. Since the frequency of the

lattice vibrations depends on the mass of the atoms [in particular ωD ∼ (k/M)1/2, where

k is an effective spring constant, and M is the ion mass] the presence of the isotope effect

in a material suggests that phonons play an important role in the superconductivity.

While we have provided the foundation to explain many of the concepts behind super-

conductivity, we still do not have a complete self-consistent theory. The Cooper problem

provides significant insight into the behaviour of SC electrons, but as we have mentioned

many times, we require a microscopic many-body formalism which takes into account the

pairing interaction and correlation between all of the electrons. This was accomplished

by Bardeen, Cooper, and Schrieffer in 1957. The BCS theory [23] accurately describes the

materials that belong to the conventional (singlet s-wave) superconducting class. This

class includes elemental superconductors, such as Al, Nb, Pb, and their alloys, such as

Nb3Sn and Nb3Ge (the latter had the highest critical temperature before the discovery

of the high-Tc cuprates in 1986).

1.3 The BCS theory

At the heart of the BCS theory is the formation of Cooper pairs and, in fact, all of the

evidence to date suggests that superconductivity is associated with the formation of pairs

of electrons [24]. As we shall see, the Cooper pairs, in a sense, behave similar to bosons

and condense into a coherent, many-body state. Consequently, in a qualitative picture

it is sufficient to focus on a single pair of electrons, whose wavefunction maintains all of

the appropriate symmetry found in the macroscopic state. Unfortunately, because the

Cooper pairs overlap, this qualitative picture is slightly misleading, and we must use the

many-body theory to develop a quantitative treatment of the problem.

In order to do this, it is convenient to work in the Fock space and use the oc-

cupation number representation. The Fock space for identical fermions is given by

Ff =
∑∞⊕

N=1H
(a)
N , where H(a)

N is the antisymmetric sector of the N -particle Hilbert space.

In the second-quantization formalism, single-particle operators in a many-body Hamil-

tonian, such as the kinetic energy Ô = p̂2/2m, are transformed into the Fock space as

follows:
N∑
i=1

Ôi →
∑
`1,`2

〈`1|Ô|`2〉â†`1 â`2 (1.41)

where N is the number of particles, and â` and â†` are operators in the Fock space,
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which annihilate and create a particle in the single-particle state |`〉, respectively, where

` = {k, σ}, for example.

Two-particle operators, such as those corresponding to interactions, are transformed

as follows:
1

2

∑
ij

V̂ij →
1

2

∑
`1,`2,`3,`4

〈`1`2|V̂ |`4`3〉â†`1 â
†
`2
â`3 â`4 . (1.42)

In the coordinate representation, these inner products have the following form:

〈`1`2|V̂ |`4`3〉 =
∑
s1,s2

∫
d3r1d

3r2φ
∗
`1

(r1, s1)φ∗`2(r2, s2)

× V (r1, s1; r2, s2)φ`4(r1, s1)φ`3(r2, s2), (1.43)

where s1,2 =↑, ↓ is the spin projection. If the single-particle basis is taken to be ` = {k, σ},
then the functions φ` are given by: φk,σ(r, s) = eik·rδsσ/

√
V , where V is the system

volume.

Using this formalism, we can rewrite a Hamiltonian of the form Ĥ = Ĥ0 +Ĥint, where

all of the interactions are taken into account through Ĥint, in terms of the Fock space

operators. The free-electron part of the Hamiltonian can be written as follows:

Ĥ0 =
∑
k,σ

ξ(k)â†k,σâk,σ, (1.44)

where ξ(k) = ε(k)−µ, with ε(k) the kinetic energy, and µ the chemical potential, i.e. Ĥ0

is an “extended Hamiltonian” measured from µN̂ , where N̂ =
∑

k,σ â
†
k,σâk,σ is the total

particle number operator. We neglect the difference between the Fermi energy and the

chemical potential, and do not specify the exact form for ε(k), because in the presence

of a crystal lattice, the band dispersion can have a complicated form.

Guided by the Cooper theorem, see Sec. 1.2, we expect that the lowest energy state

corresponds to the two electrons posessing equal and opposite momenta k,−k, i.e. no

center-of-mass momentum. Through their interaction, the electrons are scattered into

the states k′,−k′, and thus we expect an interaction Hamiltonian of the form:

Ĥint =
1

V
∑
k,k′

V (k,k′)â†k,↑â
†
−k,↓â−k′,↓âk′,↑, (1.45)

where V (k,k′) = 〈k ↑,−k ↓ |V̂ |k′ ↑,−k′ ↓〉. In the BCS theory, the matrix elements of
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the pairing interaction are assumed to have the following form [23]:

V (k,k′) =

−V0, |ξ(k)|, |ξ(k′)| ≤ εc

0, otherwise
, (1.46)

where εc is the BCS cutoff energy. From Eq. (1.40) and the discussion thereafter, it follows

that εc ∼ ~ωD. This interaction is indeed attractive since the coupling constant V0 > 0.

In contrast to the Cooper assumption, in which only two electrons in a small energy shell

above the Fermi surface are involved in pairing, the BCS assumption allows all electrons,

including those below the Fermi sea, to interact, as long as they are within the cutoff

energy. Similar to the Cooper problem, in the BCS theory the momenta and spins of the

pairing electrons must be equal and opposite, i.e. one electron with k ≡ |k| > kF cannot

interact with another which has k < kF . We shall see that the Fermi surface is unstable

to these interactions, and thus the ground state of the interacting system will no longer

be a Fermi sphere, as in the case of a free electron gas.

To proceed with the theory, we introduce the pair creation and annihilation operators:

b̂†k = â†k↑â
†
−k↓, b̂k = â−k↓âk↑, (1.47)

and then the interacting part of the Hamiltonian can be written as follows:

Ĥint =
1

V
∑
k,k′

V (k,k′)b̂†kb̂k′ . (1.48)

This last form for the interacting part of the Hamiltonian is quite useful, allowing one

to focus on the scattering of a pair, and not individual electrons. In this equation, one

initially has a pair characterized by the momentum k′, and after interacting, the pair is

scattered into the state characterized by k.

We now wish to find the BCS ground-state wavefunction and its associated energy.

We note that in the absence of interactions, the ground state of the free electron gas can

be written as follows:

|Φ0〉 =
∏
|k|≤kF
σ=↑,↓

â†kσ|0〉, (1.49)

where |0〉 is the vacuum state, in which there are no particles present. We can see that

all states below the Fermi energy are filled. It is easy to show from this last expression
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that the corresponding ground-state energy has the following form:

ε0 = 〈Φ0|Ĥ0|Φ0〉 = 2
∑
|k|≤kF

ξ(k).

To calculate the excitation energy, we look at the possible ways that single-particle

excitations can occur. For |k| > kF , one has the electron-like excitations:

|Φkσ〉 = â†kσ|Φ0〉,

and for |k| ≤ kF , one has the hole-like excitations:

|Φ̃kσ〉 = âkσ|Φ0〉,

where σ =↑, ↓. By calculating the energy corresponding to these excited states in the

non-interacting system 〈Φkσ|Ĥ0|Φkσ〉, and 〈Φ̃kσ|Ĥ0|Φ̃kσ〉, we find that the energy of a

single electron-like or hole-like excitation in the normal state is |ξ(k)|.
The Cooper pairs that form the superconducting condensate are often referred to as

bosons in the literature because of their integer spin, and we would like to note that,

technically speaking, this interpretation is not quite correct. This can be understood

by checking the commutation relations of the pair creation and annihilation operators.

After doing the algebra, one finds the following:

[b̂k, b̂k′ ] = [b̂†k, b̂
†
k′ ] = 0,

[b̂k, b̂
†
k′ ] = δk,k′(1− n̂k↑ − n̂−k↓). (1.50)

Although the first two relations are identical to the bosonic ones, the third relation is

not exactly the same as the corresponding one for bosons.

We are now in a position to include the interactions into the ground-state wavefunc-

tion, to find the celebrated BCS ground state. We seek the ground-state solution of the

form

|Φ0〉 = C
∏
k

eλkb̂
†
k |0〉, (1.51)

where C is a normalization coefficient, λk is a variational parameter, which we will use

to minimize the energy, and the product is taken over all values of the momentum.

Expanding the exponential in a power series, one will see that the terms quadratic and

higher order in b̂†k cancel because they violate the Pauli exclusion principle. Therefore
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the BCS ground state becomes

|Φ0〉 = C
∏
k

(
1 + λkb̂

†
k

)
|0〉, (1.52)

and we see that it is a superposition of states with arbitrary numbers of pairs. By

rewriting λk = vk/uk, where u and v are complex functions, we find that wavefunction

is given by

|Φ0〉 = C̃
∏
k

(
uk + vkâ

†
k↑â
†
−k↓

)
|0〉,

where C̃ = C/Πkuk. From the condition 〈Φ0|Φ0〉 = 1, one can show that the normaliza-

tion coefficient C̃ = 1, and thus the normalized wavefunction has the following form:

|Φ0〉 =
∏
k

(
uk + vkâ

†
k↑â
†
−k↓

)
|0〉. (1.53)

This last expression illustrates that |uk|2 is the probability that the state with momentum

k is unpaired, i.e. the pair state (k ↑,−k ↓) is empty, and that |vk|2 is the probability

that the pair state is occupied. Since the state is either occupied or not, it follows that

|uk|2 + |vk|2 = 1, (1.54)

and this gives us a constraint for the complex amplitudes uk and vk.

To determine these amplitudes, one must use the constraint (1.54) to minimize the

ground-state energy, which has the following form:

E0 = 〈Φ0|Ĥ|Φ0〉 = 〈Φ0|Ĥ0|Φ0〉+ 〈Φ0|Ĥint|Φ0〉.

Substituting expressions (1.44), (1.48), and (1.53) into this last equation, we find that

the energy of the system at T = 0 is a functional of uk and vk, which is given by

E0[uk, vk] = 2
∑
k

ξk|vk|2 +
1

V
∑
k,k′

V (k,k′)ukv
∗
ku
∗
k′vk′ , (1.55)

where ξk ≡ ξ(k).

The next step is to minimize the free energy with respect to the amplitudes uk, vk.

We follow the original paper [23] and assume that uk and vk are real. Equation (1.54)

suggests looking for solutions of the form

uk = sin θk, vk = cos θk, (1.56)
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and then we can minimize the ground-state energy with respect to the single parameter

θk. After some lengthy but straightforward algebra, one arrives at the following non-

linear integral equation for the parameter θk:

tan 2θk =
1

2ξk

1

V
∑
k′

V (k,k′) sin 2θk′ . (1.57)

This equation can be solved by introducing the zero-temperature gap function according

to the following definition:

∆k = − 1

V
∑
k′

V (k,k′)uk′vk′ = −1

2

1

V
∑
k′

V (k,k′) sin 2θk′ . (1.58)

In this way, Eq. (1.57) takes the simplified form:

tan 2θk = −∆k

ξk
,

whose solutions are given by

sin 2θk = ± ∆k√
ξ2
k + ∆2

k

,

cos 2θk = ∓ ξk√
ξ2
k + ∆2

k

. (1.59)

Using Eq. (1.56), we choose the following solutions to Eq. (1.59) for uk and vk based

upon physical arguments:

uk =
1√
2

(
1 +

ξk
Ek

)1/2

,

vk =
1√
2

(
1− ξk

Ek

)1/2

, (1.60)

where Ek =
√
ξ2
k + ∆2

k. Far above the Fermi surface, i.e. in the limit ξk →∞, it follows

from the above expression that uk → 1 and vk → 0. One indeed expects such a state to

be empty since Cooper pairs exist only within a thin shell near the Fermi surface.

To find the gap function ∆k, one must solve Eq. (1.58) self-consistently. By sub-

stituting the expression (1.60) into Eq. (1.58), one obtains the zero-temperature gap

equation:

∆k = −1

2

1

V
∑
k′

V (k,k′)
∆k′

Ek′
. (1.61)
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To proceed further, we use the BCS assumption about the interaction potential V (k,k′),

given in Eq. (1.46). In this way, one finds that the gap function can be written in the

form

∆k = ∆Θ(εc − |ξk|), (1.62)

where the constant ∆ satisfies the following equation:

∆ =
V0

2

1

V
∑
k′

∆√
∆2 + ξ2

k′

Θ(εc − |ξk′ |), (1.63)

and Θ(x) is the Heaviside step function. Taking the thermodynamic limit V → ∞, and

introducing the density of states to rewrite the momentum sums in terms of the integrals

over the energy, we arrive at the following equation for ∆:

1

∆
=

1

εc
sinh

(
1

NFV0

)
, (1.64)

where NF is the density of states at the Fermi level. In the weak-coupling approximation

NFV0 � 1, and thus sinh(1/NFV0) ≈ exp(1/NFV0)/2, so it follows that the gap has the

following value:

∆ = 2εce
−1/NFV0 . (1.65)

This last expression has the same form as the bound state energy from the Cooper

theorem, see Eq. (1.36), which suggests that ∆ is an energy. In fact, ∆ is the binding

energy of the pair of electrons. Since εc ∼ ~ωD, we see from Eq. (1.65) that the typical

energy scale relevant to superconductivity is much less than the Debye energy. This

explains why typical values of the critical temperature are much lower than other relevant

energy scales in metals, such as the phonon energies or the Fermi energy [21].

One can recover the normal state with no attractive interaction, i.e. the free electron

gas, by formally taking the limit V0 → 0, and thus ∆→ 0. In this case, using Eq. (1.60),

we obtain uk → Θ(ξk) and vk → Θ(−ξk), and therefore one can write the BCS ground-

state wavefunction, Eq. (1.53), as follows:

|Φ0〉 =
∏
|k|<kF

â†k↑â
†
−k↓|0〉. (1.66)

A comparison of this last expression with Eq. (1.49) reveals that this is nothing but the

Fermi sea of electrons, as expected.
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We make a note that from Eq. (1.60), it is evident that the quantity

ukvk =
1

2

|∆k|
Ek

provides a measure of the superconductivity in the system. Furthermore, one can show

from Eqs. (1.47) and (1.53) that 〈b̂†k〉 = 〈Φ0|b̂†k|Φ0〉 is given by the following expression:

〈b̂†k〉 = ukv
∗
k = ukvk, (1.67)

where the second equality holds for real vk. One can see that 〈b̂†k〉 can be interpreted as

the pair wavefunction.

To show that the system’s energy is indeed lowered in the superconducting state,

we calculate the condensation energy introduced in Sec. 1.1. In order to calculate this

energy change, we must first determine the ground-state energy in the BCS state. Using

Eq. (1.58) in Eq. (1.55), we can write the BCS ground-state energy in terms of the gap

function ∆k as follows:

E0 =
∑
k

(
ξk −

ξ2
k

Ek

)
− 1

2

∑
k

∆2
k

Ek

. (1.68)

After summation of the second term in the last expression, and subtraction of the ground-

state energy of the normal state E0,n (with ∆ = 0), we find the following relation for the

energy change per unit volume when the system goes superconducting:

E0 − E0,n

V
=

1

V
∑
k

(
|ξk| −

ξ2
k

Ek

)
− ∆2

V0

,

=

∫
d3k

(2π)3

[
|ξk| −

ξ2
k√

ξ2
k + ∆2

]
Θ(εc − |ξk|)−

∆2

V0

. (1.69)

Here we have taken the thermodynamic limit V → ∞, and used the expression (1.62)

for ∆k in the second equality. Introducing the density of states allows one to rewrite

Eq. (1.69) in terms of an energy integral, and after integrating over the thin energy shell,

we obtain:
E0 − E0,n

V
= −1

2
NF∆2. (1.70)

From this expression, it immediately follows that the superconducting state is lower

in energy than the normal state, confirming that the superconducting state is indeed

thermodynamically advantageous. The condensation energy is given by the absolute
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value of Eq. (1.70), and from Eq. (1.1) we can relate the condensation energy to the

critical field as follows:
1

2
NF∆2 =

H2
c (T = 0)

8π
.

We see that by measuring the critical field, one can determine the gap ∆.

The next step in the BCS theory is to consider the effects of finite temperatures.

At a nonzero temperature, some of the Cooper pairs will be able to break up, forming

excitations. Bardeen, Cooper, and Schrieffer found that it is not feasible to construct

the excited states by using the BCS ground-state wavefunction acted upon by the single-

particle creation operators. In order to determine the excited states, a more tractable

option is to apply a mean-field decoupling of the interaction, followed by a Bogoliubov

transformation on the BCS Hamiltonian.

We begin by treating the interacting part of the Hamiltonian in the mean-field ap-

proximation, in which the fourth-order term is reduced to a quadratic one. Since the

Cooper pairs form a condensate, this leads to an average field and thus to an average

potential experienced by the unpaired electrons. In this approximation, we make the

following replacement in Eq. (1.48):

b̂†k = 〈b̂†k〉+ δb̂†k; b̂k = 〈b̂k〉+ δb̂k,

where 〈b̂†k〉 plays the role of the wavefunction of the electron pairs that coherently prop-

agate through the system. The matrix elements of δb̂†k (δb̂k) are small in comparison to

〈b̂†k〉 (〈b̂k〉), since the fluctuations away from the mean field are assumed to be small. This

allows one to neglect the terms that are nonlinear in δb̂k, and after a slight manipulation

of the resulting expression, one obtains the mean-field interacting Hamiltonian:

Ĥ
(int)
MF = − 1

V
∑
k,k′

V (k,k′)〈b̂†k〉〈b̂k′〉+
1

V
∑
k,k′

V (k,k′)〈b̂†k〉b̂k′

+
1

V
∑
k,k′

V (k,k′)〈b̂k′〉b̂†k. (1.71)

To simplify this Hamiltonian, we introduce the finite-temperature gap function:

∆k = − 1

V
∑
k′

V (k,k′)〈b̂k′〉, (1.72)
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and then we can rewrite Eq. (1.71) as follows:

Ĥ
(int)
MF =

∑
k

∆k〈b̂†k〉 −
∑
k

∆kb̂
†
k −

∑
k

∆∗kb̂k. (1.73)

Including the free-electron part of the Hamiltonian, see Eq. (1.44), we can write the total

mean-field Hamiltonian in the following form:

ĤMF =
∑
k

ξ(k)(â†k↑âk↑ + â†k↓âk↓)

−
∑
k

(∆kâ
†
k↑â
†
−k↓ + ∆∗kâ−k↓âk↑) (1.74)

+
∑
k

∆k〈â†k↑â
†
−k↓〉,

where we have replaced the pair operators with their definitions in terms of the single-

particle creation (annihilation) operators. We note that while this last Hamiltonian has

a quadratic form in the fermionic operators, it is not easily solved due to the fact that ∆k

is not arbitrary and must be found from Eq. (1.72). The thermal average in Eq. (1.72)

is calculated with respect to ĤMF , which as we see depends on ∆k, and this leads to a

self-consistency equation.

To simplify the Hamiltonian further, we perform a Bogoliubov transformation on

the mean-field Hamiltonian (1.74). We take the set of operators (âk↑, â
†
k↑, â−k↓, â

†
−k↓),

and represent them in terms of the new fermionic operators (γ̂k,0, γ̂
†
k,0, γ̂k,1, γ̂

†
k,1). As

shown independently by Bogoliubov [25] and Valatin [26], in the spin-singlet case, the

transformation has the following form:

âk↑ = u∗kγ̂k,0 + vkγ̂
†
k,1,

â†−k↓ = −v∗kγ̂k,0 + ukγ̂
†
k,1, (1.75)

where

uk =
1√
2

(
1 +

ξk
Ek

)1/2

,

vk =
1√
2

(
1− ξk

Ek

)1/2
∆k

|∆k|
, (1.76)

and for now we relax the condition that ∆k is real. We note that the operator γ̂k,0

participates in destroying an electron in a state corresponding to k, ↑, or in creating one

in the state −k, ↓. In either case, the net effect of this fermionic operator is to reduce the
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system’s momentum by k and spin by ~/2 [10]. The operator γ̂†k,1 has similar properties

and thus γ̂k,1 has the net effect of increasing the system’s momentum by k and spin by

~/2. We note that these new fermionic operators do not definitely increase or decrease

the number of electrons, but rather create a linear superposition of these possibilities

[10].

Now we represent the Hamiltonian (1.74) in terms of the new fermionic operators

using Eq. (1.75). After some straightforward manipulation, the mean-field Hamiltonian

takes the form:

ĤMF =
∑
k

Ek(γ̂†k,0γ̂k,0 + γ̂†k,1γ̂k,1) +H0, (1.77)

where

H0 =
∑
k

[ξk − Ek + ∆k〈â†k↑â
†
−k↓〉]

is just a complex number, and recall that

Ek =
√
ξ2
k + |∆k|2. (1.78)

We see from expression (1.77) that the transformed mean-field Hamiltonian has the

form of a free-fermion Hamiltonian, with two distinct species of fermionic single-particle

operators (γ̂k,0, γ̂k,1) (and their adjoints), and the ground state energyH0. The fermionic

operators in Eq. (1.77) create single-particle excitations above the ground state, with

energies Ek > 0. We can see that the excitations are gapped because, according to

Eq. (1.78), the minimum excitation energy at the Fermi surface, i.e. at ξ(k) = 0, is given

by ∆ = |∆k|.
One can compute the thermal average in H0 by first rewriting it using the Bogoliubov

transformation, see Eq. (1.75):

〈â†k↑â
†
−k↓〉 = − ukv

∗
k〈γ̂

†
k,0γ̂k,0〉+ u2

k〈γ̂
†
k,0γ̂

†
k,1〉

− v∗,2k 〈γ̂k,1γ̂k,0〉+ ukv
∗
k〈γ̂k,1γ̂

†
k,1〉. (1.79)

Using the cyclic invariance of the trace and the anti-commutation properties of the

fermionic creation and annihilation operators γ̂†, γ̂, one finds that for the Hamiltonian

of the form (1.77), we have

〈γ̂†k,0γ̂k,0〉 = 〈γ̂†k,1γ̂k,1〉 = f(Ek),
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where

f(Ek) =
1

eβEk + 1

is the Fermi-Dirac distribution with β = 1/kBT , and all other thermal averages in

Eq. (1.79) are zero. In this way, one obtains:

〈â†k↑â
†
−k↓〉 = −ukv∗kf(Ek) + ukv

∗
k(1− f(Ek)), (1.80)

which can be used to rewrite the constant H0 in Eq. (1.77) as follows:

H0 =
∑
k

{ξk − Ek + ∆kukv
∗
k[1− 2f(Ek)]}. (1.81)

At zero temperature f(Ek) = 0 for all k, and thus the mean-field Hamiltonian,

Eq. (1.77), takes the following form:

ĤMF =
∑
k

Ek(γ̂†k,0γ̂k,0 + γ̂†k,1γ̂k,1)

+
∑
k

(ξk − Ek + ∆kukv
∗
k). (1.82)

Since there are no excitations present at zero temperature, it follows that 〈γ̂†k,0γ̂k,0〉 =

〈γ̂†k,1γ̂k,1〉 = 0. At finite temperatures, one can create excitations by breaking up the

Cooper pairs. When the temperature is high enough, these excitations will eventually

kill the superconductivity.

A useful way to picture the results of the BCS theory is that at T = 0 all of the

electrons are paired. As one increases the temperature, thermal fluctuations destroy

more and more Cooper pairs, creating excitations. Above Tc, all of the Cooper pairs are

broken up and the superconductivity is completely destroyed. Since the Cooper pairs

break up into pairs of excitations, the minimum energy associated with this process is

2∆, which is consistent with the optical experiments mentioned in Sec. 1.1.

We should note that the overall phase of the gap function ∆k can be rotated by an

arbitrary amount since it is not measureable. In particular, it can always be made real

and positive, which we assume from this point on. Furthermore, the gap function depends

on temperature through the thermal average 〈b̂k〉, see Eq. (1.72), which is related to the

pair wavefunction, and thus one would expect that ∆k → 0 for T > Tc. Furthermore,

one can also expect that as the temperature increases excitations are created, and thus

the energy gap shrinks, making it easier to create more excitations.

We focus now on the temperature-dependent gap equation for ∆k. Using Eqs. (1.47),
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(1.76), and (1.80), and the fact that 〈b̂k〉 = 〈b̂†k〉∗, it immediately follows that

〈b̂k〉 =
∆k

2Ek

tanh

(
βEk

2

)
.

Using this last expression in Eq. (1.72) yields the following gap equation:

∆k = − 1

V
∑
k′

V (k,k′)
∆k′

2Ek′
tanh

(
βEk′

2

)
. (1.83)

This is a nonlinear integral equation for ∆k, which has at least one solution that is trivial,

i.e. ∆k = 0 at all k. This solution corresponds to the normal state at all temperatures

and clearly does not describe superconductivity.

We look for a nontrivial solution of Eq. (1.83), in which ∆k 6= 0. To proceed fur-

ther, we make the BCS assumption about the pairing potential V (k,k′) = −V0Θ(εc −
|ξk|)Θ(εc − |ξk′|), which allows us to look for a solution for ∆k(T ) which is a product of

the same terms as in the zero-temperature case, see Eq. (1.62):

∆k(T ) = ∆(T )Θ(εc − |ξk|), (1.84)

i.e. all of the k-dependence is contained in the Heaviside step function. Substituting

these assumptions for V (k,k′) and ∆k into Eq. (1.83), we obtain the following nonlinear

integral equation:

1 =
V0

2V
∑
k′

Θ(εc − |ξk′|)
1

Ek′
tanh

(
βEk′

2

)
. (1.85)

Taking the thermodynamic limit and introducing the Fermi level density of states, we

can transform the momentum summation in this last expression into an integral over the

energy, and arrive at the BCS gap equation for ∆(T ):

1

NFV0

=

∫ εc

0

dξ
tanh

(√
ξ2 + ∆2/2kBT

)
√
ξ2 + ∆2

. (1.86)

Here we have used the fact that the integrand is even to change the integration limits.

We point out that the analytical solution to Eq. (1.86) is unknown. To make progress,

we note that there is a temperature above which ∆ = 0, defined as the critical tempera-

ture Tc. We make the assumption, which is justified by the subsequent calculation, that

∆ is continuous at T = Tc, and thus ∆ = 0 near the critical temperature. One can

therefore evaluate the integral in Eq. (1.86) at T = Tc and ∆ = 0 to obtain the critical
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temperature, and this is facilitated by making the change of variables z = ξ/2kBTc. In

this way, one finds that
1

NFV0

= ln

(
2eγ

π

εc
kBTc

)
, (1.87)

where γ ≈ 0.577 . . . is the Euler constant. One can see that the BCS cutoff cannot be

replaced by infinity due to the logarithmic divergence of the integral in Eq. (1.86). By

inverting Eq. (1.87), we obtain the following expression for the critical temperature:

kBTc =
2eγ

π
εce
−1/NFV0 ' 1.13εce

−1/NFV0 , (1.88)

which has a similar structure as the bound-state energy in Cooper’s theorem, see Eq.

(1.36). Both expressions are non-analytic in V0, and thus cannot be calculated perturba-

tively in the pairing interaction.

We note that εc is of the order of the Debye frequency, and if the electron pairing is

due to phonons, then εc = ~ωD ∼ M−1/2, where M is the mass of the lattice ions. Thus

the BCS theory reproduces the isotope effect, in particular the transition temperature

varies as Tc ∼ M−1/2. We note that in the effective interaction in Eq. (1.40), one can

show that the coupling constant |geff |2 ∼ 1/(Mω2
D), which is independent of M [21].

Thus the coupling constant in the BCS theory, see Eq. (1.46), is independent of the mass

of the ions, and the isotope effect arises in the BCS theory because the thickness of the

energy shell around the Fermi surface is ~ωD, which is mass-dependent [21].

By taking the ratio of the gap function at zero temperature, Eq. (1.65), and expression

(1.88), one finds
∆(T = 0)

kBTc
=

π

eγ
' 1.76. (1.89)

This is the celebrated “universal BCS ratio”, which is the same for all conventional

superconductors. As discussed previously, one can experimentally measure both ∆(T =

0) and the transition temperature, and the deviation of their ratio from 1.76 tells us how

“non-BCS” the superconductor is.

Although the derivation is beyond the scope of this work, we give the result for ∆(T )

near the critical temperature, which has the following form [10]:

∆(T )

∆(0)
' eγ

π

(
8π2

7ζ(3)

)1/2(
Tc − T
Tc

)1/2

, (1.90)

where

ζ(s) =
∞∑
n=1

1

ns
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is the Riemann zeta function. We see that expression (1.90) is indeed a continuous

function of temperature, vanishing at T ≥ Tc.

One can use the general theory above to calculate the thermodynamic quantities.

Specifically, we calculate the electronic contribution to the specific heat of a BCS su-

perconductor. The specific heat C is related to the entropy S and temperature T of a

system as follows:

C = T
∂S

∂T
. (1.91)

Since all the pairs are condensed into the same coherent quantum state, their contribution

to the entropy of the system is zero at all temperatures. The entropy is determined by

thermally excitated quasiparticles, which form an ideal Fermi gas. This allows us to write

the entropy of the system as follows:

S = −2kB
∑
k

{[1− f(Ek)] ln[1− f(Ek)] + f(Ek) ln f(Ek)}, (1.92)

where the factor of 2 arises due to the fact that we have two species of fermionic excita-

tions, see Eq. (1.77). We note that from this last expression, the total entropy at zero

temperature is zero. After substitution of Eq. (1.92) into Eq. (1.91), we find that the

specific heat takes the following form:

C = 2
∑
k

Ek
∂f(Ek)

∂T
, (1.93)

where Ek =
√
ξ2
k + ∆2

k. Since ∆ is temperature-dependent, this makes all the difference

from a regular metal, in which the excitation energy does not depend on temperature.

After carrying out the differentiation in Eq. (1.93), one finds the following:

C = 2kBβ
∑
k

(
− ∂f

∂Ek

)(
E2

k − T∆k
∂∆k

∂T

)
. (1.94)

The second term in this last expression arises only in the superconducting state.

We first examine the specific heat in the case of low temperatures. It follows from the

gap equation (1.86) that ∆(T ) is nearly flat for T � Tc, which allows one to neglect the

derivative of ∆k in Eq. (1.94). Furthermore, in the thermodynamic limit, we can rewrite

the summation as an integral over k, and introducing the density of states, as an integral
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over the energy as follows:

C(T ) = V NF

2kBT 2

∫ +∞

−∞
dξ

ξ2 + ∆2

cosh2
(√

ξ2 + ∆2/2kBT
) . (1.95)

The function 1/ cosh2(. . . ) is sharply peaked, and thus only energies
√
ξ2 + ∆2 ≤ kBT

contribute significantly to the integral. Since T � Tc ∼ ∆(0)/kB, see Eq. (1.89), it

follows that kBT � ∆(0) and we can therefore replace Ek with ∆ in the argument of

cosh2(. . . ). In this way, we arrive at the following expression for the specific heat:

C(T ) ∼ 1

T 2
e−∆/kBT , (1.96)

which has the characteristic exponential dependence on the temperature, as observed in

thermal experiments. We see that, while the first factor 1/T 2 diverges at low tempera-

tures, this divergence is cancelled by the much quicker decaying exponential function.

At the transition temperature, according to experiment, C(T ) is not defined because

there is a jump here. This jump separates the low-temperature exponential behaviour

from the normal Fermi-gas linear behaviour that occurs at T > Tc. We can calculate

this jump by considering the specific heat immediately above and below the transition

temperature.

We note that slightly above Tc, ∆ = ∂∆/∂T = 0 and this allows one to neglect the

second term in Eq. (1.94). Using Eq. (1.95) with ∆ → 0, the normal-state specific heat

then takes the following form:

Cn
V

=
NF

2kBT 2

∫ +∞

−∞
dξ

ξ2

cosh2(ξ/2kBT )
=

2π2

3
k2
BNFT, (1.97)

immediately above Tc. This linear dependence is exactly what we expect for the specific

heat of an ideal Fermi gas.

Slightly below the critical temperature, the energy gap ∆ is small, allowing one to set

∆ = 0, i.e. Ek → ξk in the first term in Eq. (1.94), and then this term is equivalent to

the expression we obtained in Eq. (1.97). We then find that the difference in the specific

heat between the normal and superconducting states is given by

Cs(T )− Cn(T ) = −β
2

∑
k

1

cosh2(βEk/2)
∆k

∂∆k

∂T
. (1.98)

By observing that the jump in the specific heat comes from the derivative of the gap
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function [i.e. ∂∆k/∂T is infinite at T = Tc, as seen from Eq. (1.90)], one can set ∆ = 0

in the argument of cosh2(. . . ) in Eq. (1.98). Furthermore, we take the thermodynamic

limit and change the momentum integral to one over the energy. In this way, one obtains

the following expression for the jump in the specific heat:

Cs − Cn
V

= −βNF

4

∫ +εc

−εc
dξ

1

cosh2(βξ/2)

∂(∆2)

∂T
. (1.99)

Since 1/ cosh2(. . . ) is sharply peaked within the width ∼ kBT , and εc � kBTc, most

of the contribution comes from within the peak, which allows us to safely extend the

integration limits to ±∞ in Eq. (1.99). Evaluation of the resulting integral then allows

one to rewrite the jump in the specific heat as follows:

Cs − Cn
V

= NF

(
−∂∆2

∂T

)∣∣∣∣
T→T−c

. (1.100)

Using Eq. (1.90), we can evalulate the derivative of the energy gap, allowing one to write

the jump in the specific heat in the following form:

∆C

V
=
Cs − Cn
V

∣∣∣∣
T→T−c

=
8e2γ

7ζ(3)

∆2(0)

Tc
NF . (1.101)

Using this last expression along with Eqs. (1.89) and (1.97), we can recover another

universal BCS ratio:
∆C

Cn
=

12

7ζ(3)
' 1.43. (1.102)

This result has been confirmed by measurements of the specific heat in many conventional

superconductors [10].

The BCS model of superconductivity is a revolutionary theory because it was ca-

pable of fully describing all of the superconducting materials known at the time of its

development. Bardeen, Cooper, and Schrieffer were awarded the Nobel Prize in physics

in 1972 for this theory, which allowed one to finally understand what is happening in

SCs at the microscopic level. The BCS theory enables one to theoretically explain the

experimental properties exhibited by these so-called “conventional superconductors”, in

which the electrons pair in the singlet s-wave state.

It turns out, however, that conventional SCs represent only a fraction of known su-

perconductors, and that most newer materials belong to the class of unconventional SCs,

in which the pairing is not of the singlet s-wave form. These materials include heavy-

fermion SCs (UPt3, CeCoIn5, etc.), organic SCs, alkali-doped fullerenes (C60), as well



1 INTRODUCTION 41

as the high-Tc superconductors (the copper oxides and iron pnictides). Since the late

1970’s there has been an explosion in the number of known superconductors, and mate-

rials of particular current interest include strontium ruthenate (Sr2RuO4), ferromagnetic

superconductors, non-centrosymmetric SCs, and multi-band SCs [27].

Most of the fundamental research currently focuses on the unconventional supercon-

ductors. Consequently, in the next subsection we will give an overview of the important

concepts used to characterize the different pairing possibilities in these systems. Specifi-

cally, we discuss a two-particle wavefunction in which the Cooper pairs have zero center-

of-mass momentum, but with a non-BCS pairing. Then, in Sec. 3, we will apply these

symmetry insights to general nonuniform states in the many-body problem, to derive the

Bogoliubov-de Gennes (BdG) equations for the quasiparticle excitation spectrum.

1.4 Unconventional pairing

In general, since electrons with opposite momenta (k,−k) sufficiently close to the Fermi

surface form Cooper pairs, we can represent the wavefunction of a pair of electrons in

the form Ψpair = 〈k,k′|Ψ〉 = δk′,−kΨ(k), where Ψ(k) = g↑↑(k)| ↑↑〉+ g↑↓(k)| ↑↓〉+

g↓↑(k)| ↓↑〉 + g↓↓(k)| ↓↓〉. This expression can be reformulated in a short-hand matrix

notation as follows:

ĝ =

(
g↑↑(k) g↑↓(k)

g↓↑(k) g↓↓(k)

)
, (1.103)

where we have explicitly renamed the matrix to stress that ĝ is not literally the wave-

function of the pair. In a superconducting material with multiple Cooper pairs, the order

parameter is related to the pair wavefunction, and will be mathematically introduced in

Sec. 3.1. For now, we focus on the single-pair case to lay the foundation of our explanation

of the spin-matrix basis functions φ̂a(k).

Since in the BCS theory only electrons near the Fermi surface with opposite momenta

form Cooper pairs, exchanging particle momenta is equivalent to setting k → −k. The

exchange of particle labels is accomplished by interchanging both momenta (or position)

and spin. Therefore to preserve the condition of anti-symmetry of the wavefunction, if

the spin state (matrix) is anti-symmetric with respect to spin exchange (electrons that

pair in the singlet (S = 0) spin state), then we must have ĝ even in k, i.e. ĝ(−k) = ĝ(k).

In this case, ĝ can be written in terms of the antisymmetric Pauli matrix: ĝs = g(k)iσ̂2,

where we have only one distinct function g(k) since the weighting of the | ↑↓〉, | ↓↑〉 states

must be equivalent for Sz = 0.

In an isotropic system, we can expand the functions g(k) in terms of the spheri-
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cal harmonics Y`m with orbital angular momentum ` and its z-projection m as g(k) =∑`
m=−` a`mY`m, and then ĝ takes the form:

ĝs =
∑̀
m=−`

a`mY`m(k̂)iσ̂2. (1.104)

Here ` = 0, 2, 4, ... corresponds to the traditional atomic states labelled by the letters

s, d, g, ..., and k̂ = k/kF is a unit vector. The coefficients a`m represent the supercon-

ductor order parameter, and in non-uniform cases are functions of position. In the case

of conventional singlet s-wave pairing, the order parameter is a single complex function,

whereas for d-wave pairing the order parameter consists of five complex functions.

For electrons that pair in the symmetric spin-triplet state (S = 1), we can express ĝ

in terms of the basis of symmetric spin matrices iσ̂σ̂2 as ĝt = i(σ̂σ̂2) · d̃(k) = (d̃x(k)σ̂1 +

d̃y(k)σ̂2 + d̃z(k)σ̂3)iσ̂2, where d̃(k) is the single-pair spin vector, and σ̂ is the vector of

Pauli spin matrices. The single-pair spin vector must be odd in k, d̃(−k) = −d̃(k),

and it is related to the components of ĝ as follows: g↑↑ = −d̃x + id̃y, g↑↓ = g↓↑ = d̃z,

g↓↓ = d̃x + id̃y.

As in the spin-singlet case, we can expand the components of the spin vector in terms

of the spherical harmonics in an isotropic system: d̃α(k) =
∑`

m=−` b
α
`mY`m(k̂), where

the coefficients bα`m represent the superconductor order parameter for a given value of

quantum number `. We can then express the matrix ĝ for the triplet pairing state as

ĝt =
∑̀
m=−`

Y`m(k̂)(σ̂ · b`m)iσ̂2

(1.105)

=
∑̀
m=−`

Y`m(k̂) (bx`mσ̂1 + by`mσ̂2 + bz`mσ̂3) iσ̂2,

and for the odd spherical harmonics, one has ` = 1, 3, ..., corresponding to p, f, ...-wave

states. For the simplest triplet pairing (p-wave orbital), the order parameter is a set of

nine complex functions, labelled by α = x, y, z and m = −1, 0, 1. This pairing state is

realized in 3He, see, for example, Refs. [28] and [18].

In general, the spin component of the wave function of a Cooper pair can be a super-

position of the states with spin S = 0 and S = 1, and hence ĝ = asĝ
s + atĝ

t, where as/t

are arbitrary complex coefficients. This can happen if there is no inversion center in a

crystal [18]; however in a centrosymmetric crystal only a definite spin state is realized.

In view of Eqs. (1.104) and (1.105), the choice of reference frame is arbitrary since the
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spherical harmonics obtained after a rotation of the reference frame in three-dimensional

space are related to the spherical harmonics with the same orbital angular momentum `

as follows:

Y`m(k̂′) =
∑̀
m′=−`

Rmm′Y`m′(k̂), (1.106)

i.e. it is simply a linear superposition, and here Rmm′ are components of a 3× 3 matrix

which characterizes the rotation. In general, a set of functions ϕa(r) forms a basis of an

irreducible representation (IREP) Γ of a certain spatial symmetry group G if any ϕa(r) is

transformed under any symmetry operation of G to a linear combination of the functions

belonging to the set [18]:

ϕa(gr) = ϕa(r
′) =

dΓ∑
b=1

cabϕb(r), (1.107)

where in this last expression, gr → r′ corresponds to reflections, rotations, inversions

and combinations of these three operations, and dΓ is the dimensionality of the set {ϕa},
i.e. of the irreducible representation Γ.

Recall that for an isotropic system, the matrix ĝ can be expanded in terms of the

spherical harmonics, Eqs. (1.104) and (1.105). Thus in the isotropic case, i.e. when the

system is invariant under all spatial rotations, forming the group SO3, Γ is labelled by the

orbital angular momentum `, and for each type of pairing (i.e. for each value of `), there

is a one-to-one correspondence with the IREPs of SO3. Consequently, the dimensionality

dΓ is given by the degeneracy of the orbital angular momentum states, dΓ = 2`+ 1, and

the basis functions are nothing but the spherical harmonics. For example, if Γ = ` = 1 (p-

wave pairing), then the basis functions are given by Y1,1(θ, ϕ), Y1,0(θ, ϕ), and Y1,−1(θ, ϕ),

where θ, ϕ are the usual spherical polar angles of the unit vector k̂. Alternatively, we

can take a linear combination of these spherical harmonics and use as the basis functions

the components of the unit vector k̂: k̂x, k̂y, and k̂z.

One can still use this classification procedure when the normal state is anisotropic,

which is generally the case in a crystal lattice. In this case, there is still a direct cor-

respondence between the IREPs of the point group G of the crystal and the types of

pairing states. In fact, superconducting states with different values of Tc are described

by basis functions belonging to different IREPs Γ of the point symmetry group G of the

solid, that is Tc = Tc(Γ). It is the superconducting state corresponding to the highest

critical temperature which is actually realized in the crystal [18].

In the anisotropic case, the components of the pair matrix ĝ are expanded in terms
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of the basis functions of the irreducible representation Γ. In the case of singlet pairing,

we have:

g(k) =

dΓ∑
a=1

ηaϕ
Γg
a (k̂), (1.108)

where ηa are complex coefficients, and superscript Γg denotes the fact that the basis

functions are even in k. Recall the form for the matrix ĝ corresponding to a pair in the

singlet state: ĝs = g(k)iσ̂2. We introduce the spin-matrix basis functions for the singlet

pairing φ̂sa(k) = (iσ̂2)ϕ
Γg
a (k̂), and from Eq. (1.108), it then follows that

ĝs =

dΓ∑
a=1

ηaφ̂
s
a(k). (1.109)

For the triplet pairing, we can expand the single-pair spin vector d̃(k) in terms of

the odd basis functions of Γ, ϕΓu
a (k̂). In the case of negligible spin-orbit coupling, the

appropriate expansion is given by

d̃(k) =

dΓ∑
a=1

ηaϕ
Γu
a (k̂), (1.110)

where ηa are complex vectors, and superscript Γu denotes the fact that the basis functions

are odd in k. In this limit, the pair states are degenerate with respect to rotation of spin

vectors, i.e. they correspond to the same energy. Under a spin rotation, we have:

ηαa → η̃αa =
3∑

β=1

Rs
αβη

β
a , (1.111)

where α = 1, 2, 3 label the vector components of ηa, and here superscript s denotes the

rotation in spin space characterized by the 3× 3 matrix R̂s.

In the case of strong spin-orbit coupling, which occurs in materials containing chemical

elements with large atomic numbers, it is convenient to expand d̃(k) in the following way:

d̃(k) =

dΓ∑
a=1

ηaϕ
Γu
a (k̂), (1.112)

where ϕΓu
a (k̂) = ϕxa(k̂)x̂+ ϕya(k̂)ŷ + ϕza(k̂)ẑ are the vector basis functions which are odd

in k. Due to the strong spin-orbit coupling, the basis in spin space is defined by the axial

unit vectors x̂, ŷ, ẑ which are uniquely determined by the crystal axes [29, 18]. Although

electron spin is not a “good” quantum number in the case of strong spin-orbit coupling,
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electron states are doubly degenerate as a result of the Kramer’s degeneracy due to time

reversal symmetry. This allows one to classify electrons in terms of a pseudospin, and

so in this limit “spin-singlet” and “spin-triplet” should be understood in terms of this

pseudospin.

We can use the expression introduced previously for ĝt in terms of the spin vector,

ĝt = (iσ̂σ̂2) · d̃(k), along with Eq. (1.110) to obtain:

ĝt =

dΓ∑
a=1

ϕΓu
a (k̂)(iσ̂σ̂2) · ηa, (1.113)

in the limit of weak spin-orbit coupling. Analogously, we obtain the following expression

for ĝt:

ĝt =

dΓ∑
a=1

ηa(iσ̂σ̂2) ·ϕΓu
a (k̂), (1.114)

in the limit of strong spin-orbit coupling. In this case, it is convenient to introduce a

spin-matrix basis function for the triplet pairing given by φ̂ta(k) = (iσ̂σ̂2) · ϕΓu
a (k̂), and

then Eq. (1.114) takes the form:

ĝt =

dΓ∑
a=1

ηaφ̂
t
a(k). (1.115)

The set of coefficients ηa or ηa in the expansions of g(k) or d̃(k) play the role of

the order parameter in crystalline superconductors. One can therefore conclude that it

is possible to have states with one-component order parameters η = |η|eiφ (with φ an

arbitrary phase), as well as states described by multicomponent order parameters. The

number of components in the order parameter is related to both the dimensionality of

the particular IREP, dΓ, as well as the structure of the complex coefficients (ηa or ηa)

themselves. For example, in the case of a scalar ηa and a two-dimensional irreducible

representation one has a two-component order parameter. In the case of complex vector

coefficients [Eq (1.113)] in a two-dimensional IREP, one has a six-component order pa-

rameter, since ηa is a vector in three spin dimensions. In this work we primarily focus

on the pairing corresponding to the irreducible representation Eu of the group D4h, in

the strong spin-orbit coupling case. While there are different kinds of order parameter

vectors, we assume that d̃(k) = η1(kx/kF )ẑ+ η2(ky/kF )ẑ (for a cylindrical Fermi surface

characterized by the Fermi wavevector kF ). Due to the structure of the basis functions,

the two-component complex order parameter vector η = (η1, η2) transforms like a vector

in real space.
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The symmetry group G of the normal state contains, in addition to the point symme-

try group G, also the operation of time reversal R and the gauge transformations U(1),

i.e. G = G× R × U(1). Since the Cooper pairs exhibit phase coherence, the states with

different phases are distinguishable, and this is often coined “breaking of gauge symmetry

U(1)”. Breaking of other symmetry properties of a system under the operations of G is

also possible as a result of the transition into a particular superconducting state, and this

additional symmetry breaking is the defining feature of unconventional superconductiv-

ity or superfluidity. Due to this additional symmetry breaking, only invariance under

symmetry operations of the subgroup H (associated with the particular superconducting

class) of the symmetry group G persist in the superconducting state, see Refs. [18] and

[30].

We can therefore reduce the problem of determining all the possible superconducting

states to the determination of the superconducting classes corresponding to different

types of the normal-state symmetry breaking. The conventional superconducting state

(singlet, s-wave pairing) has the full point symmetry of the crystal lattice, and therefore

belongs to the identity representation A1g. In other words, the wave function of the

pair remains invariant under all operations of the point symmetry group. As a result,

this type of superconductivity is described by trivial superconducting class H = G ×
R, i.e. only the gauge symmetry is broken. For other superconducting states, which

belong to non-identity representations (or odd identity representation A1u), the point

symmetry properties are broken, and these states are called nontrivial or unconventional

superconducting states.

1.5 Chiral p-wave superconductivity

The s-wave superconducting state is appropriately called conventional because it is, in

many senses, the simplest pairing state. As we have seen, there is a relationship be-

tween the binding state of the Cooper pairs and the symmetry-breaking properties of the

condensate [31], and thus the order parameter of the superconducting phase transition is

related to the gap function ∆(k). In the s-wave pairing, the phase of the order parameter

is constant for all directions of k; however, there may be anisotropy in the magnitude of

the order parameter depending on k [31]. This is related to the gauge-symmetry break-

ing that occurs at the transition temperature, while no other symmetry is broken in the

conventional state.

When the Cooper pairs have a finite orbital angular momentum (i.e. non s-wave

SC), other symmetries of the system are necessarily broken, as briefly discussed in the
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previous subsection. Since the first experimental observation of superfluid phases of
3He [32], which have p-wave (` = 1) pairing, interest in “unconventional pairing” has

persisted as we continue to discover new exotic materials. This is because, in contrast to

the conventional SCs, the mechanisms behind the Cooper pair formation in these systems

are not well understood, despite considerable efforts from both theory and experiment.

Currently, the most studied examples of unconventional superconductivity are the singlet

d-wave pairing (found in the high-Tc SCs) and the triplet p-wave pairing. The triplet

pairing, in particular the chiral p-wave state, is not only one of the simplest examples of

unconventional pairing, but it also possesses nontrivial topological properties associated

with interesting potential applications.

Recent years have seen an increase in interest in topological superconductors and su-

perfluids from both experimental and theoretical facets. This is due to the fact that, while

the fermionic excitations in the bulk are fully gapped, topological superconductors and

superfluids support gapless quasiparticle excitations localized near inhomogeneities of the

order parameter, such as Abrikosov vortices, domain walls, and sample boundaries [33].

Among other things, the quasiparticle excitations protected by topology determine the

static and dynamical properties of topological defects, such as domain walls, in these sys-

tems. Specifically, the chiral p-wave state has received notable consideration because the

quasiparticle excitations (Majorana fermions) and non-Abelian winding statistics associ-

ated with half-quantum vortices in this state are potentially useful as a route to quantum

computing [34].

The chiral p-wave triplet state, whose order parameter is proportional to kx ± iky, is

experimentally realized in the A-phase (Anderson-Brinkman-Morel, or ABM, state [35])

of superfluid 3He, see Ref. [28], as well as the superconducting state of Sr2RuO4, see e.g.

Refs. [31, 34]. The helium atoms are fermions since they contain an odd number of spin-

1/2 particles. Thus, in contrast to the Bose-Einstein condensation, which is responsible

for superfluidity in 4He, the superfluidity in 3He results from the formation of Cooper

pairs of composite fermions (i.e. the helium atoms), which is largely mediated by van

der Waals interactions. This is quite different from the formation of Cooper pairs in

superconductors, which are comprised of point-like electrons, with zero orbital angular

momentum in the conventional case. Consequently, this superfluid exhibits a rich array

of physics, with many nontrivial properties.

The order parameter of a triplet fermionic superfluid is a 2× 2 spin matrix which has

the following form: ∆̂(k) = iσ̂2σ̂ ·d(k), where σ̂ are the Pauli matrices and d is the spin

vector (the derivation will be given below in Sec. 3.1). In superfluid 3He, the spin vector

d is expanded in terms of the spherical harmonics, or equivalently, the components of
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the wavevector k as follows: dα(k) = Aα,ik̂i, where Aα,i comprise a 3× 3 complex matrix

[18], and the Einstein summation convention is assumed. It is assumed that the basic

ideas of the BCS theory, namely that the superfluidity is due to the formation of pairs

of atoms with equal and opposite momenta (k,−k), can be applied to 3He. We can see

that in this system the order parameter is characterized by nine complex components, in

contrast to the single-component order parameter that describes conventional pairing.

In an arbitrary reference frame, the A-phase of superfluid 3He is described by the

order parameter of the form Aα,i = Vα(∆′i + i∆′′i ) [18, 28], where V is a unit vector in

the spin space, and ∆′ and ∆′′ are mutually orthogonal vectors in the coordinate space.

Neglecting the weak spin-orbit interaction, in the absence of external magnetic field and

far away from the container walls [28], the direction of the quantization axis of the orbital

moment ˆ̀ = ∆′ ×∆′′, and of the unit vector V are arbitrary. The simplest choice is

V = (0, 0, 1), ∆′ = (1, 0, 0), and ∆′′ = (0, 1, 0), and then the spin vector has the form

d(k) ∼ (0, 0, k̂x + ik̂y). (1.116)

It is easy to see that in this case the orbital quantization axis is directed along ẑ.

One can alternatively choose, for example, ∆′′ = (0,−1, 0) and then the corresponding

spin vector has the form

d(k) ∼ (0, 0, k̂x − ik̂y). (1.117)

In contrast to the previous choice, in this case the orbital quantization axis is directed

along −ẑ. It turns out that these spin vectors (1.116) and (1.117) correspond to opposite

chiral states, which are obtained from each other by time reversal. Consequently, both

states correspond to the same energy in the absence of an external field.

From the form of d it is clear that the neutral helium atoms in superfluid 3He-A pair

in a state with Sz = 0, and there is no nuclear magnetic moment associated with the spin

of the Cooper pair. Interestingly enough, electronic-rotational coupling in the Cooper

pairs in 3He-A results in a charge distortion in the nucleus, leading to a weak orbital

magnetic moment for each pair, which is of the order of 10−11 Bohr magnetons per atom

[36]. Because the superfluid is in a coherent state described by the same ˆ̀ for all pairs,

there is a resulting weak macroscopic orbital magnetic moment, and this ferromagnetic

behaviour has indeed been confirmed in experiments by Paulson and Wheatley [37]. In an

external magnetic field, the two chiral states correspond to slightly different energies, and

thus the “liquid ferromagnetic behaviour” lifts the energy degeneracy. While the charge

distortion in the Cooper pairs leads to a weak ferromagnetic behaviour in this system,

the Meissner screening is still absent, as one would expect in a neutral superfluid.
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In contrast to the superfluid 3He, it is the electron pairing which is responsible for the

superconductivity in Sr2RuO4. This compound has a layered tetragonal crystal structure

similar to high-Tc cuprates, as illustrated in Fig. 6. As measured by Bergemann et al.,

strontium ruthenate is described by a quasi-two-dimensional, multiband Fermi surface

[38]. The NMR Knight shift experiments, which measure the spin susceptibility, support

the Cooper pair formation in the spin-triplet (S = 1) state with Sz = 0 in this compound

[39, 40]. According to µSR measurements, at T < Tc an internal magnetic field emerges,

suggesting that in the superconducting state the time-reversal symmetry (TRS) is broken

[41]. While there are conflicting experimental results from scanning Hall [42] and scanning

SQUID measurements [43], the pairing state is believed to be described by the following

parameters: S = 1, Sz = 0, ` = 1, `z = ±1, as illustrated in Fig. 7.

Of the allowed p-wave states on a cylindrical Fermi surface for a tetragonal crystal,

there is only one triplet pairing state which is unitary (i.e. d× d∗ = 0) and also breaks

time-reversal symmetry [34]. It is the chiral p-wave state, with d ∼ ẑ(kx± iky), which is

equivalent to the ABM state of superfluid 3He. This state is fully gapped at the Fermi

surface, as illustrated in Fig. 8. We see that the spin vector in this state is oriented along

the z-axis, which is chosen to be the c-axis of the crystal, and this corresponds to the

equal-spin pairing in the xy (or ab) plane. The two chiralities (positive and negative)

correspond to the ± signs in the above expression for d, and to the orbital angular

momentum projection `z = ±1, respectively. What makes Sr2RuO4 such an interesting

compound is that it exhibits the same rich physics as the ABM state in 3He-A, but with

a charged superfluid in a crystalline material at temperatures 1000 times higher than for
3He [34].

In the systems described above, the ground state is two-fold degenerate in the ab-

sence of an external magnetic field, and this gives rise to the possibility of superfluid

or superconducting states with opposite chirality, separated by a domain wall (DW), to

form in different parts of the system [30, 29]. There is in fact experimental evidence

of the existence of DWs in Sr2RuO4 from Josephson measurements [44, 45], and also in

thin films of 3He-A from torsional oscillator measurements [46]. In general, pairing states

in other unconventional superconductors can also exhibit discrete degeneracies of the

ground state [30, 29], which leads to the possibility of DW formation in these systems.

The formation of a DW costs gradient energy to the system due to the spatial variation

of the order parameter. Unlike in ferromagnets, which break up into domains in order

to minimize the net magnetic moment, in a neutral superfluid there is no analogous

energetic rationale behind the formation of DWs. One possible explanation is that the

DWs are spontaneously formed due to sample inhomogeneities during cooling across
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Figure 6: The tetragonal crystal structure of Sr2RuO4 compared to that of LBCO. Image
reproduced from Ref. [31].

Figure 7: The electron pairing state in superconducting Sr2RuO4. The large arrow
denotes the direction of ˆ̀, and the small arrows the spins of the electrons in a pair. The
spins lie in the xy plane, and all ˆ̀ lie along the z-axis. Image reproduced from Ref. [31].
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Figure 8: Isotropic excitation energy gap on a cylindrical Fermi surface [31].

the phase transition into the superfluid state. Alternatively, the creation of low-energy

quasiparticles bound to the DW may compensate for the increase in gradient energy; this

is expected to be particularly effective in one-dimensional systems [47].

In a charged superconductor, on the other hand, the intrinsic rotational motion of

the Cooper pairs can result in a nonzero magnetic moment. In a p-wave superconductor,

it is given by M ∼ i(η∗ × η), where η is the complex superconducting order parameter

vector. It is easy to verify from this last expression that the two chiral p-wave states in

Sr2RuO4, η ∝ (1,±i), correspond to opposite orbital magnetic moments, analogous to

a uniaxial ferromagnet. Similar to a ferromagnet, domains are formed in zero external

field to reduce the energy of the stray magnetic field outside the sample.

One can make progress in the theoretical treatment of superconducting DW textures

using the Ginzburg-Landau formalism introduced in Sec. 1.1. The structure of a single

DW was studied in Refs. [30, 48, 49, 50, 51, 52, 53, 54, 55]. From the GL calculation, see

Appendix A, we have found that there are no stable two-DW solutions, and, consequently,

there must be some form of interaction between the DWs. Therefore, either an attraction

between two DWs must cause an effective collapse of the DWs to a single domain; or

a repulsion between them pushes one of the DWs to infinity, leading to the effective

formation of just two domains. It is this interaction which has stimulated our current

work.

The purpose of this thesis is to develop a general formalism for calculating the in-

teraction between superconducting DWs at an arbitrary temperature. We introduce the

two-DW configuration in Sec. 2, for which we will ultimately determine the interaction
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energy. In Sec. 4.2 we compute the quasiparticle spectrum of this texture using the semi-

classical (Andreev) approximation. Then, using the transfer matrix method, we relate

the interaction energy to the scattering matrix of the Bogoliubov quasiparticles in Sec. 5.

Finally, we obtain an analytical expression for the interaction energy in the limit of large

DW separation. The method developed in this work can also be applied to any planar

texture of the SC order parameter. To illustrate this, we apply it to the interaction be-

tween phase solitons in a two-band s-wave superconductor, such as MgB2 [56, 57] or the

iron pnictides [58], in Sec. 6. From this point on, we use the units in which ~ = kB = 1.
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2 The model

We consider a neutral isotropic two-dimensional chiral p-wave superfluid. Any external

fields and disorder are neglected. The order parameter of a triplet fermionic superfluid

or superconductor is a 2× 2 spin matrix which has the following form: ∆̂(k, r) = iσ̂2σ̂ ·
d(k, r), where σ̂ are the Pauli matrices and d is the spin vector, which for unitary states

defines the normal to the plane in which electrons paired at (k,−k) are equal spin paired

[31]. In our case, d has only ẑ-component, and its momentum dependence is given by

[18]:

d =
η1kx + η2ky

kF
ẑ, (2.1)

where η1 and η2 are components of a complex order parameter vector η and kF is the

Fermi wavevector.

We focus on planar superconducting textures describing one or more DWs perpendic-

ular to the x axis, therefore only x-dependence is retained in the order parameter com-

ponents. The DWs separate states of opposite chirality, and thus the order parameter

alternates between kx+iky and kx−iky states. The spatial dependence of η can be studied

using, e.g. the Ginzburg-Landau formalism, see Appendix A. There is no exact analytical

solution for the DW structure, even in the case of a single DW, and a variety of approx-

imations have been proposed in the literature (Refs. [30, 48, 49, 50, 51, 52, 53, 54, 55]).

Most important qualitative features of the DW textures can be illustrated using the

constant-amplitude model introduced by Volovik and Gor’kov in Ref. [30]. In this model

the order parameter has the form η(x) = ∆0(1, e−iγ(x))eiφ(x), where φ is the common

phase, and γ is relative phase, of the order parameter components.

The phases φ and γ are not independent: conservation of current requires ∇xjx = 0

and, since the transverse current is therefore constant and fixed by external sources, one

may set jx = 0, which results in a linear relationship between the gradients of φ and

γ. Thus the DW texture can be described in terms of a single variable – a spatially-

dependent relative phase γ(x). Variational minimization of the Ginzburg-Landau free

energy functional with respect to γ leads to a sine-Gordon equation, whose simplest

nontrivial solution corresponding to a single DW has a kink-like form, connecting the

asymptotics γ(±∞) = ±π/2 and varying within a region of thickness ξd (which has the

meaning of the DW thickness).

In general, different models give different expressions for η(x), but the condition

γ(±∞) = ±π/2 always holds without reference to a specific profile of the order parameter

near the wall. Furthermore, the common phase difference between the two domains is

fixed by the condition of vanishing supercurrent across the DW, see Appendix A for
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Figure 9: Alternating chirality states in the two-DW model.

details. Thus, one can write the order parameter asymptotics far from the single DW as

follows:

η(x) = ∆0(1, i), (2.2a)

at x→ −∞, and

η(x) = ∆0e
iχ(1,−i), (2.2b)

at x→ +∞. Here χ is a parameter depending on the microscopic details of the system,

satisfying the condition 0 ≤ χ ≤ π. One can make analytical progress by considering

the sharp DW model, in which case ξd → 0 and the order parameter changes abruptly

at x = 0 between its asymptotic values. In accordance with Eq. (2.2), the domain in the

region x < 0 corresponds to the kx + iky chiral state, while the x > 0 region is comprised

of Cooper pairs in the kx − iky momentum state.

We now consider two DWs at fixed separation L, with the first DW positioned at

x = 0, and the second at x = L. Using a similar setup as in the single DW case,

now the chirality alternates between the three domains, and we analogously impose the

constraint of vanishing supercurrent along the x axis, which leads to a non-zero common

phase difference between the domains. The outer left region (x < 0), and the region on

the far right (x > L), correspond to kx + iky state, while the middle domain (0 < x < L)

corresponds to the kx − iky state, as shown in Fig. 9.

As in the single DW case, we focus on the sharp DW model to obtain an analytical

solution for the interaction energy of the two DWs. Then the order parameter for both

of the outer domains is given by the expression in Eq. (2.2a), and a non-zero global

phase factor appears in the order parameter of the middle domain, which is given by the
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Figure 10: The relative phase between the order parameter components for two sharp
DWs separated by distance L.

expression in Eq. (2.2b). In accordance with the sharp DW model, γ(x) changes abruptly

between its asymptotic values in the three domains, as illustrated in Fig. 10. The explicit

expression for the order parameter for two DWs is discussed below in Sec. 3.2.
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3 Derivation of the BdG and Andreev equations

In this thesis, we focus on the effects of the quasiparticle excitations in nonuniform

textures in chiral p-wave superconductors. The spectrum of quasiparticle excitations can

be found by solving the Bogoliubov-de Gennes (BdG) equations.

3.1 Derivation of BdG equations

We begin our derivation of the BdG equations for a centrosymmetric BCS-like supercon-

ductor by first considering the BCS Hamiltonian. This Hamiltonian can be written in the

form ĤBCS = Ĥ0 + Ĥint, where Ĥ0 is the non-interacting Hamiltonian, and Ĥint accounts

for the interactions between electrons. Neglecting disorder and external magnetic field,

in the second quantization formalism this Hamiltonian has the general form:

ĤBCS =
∑
k,σ

ξ(k) â†k,σ âk,σ +
1

2V
∑
k,k
′
,q,

α,β,γ,δ

Vαβ,γδ(k,k
′
) â†k+q,α â

†
−k,β â−k′ ,γ âk′+q,δ, (3.1)

where ξ(k) is the kinetic energy measured with respect to the chemical potential (we

neglect the difference between the chemical potential and the Fermi energy), ak,σ (a†k,σ)

is the single particle annihilation (creation) operator corresponding to momentum k and

spin σ, and V is the system volume. In this last expression, Vαβ,γδ(k,k
′
) is the pairing

potential, which describes the scattering of a Cooper pair, mediated by, e.g., interactions

with phonons or spin fluctuations [18]. In this mechanism, a Cooper pair in the arbitrary

two-particle state |k + q, α;−k, β〉 is scattered to the state
∣∣k′ + q, γ;−k′ , δ

〉
, where q

is the centre-of-mass momentum of the pair.

The Hamiltonian must be Hermitian and as such must be equal to its Hermitian

conjugate. The first term in Eq. (3.1) is manifestly Hermitian, and so we check the

Hermiticity of Ĥint, whose adjoint is given by the following expression:

Ĥ†int =
1

2V
∑
k,k
′
,q

αβγδ

V ∗αβ,γδ(k,k
′
) â†

k′+q,δ
â†−k′ ,γ â−k,β âk+q,α. (3.2)

We require that Ĥint = Ĥ†int, and rename the variables in the previous equation as follows:

k ↔ k
′
, α ↔ δ, β ↔ γ. In this way, we obtain the Hermiticity condition for the pairing

potential: Vαβ,γδ(k,k
′
) = V ∗δγ,βα(k

′
,k).

Using the anti-commutation relation that holds for single-fermion creation operators

{â†i , â
†
j} = 0 (there is an analogous expression for the fermionic annihilation operators),
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we can rearrange the terms in Ĥint, see Eq. (3.1), as follows:

Ĥint = − 1

2V
∑
k,k
′
,q

αβγδ

Vαβ,γδ(k,k
′
) â†−k,β â

†
k+q,α â−k′ ,γ âk′+q,δ. (3.3)

By renaming the summation variables α ↔ β, and setting −k = p + q ⇒ k + q = −p,

we find:

Ĥint = − 1

2V
∑
p,k
′
,q

αβγδ

Vβα,γδ(−p− q,k
′
) â†p+q,α â

†
−p,β â−k′ ,γ âk′+q,δ, (3.4)

and finally renaming p→ k, it immediately follows that

Ĥint = − 1

2V
∑
k,k
′
,q

αβγδ

Vβα,γδ(−k − q,k
′
) â†k+q,α â

†
−k,β â−k′ ,γ âk′+q,δ. (3.5)

By comparing this last expression with the interacting part of the Hamiltonian in Eq. (3.1),

we have the condition Vαβ,γδ(k,k
′
) = −Vβα,γδ(−k − q,k

′
).

To proceed with the derivation, we make the physical assumption that the typical

values of the centre-of-mass momentum of Cooper pairs q are of the order of ξ−1, the

inverse correlation length. This assumption can be justified by considering the follow-

ing argument. The wavefunction of the Cooper pair is modulated in the presence of

nonzero q: Ψpair(r) ∼ Ψ0e
iq·r, which leads to a nonzero supercurrent. There is a max-

imum supercurrent at which superconductivity can be sustained, and this corresponds

to |qmax| ∼ ξ−1
0 , where ξ0 is the coherence length. In comparison, since the electrons

involved in pairing have energies within a small shell around the Fermi surface, typi-

cal values of the momentum of individual electrons are |k| ∼ kF . Taking the ratio of

the two momenta, we see |qmax|/|k| ∼ (kF ξ0)−1, and since ξ0 ∼ vF/Tc, it follows that

|qmax|/|k| ∼ Tc/εF . However, typical values of the transition temperature Tc ∼ 1− 100K

[12], while the Fermi energy εF ∼ 104K [59], and thus |qmax|/|k| � 1.

This allows us to neglect the argument q in the pairing potential, and then we have

the relation Vαβ,γδ(k,k
′
) = −Vβα,γδ(−k,k

′
). Note that we have not completely neglected

the center-of-mass momentum of the Cooper pairs, since it is still present in the single-

particle creation/annihilation operators. Following an analogous procedure using the

anticommutation relations of the particle annihilation operators, and appropriately re-

naming the summation variables, one finds: Vαβ,γδ(k,k
′
) = −Vαβ,δγ(k,−k

′ − q). For

the reasons mentioned above, we can again neglect the centre-of-mass momentum of

the Cooper pair here, and then we find that the pairing potential satisfies the following
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anti-commutation relations:

Vαβ,γδ(k,k
′
) = −Vβα,γδ(−k,k

′
) = −Vαβ,δγ(k,−k

′
). (3.6)

Now recall the discussion of the single-pair wavefunction given in Section 1.4. To

derive the pairing interaction in the many-body problem, we use insight from the sym-

metry analysis of single-pair wavefunctions. In the case of strong spin-orbit coupling, the

interaction potential can be expressed in terms of the 2 × 2 spin-matrix basis functions

φ̂a(k) introduced in Section 1.4 as follows:

Vαβ,γδ(k,k
′
) = −V

2

dΓ∑
a=1

φa,αβ(k)φ†a,γδ(k
′
), (3.7)

where V > 0 is the coupling constant in the Γ pairing channel. Here, Γ labels the

irreducible representation (IREP) of the point group G of the crystal of dimensionality

dΓ. By inspection of this last expression, it is clear that the spin-matrix basis functions

must satisfy certain conditions for the interaction potential to retain the necessary anti-

commutation relations (3.6). It directly follows that:

φa,αβ(k) = −φa,βα(−k) ⇒ −φ̂Ta (−k) = φ̂a(k). (3.8)

Recall that in the limit of strong spin-orbit coupling, spin is not a “good” quantum

number, and so any reference to spin from this point on should be understood in terms

of the pseudospin introduced in Section 1.4.

For electrons that pair in the singlet (S = 0) spin state, the spin-matrix is antisym-

metric with respect to particle exchange, i.e. {α, β} → {β, α}, whereas the momentum

exchange is symmetric: φ̂sa(−k) = φ̂sa(k). In this case, we find from Eq. (3.8) that the

singlet spin-matrix basis functions satisfy the condition φ̂Ta (k) = −φ̂a(k), where we have

dropped the superscript s. The spin-matrix basis functions for the singlet pairing were

previously defined in Section 1.4, and have the form: φ̂sa(k) = (iσ̂2)ϕ
Γg
a (k̂), where Γg

denotes the fact that the basis functions of this IREP are even in k. For the conventional

singlet s-wave case, Γ corresponds to the identity representation A1g for any point group,

with dimensionality dΓ = 1 and the basis function ϕ(k̂) = θ(εc − |ξk|), where θ(x) is the

Heaviside step function and εc is the BCS cutoff energy. Thus, in this case we see that

the pairing potential, Eq. (3.7), has the simple form

Vαβ,γδ = −V
2

(iσ2)αβ(−iσ2)γδ θ(εc − |ξk|)θ(εc − |ξk′|).
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In the case of triplet (S = 1) pairing, the spin-matrix is symmetric with respect

to particle exchange, and so the exchange of momentum is therefore anti-symmetric:

φ̂ta(−k) = −φ̂ta(k). From Eq. (3.8), it then follows that the triplet spin-matrix basis

functions satisfy φ̂Ta (k) = φ̂a(k), dropping the superscript t. Recall from Section 1.4 that

the triplet spin-matrix basis functions have the form

φ̂ta(k) = (iσ̂σ̂2) ·ϕΓu
a (k̂), (3.9)

where Γu denotes the fact that the basis functions are odd in k. For example, in the

triplet p-wave case that occurs in Sr2RuO4, described by point group G = D4h, the

two-dimensional (dΓ = 2) IREP Γ = Eu, and the basis functions are given by

ϕ1(k) = ẑ
kx
kF
, ϕ2(k) = ẑ

ky
kF
. (3.10)

Please note that we did not explicitly include the BCS cutoffs in these expressions. The

cutoffs will be included in the final expressions as needed.

Due to the complexity of the interacting system described by Eq. (3.1) it cannot be

solved exactly. In order to make progress, we apply the mean-field approximation to the

BCS Hamiltonian. To this end, we introduce the bosonic pair fields:

B̂a(q) =
1

2V
∑

k
αβ

φ†a,αβ(k) â−k,α âk+q,β,

(3.11)
B̂†a(q) =

1

2V
∑

k
αβ

φa,αβ(k) â†k+q,α â
†
−k,β,

where a = 1 . . . dΓ, and then we can rewrite the interacting portion of the BCS Hamilto-

nian as follows:

Ĥint = −V
dΓ∑
a=1

V
∑
q

B̂†a(q)B̂a(q). (3.12)

The paired electrons form a condensate which leads to an average field, and this

introduces a mean-field potential that is experienced by unpaired electrons. We evaluate

Ĥint in terms of this mean field by setting B̂a = 〈B̂a〉 + δB̂a (and B̂†a = 〈B̂†a〉 + δB̂†a),

where δB̂a and δB̂†a are treated as small operators since the fluctuations away from the

mean field are weak. After direct substitution, it follows that:

Ĥint = −V
dΓ∑
a=1

V
∑
q

(
〈B̂†a〉+ δB̂†a

)(
〈B̂a〉+ δB̂a

)
, (3.13)



3 DERIVATION OF THE BDG AND ANDREEV EQUATIONS 60

and up to the linear order in δB̂a and δB̂†a, we have:

Ĥint = −V
dΓ∑
a=1

V
∑
q

[
〈B̂a〉∗δB̂a + δB̂†a〈B̂a〉+ 〈B̂a〉∗〈B̂a〉

]
. (3.14)

Next, we replace the small operators with their expressions in terms of the bosonic pair

field operator B̂a and its mean value, namely δB̂†a = B̂†a − 〈B̂a〉∗ and δB̂a = B̂a − 〈B̂a〉
and find:

Ĥint = −V
dΓ∑
a=1

V
∑
q

[
−〈B̂a〉∗〈B̂a〉+ 〈B̂a〉∗B̂a + B̂†a〈B̂a〉

]
. (3.15)

The next step is to introduce complex functions ηa(q), which physically play the role

of the components of the order parameter. They are related to the expectation values of

the bosonic pair field operators as follows:

ηa(q) = −V V〈B̂a(q)〉, η∗a(q) = −V V〈B̂a(q)〉∗. (3.16)

The order parameter components ηa(q) introduced above are proportional to the coeffi-

cients in the expressions (1.108, 1.112) for the single-pair wavefunctions. By substitution

of this last expression into Eq. (3.15)), it is immediately clear that Ĥint takes the form

Ĥint =
1

V

dΓ∑
a=1

1

V
∑
q

|ηa(q)|2 +

dΓ∑
a=1

∑
q

[
η∗a(q)B̂a(q) + B̂†a(q)ηa(q)

]
, (3.17)

and after using the definitions of the pair field operators, see Eq. (3.11), in this last

equation, we obtain the mean-field expression for the interacting part of the BCS Hamil-

tonian:

Ĥint =
1

V

dΓ∑
a=1

1

V
∑
q

|ηa(q)|2

(3.18)

+
1

2

dΓ∑
a=1

1

V
∑
k,q
αβ

[
η∗a(q)φ†a,αβ(k) â−k,α âk+q,β + ηa(q)φa,αβ(k) â†k+q,α â

†
−k,β

]
.

To proceed with the derivation of the BdG equations, we introduce the gap functions
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∆αβ, which are the entries of a 2× 2 gap matrix ∆̂:

∆αβ(k, q) =

dΓ∑
a=1

ηa(q)φa,αβ(k),

(3.19)

∆†αβ(k, q) =

dΓ∑
a=1

η∗a(q)φ†a,αβ(k),

where the second expression denotes the αβ-component of the Hermitian conjugate of ∆̂

in the 2 × 2 spin space. For example, in the singlet isotropic s-wave case (the original

BCS case), the gap matrix has the following form:

∆̂(k, q) =

(
0 η(q)

−η(q) 0

)
.

In this case the superconductivity is described by a single complex function η, which is

the order parameter. For the triplet pairing, inserting Eq. (3.9) into Eq. (3.19), we obtain

the following expression:

∆̂(k, q) =

dΓ∑
a=1

ηa(q)(iσ̂σ̂2) ·ϕΓu
a (k)

(3.20)

= (iσ̂σ̂2) · d(k, q),

where we have introduced the spin vector order parameter

d(k, q) =

dΓ∑
a=1

ηa(q)ϕΓu
a (k). (3.21)

This spin vector is similar in structure to the single-pair spin vector d̃ defined by Eq. (1.112).

Using the definitions of the gap functions, see Eq. (3.19), we can further simplify the

interacting part of the BCS Hamiltonian as follows:

Ĥint =
1

V

1

V
∑
q

dΓ∑
a=1

|ηa(q)|2

(3.22)

+
1

2

1

V
∑
k,q
αβ

[
∆αβ(k, q) â†k+q,α â

†
−k,β + ∆†αβ(k, q) â−k,α âk+q,β

]
.
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From here we introduce the 4-component Nambu spinor operators:

Âk =


âk,↑

âk,↓

â†−k,↑
â†−k,↓

 , Â†k =
(
â†k,↑ â†k,↓ â−k,↑ â−k,↓

)
. (3.23)

Below we will express the mean-field Hamiltonian in terms of these operators.

We begin with the non-interacting Hamiltonian Ĥ0, which in the general case can be

written as follows:

Ĥ0 =
1

V
∑
k1,k2
αβ

â†k1,α
ξαβ(k1,k2) âk2,β, (3.24)

where ξαβ(k1,k2) = 〈k1, α|(ĥ − εF )|k2, β〉 comprise a 2 × 2 matrix ξ̂(k1,k2). Here, ĥ is

the single-particle Hamiltonian, which in general takes the form ĥ = (~2/2m)k̂2 +U(r)+

µBB · σ̂, where µB is the Bohr magneton, B is an arbitrary magnetic field, and σ̂ is the

Pauli spin matrix vector.

Since the summation in Eq. (3.24) runs over all wavevectors (positive and negative),

we can split it into two sums and rewrite the equation as follows:

Ĥ0 =
1

2V
∑
k1,k2
αβ

â†k1,α
ξαβ(k1,k2) âk2,β +

1

2V
∑
k1,k2
αβ

â†−k2,β
ξβα(−k2,−k1) â−k1,α, (3.25)

where we have interchanged the summation labels k1 ↔ k2, α ↔ β. Using the anticom-

mutation relation of the single-particle creation and annihilation operators {âi, â†j} = δij,

and neglecting the constant resulting from the delta function, we find:

Ĥ0 =
1

2V
∑
k1,k2
αβ

[
â†k1,α

ξαβ(k1,k2) âk2,β − â−k1,α ξ
T
αβ(−k2,−k1) â†−k2,β

]
, (3.26)

where we have invoked the identity for 2 × 2 matrix transposition, ξTαβ = ξβα. Using

the Nambu operators introduced in Eq. (3.23), we can rewrite the expression (3.26) in a

more compact form:

Ĥ0 =
1

2V
∑
k1,k2

Â†k1

(
ξ̂(k1,k2) 0

0 −ξ̂T (−k2,−k1)

)
Âk2 , (3.27)

where the matrix in this last expression has the dimensionality 4× 4, since ξ̂(k1,k2) is a

2× 2 matrix.
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We now focus our attention on the interacting part of the BCS Hamiltonian. First,

we represent Eq. (3.22) as follows:

Ĥint = Ĥ
(1)
int + Ĥ

(2)
int , (3.28)

with

Ĥ
(1)
int =

1

V

1

V
∑
q

dΓ∑
a=1

|ηa(q)|2 , (3.29)

and

Ĥ
(2)
int =

1

2V
∑
k,q
αβ

[
∆αβ(k, q) â†k+q,α â

†
−k,β + ∆†αβ(k, q) â−k,α âk+q,β

]
. (3.30)

As in the non-interacting Hamiltonian, we wish to express the interactions in terms of a

summation over k1,k2, and we do so in the following way:

Ĥ
(2)
int =

1

2V
∑
k,q
αβ

∑
k1,k2

[
∆αβ(k, q)δk1,k+qδk2,k â

†
k1,α

â†−k2,β

(3.31)

+ ∆†αβ(k, q)δk,k1δk+q,k2 â−k1,α âk2,β

]
.

We use the delta functions in this last expression to remove the summation over k, q,

then Ĥ
(2)
int takes the form

Ĥ
(2)
int =

1

2V
∑
k1,k2
αβ

[
∆αβ(k2,k1 − k2) â†k1,α

â†−k2,β
+ ∆†αβ(k1,k2 − k1) â−k1,α âk2,β

]
. (3.32)

Utilizing once again the Nambu spinor operators, Eq. (3.23), we have:

Ĥ
(2)
int =

1

2V
∑
k1,k2

Â†k1

(
0 ∆̂(k2,k1 − k2)

∆̂†(k1,k2 − k1) 0

)
Âk2 , (3.33)

where the matrix in this last expression has dimensionality 4×4 since ∆̂ is a 2×2 matrix

in spin space.

We are now in a position where we can express the BCS Hamiltonian ĤBCS = Ĥ0 +

Ĥint in a compact form. From Eqs. (3.27, 3.29, 3.33) it follows that, in the mean-field

approximation, the Hamiltonian can be expressed in the following form:

ĤMF =
1

V

1

V
∑
q

dΓ∑
a=1

|ηa(q)|2 +
1

2V
∑
k1,k2

Â†k1
Ĥ(k1,k2)Âk2 , (3.34)
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where Ĥ(k1,k2) is the 4× 4 BdG Hamiltonian in momentum space, given by the expres-

sion:

Ĥ(k1,k2) =

(
ξ̂(k1,k2) ∆̂(k2,k1 − k2)

∆̂†(k1,k2 − k1) −ξ̂T (−k2,−k1)

)
. (3.35)

We wish to transform our expression for the mean-field Hamiltonian into position

representation. Recall from Eq. (3.19) that the entries of the gap matrix are defined in

terms of the order parameter components, and thus we must first transform the order

parameter components into coordinate space. This amounts to the Fourier summation:

ηa(r) =
1

V
∑
q

ηa(q)eiq·r, ηa(q) =

∫
dr ηa(r)e−iq·r. (3.36)

We see that a uniform order parameter ηa(r) = ηa has as its Fourier transform ηa(q) =

ηa
∫
dr e−iq·r = Vηaδq,0.

We begin with the first term in ĤMF . Using expression (3.36), we have:

1

V

1

V
∑
q

dΓ∑
a=1

|ηa(q)|2 =
1

V

1

V
∑
q

dΓ∑
a=1

∫
dr1

∫
dr2 η

∗
a(r1)ηa(r2)eiq·r1e−iq·r2

(3.37)

=
1

V

dΓ∑
a=1

∫
dr1

∫
dr2 η

∗
a(r1)ηa(r2)

[
1

V
∑
q

eiq·(r1−r2)

]
,

where the term in parentheses can be written as an integral over continuous variable q,∫
dnq

(2π)n
eiq·(r1−r2) = δ(r1 − r2) (3.38)

in the limit V → ∞, where n is the dimensionality of the momentum space. In this limit,

Eq. (3.37) takes the following form:

1

V

1

V
∑
q

dΓ∑
a=1

|ηa(q)|2 =
1

V

dΓ∑
a=1

∫
dr1

∫
dr2 δ(r1 − r2)η∗a(r1)ηa(r2)

(3.39)

=
1

V

dΓ∑
a=1

∫
dr |ηa(r)|2.

To transform the second term of expression (3.34) into the coordinate representation,

which we shall call Ĥ = Ĥ0 + Ĥ
(2)
int , we recall that a one-body operator Ô =

∑
i ôi

(with the summation over single-particle operators ô, e.g. p̂2/2m) is represented in the
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second-quantized form as follows:

Ô →
∑
`,`′

〈`|ô|`′〉â†`â`′ , (3.40)

where Ô now acts in the Fock space for identical fermions Ff . In this last expression {|`〉}
is an orthonormal basis inH(a)

N=1, 〈`|ô|`′〉 denote the matrix elements of ô in this basis, and

â†`, â` are single-particle creation and annihilation operators, respectively, corresponding

to the state `. This form is analogous to the second term in Eq. (3.34) if we take the

basis {|`〉} to be {|k, σ〉} (i.e. momentum-spin representation), but note that we have

suppressed the summation over spin states via the Nambu spinors. Here, our single-

particle operator is the BdG Hamiltonian Ĥ, and one can see from its matrix elements in

|k, σ〉-space, Eq. (3.35), that it is a 4×4 matrix. In each of the 2×2 blocks of this matrix,

{σ, σ′} =↑↑, ↑↓, ↓↑, ↓↓, and the fact that there are a total of 16 entries is a reflection of

the particle-hole symmetry of the Hamiltonian.

We will first perform the transformation into coordinate space using the bra-ket no-

tation, then show that we obtain the equivalent expression by a direct Fourier transform

of the Nambu operators. Inserting the resolution of unity in terms of the single-particle

basis {|r〉}, 1̂ =
∫
dr|r〉〈r|, twice into Ĥ, we obtain:

Ĥ =
1

2V

∫
dr1

∫
dr2

∑
k1,k2

σ,σ
′

Â†k1,σ
〈k1|r1〉〈r1, σ|Ĥ|r2, σ

′〉〈r2|k2〉Âk2,σ
′ , (3.41)

where we have restored the summation over the spin states. Note that σ =↑, ↓, ↑, ↓ labels

the rows of the spin matrix, and σ
′

=↑, ↓, ↑, ↓ labels the columns, which gives the 4 × 4

matrix. Rearranging slightly this last expression, we have:

Ĥ =
1

2V

∫
dr1

∫
dr2

∑
σ,σ′

(∑
k1

Â†k1,σ
〈k1|r1〉

)
〈r1, σ|Ĥ|r2, σ

′〉

(∑
k2

〈r2|k2〉Âk2,σ
′

)
,

(3.42)

where the terms in parentheses are simply the single-particle Nambu field operators:

Ψ̂σ(r) =
∑

k〈k|r〉Âk,σ, Ψ̂†σ(r) =
∑

k〈k|r〉∗Â
†
k,σ, which annihilate or create a particle at

position r with spin σ. We can then rewrite this last expression as:

Ĥ =
1

2V

∫
dr1

∫
dr2

∑
σ,σ
′

Ψ̂†σ(r1)〈r1, σ|Ĥ|r2, σ
′〉Ψ̂σ′ (r2), (3.43)
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and suppressing the spin indices we obtain:

Ĥ =
1

2V

∫
dr1

∫
dr2Ψ̂†(r1)〈r1|Ĥ|r2〉Ψ̂(r2). (3.44)

An alternative way to arrive at this expression is to directly consider the Fourier trans-

forms of the Nambu spinor operators, which are written as follows:

Âk =
1√
V

∫
dr Ψ̂(r)e−ik·r, Â†k =

1√
V

∫
dr Ψ̂†(r)eik·r;

(3.45)

Ψ̂(r) =
1√
V

∑
k

Âke
ik·r,

where Ψ̂(r) =
[
Ψ̂↑(r), Ψ̂↓(r), Ψ̂†↑(r), Ψ̂†↓(r)

]T
are the 4-component Nambu field operators

introduced previously. After substitution of these last expressions into the second term

in Eq. (3.34), we find:

Ĥ =
1

2V2

∑
k1,k2

∫
dr1

∫
dr2 Ψ̂†(r1)eik1·r1Ĥ(k1,k2)Ψ̂(r2)e−ik2·r2

(3.46)

=
1

2V

∫
dr1

∫
dr2 Ψ̂†(r1)Ĥ(r1, r2)Ψ̂(r2),

where

Ĥ(r1, r2) =
1

V
∑
k1,k2

eik1·r1−ik2·r2Ĥ(k1,k2) (3.47)

are the position-space matrix elements of the 4× 4 BdG Hamiltonian Ĥ, which acts on

functions of r2, see Eq. (3.44). We can arrive at the same result from Eq. (3.44) by

inserting the resolution of unity in terms of the momentum eigenkets into the matrix

elements of Ĥ in coordinate space, since the eigenfunctions of the momentum operator

in position space are “normalized” plane waves.

We now focus our attention on calculating the matrix elements of the 4 × 4 BdG

Hamiltonian, Eq. (3.47), and to do this we first introduce a shorthand notation for the

gap functions that appear in the momentum-space matrix elements of Ĥ:

D̂(k1,k2) = ∆̂(k2,k1 − k2), D̂†(k2,k1) = ∆̂†(k1,k2 − k1). (3.48)
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In this manner, expression (3.35) takes the form:

Ĥ(k1,k2) =

(
Ĥ11 Ĥ12

Ĥ21 Ĥ22

)
, (3.49)

where each of the entries in the above matrix are 2 × 2 matrices given by: Ĥ11 =

ξ̂(k1,k2), Ĥ12 = D̂(k1,k2), Ĥ21 = D̂†(k2,k1), and Ĥ22 = −ξ̂T (−k2,−k1). Here, the

Hermitian conjugation and matrix transposition are taken in the 2× 2 spin space.

In k-space, the BdG Hamiltonian acts on 4-component Nambu spinor functions

ψ = [ψ1(k), ψ2(k), ψ3(k), ψ4(k)]T ,

and so the eigenvalue problem Ĥψi = Eiψi, where i labels the eigenstates, takes the form∑
k2,n
Hm,n(k1,k2)ψi,n(k2) = Eiψi,m(k1), where m,n = 1 . . . 4. Similarly, the action of

Ĥ on some arbitrary single-particle state ket |ψ〉: |φ〉 = Ĥ|ψ〉 can be represented in the

coordinate space as follows:

φ(r1) ≡ 〈r1|φ〉 = 〈r1|Ĥ|ψ〉 =

∫
dr2〈r1|Ĥ|r2〉ψ(r2), (3.50)

where the summation over the spin states is assumed, and has therefore been supressed

in the above expression. Recall that the matrix elements of Ĥ in the coordinate-spin

space can be expressed in terms of the k-space elements, see Eq. (3.47).

We look at the matrix elements of 2× 2 blocks, see Eq. (3.49), and consider first the

element Ĥ11. Assuming that the single-particle Hamiltonian Ĥ0 is diagonal in k and σ,

i.e. in the absence of external field and disorder, the kinetic energy operator has matrix

elements ξαβ(k1,k2) = Vδk1,k2δα,β ξ(k2), and thus Ĥ11(k1,k2) = Vδk1,k2σ̂0 ξ(k2). Using

Eq. (3.50) along with Eq. (3.47), we find:

φ̃(r1) =

∫
dr2Ĥ11(r1, r2)ψ̃(r2) =

1

V
∑
k1,k2

∫
dr2Vδk1,k2ξ(k2)eik1·r1−ik2·r2ψ̃(r2), (3.51)

where ψ̃(r2) is an arbitrary two-component function of r2 (labeled by σ =↑, ↓). This last
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expression can be further simplified and manipulated as follows:

φ̃(r1) =
∑
k1

∫
dr2 ξ(k1)eik1·(r1−r2)ψ̃(r2)

=
∑
k1

∫
dr2 ξ

(
−i ∂
∂r1

)
eik1·(r1−r2)ψ̃(r2) (3.52)

=

∫
dr2 ξ

(
−i ∂
∂r1

)[∑
k1

eik1·(r1−r2)

]
ψ̃(r2),

where the term in square parentheses in the final expression is simply Vδ(r1 − r2), see

Eq. (3.38). We can therefore write this last expression as follows:

φ̃(r1) = V ξ
(
−i ∂
∂r1

)∫
dr2δ(r1 − r2)ψ̃(r2), (3.53)

and carrying out the integration over r2, we have:

φ̃(r1) =

∫
dr2Ĥ11(r1, r2)ψ̃(r2) = V ξ

(
−i ∂
∂r1

)
ψ̃(r1). (3.54)

From this we conclude that the matrix elements of Ĥ11 in the coordinate representation

are given by

Ĥ11(r1, r2) = Vσ̂0ξ

(
−i ∂
∂r1

)
δ(r1 − r2), (3.55)

where we have restored the reference to spin indices in this last expression.

One can use this result to immediately find the 2 × 2 matrix Ĥ22(r1, r2). Since

ξTα,β(k1,k2) = ξβ,α(k1,k2), we have −ξTα,β(−k2,−k1) = −Vδk1,k2δβ,αξ(−k1). Taking

into account the symmetry of the kinetic energy in k, ξ(−k) = ξ(k), it follows that

Ĥ22(k1,k2) = −Vδk1,k2σ̂0ξ(k2) = −Ĥ11(k1,k2). Consequently, it is clear that the matrix

elements of Ĥ22 in position space have the form

Ĥ22(r1, r2) = −Vσ̂0ξ

(
−i ∂
∂r1

)
δ(r1 − r2). (3.56)

We can now consider the off-diagonal elements of the BdG Hamiltonian, beginning

with Ĥ12. Proceeding in the same fashion as above, we look at the action of Ĥ12 on an

arbitrary state in the coordinate space:

φ̃(r1) =

∫
dr2Ĥ12(r1, r2)ψ̃(r2) =

1

V
∑
k1,k2

∫
dr2e

ik1·r1−ik2·r2D̂(k1,k2)ψ̃(r2), (3.57)
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and using Eqs. (3.48) and (3.19), we have:

φ̃(r1) =
1

V
∑
k1,k2

∫
dr2

dΓ∑
a=1

ηa(k1 − k2)φ̂a(k2)eik1·r1−ik2·r2ψ̃(r2). (3.58)

Recall that φ̂a(k) are the spin-matrix basis functions, see Eq. (3.9). Renaming k1 =

k2 + q, it follows that

φ̃(r1) =
1

V

dΓ∑
a=1

∑
k2,q

∫
dr2 ηa(q)φ̂a(k2)eik2·(r1−r2)eiq·r1ψ̃(r2), (3.59)

and then using the expression (3.36), we replace ηa(q) by its Fourier transform to obtain:

φ̃(r1) =

dΓ∑
a=1

ηa(r1)
∑
k2

∫
dr2 φ̂a(k2)eik2·(r1−r2)ψ̃(r2)

(3.60)

=

dΓ∑
a=1

ηa(r1)

∫
dr2 φ̂a

(
−i ∂
∂r1

)∑
k2

eik2·(r1−r2)ψ̃(r2).

To obtain the second equality, we have used the facts that the derivative of the exponential

function pulls down the constants in the exponent, and that φ̂a(k) is a 2 × 2 matrix

comprised of analytic functions of k. We can rewrite the summation over k2 in terms of

a delta function, see Eq. (3.38), and then the above equation takes the form:

φ̃(r1) = V
dΓ∑
a=1

ηa(r1)φ̂a

(
−i ∂
∂r1

)∫
dr2 δ(r1 − r2)ψ̃(r2)

(3.61)

= V
dΓ∑
a=1

ηa(r1)φ̂a

(
−i ∂
∂r1

)
ψ̃(r1).

From the above expressions, it can be concluded that the matrix elements of Ĥ12 in the

coordinate space have the following form:

Ĥ12(r1, r2) = V
dΓ∑
a=1

ηa(r1)φ̂a

(
−i ∂
∂r1

)
δ(r1 − r2). (3.62)

We now consider the remaining element of the BdG Hamiltonian, Ĥ21, via its action
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on an arbitrary two-component function in coordinate-spin space:

φ̃(r1) =

∫
dr2Ĥ21(r1, r2)ψ̃(r2) =

1

V
∑
k1,k2

∫
dr2e

ik1·r1−ik2·r2D̂†(k2,k1)ψ̃(r2). (3.63)

Using Eqs. (3.48) and (3.19), it follows that

φ̃(r1) =
1

V
∑
k1,k2

∫
dr2

dΓ∑
a=1

η∗a(k2 − k1)φ̂†a(k1)eik1·r1−ik2·r2ψ̃(r2). (3.64)

Renaming again k1 = k2 + q, we find:

φ̃(r1) =
1

V

dΓ∑
a=1

∑
k2,q

∫
dr2 η

∗
a(−q)φ̂†a(k2 + q)ei(k2+q)·r1−ik2·r2ψ̃(r2). (3.65)

Since the derivative of the exponential function pulls down the constants in the exponent,

and φ̂†a(k) is a 2× 2 matrix comprised of analytic functions of k, this last expression can

be written as

φ̃(r1) =
1

V

dΓ∑
a=1

φ̂†a

(
−i ∂
∂r1

)∑
k2,q

∫
dr2 η

∗
a(−q)ei(k2+q)·r1−ik2·r2ψ̃(r2). (3.66)

We can reformulate this last equation as follows:

φ̃(r1) =
1

V

dΓ∑
a=1

φ̂†a

(
−i ∂
∂r1

)∫
dr2

∑
q

η∗a(−q)eiq·r1

∑
k2

eik2·(r1−r2)ψ̃(r2), (3.67)

and then it becomes apparent that we can replace η∗a(−q) by its Fourier transform, see

Eq. (3.36), and the summation over k2 with a delta function, to obtain:

φ̃(r1) = V
dΓ∑
a=1

φ̂†a

(
−i ∂
∂r1

)
η∗a(r1)

∫
dr2 δ(r1 − r2)ψ̃(r2)

(3.68)

= V
dΓ∑
a=1

φ̂†a

(
−i ∂
∂r1

)
η∗a(r1)ψ̃(r1).

From the last expression, we conclude that the matrix elements of Ĥ21 in coordinate
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space have the following form:

Ĥ21(r1, r2) = V
dΓ∑
a=1

φ̂†a

(
−i ∂
∂r1

)
η∗a(r1)δ(r1 − r2). (3.69)

Now we collect everything together, and from Eqs. (3.44, 3.55, 3.56, 3.62, 3.69), it

follows that Eq. (3.34) takes the form:

ĤMF =
1

V

1

V
∑
q

dΓ∑
a=1

|ηa(q)|2 (3.70)

+
1

2

∫
dr1

∫
dr2Ψ̂†(r1)

 σ̂0ξ
(
−i ∂

∂r1

) ∑dΓ

a=1 ηa(r1)φ̂a

(
−i ∂

∂r1

)
∑dΓ

a=1 φ̂
†
a

(
−i ∂

∂r1

)
η∗a(r1) −σ̂0ξ

(
−i ∂

∂r1

)


×δ(r1 − r2)Ψ̂(r2),

which can be written in the more condensed form:

ĤMF =
1

V

1

V
∑
q

dΓ∑
a=1

|ηa(q)|2 +
1

2

∫
drΨ̂†(r)ĤΨ̂(r). (3.71)

In this expression, we have renamed r1 = r, and

Ĥ =

(
ξ̂ ∆̂

∆̂† −ξ̂

)
(3.72)

is the 4× 4 BdG Hamiltonian, which is a Hermitian differential operator. In Eq. (3.72),

ξ̂ = σ̂0ξ

(
−i ∂
∂r

)
and

∆̂ =

dΓ∑
a=1

ηa(r)φ̂a

(
−i ∂
∂r

)
. (3.73)

We should point out that the matrix elements of the gap function operator ∆̂ in

Eq. (3.72) in {k, σ}-space were first introduced in Eq. (3.19). For singlet pairing, the ath

spin-matrix basis function has the form φ̂a(k) = (iσ̂2)ϕa(k̂), where ϕa(k̂) is an even basis

function of Γ. In particular, for the conventional singlet s-wave pairing, dΓ = 1 and ϕ(k̂)

is independent of k̂, i.e. ϕ(k̂) = 1 (neglecting cutoffs), thus ∆̂ = iσ̂2η(r). Recall that

for triplet pairing with strong spin-orbit coupling, φ̂a(k) = (iσ̂σ̂2) · ϕa(k̂), where ϕa(k̂)
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is a vector basis function belonging to Γ which is odd in k. In the p-wave case, dΓ = 2

and the basis functions are given by ϕ1(k̂) = ẑkx/kF and ϕ2(k̂) = ẑky/kF . Since in the

coordinate space the arguments of the basis functions take the form k → −i∇, the gap

function operator for the p-wave pairing is given by

∆̂ = η1(r)σ̂1
−i∇x

kF
+ η2(r)σ̂1

−i∇y

kF
. (3.74)

Next, we will relate the energy of quasiparticle excitations to the eigenvalues of Ĥ,

and this is accomplished by performing a Bogoliubov transformation on the mean-field

Hamiltonian, Eq. (3.71). To facilitate the transformation, we first prove an important

property of the BdG Hamiltonian:

Ĥ∗ = −K̂ĤK̂, (3.75)

where

K̂ =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 =

(
0 σ̂0

σ̂0 0

)
, (3.76)

where the dashed lines separate 2× 2 blocks. The second equality in this last expression

allows us to easily calculate the right-hand side of Eq. (3.75), which is given by

−K̂ĤK̂ = −

(
0 σ̂0

σ̂0 0

)(
ξ̂ ∆̂

∆̂† −ξ̂

)(
0 σ̂0

σ̂0 0

)
(3.77)

=

(
ξ̂ −∆̂†

−∆̂ −ξ̂

)
.

To prove that Eq. (3.75) holds true, one must therefore show that

ξ̂∗ = ξ̂, (3.78a)

∆̂∗ = −∆̂†, (3.78b)

∆̂†,∗ = −∆̂. (3.78c)

Relation (3.78c) follows directly from relation (3.78b), since ∆̂ = (∆̂∗)∗ = (−∆̂†)∗ =

−∆̂†,∗. To prove equation (3.78a) we consider the following argument: the kinetic energy

operator is given by ξ̂ = σ̂0ξ(−i∇), so ξ̂∗ = σ̂0ξ
∗(i∇). Since the kinetic energy must
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be real, it follows that ξ̂∗ = σ̂0ξ(i∇), and furthermore because ξ(k) = ξ(−k), one has

ξ̂∗ = σ̂0ξ(−i∇) = ξ̂.

To prove the relation (3.78b), we consider Eq. (3.73), whose complex conjugate is

given by ∆̂∗ =
∑

a η
∗
a(r)φ̂∗a(i∇). Furthermore, it follows from the complex conjugate of

Eq. (3.8) that φ̂∗a(i∇) = −φ̂†a(−i∇), and thus one has

∆̂∗ = −
∑
a

η∗a(r)φ̂†a(−i∇). (3.79)

From Eq. (3.70), it is clear that ∆̂† =
∑

a φ̂
†
a(−i∇)η∗a(r), and, using the product rule of

differentiation, this last expression takes the form

∆̂† =
∑
a

[(
φ̂†a(−i∇)η∗a(r)

)
+ η∗a(r)φ̂†a(−i∇)

]
. (3.80)

The central assumption in the theory of superconductivity is that only electrons suffi-

ciently close to the Fermi surface are involved in pairing. Consequently, in the interacting

part of the Hamiltonian, Eq. (3.2), the summation is taken over wavevectors such that

|k|, |k′| ' kF , and thus the typical values of q are much smaller than |k|, |k′|. In the

coordinate space this translates into a slowly varying order parameter, i.e. ηa(r) varies

on the scale of |q|−1 ∼ ξ, where ξ is the correlation length. Since the Nambu field op-

erators vary on the scale of |k|−1 ∼ k−1
F , the terms containing the derivatives of ηa(r),

see Eq. (3.80), can be neglected compared to the derivatives of Ψ̂(r) in the mean-field

Hamiltonian. As a result, the adjoint of the gap function operator takes the following

form:

∆̂† =
∑
a

η∗a(r)φ̂†a(−i∇), (3.81)

and thus it immediately follows from Eq. (3.79) that ∆̂∗ = −∆̂†, and we can therefore

conclude that Eq. (3.75) holds true.

An important symmetry of the spectrum of the BdG Hamiltonian follows from Eq.

(3.75). To obtain this symmetry we consider the eigenfunctions of this Hamiltonian. If

ψ(r) = [u↑(r), u↓(r), v↑(r), v↓(r)]T is an eigenfunction of Ĥ corresponding to eigenvalue

E, then ψ̃(r) = K̂ψ∗(r) =
[
v∗↑(r), v∗↓(r), u∗↑(r), u∗↓(r)

]T
is also an eigenfunction of Ĥ

corresponding to the eigenvalue−E. This can be proven by considering the BdG equation

Ĥψ = Eψ. We have Ĥψ̃ = Ĥ(K̂ψ∗) = (ĤK̂)ψ∗. Using Eq. (3.75), along with the fact

that K̂2 = 1̂, it follows that ĤK̂ = −K̂Ĥ∗, and thus Ĥψ̃ = −K̂(Ĥψ)∗. Furthermore,

because the energy eigenvalues are real, we have Ĥψ̃ = −E(K̂ψ∗) = −Eψ̃.

We use the fact that the energy eigenvalues of the BdG Hamiltonian always come in
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pairs (E,−E) to proceed with the Bogoliubov transformation of the mean-field Hamil-

tonian, via focusing on the upper half of the energy spectrum. We associate fermionic

operators γ̂i and γ̂†i with each state from the upper half of the spectrum, i.e. with Ei ≥ 0.

We can now introduce the Bogoliubov transformation, where we take the components of

the Nambu field operators, see Eq. (3.45), to have the following form:

Ψ̂↑(r) =
∑
i

[
ui↑(r)γ̂i + vi,∗↑ (r)γ̂†i

]
,

Ψ̂↓(r) =
∑
i

[
ui↓(r)γ̂i + vi,∗↓ (r)γ̂†i

]
,

(3.82)
Ψ̂†↑(r) =

∑
i

[
vi↑(r)γ̂i + ui,∗↑ (r)γ̂†i

]
,

Ψ̂†↓(r) =
∑
i

[
vi↓(r)γ̂i + ui,∗↓ (r)γ̂†i

]
,

where the sum runs over the upper half of the energy spectrum only. By writing this in a

vector form, it becomes apparent that the 4-component Nambu spinors are transformed

as follows:

Ψ̂(r) =
∑
i

[
ψi(r)γ̂i + ψ̃i(r)γ̂†i

]
,

(3.83)
Ψ̂†(r) =

∑
i

[
ψ̃†i (r)γ̂i + ψ†i (r)γ̂†i

]
.

in terms of the eigenfunctions of the BdG Hamiltonian, ψ(r) and ψ̃(r), which were

introduced above.

Substituting expression (3.83) for the Nambu field operators into the second term of

Eq. (3.71), we obtain:

1

2

∫
drΨ̂†(r)ĤΨ̂(r) =

1

2

∫
dr
∑
i,j

[
ψ†i (r)γ̂†i + ψ̃†i (r)γ̂i

]
Ĥ
[
ψj(r)γ̂j + ψ̃j(r)γ̂†j

]
,

=
1

2

∑
i,j

[
γ̂†i γ̂j

∫
drψ†i (r)Ĥψj(r) + γ̂†i γ̂

†
j

∫
drψ†i (r)Ĥψ̃j(r)

+ γ̂iγ̂j

∫
drψ̃†i (r)Ĥψj(r) + γ̂iγ̂

†
j

∫
drψ̃†i (r)Ĥψ̃j(r)

]
. (3.84)

Due to the orthonormality of the eigenfunctions of Ĥ, it follows that the integrals in the

second and third terms in this last expression are identically zero (since the eigenfunctions

ψi and ψ̃i correspond to different eigenvalues). Evaluating the remaining two integrals,
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we arrive at the following expression:

1

2

∫
drΨ̂†(r)ĤΨ̂(r) =

1

2

∑
i,j

Ejδij

(
γ̂†i γ̂j − γ̂iγ̂

†
j

)
,

(3.85)

=
1

2

∑
i

Ei

(
γ̂†i γ̂i − γ̂iγ̂

†
i

)
.

Using the anti-commutation relation for the fermionic operators, {γ̂i, γ̂†i} = 1, it follows

that this last equation takes the final form:

1

2

∫
drΨ̂†(r)ĤΨ̂(r) = −1

2

∑
i

Ei +
∑
i

Eiγ̂
†
i γ̂i. (3.86)

Therefore, we can rewrite the mean-field Hamiltonian, Eq. (3.71), after the Bogoliubov

transformation as follows:

ĤMF = (c-number) +
∑
i

Eiγ̂
†
i γ̂i. (3.87)

Here we recall that the sum is taken over the “upper half” of the energy spectrum of the

BdG Hamiltonian, where Ei ≥ 0.

From the Hamiltonian (3.87), we can see that Ei ≥ 0 are the energies of the elemen-

tary excitations in the superconductor. Physically this means that at zero temperature,

all states with energies in the lower half of the BdG spectrum (Ei ≤ 0) are filled, and

all of the states in the upper half of the spectrum are empty. At nonzero temperature,

quasiparticles with energies Ei ≥ 0 will be thermally excited, resulting in these states be-

ing filled according to the Fermi-Dirac distribution. These excitations become important

when considering thermodynamic quantities, such as the specific heat, spin susceptibility,

or thermal conductivity [29, 18].

One can obtain the eigenenergies Ei by solving the BdG equation Ĥψ = Eψ. How-

ever, even for the simplest kinetic energy in the effective mass approximation, ξ(k) =

(k2 − k2
F )/2m∗, the differential equations are of second order, and there is no standard

method to solve these equations. Luckily there is a more practical option for obtaining

the eigenenergies, provided by the semiclassical, or Andreev, approximation. In this ap-

proach, the second-order BdG differential equations are reduced to a set of two linear

first-order differential equations. In the following section we will apply this approxima-

tion, and derive the corresponding Andreev equations for the quasiparticle spectrum.
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3.2 Semiclassical (Andreev) approximation

Since in this work we consider a neutral superfluid, the interaction between the DWs can

only be due to their effect on the Bogoliubov fermionic quasiparticles. Recall from the

previous subsection that the quasiparticle spectrum for a non-uniform superconductor is

determined by the BdG equations, with the 4× 4 BdG Hamiltonian given by Eq. (3.72).

In this work, we focus on the quasiparticle properties in the chiral p-wave states, in

which the gap function operator has the form given by Eq. (3.74). This form for ∆̂ allows

the BdG Hamiltonian in Eq. (3.72), which operates on a four-component quasiparticle

wavefunction, to be written as a direct sum of two identical 2 × 2 matrices, denoted

by ĤBdG. The four-component wavefunction is thus decoupled into 2 two-component

wavefunctions, which satisfy ĤBdGΨσ = EΨσ, where σ = ±, and ĤBdG is given by

ĤBdG =

(
ξ(−i∇) dz

d†z −ξ(−i∇)

)
, (3.88)

with

dz = η1(r)
−i∇x

kF
+ η2(r)

−i∇y

kF
.

We should point out that σ does not denote the spin projection of the two-component

wavefunction; in fact, the components of both spinors have mixed spin projections. From

this point, we may drop the label σ and restore it where necessary in final expressions.

As mentioned in Sec. 2, we consider superconducting textures in two dimensions in

which the order parameter depends only on x. For a DW parallel to the y-axis, the

y-dependence of the quasiparticle wavefunction is equivalent to that of a free particle

(i.e. plane wave). It can be written as eikyyΨ(x), where Ψ(x) satisfies the two-component

BdG equations for a given ky:
k̂2
x − k2

0

2m∗
∆(x)

∆†(x) − k̂
2
x − k2

0

2m∗

Ψ = EΨ, (3.89)

with k̂x = −i∇x, k0 =
√
k2
F − k2

y, and ∆(x) = dz(x) = η1(x)(k̂x/kF ) + η2(x)(ky/kF ).

To obtain Eq. (3.89), we made the assumption that the band dispersion is isotropic and

given by ξ(k) = (k2 − k2
F )/2m∗, where m∗ is the effective mass. Note that ky is not an

operator here, and this reflects the fact that the system contains only x-dependence.

The DW order parameter ∆(x) varies slowly on the scale of 1/kF . Consequently, we

can apply the semiclassical (Andreev) approximation [60] and seek solutions of Eq. (3.89)
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in the form Ψ(x) = eikxxψ(x), where ψ(x) = (u, v)T is a slowly varying “envelope” func-

tion with electron-like (u) and hole-like (v) components. Due to the circular symmetry of

the Fermi surface in the xy plane, we have kx = ±k0 for a given ky. It thus follows that

k̂xΨ(x) = exp(±ik0x)(±k0− i∇x)ψ(x), and also k̂2
xΨ(x) = exp(±ik0x)(−i∇x±k0)2ψ(x).

Substituting Ψ(x) into Eq. (3.89), from the first row of the Hamiltonian we obtain the

following equation:

1

2m∗
e±ik0x

[
(−i∇x ± k0)2 − k2

0

]
u(x)

+η1
k̂x
kF

[
e±ik0xv(x)

]
+ η2

ky
kF

[
e±ik0xv(x)

]
= Ee±ik0xu(x),

and there is an analogous expression that follows from the second row of the Hamilto-

nian. Simplifying this last expression by performing the differentiation and canceling the

exponentials, we obtain:

∇x

2m∗
[−2ikxu(x)−∇xu(x)] +

(
η1
kx
kF

+ η2
ky
kF

)
v(x)− iη1

(∇xv(x))

kF
= Eu(x), (3.90)

where we have used the fact that kx = ±k0.

As a consequence of the cylindrical symmetry of the Fermi surface, the direction

of semiclassical propagation of quasiparticles is defined by the Fermi wavevector kF ≡
(kx, ky) = kF (cos θ, sin θ). It follows that kx/kF = cos θ and ky/kF = sin θ, and since

cos θ, sin θ ∼ 1 and ψ(x) is a slowly varying function, |∇xψ(x)|/kF � kxψ(x)/kF . This

allows us to neglect the terms containing the gradients of ψ(x), and then Eq. (3.90) takes

the form:

−ivF,x∇xu(x) + (η1 cos θ + η2 sin θ) v(x) = Eu(x), (3.91)

where vF,x = vF cos θ and vF = kF/m
∗. A similar manipulation of the equation obtained

from the second row of the 2 × 2 reduced BdG Hamiltonian, Eq. (3.89), will show that

ψ(x) satisfies the Andreev equations:(
−ivF,x∇x ∆kF (x)

∆∗kF (x) ivF,x∇x

)
ψ = Eψ, (3.92)

where ∆kF (x) is the DW order parameter for a given kF , which has the form

∆kF = η1(x) cos θ + η2(x) sin θ = |∆kF (x)|eiΦ(x). (3.93)

In this last expression, |∆kF (x)| is the magnitude, and Φ(x) is the phase, of the semi-
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classical order parameter.

The asymptotics of ∆kF for the chiral p-wave state are fixed by Eqs. (2.2a) and (2.2b);

however, different models for the DW structure (see Sec. 2) lead to different forms for

the order parameter in the vicinity of the DW. While the exact shape is unknown, the

chiral p-wave order parameter far from the DW can be written as

∆− ≡ ∆kF (x� −ξd) = ∆0e
iθ,

∆+ ≡ ∆kF (x� ξd) = ∆0e
iχe−iθ.

(3.94)

In the single sharp DW model, the order parameter is uniform within the domains of

opposing chirality, changing abruptly at the boundary x = 0. Thus we have the following

form for ∆kF in terms of its asymptotic values above:

∆kF = ∆−Θ(−x) + ∆+Θ(x), (3.95)

where Θ(x) is the Heaviside step function. For two DWs, we have

∆kF (x) = ∆−Θ(−x) + ∆+Θ(x)Θ(L− x) + ∆−Θ(x− L). (3.96)

There are two types of solutions supported by the Andreev equations: discrete bound

states (Andreev bound states, or ABS’s), for which |E| ≤ ∆0; as well as a continuum

of scattering states, where |E| > ∆0. In the next subsection we will discuss the formal

properties of the Andreev scattering states. Subsequently, in Sec. 4, we will analyze the

bound and scattering states for the DW configurations introduced above.

3.2.1 Formal properties of the Andreev scattering states

We consider a single-DW setup as described in Sec. 2, with a DW of thickness ξd, whose

order parameter asymptotics are given by ∆kF (x→ ±∞) = ∆±. At given energy, there

are two solutions ψL(x) and ψR(x), corresponding to left- and right-incident scattering,

respectively, which have the following asymptotic form:

ψL(x) = C(E)

αLeiqx + rLβLe
−iqx, x� −ξd

tLγLe
iqx, x� ξd

(3.97)

ψR(x) = C(E)

tRγRe−iqx, x� −ξd
αRe

−iqx + rRβRe
iqx, x� ξd

,
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where αp, βp, γp (p = L,R) are two-component constants which depend on energy, q =√
E2 −∆2

0/|vF,x| ≥ 0, and C(E) is the normalization coefficient.

We see that there are two sets of the Andreev equations, corresponding to ψR(L) =

[uR(L), vR(L)]
T , i.e. two directions of scattering. Let us temporarily rename ∆kF (x) = ∆,

and then substitution of ψp1 (p1 = R,L) into Eq. (3.92) gives

−ivF,x
dup1

dx
+ ∆vp1 = Eup1 , (3.98a)

∆∗up1 + ivF,x
dvp1

dx
= Evp1 . (3.98b)

We take the complex conjugates of the analogous expressions for ψp2 to obtain:

ivF,x
du∗p2

dx
+ ∆∗v∗p2

= Eu∗p2
, (3.99a)

∆u∗p2
− ivF,x

dv∗p2

dx
= Ev∗p2

. (3.99b)

Subsequently, we multiply Eq. (3.98a) from the left by u∗p2
, and subtract from the resulting

expression Eq. (3.99b) multiplied from the right by vp1 , to obtain:

−ivF,x
(
u∗p2

dup1

dx
−
dv∗p2

dx
vp1

)
= E(u∗p2

up1 − v∗p2
vp1). (3.100)

In a similar manner, we multiply Eq. (3.98b) from the left by v∗p2
, and subtract from the

result Eq. (3.99a) multiplied from the right by up1 , to find:

ivF,x

(
v∗p2

dvp1

dx
−
du∗p2

dx
up1

)
= E(v∗p2

vp1 − u∗p2
up1). (3.101)

Adding together Eqs. (3.100) and (3.101), it becomes evident that there is a conserved

quantity, i.e.
d

dx

(
u∗p2

up1 − v∗p2
vp1

)
= 0. (3.102)

We define a new quantity Wp1,p2(x), which plays the role of the Wronskian of states

|E, p1〉 and |E, p2〉, where 〈x|E, p〉 = ψp(x):

Wp1,p2 = u∗p1
up2 − v∗p1

vp2 = tr
(
ψ†p1

σ̂3ψp2

)
, (3.103)

and since, according to Eq. (3.102), dWp1,p2/dx = 0, it follows that Wp1,p2 does not

depend on x. Furthermore, since Wp1,p2 = const for all values of x, continuity of Wp1,p2

on either side of the DW for the four possible combinations of p1, p2 leads to a set of
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conditions for the reflection and transmission coefficients.

The exact expressions for αp, βp, γp in terms of α
(±)
q are derived below, see Eqs. (4.5)

and (4.6) and the discussion thereafter. To facilitate the calculation of the four elements

of Wp1,p2 , we impose an additional factor of 1/
√

2 on the vector coefficients αp, βp, γp.

After calculating the expressions (3.103) for all combinations of p1, p2, we have:

WL,L(x) = C2(E)
vF,xq

E


1− |rL|2, x� −ξd

|tL|2, x� ξd

; (3.104a)

WR,R(x) = C2(E)
vF,xq

E


−|tR|2, x� −ξd

|rR|2 − 1, x� ξd

; (3.104b)

WL,R(x) = C2(E)
vF,xq

E


−r∗LtR, x� −ξd

t∗LrR, x� ξd

; (3.104c)

WR,L(x) = C2(E)
vF,xq

E


−t∗RrL, x� −ξd

r∗RtL, x� ξd

. (3.104d)

Since Wp1,p2 is constant for all x, we now invoke continuity across the DW in each of the

above four expressions to obtain:

|rL|2 + |tL|2 = 1,

|rR|2 + |tR|2 = 1,
(3.105)

r∗LtR + t∗LrR = 0,

t∗RrL + r∗RtL = 0,

where there is a direct correspondence between the order of the expressions in Eq. (3.104)

and this last set of relations. It is clear that these relations are satisfied if |tL| = |tR| =
t, |rL| = |rR| = r =

√
1− t2, and thus the scattering matrix defined by

S =

(
tL rR

rL tR

)
(3.106)

is unitary, i.e. S† = S−1.

Further manipulation of the Andreev equations for the left- and right-incident scat-
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tering states reveals that there is another conserved quantity. We take the complex

conjugate of Eq. (3.99a), then multiply it from the left by vp1 , and finally subtract it

from Eq. (3.98a) multiplied from the right by vp2 , to obtain:

ivF,x

(
vp1

dup2

dx
− dup1

dx
vp2

)
= E(up1vp2 − vp1up2). (3.107)

Similarly, we multiply Eq. (3.98b) from the right by up2 and subtract from it Eq. (3.99b)

complex conjugated and multiplied by up1 :

ivF,x

(
dvp1

dx
up2 − up1

dvp2

dx

)
= E(vp1up2 − up1vp2). (3.108)

After adding Eqs. (3.107) and (3.108) together, the other conserved quantity presents

itself:
d

dx
(up1vp2 − vp1up2) = 0. (3.109)

Consequently, we introduce

W̃p1,p2(x) = up1vp2 − vp1up2 = itr
(
ψTp1

σ̂2ψp2

)
, (3.110)

and since dW̃p1,p2/dx = 0, this new quantity is constant for all values of x. Note that

because up, vp are just functions, their order can be interchanged in Eq. (3.110), and

thus W̃p1,p2 is by definition the Wronskian of the vector states |E, p1〉 and |E, p2〉. Quick

inspection of Eq. (3.110) reveals that W̃R,L(x) = −W̃L,R(x), and furthermore W̃L,L(x) =

W̃R,R(x) = 0, since the state |E, p1〉 is itself linearly dependent, necessitating a Wronskian

which is zero for all values of x.

We calculate the element W̃R,L on both sides of the DW to find:

W̃R,L = −C2(E)
vF,xq

E
sgn(E)


∆−
∆0

tR, x� −ξd

∆+

∆0

tL, x� ξd

, (3.111)

and since W̃R,L(x � −ξd) = W̃R,L(x � ξd), we recover another property for the trans-

mission coefficients:
tR
tL

=
∆+

∆−
. (3.112)

We note that while relations (3.105) hold for an arbitrary DW configuration, this last

identity holds only in the case of a DW configuration with an even number of domains,
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i.e. one with ∆kF (x→ ±∞) = ∆±, where ∆± are defined in Eq. (3.94). For the two-DW

configuration considered in Sec. 2, for example, this exact identity does not hold because

∆kF (x → ±∞) = ∆−. As a second note we point out that the identities (3.105) and

(3.112) are independent of the exact profile for the DW in the region −ξd < x < ξd , i.e.

of the model considered. In particular, these relations hold for the sharp DW models

considered in subsequent sections throughout the work.
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4 Quasiparticle properties of DWs

4.1 Quasiparticle spectrum for a single DW

In this section we apply the general results from Sec. 3 to obtain the quasiparticle spec-

trum of a single planar defect in the semiclassical approximation. We will calculate both

the bound state spectrum and the properties of the scattering states.

4.1.1 ABS energies for a DW

For a single DW the semiclassical order parameter in Eq. (3.92) is given by the expres-

sion (3.95). The solution of this equation corresponding to the bound states is given

by:

ψ(x) =

√
Ω

2|vF,x|
e−Ω|x|/|vF,x|

 ∆±
E ∓ iΩ sgnvF,x

1

 , (4.1)

where Ω =
√

∆2
0 − E2, the upper (lower) sign corresponds to x > 0 (x < 0), ∆± are de-

fined in Eq. (3.94), and the coefficient in this last expression arises from the normalization

condition: ∫ ∞
−∞

tr[ψ†(x)ψ(x)]dx = 1.

By equating the wave functions at the boundary between the two domains, we obtain

the characteristic equation for the bound state energy:

E + iΩ sgnvF,x
E − iΩ sgnvF,x

=
∆−
∆+

. (4.2)

To solve this last equation, we first introduce Ẽ = E sgnvF,x. Now Ẽ2 + Ω2 = ∆2
0

(a constant), and we use this identity to seek solutions for the energy in the following

form: Ẽ = ∆0 cos Θ and Ω = ∆0 sin Θ. We also impose the restriction on the values

of Θ such that Ω is real and Ω ≥ 0. From Eq. (4.2), one can see that Θ satisfies

e2iΘ = ei(2θ−χ), and consequently Θ = θ−χ/2 +πn, where n is an integer. Thus we have

Ẽ = ∆0(−1)n cos(θ − χ/2), and the value of n is found from the condition mentioned

above (Ω ≥ 0), which yields

sgn(sin Θ) = 1 = (−1)n sgn [sin (θ − χ/2)] .

Taking everything into consideration, we obtain the following expression for the ABS
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energy [61]:

E0(θ) = ∆0s(θ) cos
(
θ − χ

2

)
, (4.3)

with s(θ) = sgn [sin (θ − χ/2) cos θ]. This expression is valid for an arbitrary phase

difference across the DW and it should be noted that, in general, the ABS energy is not

a continuous function of θ. There are certain directions of semiclassical propagation at

which discontinuities occur: at θ = ±π/2, corresponding to a “grazing trajectory” where

the quasiparticles move parallel to the DW (in this case the Andreev approximation

is actually not applicable); and also at θ = χ/2 and θ = χ/2 + π, in which case the

quasiparticles do not “see” the DW, since ∆+ = ∆−.

Fig. 11 depicts the structure of the ABS energy for several values of the common phase

difference χ. In particular, if χ = π, then Eq. (4.3) yields E = −∆0 sin θ = −∆0ky/kF

(see also Ref. [49]), which vanishes at ky = 0. The presence of zero modes is in fact

generic: the ABS energy vanishes at θ = (χ±π)/2, resulting in low-energy quasiparticles

bound to the DW. Taking the spin into account, we have two pairs of spin-degenerate

zero mode branches.

4.1.2 Andreev scattering states for a DW

We proceed in the standard fashion to obtain the reflection/transmission coefficients for

the Andreev scattering states in the sharp DW model. We consider the general form of

the quasiparticle wavefunctions on each side of the single DW:

ψ−(x) = A
(−)
+

(
α1−

β1−

)
eiqx + A

(−)
−

(
α2−

β2−

)
e−iqx,

(4.4)

ψ+(x) = A
(+)
+

(
α1+

β1+

)
eiqx + A

(+)
−

(
α2+

β2+

)
e−iqx,

where the subscripts on the coefficients correspond to directions of propagation (left or

right), and the subscripts on the wavefunctions and the superscripts on the coefficients

“−” (+) correspond to the region x < 0 (x > 0). After substitution of these expressions

into the Andreev equations (3.92), we find that the quasiparticle wavefunctions take the

form:

ψ−(x) = A
(−)
+ α(−)

q eiqx + A
(−)
− α

(−)
−q e

−iqx,

(4.5)

ψ+(x) = A
(+)
+ α(+)

q eiqx + A
(+)
− α

(+)
−q e

−iqx,
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Figure 11: The ABS energy for a sharp DW as a function of the direction of the quasi-
particle propagation θ, for selected values of the phase difference across the DW: χ = π
(top), χ = π/4 (middle), and χ = 0 (bottom).
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where q =
√
E2 −∆2

0/|vF,x| ≥ 0,

α(±)
q =


∆±
∆0

(
1 +

qvF,x
E

)1/2

sgn(E)(
1− qvF,x

E

)1/2

 , (4.6)

and α
(±)
−q results from replacing q → −q in this last expression.

Inspection of Eq. (4.5) reveals that the amplitudes of the waves incident on the DW

correspond to coefficients A
(−)
+ and A

(+)
− , while the outgoing wave amplitudes are given

by A
(−)
− and A

(+)
+ . Thus in the case of left-incident scattering, it follows that A

(−)
+ = 1,

A
(−)
− = rL, A

(+)
+ = tL, and A

(+)
− = 0, where rL is the left-incident reflection coefficient and

tL is the corresponding transmission coefficient. For the right-incident scattering, one has

A
(−)
+ = 0, A

(−)
− = tR, A

(+)
+ = rR, and A

(+)
− = 1, where tR and rR are the right-incident

transmission and reflection coefficients, respectively. By equating the wavefunctions at

the boundary x = 0 (i.e. the location of the sharp domain wall) separately for each of

these cases, we find that the reflection and transmission coefficients have the following

form [61]:

tL =
∆−
∆+

tR =
2∆−qvF,x

(∆+ + ∆−)qvF,x + (∆+ −∆−)E
,

(4.7)

rL = rR = − ∆0(∆+ −∆−) sgn(E)

(∆+ + ∆−)qvF,x + (∆+ −∆−)E
.

It’s easy to see that these coefficients satisfy the general properties (3.105), which are

independent of the DW configuration.

4.2 Quasiparticle spectrum for two DWs

It will be shown below that all quantities of interest, including the interaction between

the DWs and also the ABS spectrum, can be expressed in terms of the properties of

the bulk scattering states, encoded in the scattering matrix Ŝ. Accordingly, we begin

the analysis of the quasiparticle spectrum for the two DWs with the calculation of the

scattering matrix.

4.2.1 Scattering matrix for the two DWs

The scattering matrix Ŝ relates the amplitudes of the incident wavefunctions to the out-

going amplitudes, i.e. the amplitudes of the waves that are reflected/transmitted by
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the DW configuration. To facilitate the calculation of Ŝ, we perform a gauge transfor-

mation on the wavefunctions ψ(x) to remove the phase in the order parameter ∆kF , see

Eq. (3.93), that appears in the off-diagonal elements of the Andreev Hamiltonian. For the

two-DW setup described in Sec. 2, we can adopt a more convenient notation to describe

the order parameter in each of the three domains:

∆kF (x) =

{
∆0e

iϕ1 , x < 0, x > L

∆0e
iϕ2 , 0 < x < L

, (4.8)

which can be further simplified to ∆kF (x) = ∆0e
iΦ(x), with Φ(x) = ϕ2 = χ − θ in the

middle domain and Φ(x) = ϕ1 = θ in the outer two domains.

We denote the gauge-transformed wavefunctions by ψ̃ and define ψ = Û ψ̃, where Û

is given by

Û = eiΦ(x)σ̂3/2 =

(
eiΦ/2 0

0 e−iΦ/2

)
. (4.9)

Note that this choice for the gauge-transformed wavefunctions is consistent with the order

parameter asymptotics far from the DW, i.e. ψ(+∞) = ψ(−∞), in accordance with the

gap equation since ∆kF (+∞) = ∆kF (−∞), and it is easy to show from this boundary

condition that ψ̃(+∞) = ψ̃(−∞).

Continuity of the original wavefunctions at the boundaries x = 0, L implies that

ψ(+0) = ψ(−0) and ψ(L + 0) = ψ(L− 0); however, removing the phase from the order

parameter causes the gauge-transformed wavefunctions ψ̃ to suffer a discontinuity in

the phase at the boundaries. In fact, one can easily verify that ψ̃ satisfy the following

boundary conditions:

ψ̃(+0) = e−iδσ̂3ψ̃(−0)

ψ̃(L+ 0) = eiδσ̂3ψ̃(L− 0), (4.10)

where δ = ∆ϕ/2, with ∆ϕ = ϕ2 − ϕ1 = χ− 2θ.

Although we have removed the phase Φ from the off-diagonal terms in the Andreev

Hamiltonian, its derivative Φ′ appears in the diagonal elements after the gauge transfor-

mation, so that ψ̃ satisfies the equation(
−ivF,x∇x + vF,xΦ

′(x)/2 ∆0

∆0 ivF,x∇x + vF,xΦ
′(x)/2

)
ψ̃ = Eψ̃, (4.11)

with the same energy eigenvalues as the original wavefunctions. Due to the delta-function
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singularities of Φ′ at x = 0, L, we apply the gauge transformation separately in each region

(i.e. at all x 6= 0, L, where Φ′ = 0), and obtain:(
−ivF,x∇x ∆0

∆0 ivF,x∇x

)
ψ̃ = Eψ̃ (4.12)

in each domain. This last equation has the form of the Andreev equation in a uniform

superconductor, and as such can easily be solved. The solution must satisfy the “twisted”

matching conditions given by Eq. (4.10).

We focus on the scattering states, and for now we drop the tilde on the gauge-

transformed wavefunctions. For the continuum of scattering states, the quasiparticle

wavefunctions are linear combinations of plane waves:

ψ(x) =
∑
α=±

Aαe
αiqx

(
uα

1

)
, (4.13)

where

u± =
∆0

E ∓ qvF,x
, (4.14)

and q =
√
E2 −∆2

0/|vF,x| ≥ 0. The subscript on the amplitudes of the wavefunction in

Eq. (4.13) corresponds to the direction of quasiparticle propagation (i.e. left or right).

We also introduce a superscript on the amplitudes of the wavefunctions in the outer two

domains (x < 0, x > L) to identify each particular region. Let the “−” superscript denote

the region x < 0, and the “+” superscript correspond to the x > L region. Then the

amplitudes of the waves incident on the DW configuration are given by A
(−)
+ and A

(+)
− ,

while the outgoing (reflected and transmitted) waves have the amplitudes A
(+)
+ and A

(−)
− .

We then define the scattering matrix Ŝ as follows:A(+)
+

A
(−)
−

 = Ŝ

A(−)
+

A
(+)
−

 . (4.15)

The scattering matrix is calculated by using the matching conditions in Eq. (4.10)

to eliminate the wave amplitudes in the region 0 < x < L and relate the amplitudes of

incident waves to those of the outgoing waves. In this way we find that our scattering
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matrix has the following entries:

S11 = S22 =
(E2 −∆2

0)

(E2 −∆2
0)−∆2

0(e2iqL − 1) sin2 δ
,

S12 =
(E2 −∆2

0) [sin δ(i cos δ − % sin δ)(%− 1)] (e−2iqL − 1)

(E2 −∆2
0)−∆2

0(e2iqL − 1) sin2 δ
, (4.16)

S21 =
(E2 −∆2

0) [sin δ(i cos δ + % sin δ)(%+ 1)] (e2iqL − 1)

(E2 −∆2
0)−∆2

0(e2iqL − 1) sin2 δ
,

with q, L, and δ defined previously, and % = E/qvF,x.

From the Andreev equations it immediately follows that ψ†σ̂3ψ is conserved, see

Eq. (3.102), and so this combination plays the role of the probability current density in

our time-independent system. Using the wavefunctions in Eq. (4.13), we can calculate the

probability current density in the outer two domains (x < 0, x > L), and imposing the

condition of continuity across each region, we find that our scattering matrix Ŝ satisfies

the following relation: Ŝ†Ŵ Ŝ = Ŵ , where Ŵ is given by

Ŵ =

(
1− u2

+ 0

0 u2
− − 1

)
,

with u± defined in Eq. (4.14).

To conclude this subsection we note that, by considering scattering from the left and

right separately, one can relate the scattering matrix to the reflection and transmission

coefficients of the Bogoliubov quasiparticles in the presence of the order parameter tex-

ture. If, for example, there is a wave incident on the DW located at x = 0 from the left,

then we can set the incident amplitude A
(−)
+ = 1, and we must have A

(+)
− = 0, A

(+)
+ = tL

and A
(−)
− = rL, where tL and rL represent the left-incident transmission and reflection co-

efficients, respectively. The right-incident transmission and reflection coefficients tR and

rR can be introduced in a similar way, by considering right-incident scattering on the DW

at x = L. Then one can relate the scattering matrix to the reflection and transmission

coefficients as follows:

Ŝ =

(
tL rR

rL tR

)
. (4.17)

We should point out that since we have applied the gauge transformation to the quasi-

particle wavefunction before calculating the scattering matrix, the reflection and trans-

mission coefficients obtained by this method are not equivalent to the ones obtained from

the direct Andreev calculation (without the gauge transformation).
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4.2.2 Reflection and transmission coefficients from direct Andreev

calculation

In this section we calculate the reflection and transmission coefficients by directly solv-

ing the Andreev equations, without gauge transformation, analogous to the calculation

in Sec. 4.1.2 for the single sharp-DW model. The sharp two-DW configuration consid-

ered here was introduced in Sec. 2, and has the order parameter distribution given in

Eq. (3.96).

We proceed as in Sec. 4.1.2 to determine the scattering states (|E| > ∆0) for the

two-DW configuration, and find that the quasiparticle wavefunctions in each of the three

domains have the analogous form of Eq. (4.5):

ψ1(x) = A
(−)
+ α(−)

q eiqx + A
(−)
− α

(−)
−q e

−iqx,

ψ2(x) = B+α
(+)
q eiqx +B−α

(+)
−q e

−iqx, (4.18)

ψ3(x) = A
(+)
+ α(+)

q eiqx + A
(+)
− α

(+)
−q e

−iqx,

where subscripts 1, 2, 3 correspond to the domains x < 0, 0 < x < L, and x > L,

respectively. The subscripts on the coefficients correspond to the directions of propa-

gation (left or right), and the coefficients are labelled by superscripts “−” (“+”) in the

regions x < 0 (x > L) to denote their relation to the reflection and transmission coeffi-

cients as in Secs. 4.1.2 and 4.2.1. In Eq. (4.18), q =
√
E2 −∆2

0/|vF,x| ≥ 0, and α
(±)
q are

two-component functions given by Eq. (4.6).

We consider again the left- and right-incident scattering separately to arrive at a

matrix equation for the reflection and transmission coefficients in both of these cases. For

the left-incident scattering, we have A
(−)
+ = 1, A

(−)
− = rL, A

(+)
− = 0, and A

(+)
+ = tL. Using

the matching conditions ψ1(0) = ψ2(0), ψ2(L) = ψ3(L) for continuity of the quasiparticle

wavefunction, we obtain a set of four equations for the four unknowns rL, tL, B+, and

B−. These equations can be written in the matrix form as follows:

−1
∆+

∆−

√
1 + γ√
1− γ

∆+

∆−
0

−1

√
1− γ√
1 + γ

1 0

0
∆+

∆−

∆+

∆−

√
1− γ√
1 + γ

e−2iqL −1

0 1

√
1 + γ√
1− γ

e−2iqL −1





rL

B+

B−

tL


=



√
1 + γ√
1− γ
√

1− γ√
1 + γ

0

0


, (4.19)
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where γ = qvF,x/E. We solve this linear system using the mathematical software Maple,

and find that the amplitudes of the left-incident reflected and transmitted waves are

given by the following expressions:

rL =
∆0

|E|
(e−2iqL − 1)(∆− −∆+) [∆−(1 + γ)−∆+(1− γ)]

D
,

(4.20)

tL =
4∆+∆−γ

2e−2iqL

D
,

where

D =
[
(∆+ + ∆−)2γ2 − (∆+ −∆−)2

]
e−2iqL + (∆+ −∆−)2(1− γ2).

Substituting the definition of q into γ, we see γ = sgnvF,x
√
E2 −∆2

0/E. Consequently,

for large values of the energy, |E| � ∆0, γ → sgnvF,x
√
E2/E = sgnvF,x sgnE, and√

1− γ2 = ∆0/|E| → 0. As a result, the numerator of rL goes to zero, and since

D → [(∆+ + ∆−)2γ2 − (∆+ −∆−)2] e−2iqL, which is nonzero, it follows that rL → 0 as

E → ∞. This is intuitively expected since in the limit |E| � ∆0, the quasiparticle is

moving so quickly that it does not “see” the DW configuration.

For the right-incident scattering, it follows that A
(−)
+ = 0, A

(−)
− = tR, A

(+)
− = 1, and

A
(+)
+ = rR. Using the matching conditions at the boundaries x = 0 and x = L, we

obtain again four equations for the unknown amplitudes rR, tR, B+, and B−, which can

be arranged in a matrix form as follows:

0 −∆+

∆−

√
1 + γ√
1− γ

−∆+

∆−
1

0

√
1− γ√
1 + γ

1 −1

−1
∆+

∆−

∆+

∆−

√
1− γ√
1 + γ

e−2iqL 0

−1 1

√
1 + γ√
1− γ

e−2iqL 0





rR

B+

B−

tR


=



0

0

√
1− γ√
1 + γ

e−2iqL

√
1 + γ√
1− γ

e−2iqL


.

(4.21)

The solution to this last equation was again obtained using Maple, and the corresponding

right-incident reflection and transmission coefficients are given by:

rR = −∆0

|E|
e−2iqL(e−2iqL − 1)(∆− −∆+) [∆+(1 + γ)−∆−(1− γ)]

D
,

(4.22)

tR = tL,
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where D is defined above. It can be shown that these scattering coefficients satisfy the

formal properties in Sec. 3.2.1, namely, the relations in Eq. (3.105). Furthermore, we

note that tR/tL = ∆−/∆− = 1, in accordance with the order parameter asymptotics at

x→ ±∞, see Eq. (3.112) and discussion thereafter in Sec. 3.2.1. One can further check

that |rR|2 = |rL|2.

4.2.3 Bound state spectrum from the scattering matrix

We now proceed with the calculation of the bound state energies in the two-DW model.

Rather than using the direct Andreev calculation similar to that performed for the single-

DW case, we begin with the scattering matrix for the two-DW setup, see Eq. (4.16). This

expression will ultimately be used to evaluate the interaction energy between the DWs in

Sec. 5.3. The ABS energies are obtained from the poles in the scattering matrix entries,

after analytical continuation to the real energy axis within the interval |E| ≤ ∆0.

Consequently, we begin by determining the poles of the entries in the scattering matrix

to recover the bound state energy for our two-DW setup. We must analytically continue

q in the complex energy plane to the energies in the subgap region |E| ≤ ∆0. Defining

the dimensionless energy ε = E/∆0, we rewrite

q =
∆0

|vF,x|
√
ε2 − 1 =

∆0

vF | cos θ|
√
ε2 − 1. (4.23)

We also introduce the correlation length ξ = vF/∆0 (recall that we use the units in which

~ = 1) and define dimensionless distance L̃ = L/ξ to rewrite qL = L̃
√
ε2 − 1/| cos θ|. For

the bound state energies with |ε| ≤ 1, we have qL = ±iL̃
√

1− ε2/| cos θ|, and so we have

to choose the correct branch of q before proceeding further. To this end, we consider the

function w(z) =
√
z2 − 1, which has two branch points: one at z = 1, and the other at

z = −1. We choose the branch to ensure that w(z) is real and w(z) ≥ 0 if z is real and

|z| > 1, in accordance with the definition of q, see Eq. (4.23). One can select the branch

cuts to run parallel to the imaginary axis, from ±∆0 to ±∆0∓ i∞, and then the correct

choice is w(z) = +i
√

1− z2 for z along the real axis within the interval [−1, 1].

To simplify the denominator in Eq. (4.16), we define a new variable α̃(ε) = e2iqL =

e−2L̃
√

1−ε2/| cos θ|. Then from the poles in the scattering matrix entries we derive the

following equation for the bound state energies:

ε2 − cos2 δ − α̃ sin2 δ = 0. (4.24)

The presence of ε in α̃ makes obtaining an analytical solution for the energy nearly
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impossible. Consequently, we solve this equation numerically to obtain a profile for the

ABS energies. To illustrate the effect of L̃ on the spectrum, we present the results for

χ = π in Fig. 12.

To make analytical progress, we can consider Eq. (4.24) for small values of α̃, which

physically corresponds to large DW separation. Expanding this equation in powers of α̃

up to linear order, we obtain the following result:

ε = ±| cos δ|
(

1 +
α̃

2
tan2 δ

)
. (4.25)

The two DWs become decoupled at α̃→ 0, which occurs for either the grazing trajectory

θ = ±π/2, or for the DW separation L̃ → ∞. This is because, if a particle travels on a

path which is nearly tangential to the first DW or if the DWs are infinitely separated, by

the time the particle reaches the second DW it will have no memory of the first one. In

this case, we recover the same shape for the ABS energy E0(θ) associated with the single

DW configuration, see Eq. (4.3), but the dependence on s(θ) has been lost. The DW

located at x = 0 is associated with bound state energies corresponding to E0(θ), while

the anti-wall at x = L corresponds to −E0(θ), and consequently, our energy curves for

the two DWs have two branches, as shown in Fig. 12.

4.2.4 Bound states from the direct Andreev solution

We briefly review the DW configuration under consideration in this section. Recall that

in the semiclassical approximation the order parameter can be written as ∆kF (x) =

∆−Θ(−x) + ∆+Θ(x)Θ(L− x) + ∆−Θ(x−L), where Θ(x) is the Heaviside step function.

We consider the bound state wavefunctions separately in each of the three domains: (1)

x < 0, (2) 0 < x < L, and (3) x > L. The total x-dependence of the quasiparticle

wavefunction in this approximation takes the form Ψ(x) = eikxxψ(x), where kx = ±k0

and ψ(x) = (u, v)T is a slowly varying two-component envelope function which satisfies

the Andreev equations (3.92). In region (1) with ∆kF = ∆− = ∆0e
iθ, we seek solutions

which are bound to the DW: ψ1(x) = C1(α1, β1)T eik1x, where C1 is an energy-dependent

normalization constant, α1 and β1 are components of a constant spinor, and k1 = iκ1,

where κ1 < 0. Solving the Andreev equations for this expression, we find that the

quasiparticle wavefunction is given by:

(
u1(x)

v1(x)

)
= C1

 ∆0e
iθ

E + iΩ sgnvF,x
1

 e−Ω|x|/|vF,x|, (4.26)



4 QUASIPARTICLE PROPERTIES OF DWS 94

0 1 2 3 4 5 6

θ

-1

0

1

-1

0

1

E/∆
0

-1

0

1

Figure 12: Bound state energy for the sharp two-DW model with χ = π, for varying
dimensionless DW separation L̃ = L/ξ. From the top: L̃ = 5, 1, 0.5.

where Ω =
√

∆2
0 − E2 ≥ 0, and thus κ1 = −Ω/|vF,x|.

In the second region 0 < x < L, we do not have to worry about the quasiparticle

wavefunction blowing up, and we can therefore seek solutions to the Andreev equations

which are linear combinations of positive and negative exponentials (e±ik2x). Solving

the Andreev equations in this region with ∆kF = ∆+ = ∆0e
iχe−iθ, we find that the

wavefunctions have the form(
u2(x)

v2(x)

)
= C2,1

 ∆0e
iχe−iθ

E − iΩ sgnvF,x
1

 e−Ωx/|vF,x|

+ C2,2

 ∆0e
iχe−iθ

E + iΩ sgnvF,x
1

 eΩx/|vF,x|, (4.27)

where C2,1 and C2,2 are energy-dependent constants.

In region (3), we again seek a solution comprised of a single exponential function to
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keep the quasiparticle localized to the DW. In this region we find

(
u3(x)

v3(x)

)
= C3

 ∆0e
iθ

E − iΩ sgnvF,x
1

 e−Ω|x|/|vF,x|. (4.28)

Now we are in a position to discuss the bound state energies. In the sharp-DW

model we consider here, the DW thickness ξd → 0 and thus the order parameter changes

abruptly at the boundary between the domains, i.e. at x = 0, L. Therefore, for the

quasiparticle wavefunction to be continuous across all of the domains, we must have the

following conditions hold:

ψ1(0) = ψ2(0)→

{
u1(0) = u2(0)

v1(0) = v2(0)
,

(4.29)

ψ2(L) = ψ3(L)→

{
u2(L) = u3(L)

v2(L) = v3(L)
.

Substituting the wavefunctions (4.26), (4.27), and (4.28) into this last set of relations,

we obtain four equations for the bound state energy, which can be arranged in a matrix

form as follows:
ei(2θ−χ) −E + iΩ sgnvF,x

E − iΩ sgnvF,x
−1 0

1 −1 −1 0

0 1
E − iΩ sgnvF,x
E + iΩ sgnvF,x

e2ΩL/|vF,x| −ei(2θ−χ)

0 1 e2ΩL/|vF,x| −1




C1

C2,1

C2,2

C3

 = 0.

(4.30)

To obtain a nontrivial solution of this last equation, the determinant of the matrix must

be zero. To facilitate the calculation of the determinant, we introduce a shorthand

notation:

ε =
E + iΩ sgnvF,x
E − iΩ sgnvF,x

,

α = e2ΩL/|vF,x|, (4.31)

β = ei(2θ−χ),
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and then the matrix in Eq. (4.30) takes the form:

M(E) =


β −ε −1 0

1 −1 −1 0

0 1
α

ε
−β

0 1 α −1

 . (4.32)

By setting the determinant of M(E) to zero, we find that the ABS energy satisfies the

following equation:

(β − 1)2 + α

(
β

ε
− β2 − 1 + βε

)
= 0. (4.33)

In the limit of large domain wall separation L→∞, we have α→∞ and so the first

term in Eq. (4.33) can be neglected. Consequently, in this limit we recover the following

equation for the bound state energy:(
β − 1

ε

)
(ε− β) = 0, (4.34)

which has two solutions: one for each single domain wall, as the two DWs are essentially

decoupled at L → ∞. The first solution, ε = β, is equivalent to the equation obtained

for the bound state energy of a single DW located at x = 0, see Eq. (4.2), and the other

solution corresponds to the anti-wall located at x = L, and is given by ε = 1/β. We

can further employ an analogous approach to the one used in obtaining Eq. (4.2), to find

that the bound state energy for the second DW is indeed given by E = −E0(θ), where

E0(θ) is defined in Eq. (4.3).

We now consider the case of arbitrary L and introduce a new variable α̃ = 1/α.

Rearranging Eq. (4.33), we then arrive at a quadratic equation for ε:

βε2 −
[
(1 + β2)− α̃(1− β)2

]
ε+ β = 0, (4.35)

and applying the quadratic formula, we find

ε = y ± i
√

1− y2, (4.36)

where y = [(1 + β2)− α̃(1− β)2] /2β. Recall that ε is a function of E and as such, we

use Maple to isolate E in the left-hand side of this last equation, to obtain the following
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implicit expression:

E = ± sgn(vF,x)
∆0√

2
[(1 + α̃) + (1− α̃) cos(2θ − χ)]1/2 . (4.37)

As in Sec. 4.2.3, we introduce a dimensionless notation by defining ε = E/∆0, as well

as a characteristic length scale ξ = vF/∆0, which determines the spatial extent of pair

correlation. We can then introduce the dimensionless distance between the DWs, L̃ =

L/ξ, and so α̃ takes the form:

α̃ = e−2L̃
√

1−ε2/| cos θ|. (4.38)

Due to the presence of α̃ in Eq. (4.37), obtaining an analytical expression for the bound

state energy is not feasible, and consequently we use Maple to solve it numerically. The

results are equivalent to those obtained in Sec. 4.2.3 (see Fig. 12 for the effects of L̃ on

the bound state spectrum in the case χ = π), which is not surprising given the fact that

expressions (4.24) and (4.35), each obtained through different approaches, are the same.

By appropriately manipulating Eq. (4.35), i.e. substituting the definition of ε in terms

of E and carefully rearranging thereafter, we find that this implicit expression can be

written as follows:

ε2 − (1 + β)2

4β
+ α̃

(1− β)2

4β
= 0, (4.39)

where we recall that ε is the dimensionless energy. From the definition of β, Eq. (4.31),

it is easy to show that (1 + β)2/4β = cos2(θ − χ/2), and (1− β)2/4β = − sin2(θ − χ/2).

Thus we recover the same equation for the bound state energy as the one obtained from

the poles in the scattering matrix entries, Eq. (4.24).
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5 Interaction between DWs

In this section we calculate the interaction between domain walls, which is mediated by

the scattering of quasiparticle excitations. The free energy of an arbitrary nonuniform

superconducting texture can be expressed in terms of the Fredholm determinant of the

BdG Hamiltonian, and for a system with a two-component order parameter in zero

magnetic field, it has the following form:

F = −T
∑
n

ln Det

(
iωn − ĤBdG

iωn − ĤN

)
+

1

V

∫ (
|η1|2 + |η2|2

)
d2r, (5.1)

where F is the total free energy of the system measured with respect to the normal

state with ∆(x) = 0, ĤBdG is the BdG Hamiltonian defined by Eqs. (3.88) and (3.89),

ĤN is the normal-state BdG Hamiltonian, ωn = (2n+ 1)πT is the fermionic Matsubara

frequency, and V is the coupling constant in the chiral p-wave channel. The derivation

of Eq. (5.1) is presented in Ref. [62].

We introduce the free energy difference between the nonuniform and uniform super-

conducting states δF = Fnonuniform−Funiform, where the nonuniform state has two DWs.

From Eq. (5.1), we have:

δF = −T
∑
n

ln Det

[
iωn − ĤBdG

iωn − Ĥ(0)
BdG

]
+

1

V

∫ (
|η|2 − |η(0)|2

)
d2r, (5.2)

where η(0) and Ĥ
(0)
BdG denote the order parameter and the BdG Hamiltonian corresponding

to the uniform chiral state. The total free energy in the two-DW system depends on the

separation between the DWs L via the eigenvalues of ĤBdG, and thus the expression (5.2)

varies with L. Since the DWs are decoupled at infinite separation, δF(L→∞) gives the

self-energy of two DWs, measured with respect to the uniform superconducting state.

We are now in a position to introduce the interaction energy between the two DWs, Fint,
which is simply the difference between the free energy at arbitrary DW separation L and

the self-energy of the two-DW configuration, i.e. Fint = δF(L)− δF(L→∞).

For the sharp two-DW model introduced in Sec. 2, we have |η|2 = 2∆2
0 in each of

the three domains. Furthermore, the order parameter for the uniform state η(0) is also

independent of the DW separation, and consequently the second term on the right hand

side of Eq. (5.2) vanishes. Then the interaction energy takes the form

Fint = F̃(L)− F̃(∞), (5.3)
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where

F̃(L) = −T
∑
n

ln Det

[
iωn − ĤBdG(L)

iωn − Ĥ(0)
BdG

]
. (5.4)

The logarithm of each of the Fredholm determinants in Eq. (5.3) can be written as follows:

ln Det

[
iωn − ĤBdG

iωn − Ĥ(0)
BdG

]
=
∑
i

ln

[
iωn − Ei
iωn − E(0)

i

]
, (5.5)

where i is a set of quantum numbers labelling the eigenstates of the 2 × 2 BdG Hamil-

tonian, see Eq. (3.89), at given DW separation L, Ei are the corresponding eigenvalues,

and E
(0)
i are the eigenvalues for the uniform chiral state.

The sum over the BdG spectrum in Eq. (5.5) can be expressed in the semiclassical

approximation as a sum over the eigenvalues of the Andreev Hamiltonian ĤA, defined by

Eq. (3.92), as follows:

∑
i

(· · · ) = 2πNF `y

∫
dk̂F
2π
|vF,x|

∑
j

(· · · ), (5.6)

where NF = m∗/2π is the density of states at the Fermi level in two dimensions per

one spin projection, `y is the length of the DW, k̂F defines the direction of semiclassical

propagation of the quasiparticles, and j labels the eigenstates of the Andreev Hamiltonian

at given k̂F . Recall from Sec. 4.2.1 that the quasiparticle wavefunctions satisfy ψ(+∞) =

ψ(−∞) in accordance with the gap equation, so we have appropriately placed our system

in a box of dimensions `x = ` and `y (with `→∞), and imposed the periodic boundary

conditions.

It follows from Eqs. (5.3, 5.4, 5.5, 5.6) that the interaction energy per unit DW length

is given by:

Fint(L) = −2πNFT
∑
n

∫ 2π

0

dθ

2π
|vF,x| [lnD(iωn;L)− lnD(iωn;∞)] , (5.7)

with

D(z) =
∏
j

z − Ej
z − E(0)

j

, (5.8)

where Ej are the eigenvalues of the Andreev Hamiltonian at given k̂F for given DW

separation L, and E
(0)
j are the eigenvalues of this Hamiltonian corresponding to the

uniform chiral state.

As in Sec. 4.2.1, we perform a gauge transformation on the Andreev wavefunctions
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to remove the phase Φ(x) from the order parameter, with the corresponding eigenval-

ues unaffected. After the transformation, the Andreev Hamiltonian can be written as

ĤA = Ĥ
(0)
A + δĤ, where Ĥ

(0)
A = −ivF,x∇xσ̂3 + ∆0σ̂1 is the Andreev Hamiltonian for the

uniform chiral state, which now has ∆kF (x) = ∆0, and δĤ = vF,xΦ
′(x)σ̂0/2 is a local-

ized perturbation, see Eq. (4.11). Adiabatically switching on the perturbation, there is

a one-to-one correspondence between the eigenvalues of ĤA and Ĥ
(0)
A .

We should note that the gauge-transformed wavefunctions satisfy ψ̃(∞) = ψ̃(−∞),

which is consistent with the periodic boundary conditions imposed above. Furthermore,

these boundary conditions are compatible with the Hermiticity condition for the gauge-

transformed Hamiltonian ĤA. To illustrate this, we consider the matrix element (ĤA)12

in some arbitrary basis |ψ〉 (not necessarily the eigenkets of the Andreev Hamiltonian),

which can be written as follows:

〈
ψ1

∣∣∣ĤA

∣∣∣ψ2

〉
=

∫ `/2

−`/2
dx (u∗1 v∗1)

[(
−ivF,x∇x 0

0 ivF,x∇x

)
+ ŵ(x)

](
u2

v2

)
, (5.9)

where ŵ(x) is a Hermitian matrix which contains no derivatives. Multiplying through

the matrices, this last expression takes the form:

(ĤA)12 =

∫ `/2

−`/2
dx

[
−ivF,xu∗1(∇xu2) + ivF,xv

∗
1(∇xv2) + (u∗1 v∗1) ŵ(x)

(
u2

v2

)]
,

and after integrating by parts we obtain:

(ĤA)12 =− ivF,x (u∗1u2 − v∗1v2)
∣∣`/2
−`/2 + ivF,x

∫ `/2

−`/2
dx (u2∇xu

∗
1 − v2∇xv

∗
1)

+ 〈ψ1 |ŵ|ψ2〉 . (5.10)

Equation (5.10) can be further simplified as follows:

〈
ψ1

∣∣∣ĤA

∣∣∣ψ2

〉
= S +

∫ `/2

−`/2
dx (u2 v2) ĤT

A

(
u∗1

v∗1

)
, (5.11)

where S = −ivF,x (u∗1u2 − v∗1v2)
∣∣`/2
−`/2. If ĤA is to be Hermitian, then

〈
ψ1

∣∣∣ĤA

∣∣∣ψ2

〉
∗ =〈

ψ2

∣∣∣ĤA

∣∣∣ψ1

〉
, and since ŵ is Hermitian this can hold only if S = S∗ = 0. Thus we

have the property tr
(
ψ†1σ̂3ψ2

) ∣∣`/2
−`/2 = 0 for any ψ1, ψ2. Then it follows that the peri-

odic boundary conditions are consistent with the Hermiticity property of the Andreev

Hamiltonian.
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Now we will evaluate the Fredholm determinants in Eq. (5.7). To this end, we in-

troduce the 2× 2 transfer matrix M̂(x;E) which acts as an x-evolution operator for the

quasiparticle wavefunctions at given energy E: ψ(x) = M̂(x;E)ψ(−`/2). We define the

transfer matrix to satisfy the following conditions:(
ĤA − E

)
M̂(x;E) = 0,

M̂ (−`/2;E) = σ̂0.
(5.12)

These conditions hold for arbitrary values of E. It follows from the periodic boundary

conditions that the quasiparticle wavefunctions satisfy [σ̂0−M̂(`/2;E)]ψ(−`/2) = 0, and

this quantization condition leads to the characteristic equation for the eigenvalues of ĤA,

given by det
[
σ̂0 − M̂ (`/2;E)

]
= 0, where det (· · · ) is a 2× 2 determinant.

We also define another transfer matrix M̂0(x;E), and this matrix satisfies the same

conditions as M̂(x;E) in Eq. (5.12), but for the uniform state Hamiltonian Ĥ
(0)
A . From

here we can introduce a new quantity d(z), which is defined by the following expression:

d(z) =
det

[
σ̂0 − M̂(`/2; z)

]
det

[
σ̂0 − M̂0(`/2; z)

] . (5.13)

Both D(z) and d(z) have zeros at z = Ej, as well as poles at z = E
(0)
j . For |z| → ∞,

which physically corresponds to large values of E, the quasiparticles are not affected by

the superconducting order parameter. Consequently, ĤA → Ĥ
(0)
A , and both D(z) and

d(z)→ 1. Due to these properties, we have

D(z) = d(z), (5.14)

see, for example, Ref. [63] for review. This is a significant result because we have been

able to express an infinite dimensional Fredholm determinant in terms of the determinant

of a 2× 2 matrix.

5.1 Relating the determinants

To present a general derivation of Eq. (5.14) we start with the general Andreev Hamil-

tonian, given by

ĤA =

(
−ivF,x∇x ∆(x)

∆∗(x) ivF,x∇x

)
. (5.15)
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Note that, compared to Eq. (3.92), we have dropped the subscript in the semiclassical

order parameter in the above Hamiltonian, i.e. ∆kF (x) → ∆(x). Applying a gauge

transformation as in Sec. 4.2.1 with Û = eiΦ(x)σ̂3/2, the gauge-transformed Hamiltonian

takes the form
˜̂
H = Û−1ĤÛ . Since the matrix Û is unitary, Û † = Û−1, it follows that

˜̂
H = Û †ĤÛ . From now on we drop the tildes, and after the gauge transformation, we can

rewrite the Andreev Hamiltonian as ĤA = Ĥ
(0)
A + δĤ, where Ĥ

(0)
A = −ivF,xσ̂3∇x + ∆0σ̂1

is the uniform-state Andreev Hamiltonian, and δĤ = vF,xΦ
′(x)σ̂0/2 + (|∆(x)| − ∆0)σ̂1

is a perturbation. This expression holds without reference to a particular profile for

a configuration of planar defects running parallel to the y-axis. Since |∆(x)| → ∆0

for |x| → ∞ regardless of the model considered, δĤ is indeed a localized perturbation.

Furthermore, Φ(x) changes only in the vicinity of the defect, and for a physically realistic

profile of the DW, it is a smooth continuous function without singularities. In the sharp

two-DW model, δĤ = vF,xΦ
′(x)σ̂0/2, and Φ′(x) takes the form of a delta function centered

on the DW, where the phase of the order parameter changes abruptly.

To proceed with the derivation, we now introduce the following Green’s functions:

Ĝ(z) =
(
z − ĤA

)−1

, Ĝ0(z) =
(
z − Ĥ(0)

A

)−1

, (5.16)

and we will show that these functions can be related to the Fredholm determinant D(z)

and to d(z). The Green’s function is a 2 × 2 matrix in the electron-hole space, whose

matrix elements in the x-representation have the following form:

Gαβ(x, x′; z) ≡ 〈x, α|Ĝ|x′, β〉 =
∑
i

〈x, α|i〉 〈i|x′, β〉
z − Ei

. (5.17)

Here α, β = 1, 2 label the electron and hole components and 〈x, α|i〉 ≡ ψi,α(x) are the

two-component eigenfunctions of the Andreev Hamiltonian, satisfying ĤA|i〉 = Ei|i〉,
with ψi,1 being the electron-like (u) component, and ψi,2 the hole-like (v) component.

The expression (5.17) can be written as follows:

Gαβ(x, x′; z) =
∑
i

ψi,α(x)ψ†i,β(x′)

z − Ei
. (5.18)

We are now in a position to make the connection between the matrix Green’s function

and the Fredholm determinant D(z). The trace of the Green’s function is simply the sum
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of the diagonal entries given in Eq. (5.18) for all values of x:

Tr Ĝ =

∫ `/2

−`/2
dx
∑
α

Gαα(x, x; z) =
∑
i

1

z − Ei

∫ `/2

−`/2
dx
∑
α

ψi,α(x)ψ†i,α(x). (5.19)

By imposing a standard normalization condition on the quasiparticle wavefunctions∫ `/2

−`/2
dx tr

[
ψ†i (x)ψi(x)

]
= 1,

we find

Tr Ĝ =
∑
i

1

z − Ei
, (5.20)

and the trace of Ĝ0 is given by an analogous expression, in terms of the eigenvalues of

the uniform-state Andreev Hamiltonian Ĥ
(0)
A .

Now we consider the Fredholm determinant, Eq. (5.8), noting that

lnD(z) =
∑
i

[
ln (z − Ei)− ln

(
z − E(0)

i

)]
,

and therefore
∂

∂z
lnD(z) =

∑
i

[
1

z − Ei
− 1

z − E(0)
i

]
. (5.21)

From this last equation, and in view of Eq. (5.20), it immediately follows that

∂

∂z
lnD(z) = Tr

(
Ĝ− Ĝ0

)
. (5.22)

We are now in a position to relate the Green’s functions to d(z), which reduces the

calculation of an infinite determinant to the determinant of a 2 × 2 matrix. From the

definition of Ĝ(z), Eq. (5.16), it is clear that (z − ĤA)Ĝ = 1. Using the spectral form of

the Green’s function, given by

Ĝ =
∑
i

|i〉 〈i|
z − Ei

,

one can easily see that (z − ĤA)Ĝ acts as the identity operator in the coordinate and

electron-hole spaces, and therefore it follows that

〈x, α|(z − ĤA)Ĝ|x′, β〉 = δ(x− x′)δαβ. (5.23)
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Inserting the resolution of unity
∫
dx′′

∑
γ |x′′, γ〉〈x′′, γ| = 1 into Eq. (5.23), we find∫

dx′′
∑
γ

〈x, α|(z − ĤA)|x′′, γ〉Gγβ(x′′, x′; z) = δ(x− x′)δαβ. (5.24)

The first matrix element on the left-hand side can be written as follows:

〈x, α|(z − ĤA)|x′′, γ〉 = zδ(x− x′′)δαγ − 〈x, α|ĤA|x′′, γ〉 = zδ(x− x′′)δαγ − 〈x|ĤA,αγ|x′′〉,

where |x〉 are the eigenkets of the position operator and ĤA,αγ are the matrix elements

of the Andreev Hamiltonian. The latter form the following 2× 2 matrix:

〈x|ĤA|x′〉 =

 vF,x〈x|p̂x|x′〉+
1

2
vF,x〈x|Φ′(x)|x′〉 〈x||∆(x)||x′〉

〈x||∆(x)||x′〉 −vF,x〈x|p̂x|x′〉+
1

2
vF,x〈x|Φ′(x)|x′〉

 .

(5.25)

For the matrix element of the momentum operator, we insert the resolution of unity

in terms of the momentum eigenstates |p〉 twice into the expression to find

〈x|p̂x|x′〉 =

∫
dp

∫
dp′〈x|p〉〈p|p̂x|p′〉〈p′|x′〉

=

∫
dpxe

ipx(x−x′)px (5.26)

= −i ∂
∂x

∫
dpxe

ipx(x−x′) = −i ∂
∂x
δ(x− x′).

Similarly, for a function which depends only on the position operator, such as V (x̂), it

can be written in the spectral form V (x̂) =
∫
dxV (x)|x〉〈x|, where |x〉 are the eigenstates

of the position operator. Thus we have

〈x′|V (x̂)|x′′〉 =

∫
dxV (x)δ(x′ − x)δ(x− x′′)

(5.27)

= V (x′)δ(x′ − x′′),

and therefore 〈x|Φ′(x)|x′〉 = Φ′(x)δ(x− x′) and 〈x||∆(x)||x′〉 = |∆(x)|δ(x− x′).
Using the above expressions for the matrix elements of ĤA, Eq. (5.24) takes the
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following form:

∫
dx′′

 z + ivF,x∇x −
1

2
vF,xΦ

′(x) −|∆(x)|

−|∆(x)| z − ivF,x∇x −
1

2
vF,xΦ

′(x)

 δ(x− x′′)

×G(x′′, x′; z) = σ̂0δ(x− x′). (5.28)

We perform the integration in this last equation and obtain: z + ivF,x∇x −
1

2
vF,xΦ

′(x) −|∆(x)|

−|∆(x)| z − ivF,x∇x −
1

2
vF,xΦ

′(x)

G(x, x′; z) = σ̂0δ(x− x′).

(5.29)

Using a similar treatment with the uniform-state Andreev Hamiltonian yields an analo-

gous result: (
z + ivF,x∇x −∆0

−∆0 z − ivF,x∇x

)
G0(x, x′; z) = σ̂0δ(x− x′). (5.30)

We then conclude that the matrix elements of the Green’s functions satisfy the following

identities:
(z − ĤA)G(x, x′; z) = σ̂0 δ(x− x′),

(z − Ĥ(0)
A )G0(x, x′; z) = σ̂0 δ(x− x′).

(5.31)

From the periodic boundary conditions, along with Eq. (5.18), it follows that the

matrix Green’s function satisfies the condition

G(`/2, x′; z) = G(−`/2, x′; z), (5.32)

and so does the Green’s function for the uniform-state Andreev Hamiltonian, G0(x, x′; z).

Of course, this periodicity holds for x′ as well, but we focus on the x-dependence only.

From Eq. (5.31), it becomes apparent that one can seek G(x, x′; z) in the form

G(x, x′; z) =

M̂(x; z)Â(x′; z), x < x′

M̂(x; z)B̂(x′; z), x > x′,
(5.33)

where M̂(x; z) is the transfer matrix defined in Eq. (5.12). We seek an analogous ex-

pression for the uniform-state Green’s function. In this way, we satisfy the condition
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(z − ĤA)G(x, x′; z) = 0 for all x 6= x′. Note that because of the delta-function in

Eq. (5.31), it follows that G(x, x′; z) is discontinuous at x = x′, and this discontinuity

must be addressed.

Substituting the gauge-transformed Andreev Hamiltonian into Eq. (5.31), we obtain

the expression [
z + ivF,xσ̂3

∂

∂x
−∆0σ̂1 − δĤ

]
G(x, x′; z) = σ̂0δ(x− x′), (5.34)

with δĤ defined earlier in this section. We can write this last equation as[
∂

∂x
− iσ̂3

vF,x

(
z −∆0σ̂1 − δĤ

)]
G(x, x′; z) = − iσ̂3

vF,x
δ(x− x′), (5.35)

and integrate over the discontinuity to determine the nature of the singularity inG(x, x′; z)

as follows:∫ x′+ε

x′−ε
dx

[
∂

∂x
G(x, x′; z)

]
− iσ̂3

vF,x

∫ x′+ε

x′−ε
dx
[
z −∆0σ̂1 − δĤ

]
G(x, x′; z) =

(5.36)
− iσ̂3

vF,x

∫ x′+ε

x′−ε
dx δ(x− x′).

This last expression can be simplified to

G(x′ + ε, x′; z)−G(x′ − ε, x′; z) +

∫ x′+ε

x′−ε
dx [· · · ]G(x, x′; z) = − i

vF,x
σ̂3, (5.37)

where the terms in parentheses in the above integral are nonsingular. Taking the limit

ε → 0, the integral on the left-hand side vanishes, and we find that the discontinuity in

G(x, x′; z)|x=x′ is given by:

G(x′ + 0, x′; z)−G(x′ − 0, x′; z) = − i

vF,x
σ̂3. (5.38)

Note that while G(x, x′; z) is discontinuous at x = x′, trG(x′, x′; z) is continuous since

tr σ̂3 = 0.

We would like to quickly address the vanishing integral in Eq. (5.37), in the sharp

two-DW model. In this case, the integrand is in fact singular due to the delta-function

behaviour of Φ′(x) in δĤ at x = 0, L. We therefore apply the gauge transformation

to the Andreev Hamiltonian for all x 6= 0, L, i.e. where Φ′(x) = 0. Consequently, we

assume both x, x′ 6= 0, L when evaluating the integral and taking the limit ε→ 0 in this
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calculation.

Now that we have addressed the discontinuity in G(x, x′; z), we can proceed with the

remainder of the derivation. Using the boundary condition, Eq. (5.32), we can relate

Â(x′; z) to B̂(x′; z) in Eq. (5.33) in the following manner. First, we consider the Green’s

function at the boundaries of the system:

G(−`/2, x′; z) = M̂(−`/2; z)Â(x′),

G(+`/2, x′; z) = M̂(+`/2; z)B̂(x′),
(5.39)

where we have suppressed the energy argument z in Â and B̂. Recalling that M̂(−`/2; z) =

σ̂0, and introducing a shorthand notation for the transfer matrix from −`/2 to `/2,

M̂(`/2; z) = m̂, we arrive at the relations

Â(x′) = m̂B̂(x′), B̂(x′) = m̂−1Â(x′), (5.40)

using Eq. (5.39) in the boundary condition (5.32).

From the expressions for G(x, x′; z) in terms of the transfer matrix, Eq. (5.33), we

can rewrite the expression for the discontinuity in the matrix elements of Ĝ, Eq. (5.38),

as

M̂(x′)B̂(x′)− M̂(x′)Â(x′) = − i

vF,x
σ̂3, (5.41)

where we have suppressed the argument z in M̂(x; z). The relations between B̂ and Â,

Eq. (5.40), can now be used with this last expression to obtain the following results:

Â(x′) = − i

vF,x
(1− m̂)−1m̂M̂−1(x′)σ̂3,

B̂(x′) = − i

vF,x
(1− m̂)−1M̂−1(x′)σ̂3.

(5.42)

Since one can write

(1− m̂)−1m̂ =
1

2

[
(1− m̂)−1(1 + m̂)− 1

]
and

(1− m̂)−1 =
1

2

[
(1− m̂)−1(1 + m̂) + 1

]
,

we substitute Eq. (5.42) into Eq. (5.33), arriving at an expression for the matrix elements



5 INTERACTION BETWEEN DWS 108

of the Green’s function in terms of the transfer matrix which is valid at all x, x′:

G(x, x′; z) = − i

2vF,x
M̂(x; z)

{
[1− m̂(z)]−1 [1 + m̂(z)] + sgn(x− x′)

}
×M̂−1(x′; z)σ̂3, (5.43)

where we have explicitly restored the z-dependence. We should note that from the

presence of the signum function, this last expression is not defined for x = x′.

It is now possible to express the trace of the matrix elements of Ĝ in terms of the

transfer matrix in the following way:

trG(x, x′; z) =− i

2vF,x
tr
{
M̂(x; z) [1− m̂(z)]−1 [1 + m̂(z)] M̂−1(x′; z)σ̂3

}
(5.44)− i

2vF,x
tr
{
M̂(x; z)M̂−1(x′; z)σ̂3

}
sgn(x− x′),

and one can again see that the trace is continuous at x = x′, since

tr
{
M̂(x; z)M̂−1(x; z)σ̂3

}
= tr σ̂3 = 0.

We can therefore represent Eq. (5.44) as follows:

trG(x, x; z) = − i

2vF,x
tr
{
M̂(x; z) [1− m̂(z)]−1 [1 + m̂(z)] M̂−1(x; z)σ̂3

}
, (5.45)

and using the cyclic invariance of the trace this last equation becomes

trG(x, x; z) = − i

2vF,x
tr
{
M̂−1(x; z)σ̂3M̂(x; z) [1− m̂(z)]−1 [1 + m̂(z)]

}
. (5.46)

We have an identical expression for trG0(x, x; z) in terms of the uniform-state transfer

matrix M̂0(x; z).

Using Eq. (5.46), the relation (5.22) can be written in the form:

∂

∂x
lnD(z) =− i

2vF,x

∫ `/2

−`/2
dx
[
tr
{
M̂−1(x; z)σ̂3M̂(x; z) [1− m̂(z)]−1 [1 + m̂(z)]

}
(5.47)−tr

{
M̂−1

0 (x; z)σ̂3M̂0(x; z) [1− m̂0(z)]−1 [1 + m̂0(z)]
}]

,

where we have introduced another shorthand notation, for the uniform-state transfer

matrix from −`/2 to `/2: M̂0(`/2; z) = m̂0.

Now we can relate Eq. (5.47) to d(z). To do this, we consider again the equation
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defining the transfer matrix: (z − ĤA)M̂(x; z) = 0. For now we suppress the arguments

of M̂(x; z), and then differentiation of this expression with respect to z gives

M̂ +
(
z − ĤA

) ∂M̂
∂z

= 0. (5.48)

After manipulating this last equation, in particular, inserting unity in the form of M̂M̂−1,

we find (
z − ĤA

)
M̂M̂−1∂M̂

∂z
= −M̂. (5.49)

Substituting the Andreev Hamiltonian into this last expression, we obtain:(
z + ivF,xσ̂3

∂

∂x
−∆0σ̂1 − δĤ

)
M̂M̂−1∂M̂

∂z
= −M̂, (5.50)

and a quick calculation will show that this can be written as follows:

[(
z − ĤA

)
M̂
]
M̂−1∂M̂

∂z
+ ivF,xσ̂3

∂

∂x

[
M̂−1∂M̂

∂z

]
= −M̂. (5.51)

Invoking the definition of the transfer matrix, the first term in this last expression is

identically zero, and therefore

ivF,xσ̂3M̂
∂

∂x

[
M̂−1∂M̂

∂z

]
= −M̂, (5.52)

which can be manipulated into the following form:

∂

∂x

[
M̂−1∂M̂

∂z

]
=

i

vF,x
M̂−1σ̂3M̂. (5.53)

From the right-hand side of Eq. (5.53), we begin to see a relation to our most recent

expression for D(z), Eq. (5.47). Integrating both sides of this last equation and restoring

the arguments in the transfer matrix, we find:

i

vF,x

∫ `/2

−`/2
dx M̂−1(x; z)σ̂3M̂(x; z) =

∫ `/2

−`/2
dx

[
∂

∂x

(
M̂−1∂M̂

∂z

)]
(5.54)

= M̂−1(x; z)
∂M̂(x; z)

∂z

∣∣∣∣∣
`/2

−`/2

.
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Recall from the definition of the transfer matrix that M̂(−`/2; z) = σ̂0 = const, and

thus:
i

vF,x

∫ `/2

−`/2
dx M̂−1(x; z)σ̂3M̂(x; z) = m̂−1∂m̂

∂z
, (5.55)

where we have used the shorthand notation introduced earlier in this section. Since m̂

and m̂0 are independent of x, we can immediately evaluate the integral in Eq. (5.47)

using Eq. (5.55) and an analogous expression with M̂0(x; z). In this way, the equation

for D(z) takes the form

∂

∂z
lnD(z) =− 1

2

{
tr

[
m̂−1∂m̂

∂z
(1− m̂)−1 (1 + m̂)

]
(5.56)

− tr

[
m̂−1

0

∂m̂0

∂z
(1− m̂0)−1 (1 + m̂0)

]}
.

Using the cyclic invariance of the trace we have

tr

[
m̂−1∂m̂

∂z
(1− m̂)−1 (1 + m̂)

]
= tr

[
∂m̂

∂z
(1− m̂)−1 (1 + m̂) m̂−1

]
,

and since (1− m̂)−1 (1 + m̂) m̂−1 = m̂−1 + 2 (1− m̂)−1, Eq. (5.56) becomes

∂

∂z
lnD(z) =− 1

2

{
tr

[
∂m̂

∂z
m̂−1

]
+ 2tr

[
∂m̂

∂z
(1− m̂)−1

]
(5.57)

− tr

[
∂m̂0

∂z
m̂−1

0

]
− 2tr

[
∂m̂0

∂z
(1− m̂0)−1

]}
.

From Eq. (5.55), using again cyclic invariance of the trace, it immediately follows that

tr

[
∂m̂

∂z
m̂−1

]
=

i

vF,x

∫ `/2

−`/2
dx tr σ̂3 = 0, (5.58)

and thus we can eliminate two terms from the expression (5.57) to obtain:

∂

∂z
lnD(z) = −tr

[
∂m̂

∂z
(1− m̂)−1

]
+ tr

[
∂m̂0

∂z
(1− m̂0)−1

]
. (5.59)

Lemma 1. The following property holds for any matrix function F (m̂):

d

dz
tr F (m̂) = tr

[
F ′(m̂)

dm̂

dz

]
. (5.60)
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Proof. Since m̂ is a 2× 2 square matrix, we begin with diagonalizing it : m̂ =

R̂ [diag (m̂)] R̂−1, and then we can rewrite the above equation as follows:

d

dz
tr F (m̂) =

d

dz
tr
[
R̂ [diag (F (m̂))] R̂−1

]
=
∑
i

dF (mi)

dz

=
∑
i

F ′(mi)
dmi

dz
. (5.61)

On the other hand, one can rewrite the right-hand side of Eq. (5.60) as

tr

[
F ′(m̂)

dm̂

dz

]
= tr

[
R̂ [diag (F ′(m̂))] R̂−1dm̂

dz

]
(5.62)

=
∑
i

F ′(mi)

[
R̂−1dm̂

dz
R̂

]
ii

,

where we have used the cyclic invariance of the trace. By considering the

diagonal term in parentheses in the last expression, we find

R̂−1dm̂

dz
R̂ = R̂−1 d

dz

[
R̂(diag(m̂))R̂−1

]
R̂

(5.63)
= R̂−1dR̂

dz
diag(m̂) +

d

dz
[diag(m̂)] + diag(m̂)

dR̂−1

dz
R̂.

Now from the definition of matrix multiplication, it follows that[
diag(m̂)

dR̂−1

dz
R̂

]
ii

=
∑
j

[diag(m̂)]ij

[
dR̂−1

dz
R̂

]
ji

(5.64)

= mi

[
dR̂−1

dz
R̂

]
ii

,

since [diag(m̂)]ij = miδij. Furthermore, because mi and
[
(dR̂−1/dz)R̂

]
ii

are just

numbers, we can interchange their order in Eq. (5.64), and then expression

(5.63) takes the form:

[
R̂−1dm̂

dz
R̂

]
ii

=

[
R̂−1dR̂

dz

]
ii

mi +
dmi

dz
+

[
dR̂−1

dz
R̂

]
ii

mi. (5.65)
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To simplify this last equation, we use the fact that R̂−1R̂ = 1, and hence

d(R̂−1R̂)/dz = 0. Invoking the product rule in this identity, one can eliminate the

two terms containing R̂ and R̂−1 in Eq. (5.65), and then Eq. (5.62) immediately

takes the form:

tr

[
F ′(m̂)

dm̂

dz

]
=
∑
i

F ′(mi)
dmi

dz
=

d

dz
tr F (m̂), (5.66)

where we have used Eq. (5.61) to obtain the final equality in this last

expression.

From the definition of the matrix inverse, it follows that (1 − m̂)−1(1 − m̂) = 1. If

we consider the Taylor expansion of function 1/(1− m̂) = 1 + m̂+ m̂2 + · · · =
∑∞

n=0 m̂
n

(the geometric series), quick inspection reveals that (1 + m̂ + m̂2 + · · · )(1 − m̂) = 1,

since all powers of m̂ higher than zero vanish, and thus the matrix inverse (1 − m̂)−1

is identically equivalent to 1/(1 − m̂). We can now apply identity (5.60) to Eq. (5.59)

with F ′(m̂) = −1/(1 − m̂), and therefore F (m̂) = ln(1 − m̂) + c, with an arbitrary

constant c. This choice for the antiderivative becomes clear from a comparison of the

Taylor expansion of ln(1− m̂) = −m̂− m̂2/2− m̂3/2 + · · · = −
∑∞

n=1 m̂
n/n! with the one

for −1/(1− m̂), and differentiating term by term. It then follows that

∂

∂z
lnD(z) =

d

dz
tr [ln(1− m̂)− ln(1− m̂0) + c]

=
d

dz

[
ln
∏
i

(1−mi)− ln
∏
i

(1−m0,i)

]
(5.67)

=
d

dz
ln

[
det(1− m̂)

det(1− m̂0)

]
.

In view of Eq. (5.13), we immediately find:

lnD(z) = ln d(z) + const. (5.68)

Since D(z) and d(z) have the same asymptotic behaviour at |z| → ∞, the constant on

the right-hand side of this last equation is zero. Indeed, as mentioned in the introduction

of this section, |z| → ∞ physically corresponds to large values of the quasiparticle energy,

where the quasiparticles are not affected by the superconducting order parameter. In this

case, HA → H
(0)
A and therefore D(z) = d(z)→ 1. From here we conclude that conjecture
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(5.14) has been rigorously proven, and thus

D(z) =
det[σ̂0 − M̂(`/2; z)]

det[σ̂0 − M̂0(`/2; z)]
. (5.69)

In the following subsection we use the transfer matrix method, in particular Eq. (5.69),

to relate the interaction energy to the scattering matrix entries. Subsequently, we evalu-

ate the sum over the Matsubara frequencies and the integral over semiclassical directions

of propagation in Eq. (5.7) to obtain an analytical expression for the interaction energy

in the limit of large DW separation.

5.2 Calculation of the Fredholm determinant

To facilitate the calculation of the Fredholm determinant, we first define a matrix τ̂ ,

which relates the amplitudes of the gauge-transformed quasiparticle wavefunctions on

the left-hand side of the DW configuration to those on the right-hand side, see Sec. 4.2.1,

as follows: A(+)
+

A
(+)
−

 = τ̂

A(−)
+

A
(−)
−

 . (5.70)

It can therefore be expressed in terms of the scattering matrix Ŝ in the following way:

τ̂ =
1

S22

det Ŝ S12

−S21 1

 . (5.71)

As in the previous subsection, we introduce a shorthand notation for the transfer

matrix from −`/2 to +`/2, M̂(`/2; z) = m̂, and using Eq. (5.70) and the wavefunctions

defined by Eq. (4.13), we find that m̂ = V̂+τ̂ V̂
−1
− , where

V̂± =

u+e
±iq`/2 u−e

∓iq`/2

e±iq`/2 e∓iq`/2

 ,

and u± and q are defined in Sec. 4.2.1. We introduce a similar notation for the uniform-

state transfer matrix M̂0(`/2; z) = m̂0, and since in the absence of DWs τ̂ = Ŝ = σ̂0,

it immediately follows that m̂0 = V̂+V̂
−1
− . We can now rewrite the expression for the
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Fredholm determinant, see Eq. (5.69), as

D(z) =
det

(
σ̂0 − V̂+τ̂ V̂

−1
−

)
det

(
σ̂0 − V̂+V̂

−1
−

) , (5.72)

and after multiplying the matrices we find that the numerator in this last equation takes

the form

det (σ̂0 − m̂) = 1 + det τ̂ −
(
τ11e

iq` + τ22e
−iq`) , (5.73)

which reduces to det (σ̂0 − m̂0) = 2(1− cos q`) for the uniform superconducting state.

According to Eq. (5.7), to calculate the interaction energy we must evaluate D(z) at

discrete imaginary points z = iωn, and since q in Eq. (5.73) is defined for real values of

E such that |E| > ∆0 only, we must analytically continue q in the complex energy plane

to the imaginary energy axis. Using the same procedure as in Sec. 4.2.3 we find that the

appropriate expression for q is q(E = iωn) = iκ, with κ =
√
ω2
n + ∆2

0/|vF,x|. Therefore

the exponential terms in Eq. (5.73) take the form e±iq` = e∓κ`, and in the thermodynamic

limit ` → ∞, we keep only the last term as the others are small in comparison. In this

limit, we obtain the following expression for the Fredholm determinant in Eq. (5.72):

D(z = iωn) = τ22(iωn) =
1

S22(iωn)
, (5.74)

where we have used the relation between τ̂ and Ŝ given in Eq. (5.71). We see that the

calculation of the Fredholm determinant has thus been reduced to finding the properties

of the scattering states.

Since q appears in the scattering matrix coefficient S22, see Eq. (4.16), and we must

evaluate this coefficient at imaginary energies E = iωn, we must once again choose the

correct branch for q. We use the expression q(iωn) = iκ, see above, and rewrite the

scattering matrix coefficient S22(iωn) as follows:

D(iωn) =
1

S22(iωn)
= 1− ∆2

0 sin2 δ

ω2
n + ∆2

0

(
1− e−2κL) , (5.75)

where δ = χ/2− θ.



5 INTERACTION BETWEEN DWS 115

5.3 Interaction energy

From Eqs. (5.7) and (5.75), it follows that the interaction energy per unit DW length at

given DW separation has the following form:

Fint = −vFNFT
∑
n

∫ 2π

0

dθ| cos θ| ln
(

1 +
∆2

0 sin2 δ

ω2
n + ∆2

0 cos2 δ
e−2κL

)
. (5.76)

The overall sign of the interaction energy is negative, so we see that the nature of the

interaction is attractive at all temperatures, which means there is an effective collapse

of the walls to a single uniform domain. Qualitatively, from the structure of expression

(5.76), it is clear that the attraction is exponentially weak in the limit of large separation.

To make analytical progress, we focus on the case of zero temperature and χ = 0. The

results for other values of the common phase difference are expected to be qualitatively

similar.

In the zero temperature case, the summation over the discrete Matsubara frequencies

ωn becomes an integral over continuous variable ω: T
∑

n(· · · ) →
∫

(· · · )dω/2π. In the

limit of large DW separation, one can expand the logarithm in Eq. (5.76), then the

interaction energy takes the form:

Fint = −NF∆0vF
2π

∫ 2π

0

dθ| cos θ|
∫ +∞

−∞
dω̃

sin2 θ

ω̃2 + cos2 θ
e−2L̃

√
ω̃2+1/| cos θ|, (5.77)

where ω̃ = ω/∆0, and the dimensionless distance L̃ was introduced in Sec. 4.2.3. In the

limit L̃ � 1, one can further neglect the ω̃-dependence of the pre-exponential factor in

the integral over ω̃, and evaluate it by the steepest descent method. In this way, we can

represent Eq. (5.77) in the following form:

Fint = −2NF∆0vF√
πL̃

Ĩ(L̃), (5.78)

where

Ĩ(L̃) =

∫ π/2

0

dθ
sin2 θ√
| cos θ|

e−2L̃/| cos θ|, (5.79)

and we have invoked the symmetry of the angular integral to reduce the region of inte-

gration.

Next, we make a change of variable ρ = 1/ cos θ in Eq. (5.79) and obtain:

Ĩ =

∫ ∞
1

dρ(ρ2 − 1)
1
2ρ−

5
2 e−2L̃ρ.
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This last integral can be calculated exactly, with the following result:

Ĩ =
1

3

√
2a3

π

{
a4 − 6a2 + 9

a3

[
K3/4

(a
2

)]2

+
1− a2

a

[
K7/4

(a
2

)]2

+
5a2 − 6

a2

[
K3/4

(a
2

)] [
K7/4

(a
2

)]}
, (5.80)

where a = 2L̃ and Kn(z) are the modified Bessel functions of the second kind of order n

[64].

For large values of the argument z � 1, corresponding to large DW separation, we

have K3/4(z) = K7/4(z) ≈
√
π/2z e−z. Keeping only the leading term in Eq. (5.80) ∝ a0,

we find:

Ĩ =
10

3

√
πL̃e−2L̃.

Using this result in Eq. (5.78), and restoring the dimensional quantities, we arrive at our

final expression for the interaction energy per unit DW length, in the limit of large DW

separation [65]:

Fint = −20

3
NF∆0vF exp

(
−2∆0L

vF

)
. (5.81)

Thus, the interaction between the DWs is attractive and, as expected, it is exponentially

weak in the limit of large separation between the walls.
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6 Phase solitons in two-band superconductors

In this section, we apply the concepts and results of the previous sections, with a minimal

modification, to a different type of topological defect, namely phase solitons in two-

band SCs. We assume a two-band superconductor with isotropic s-wave singlet pairing,

described by two order parameters η1(r) = |η1(r)|eiϕ1(r) and η2(r) = |η2(r)|eiϕ2(r), in the

absence of magnetic field. The free energy difference between the superconducting and

normal states is given by Fs −Fn =
∫
fGL d

3r, where

fGL =
∑
a=1,2

[
αa|ηa|2 +

βa
2
|ηa|4 +Ka|∇ηa|2

]
+ γ(η∗1η2 + η∗2η1). (6.1)

The intraband terms have the usual Ginzburg-Landau form, while the last term describes

the interband “Josephson coupling”, i.e. the Cooper pair tunneling between the bands.

The stable uniform states are obtained by minimizing the interband term with respect

to the relative phase θ = ϕ1 − ϕ2. We have |ηa| = ∆a and θ = θ0, where θ0 = 0, if

γ < 0, and θ0 = π, if γ > 0. The first possibility (interband attraction) is realized in

MgB2, where both gaps have the same phase [66], while the second possibility (interband

repulsion) is likely realized in the iron pnictides, where, according to the most popular

model, the gap function reverses its sign between different sheets of the Fermi surface,

corresponding to the so-called s± pairing [67]. Without any loss of generality below we

assume γ < 0, therefore, the two bands have the same phase in the uniform state.

In addition to the uniform states, the GL equations (supplemented by the condition

of vanishing supercurrent, see Appendix B) have topologically nontrivial solutions, in

which θ(+∞) − θ(−∞) = ±2π. Here the positive (negative) sign corresponds to a

phase soliton (anti-soliton). An explicit expression for the phase soliton can be obtained

in the London approximation [68], when the order parameter amplitudes are assumed

constant everywhere, i.e. |ηa(x)| = ∆a. The minimization of Eq. (B.1) then yields a

static sine-Gordon equation for the relative phase, whose soliton solution has the form

θ(x) = π + θs(x), where θs(x) = 2 arcsin[tanh(x/ξs)] and

ξs =

√
K1K2∆1∆2

(K1∆2
1 +K2∆2

2)|γ|

has the meaning of the soliton width. Thus the phase soliton connects the states with

θ = 0 at x→ −∞ and θ = 2π at x→ +∞.

The presence of a soliton texture in the relative phase implies that each of the two

phases ϕ1 and ϕ2 are also spatially nonuniform and attain different values at x = +∞
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and x = −∞, see Ref. [69]. The phase textures in the bands are given by the following

expressions (up to a uniform rotation of the common phase):

ϕ1(x) =
1

1 + ρ0

θs(x), ϕ2(x) = − ρ0

1 + ρ0

θs(x)− π, (6.2)

where ρ0 = K1∆2
1/K2∆2

2. The phase winding parameters across the soliton are given by

χ1 = Φ and χ2 = Φ− 2π, where Φ = 2π/(1 + ρ0), see Appendix B.

The same argument used in Appendix A for the absence of two-DW solutions applies

to the phase solitons. The fact that there are no stable two-soliton solutions implies there

must be some form of interaction between the solitons. If this interaction is attractive,

it will cause a collapse of the solitons into a uniform state. If it is repulsive, then

one of the solitons will be pushed to infinity, leaving just a single-soliton state. The

periodic solution for θ(x) can also be understood in terms of this interaction, as a mutual

attraction or repulsion between neighbouring solitons could potentially lead to a stable

periodic configuration.

To make analytical progress in the calculation of the interaction between solitons, we

use a model similar to the one for the DWs. Namely, we consider two planar solitons at

separation L. The phase solitons divide the superconductor into three domains, separated

by two “domain walls”, whose thickness is of the order of ξs. We assume that L � ξs.

We will focus on the sharp-soliton model in which the gap magnitudes are assumed

constant everywhere and the soliton thickness ξs → 0, so that the relative phase of the

order parameters changes abruptly at the boundaries, as illustrated in Fig. 13. This

variation of the relative phase implies that the order parameter phases in each of the two

bands are also spatially-nonuniform, so that the gap functions are given by the following

expressions:

ηa(x) =

{
∆a , x < 0, x > L

∆ae
iχa , 0 < x < L

. (6.3)

Here the phase winding parameters in the two bands are given by

χ1 = Φ, χ2 = Φ− 2π, (6.4)

where Φ is a non-universal fraction of 2π, determined by the microscopic details. One

can rotate both phases uniformly throughout the system by adding an arbitrary constant

in the right-hand side of Eq. (6.3), without affecting the final results.
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Figure 13: The order parameter phase in the ath band for two sharp solitons with a fixed
separation L.

6.1 Quasiparticle spectrum in the two-soliton texture

Our goal is to calculate the interaction between the phase solitons, which is due to their

effect on the Bogoliubov quasiparticles. Here we consider a three-dimensional system,

and the bands are assumed to be isotropic, with the dispersions ξa(k) = (k2−k2
F,a)/2ma,

characterized by the effective masses ma and the Fermi wavevectors kF,a. Since the order

parameters vary slowly on the length scales k−1
F,a, one can calculate the quasiparticle

spectrum using the semiclassical, or Andreev, approximation [60]. An important point is

that the slow perturbation due to the phase solitons cannot cause quasiparticle transitions

between the bands, therefore one can solve the Andreev equations independently in each

band. The calculation is very similar to the one in Sec. 4.2 for the two DWs.

In the rest of this section we will drop the band index for brevity. Quasiparticles

propagating along the semiclassical trajectory directed along the unit vector k̂F are

described by the wavefunction ψ, which varies slowly compared to k−1
F . The quasiparticle

spectrum at given k̂F is determined by the equation Ĥψ = Eψ, where the Andreev

Hamiltonian is given by

Ĥ =

(
−ivF,x∇x η(x)

η∗(x) ivF,x∇x

)
. (6.5)

Here vF = kF/m is the Fermi velocity and η = |η|eiϕ. The gap magnitude approaches its

bulk mean-field value, |η| → ∆0, far from the solitons. To make the eigenvalue problem

for the Hamiltonian (6.5) well-defined, we put the system in a box of length `, such that

` � L � ξs, and use periodic boundary conditions for the quasiparticle wavefunctions,

ψ(+`/2) = ψ(−`/2), which are consistent with the phase winding of the order parameter.

When safe to do so, we will take the limit ` → ∞. The band index a will be restored

in the end by making the following replacements: vF → vF,a = (kF,a/ma)k̂F , ∆0 → ∆a,

ϕ(x)→ ϕa(x), and χ→ χa.

Our calculation of the quasiparticle spectrum generalizes the procedure developed

in Ref. [69] for a single-soliton texture. As in Sec. 4.2.1, it is convenient to represent
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the phase variation as a localized perturbation, which is achieved by applying a gauge

transformation: ψ = Û ψ̃ and Û †ĤU = ˆ̃H, where

Û(x) = exp

[
i

2
ϕ(x)σ̂3

]
. (6.6)

We can drop the tildas and write the transformed Hamiltonian in the form

Ĥ = Ĥ0 + δĤ, (6.7)

where

Ĥ0 = −ivF,xσ̂3∇x + ∆0σ̂1 (6.8)

describes the Bogoliubov quasiparticles in the uniform superconducting state, while

δĤ =
1

2
vF,xϕ

′(x)σ̂0 + [|η(x)| −∆0] σ̂1

represents a perturbation which is nonzero only in the vicinity of the solitons. One can

show that the gauge-transformed eigenfunctions satisfy the periodic boundary conditions.

We note that there is a one-to-one correspondence between the spectra of Ĥ and Ĥ0: the

eigenvalues of the operator Ĥλ = Ĥ0 + λδĤ evolve smoothly between those of Ĥ0 and Ĥ

as the parameter λ varies between 0 and 1.

At given k̂F , the spectrum of the Andreev Hamiltonian, Eq. (6.7), consists of scat-

tering states with the energies |E| ≥ ∆0 and bound states with |E| < ∆0. Below we

examine the properties of the scattering states for the sharp two-soliton texture.

6.1.1 Scattering states for the two-soliton texture

Since the Hamiltonian is equal to Ĥ0 at |x| → ∞, the scattering eigenstates in those

regions are just the superpositions of plane waves:

ψ(x)
∣∣
x→±∞ = C±R

(
wR

1

)
eiqx + C±L

(
wL

1

)
e−iqx, (6.9)

where q =
√
E2 −∆2

0/|vF,x| > 0, wR(L) = ∆0/(E ∓ vF,xq), and the subscripts R,L refer

to the direction of propagation of the corresponding waves. The coefficients in these

asymptotics are not independent, and it is convenient to introduce a 2 × 2 scattering

matrix, or the S-matrix, which expresses the amplitudes of the outgoing waves in terms



6 PHASE SOLITONS IN TWO-BAND SUPERCONDUCTORS 121

of the amplitudes of the incoming waves:(
C+
R

C−L

)
= Ŝ

(
C−R

C+
L

)
. (6.10)

The elements of the S-matrix depend on the energy and are determined by the details

of the order parameter texture.

We note that, by considering scattering from the left and right separately, one can

relate the scattering matrix to the reflection and transmission coefficients of the Bogoli-

ubov quasiparticles. If, for example, there is a wave incident on the soliton located at

x = 0 from the left, then we can set the incident amplitude C−R = 1, and we must have

C+
L = 0, C+

R = tL, and C−L = rL, where tL and rL represent the left-incident transmission

and reflection coefficients, respectively. The right-incident transmission and reflection

coefficients tR and rR can be introduced in a similar way, by considering right-incident

scattering on the soliton at x = L. Then one can relate the scattering matrix entries to

the transmission and reflection coefficients as follows: tL = S11, rL = S21, tR = S22, and

rR = S12.

Similarly to Sec. 5.2, one can also introduce the τ -matrix, which relates the scattering

wave amplitudes at x→ +∞ to those at x→ −∞:(
C+
R

C+
L

)
= τ̂

(
C−R

C−L

)
. (6.11)

Comparing Eqs. (6.11) and (6.10), we find that the τ -matrix can be expressed in terms

of the S-matrix in the same way as in Eq. (5.71). In the absence of the phase solitons,

there is no scattering and thus Ŝ = τ̂ = σ̂0.

We note that the S-matrix can also be used to obtain the bound states, following the

analytical continuation procedure described in Sec. 4.2.3. In this way, it was found in

Ref. [69] that a single phase soliton can “trap” quasiparticles in its vicinity, creating a

subgap bound state, whose energy depends on the phase winding across the soliton.

The scattering matrix for the quasiparticles in each band can be calculated analyti-

cally in the sharp two-soliton model, defined by Eq. (6.3). After the gauge transforma-

tion, see Eq. (6.6), we obtain the following matching conditions for the gauge-transformed

wavefunction: ψ(+0) = e−iχσ̂3/2ψ(−0) and ψ(L+ 0) = eiχσ̂3/2ψ(L− 0).

The scattering matrix is calculated by using the matching conditions to eliminate the

wave amplitudes in the region 0 < x < L and relate the amplitudes of incident waves to
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those of the outgoing waves. The final result has the following form:

S11 = S22 =
1

P
,

S12 =
R−
P
, S12 =

R+

P
,

(6.12)

where

P = 1− ∆2
0

E2 −∆2
0

(e2iqL − 1) sin2
(χ

2

)
,

R± = (%± 1)
[
i cos

(χ
2

)
± % sin

(χ
2

)] (
e±2iqL − 1

)
sin
(χ

2

)
,

and % = E/qvF,x, Now we can restore the band index, and in the ath band, we have

vF,x → vF,x,a, ∆0 → ∆a, and χ→ χa, see Eq. (6.4).

6.2 Interaction between solitons

The microscopic derivation of the energy in the superconducting state starts with a two-

band generalization of the BCS Hamiltonian:

Ĥ =
∑
k,a

ξa(k)ĉ†k,a,αĉk,a,α −
1

V
∑

kk′q,ab

Vabĉ
†
k+q,a,↑ĉ

†
−k,a,↓ĉ−k′,b,↓ĉk′+q,b,↑, (6.13)

where ĉ†, ĉ are fermionic creation and annihilation operators, a, b = 1, 2 is the band index,

α =↑, ↓ is the spin projection (the spin indices that appear twice are summed over), and

V is the system volume. The second term in the Hamiltonian describes singlet s-wave

pairing interactions: the intraband pairing, characterized by the coupling constants V11

and V22, and the interband “tunneling” of the pairs, described by V12 and V21.

Using a straightforward generalization of the standard effective bosonic action for-

malism, see, e.g., Ref. [62], one can derive an expression for the energy of an arbitrary

nonuniform superconducting texture in a two-band superconductor [69]. For a planar

state with ηa(x) = |ηa(x)|eiϕa(x), in particular, for the phase solitons, the free energy dif-

ference per unit area between the uniform state and the soliton state can be represented

as follows: Fs = F1 +F2. The first term explicitly depends on the quasiparticle spectrum

and has the form

F1 = −2πT
∑
n

∑
a

NF,a

∫
dk̂F
4π
|vF,a,x| lnDa,k̂F

(iωn), (6.14)

where NF,a is the Fermi-level density of states (NF,a = makF,a/2π
2 in a parabolic band),
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vF,a is the Fermi velocity in the ath band,

Da,k̂F
(z) =

det [z − Ĥ(a, k̂F )]

det [z − Ĥ0(a, k̂F )]
(6.15)

is the ratio of the functional (Fredholm) determinants of the Andreev Hamiltonians in

the nonuniform and uniform states, see Eqs. (6.7) and (6.8), for a given direction of the

semiclassical propagation on the Fermi surface in the ath band, and ωn = (2n+ 1)πT is

the fermionic Matsubara frequency. The second term in the free energy is given by

F2 =

∫
dx
∑
ab

(V̂ −1)ab
(
η∗aηb − η∗a,0ηb,0

)
, (6.16)

where Vab are the coupling constants in the Hamiltonian (6.13).

In the sharp two-soliton model, F2 = 0, so the interaction between the solitons is

entirely determined by the quasiparticle contribution F1. The ratio of the Fredholm

determinants can be calculated using the same transfer matrix method as in Sec. 5.2,

with the following result:

F1 = 2πT
∑
n

∑
a

NF,a

∫
dk̂F
4π
|vF,a,x| lnS22(iωn; a, k̂F ). (6.17)

Thus, the problem of evaluating the free energy of a nonuniform order parameter tex-

ture has been reduced to the calculation of the semiclassical scattering matrix of the

Bogoliubov quasiparticles, analytically continued to the complex energies.

6.2.1 Interaction energy

The energy of the soliton texture depends on the separation L, and is given by Fs(L) = F1

for two sharp solitons. Since the solitons are decoupled at infinite separation, Fs(L→∞)

gives the self-energy of two solitons, measured with respect to the uniform superconduct-

ing state. The interaction energy per unit area, Fint, is simply the difference between the

free energy at arbitrary separation L and the self-energy of the two-soliton configuration,

i.e. Fint = Fs(L)− Fs(L→∞).

Using the same analytical continuation procedure as in Sec. 5.2, it follows from Eqs.

(6.17) and (6.12) that the interaction energy per unit soliton area at given separation
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has the following form:

Fint = −2πT
∑
n

∑
a

NF,a

∫
dk̂F
4π
|vF,a,x| ln

[
1 +

∆2
a sin2(χa/2)

ω2
n + ∆2

a cos2(χa/2)
e−2κaL

]
, (6.18)

where κa =
√
ω2
n + ∆2

a/|vF,x,a|. The overall sign of the interaction energy is negative

as in the DW case, and therefore the soliton interaction mediated by the Bogoliubov

quasiparticles is attractive at all temperatures, causing an effective collapse of the soliton

texture into a uniform superconducting state. Qualitatively it is evident from Eq. (6.18)

that the attraction depends exponentially on the distance between the solitons. We note

that the integrand in Eq. (6.18) has the same form as in Eq. (5.76) if one makes the

replacement δ → χa/2, ∆0 → ∆a, and κ → κa in the ath band.

To make analytical progress, we focus on the case of zero temperature, where the

sum over the discrete Matsubara frequencies ωn becomes an integral over a continuous

variable ω: T
∑

n(· · · )→
∫

(· · · )dω/2π. In the limit of large soliton separation, one can

expand the logarithm in Eq. (6.18), and then the interaction energy takes the form:

Fint = −1

2

∑
a

NF,avF,a∆a

∫ π

0

dθ sin θ| cos θ|

×
∫ +∞

−∞
dω̃

sin2(Φ/2)

ω̃2 + cos2(Φ/2)
exp

(
−2L̃a

√
ω̃2 + 1

| cos θ|

)
, (6.19)

where L̃a = L∆a/vF,a and ω̃ = ω/∆a. Here we have used the expression (6.4) for the

phase winding parameters. In the limit L̃a � 1, one can further neglect the ω̃-dependence

of the pre-exponential factor in the integral over ω̃, and evaluate this integral by the

steepest descent method. In this way, we can represent Eq. (6.19) in the following form:

Fint = − tan2

(
Φ

2

)∑
a

NF,avF,a∆a

√
π

L̃a
I(L̃a), (6.20)

where

I(L̃a) =

∫ π/2

0

dθ sin θ cos3/2 θe−2L̃a/ cos θ =

∫ ∞
1

dρ

ρ7/2
e−2L̃aρ, (6.21)

and we have invoked the symmetry of the angular integral to reduce the region of inte-

gration and also made a change of variable ρ = 1/ cos θ.

The integral in Eq. (6.21) can be expressed in terms of the complementary error

function [64], and in the limit L̃a � 1, it has the form I = e−2L̃a/2L̃a. Using this result
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in Eq. (6.20), we obtain the following form for the interaction energy per unit area:

Fint = − tan2

(
Φ

2

)∑
a

NF,avF,a∆a

√
π(L̃a)

−3/2e−2L̃a .

Finally, we restore the dimensional quantities and arrive at our final expression for

the soliton interaction energy per unit area:

Fint = − tan2

(
Φ

2

)√
π

L3

∑
a

NF,av
5/2
F,a∆−1/2

a exp

(
−2∆aL

vF,a

)
. (6.22)

We see that the interaction between the solitons is attractive and, as expected, it is

exponentially weak in the limit of large separation between the solitons. Note that the

interaction energy is zero when the phase difference is zero, corresponding to the absence

of phase solitons. This is different from the chiral p-wave case, since even in the absence

of a global phase difference between the domains, there are still different degenerate chiral

states separated by DWs.
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7 Conclusions

In this work, we studied the interaction between two DWs separating states of opposite

chirality in a triplet p-wave superconductor, and found that it is attractive for arbitrary

DW separation, at all temperatures. Furthermore, we found that the interaction energy

is exponentially weak for large separation between the DWs. We used the transfer matrix

method to relate the interaction energy of the DWs to the scattering matrix of the Bo-

goliubov quasiparticles, and the latter was calculated in the semiclassical approximation.

This method can be applied to any planar superconducting texture. The expression

for the free energy will take the same form; however, the scattering matrix of the Bogoli-

ubov quasiparticles will be sensitive to the order parameter of the texture, and can be

determined from the Andreev equations. To illustrate the utility of the method developed

in this work, we have applied it to the interaction between phase solitons in two-band

s-wave SCs, to find a similar result as in the chiral p-wave DW system under the same

limits.

Our results are immediately applicable to the neutral case. In a charged superconduc-

tor, there will be another contribution to the DW interaction coming from the Meissner

screening currents and the magnetic fields associated with them. Investigation of these

effects on the interaction energy is left for the future work, and there are, in fact, quite

a few additional effects on the interaction energy that one can consider. In the next

subsection, we will discuss some more possible avenues of future research into this field.

7.1 Future work

Throughout the work we considered the sharp-DW (sharp-soliton) model, in which the

width of the DW (phase soliton) is zero, and the DW separation is large. Consequently,

the order parameter changes abruptly at the boundaries between the neighbouring do-

mains. It would be interesting to consider the situation of finite DW thickness and

smooth, more realistic profiles for the DW, with arbitrary DW separation. More gener-

ally, one can apply the transfer matrix method to characterize the interaction between

DWs in a variety of other unconventional superconducting states with degenerate ground

states.

One can further extend this research to investigate the quasiparticle properties of

DWs in different geometries, for example, the circular DWs that can form in chiral p-wave

superconductors [70]. Additionally, one can consider how the DWs are affected by the

presence of sample boundaries [71]; and perhaps consider the the dynamical properties of

these textures and how they are affected by the quasiparticles. Other possibilities include
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the effects of external fields, external currents, and disorder, and perhaps even going

beyond the semiclassical approximation. The interacting DWs also seem like interesting

candidates for computational simulation. In particular, it would be interesting to study

the dynamics of the DW interaction, to investigate what happens as the DWs become

closer and closer to each other, and perhaps model the nature of the collapse of the DWs

to a single domain.
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A Ginzburg-Landau description of a domain wall

To gain insight into the structure of the DW, particularly the origin of the nonzero phase

difference between the domains, we use the Ginzburg-Landau free energy functional. For

the neutral non-uniform superfluid it is a sum of uniform (Fu) and gradient (Fg) energy

densities. For the superconducting state with a two-component complex order parameter

η = (η1, η2) we have

Fu = α|η|2 + β1|η|4 + β2|η · η|2 + β3(|η1|4 + |η2|4), (A.1)

where β3 = 0 in systems with isotropic Fermi surface, and

Fg = K1(∇iηj)
∗(∇iηj) +K2(∇iηi)

∗(∇jηj) +K3(∇iηj)
∗(∇jηi), (A.2)

where the Einstein summation convention is assumed. We find that the minimum of

the uniform free energy density for an isotropic system corresponds to the chiral states

η = ∆0(1,±i) with ∆0 =
√
|α|/4β1, for the case β1, β2 > 0.

The structure of the DW, see Sec. 2, can be expressed in the following form:

η1(x) = ∆0f1(x)eiφ(x), η2(x) = ∆0f2(x)eiφ(x)−iγ(x), (A.3)

where f1,2 are the dimensionless amplitudes of the order parameter components, whose

asymptotics are fixed by Eq. (2.2).

The nonzero phase difference χ, which arises between domains of opposing chiral-

ity, emerges from the condition of vanishing supercurrent across the DW. It follows

from Eq. (A.2) that the supercurrent is given by the expression ji = 2 Im (K1η
∗
j∇iηj +

K2η
∗
i∇jηj +K3η

∗
j∇jηi), in particular, the transverse current has the form

jx = 2 Im (K123 η
∗
1∇xη1 +K1η

∗
2∇xη2),

with K123 = K1 + K2 + K3. Using the expressions for the order parameter components

in Eq. (A.3), we find:

jx = 2∆2
0(K123f

2
1 +K1f

2
2 )(∇xφ)− 2K1∆2

0f
2
2 (∇xγ), (A.4)

with K123 as defined above.

In our work we focus on the static case, so conservation of current requires ∇xjx = 0,

and therefore jx = const. Since external sources fix the value of the transverse current,
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we can set jx = 0, and we recover a linear relation between the gradients of φ and γ.

After substituting the expressions (A.3) into Eqs. (A.1) and (A.2), we use this linear

relation to eliminate the common phase φ(x) from the gradient energy, and we have the

following simplified expressions for the free energy densities:

Fu = α∆2
0(f 2

1 + f 2
2 ) + β1∆4

0(f 2
1 + f 2

2 )2 + β2∆4
0(f 4

1 + f 4
2 + 2f 2

1 f
2
2 cos 2γ),

Fg = K123∆2
0(∇xf1)2 +K1∆2

0(∇xf2)2 +
K1K123f

2
1 f

2
2

K123f 2
1 +K1f 2

2

∆2
0(∇xγ)2.

(A.5)

Variational minimization of these expressions with respect to f1,2 and γ gives rise to three

coupled differential equations, which are subject to the boundary conditions f1,2(±∞) =

1 and γ(±∞) = ±π/2, in accordance with the order parameter asymptotics. Using the

solutions to these equations, along with the relation between the gradients of φ and γ

that emerges from current conservation, we can compute the phase difference between

two arbitrary points x1 and x2:

φ(x2)− φ(x1) =

∫ x2

x1

K1f
2
2

K123f 2
1 +K1f 2

2

dγ

dx
dx. (A.6)

We see that whenever there is a gradient of γ, the value of the common phase difference is

nonzero, and it is evidently sensitive to the microscopic details of the system [61]. While

we have imposed the condition of zero transverse current to obtain Eq. (A.6), we should

note that the current along the DW is necessarily nonzero.

Obtaining an exact analytical solution for the DW structure is not possible due to

the complexity of the differential equations obtained from variational minimization of the

expressions in Eq. (A.5). However, we can make analytical progress by considering the

constant-amplitude model [30], in which case f1,2(x) = 1 for all x. Then from Eq. (A.5),

the total free energy density F = Fu + Fg is given by the expression:

F = (· · · ) + K̃∆2
0(∇xγ)2 + 2β2∆4

0 cos 2γ, (A.7)

where K̃ = K1K123/(K123 + K1). The first term (in parentheses) of this last expression

contains only γ-independent terms. It is immediately clear that variational minimization

of F with respect to γ(x) leads to an expression which has the form of a sine-Gordon

equation:

K̃∇2
xγ + 2β2∆2

0 sin 2γ = 0. (A.8)

The simplest nontrivial solution to this last equation, which satisfies the boundary con-
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ditions mentioned above, is a kink-like solution given by sin γ(x) = tanh(x/ξd), which

corresponds to a single DW. The parameter ξd =
√
K̃/4β2∆2

0 has the physical meaning of

the DW thickness. Using this expression for γ(x) in Eq. (A.6) we obtain for the common

phase difference:

χ ≡ φ(+∞)− φ(−∞) =
K1

2K1 +K2 +K3

π. (A.9)

In the weak coupling model, K1 = K2 = K3 (Ref. [18]), and χ has the value π/4.

There are no stable two-kink (or two-DW) solutions to Eq. (A.8); the other non-trivial

solution to the variational equation for γ corresponds to a periodic arrangement of DWs.

This can be understood by considering a simple pendulum with 2γ → Θ (the angular

displacement of the pendulum), and x → t (a time coordinate). Consider first the one-

kink solution to γ(x), where initially t → −∞, and we have Θ = −π. After a sufficient

amount of time has elapsed (i.e. at t → +∞) the pendulum has just enough energy to

complete one full revolution, approaching an angular displacement of Θ = +π. There

can be no two-kink solutions because if the pendulum has enough energy to surpass the

limit Θ = +π and complete one more revolution, it will have enough energy to do this an

infinite number of times. This explains the origin of the second solution to the variational

equation for γ, a periodic arrangement of DWs.

The fact that there are no stable two-DW solutions implies there must be some

form of interaction between the walls. If we consider a two-DW configuration which

separates states of alternating chirality, this interaction will cause either an effective

collapse of the DWs to a single domain (if it is attractive), or the effective formation

of a single DW which separates two domains of opposite chirality (if it is repulsive).

The periodic solution for γ(x) can also be understood in terms of this interaction, as a

mutual attraction or repulsion between neighbouring DWs could potentially lead to a

stable periodic configuration.
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B Ginzburg-Landau description of a phase soliton

We assume a clean superconductor with two isotropic bands, labeled by a = 1, 2, and

isotropic s-wave singlet pairing, described by two order parameters η1(r) and η2(r), in

the absence of a magnetic field. The difference between the free energies in the super-

conducting and normal states is given by Fs −Fn =
∫
fGL d

3r, where

fGL =
∑
a

[
αa|ηa|2 +

βa
2
|ηa|4 +Ka|∇ηa|2

]
+ γ(η∗1η2 + η∗2η1). (B.1)

The intraband terms have the usual Ginzburg-Landau form, while the last term describes

the interband “Josephson coupling”, i.e. the Cooper pair tunneling between the bands.

Using the amplitude-phase representation of the order parameter, ηa(r) = |ηa(r)|eiϕa(r),

the free energy density can be written as

fGL =
∑
a

[
αa|ηa|2 +

βa
2
|ηa|4 +Ka(∇|ηa|)2 +Ka|ηa|2(∇ϕa)

2

]
+ 2γ|η1||η2| cos(ϕ1 − ϕ2).

(B.2)

In a uniform state, the minimum energy corresponds to |ηa| = ∆a and ϕ1 − ϕ2 =

θ0(mod 2π), where

θ0 = 0, if γ < 0, θ0 = π, if γ > 0. (B.3)

The first possibility (interband attraction) is realized in MgB2, in which both gaps have

the same phase [66], while the second possibility (interband repulsion) is likely realized

in the iron pnictides, in which, according to the most popular model, the gap function

reverses its sign between different sheets of the Fermi surface, corresponding to the so-

called s± pairing [67].

It follows from Eq. (B.2) that the supercurrent is a sum of independent contributions

from individual bands: j = −(4e/c)
∑

aKa|ηa|2(∇ϕa) (e is the absolute value of electron

charge). For a planar texture perpendicular to the x axis, the current conservation implies

that j = jx̂, where j is a constant. The value of the current is set by external sources

and can be assumed to be zero. In order for the supercurrent contributions from bands 1

and 2 to cancel each other, the two order parameter phases must vary in a counterphase

fashion, with ∇xϕ2 = −ρ(x)∇xϕ1, where ρ = K1|η1|2/K2|η2|2. This allows one to express

the free energy (B.2) in terms of the relative phase θ = ϕ1 − ϕ2:

fGL =
∑
a

[
αa|ηa|2 +

βa
2
|ηa|4 +Ka(∇|ηa|)2

]
+

K1K2|η1|2|η2|2

K1|η1|2 +K2|η2|2
(∇xθ)

2 + 2γ|η1||η2| cos θ,

(B.4)
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Variational minimization of this expression yields a system of three coupled nonlinear

differential equations for |η1(x)|, |η2(x)|, and θ(x), with the asymptotics |ηa(±∞)| = ∆a

and θ(±∞) = θ0(mod 2π).

In addition to the uniform solutions, the order parameter equations have various

nonuniform ones, connecting different degenerate minima of cos θ. The simplest topo-

logically nontrivial solutions are those with θ(+∞)− θ(−∞) = ±2π, where the positive

(negative) sign corresponds to a phase soliton (anti-soliton). The presence of a soliton

texture in the relative phase implies that each of the two phases ϕ1 and ϕ2 is also spa-

tially nonuniform and attains different values at x = +∞ and x = −∞ [69]. We define

the phase winding parameter as

χ ≡ ϕ1(+∞)− ϕ1(−∞) =

∫ +∞

−∞
dx

∇xθ

1 + ρ(x)
, (B.5)

then ϕ2(+∞)− ϕ2(−∞) = χ∓ 2π for the soliton (anti-soliton).

An explicit expression for the phase soliton can be obtained in the London approxi-

mation, when the order parameter amplitudes are constant everywhere, i.e. |ηa(x)| = ∆a

(Ref. [68]). The minimization of Eq. (B.4) then yields a static sine-Gordon equation for

the relative phase, whose soliton solution has the form θ(x) = θs(x) + (π − θ0), where

θs(x) = 2 arcsin[tanh(x/ξs)] and

ξs =

√
K1K2∆1∆2

(K1∆2
1 +K2∆2

2)|γ|

has the meaning of the soliton width. The phase textures in the bands are then given by

the following expressions:

ϕ1(x) =
1

1 + ρ0

θs(x), ϕ2(x) = − ρ0

1 + ρ0

θs(x)− (π − θ0), (B.6)

where ρ0 = K1∆2
1/K2∆2

2. We further note that in this approximation the phase winding

parameter, see Eq. (B.5), takes the form χ = 2π/(1 + ρ0).
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