
Rings, Group Rings, and Their Graphs

Farid Aliniaeifard, Master of Science

Mathematics

Submitted in partial fulfilment
of the requirements for the degree of

Master of science

Faculty of Mathematics and Science, Brock University
St. Catharines, Ontario

c©2013





Abstract

We associate some graphs to a ring R and we investigate the interplay

between the ring-theoretic properties of R and the graph-theoretic properties

of the graphs associated to R. Let Z(R) be the set of zero-divisors of R. We

define an undirected graph Γ(R) with vertices Z(R)∗ = Z(R) \ {0}, where

distinct vertices x and y are adjacent if xy = 0 or yx = 0. We investigate

Isomorphism Problem for zero-divisor graphs of group rings RG . Let Sk

denote the sphere with k handles, where k is a non-negative integer, that is,

Sk is an oriented surface of genus k. The genus of a graph is the minimal

integer n such that the graph can be embedded in Sn. The annihilating-ideal

graph of R is defined as the graph AG(R) with vertex set A(R)∗ = A(R)\{0}

(the set of ideals with non-zero annihilators) such that two distinct vertices

I and J are adjacent if IJ = (0). We characterize Artinian rings whose

annihilating-ideal graphs have finite genus. Finally, we extend the definition

of the annihilating-ideal graph to non-commutative rings.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

The study of algebraic structures using the properties of graphs became an

exciting research topic in the last twenty years, leading to many fascinating

results and new research problems. Here we associate some graphs to a ring

R to study the structure of zero-divisors in R as well as the structure of

annihilating-ideal graph of R.

Let us start with zero-divisor graph. Let R be a commutative ring with

1 6= 0. We associate a (simple) graph Γ(R) to R with vertices Z(R)∗ =

Z(R)\{0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗,

the vertices x and y are adjacent if and only if xy = 0. The concept of a

zero-divisor graph of a commutative ring was introduced by I. Beck in [14],

which was mainly concerned with colorings of rings. The definition given
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above differs from that in the earlier work of D. D. Anderson and M. Naseer

[12] and Beck in since 0 is not taken as a vertex of Γ(R). In [35], Redmond

introduced the notion of an ideal based zero-divisor graph, generalizing the

notion of Γ(R) and this idea is pursued further in [28].

D. F. Anderson and P. S. Livingston [9] gave several fundamental results

concerning Γ(R) for a commutative ring R using the above definition. Also,

the next two examples show that non-isomorphic rings may have isomorphic

zero-divisor graphs. Figures 1.1 and 1.2 appeared in [9].

Figure 1.1: Zero-divisor graphs for Z6,Z8 and Z2[X]/(X3).

Figure 1.2: Zero-divisor graphs for F4[X]/(X2) and Z2[X, Y ]/(X2, XY, Y 2).

Let Si denote the sphere with i handles, where i is a non-negative integer.

That is, Si is an orientable surface of genus i. The genus of a graph Γ, denoted

γ(Γ), is the minimal integer m such that the graph can be embedded in Sm.

Intuitively, Γ is embedded in a surface if it can be drawn in the surface so
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that its edges intersect only at their common vertices. For vertices x and y

of Γ, let d(x, y) be the length of a shortest path from x to y (d(x, x) = 0

and d(x, y) = ∞ if there is no such path). The diameter of Γ is diam(Γ) =

sup{d(x, y)|x and y are vertices of Γ}. The girth of Γ, denoted by gr(Γ), is

the length of a shortest cycle in Γ (gr(Γ) =∞ if Γ contains no cycles).

In [10], the following question was asked: For which finite commutative

ring R is Γ(R) planar (a graph which has genus 0)? In [3] a partial answer

was given, but the question was not answered for local rings of order 32. In

[39], and independently in both [41] and [17], it was shown that no local ring

of order 32 has a planar zero-divisor graph. Furthermore, Smith [39] gave a

complete list of finite planar rings. In [43], a complete list of finite rings whose

zero-divisor graphs have genus 1 was given. Also, Wickham in [44] showed

that there are finitely many finite commutative rings with finite positive

genus zero-divisor graphs. In [7], Aliniaeifard and Behboodi generalized the

Wickham’s Theorem and showed that there are finitely many (not necessarily

finite) commutative rings with finite positive genus zero-divisor graphs.

Now, we introduce annihilating-ideal graph of a commutative ring R.

Let A(R) be the set of ideals with non-zero annihilators. The annihilating-

ideal graph of R is defined as the graph AG(R) with the vertex set A(R)∗ =

A\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0).

Thus AG(R) is the empty graph if and only if R is an integral domain. This

notion of annihilating-ideal graph was first introduced and systematically

studied by Behboodi and Rakeei in [15, 16]. Recently it has received a great
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deal of attention from several authors, for instance, see [1, 2] and [6].

In Chapter 1, we present some basic concepts, definitions, and facts in

the topological graph theory, ring and group ring theory, which are needed

in the sequel.

In Chapter 2, we first introduce the zero-divisor graphs for commuta-

tive rings and present some preliminary results. Then we investigate the

interplay between the ring-theoretic properties of group ring RG and the

graph-theoretic properties of Γ(RG). We characterize finite abelian group

rings RG for which either diam(Γ(KG)) ≤ 2 or gr(Γ(RG) ≥ 4. Also, the

isomorphism problem for zero-divisor graphs of group rings is studied. First,

it is shown that two finite semisimple group rings are isomorphic if and only

if their zero-divisor graphs are isomorphic. Also, it is shown that rank and

cardinality of a finite abelian p-group is determined by the zero-divisor graph

of its modular group ring. Finally, we show that finite non-commutative re-

versible group rings with commutative coefficient rings are determined by

their zero-divisor graphs.

A few preliminary results in annihilating-ideal graphs are given in Chapter

3. It is shown that if R is an Artinian ring such that 0 < γ(AG(R)) < ∞,

then R has only finitely many ideals, extending a recent result in [6].

In Chapter 4, we extend the definition of the annihilating-ideal graph to

non-commutative rings. We introduce various ways to define the annihilating-

ideal graph of a non-commutative ring. The first definition gives a directed

graph denote by (APO)G(R). The other definition yield an undirected
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graph denoted by (APO)G(R). It is shown that (APO)G(R) is not con-

nected but (APO)G(R) is connected and the diameter of (APO)G(R) is

less than or equal to 3. Also, we show that if (APO)G(R) has DCC (resp.,

ACC) on its vertices, then R is an Artinian (resp., Noetherian) ring. It is

shown that (APO)G(R) has some features similar to that of an annihilating-

ideal graph. Finally, we investigate the diameter and girth of square ma-

trices over commutative rings Mn×n(R), when n ≥ 2. It is shown that

diam((APO)G(Mn×n(R)) ≥ 2 and g((APO)G(Mn×n(R)) = 3, where n ≥ 2.

1.2 Topological Graph Theory

The topological graph theory is a branch of graph theory, which studies the

embedding of graphs in surfaces, spatial embeddings of graphs, and graphs

as topological spaces. It also studies immersions of graphs. Embedding a

graph in a surface means that we want to draw the graph on a surface, a

sphere for example, without two edges intersecting. In this section we present

some basic concepts and definitions in the topological graph theory, which

are needed in the sequel.

What is a Graph? A graph Γ is a triple consisting of a vertex set V (Γ),

an edge set E(Γ), and a relation that associates with each edge two vertices

(not necessarily distinct) called its endpoints. A subgraph of a graph Γ is a

graph θ such that V (θ) ⊆ V (Γ) and E(θ) ⊆ E(Γ) and the assignment of end-
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points to edges in θ is the same as in Γ. We then write θ ⊆ Γ and say that ”Γ

contains θ”. A graph is finite if its vertex set and edge set are finite. A loop

is an edge whose endpoints are equal. Multiple edges are edges having the

same pair of endpoints. A simple graph is a graph having no loops or multiple

edges. For a graph Γ, the degree of a vertex v of Γ, denoted by deg(v), is the

number of edges of Γ incident with v and m(Γ) = max{deg(v) : v ∈ V (Γ)}.

Path and Cycle A path is a simple graph whose vertices can be ordered

so that two vertices are adjacent if and only if they are consecutive in the

list. A graph G is connected if each pair of vertices in G belongs to a path;

otherwise, G is disconnected. A cycle is a graph with an equal number of

vertices and edges whose vertices can be placed around a circle so that two

vertices are adjacent if and only if they appear consecutively along the circle.

The path and cycle with n vertices are denoted Pn and Cn, respectively; an

n-cycle is a cycle with n vertices.

Figure 1.3: C5 and P4
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Complete Graph and Complete Bipartite Graph A complete graph

is a simple graph whose vertices are pairwise adjacent; the complete graph

with n vertices is denoted Kn. A graph Γ is bipartite if V (Γ) is the union

of two disjoint (possibly empty) independent sets called partite sets of Γ. A

complete bipartite graph or biclique is a simple bipartite graph such that two

vertices are adjacent if and only if they are in different partite sets. When

the partite sets have sizes r and s, the complete bipartite graph is denoted

Kr,s.

Figure 1.4: K5 and K2,3

Diameter and Girth of a Graph For vertices x and y of Γ, let d(x, y)

be the length of a shortest path from x to y (d(x, x) = 0 and d(x, y) = ∞

if there is no such a path). The diameter of Γ is diam(Γ) = sup{d(x, y)|x

and y are vertices of Γ}. The girth of Γ, denoted by gr(Γ), is the length of

a shortest cycle in Γ (gr(Γ) =∞ if Γ contains no cycles).
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Isomorphism Between two simple Graphs An isomorphism from a

simple graph Γ to a simple graph θ is a bijection f : V (Γ)→ V (θ) such that

uv ∈ E(Γ) if and only if f(u)f(v) ∈ E(θ). We say ”Γ is isomorphic to θ”,

written Γ ∼= θ, if there is an isomorphism from Γ to θ.

Neighborhoods and Topological Space Let X be a set; the elements

of X are usually called points, though they can be any mathematical object.

We allow X to be empty. Let N be a function assigning to each x in X a

non-empty set N(x) of subsets of X. The elements of N(x) will be called

neighborhoods of x with respect to N (or, simply, neighborhoods of x). The

function N is called a neighborhood topology if the axioms below are satisfied

(X with N is called a topological space):

(1) If N is a neighborhood of x, then x ∈ N . This means every point

belongs to every neighborhood of that point.

(2) If N is a subset of X containing a neighborhood of x, then N is a

neighborhood of x. This means that every superset of a neighborhood of a

point x in X is again a neighborhood of x.

(3) The intersection of two neighborhoods of x is a neighborhood of x.

(4) Any neighborhood N of x contains a neighborhood M of x such that

N is a neighborhood of each point of M .

A standard example of such a system of neighborhoods is for the real line R,

where a subset N of R is defined to be a neighborhood of a real number x if

there is an open interval containing x and contained in N .
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A subset U of X to be open if U is a neighborhood of all points in U . It is

a remarkable fact that the open sets satisfy the elegant axioms given below,

and that, given these axioms, we can recover the neighborhoods satisfying

the above axioms by defining N to be a neighborhood of x if N contains an

open set U such that x ∈ U .

A topological space is then a set X together with a collection of subsets of

X, called open sets and satisfying the following axioms:

(1) The empty set and X itself are open.

(2) Any union of open sets is open.

(3) The intersection of any finite number of open sets is open.

The collection T of open sets is then also called a topology on X, or, if more

precision is needed, an open set topology. The sets in T are called the open

sets, and their complements in X are called closed sets. A subset of X may

be neither closed nor open, either closed or open, or both.
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Figure 1.5: Four examples and two non-examples of topologies on the three-

point set {1, 2, 3}. The bottom-left example is not a topology because the

union of {2} and {3} [i.e., {2, 3}] is missing; the bottom-right example is not

a topology because the intersection of {1, 2} and {2, 3} [i.e., {2}], is missing.

Homeomorphic Topological Spaces A function f : X → Y between

topological spaces X and Y , is called continuous if for each x ∈ X and each

neighbourhood N of f(x) there is a neighbourhood M of x such that f(M) ⊆

N . This relates easily to the usual definition in analysis. Equivalently, f is

continuous if the inverse image of every open set is open. This is an attempt

to capture the intuition that there are no ”jumps” or ”separations” in the

function. A homeomorphism is a bijection that is continuous and whose

inverse is also continuous. Two spaces are called homeomorphic if there

exists a homeomorphism between them. From the standpoint of topology,

homeomorphic spaces are essentially identical.
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Figure 1.6: Three homeomorphic spaces.

Connected Sum of 2-manifolds A topological space X is said to be

disconnected if it is the union of two disjoint nonempty open sets. Other-

wise, X is said to be connected. A subset of a topological space is said to be

connected if it is connected under its subspace topology. A 2-manifold is a

topological space that each point has a neighbourhood where is homeomor-

phic to {(x, y) ∈ R×R | x2 +y2 < 1}. A connected sum of two 2-manifolds is

a manifold formed by deleting a ball inside each manifold and gluing together

the resulting boundary spheres. The operation of connected sum is denoted

by #, for example A#B denotes the connected sum of A and B.

Figure 1.7: Illustration of connected sum.

13



Embedding a Graph in a Topological space Let Γ be a graph, with

V (Γ) = {v1, ..., vn} and E(Γ) = {x1, ..., xm}. Let M be a 2-manifold. An

embedding of Γ in M is a subspace S(M) of M such that,

S(M) = (
n⋃
i=1

vi(M)) ∪ (
m⋃
j=1

xj(M)),

Where

(1) v1(M), ..., vn(M) are distinct points of M ,

(2) x1(M), ..., xm(M) are mutually disjoint arcs (an arc in M is a homeomor-

phic image of S = {(x, y) ∈ R×R | x2 + y2 = 1}) in M ,

(3) xj(M) ∩ vi(M) = ∅, i = 1, 2, ..., n; j = 1, 2, ..,m,

(4) if xj = (vj1, vj2), then the open arc xj(M) has vj1(M) and vj2(M) as end

points; j = 1, · · · ,m.

Intuitively, Γ is embedded in a topological space if it can be drawn in the

topological space so that its edges intersect only at their common vertices.

Figure 1.8: K5 can not be embedded on a plane (see [18, Corollary 4.2.11]).
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Figure 1.9: K5 can be embedded in a torus.

Genus of a Graph A torus is a topological space homeomorphic to S×S,

where S = {(x, y) ∈ R×R | x2 + y2 = 1}.

Figure 1.10: A torus

Let Si denote the connected sum of a sphere with i tori, where i is a

nonnegative integer. The genus of a graph Γ, denoted γ(Γ), is the minimal

integer m such that the graph can be embedded in Sm. For example, from
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Figures 1.8 and 1.9, γ(K5) = 1, i.e., K5 has genus 1.

Theorem 1.2.1 (See [42, Page 68])

(1.1) γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
for all n ≥ 3.

(1.2) γ(Km,n) =

⌈
(n− 2)(m− 2)

4

⌉
for all n ≥ 2 and m ≥ 2.

1.3 Ring Theory and Group Ring Theory

We now recall some of concepts and definitions in ring theory and group ring

theory.

1.3.1 Ring Theory

We present some basic facts and well-known theorems in ring theory which

will be used frequently. Throughout this thesis all rings are associative with

identiy.

Definition 1.3.1 Let X be a subset of R. The left annihilator of X is the

set

Annl(X) = {a ∈ R : ax = 0, ∀x ∈ X}.

Similarly, we define the right annihilator of X by:

Annr(X) = {a ∈ R : xa = 0, ∀x ∈ X}.

16



Lemma 1.3.2 Let R be a ring and x ∈ R. Then Rx ∼= R/Annl(x) and

xR ∼= R/Annr(x).

Proof. Define f : R → Rx, by f(r) = rx. Then by the first isomorphism

Theorem Rx ∼= R/Annl(x). Similarly, xR ∼= R/Annr(x).

Artinian and Noetherian Rings

Let R be a ring. An R-module N is left Noetherian, named after Emmy

Noether, if is satisfies the ascending chain condition (ACC) on leftR-submodules

of N , right Noetherian if it satisfies the ascending chain condition on right

R-submodules, and Noetherian or two-sided Noetherian if it is both left and

right Noetherian.

A ring R is left Noetherian if it is a left Noetherian R-module, right

Noetherian if it is a right Noetherian R-module, and Noetherian or two-

sided Noetherian if it is both left and right Noetherian. For commutative

rings the left and right definitions coincide, but in general they are different

from each other. The following conditions are equivalent:

1. R is left Noetherian.

2. Every left ideal I in R is finitely generated.

3. Every non-empty set of left ideals of R, partially ordered by inclusion,

has a maximal element with respect to set inclusion.

Similar results hold for right Noetherian rings.

An R-module M is left Artinian if it satisfies the descending chain condi-

tion on left R-submodules of M , right Artinian if it is satisfies the descending
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chain condition (DCC) on right R-submodules of M , and Artinian or two-

sided Artinian if it is both left and right Artinian.

A ring R is left Artinian if it is a left Artinian R-module, right Artinian

if it is a right Artinian R-module, and Artinian or two-sided Artinian if it is

both left and right Artinian. For commutative rings the left and right defi-

nitions coincide, but in general they are different from each other. Artinian

rings are named after Emil Artin. Also, the definition for a ring R to be

left Artinian is equivalent to saying that every non-empty set of left ideals of

R, partially ordered by inclusion, has a minimal element with respect to set

inclusion.

The similar result holds for right Artinian rings.

In 1939, Hopkins and Levitzki independently discovered that the DCC

is actually a stronger condition then the ACC. Levitzki proved that all right

Artinian rings with identity are right Noetherian [25], while Hopkins showed

the same result holds for left Artinian rings and left Noetherian [20]. These

results together give that all Artinian rings with identity are Noetherian and

are summarized in the following theorem, named after both mathematicians.

Theorem 1.3.3 (Hopkins-Levitzki)[25] Let R be a right (left) Artinian

ring with identity. Then R is right (left) Noetherian.

Local Rings

A ring R is a local ring if it has a unique maximal ideal. A Noetherian local

ring (R,m) is called Gorenstein if v.dimR/m(Ann(m)) = 1.

18



Theorem 1.3.4 [13, Theorems 8.7] Let R be a commutative Artinian

ring. Then R ∼= R1 × · · · × Rn, where each Ri (1 ≤ i ≤ n) is a local

commutative Artinian ring.

The Jacobson radical of ring R, denote by J(R), is the intersection of all

of the maximal left ideals of R.

Nakayama’s Lemma

Nakayama’s Lemma also known as the Krull-Azumaya Theorem [13], gov-

erns the interaction between the Jacobson radical of a ring and its finitely

generated modules.

Theorem 1.3.5 (Nakayama’s Lemma)[24, (4.22)] Let R be a ring. For

any left ideal I ⊆ R, the following statements are equivalent:

(1) I ⊆ J(R).

(2) For any finitely generated left R-module M , IM = M , implies that M =

0.

(3) For any left R-submodule N ⊆ M such that M/N is finitely generated,

N + IM = M implies that M = N .

1.3.2 Group Ring Theory

A group ring is a free module and at the same time a ring, constructed in a

natural way from any given ring and any given group.
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Let G be a group (not necessarily finite) and R a ring. We denote by RG

the set of all formal linear combinations of the form

α =
∑
g∈G

agg,

where ag ∈ R and ag = 0 almost everywhere, that is, only a finite number

of coefficients are different from 0 in each of these sums. As a matter of

fact, all sums considered in this thesis will be finite in this sense, even when

the summation index runs over on infinite set. It should be understood that

we are always making this assumption, even though we shall not state it

explicitly again.

Notice that it follows from our definition that given two elements, α =∑
g∈G agg and β =

∑
g∈G bgg ∈ RG, we have that α = β if and only if ag = bg,

∀g ∈ G.

We define the sum of two elements in RG componentwise:

(
∑
g∈G

agg) + (
∑
g∈G

bgg) =
∑
g∈G

(ag + bg)g

.

Also, given two elements α =
∑

g∈G agg and β =
∑

g∈G bgg ∈ RG we

define their product by

αβ =
∑
g,h∈G

agbhgh.

20



It is easy to verify that, with the operations above, RG is a ring, which

has a unity; namely, the element 1 =
∑

g∈G ugg, where the coefficient corre-

sponding to the unit element of the group is equal to 1 and ug = 0 for every

other element g ∈ G.

We can also define a product of elements in RG by elements λ ∈ R as

λ(
∑
g∈G

agg) =
∑
g∈G

(λag)g.

The set RG, with the operations defined above, is called the group ring of

G over R. In the case where R is commutative, RG is also called the group

algebra of G over R.

Definition 1.3.6 Augmentation mapping The homomorphism ε : RG→

R given by

ε(
∑
g∈G

agg) =
∑
g∈G

ag

is called the augmentation mapping of RG and its kernel, denoted by

∆(G), is called the augmentation ideal of RG.

Notice that if an element α =
∑

g∈G agg belong to ∆(G), then ε(
∑

g∈G agg) =∑
g∈G ag = 0. So, we can write α in the form:

α =
∑
g∈G

agg −
∑
g∈G

ag =
∑
g∈G

ag(g − 1).

Therefore, the set {g − 1 : g ∈ G, g 6= 1} is a basis of ∆(G) over R, and we

can write
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∆(G) = {
∑
g∈G

ag(g − 1) : g ∈ G, g 6= 1, ag ∈ R}.

Definition 1.3.7 For a subgroup H of G, we shall denote by ∆R(G,H) the

left ideal of RG generated by the set {h− 1 : h ∈ H}. That is,

∆(G,H) = {
∑
h∈H

αh(h− 1) : αh ∈ RG}.

if H is normal, then ∆(G,H) is a 2-sided ideal and R(G/H) ∼= RG/∆(G,H)While

working with a fixed ring R we shall omit the subscript and denote this ideal

simply by ∆(G,H). Note that the ideal ∆(G,G) coincides with the ideal

∆(G).

Given a group ring RG and a finite subset X of the group G, we denote

by X̂ the following element of RG:

X̂ =
∑
x∈X

x.

Note that, if G is a finite group (in particular if X = G), then Ĝ =
∑

g∈G g

and RĜ = {
∑n

i=1 riĜ : ri ∈ R for all i } = {rĜ : r ∈ R}.

Notation. For any subset Y , we denote by |Y | the cardinality of Y .

Lemma 1.3.8 [29, Lemma 3.4.3] Let H be a subgroup of a group G and let

R be a ring. Then Annr(∆(G,H)) 6= 0 if and only if H is finite. In this
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case, we have

Annr(∆(G,H)) = Ĥ(RG).

Furthermore, if H is normal in G. Also, the element Ĥ is central in RG and

we have

Annr(∆(G,H)) = Annl(∆(G,H)) = Ĥ(RG).

In particular, if G is finite,

Annr(∆(G)) = Annl(∆(G)) = RĜ.

Now, we present the following theorem which will be used frequently in

this thesis.

Theorem 1.3.9 (Perlis-Walker)[29, Theorem 3.5.4] Let G be a finite

abelian group, of order n, and let K be a field such that Char(K) 6 |n. Then

KG ∼=
⊕

d|n adK(ζd) where ζd is a primitive root of unity of order d and

ad = nd

[K(ζd):K]
with nd denoting the number of elements of order d in G.

Isomorphism Problem for Group rings

The isomorphism problem of group rings apears for the first time, in regard

to integral group rings, in G. Higman’s P.h.D Thesis [21]. It was first posed

as a problem in the Algebra Conference at Michigan in 1947 by T. M. Thrall,
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who formulated it in the following terms:

”Given a group G and a field K , determine all groups H such that KG ∼= KH .”

A special case of the isomorphism problem is when the coefficient ring is

a field of order p, which is called the modular isomorphism problem. Let F

be a field of order p. The modular isomorphism problem asks if the following

is true?

Let P and Q be finite p − groups. Then FP ∼= FQ ⇒ P ∼= Q .

Only a few positive results are known regarding this problem. In general,

the question remains open.
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Chapter 2

Zero-Divisor Graphs for Group

Rings

In this chapter, we first introduce zero-divisor graphs for commutative rings

and present some preminilary results. Then we investigate the interplay be-

tween the ring-theoretic properties of group rings RG and the graph-theoretic

properties of their zero-divisor graphs Γ(RG). Finite commutative group

rings RG for which either diam(Γ(RG)) ≤ 2 or gr(Γ(RG)) ≥ 4 are character-

ized. Next we investigate the isomorphism problem for zero-divisor graphs of

group rings. First, it is shown that rank and the cardinality of a finite abelian

p-group are determined by the zero-divisor graph of its modular group ring.

It is also shown that two finite semisimple group rings are isomorphic if and

only if their zero-divisor graphs are isomorphic. Finally, we show that finite

noncommutative reversible group rings are determined by their zero-divisor
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graphs.

2.1 Preliminaries

Let R be a commutative ring with 1 and let Z(R) be the set of zero-divisors of

R. We associate a simple graph Γ(R) to R with vertices Z(R)∗ = Z(R)\{0},

the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, the

vertices x and y are adjacent if and only if xy = 0. Thus Γ(R) is the

empty graph if and only if R is an integral domain. The main object of the

investigation of zero-divisor graphs is to study the interplay of ring-theoretic

properties of R with graph-theoretic properties of Γ(R). This study helps

illuminate the structure of Z(R). The notion of a zero-divisor graph of a

commutative ring was introduced by I. Beck in [14], where he was mainly

interested in colorings. This investigation of colorings of a commutative ring

was then continued by D. D. Anderson and M. Naseer in [12]. Their definition

was slightly different from ours; they let all elements of R be vertices and

had distinct x and y adjacent if and only if xy = 0.

Example 2.1.1 (a) The vertex set for Γ(Z6) is {2, 3, 4} and the zero divisor

graph is shown in Figure 2.1.

(b) The vertex set for Γ(Z16) is {2, 4, 6, 8, 10, 12, 14} and the zero divisor

graph is shown in Figure 2.2.
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Figure 2.1: The zero-divisor graph of Z6.

Figure 2.2: The zero-divisor graph of Z16.

Example 2.1.2 Let R = Z8[X]/(2X,X2), and let x denote the image of X

in R. Then the vertex set for Γ(R) is the set (2, x)∗ = {2, 4, 6, x, 2 + x, 4 +

x, 6+x} of nonzero elements of the maximal ideal, and the zero divisor graph

is shown in Figure 2.3.
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Figure 2.3: The zero-divisor graph of Z8[X]/(2X,X2).

Of course, Γ(R) may be infinite (i.e., a ring may have an infinite number

of zero-divisors). But probably Γ(R) is of most interest when it is finite, as in

this case one can draw Γ(R). Recall that if R is finite, then each element of R

is either a unit or a zero-divisor, each prime ideal of R is an annihilator ideal,

and each nonunit of R is nilpotent if and only if R is local. Moreover, if R is

a finite local ring with maximal ideal M , then char(R) = pn for some prime

p and integer n ≥ 1. Hence M (= Z(R)) is a p-group, so |Γ(R)| = pm − 1

for some integer m ≥ 0 (see [13, 22, 30]). We first show that Z(R) is finite

if and only if either R is finite or an integral domain. Also, it is shown that

diam(Γ(R)) ≤ 3 and gr(Γ(R)) ≤ 4 or infinity. Finally, we characterize rings

whose zero-divisor graphs are complete graphs.

Theorem 2.1.3 Let R be a commutative ring. Then Γ(R) is finite if and

only if either R is finite or an integral domain. In particular, if 1 ≤ |Γ(R)| <

∞, then R is finite and not a field.
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Proof. Suppose that |Γ(R)| (=|Z(R)∗|) is finite and nonzero. Then there

are nonzero elements x, y ∈ R with xy = 0. Let I = Ann(x). Then I ⊂ Z(R)

is finite and ry ∈ I for all r ∈ R. If R is infinite, then there is an i ∈ I

with J = {r ∈ R | ry = i} infinite. For any r, s ∈ J , (r − s)y = 0, so

Ann(y) ⊂ Z(R) is infinite, yielding a contradiction. Thus R must be finite.

We next show that Γ(R) is connected, 0 ≤ diam(Γ(R)) ≤ 3 and gr(Γ(R)) =

3, 4 or ∞.

Theorem 2.1.4 Let R be a commutative ring. Then Γ(R) is connected and

diam(Γ(R)) ≤ 3.

Proof. Let x, y ∈ Z(R)∗ be distinct. We have the following two cases:

Case 1: xy = 0. Then d(x, y) = 1.

Case 2: xy 6= 0. Then we have the following subcases:

Subcase 1: x2 = y2 = 0. If xy = x, then xy = (xy)y = xy2 = 0, yielding

a contradiction. Thus xy 6= x. Similarly, xy 6= y. Therefore, x− xy − y is a

path of length 2, and so d(x, y) = 2.

Subcase 2: x2 = 0 and y2 6= 0. Then there is a b ∈ Z(R)∗ \ {x, y} with

by = 0. If bx = 0, then x − b − y is a path of length 2. If bx 6= 0, then

x− bx− y is a path of length 2. In either case, d(x, y) = 2.

Subcase 3: y2 = 0 and x2 6= 0. The proof is similar to subcase 2.

Subcase 4: x2 6= 0 and y2 6= 0. Then there exist a, b ∈ Z(R)∗ \ {x, y}

with ax = by = 0. If a = b, then x − a − y is a path of length 2. Thus we
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may assume that a 6= b. If ab = 0, then x − a − b − y is a path of length

3, and hence d(x, y) ≤ 3. If ab 6= 0, then x − ab − y is a path of length

2 so d(x, y) = 2. Since in all the cases d(x, y) ≤ 3, Γ(R) is connected and

diam(Γ(R)) ≤ 3.

Theorem 2.1.5 Let R be a commutative ring, not necessarily with identity.

If Γ(R) contains a cycle, then gr(Γ(R)) ≤ 4.

Proof. If Γ(R) contains a cycle x0−x1−· · ·−xn−x0 with n ≥ 4 and xixj = 0

for some i and j, where j > i+1 and either 0 ≤ i < j ≤ n−1 or 1 ≤ i < j ≤ n,

we can eliminate xk, where i < k < j, to obtain a shorter cycle. So, we

may assume Γ(R) contains a cycle x0 − x1 − · · · − xn − x0 with n ≥ 4 and

xixj 6= 0 for any i and j under the above conditions. If x1xn−1 is different

from x0 and xn, then we can form a cycle x0 − x1xn−1 − xn − x0 of length

3. So, we may assume that x1xn−1 = x0 or x1xn−1 = xn. If x1xn−1 = x0,

then x0xn−2 = x1xn−1xn−2 = 0, a contradiction. If x1xn−1 = xn, then

xnxn−2 = xnx1xn−1 = 0, a contradiction. Therefore, x0−xn−2−xn−1−xn−x0

is a cycle of length 4 and n = 4. Thus the result follows. �

Theorem 2.1.6 Let R be a commutative ring. Then Γ(R) is a complete

graph if and only if either R ∼= Z2 × Z2 or xy = 0 for all x, y ∈ Z(R).

Proof. (⇐) By definition.

(⇒) Suppose that Γ(R) is a complete graph. Then for every pair of distinct

elements x and y in Z(R), xy = 0. Assume that there is an x ∈ Z(R) with
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x2 6= 0. We show that x2 = x. If x2 6= x, then x3 = x2x = 0. Hence

x2(x + x2) = 0 with x2 6= 0, so x + x2 ∈ Z(R). If x + x2 = x, then x2 = 0,

a contradiction. Thus x + x2 6= x, thus x2 = x2 + x3 = x(x + x2) = 0

since Γ(R) is a complete graph, again a contradiction. Hence x2 = x. Since

R has an idempotent, R ∼= R1 × R2. If |R1| > 2, then since for every

1 6= r1 ∈ R1, (r1, 0) is a zero divisor and Γ(R) is a complete graph, we

conclude that (1,0)(r,0)=(0,0) for every r ∈ R1, yielding a contradiction.

Therefore |R1| = 2. Similarly |R2| = 2, and so R ∼= Z2 × Z2.

2.2 Zero-Divisor Graphs of Group Rings

Let R be a commutative ring with 1 6= 0 and G 6= 1 be a finite abelian

group. Then the group ring RG is a commutative ring. Since G 6= 1 is finite,

Γ(RG) 6= ∅. In this section, we characterize all finite group rings RG for

which either diam(Γ(RG)) ≤ 2 or gr(Γ(RG)) ≥ 4 and we also investigate

the genus of Γ(RG). We begin with a useful lemma.

Lemma 2.2.1 Let p and q be distinct primes. The cyclotomic polynomial

φq(x) of order q is irreducible over K = Fpr if and only if p is a generator

for (Z/qZ)∗ and gcd(r, q − 1) = 1.

Proof. Note that φq(x) factors into ϕ(q)/d distinct irreducible polynomials

in K[ζ], where ζ is a primitive qth root of unity and [K[ζ] : K] = d. Since

[K[ζ] : Fp] = rd, K[ζ] ∼= F(pr)d . Note that F(pr)d is the splitting field of
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polynomial xt − x where t = prd. We conclude that d is the least integer

such that ζ(pr)d = ζ, and thus ζ(pr)d−1 = 1. Therefore (pr)d ≡ 1 mod(ord(ζ)).

Since ord(ζ) = q, we have (pr)d ≡ 1 mod(q). Thus φq(x) is irreducible

if and only if ϕ(q)/d = 1, and so q − 1 = d. Hence the order of pr in

(Z/qZ)∗ is q − 1, which is equivalent to saying that pr is a generator of

(Z/qZ)∗. So p is a generator as well. Thus ord(pr) = q − 1 = ord(p),

implying ord(p)/gcd(r, q− 1) = q− 1 = ord(p), so gcd(r, q− 1) = 1. Finally,

we conclude that φq(x) is irreducible if and only if p is a generator of (Z/qZ)∗

and gcd(r, q − 1) = 1. �

We now characterize group rings RG with gr(Γ(RG)) ≥ 4.

Proposition 2.2.2 Let R be a finite commutative ring. Then either gr(Γ(RG)) =

3 or one of the following holds:

(1) RG ∼= Z2C2

(2) RG ∼= FprCq where p and q are distinct primes, p is a generator for

(Z/qZ)∗ and gcd(r, q − 1) = 1.

Proof. We divide our proof into the following cases.

Case 1: |Z(R)| ≥ 3. Let 1 6= g ∈ G. Since Γ(R) is connected and

|Z(R)| ≥ 3, we conclude that there exist two distinct nonzero zero-divisors

a, b ∈ R such that ab = 0. Then Ĝ − a(1 − g) − b(1 − g) − Ĝ is a cycle in

Γ(RG), so gr(Γ(RG)) = 3.

Case 2: |Z(R)| = 2. Let 0 6= a ∈ Z(R). Then a2 = 0. Since Ra ∼=

R/Ann(a), |R| ≤ |Ra||Ann(a)| ≤ |Z(R)|2. Thus |R| ≤ 4, and since R is
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not a field, |R| = 4. If |G| > 2 then there exist nontrivial distinct elements

g, h ∈ G. Hence Ĝ − a(1 − g) − a(1 − h) − Ĝ is a cycle in Γ(RG), so

gr(Γ(RG)) = 3. Next assume that |G| = |〈g〉| = 2. If Char(R) = 2 then

Ĝ2 = 0. Let 0 6= a, b ∈ R be such that 1 6= a 6= b 6= 1. Then Ĝ−aĜ−bĜ−Ĝ is

a cycle in Γ(RG), so gr(Γ(RG)) = 3. If Char(R) = 4 then Ĝ−(1−g)−2Ĝ−Ĝ

is a cycle in Γ(RG), so gr(Γ(RG)) = 3 again.

Case 3: |Z(R)| = 1, i.e., R is an integral domain. Since R is finite, R is

a field. We divide the proof into four subcases.

Subcase 1: Char(R)||G| and |R| > 3. Then Ĝ2 = |G|Ĝ = 0. Let r, s ∈ R

be two nonzero elements such that 1 6= r 6= s 6= 1. Then Ĝ − rĜ − sĜ − Ĝ

is a cycle in Γ(RG), so gr(Γ(RG)) = 3.

Subcase 2: Char(R)||G| and |R| = 3. Then Char(R) = 3, and so |G| ≥ 3.

Let g ∈ G be a nontrivial element. Then Ĝ− (1− g)− 2Ĝ− Ĝ is a cycle in

Γ(RG), so gr(Γ(RG)) = 3.

Subcase 3: Char(R)||G| and |R| = 2. Suppose that |G| > 2. Since

Char(R) = 2 and Char(R)||G|, we conclude that there exists a subgroup H

of G of order 2. Let g ∈ G \H. Then Ĝ− gĤ − Ĥ − Ĝ is a cycle in Γ(RG),

so gr(Γ(RG)) = 3. If |G| = 2 then R ∼= Z2 and G ∼= C2, so gr(Γ(RG)) =∞.

Subcase 4: Char(R) - |G| = n. Therefore, by the Perlis-Walker Theorem

[29, Theorem 3.5.4], RG ∼=
⊕

d|n adR(ζd) where ζd is a primitive root of unity

of order d and ad = nd

[R(ζd):R]
, with nd denoting the number of elements of order

d in G. Thus, if n is not a prime then RG is a direct product of at least

three fields, so gr(Γ(RG)) = 3. Next assume that |G| = q and Char(R) = p
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where q and p are primes. Thus p 6= q. Note that RG ∼= R[x]/(xq − 1). If

the cyclotomic polynomial φq(x) of order q is reducible, then since xq − 1 =

(x−1)φq(x), we conclude that RG is a direct product of at least three fields,

so gr(Γ(RG)) = 3. If φq(x) is irreducible over R, then by Lemma 2.2.1

R ∼= Fpr , where p is a generator for (Z/qZ)∗ and gcd(r, q − 1) = 1. In this

subcase, gr(Γ(RG)) = 4 or gr(Γ(RG)) =∞. �

By Lemma 2.1.4, Γ(RG) is connected and diam(RG) ≤ 3. If diam(Γ(RG)) ≤

1, then Γ(RG) is a complete graph. In Proposition 2.2.3, we characterize

group rings with complete zero-divisor graphs. More generally, in Theorem

2.2.4 we characterize group rings RG with diam(Γ(RG)) ≤ 2.

Proposition 2.2.3 Γ(RG) is a complete graph if and only if R is an integral

domain with Char(R) = 2 and G ∼= C2.

Proof. Let Γ(RG) be a complete graph. Assume to the contrary that R is

not an integral domain. Then there exist nonzero elements a, b ∈ R such that

ab = 0. Since Ĝ is a zero-divisor of RG and diam(Γ(RG)) ≤ 1, we conclude

that aĜ =
∑

g∈G ag = 0, hence a = 0, yielding a contradiction. Therefore R

is an integral domain.

It is easy to see that RG 6∼= Z2 × Z2. Thus it follows from Theorem 2.1.6

that (Z(RG))2 = 0. Let 1 6= g ∈ G. Since (1 − g)Ĝ = 0, (1 − g) ∈ Z(RG).

Hence (1 − g)(1 − g) = 1 − 2g + g2 = 0, so g2 = 1 (for otherwise, if g2 6= 1,

then the coefficient of the identity element 1 is not zero, thus 1−2g+g2 6= 0,

yielding a contradiction). Now we have 2 − 2g = 0, which implies 2 = 0.
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Thus Char(R) = 2. Next, suppose that |G| > 2 and g1, g2 are two distinct

nontrivial elements of G. Since (1− g1)Ĝ = (1− g2)Ĝ = 0, both (1− g1) and

(1− g2) are zero-divisors. Thus (1− g1)(1− g2) = 1− g1− g2 + g1g2 = 0. As

above we have g1 = g2, yielding a contradiction. Therefore |G| = 2.

Conversely, assume that R is an integral domain with Char(R) = 2 and

|G| = 2. Let a + bg be a nonzero zero-divisor of RG such that a 6= b. Then

there exists a nonzero element c + dg ∈ RG such that (a + bg)(c + dg) = 0.

Hence ac + bd = 0 and ad + bc = 0, so ac + bd + ad + bc = 0. Therefore

a(c+ d) + b(c+ d) = 0, so (a+ b)(c+ d) = 0. Since R is an integral domain

with Char(R) = 2 and a 6= b, we have c = d. Since (a + bg)(c + cg) = 0,

ac + cb = 0, so c(a + b) = 0. Since c 6= 0 and R is an integral domain, we

conclude that a + b = 0, so a = b, yielding a contradiction. Therefore, if

a + bg ∈ Z(RG) then a = b. Since (1 + g)(1 + g) = 0, we obtain that for

every pair x, y ∈ R, (x+ xg)(y + yg) = xy(1 + g)(1 + g) = 0, so Γ(RG) is a

complete graph. �

Theorem 2.2.4 Let R be a finite commutative ring and G be a finite abelian

group. Then diam(Γ(RG)) ≤ 2 if and only if either R is a local ring and G

is a p-group such that p ∈ J(R) or RG ∼= FprCq where p and q are distinct

primes, p is a generator for (Z/qZ)∗ and gcd(r, q − 1) = 1.

Proof. If diam(Γ(RG)) ≤ 1, then by Proposition 2.2.3, R is an integral

domain with Char(R) = 2 and G ∼= C2. Since R is finite, R is a field

with Char(R) = 2. So R is a local ring and 2 ∈ J(R). Assume that
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diam(Γ(RG)) = 2. Since RG is an Artinian ring, by Theorem 1.3.4 RG ∼=

R1 × R2 × · · · × Rn, where Ri (1 ≤ i ≤ n) is a local ring. If n ≥ 3 then

d((1, 1, · · · , 1, 0), (0, 1, · · · , 1)) = 3, yielding a contradiction. Therefore n ≤

2. If n = 1 then RG is a local ring, so by [32, Theorem] R is a local ring, G

is a p-group and p ∈ J(R). If n = 2 then Z(RG) is not an ideal. It follows

from [11, Theorem 2.7 and Lemma 2.1] that gr(Γ(RG)) ≥ 4. Therefore, by

Proposition 2.2.2, RG ∼= FprCq, where p and q are distinct primes, p is a

generator for (Z/qZ)∗ and gcd(r, q − 1) = 1.

Conversely, if R is a local ring and G is a p-group such that p ∈ J(R) then

by [32, Theorem], RG is a local ring. Note that the annihilator of the unique

maximal ideal J(R) + ∆(G) of RG is AnnR(J(R))Ĝ (where AnnR(J(R)) is

the annihilator of J(R) in R). Thus Ĝ is adjacent to every vertex of Γ(RG),

so diam(Γ(RG)) ≤ 2. If RG ∼= FprCq where p and q are distinct primes, p is

a generator for (Z/qZ)∗ and gcd(r, q − 1) = 1, then RG is a direct product

of two fields, so diam(Γ(RG)) = 2. �

In [7], the authors generalized Wickham’s theorem to arbitrary (not nec-

essary finite) commutative rings. The following proposition is a special case

of [7, Corollary 3.7] regarding group rings and we shall provide a short proof

for it.

Proposition 2.2.5 For each positive integer r, there are finitely many com-

mutative group rings RG over finite groups G with γ(Γ(RG)) = r.
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Proof. Let γ(Γ(RG)) = r. It is sufficient to show that |RG| is bounded

above by a constant depending only on r. Assume that |R| > 3. Then

|RĜ| > 3. Let a, b, c be non-zero elements of RĜ. Since a∆(G) = b∆(G) =

c∆(G) = 0, we conclude that K|∆(G)|−4,3 is a subgraph of Γ(RG). So by the

formula for genus of complete bipartite graphs, d|∆(G)| − 6e/4 ≤ r. Hence

|∆(G)| ≤ 4r + 6. Since R ∼= RG/∆(G), |RG| ≤ |R||∆(G)| ≤ |∆(G)|2. Thus

|RG| ≤ (4r + 6)2 and we are done.

Next, we may assume that |R| = p ≤ 3.

Case 1: p||G|. We may assume that |G| ≥ 23. Let H be a subgroup

of G of order |G|/p. Note that by Lemma 1.3.8 Ĥ∆(G,H) = Ĝ∆(G,H) =

(Ĝ+Ĥ)∆(G,H) = 0. We conclude that K|∆(G,H)|−4,3 is a subgraph of Γ(RG).

So by the formula for genus of complete bipartite graphs, d|∆(G,H)| −

6e/4 ≤ r. Hence |∆(G,H)| ≤ 4r + 6. Since |RG| = |R(G/H)||∆(G,H)| =

|R|p|∆(G,H)| ≤ |∆(G,H)|p+1 (where |G/H| = p and |R| ≤ |∆(G,H)|), we

conclude that |RG| ≤ (4r + 6)4 and we are done.

Case 2: p - |G|. Then by [29, Theorem 3.5.4] RG ∼= R × F1 × · · · × Fn,

where each Fi is a field. Without loss of generality, we may assume that

|Fi| ≤ |Fi+1|. If n = 1, then since |R| ≤ 3, Γ(RG) ∼= Γ(R×F1) ∼= K|R|−1,|F1|−1,

and thus γ(Γ(RG)) = γ(K|R|−1,|F1|−1) = 0. If n ≥ 2, then since (R × F1 ×

0 · · · × 0)(0 × 0 × F2 × · · · × Fn) = (0), we conclude that K3,|F2×···×Fn| is a

subgraph of Γ(RG). Therefore, as before we have d|F2×· · ·×Fn|−6e/4 ≤ r,

and thus |F2 × · · · × Fn| ≤ 4r + 6. Hence |RG| = |R||F1||F2 × · · · × Fn| ≤

p|F2 × · · · × Fn|2 ≤ p(4r + 6)2 as desired. �
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2.3 The Isomorphism Problem for Zero-divisor

Graphs of Group Rings

For a not necessarily commutative ring R, we define a simple undirected

graph Γ(R) with vertex set D(R) (the set of all non-zero zero-divisors of

R) in which two distinct vertices x and y are adjacent if and only if either

xy = 0 or yx = 0 (see [34]). In this section, we investigate the isomorphism

problem for zero-divisor graphs of group rings, that is, the problem of when

Γ(R1G) ∼= Γ(R2H) implies that R1G ∼= R2H (or possibly, R1
∼= R2 and

G ∼= H). We show that the rank and the cardinality of a finite abelian p-

group are determined by the zero-divisor graph of its modular group ring. It

is also shown that the isomorphism problem for zero-divisor graphs of finite

noncommutative reversible group rings and semisimple group rings has an

affirmative answer. We first recall some known results.

Lemma 2.3.1 [5, Theorems 14, 16, and 17] Let K, K1 be two finite fields

and G, G1 be two finite groups such that Γ(KG) ∼= Γ(K1G1). Then the

following hold:

(1) K ∼= K1 and |G| = |G1|.

(2) If G is an abelian group, then so is G1.

(3) If G is a cyclic group, then G ∼= G1.

Lemma 2.3.2 Let K be a field of characteristic p and G be a finite p-group.

Then KG is a Gorenstein local ring.
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Proof. By [32, Theorem], KG is a local ring. Since K ∼= KG/∆(G), we

conclude that ∆(G) is the unique maximal ideal of KG. Since Ann(∆(G)) =

KĜ, dimK(Ann(∆(G))) = 1, so KG is a Gorenstein local ring. �

The following proposition is a special case of Lemma 2.3.1 (1) and we

shall provide a short proof for it.

Proposition 2.3.3 Let K, K1 be two finite fields of characteristic p and

G, G1 be two finite p-groups. If Γ(KG) ∼= Γ(K1G1), then K ∼= K1 and

|G| = |G1|.

Proof. Since |{v ∈ V (Γ(KG))|deg(v) = m(Γ(KG)}| is equal to |Ann(∆(G))|−

1 = |K| − 1, and |{w ∈ V (Γ(K1G1))|deg(w) = m(Γ(K1G1)}| is equal to

|Ann(∆(G1))| − 1 = |K1| − 1, we obtain that |K| = |K1|, so K ∼= K1. Since

|K||G|−1 = |∆(G)| = |∆(G1)| = |K1||G1|−1. We have |∆(G)| = |∆(G1)|, so

|G| = |G1|. �

Let R be a commutative ring. As in [31, 3.5], for x, y ∈ R, we define that

x is equivalent to y, denoted by x v y, if Ann(x) = Ann(y). Clearly, v is an

equivalence relation on R, and its restriction to Γ(R) is also an equivalence

relation.

Let K be a field of characteristic p. Let G be a finite group and H = Hp×

H1 be an abelian group, where Hp is the Sylow p-subgroup of H. If Γ(KG) ∼=

Γ(KH), then we can prove that G = Gp ×G1 such that Γ(KGp) = Γ(KHp)

and K1G1
∼= K1H1 (see Proposition 2.3.5 for details). Thus, the question

of determining when Γ(KG) ∼= Γ(KH) implies KG ∼= KH is essentially
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reduced to that of determining when Γ(KiGp) ∼= Γ(KiHp) implies KiGp
∼=

KiHp for 1 ≤ i ≤ m, where KH1
∼= K1 ×K2 × · · · ×Km as in the proof of

Proposition 2.3.5. Here is our first main result in this section.

Theorem 2.3.4 Let K be a field of order p, K1 be a finite field of character-

istic p, G and H be two finite abelian p-groups. If Γ(KG) ∼= Γ(K1H), then

K ∼= K1, |G| = |H|, and rank(G) = rank(H).

Proof. By Proposition 2.3.3, K ∼= K1 and |G| = |H|. So we may assume

that K = K1 in the rest of proof.

Let rank(G) = n, rank(H) = m and G = 〈g1〉 × · · · × 〈gn〉. It follows

from [29, Lemma 3.3.2] that ∆(G) is generated by {g1−1, g2−1, · · · , gn−1}

as a KG-module. We also note that ∆(G) is a nilpotent ideal.

By Lemma 2.3.2, KG is a local ring. Since K ∼= KG/∆(G), we conclude

that ∆(G) is the unique maximal ideal of KG. Let I be an ideal of KG such

that |I| = p|G|−2. We note that the image of the set {g1−1, g2−1, · · · , gn−1}

in ∆(G)/∆(G)2 forms a basis for ∆(G)/∆(G)2 over K. Thus ∆(G)/∆(G)2 is

a vector space of dimension n over K. If ∆(G)2 6⊆ I, then I+∆(G)2 = ∆(G).

By Nakayama’s Lemma I = ∆(G), yielding a contradiction since |∆(G)| =

p|G|−1 > p|G|−2 = |I|. Thus ∆(G)2 ⊆ I and dimK(I/∆(G)2) = n − 1.

Let χ : {I E KG : |I| = p|G|−2} → { maximal subspaces of ∆(G)/∆(G)2

} be a function defined by χ(I) = I/∆(G)2. We shall prove that χ is a

bijection. Thus the number of maximal subspaces of ∆(G)/∆(G)2 is equal

to the number of ideals of KG of order p|G|−2. Let V1 be a maximal subspace
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of ∆(G)/∆(G)2, {x1 + ∆(G)2, x2 + ∆(G)2, · · · , xn−1 + ∆(G)2} a basis for

V1, and let I1 = KGx1 + KGx2 + · · · + KGxn−1 + ∆(G)2. Then V1 =

I1/∆(G)2, where I1 is an ideal of order p|G|−2 and so χ is surjective. Let

χ(I) = I/∆(G)2 = J/∆(G)2 = χ(J) where I and J are ideals of order p|G|−2.

Since ∆(G)2 ⊆ I
⋂
J , we conclude that I = J . Thus χ is injective, so it is a

bijection. Since the number of maximal subspaces is equal to 1+p+· · ·+pn−1,

we conclude that KG has 1 + p+ · · ·+ pn−1 ideals of order p|G|−2.

Let G1 and G2 be maximal subgroups of G. Then dimK((∆(G,G1) +

∆(G)2)/∆(G)2) = n− 1, so |∆(G,G1) + ∆(G)2| = p|G|−2. Similarly, we have

|∆(G,G2) + ∆(G)2| = p|G|−2. Since ∆(G,G1) + ∆(G,G2) + ∆(G)2 = ∆(G)

we obtain that ∆(G,G1) + ∆(G)2 and ∆(G,G2) + ∆(G)2 are two different

ideals of order p|G|−2. Since G has 1 + p+ · · ·+ pn−1 maximal subgroups, we

conclude that {∆(G,G1) + ∆(G)2 : G1 is a maximal subgroup of G } is the

set of all the ideals of KG of order p|G|−2.

Let |〈gi〉| = pei for each i. Let G1 be a maximal subgroup of G with

invariants pe1
′
, · · · , pen

′
. Therefore ei

′
= ei for all i except for one l, i.e.,

ei
′

= ei for all i 6= l and el
′

= el − 1. Without loss of generality, we may

assume that l = 1. Thus e1
′
= e1 − 1 and ei

′
= ei for all i ≥ 2. Hence, G1 =

〈gp1〉〈g2〉 · · · 〈gn〉. Let x = (g1−1)p
e1−2(g2−1)p

e2−1 · · · (gn−1)p
en−1. Then since

x(g1 − 1) 6= 0, we have x 6∈ KĜ. By [33, Theorem 1], ∆(G)1+
∑n

i=1(pei−1) = 0.

Since x∆(G)2 ⊂ ∆(G)1+
∑n

i=1(pei−1) = 0 and x∆(G,G1) = 0, we conclude that

x ∈ Ann(∆(G,G1) + ∆(G)2) \ KĜ. Since ∆(G,G1) + ∆(G)2 ⊆ Ann(x) ⊆

∆(G), we obtain that either Ann(x) = ∆(G) or Ann(x) = ∆(G,G1) +
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∆(G)2. If Ann(x) = ∆(G), then x ∈ KĜ, yielding a contradiction. Therefore

∆(G,G1) + ∆(G)2 = Ann(x), and thus every ideal of order p|G|−2 is an

annihilator of a zero-divisor of KG.

Let v be a vertex of degree p|G|−2 − 1 or p|G|−2 − 2 of Γ(KG). Then

|Ann(v)| is equal to p|G|−2. Let V = {v1, v2, · · · , vt} be the set of all the

vertices of Γ(KG) of degree p|G|−2 − 1 or p|G|−2 − 2, and NΓ(KG)(vi) = { all

of vertices of Γ(KG) which are adjacent to vi } for each i. Recall that there

is an equivalence relation v on V such that for v1, v2 ∈ V , v1 v v2 if and

only if Ann(v1) = Ann(v2). Let [vi] denote the equivalence class of vi in V

and let V = {[v1], [v2], · · · , [vr]} be the set of all the equivalence classes in

V . We now show that any isomorphism f : Γ(KG)→ Γ(KH) preserves this

equivalence relation.

Let x, y ∈ V be such that x v y. Assume that f(x) = x1 and f(y) = y1.

We shall show that x1 v y1. Since Ann(x) = Ann(y), NΓ(KG)(x) \ {y} =

NΓ(KG)(y) \ {x}. Thus NΓ(KH)(x1) \ {y1} = NΓ(KH)(y1) \ {x1}. First assume

xy = 0, so x1y1 = 0. Note that either x1 + Ĥ = y1 or x1 + Ĥ ∈ NΓ(KH)(y1) \

{x1} = NΓ(KH)(x1) \ {y1}. In both cases, we obtain that (x1)2 = x1(x1 +

Ĥ) = 0. By a symmetric argument, we obtain (y1)2 = 0. Thus Ann(x1) =

{NΓ(KH)(x1) \ {y1}, y1, x1, 0} = {NΓ(KH)(y1) \ {x1}, x1, y1, 0} = Ann(y1).

Therefore x1 v y1 as desired. Next we assume that xy 6= 0. If (x1)2 = 0,

then either x1+Ĥ = y1 or x1+Ĥ ∈ NΓ(KH)(x1)\{y1} = NΓ(KH)(y1)\{x1}. In

the first case we have x1y1 = x1(x1 +Ĥ) = (x1)2 = 0, yielding a contradiction

since xy 6= 0. In the latter case we have x1y1 = (x1 + Ĥ)y1 = 0, yielding
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a contradiction again. Thus we must have (x1)2 6= 0. By a symmetric

argument, we have (y1)2 6= 0. Therefore Ann(x1) = {NΓ(KH)(x1)\{y1}, 0} =

{NΓ(KH)(y1) \ {x1}, 0} = Ann(y1). Again, x1 v y1 as desired. We have

shown that any isomorphism f : Γ(KG)→ Γ(KH) preserves this equivalence

relation.

Since every ideal of order p|G|−2 is an annihilator of a zero-divisor vi ofKG,

we conclude that |V | is equal to the number of ideals of order p|G|−2. So |V | is

equal to the number of maximal subgroups of G. Let W = {w1, w2, · · · , ws}

be the set of all the vertices of Γ(KH) of degree p|G|−2 − 1 or p|G|−2 − 2,

and W = {[w1], [w2], · · · , [wq]} be the set of all of equivalence classes in W .

Then |W | is equal to the number of maximal subgroups of H. Since the

isomorphism f : Γ(KG) → Γ(KH) preserves this equivalence relation, it

induces a bijection between V and W , so |V | = |W |. Therefore, the number

of maximal subgroups ofG is equal to the number of maximal subgroups ofH.

Thus 1+p+· · ·+pn−1 = 1+p+· · ·+pm−1. So rank(G) = n = m = rank(H).

�

Proposition 2.3.5 Let K and K1 be two fields of characteristic p. Let G

be a finite group and H = Hp×H1 be a finite abelian group, where Hp is the

sylow p-subgroup of H. If Γ(KG) ∼= Γ(K1H), then K ∼= K1 and G = Gp×G1

such that Γ(K1Gp) ∼= Γ(K1Hp) and G1
∼= H1.

Proof. It follows from Lemma 2.3.1 that |G| = |H| and K ∼= K1. So

we may assume that K = K1 in the rest of the proof. Since |G| = |H|
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and G is abelian (by Lemma 2.3.1), we conclude that G = Gp × G1, where

|Gp| = |Hp| and |G1| = |H1|. Since KH1 is a semisimple group ring, KH1
∼=

K1 ×K2 × · · · ×Km, whereKi’s are fields and K1
∼= K. So K(Hp ×H1) ∼=

(KH1)Hp
∼= (K1 × K2 × · · · × Km)Hp

∼= K1Hp × K2Hp × · · · × KmHp.

Similarly K(Gp × G1) ∼= (KG1)Gp
∼= (S1 × S2 × · · · × Sn)Gp

∼= S1Gp ×

S2Gp×· · ·×SnGp, where Si’s are fields and S1
∼= K. Since Γ(KH) ∼= Γ(KG),

Γ(K1Hp × K2Hp × · · · × KmHp) ∼= Γ(S1Gp × S2Gp × · · · × SnGp). By [32,

Theorem], KiHp and SjHp (for each i and j) are local, so KiGp and SjHp

are indecomposable. By [5, Theorem 11] and [24, Lemma 3.8], we obtain

that m = n and after a permutation of indices Γ(KiHp) ∼= Γ(SiGp) for each

i. Thus Γ(K1Hp) ∼= Γ(K1Gp). Also, by [5, Theorem 16], Ki
∼= Si. Therefore

K1H1
∼= K1G1.

The following theorem shows that the isomorphism problem for zero-

divisor graphs of integral group rings has a negative answer.

Theorem 2.3.6 Let p be any prime and Cp be the cyclic group of order p.

Then Γ(ZCp) ∼= Γ(QCp) ∼= K|Z|,|Z|, a complete bipartite graph. In particular,

for distinct primes p and q, we have Γ(ZCp) ∼= Γ(ZCq), but ZCp 6∼= ZCq.

Proof. Since any cyclotomic polynomial of prime order p over Q is irre-

ducible, QCp ∼= K1×K2, where K1 and K2 are infinite fields. Notice that ZCp

is a subring of a reduced ring QCp. We conclude that ZCp is a reduced ring.

Since Γ(ZCp) is a subgraph of Γ(K1 ×K2), we obtain that gr(Γ(ZCp)) = 4

or gr(Γ(ZCp)) =∞. Let 1 6= a ∈ Cp. Then (1− a)− 2Ĉp − 3(1− a)− 4(Ĉp)
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is a cycle in Γ(ZCp), and so gr(Γ(ZCp)) = 4. Since ZCp is a reduced ring

and gr(Γ(ZCp)) = 4, by [11, Theorem 2.2], Γ(ZCp) is a complete bipartite

graph. Since (ZĈp)∆(Cp) = 0, K|ZĈp|,|∆(Cp)| is a subgraph of Γ(ZCp). Thus

Γ(ZCp) ∼= K|ZĈp|,|∆(Cp)|
∼= K|Z|,|Z| ∼= Γ(QCp). �

Next we show that the isomorphism problem for zero-divisor graphs of

noncommutative reversible group rings has an affirmative answer.

Lemma 2.3.7 Let R be a finite ring and G be a finite non-abelian group.

If RG is reversible, then RG ∼= (Πn
i=1Ki)Q8, where each Ki is a field of

characteristic 2.

Proof. Since RG is reversible and G is non-abelian, it was proved in [26]

that RG = R(Q8 × H), where G = Q8 × H is a Hamiltonian group. Note

that RG = R(Q8×H) ∼= (RH)Q8 is reversible. It follows from [27, Theorem

2.1] that RG ∼= (Πn
i=1Ki)Q8, where each Ki

∼= GF (2ni) (the Galois field of

order 2ni) with ni odd. �

Theorem 2.3.8 Let R, S be two finite rings, and G,H be two finite non-

abelian groups such that RG and SH are reversible group rings. If Γ(RG) ∼=

Γ(SH), then RG ∼= SH.

Proof. By Lemma 2.3.7, RG ∼= (Πn
i=1Fi)Q8, where each Fi is a field of char-

acteristic 2 and RH ∼= (Πm
j=1Ej)Q8, where each Ej is a field of characteristic

2. Since for each pair of i and j FiQ8 and EjQ8 are local (by [32, Theorem]),

we conclude that FiQ8 and EjQ8 are indecomposable. By [5, Theorem 11]
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and [24, Lemma 3.8], we obtain that m = n and after a permutation of in-

dices, Γ(KiQ8) ∼= Γ(EiQ8) for each i. It follows from [5, Theorem 16] that

Ki
∼= Ei for each i. Therefore RG ∼= SH. �

Finally, we show that two finite semisimple group rings are isomorphic if

and only if their zero-divisor graphs are isomorphic.

Proposition 2.3.9 Let RG be a (not necessarily commutative) finite group

ring and S be a finite semisimple ring. If Γ(RG) ∼= Γ(S), then RG ∼= S.

Proof. Since G is finite, Ĝ ∈ Z(RG) 6= {0}, so Γ(RG) 6= ∅. Since

Γ(RG) ∼= Γ(S) and Γ(RG) 6= ∅, Γ(S) 6= ∅. We first investigate the following

cases:

Case 1: S ∼= Z2 × Z2 and RG is commutative. Since Γ̄(RG) ∼= Γ̄(S) we

conclude that Γ̄(RG) is a complete graph of two vertices, so |Z(RG)| = 3 and

gr(RG) = ∞. By Proposition 2.2.2, RG ∼= Z2C2, yielding a contradiction

since |Z(Z2C2)| = 2 6= 3.

Case 2: S ∼= Z6 and RG is commutative. Since there is no group ring

RG with 3 nonzero zero-divisors, this case is impossible.

Case 3: S ∼= Z2 ×K, where K is a field and RG is commutative. Then

Γ(S) = Γ(S) = K1,|K|−1. Since Γ(S) is a star graph and Γ(RG) = Γ(RG) ∼=

Γ(S), we obtain that Γ(RG) is a star graph, so gr(Γ(RG)) = ∞. By the

proof of Proposition 2.2.2, we conclude that RG ∼= K1 ×K2, where K1 and

K2 are two fields. If K1 6∼= Z2 and K2 6∼= Z2 then Γ(RG) is not a star

graph, yielding a contradiction. Thus, without loss of generality, we may
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assume that K1
∼= Z2, so RG ∼= Z2×K2, and thus Γ(RG) ∼= K1,|K2|−1. Since

Γ(RG) ∼= Γ(S) we conclude that |K2| = |K|, so K2
∼= K. Therefore RG ∼= S.

Now, by [4, Theorem 21] either RG ∼= S or one of the above cases occurs.

Since Cases 1 and 2 are impossible and in Case 3 RG ∼= S, we must have

RG ∼= S. �

We conclude this chapter with the following corollary.

Corollary 2.3.10 Two finite semisimple group rings are isomorphic if and

only if their zero-divisor graphs are isomorphic.
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Chapter 3

Artinian Rings Whose

Annihilating-Ideal Graphs

Have Positive Genus

Let R be a commutative ring and A(R) be the set of ideals with non-zero

annihilators. The annihilating-ideal graph ofR is defined as the graph AG(R)

with vertex set A(R)∗ = A\{(0)} such that two distinct vertices I and J are

adjacent if and only if IJ = (0). Thus, AG(R) is the empty graph if and only

if R is an integral domain. The notion of annihilating-ideal graph was first

introduced and systematically studied in [15, 16]. Recently it has received a

great deal of attention from several authors, for instance, [1, 2, 6]. Here we

investigate commutative Artinian rings R whose annihilating-ideal graphs

have positive genus γ(AG(R)). Several authors recently investigated the
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genus of a zero-divisor graph (for instance, see [8, 41, 43, 44]). In particular

in [44, Theorem 2], it was shown that for any positive integer g, there are

only finitely many finite commutative rings whose zero-divisor graphs have

genus g. In this chapter it is shown that if R is a Artinian commutative

ring such that 0 < γ(AG(R)) < ∞, then R has only finitely many ideals,

extending a recent result in [6].

3.1 Preliminary

All rings are assumed to be commutative in this section. We first list a few

preliminary results which are needed to prove our main result. The following

useful remark will be used frequently in the sequel.

Remark 3.1.1 It is well known that if V is a vector space over an infinite

field F, then V can not be the union of finitely many proper subspaces (see

for example [19, p.283]).

A local Artinian principal ideal ring is called a special principal ideal ring.

It has only finitely many ideals, each of which is a power of the maximal ideal.

For any ideal J of R, denote by I(J) the set {I : I an ideal of R and I ⊆ J}.

Lemma 3.1.2 [6, Lemma 2.3] Let (R,m) be a local ring with mt = (0). If for

a positive integer n, v.dimR/m(mn/mn+1) = 1 and mn is a finitely generated

R-module, then I(mn) = {mi : n ≤ i ≤ t}. Moreover, if n = 1, then R is a

special principal ideal ring.
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Lemma 3.1.3 Let (R,m) be a local Artinian ring. If I ∈ I(mn−1) \ I(mn)

for some positive integer n, is a nonzero principal ideal, then |I(I)| = |I(I ∩

mn)|+ 1.

Proof. Since I ∈ I(mn−1) \ I(mn) is a nonzero principal ideal, there exists

x ∈ mn−1 \mn such that I = Rx. Let J ∈ I(Rx) such that J 6= I and y ∈ J .

Thus y = rx for some r ∈ R. If r 6∈ m, then r is an invertible element and

so Ry = Rx, yielding a contradiction. Thus we have r ∈ m, so y = rx ∈ mn.

Therefore, J ∈ I(mn). Hence |I(I)| = |I(I ∩mn)|+ 1. �

Lemma 3.1.4 Let (R,m) be a local Artinian ring. If I is a principal ideal

such that |I(I)| = 3, then m2 ⊆ Ann(I).

Proof. Since I is a principal ideal, I = Rx for some x ∈ R. Since Rx ∼=

R/Ann(x) and Rx has only one nonzero proper R-submodule, m/Ann(x) is

the only nonzero proper ideal of R/Ann(x). If m2 * Ann(x), then Ann(x) +

m2 = m, and by Nakayama’s lemma, Ann(x) = m, yielding a contradiction.

Thus m2 ⊆ Ann(x) = Ann(I). �

3.2 Main Results

In [6], it was proved that ifR is an Artinian Commutative ring and γ(AG(R)) <

∞, then either R has only finitely many ideals or R is a Gorenstein ring

with v.dimR/mm/m
2 = 2. We now improve the above result substantially by

showing that the second situation is impossible (when 0 < γ(AG(R))). Then
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we characterize commutative Artinian rings whose annihilating-ideal graphs

have finite genus (including genus zero).

Proposition 3.2.1 Let R be a commutative Artinian ring with 0 < γ(AG(R)) <

∞. Then R has only finitely many ideals.

Proof. Let R be a commutative Artinian ring and assume R has infinitely

many ideals. Theorem 1.3.4 says that R ∼= R1 × · · · × Rn for some positive

integer n, where each Ri (1 ≤ i ≤ n) is an Artinian local ring and the

addition and the multiplication in the product are defined componentwise.

Assume that n ≥ 2. If |I(R)| = ∞, then there exists Ri such that |I(Ri)| =

∞. Without loss of generality, we can assume that R1 has infinitely many

ideals. Let I1 = (0 × R2 × 0 × · · · × 0), I2 = (Ann(m1) × 0 × · · · × 0) and

I3 = (Ann(m1)×R2 × 0× · · · × 0). Then for every proper ideal J of R1, we

have Ii(J×0×· · ·×0) = (0). Therefore, K|I(m1)|−1,3 is a subgraph of AG(R).

Since |I(m1)| =∞, by the formula for the genus of complete bipartite graphs

(Formula (1.2)), γ(AG(R)) =∞, yielding a contradiction. Thus, each Ri has

only finitely many ideals, and therefore, R has only finitely many ideals. So

we may assume that R is a local ring. If R is a field, then R has only finitely

many ideals. Thus we can assume that R is not a field. If |R/m| < ∞,

then one can easily see that R is a finite ring, so R has only finitely many

ideals. Thus we can assume that |R/m| = ∞. If v.dimR/m(Ann(m)) ≥ 2,

then |I(Ann(m))| = |I(m)| = ∞ and since mAnn(m) = (0), K|I(m)|−4,3 is a

subgraph of AG(R). Hence, by Formula (1.2), d(|I(m)| − 6)/4e ≤ g, and so
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|I(m)| ≤ 4g+ 6, yielding a contradiction. Therefore, v.dimR/m(Ann(m)) = 1.

Thus we can assume that |R/m| = ∞, γ(AG(R)) = g for an integer g > 0,

and v.dimR/m(Ann(m)) = 1. Since R is an Artinian ring, there exists a

positive integer t such that mt+1 = (0) and mt 6= (0). Note that mt ⊆ Ann(m)

and dim(Ann(m)) = 1, thus Ann(m) = mt. Let I be a minimal ideal of R.

Then Im = (0). Hence I ⊆ Ann(m) and so I = mt. Therefore, mt is the

unique minimal ideal of R. We now proceed the proof using case by case

analysis.

Case 1: t = 1, i.e., m2 = (0). Then since m = mt is also the unique

minimal ideal, R has exactly two proper ideals as desired.

Case 2: t = 2, i.e., m2 6= (0) and m3 = (0). We will prove that

v.dimR/m(m/m2) = 1. Suppose on the contrary that v.dimR/m(m/m2) > 1.

First, we assume that v.dimR/m(m/m2) > 3. Suppose that {x1 + m2, x2 +

m2, x3 + m2, ..., xn + m2} is a basis for m/m2 over R/m. Since Rx1
∼=

R/Ann(x1) and by Lemma 3.1.3, Rx1 has one nonzero proper R-submodule,

v.dimR/m(Ann(x1)/m2) = n − 1. Similarly, v.dimR/m(Ann(x2)/m2) = n − 1.

Therefore, v.dimR/m(Ann(x2) ∩ Ann(x1))/m2) = n − 2 and since n > 3,

|I(Ann(x2) ∩ Ann(x1))| = ∞. Since (Rx1)(Ann(x2) ∩ Ann(x1)) = (0),

(Rx2)(Ann(x2)

∩ Ann(x1)) = (0), and m2(Ann(x2) ∩ Ann(x1)) = (0), we conclude that

K|I(Ann(x2)∩Ann(x1))|,3 is a subgraph of AG(R). Thus by Formula (1.2), γ(AG(R)) =

∞, yielding a contradiction.
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Next assume that v.dimR/m(m/m2) = 3. Then there exist infinitely

many subspaces with dimension one. Let Rx/m2 and Ry/m2 be two dis-

tinct subspaces of dimension one of m/m2. Since Rx ∼= R/Ann(x) and Rx

has only one nonzero proper R-submodule, m/Ann(x) is the only nonzero

proper ideal of R/Ann(x). Therefore, v.dimR/mAnn(x)/m2 = 2. Similarly,

v.dimR/mAnn(y)/m2 = 2. Therefore, |I(Ann(x))| = |I(Ann(y))| = ∞. If

Ann(x) = Ann(y), then since (Rx)Ann(x) = (0), (Ry)Ann(x) = (0), and

m2Ann(x) = (0), we conclude that K|I(Ann(x))|,3 is a subgraph of AG(R).

Thus by Formula (1.2), γ(AG(R)) = ∞, yielding a contradiction. Thus we

may assume that Ann(x) 6= Ann(y). Since m2 ⊆ Ann(x) ∩ Ann(y), then

(Ann(x) ∩ Ann(y)) 6= (0) so v.dimR/m(Ann(x) ∩ Ann(y))/m2 = 1. Sup-

pose that (Rx)(Ry) 6= (0). Since v.dimR/m(Ann(x) ∩ Ann(y))/m2 = 1,

there exists an ideal K such that Rx − K − Ry. Let I1 be an ideal such

that I1 ∈ I(Ann(x)) \ {K,Ry} and v.dimR/mI1/m
2 = 1. Let J1 be an

ideal such that J1 ∈ I(Ann(y)) \ {Rx,Ry,K, I1,Ann(x)∩Ann(y)} such that

v.dimR/mJ1/m
2 = 1. Let K1 = Ann(I1) ∩ Ann(J1). Therefore, Rx − I1 −

K1 − J1 − Ry is a path between Rx and Ry. Now, let In ∈ I(Ann(x)) \

{Ii, Ji, Ki, Rx,Ry,Ann(x)∩Ann(y),Ann(x)∩Ann(Ki), i = 1, 2, ..., n−1} such

that v.dimR/mIn/m
2 = 1 and Jn ∈ I(Ann(x))\{Ii, Ji−1, Ki−1, In, Rx,Ry,Ann(x)∩

Ann(y),Ann(x) ∩ Ann(Ki−1), i = 1, 2, ..., n} such that v.dimR/mJn/m
2 = 1.

Suppose that Kn = Ann(xn)∩Ann(yn); then Rx−In−Kn−Jn−Ry is a path

between Rx and Ry. Therefore, there exist infinitely many paths between

Rx and Ry. Thus either (Rx)(Ry) = (0) or there exist infinitely many paths
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between Rx and Ry. Since Rx/m2 and Ry/m2 are two arbitrary distinct one

dimensional R/m-subspaces of Ann(x) and there are infinitely many sub-

spaces of dimension one of Ann(x), one can easily see that γ(AG(R)) =∞,

yielding a contradiction.

Next we assume that v.dimR/mm/m
2 = 2. Let I 6= m2 be an ideal.

If I 6= m, then since m2 ⊆ I and v.dimR/mI/m
2 = 1, we conclude that

I = Rx for some x ∈ m \ m2. Note that Rx ∼= R/Ann(x). Since |I(Rx)∗| =

2 (by Lemma 3.1.3), we conclude that there is exactly one ideal between

Ann(x) and R. Therefore, v.dimR/mAnn(x)/m2 = 1. So, by Lemma 3.1.3

|I(Ann(x))∗| = 2. We conclude that every ideal except m2 has degree at most

2, so AG(R) is a subgraph of Figure 3.1, hence γ(AG(R)) = 0, yielding a

contradiction. Therefore v.dimR/mm/m
2 = 1. Thus by Lemma 3.1.2, R has

only two nonzero proper ideals.
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Figure 3.1: An infinite planar graph, which contains every infinite planar

annihilating-ideal graph of a local ring with maximal ideal m such that m2 6=

(0) and m3 = (0).

Case 3: t = 3, i.e., m4 = (0). By [6, Theorem 2.5], v.dimR/mm/m
2 ≤

2. First assume that v.dimR/mm/m
2 = 2. If v.dimR/mm

2/m3 ≥ 2, then

since m4 = (0), we conclude that K|I(m2)|−1 is a subgraph of AG(R). Note

that |I(m2)| = ∞. Thus by Formula (1.1), γ(AG(R)) = ∞, yielding a

contradiction. Therefore, v.dimR/mm
2/m3 = 1, and so by Lemma 3.1.2,

I(m2)∗ = {m2,m3}.

We now claim that |I(Ann(m2))| = ∞. Let x1 ∈ m \ m2 and m2 * Rx1.

Then by Lemma 3.1.3, |I(Rx1)| = |I(m2 ∩Rx1)|+ 1. Thus |I(Rx1)| = 3, and

by Lemma 3.1.4, m2 ⊆ Ann(x1). Therefore, m2 ⊆ Rx1 or m2 ⊆ Ann(x1).

Let x2 ∈ Ann(x1). Then m2 ⊆ Ann(x1) or m2 ⊆ Ann(x2). Let x2i−1 ∈

m \m2 (i ≥ 2) such that {x2i−1 + m2, x2 + m2} and {x2i−1 + m2, x2j−1 + m2}
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for j = 1, 2, · · · , i − 1 be a basis for m/m2. If m2 * Rx2i−1, then by

Lemma 3.1.3, |I(Rx2i−1)| = 3, so by Lemma 3.1.4, m2 ⊆ Ann(x2i−1). Since

either m2 ⊆ Ann(x1) or m2 ⊆ Ann(x2), we conclude that either (0) =

m2(Rx1 + Rx2i−1) = m2m = m3 or (0) = m2(Rx2 + Rx2i−1) = m2m = m3,

yielding a contradiction. Thus m2 ⊆ Rx2i−1. Since mx2i−1 ⊆ m2 and

|I(m2)| < ∞, I(mx2i−1) < ∞. Note that mx2i−1
∼= m/Ann(x2i−1) and

I(mx2i−1) <∞. Thus there are finitely many ideals between Ann(x2i−1) and

m. So dim(Ann(x2i−1) + m2)/m2 = 1. Hence Ann(x2i−1) ∩ (m \ m2) 6= (0).

We can find x2i ∈ Ann(x2i−1)∩ (m\m2). Since m2 ⊆ Rx2i−1, m2 ⊆ Ann(x2i).

If Rx2i = Rx2j for some j = 1, 2, · · · , i− 1, then Rx2i(Rx2i−1 +Rx2j−1) = 0,

and so Rx2im = 0, yielding a contradiction since Ann(m) = mt. Since

Rx2i ∈ I(Ann(m2)) for each i, so |I(Ann(m2))| = ∞, as we claimed. Let

I 6= m be an ideal such that I 6∈ I(m2). Next we divide our proof into

following two subcases:

Subcase 3.1: m2 * I. Let y ∈ I \ m2. Let x ∈ I \ Ry ∪ m2. Since

dimR/m(I/m2) = 1, Rx + m2 = Ry + m2, so there exists r ∈ R such that

x − ry ∈ m2. If x − ry ∈ m2 \ m3, then since |I(m2)| = 3, we conclude

that R(x − ry) = m2. So m2 ⊆ I, yielding a contradiction. Therefore,

x − ry ∈ m3 ⊆ Ry and so x ∈ Ry, yielding a contradiction. Hence I = Ry.

Note that m2 * Ry. Thus by Lemma 3.1.3, |I(Ry)| = 3. By Lemma 3.1.4,

m2 ⊆ Ann(y). Since v.dimR/m(Ann(y)/m2) = 1, there exists z ∈ Ann(y) \m2

such that Ann(y) = Rz + m2. If m2 ⊆ Rz, we conclude that Ann(y) =

Rz. So by Lemma 3.1.3, |I(Ann(y))∗| = 3. Therefore, m2 ⊆ Ann(I) and
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deg(I) = 3. If m2 * Rz, then |I(Rz)| = 3 and by Lemma 3.1.4, m2Rz = (0).

Since Ann(y) = Rz + m2 and m2Rz = (0), we conclude that Ann(y) =

Ann(m2). Thus RyAnn(m2) = (0), m2Ann(m2) = (0), and m3Ann(m2) = (0).

Therefore, K|Ann(m2)|,3 is a subgraph of AG(R), and so by Formula (1.2),

γ(AG(R)) =∞, yielding a contradiction.

Subcase 3.2: m2 ⊆ I. Since v.dimR/m(I/m2) = 1, there exists z ∈

I \ m2 such that I = Rz + m2. If m2 ⊆ Rz, we conclude that I = Rz. If

m2 ⊆ Ann(z), then there exists exactly one ideal between Ann(z) and R.

Since Rz ∼= R/Ann(z) and by Lemma 3.1.3, |I(Rz)| = 4, we conclude that

there exist two ideals between Ann(z) and R, yielding a contradiction. Thus

m2 * Ann(z). As in the proof of Subcase 3.1, Ann(z) is a principal ideal

and |I(Ann(z))| = 3, so deg(I) = 2. If m2 * Rz, then by Lemma 3.1.3

and Lemma 3.1.4, m2Rz = (0). Since I = Rz + m2 and m2Rz = (0), we

conclude that I = Ann(m2). If deg(I) ≥ 3, then K|I(Ann(m2))|,3 is a subgraph

of AG(R). Since |I(Ann(m2))| = ∞, by Formula (1.2), γ(AG(R)) = ∞,

yielding a contradiction. Therefore, deg(I) = 2. Since every ideal except

m2 and m3 has degree at most 3, and every ideal with degree 3 is adjacent

to m2 and m3, γ(AG(R)) is a subgraph of the graph in Figure 3.2. Thus

γ(AG(R)) = 0, yielding a contradiction.
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Figure 3.2: An infinite planar graph, which contains every infinite planar

annihilating-ideal graph of a local ring with maximal ideal m such that m3 6=

(0) and m4 = (0).

Case 4: t ≥ 4. Since m3mt = m3mt−1 = m3mt−2 = (0), K|I(m3)|−4,3 is a

subgraph of AG(R). So by Formula (1.2), d(|I(m3)| − 6)/12e ≤ g. Hence,

|I(m3)| ≤ 12g+6. If v.dimR/m(mt−1/mt) ≥ 2, then Remark 3.1.1 implies that

|I(mt−1)| =∞. Since mt−1mt−1 = (0) and t ≥ 3, K|I(mt−1)|−1 is a subgraph of

AG(R). Therefore, by Formula (1.1), γ(AG(R)) =∞, a contradiction. Thus

v.dimR/m(mt−1/mt) = 1. Hence, by Lemma 3.1.2, there exists x ∈ mt−1 such

that mt−1 = Rx.

Now we prove that v.dimR/mm/m
2 = 1. Suppose on the contrary that

v.dimR/mm/m
2 = n ≥ 2. By Lemma 3.1.4, m2 ⊆ Ann(x), and since m/Ann(x)

is the only nonzero proper ideal of R/Ann(x), v.dimR/mAnn(x)/m2 = n− 1.
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Let {y1 + m2, y2 + m2, ..., yn−1 + m2, y + m2} be a basis for m/m2 such that

{y1 + m2, y2 + m2, ..., yn−1 + m2} is a basis for Ann(x)/m2. Since mt is the

only minimal ideal of R, mt ⊆ Ry and |I(Ry)| ≥ 3. If |I(Ry)| = 3, then

by Lemma 3.1.4, m2 ⊆ Ann(y). So mt−1 ⊆ Ann(y). Hence, mt−1m = (0)

(mt−1(Ry) = (0) and mt−1(Ry1 + · · ·+Ryn−1) = (0)), a contradiction. There-

fore, |I(Ry)| ≥ 4. We now divide the proof into two subcases according to

whether or not |I(Ry)| =∞, and show that both cases are impossible.

Subcase 4.1: 4 ≤ |I(Ry)| <∞. SinceRy ∼= R/Ann(y), v.dimR/m(Ann(y)

+ m2)/m2 = n − 1. If n ≥ 3, then |I(Ann(y))| = ∞ and K|I(Ann(y))|,|I(Ry)|

is a subgraph of AG(R). So by Formula (1.2), γ(AG(R)) = ∞, yielding

a contradiction. Thus we have v.dimR/mm/m
2 = n = 2. We now claim

that v.dimR/mm
2/m3 = 1. Suppose that v.dimR/mm

2/m3 = l ≥ 3. Since

m2y ∼= m2/Ann(y) ∩ m2 and |I(m2y)| ≤ |I(m3)| < ∞, we conclude that

v.dimR/m(Ann(y) ∩ m2 + m3/m3) = l − 1, and so |I(Ann(y))| = ∞. Since

K|I(Ann(y))|,|I(Ry)| is a subgraph of AG(R), by Formula (1.2), γ(AG(R)) =∞,

yielding a contradiction. So we have v.dimR/mm
2/m3 ≤ 2.

Assume that v.dimR/mm
2/m3 = 2. Let x1 ∈ m2\m3. Assume that mt−2 *

Rx1. By Lemma 3.1.3, |I(Rx1)| = |I(m3∩Rx1)|+1. Since mt−2 * Rx1, either

m3∩Rx1 = mt or m3∩Rx1 = mt−1. We conclude that |I(Rx1)| is either 3 or 4.

If |I(Rx1)| = 3, then by Lemma 3.1.4, m2 ⊆ Ann(x1), and so mt−2 ⊆ Ann(x1).

Assume that |I(Rx1)| = 4. Since Rx1
∼= R/Ann(x1) and Rx1 has only two

nonzero proper ideals, m and Ann(x1) + m2 are the only nonzero proper

ideals of R/Ann(x1). Therefore, Ann(x1) + m2 = Ann(x1) + m3, and so
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(Ann(x1) + m2)mt−4 = (Ann(x1) + m3)mt−4. Thus Ann(x1)mt−4 + mt−2 =

Ann(x1)mt−4 + mt−1 ⊆ Ann(x1). Therefore, mt−2 ⊆ Ann(x1). So, in both

cases, mt−2 ⊆ Ann(x1). Thus if mt−2 * Rx1, then mt−2 ⊆ Ann(x1). Assume

that mt−2 ⊆ Rx1. Note that m2x1
∼= m2/(Ann(x1) ∩ m2). Since m2x1 ⊆ m3

and |I(m3)| < ∞, v.dimR/m((Ann(x1) ∩ m2) + m3)/m3 = 1, so Ann(x1) ∩

(m2 \m3) 6= (0). Let x2 ∈ Ann(x1) ∩ (m2 \m3). Then mt−2 ⊆ Ann(x2) since

mt−2 ⊆ Rx1. Therefore, mt−2 ⊆ Ann(x1) or mt−2 ⊆ Ann(x2).

Let x2i−1 ∈ m2\m3 such that {x2i−1+m3, x2+m3} and {x2i−1+m3, x2j−1+

m3} for j = 1, 2, · · · , i − 1, be basis for m2/m3. Suppose that mt−2 *

Rx2i−1. Therefore, by Lemma 3.1.3, |I(Rx2i−1)| = |I(m3 ∩ Rx2i−1)| + 1.

Since mt−2 * Rx2i−1, m3 ∩ Rx2i−1 = mt or m3 ∩ Rx2i−1 = mt−1. We

conclude that |I(Rx2i−1)| is either 3 or 4. If |I(Rx2i−1)| = 3, then by

Lemma 3.1.4, m2 ⊆ Ann(x2i−1), and so mt−2 ⊆ Ann(x2i−1). Assume that

|I(Rx2i−1)| = 4. Since Rx2i−1
∼= R/Ann(x2i−1) and Rx2i−1 has only two

nonzero proper ideals, m and Ann(x2i−1) + m2 are the only nonzero proper

ideals of R/Ann(x2i−1). Therefore, Ann(x2i−1) +m2 = Ann(x2i−1) +m3, and

so (Ann(x2i−1) +m2)mt−4 = (Ann(x2i−1) +m3)mt−4. Thus Ann(x2i−1)mt−4 +

mt−2 = Ann(x2i−1)mt−4 +mt−1 ⊆ Ann(x2i−1). Therefore, mt−2 ⊆ Ann(x2i−1).

So either mt−2 ⊆ Ann(x1) or mt−2 ⊆ Ann(x2), we conclude that either

(0) = mt−2(Rx1 + Rx2i−1) = mt−2m2 = mt = 0 or (0) = mt−2(Rx2 +

Rx2i−1) = mt−2m2 = mt = 0, yielding a contradiction. Thus mt−2 ⊆

Rx2i−1. Since m2x2i−1 ⊆ m3 and |I(m3)| < ∞, |I(m2x2i−1)| < ∞. Note

that m2x2i−1
∼= m2/(Ann(x2i−1) ∩ m2). Thus there are finitely many ideals
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between Ann(x2i−1)∩m2 and m2. So v.dimR/m(Ann(x2i−1)∩m2 +m3)/m3 =

1, hence Ann(x2i−1) ∩ (m2 \ m3) 6= (0). Therefore, we can find x2i ∈

Ann(x2i−1) ∩ (m2 \ m3) and so mt−2 ⊆ Ann(x2i). If Rx2i = Rx2j for some

j = 1, 2, · · · , i − 1, then Rx2i(Rx2i−1 + Rx2j−1) = 0, and so Rx2im
2 = 0.

Since mtm2 = mt−1m2 = (Rx2i−1)m2 = (0), K|I(m2)|−4,3 is a subgraph of

AG(R) and by Formula (1.2) γ(Γ(R)) =∞, yielding a contradiction. There-

fore, Rx2i ∈ I(Ann(mt−2)) for each i. Thus |I(Ann(mt−2))| = ∞. Since

mtAnn(mt−2) = mt−1Ann(mt−2) = mt−2Ann(mt−2) = (0), K|I(Ann(mt−2))|,3 is

a subgraph in AG(R), and so γ(AG(R)) = ∞, yielding a contradiction.

Therefore, v.dimR/mm
2/m3 = 1, as claimed.

Recall that v.dimR/mm/m
2 = 2. Let x1 ∈ m \ m2. Assume that mt−2 6⊆

Rx1. By Lemma 3.1.3, |I(Rx1)| = |I(m2 ∩ Rx1)| + 1. Since mt−2 6⊆ Rx1,

either m2 ∩ Rx1 = mt or m2 ∩ Rx1 = mt−1. We conclude that either

|I(Rx1)| = 3 or |I(Rx1)| = 4. If |I(Rx1)| = 3, then by Lemma 3.1.4,

m2 ⊆ Ann(x1), and so mt−2 ⊆ Ann(x1). Assume that |I(Rx1)| = 4. Since

Rx1
∼= R/Ann(x1) and Rx1 has only two nonzero proper ideals, m and

Ann(x1) + m2 are the only nonzero proper ideals of R/Ann(x1). Therefore,

Ann(x1) + m2 = Ann(x1) + m3, and so (Ann(x1) + m2)mt−3 = (Ann(x1) +

m3)mt−3. Hence Ann(x1)mt−3 + mt−1 = Ann(x1)mt−3 + mt ⊆ Ann(x1).

Thus mt−1 ⊆ Ann(x1). Also, (Ann(x1) + m2)mt−4 = (Ann(x1) + m3)mt−4.

Thus Ann(x1)mt−4 + mt−2 = Ann(x1)mt−4 + mt−1 ⊆ Ann(x1). Therefore,

mt−2 ⊆ Ann(x1). Thus, if mt−2 * Rx1, then mt−2 ⊆ Ann(x1). Assume

that mt−2 ⊆ Rx1. Note that mx1
∼= m/Ann(x1). Since mx1 ⊆ m2 and
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|I(m2)| <∞, there exist finitely many ideals between m and Ann(x1). There-

fore, v.dimR/m(Ann(x1)+m2)/m2 = 1, so Ann(x1)∩ (m\m2) 6= (0). Let x2 ∈

Ann(x1)∩(m\m2). Then mt−2 ⊆ Ann(x2). Therefore, either mt−2 ⊆ Ann(x1)

or mt−2 ⊆ Ann(x2).

Let x2i−1 ∈ m\m2 such that {x2i−1 +m2, x2 +m2} and {x2i−1 +m2, x2j−1 +

m2} for j = 1, 2, · · · , i − 1 be a basis for m/m2. As in the above, if mt−2 *

Rx2i−1, then mt−2 ⊆ Ann(x2i−1). Since either mt−2 ⊆ Ann(x1) or mt−2 ⊆

Ann(x2), we conclude that either (0) = mt−1(Rx1 + Rx2i−1) = mt−1m = mt

or (0) = mt−1(Rx2 + Rx2i−1) = mt−1m = mt, yielding a contradiction. Thus

mt−2 ⊆ Rx2i−1. Since mx2i−1 ⊆ m2 and |I(m2)| <∞, v.dimR/m(Ann(x2i−1) +

m2)/m2 = 1, so Ann(x2i−1) ∩ (m \ m2) 6= (0). Therefore, we can find x2i ∈

Ann(x2i−1)∩ (m \m2) and so mt−2 ⊆ Ann(x2i). If Rx2i = Rx2j for some j =

1, 2, · · · , i−1, then Rx2i(Rx2i−1 +Rx2j−1) = 0, and so Rx2im = 0, yielding a

contradiction. Since for every i, Rx2i ∈ I(Ann(mt−2)), |I(Ann(mt−2))| = ∞.

Note that mt(Ann(mt−2)) = mt−1(Ann(mt−2)) = mt−2(Ann(mt−2)) = (0),

ThusK|Ann(mt−2)|,3 is a subgraph of AG(R). So by Formula (1.2), γ(AG(R)) =

∞, yielding a contradiction.

Subcase 4.2: |I(Ry)| = ∞. Suppose that v.dimR/mm
2/m3 ≥ 2. If

|I(Ann(y))| ≥ 4, then K|I(Ry)|,3 is a subgraph of AG(R) and so by For-

mula (1.2), γ(AGR) =∞, a contradiction. We may assume that |I(Ann(y))| =

3. Since Ann(y) * m3 (since m2y ∼= m2/(Ann(y) ∩ m2), there exist only

finitely many ideals between Ann(y) and m2). Therefore, there exists z ∈

Ann(y) \ m3. Since |I(Ann(y))| = 3, Rz = Ann(y). Thus by Lemma 3.1.4
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m2 ⊆ Ann(z) = Ann(Ann(y)). Since m2Ann(y) = (0), m2mt−1 = (0), and

mtm2 = (0), K|I(m2)|,3 is a subgraph of AG(R). Since |I(m2)| = ∞, by For-

mula (1.2), γ(AG(R)) =∞, a contradiction. Therefore, v.dimR/mm
2/m3 = 1

and by Lemma 3.1.2, |I(m2)| < ∞. Also, by Lemma 3.1.3, |I(Ry)| < ∞,

yielding a contradiction.

Therefore, we always have v.dimR/mm/m
2 = 1, and by Lemma 3.1.2, R

has only finitely many ideals. The proof is complete. �

As a consequence of Proposition 3.2.1, we obtain the following.

Theorem 3.2.2 Let R be an Artinian ring with γ(AG(R)) <∞. Then the

following results hold.

(1) If R is a non-local ring, then R has only finitely many ideals.

(2) If R is a local ring with maximal ideal m such that mt 6= (0) and mt+1 =

(0), then we have the following:

(a) If t = 1, then R is either finite or a special principal ideal ring.

(b) If t = 2, then one of the following holds:

(b.1) R is finite;

(b.2) R is a special principal ideal ring;

(b.3) γ(AG(R)) = 0, v.dimR/mm
2/m3 = 1, v.dimR/mm/m

2 = 2, R has in-

finitely many ideals, and AG(R) is a subgraph of Figure 1.

(c) If t = 3, then one of the following holds:

(c.1) R is finite;

(c.2) R is a special principal ideal ring;
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(c.3) γ(AG(R)) = 0, v.dimR/mm/m
2 = 2, v.dimR/mm

2/m3 = v.dimR/mm
3/m4 =

1, R has infinitely many ideals, and AG(R) is a subgraph of Figure 2.

(d) If t ≥ 4, either R is finite or a special principal ideal ring.

Proof. Let R be an Artinian ring with γ(AG(R)) < ∞. If R is a non-

local ring, then as in the proof of Proposition 3.2.1, R has only finitely many

ideals, giving (1). If R is a local ring with maximal ideal m, then there exists

positive integer t such that mt 6= (0) and mt+1 = (0). If |R/m| < ∞, then

one can easily check that R is finite. Now, we may assume that |R/m| =∞.

We have the following cases according to the value of t:

Case 1: t = 1, i.e., m2 = (0). Then by Case 1 in Proposition 3.2.1, R is

a special principal ideal ring.

Case 2: t = 2, i.e., m3 = (0). By Case 2 in Proposition 3.2.1, either

R is a special principal ideal ring or γ(AG(R)) = 0, v.dimR/mm
2/m3 = 1,

v.dimR/mm/m
2 = 2, R has infinitely many ideals, and AG(R) is a subgraph

of Figure 1.

Case 3: t = 3, i.e., m4 = (0). By Case 3 in Proposition 3.2.1, either

R is a special principal ideal ring or γ(AG(R)) = 0, v.dimR/mm/m
2 = 2,

v.dimR/mm
2/m3 = v.dimR/mm

3/m4 = 1, R has infinitely many ideals, and

AG(R) is a subgraph of Figure 2.

Case 4: t ≥ 4. By Case 4 in Proposition 3.2.1, R is a special principal

ideal ring.
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Chapter 4

The Annihilating-Product-One

Side-Ideal Graph

In this section we extend the definition of the annihilating-ideal graph to non-

commutative rings. We introduce various ways to define the annihilating-

ideal graph of a non-commutative ring. The first definition gives a di-

rected graph denoted by (APO)G(R). The other definition yields an undi-

rected graph denoted by (APO)G(R). It is shown that (APO)G(R) is not

necessarily connected, but (APO)G(R) is connected and the diameter of

(APO)G(R) is less than or equal to 3. Also, we show that if (APO)G(R)

has DCC (resp., ACC) on its vertices, then R is an Artinian (resp., Noethe-

rian) ring. It is shown that (APO)G(R) has some features similar to that

of the annihilating-ideal graph of a commutative ring. Finally, we investi-

gate the diameter and the girth of square matrices over commutative rings
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Mn×n(R), where n ≥ 2. It is shown that diam((APO)G(Mn×n(R)) ≥ 2 and

gr((APO)G(Mn×n(R)) = 3, where n ≥ 2.

We adopt the following notations in this chapter for a ring R;

IPO(R) = {A ⊆ R : A = IJ such that I and J are left or right ideals},

APO(R) = {A ∈ IPO(R) and there exists B ∈ (IPO(R))∗ such that AB =

{0} or BA = {0}},

Al(R) = {All left ideals in APO(R)},

Ar(R) = {All right ideals in APO(R)},

Al(R) = {A ∈ APO(R), where there exists B ∈ APO(R)∗ such that BA =

{0}},

Ar(R) = {A ∈ APO(R), where there exists B ∈ APO(R)∗ such that AB =

{0}},

At(R) = {A ∈ APO(R), where there exists left or right ideal I ∈ (APO(R))∗

such that IA = {0} and AJI = {0}},

I(R) = {I ⊆ R : I is a left or right ideal}.

4.1 Directed Annihilating-Product-One Side-

Ideal Graph

In this section we define a directed annihilating-product-one side-ideal graph

of a ring denoted by (APO)G(R). It is shown that (APO)G(R) is not

necessarily connected. We find necessarily and sufficient conditions such

that (APO)G(R) is connected. Also, we show that if (APO)G(R) has DCC
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(resp., ACC) on its vertices, then R is an Artinian (resp., Noetherian) ring.

Let R be a ring with identity, I be a left or right ideal and J be a left or

right ideal of R. We define IJ =
∑n

i=1 aibi such that ai ∈ I and bj ∈ J for

i = 1, 2, ..., n. It is easy to see this multiplication is associative. The following

lemma shows that IPO(R) with the above multiplication is a semigroup.

Lemma 4.1.1 IPO(R) is a semigroup.

Proof. Let A ∈ IPO(R) and B ∈ IPO(R). Then there exist I1, J1, I2, J2 ∈

I(R) such that A = I1J1 and B = I2J2. We show that AB = (I1J1)(I2J2) ∈

IPO(R).

Case 1: J1 is a left ideal. Then AB = I1(J1I2J2) ∈ IPO(R).

Case 2: J1 is a right ideal and either I2 is a left ideal or J2 is a right

ideal. Then AB = (I1J1)(I2J2) ∈ IPO(R).

Case 3: J1 is a right ideal and, I2 is a right ideal and J2 is a left ideal.

Then AB = (I1J1I2)J2 ∈ IPO(R).

ThereforeAB ∈ IPO(R). Since the multiplication is associative, IPO(R)

is a semigroup. �

We define a directed graph (APO)G(R) with verticesAPO(R)∗ = APO(R)\

{0}, and A → B is an edge between distinct vertices A and B if AB = {0}.

(APO)G(R) is a directed graph on APO(R)∗. If R is a commutative ring,

A→ B is an edge whenever B → A is an edge. Therefore, for a commutative

ring R if we view (APO)G(R) as an undirected graph, this definition agrees

with the usual definition of the annihilating-ideal graph of a commutative
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ring.

We say that a directed graph Γ is connected if there is a path following the

directed edges of Γ from any vertex of Γ to any other vertex of Γ. The next

example show that, unlike the case for a commutative ring [15], (APO)G(R)

need not be connected if R is non-commutative.

Example 4.1.2 Let K be a field and V = ⊕∞i=1K. Then R = HOMK(V, V ),

under point-wise addition and multiplication taken to be composition func-

tions, is an infinite non-commutative ring with identity. Let π1 : V →

V be defined by (a1, a2, ...) 7→ (a1, 0, ...) and f : V → V be defined by

(a1, a2, ...) 7→ (0, a1, a2, ...). Then π1, f ∈ R. Note that (Rπ1)(fR) = {0}, so

(APO)G(R) 6= ∅. However (APO)G(R) is not connected as there is no path

leading from the vertex (fR) to any other vertex of (APO)G(R) since there

exists g : V → V be defined by (a1, a2, ...) 7→ (a2, a3, ...) and g ∈ R such that

gf = 1R.

Theorem 4.1.3 Let R be a ring. Then (APO)G(R) is connected if and only

if Al(R) = Ar(R). Moreover, if (APO)G(R) is connected, then diam((APO)G(R)) ≤

3.

Proof. Suppose that Al(R) = Ar(R).

Let A and B be distinct vertices of (APO)G(R). Then A 6= {0} and B 6= {0}.

Case 1: AB = {0}. Then A→ B is a path.
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Case 2: AB 6= {0}, A2 = {0} and B2 = {0}. Then A → AB → B is a

path.

Case 3: AB 6= {0}, B2 6= {0} and A2 = {0}. Then there exists C ∈

APO(R) \ {A,B, 0} such that CB = {0}. If AC = {0}, then A → C → B

is a path. If AC 6= {0}, then A→ AC → B is a path.

Case 4: AB 6= {0}, A2 6= {0} and B2 = {0}. Then there exists D ∈

APO(R) \ {A,B, 0} such that AD = {0}. If DB = {0}, then A → D → B

is a path. If DB 6= {0}, then A→ DB → B is a path.

Case 5: AB 6= {0}, A2 6= {0} and B2 6= {0}. Then there exists C ∈

APO(R) \ {A,B, 0} such that AC = {0} and D ∈ APO(R) \ {A,B, 0} such

that DB = {0} since Al(R) = Ar(R).

Subcase 5.1: C = D. Then A→ C → B is a path.

Subcase 5.2: C 6= D. If CD = {0}, then A→ C → D → B is a path. If

CD 6= {0}, then A→ CD → B is a path.

Thus (APO)G(R) is connected and diam((APO)G(R)) ≤ 3.

The converse follows by definitions. �

A Duo ring is a ring in which every one sided ideal is two sided.

Proposition 4.1.4 Let R be an Artinian Duo ring. Then Al(R) = Ar(R) =

IPO(R) \ {R}.

Proof. Let R be an Artinian Duo ring. Then by [23, Lemma 4.2] R =

(R1,m1) × (R2,m2) × ...(Rn,mn), where every Ri is a local Duo ring with

unique maximal ideal mi. Let A ∈ IPO(R). Then A = (I1 × I2 × ... × In)
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(J1 × J2 × ... × Jn), where every Ii, 1 ≤ i ≤ n and Jj, 1 ≤ j ≤ n, is an

ideal. Since A 6= R, there exists Ii or Jj such that Ii 6= R or Jj 6= R.

Without loss of generality assume that Ii 6= R. Then A = (I1× I2× ...× In)

(J1 × J2 × ... × Jn) ⊆ (R1 × ... × Ii × ... × Rn) (R1 × · · · × Ri × ... × Rn).

Suppose k is the smallest positive integer such that Ii
k = {0}. Thus (0× ...×

Ik−1
i × ...× 0)((R1 × ...× Ii × ...×Rn)(R1 × · · · ×Ri × ...×Rn)) = {0} and

((R1× ...×Ii× ...×Rn)(R1×· · ·×Ri× ...×Rn))(0× ...×Ik−1
i × ...×0) = {0}.

Therefore A ∈ Al(R) and A ∈ Ar(R). Hence IPO(R) ⊆ Ar and IPO(R) ⊆

Al(R). We conclude that Ar(R) = IPO(R) = Al(R). �

The following corollary shows that for an Artinian Duo ring (APO)G(R)

is connected with diam((APO)G(R)) ≤ 3.

Corollary 4.1.5 Let R be an Artinian Duo ring. Then (APO)G(R) is con-

nected with diam((APO)G(R)) ≤ 3.

Proof. The result follows from Theorem 4.1.3 and Proposition 4.1.4. �

It is well known that if |Z(R)| ≥ 2 is finite then |R| is finite. For any

left or right ideal I, let ad(I) = {A ∈ APO(R)∗ such that I = A or I → A

or there exists B ∈ APO(R)∗ such that I → B → A }. We know that

|ad(I)| ⊆ Z(R). The following proposition shows that if I is a left or right

principal ideal of R and all left and right ideals of ad(I) are finite, then R is

finite.

Proposition 4.1.6 Let R be a ring and I be a left or right principal ideal

of R. If all of left and right ideals of ad(I) are finite, then R is finite.
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Proof. Without loss of generality assume that I is a left principal ideal.

Therefore I = Rx for some x ∈ R.

Case 1: I = Annr(x) and Annr(x)Annl(x) = {0}. Then

I → Annl(x)

and Annl(x) ∈ ad(I). Therefore Annl(x) is finite. Since I ∼= R/Annl(x),

|R| = |I||Annl(x)| <∞.

Case 2: I 6= Annr(x) and Annr(x)Annl(x) = {0}. Then

I → Annr(x)→ Annl(x)

and Annl(x) ∈ ad(I). Therefore Annl(x) is finite. Since I ∼= R/Annl(x),

|R| = |I||Annl(x)| <∞.

Case 3: I 6= Annr(x) and Annr(x)Annl(x) 6= {0}. Then

Annr(x)← I → Annr(x)Annl(x)→ (xR)

and (xR), Annr(x) ∈ ad(I). Therefore (xR) and Annr(x) are finite. Since

(xR) ∼= R/Annr(x), |R| = |(xR)||Annr(x)| <∞. �

Proposition 4.1.7 Let R be a ring and I be a left principal ideal of R. If

ad(I) has ACC on its left and right ideals, then R is left or right Artinian.

Proof. Let I = Rx, for some x ∈ R.
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Case 1: I = Annr(x) and Annr(x)Annl(x) = {0}. Then

I → Annl(x)

and so Annl(x) ∈ ad(I). Therefore Annl(x) is left Artinian R−module.

Since I ∼= R/Annl(x), we conclude that R is a left Artinian R-module.

Case 2: I 6= Annr(x) and Annr(x)Annl(x) = {0}. Then

I → Annr(x)→ Annl(x)

and so Annl(x) ∈ ad(I). Therefore Annl(x) is a left Artinian R−module.

Since I ∼= R/Annl(x), we conclude that R is a left Artinian R-module.

Case 3: I 6= Annr(x) and Annr(x)Annl(x) 6= {0}. Then

Annr(x)← I → Annr(x)Annl(x)→ (xR)

and so (xR), Annr(x) ∈ ad(I). Therefore (xR) and Annr(x) are right Ar-

tinian R−modules. Since (xR) ∼= R/Annr(x), we conclude that R is a right

Artinian R-module. �

Theorem 4.1.8 Let R be a ring which is not a domain. All left ideals of

APO(R) have ACC (resp., DCC) if and only if R is a left Noetherian (resp.,

Artinian) ring.

Proof. Suppose that APO(R) has ACC (resp., DCC) on all its left ideals.
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Since R is a non-domain ring, there exict x, y ∈ Z(R)∗ such that xy = 0 or

yx = 0. Without loss of generality assume that xy = 0 so Annr(x) 6= 0.

Since for every left ideal I ⊆ (Rx), IAnnr(x) = {0}, we conclude that the

set {I : I is a left ideal of R and I ⊆ Rx} ⊆ APO(R). Therefore Rx is a

left Noetherian (resp., Artinian) R−module since APO(R) has ACC (resp.,

DCC) on its left ideals. If Annl(x) = {0}, then since Rx ∼= R/Annl(x),

Rx ∼= R. Thus R is left Noetherian (resp., Artinian) ring.

If Annl(x) 6= {0}, then since Annl(x)(xR) = {0}, {I : I is a left ideal

of R, I ⊆ Annl(x)} ⊆ APO(R). So Annl(x) is a left Noetherian(resp.,

Artinian). Note that Rx ∼= R/Annl(x). Since (Rx) and Annl(x) are left

Noetherian (resp., Artinian), R is left Noetherian(resp., Artinian).

The converse is clear. �

A directed graph Γ is called a tournament if for every two distinct vertices

x and y of Γ exactly one of xy and yx is an edge of Γ. In other words a

tournament is a complete graph with exactly one direction assigned to each

edge.

Theorem 4.1.9 Let R be a ring such that A2 6= {0} for every A ∈ IPO(R)∗

and Al(R) ∩ Ar(R) 6= ∅. Then (APO)G(R) is not a tournament.

Proof. Assume (APO)G(R) is a tournament. Since Al(R) ∩ Ar(R) 6= ∅,

there exists B ∈ Al(R)∩Ar(R), that is, there exist distinct A,C ∈ IPO(R)∗

such that A→ B → C is a path in (APO)G(R). If CA 6= {0}, thenB(CA) =

(BC)A = {0} and (CA)B = C(AB) = {0}, which is a contradiction. So
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CA = {0} and therefore AC 6= {0} since (APO)G(R) is a tournament.

Also, AC 6= A (otherwise A2 = (ACAC) = A(CA)C = {0}) and similarly,

AC 6= C. Let a, a1 ∈ A and c, c1 ∈ C be arbitrary elements. Then we

have B → C → ((a − a1c)R) and (R(c − ac1)) → A → B. As the above

((a − a1c)R)B = {0} and B(R(c − ac1)) = {0}. Let b ∈ B be an arbitrary

element. Then −a1cb = a1b − a1cb ∈ ((a − a1c)R)B = {0} and −bac1 =

bc1 − bac1 ∈ B(R(c− ac1)) = {0}. Therefore, ACB = {0} and BAC = {0}.

Thus both AC → B and B → AC are edges of (APO)G(R). This is a

contradiction, hence, (APO)G(R) cannot be a tournament. �

4.2 Undirected Annihilating-Product-One Side-

Ideal graph

Let R be a ring. We define an undirected graph (APO)G(R) with vertices

APO(R)∗, where distinct vertices A and B are adjacent if and only if either

AB = {0} or BA = {0}. The only difference between (APO)G(R) and

(APO)G(R) is that the former is a directed graph and the latter is undirected

(that is, these graphs share the same vertices and the same edges if directions

on the edges are ignored). If R is a commutative ring, this definition agrees

with the previous definition of the annihilating-ideal graph.

We now show that for a ringR, (APO)G(R) is connected, 0 ≤ diam((APO)G(R)) ≤

3 and gr((APO)G(R)) = 3, 4 or ∞.
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Theorem 4.2.1 Let R be a ring. Then (APO)G(R) is a connected graph

and diam((APO)G(R)) ≤ 3.

Proof. Let A and B be distinct vertices of (APO)G(R).

Case 1: AB = {0} or BA = {0}. Then A−B is a path.

Suppose AB 6= {0} and BA 6= {0}.

Case 2: A2 = {0} and B2 = {0}. Then A− AB −B is a path.

Case 3: A2 = {0} and B2 6= {0}. Then there is a some C ∈ APO(R) \

{A,B, 0} such that either CB = {0} or BC = {0}. If either AC = {0} or

CA = {0}, then A − C − B is a path. If AC 6= {0} and CA 6= {0}, then

A−CA−B is a path iff BC = {0} and A−AC −B is a path if CB = {0}.

Case 4: A2 6= {0} and B2 = {0}. We can use an argument similar to

that of the above case to obtain a path.

Case 5: A2 6= {0} and B2 6= {0}. Then there exist C,D ∈ APO(R) \

{A,B, 0} such that either CA = {0} or AC = {0} and either DB = {0}

or BD = {0}. If C = D, then A − C − B is a path. If C 6= D and either

CD = {0} or DC = {0}, then A − C − D − B is a path. So suppose

CD 6= {0}, DC 6= {0}, and C 6= D.

Subcase 5.1: A− C −B is a path if CB = {0} or BC = {0}.

Subcase 5.2: A− CD −B is a path if AC = {0} or DB = {0}.

Subcase 5.3: A−DC −B is a path if CA = {0} or BD = {0}.

Subcase 5.4: A − CB − D − B is a path if AC = {0}, BD = {0} and

CB 6= {0}.

Subcase 5.5: A − BC − D − B is a path if CA = {0}, DB = {0}, and
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BC 6= {0}.

Thus (APO)G(R)) is connected and diam((APO)G(R)) ≤ 3. �

Theorem 4.2.2 Let R be a ring. If (APO)G(R) contains a cycle, then

gr((APO)G(R)) ≤ 4.

Proof. Let A0−A1−A2− ...−An−1−An−A0 be a cycle of shortest length

in (APO)G(R). Assume that gr((APO)G(R)) > 4, i.e., assume n ≥ 4.

Case 1: There is some Aj such that Aj ⊆ I = Annl(Aj+1)∩Annl(Aj−1).

Without loss of generality assume that j = 1. If there is some 0 6= A ⊆ I

such that A 6= A1, then A0 − A1 − A2 − A − A0 is a cycle in (APO)G(R).

So suppose that I = A1. Then either A3A4 = {0} or A4A3 = {0}. Note

that A3A1 6= {0}, A1A3 6= {0}, A1A4 6= 0 and A4A1 6= {0}. Thus A3A1 =

A4A1 = A1 since I = A1 is a left ideal. But then A3A4 = {0} implies

A3A1 = A3(A4A1) = (A3A4)A1 = {0}, and A4A3 = {0} implies A4A1 =

A4(A3A1) = (A4A3)A1 = {0}. This is a contradiction.

Case 2: There is some Aj such that Aj ⊆ Annr(Aj+1)∩Annr(Aj−1). We

arrive at a contradiction by an argument similar to that in case 1.

Case 3: For each j, Aj * Annr(Aj+1) ∩ Annr(Aj−1) and Aj is not con-

tained in Annl(Aj+1)∩Annl(Aj−1). Thus, without loss of generality, we have

a path in (APO)G(R) of the form A0 − A1 − A2 − ...− An−1 − An − A0.

Subcase 1: A2
1 = A2

n = {0}. Note that A0An is not a contain in {0, A0, An}.

Then A0 − A0An − An − A0 is a path in (APO)G(R).

Subcase 2: A2
0 = {0} and A2

n 6= {0}. Note that A0An−1 is not a member of
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{0, A0, An}. Then A0 − A0An−1 − An − A0 is a path in (APO)G(R).

Subcase 3: A2
0 6= {0} and A2

n = {0}. Note that A1An is not a member of

{0, A0, An}. Then A0 − A1An − An − A0 is a path in (APO)G(R).

Subcase 4: A2
0 6= {0} and A2

n 6= {0}. Note that A1An−1 is not a member of

{0, A0, An}. Then A0 − A0An−1 − An − A0 is a path in (APO)G(R).

In each of these subcase we have found a cycle in (APO)G(R) of length no

greater than 4, this is a contradiction.

Since we have found a contradictions in all possible cases, we must have

gr((APO)G(R)) ≤ 4. �

4.3 Annihilating-Ideal Graphs for Matrices over

Commutative Rings

In this section we want to investigate the annihilating-ideal graph of matrices

over a commutative ring.

By Theorem 4.2.1, diam((APO)G(R)) ≤ 3. In the following theorem it is

shown that diam((APO)G(Mn(R))) ≥ 2, where n ≥ 2. A natural question is

whether diam((APO)G(Mn(R))) ≥ diam((APO)G(R)). We will show that

the answer to this question is affirmative.

Theorem 4.3.1 Let R be a commutative ring. Thendiam((APO)G(Mn(R))) ≥

2, where n ≥ 2.
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Proof. Let

A = (Mn(R)



1 0 0 · · · 0

0 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


) and B = (



1 0 0 · · · 0

0 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


Mn(R)).

Since

A(



0 0 0 · · · 0

1 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


Mn(R)) = {0} and (Mn(R)



0 1 0 · · · 0

0 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


)B = {0},

we conclude that A and B are vertices in (APO)G(Mn(R)). Note that



1 0 0 · · · 0

0 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0



2

6= 0 and



1 0 0 · · · 0

0 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


∈ A ∩B,

so AB 6= {0}. Therefore, diam((APO)G(Mn(R))) ≥ 2. �

Theorem 4.3.2 Let R be a commutative ring. Then diam((APO)G(Mn(R))) ≥

diam(AG(R)).

Proof. By [15, Theorem 2.1], diam(AG(R)) ≤ 3.
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Case 1: diam(AG(R)) ≤ 2. By Theorem 4.3.1, diam((APO)G(Mn(R))) ≥

2, so diam((APO)G(Mn(R))) ≥ diam(AG(R)).

Case 2: diam(AG(R)) = 3. Then there exist ideals I, J,K, L ∈ AG(R)∗

such that I −K − L− J is the shortest path between I and J . Since I and

J are vertices of AG(R), Mn(I) and Mn(J) are in APO(R)∗. Suppose that

diam((APO)G(Mn(R))) = 2, so there exists α = [aij] ∈ Mn(R) such that

Mn(I)α = αMn(J) = 0. Without loss of generality assume that a11 6= 0. For

every a ∈ I, 

a 0 0 · · · 0

0 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


α = 0,

so aa11 = 0. Therefore I(a11R) = (0). For every b ∈ J ,

α



b 0 0 · · · 0

0 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


= 0.

Therefore (a11R)J = (0). Thus I−(a11R)−Jgives shorter path between I and

J in AG(R), yielding a contradiction. Hence diam((APO)G(Mn(R))) ≥ 3.

�

It was proved in Theorem 4.2.2 that gr((APO)G(R)) ≤ 4. We now show

that gr((APO)G(Mn(R))) = 3, where n ≥ 2.
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Theorem 4.3.3 Let R be a commutative ring. Then gr((APO)G(Mn(R))) =

3, where n ≥ 2.

Proof. Let

A =



1 1 0 · · · 0

0 0 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


, B =



1 −1 0 · · · 0

−1 1 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


,

and

C =



0 1 0 · · · 0

0 1 0 · · · 0

...
...

... · · · ...

0 0 0 · · · 0


.

Then (AMn(R)A)−(BMn(R)B)−(CMn(R)C) is a cycle in (APO)G(Mn(R)),

and so gr((APO)G(Mn(R))) = 3. �
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