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Abstract

The conjecture claiming that every planar graph is acyclic 5-choosable

[Borodin et al., 2002] has been verified for several restricted classes of planar

graphs. Recently, O. V. Borodin and A. O. Ivanova, [Journal of Graph Theory,

68(2), October 2011, 169-176], have shown that a planar graph is acyclically

5-choosable if it does not contain an i-cycle adjacent to a j-cycle, where

3 ≤ j ≤ 5 if i = 3 and 4 ≤ j ≤ 6 if i = 4. We improve the above mentioned

result and prove that every planar graph without an i-cycle adjacent to a

j-cycle with 3 ≤ j ≤ 5 if i = 3 and 4 ≤ j ≤ 5 if i = 4 is acyclically 5-choosable.
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Chapter 1
Introduction

Graph theory is the study of graphs, which are structures which model items

and the relations existing between these items. A graph contains a set of

vertices, and a set of edges. For example, one can think of cities as vertices

on a map, and an edge; i.e., a line with vertices as its endpoints, would exist

form one vertex to another vertex if there was a road connecting these two

cities. As in real life applications, these edges can be directed, as in the case

of a one way street, or undirected, such as a street in which traffic flows in

both directions.

Let G = (V,E) denote a graph with vertex set V (G) and edge set E(G).

Two vertices u and v in V (G) are called adjacent if they are endpoints of an

edge in E(G). This edge is denoted as uv. A proper vertex colouring of G is

one in which no edge is monochromatic; i.e., adjacent vertices are assigned

different colours.
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1 Introduction 1

A k-colouring of G is a partition V (G) = V1 ∪ . . . ∪ Vk of the vertices of

G into k pairwise disjoint sets. If G can be properly coloured with k colours

then we say G is k-colourable. The chromatic number of G, denoted χ(G), is

the least number of colours required to properly colour G; i.e., χ(G) = k if G

can be properly coloured with k colours but not with k − 1 colours.

A proper vertex colouring of a graph G is acyclic if G contains no bi-

coloured cycle; i.e., no cycle is coloured with only two colours. If the fewest

number of colours required to acyclically colour a graph G is k, then the

acyclic chromatic number χa(G) = k.

Consider a list assignment L(v), where by a list of admissible colours is

assigned to each vertex v of G. We say G is L-list colourable if there exists a

proper vertex colouring of G with this list assignment L(v) such that each

v is coloured with one of its admissible colours, and the colouring is proper.

If, regardless of how these lists are assigned to the vertices of G, there exists

a proper L-list colouring for every list assignment with |L(v)| ≥ k for every

vertex v ∈ G, then G is k-choosable. That is, if any one vertex is assigned

a list of k − 1 admissible colours, then there exists some list assignment in

which a proper colouring is not possible. The list-chromatic number χl(G)

is the smallest integer k such that |L(v)| ≥ k for every vertex v ∈ G which

produces such a colouring. If a graph G can be acyclically coloured for all list

assignment with |L(v)| ≥ k, then G is acyclically k-choosable and the acyclic

list-chromatic number χla(G) = k.
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1.1 History 1

1.1 History

In 1973, Grünbaum [Grü73] defined a proper colouring of a graph to be

acyclic if every cycle uses at least three colours and proved that every planar

graph is acyclically 9-colourable (a planar graph is a graph which can be

embedded in a plane such that two edges never cross). It was also, at this

time, conjectured that every planar graph has an acyclic 5-colouring. He

provided an example of a planar graph which is not acyclically 4-colourable

(refer to Figure 1.1), making 5 the best possible bound. Borodin [Bor79]

proved Grünbaums conjecture in 2002, improving earlier bounds of 8, 7,

and 6, attributed to Mitchem [Mit74], Albertson and Berman [AB77], and

Kostochka [Kos76], respectively. To further demonstrate that 5 is the best

bound, there are bipartite 2-degenerate planar graphs that are not acyclically

4-colourable [KM76]. Note that a bipartite d-degenerate planar graph H is a

planar graph such that every subgraph of H has a vertex of degree at most d

and can be partitioned into two disjoint set of non-adjacent vertices.

Thomassen [Tho94] proved that every planar graph is 5-choosable. This is

the best possible bound, as Voigt [Voi93] presented a non-4-choosable planar

graph. Borodin [Bor79] conjectured

Conjecture 1. Every planar graph is acyclically 5-choosable.

A proof of this conjecture would improve the results of both Borodin [Bor79]

and Thomassen [Tho94].

Borodin et al. [BFDFK+02] proved that every planar graph is acyclically

3



1.1 History 1

Figure 1.1: Grünbaum’s example and Kostochka-Mel’nikov’s example.

7-choosable. As of yet, proofs for the k-choosability, 3 ≤ k ≤ 6 of planar graphs

have been verified for restricted classes of planar graphs [BCIR10] [Bor09] [CR10]

[Mon07] [WC09]. Work on the 5-choosability of planar graphs, such as those

graphs

• with girth at least five [MOR06],

• without 4- and 5-cycles or without 4- and 6-cycles [MRW07],

• with neither 4-cycles nor chordal 6-cycles [ZX09],

• with neither 4-cycles nor two 3-cycles at distance less than 3 [CW08],

• and without 4-cycles and intersecting 3-cycles [CR12],

have recently been absorbed by Borodin and Ivanova [BI11] which proved

that a planar graph is acyclically 5-choosable if it does not contain an i-cycle

4



1.2 Overview 1

adjacent to a j-cycle, where 3 ≤ j ≤ 5 if i = 3 and 4 ≤ j ≤ 6 if i = 4. The

purpose of this thesis is to improve this last result by allowing the adjacency

of 4- and 6-cycles which were previously forbidden.

Theorem 1. Every planar graph without an i-cycle adjacent to a j-cycle with

3 ≤ j ≤ 5 if i = 3, 4 is acyclically 5-choosable.

The method of proof will be by contradiction, and shown in two parts

using the discharging method. First we assume for contradiction that there

exists a graph G with the necessary restrictions, i.e., contains no short cycles

which have at least one edge in common, but cannot be acyclically 5-coloured

with an arbitrary list assignment for v ∈ G such that |L(v)| ≥ 5. Then we

determine some notion of the structure of G. This is achieved though finding

reducible configurations that would lead to a contradiction in the assumption

that G is not 5-choosable. Finally we assign charges to each vertex and to

each face of G such that the total charge of G is negative. We carefully

redistribute those charges and show that, without adding or removing charge,

the total charge of G is non-negative. Hence a contradiction, meaning the

assumption of the existence of such a graph G was incorrect.

1.2 Overview

The purpose of Chapter 2 is to help familiarize the reader with notation that

is commonly used in the study of Graph Theory and to notation used specific

to Colouring Problems and this thesis. Chapter 3 is a summary reducible

5



1.2 Overview 1

configurations that has been previously proved by other authors who are

examining the problem of planar graphs and there 5-choosability. Chapter 4 is

comprised of three different parts. Firstly, the list of reducible configurations

is expanded, as some new configurations are considered. Next, the proof of

Theorem 1 is started by providing the reader a list of rules by which the

discharging will follow. Lastly, an examination of the new charges carried

by each face and each vertex of the minimum counterexample is calculated.

Finally, this thesis will end in Chapter 5 with a look at the future of the

answer to the question of the 5-choosability of planar graphs.

6



Chapter 2
Preliminaries and Notions

In this chapter, we will become familiar with the notation used in the next

few chapters.

2.1 Vertices, Edges and Faces

A k-vertex, k+-vertex and k−-vertex is a vertex of degree k, at least k and at

most k, respectively. The degree of a vertex refers to the number of edges

incident to it.

Similarly, we define a k-face, k+-face, k−-face where a face f has exactly,

at least, or at most k edges in its boundary, respectively.

A vertex v which is the endpoint of an edge in the boundary of a face

is said to be incident to that face. A triangle is synonymous with a 3-face.

It is a region enclosed by three successively adjacent vertices embedded in a

plane. It has three boundary edges and, as expected, each triangle has three

7



2.2 Neighbourhoods 2

f2f1
f3 f4

Figure 2.1: Two adjacent faces f1 and f2. Two intersecting faces f3 and f4.

incident vertices.

Usually, a face f ∈ F (G); the set of faces of an embedded graph G, is

written as f = [u1, u2, ..., un] if u1, u2, ..., un are the boundary vertices of f in

a cyclic order.

Two cycles are adjacent if they have two consecutive adjacent vertices vi

and vi+1 in common as boundary vertices. Otherwise, for the purposes of this

thesis, two cycles intersect if they share common vertices but are not adjacent.

If two cycles are not adjacent in a graph G, then they are not adjacent faces

in the embedding of G (see Fig.2.1).

2.2 Neighbourhoods

For a vertex v and an integer i ≥ 1, let t(v) denote the number of 3-faces

incident to v and let ni(v) denote the number of i-vertices adjacent to v.

For a face f ∈ F (G) and an integer j ≥ 2, let nj(f) denote the number of

j-vertices incident to f .

8



2.3 Pendant Light Vertices 2

u

v

Figure 2.2: A pendant light 3-vertex v of u.

Let N(v) denote the set of neighbours of a vertex v. In other words, N(v)

refers to the number of vertices adjacent to v.

A 3-face f = [v1v2v3] is called an (a1, a2, a3)-face if the degree of the vertex

vi is ai for i = 1, 2, 3. Similarly we define a 4-face f = [v1v2v3v4] as being a

(a1, a2, a3, a4)-face if the degree of the vertex vi is ai for i = 1, 2, 3, 4.

2.3 Pendant Light Vertices

A 3-vertex v is pendant if it is incident to a 3-face. If a vertex u is adjacent

to a 3-vertex v such that the edge uv is not in the boundary of a 3-face, then

the edge uv is called light. Hence, we call v a pendant light 3-vertex of u if

uv is light and v is pendant (see Fig. 2.2).

If v is a pendant light 3-vertex of u which is incident to an (a1, a2, a3)-face,

then we call v a pendant light (a1, a2, a3)-vertex of u. Let p3(u) denote the

number of pendant light 3-vertices of a vertex u.

9



2.4 Path Colouring 2

2.4 Path Colouring

A path is a set of vertices v1, . . . , vk and edges e1, . . . , ek−1 which are in

sequential order v1, e1, . . . , ek−1, vk. Let α and β be any two distinct colours.

An alternating (α, β)-path in G is a path where by each vertex is coloured

α or β in alternating order. A path v1, e1, . . . , ek−1, vk is called a cycle if

v1 = vk.

10



Chapter 3
Reducible Configurations - Past Work

For all figures in this thesis, a vertex is represented by a solid point • when

all of its incident edges are indicated; otherwise it is represented by a hollow

point ◦. Letters which appear early in the alphabet, such as a, b, c, . . . will

denote a colour which is assigned to a vertex. Indexed colours c1, c2, . . . are

colours assigned to indexed vertices v1, v2, . . . and are distinct colours unless

otherwise specified. Lastly, letters which appear late in the alphabet, such as

u, v, . . . , y, z will denote vertices.

To show the acyclic 5-choosability of every planar graph which does not

contain an i-cycle adjacent to a j-cycle for i = 3, 4 and j = 3, 4, 5, assume

for contradiction that there exists a planar graph G which does not contain

the above adjacent cycles, is not acyclically 5-choosable. This graph G is a

minimum planar graph; i.e., it can be embedded in a plane without any of

its edges crossing, and has the fewest number of vertices such that it cannot

11



3 Reducible Configurations - Past Work 3

be acyclically List 5-coloured. Firstly, we assume G is a connected planar

graph; that is, every two vertices in G belong to a path in G. As per the

assumption that G is minimum, each component C1, . . . , Ck of a graph which

is not connected is acyclically 5-choosable. Hence G is acyclically 5-choosable

which contradicts our choice of G. Next, we shall assume that G is simple. A

simple graph is a graph with no loops or multiple edges. A loop is an edge uv

such that u and v are the same vertex. Obviously, a loop cannot be properly

coloured. Multiple edges are edges a set of two or more edges which share the

same two endpoints. Obviously, every multiple cannot be acyclically coloured.

The following is a list of reducible configuration that are not in G. If any

of these configurations where in G, then one or more vertices can be removed,

the remaining graph can be acyclically List 5-coloured and this colouring can

be extended to the vertices that were removed. Hence the graph G would be

acyclically List 5-coloured.

Lemma 1. As a consequence of G being a minimum counterexample, the

following conditions hold:

(C1) There are no 1-vertices. [MRW07]

(C2) No 2-vertex is adjacent to a 4−-vertex. [MRW07]

(C3) Let v be a 3-vertex.

12



3 Reducible Configurations - Past Work 3

(C3.1) If v is adjacent to a 3-vertex, then v is not adjacent to any other

4−-vertex. [MRW07]

(C3.2) v has no pendant 3-vertex. [MRW07]

(C4) Let v be a 4-vertex, then v has no pendant 3-vertex. [BI11].

(C5) Let v be a 5-vertex.

(C5.1) v is adjacent to at most one 2-vertex. [MRW07]

(C5.2) If n2(v) = 1, then v has no pendant 3-vertex. [MRW07]

(C5.3) If n2(v) = 1 and v is incident to a 3-face, then n3(f) = 0. [CW08]

(C5.4) If n2(v) = 0, then p3(v) ≤ 3. [CR12]

(C5.5) If n2(v) = 0 and t(v) = 1, then p3(v) ≤ 2. [CR12]

(C5.6) If v is incident to a (5, 3, 4)-face, then p3(v) ≤ 1. [CR12]

(C6) Let v be a 6-vertex.

(C6.1) v is adjacent to at most four 2-vertices. [MRW07]

(C6.2) If n2(v) = 4, then v is not adjacent to any 3-vertex. [MRW07]

(C6.3) If n2(v) = 4, then t(v) = 0. [CW08]

(C6.4) If n2(v) = 3 and t(v) = 1, then p3(v) = 0. [CR12]

13



3 Reducible Configurations - Past Work 3

(C6.5) If n2(v) = 2, then p3(v) ≤ 2. [CR12]

(C6.6) If n2(v) = 2, and t(v) = 1, then p3(v) ≤ 1. [CR12]

(C6.7) If n2(v) = 0 and v is incident to a (3, 3, 6)-face, then p3(v) ≤

2. [CR12]

(C6.8) If v is incident to a (3, 4, 6)-face, then n2(v) ≤ 2. [CR12]

(C7) Let v be a 7-vertex.

(C7.1) v is adjacent to at most five 2-vertices. [MRW07]

(C7.2) If n2(v) = 4, then n3(v) ≤ 2. [CW08]

(C7.3) If n2(v) = 5, then n3(v) = 0 and t(v) = 0. [CR12]

(C7.4) If n2(v) = 4 and t(v) = 1, then p3(v) = 0. [CR12]

(C7.5) If n2(v) = 3 and v is incident to a (7, 3, 3)-face, then p3(v) ≤

1. [CR12]

(C8) Let v be a 8-vertex.

(C8.1) v is adjacent to at most six 2-vertices. [CR12]

(C8.2) If t(v) = 1, then n2(v) ≤ 5. [CR12]

(C9) Let f be a 3-face [xyz] with d(x) ≤ d(y) ≤ d(z).

14



3.1 Restrictions on a 1-vertex 3

(C9.1) d(x) 6= 2. [MRW07]

(C9.2) [xyz] does not satisfy d(x) = d(y) = 3 and d(z) ≤ 5. [MRW07]

(C9.3) [xyz] does not satisfy d(x) = 3 and d(y) = d(z) = 4. [MRW07]

(C10) There does not exist a 5-face [x1x2x3x4x5] such that d(x1) = 2, d(x3) = 3,

and d(x2) = 5. [MRW07]

The following section is a proof of Lemma 1 and will demonstrate how the

presence of these configurations would lead to a contradiction in the choice of

G as a minimum counterexample.

3.1 Restrictions on a 1-vertex

Proof. (C1) Suppose that there exists a 1-vertex v ∈ V (G) adjacent to the

vertices u, as in Figure 3.1.

v u

Figure 3.1: A 1-vertex in G.

By minimality of G, the graph G− {v} admits acyclically list 5-colouring

π. Extend this colouring of G− {v} to G by letting π(v) be a colour in L(v)

different than π(u). Now G is acyclically 5-choosable, which contradicts the

choice of G. Hence G does not contain a 1-vertex.

15



3.2 Restrictions on a 2-vertex 3

3.2 Restrictions on a 2-vertex

Proof. (C2) Suppose that there exists a 2-vertex v ∈ V (G) adjacent to the

vertices u and w with d(w) ≤ 4 as in Figure 3.2.

vu w

w1

w2

w3

Figure 3.2: A 2-vertex in G with a neighbour having degree ≤ 4.

Let w1, . . . , wk be the neighbours of w that are different from v, where

k ≤ 3. By minimality ofG, the graphG−{v} admits an acyclic list 5-colouring

π. Extend this colouring to G by considering the following:

If π(u) 6= π(w), colour v with a colour in L(v) different from π(u) and

π(w). Otherwise, π(u) = π(w). Colour v with a colour different from

π(w), π(w1), . . . , π(wk). Now G is acyclically 5-choosable, which contradicts

the choice of G. Hence G does not contain a 2-vertex adjacent to a 4−-

vertex.

Note that if a 2-vertex v where incident to a 3-face in the graph G, then

its two neighbours u and w would always have the property that π(u) 6= π(w),

since u is adjacent to w in G − v. Hence, there is always a proper acyclic

5-colouring if G regardless of the degrees of the neighbours of v. This

configuration will be examined in Condition (C9.1).

16



3.3 Restrictions on a 3-vertex 3

3.3 Restrictions on a 3-vertex

Proof. (C3.1) Suppose that v is adjacent to a 3-vertex v1, a vertex v2 of

degree at most 4, and a vertex v3 as in Figure 3.3.

vv3

v2

v1

w1

w2

w3

u1
u2

Figure 3.3: A 3-vertex v adjacent to a 3-vertex v1 and to a vertex v2 of degree
at most 4.

Let u1, u2 be the neighbours of v1 different from v, and w1, w2, . . . , wk, for

k ≤ 3, be the neighbours of v2 different from v. Note that by Condition (C2),

d(v2) 6= 2. Let π be an acyclic list 5-colouring of G − {v}. If v1, v2, v3

have pairwise distinct colours, then colour v with a colour different from

π(v1), π(v2), π(v3). If π(v1) = π(v2) 6= π(v3), colour v with a colour c ∈

L(v) \ {π(v1), π(v3), π(u1), π(u2)}. If π(v1) = π(v3) 6= π(v2), colour v with

a colour different from π(v1), π(v2), π(u1), π(u2). It remains to consider the

following two cases.

• Assume that π(v2) = π(v3) 6= π(v1). If there exists a colour c ∈

L(v)\{π(v1), π(v2), π(w1), . . . , π(wk)}, then colour v with c. Otherwise,

17



3.4 Restrictions on a pendant light 3-vertex 3

it follows that k = 3 and w1, w2, w3 have pairwise distinct colours.

Recolour v2 with a colour different from those of v2, w1, w2, w3 and

reduce to the previous case.

• Assume that π(v1) = π(v2) = π(v3). If either π(u1) 6= π(u2), or

π(w1), . . . , π(wk) are pairwise distinct, recolour v1 or v2 to reduce to

the previous case. So suppose that π(u1) = π(u2) and, without loss of

generality, assume π(w1) = π(w2). In this case, colour v with a colour

different from the colours assigned to v1, u1, w1, . . . , wk.

The resulting colouring is an acyclic list 5-colouring of G. This contradicts

the choice of G.

3.4 Restrictions on a pendant light 3-vertex

Proof. (C3.2)(C4) Let v be a pendant light 3-vertex of u, with f = [vv1v2]

being a 3-face. Suppose, for contradiction, that d(u) ≤ 4. Let u1, . . . , uk, k ≤ 3

be the neighbours of u different from v as in Figure 3.4. Note that by

Condition (C2), d(u) 6= 2.

uv
u1

u2

u3

v1

v2

Figure 3.4: A 4-vertex v adjacent to a pendant light 3-vertex u.

18



3.5 Restrictions on a 5-vertex 3

Then by the minimality of G, G− v admits an acyclic L-colouring π. If

v1, v2 and u are coloured with pairwise distinct colours, then colour v with

a colour different from the colours assigned to its neighbours. Otherwise,

by the symmetry, suppose π(v1) = π(u). Colour v with a colour c ∈ L(v) \

{π(v1), π(v2), π(u1), . . . , π(uk)}. If there is no such c, then k = 3, and L(v) =

{π(v1), π(v2), π(u1), π(u2), π(u3)}. If v cannot be acyclically coloured with

π(u1), π(u2) or π(u3), then recolour u with a colour cu different from π(u1),

π(u2), π(u3) and π(v1). If cu 6= π(v2) then colour v with a colour different

from the colours assigned to its neighbours. Otherwise, cu = π(v2). Then

properly acyclically colour v with one of π(u1), π(u2) or π(u3), as G − v is

planar and there does not exist a (π(ui), π(v2)-path from ui to v2 for some

1 ≤ i ≤ 3. The resulting colouring is an acyclic list 5-colouring of G. This

contradicts the choice of G.

3.5 Restrictions on a 5-vertex

Proof. (C5.1) Suppose that G contains a 5-vertex v adjacent to two 2-vertices

v1, v2 and other vertices v3, v4, v5 as in Figure 3.5

v
v1

v2v3

v4

v5 u1

u2

Figure 3.5: A 5-vertex v adjacent to two 2-vertices v1, v2.

19



3.5 Restrictions on a 5-vertex 3

For i = {1, 2}, let ui be the neighbour of vi different from v. By the

minimality ofG, G−v1 has an acyclic list 5-colouring π. If π(v) 6= π(u1), colour

v1 with a colour different from the colours assigned to v and u1. Otherwise, if v1

can not be coloured acyclically, suppose that π(v) = π(u1) = π(u2), and π(vi)

for i = 2, 3, 4, 5 are pairwise distinct colours. L(v) = {π(v), π(v2), . . . , π(v5)}

and there exists (π(v), π(vi))-paths from u1 to vi for i = 2, 3, 4, 5. If L(v) 6=

L(v1), recolour v with a colour in L(v) \ L(v1) and then give v1 a proper

colouring. If L(v) = L(v1), recolour v with π(v2), then colour v1 with π(v3)

and v2 with a colour different from the colours assigned to v, u2. The resulting

colouring is an acyclic list 5-colouring of G. This contradicts the choice of

G.

Proof. (C5.2) Suppose that G contains a 5-vertex v adjacent to a 2-vertex

v1 with neighbour of v and u1, a pendant light 3-vertex v2 which is incident a

3-face [v2xy], and other vertices v3, v4, v5 as in Figure 3.6.

v
v1

v2
v3

v4

v5 u1

x

y

Figure 3.6: A 5-vertex v adjacent to a 2-vertex and a pendant light 3-vertex.

Let π be an acyclic list 5-colouring of G−{v1}. If v1 cannot be acyclically

coloured by any of its assigned acceptable colours, assume that |L(v)| = 5,

π(v) = π(x) = π(u1) and π(vi) for i = 2, 3, 4, 5 are pairwise distinct colours.
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3.5 Restrictions on a 5-vertex 3

L(v) = {π(v), π(v2), . . . , π(v5)} and there exists (π(v), π(vi))-paths from u1

to vi for i = 2, 3, 4, 5. If L(v) 6= L(v1), recolour v with a colour in L(v) \L(v1)

and then give v1 a proper colouring. If L(v) = L(v1), recolour v with π(v2),

then colour v1 with π3 and v2 with a colour different from the colours assigned

to v, x, y. The resulting colouring is an acyclic list 5-colouring of G. This

contradicts the choice of G.

Proof. (C5.3) Let v1, v2, . . . , v5 be the neighbours of a 5-vertex v with d(v1) =

2 and N(v1) = v, u1. Assume that v is incident to a 3-face f = [vv2v3] such

that n3(f) ≥ 1. By Condition (C9.2), n3(f) = 1, say d(v2) = 3. Let x2 be

the neighbour of v2 different from v and v3 as in Figure 3.7.

v
v1

v2
v3

v4

v5 u1

x

Figure 3.7: A 5-vertex v adjacent to a 2-vertex v1 and a 3-face [vv2v3] with
d(v2) = 3.

By the minimality of G, G − {v1} has an acyclic list 5-colouring π. If

π(u1) 6= π(v),then let π(v1) = c1 ∈ L(v1) \ {π(u1), π(v)}. Otherwise, π(u1) =

π(v). If there does not exist a colour c1 ∈ L(v1) which acyclically colours

G properly, then it is the case that π(v) = π(u1) = π(x2). If L(v) 6= L(v1),

recolour v with a colour in L(v) \ L(v1) and then v1 is properly coloured. If

L(v) = L(v1), recolour v with π(v2) and colour v1 with π(v3), then recolour
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3.5 Restrictions on a 5-vertex 3

v2 with a colour different from π(x2), π(v) and π(v3). The resulting colouring

is an acyclic list 5-colouring of G. This contradicts the choice of G.

Proof. (C5.4) Assume to the contrary that p3(v) ≥ 4 so that v1, . . . , v4 are

pendant light 3-vertices of v and v5 is the other neighbour of v with d(v5) ≥ 3.

Let xi, yi be the neighbours of vi, different from v, for i ≤ 4 as in Figure 3.8.

v v1
x1

y1
v2

x2
y2

v3

x3

y3

v4

x4

y4
v5

Figure 3.8: A 5-vertex v adjacent to a at least four pendant light 3-vertices
v1, v2, v3, v4.

By the minimality ofG,G−{v, v1, . . . , v4} admits an acyclic list 5-colouring

π. Notice that π(xi) 6= π(yi) for all 1 ≤ i ≤ 4 since xi and yi are adjacent.

Let S = {x1, y1, . . . , x4, y4}. Since |L(v) \ {π(v5)}| ≥ 4 and |S| = 8, then

there exists a colour c ∈ L(v) \ {π(v5)} which appears at most twice on

the set S, say π(x1) = π(x2) = c. Then, colour v with c, v1 with c1 ∈

L(v1) \ {c, π(v5), π(y1)}, v2 with c2 ∈ L(v2) \ {c, c1, π(v5), π(y2)}, and vi with

a colour different from c, π(xi), π(yi) for i = 3, 4. The resulting colouring is

an acyclic list 5-colouring of G. This contradicts the choice of G.
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3.5 Restrictions on a 5-vertex 3

Proof. (C5.5) Let v1, v2, v3, v4, v5 be neighbours of a 5-vertex v in clockwise

order. Assume to the contrary that [vv1v2] is a 3-face and v3, v4, v5 are pendant

light 3-vertices of v. Let x3, y3, x4, y4, x5, y5 be, respectively, neighbours of

v3, v4, v5 different from v as in Figure 3.9.

v
v2

v3

x3
y3

v4

x4

y4

v5

x5

y5
v1

Figure 3.9: A 5-vertex v adjacent to at least three pendant light 3-vertices
v1, v2, v3, v4.

Let G′ = G − {v, v3, v4, v5}. By the minimality of G, G′ admits an

acyclic list 5-colouring π. Notice that, π(v1) 6= π(v2) and π(xi) 6= π(yi) for

each i ∈ {3, 4, 5}. Let S = {x3, x4, x5, y3, y4, y5}. Notice also that |L(v) \

{π(v1), π(v2)}| ≥ 3 and |S| = 6. Then there exists a colour in L(v) \

{π(v1), π(v2)} appearing at most twice on the set S. Consider two cases:

1. If there exists a colour c ∈ L(v) \ {π(v1), π(v2)} which appears at most

once on the set S, then assume, without loss of generality, that π(x3) = c.

Let π(v) = c, v3 with c3 ∈ L(v3) \ {c, π(v1), π(v2), π(y3)}, and finally

colour vi with a colour different from c, π(xi), π(yi) for i = 4, 5.
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3.5 Restrictions on a 5-vertex 3

2. Otherwise, each colour in L(v) \ {π(v1), π(v2)} appears exactly twice on

the set S. Without loss of generality, assume that π(x3) = π(x5), π(y4) =

π(y5) and π(y3) = π(x4).

• If there is no alternating (π(y3), π(v1))-path in G′ connecting y3

and v1, then colour v with π(y3), v4 with a ∈ L(v4) \ {π(v1), π(v2),

π(y4), π(y3)}, v3 with b ∈ L(v3)\{π(v2), π(x3), π(y3), a}, and finally

colour v5 with a colour distinct from π(x3), π(y4), π(y3).

• If there is no alternating (π(y5), π(v2))-path in G′ connecting y5

and v2, then colour v with π(y5), v4 with c ∈ L(v4) \ {π(v1), π(v2),

π(y4), π(y3)}, v5 with d ∈ L(v5) \ {π(v1), π(x3), π(y4)c}, and finally

colour v3 with a colour distinct from π(x3), π(y4), π(y3).

Since there cannot be both an alternating (π(y3), π(v1))-path connecting y3

and v1, and an alternating (π(y5), π(v2))-path connecting y5 and v2 due to the

planarity of G, then the colouring of G′ can be extended to G. The resulting

colouring is an acyclic list 5-colouring of G. This contradicts the choice of

G.

Proof. (C5.6) Let v1, v2, v3, v4, v5 be neighbours of a 5-vertex v in clockwise

order. Assume that [vv1v2] is an incident (5, 3, 4)-face of v, with d(v1) = 3,

d(v2) = 4 and v3, v4 are pendant light 3-vertices of v. Let u be the neighbour

of v1 different from v and v2, and let x2 and y2 be the neighbour of v2

different from v and v1 and let x3, y3, x4, y4 be, respectively, neighbours of

v3, v4 different from v as in Figure 3.10.
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3.5 Restrictions on a 5-vertex 3

v
v2

u

x2

y2
v3

x3
y3

v4

x4

y4

v5

v1

Figure 3.10: A 5-vertex v adjacent to a (3, 4, 5)-face and two pendant light
3-vertices.

Let G′ = G−{v, v1, v3, v4}. By the minimality of G, G′ admits an acyclic

list 5-colouring π . Let S = {u, x3, y3, x4, y4}, and consider the following two

cases:

1. If π(v2) 6= π(v5), then since |L(v) \ {π(v2), π(v5)}| ≥ 3 and |S| = 5,

there exists a colour c ∈ L(v) \ {π(v2), π(v5)} which appears at most

once on the set S. Let π(v) = c. If π(u) = c, then let π(v1) = c1 ∈

L(v1) \ {π(v2), π(v5), c}, and then colour vi with a colour different from

c, π(xi), π(yi) for i = {3, 4}. Otherwise assume, without loss of gener-

ality, that π(x3) = c. Let π(v3) = c3 ∈ L(v3) \ {c, π(v2), π(v5), π(y3)},

colour v4 with a colour different from c, π(x4), π(y4), then colour v1 as

follows:

• If π(u) 6= π(v2), colour v1 different from c, π(u) and π(v2).

• If π(u) = π(v2), colour v1 different from c, π(v2), π(x2) and π(y2).
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3.5 Restrictions on a 5-vertex 3

2. If π(v2) = π(v5), consider the following:

• If π(x2) = π(y2), then there exists a colour in L(v) \ {π(v2), π(x2)}

which appears at most once on the set S. Then the proof can also

be given with a similar argument to the previous case.

• Otherwise, x2 6= y2. Recolour v2 with a colour different from

π(v2), π(x2), π(y2) and then reduce the proof to the former case.

The resulting colouring is an acyclic list 5-colouring of G. This contradicts

the choice of G.

Proof. (C5.7) Let v1, v2, v3, v4, v5 be neighbours of a 5-vertex v in clockwise

order. Assume to the contrary that [vv1v2] is a (5, 3, 5+)-face with d(v1) = 3

and d(v2) ≥ 5. Let v3, v4 be pendant light 3−vertices of v and let v5 be

a 3−vertex. Let u be the neighbour of v1 different from v and v2 and let

N(vi) = {v, xi, yi} for i = 3, 4, 5 as in Figure 3.11.

Consider the graph G−{v, v3, v4}. By the minimality of G, G−{v, v3, v4}

admits an acyclic L− colouring π. Let S = {x3, y3, x4, y4}, α = |{π(x3), π(y3),

π(x4), π(y4)}|, and consider the following three cases.

• If π(v1), π(v2), π(v5) are pairwise distinct colours, then consider the

following:

� If there exists a colour c ∈ L(v)\{π(v1), π(v2), π(v5)} which appears

at most once on the set S, say π(x3) = c, then let π(v) = c and
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3.5 Restrictions on a 5-vertex 3

v
v2

u

v3

x3
y3

v4

x4

y4

v5

x5

y5 v1

Figure 3.11: A 5-vertex v adjacent to a (3, 4, 5)-face and two pendant light
3-vertices.

π(v4) = c4 ∈ L(v4) \ {c, π(x4), π(y4)}. Then let π(v3) = c3 ∈

L(v3) \ {c, π(y3), π(v1), π(v2), π(v5)}.

If there is no such colour c3, then L(v3) = {c, π(y3), π(v1), π(v2),

π(v5)}. If v3 cannot be acyclically coloured, then π(u) = c. So,

let π(v3) = π(v1) and recolour v1 with c1 ∈ L(v1) \ {c, π(v2), π(v3),

π(v5)}.

� Now assume, that all colours in L(v) \ {π(v1), π(v2), π(v5)} each

appear twice in S, so assume without loss of generality that π(x3) =

π(x4) and π(y3) = π(y4). If π(u) 6= π(v2), then colour v with pi(v1),

recolour a ∈ L(v1) \ {π(v1), π(v2), π(v5), π(u)}, and colour vi with

a colour distinct from π(v), π(x3), π(y3) for i = {3, 4}.

Otherwise, suppose that π(u) = π(v2). If π(x5) = π(y5), then

let π(v) = b ∈ L(v) \ {π(x3), π(y3), π(x5)}, π(v3) = c ∈ L(v3) \

{π(v2), π(x3), π(y3)} and π(v4) = d ∈ L(v4) \ {π(v2), π(x3), π(y3)}.
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3.5 Restrictions on a 5-vertex 3

If π(x5) 6= π(y5), colour v with π(v5), then recolour v5 with a

colour different from π(v2), π(v5), π(x5), π(y5), and give a proper

colouring for v3 and v4.

• Assume that π(v5) = π(v1) 6= π(v2). If π(u) 6= π(v2), recolour v1 with a

colour different from π(v1), π(v2), π(u) and then colour the other vertices

as in the previous case where π(v1), π(v2), π(v5) are pairwise distinct

colours. Now suppose that π(u) = π(v2). There exists a colour c ∈ L(v)\

{π(v1), π(v2)} which appears at most once on the set S, say π(x3) = c.

Colour v with c, v3 with a colour in L(v3) \ {π(v1), π(v2), c, π(y3)}, and

v4 with a colour different from c, π(x4), π(y4).

• Assume that π(v5) = π(v2) 6= π(v1). If π(x5) 6= π(y5), then recolour v5

with a colour different from π(v5), π(v2), π(x5), π(y5) and thus reduce

the proof to the previous case where π(v1), π(v2), π(v5) are pairwise

distinct colours. Suppose now that π(x5) = π(y5). If there exists

a colour c ∈ L(v) \ {π(v5), π(v1), π(x5)} appearing at most once on

the set S, say π(x3) = c, then let π(v) = c, v3 with a colour dis-

tinct from π(v1), π(v5), c, π(y3), and colour v4 with a colour different

from c, π(x4), π(y4). Otherwise, assume, without loss of generality

that L(v) = {1, 2, π(x5), 4, 5} and that π(v5) = π(v2) = 1, π(v1) =

2, π(x3) = π(x4) = 4 and π(y3) = π(y4) = 5. If π(u) 6= 1, recolour

v1 with a ∈ L(v1) \ {1, 2, π(u)} and then reduce the proof to the pre-

vious case. Otherwise, π(u) = 1. Colour v with 4, v3 with a colour
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3.6 Restrictions on a 6-vertex 3

b ∈ L(v3) \ {1, 4, 5} and v4 with a colour in L(v4) \ {1, 4, 5, b}.

The resulting colouring is an acyclic list 5-colouring of G. This contradicts

the choice of G.

3.6 Restrictions on a 6-vertex

Proof. (C6.1) Suppose that G contains a 6-vertex v adjacent to five 2-vertices

v1, . . . , v5 and a vertex v6 as in Figure 3.12.

v v1

v2v3
v4

v5
v6

u1

u2u3

u4

u5

Figure 3.12: A 6-vertex adjacent to five 2-vertices.

Let ui be the neighbour of vi different from v for i = 1, 2, . . . , 5. Let π be

an acyclic list 5-colouring of G− {v, v1, . . . , v5}. Then there exists q colour

c ∈ L(v) \ {π(v6)} which appears at most once on the vertices u1, u2, . . . , u5.

Without loss of generality, suppose that c appears on u1. Colour v with c, v1

with a colour different from u1, v, v6, and for each i = 2, 3, 4, 5 and colour vi

with a colour different v and ui. The resulting colouring is an acyclic list

5-colouring of G. This contradicts the choice of G.
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3.6 Restrictions on a 6-vertex 3

Proof. (C6.2) Suppose that G contains a 6-vertex v adjacent to four 2-

vertices v1, v2, v3, v4, a 3-vertex v5, and a vertex v6 as in Figure 3.13. Let

v v1

v2v3
v4

v5
v6

u1

u2u3

u4

w1

w2

Figure 3.13: A 6-vertex adjacent to four 2-vertices and a 3-vertex.

ui be the neighbour of vi different from v for i = 1, 2, 3, 4, and let w1, w2

be the neighbours of v5 different from v. Suppose that π is an acyclic list

5-colouring of G − {v, v1, v2, v3, v4}. If π(v5) 6= π(v6), then there exists a

colour c ∈ L(v) \ {π(v5), π(v6)} which appears at most once on the vertices

u1, u2, u3, u4. Suppose that c appears on u1 possibly. Colour v with c, v1

with a colour different from the colours assigned to c, v5, v6, and vi with

a colour different from c, π(ui) for i = 2, 3, 4. If π(v5) = π(v6), then if

π(w1) 6= π(w2), recolour v5 with a colour different from the colours assigned

to w1, w2, v6, and then reduce the proof to the previous case. Suppose then

that π(w1) = π(w2). Again, there exists a colour c ∈ L(v) \ {π(v5), π(w1)}

which appears at most once on the vertices u1, u2, u3, u4. Without loss of

generality, suppose π(u1) = c. Colour v with c, v1 with a colour different from
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3.6 Restrictions on a 6-vertex 3

the colours assigned to v, u1, v5, w1, and vi with a colour different from the

colours assigned to v, ui for i = 2, 3, 4. The resulting colouring is an acyclic

list 5-colouring of G. This contradicts the choice of G.

Proof. (C6.3) Assume to the contrary that v1, v2, v3, v4 are 2-vertices and

[vv5v6] is a 3-face as in Figure 3.13.

v v1

v2v3
v4

v5
v6

u1

u2u3

u4

Figure 3.14: A 6-vertex adjacent to four 2-vertices and incident a 3-face.

Let π be an acyclic list 5-colouring of G − {v, v1, v2, v3, v4}. Obviously,

π(v5) 6= π(v6). There exists a colour c ∈ L(v) \ {π(v5), π(v6)} appearing at

most once on u1, u2, u3, u4. Suppose that c appears on u1 possibly. Colour

v with c, v1 with a colour different from the colours assigned to v, u1, v5, v6,

and vi with a colour different from the colours assigned to v, ui for i = 2, 3, 4.

The resulting colouring is an acyclic list 5-colouring of G. This contradicts

the choice of G.

Proof. (C6.5) Assume to the contrary that [vv1v2] is an incident 3-face,

v3, v4, v5 are 2-vertices and v6 is an pendant light 3-vertex of v as in Figure 3.15.

Let u1, u2, u3 be neighbours of v1, v2, v3 different from v, let [v4vv5] be a 3-face
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v
v1

v2v3

v4
v5 v6

u3

u4

u5
x6

y6

Figure 3.15: A 6-vertex with n2(v) = 3, t(v) = 1 and p3(v) = 1

and let x6, y6 be neighbours of v6 different from v.

By minimality, G − {v, v3, v4, v5, v6} has an acyclic 5-colouring π. Let

S = {u3, u4, u5, x6, y6}. Since |L(v) \ {π(v1), π(v2)}| ≥ 3 and |S| = 5, there

exists a colour c ∈ L(v) \ {π(v1), π(v2)} appearing at most once on the set S.

First colour v with c and in order to colour the remaining uncoloured vertices,

without loss of generality, consider the following two cases.

• If π(u3) = c then colour vi with a colour different from c, π(v1), π(v2), π(ui)

for i = 3, 4, 5, and v6 with a colour different from c, π(x6), π(y6).

• If π(x6) = c, then colour vi with a colour different from c, π(ui) for

i = 3, 4, 5, and v6 with a colour different from c, π(v1), π(v2), π(y6).

Proof. (C6.5) Suppose to the contrary that v1, v2 are 2-vertices and v3, v4, v5

are pendant light 3-vertices of v as in Figure 3.16.
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v v1

v2v3
v4

v5
v6

u1

u2x3
y3

x4

y4

x5
y5

Figure 3.16: A 6-vertex adjacent to two 2-vertices and three pendant light
3-vertices.

By the minimality ofG,G−{v, v1, v2, . . . , v5} has an acyclic list 5-colouring

π. It is obvious that π(xi) 6= π(yi) for all i = 3, 4, 5. Let S = {u1, u2, x3, y3,

x4, y4, x5, y5}. Since |L(v) \ {π(v6)}| ≥ 4 and |S| = 8, there exists a colour

belonging to L(v)\{π(v6)} appearing at most twice on the set S. First assume

that there exists a colour c ∈ L(v) \ {π(v6)} which appears at most once

on the set S. Colour v with c, vi with a colour different from c, π(v6), π(ui)

for i = 1, 2, and vj with a colour different from c, π(v6), π(xj), π(yj) for

j = 3, 4, 5. Now assume, without loss of generality, that L(v) = {1, 2, 3, 4, 5},

π(v6) = 1, and each colour belonging to {2, 3, 4, 5} appears exactly twice

on the set S. One can easily observe that there exist two vertices x and y,

where x, y ∈ S \ {u1, u2}, such that π(x) = π(y). Without loss of generality,

assume that π(x3) = π(x44 = 2. Colour v with 2, v3 with a colour a ∈

L(v3) \ {1, 2, π(y3)}, v4 with a colour b ∈ L(v4) \ {1, 2, a, π(y4)}, vi with a

colour different from 2, π(ui) for i = 1, 2, and finally colour v6 with a colour

different from 2, π(x6), π(y6).
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3.6 Restrictions on a 6-vertex 3

Proof. (C6.6) Assume to the contrary that [vv1v2] is a incident 3-face, v3, v4

are 2-vertices and v5, v6 are pendant light 3-vertices of vas in Figure 3.17.

v v1

v2v3
v4

v5
v6

u3

u4

x5
y5 x6

y6

Figure 3.17: A 6-vertex adjacent to two 2-vertices, two pendant light 3-vertices
and incident a 3-face.

By the minimality of G,G − {v, v3, v4, v5, v6} admits an acyclic list 5-

colouring π. Let S = {u3, u4, x5, y5, x6, y6}. It is easy to observe that

|L(v) \ {π(v1), π(v2)}| ≥ 3 and |S| = 6. Based on this fact, there exists a

colour belonging to L(v) \ {π(v1), π(v2)} appearing at most twice on the set

S. First assume that there exists a colour c ∈ L(v) \ {π(v1), π(v2)} appearing

at most once on the set S. By symmetry, colour v with c. Then colour the

remaining uncoloured vertices in the following way: If π(u3) = c, colour v3

with a colour different from c, π(v1), π(v2), and then assign vi with a colour

different from the colours assigned to that of its neighbours for i = 4, 5, 6. If

π(x5) = c, colour v5 with a colour different from c, π(v1), π(v2), π(y5), and

then assign vj with a colour different from the colours assigned to that of its

neighbours for j = 3, 4, 6. Now, assume that L(v) = {1, 2, 3, 4, 5}, π(v1) =

1, π(v2) = 2 and each colour in {3, 4, 5} appears exactly twice on the set S. If
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3.6 Restrictions on a 6-vertex 3

π(u3) = π(u4), say π(u3) = π(u4) = 3, then colour v with 3, v3 with a colour

a ∈ L(v3) \ {1, 2, 3}, v4 with a colour b ∈ L(v4) \ {1, 2, 3, a}, and finally colour

vi with a colour distinct from 3, π(xi), π(yi) for i = 5, 6. Otherwise, without

loss of generality, suppose that π(u3) = π(x5) = 3. Then colour v with 3, v5

with c ∈ L(v5) \ {1, 2, 3, π(y5)}, v3 with d ∈ L(v3) \ {1, 2, 3, c}, and finally

assign a proper colouring for v4 and v6 easily.

Proof. (C6.7) Assume to the contrary that [vv1v2] is a (6, 3, 3)-face, i.e.

d(v1) = d(v2) = 3, and v3, v4, v5 are pendant light 3-vertices of v as in Fig-

ure 3.18. Let N(v1) = {u1, v2, v} and N(v2) = {u2, v1, v}. By the minimality

v v1

v2v3
v4

v5
v6

u1

u2x3
y3

x4

y4

x5
y5

Figure 3.18: A 6-vertex adjacent to three pendant light 3-vertices and incident
a (3, 3, 6)-face.

of G,G − {v, v1, v2, . . . , v5} has an acyclic list 5-colouring π. Notice that

π(xi) 6= π(yi) for each i ∈ {3, 4, 5}. Let S = {u1, u2, x3, y3, x4, y4, x5, y5}.

Since |L(v) \ {π(v6)}| ≥ 4 and |S| = 8, there exists a colour belonging to

L(v)\{π(v6)} appearing at most twice on the set S. If there exists a colour in

L(v) \ {π(v6)} appearing at most once on S, the proof can also be given with
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3.6 Restrictions on a 6-vertex 3

a similar argument to the previous lemma ??. Now assume, without loss of

generality, that L(v) = {1, 2, 3, 4, 5}, π(v6) = 1, and each colour in {2, 3, 4, 5}

appears exactly twice on the set S. It is easy to see that there exist two vertices

x, y ∈ {x3, y3, x4, y4x5, y5} having the same colour, set π(x3) = π(x4) = 2.

Colour v with 2, v1 with a colour a different from 2, π(u1), π(u2), v2 with a

colour different from a, 2, π(u2), v3 with a colour b ∈ L(v3) \ {1, 2, π(y3)}, v4

with a colour c ∈ L(v4) \ {1, 2, b, π(y4)}, and finally assign a proper colouring

for v5.

Proof. (C6.8) Suppose that [vv1v2] is (6, 3, 4)-face such that d(v1) = 3 and

d(v2) = 4. Let N(v1) = {u1, v2, v} and N(v2) = {x2, y2, v1, v}. Assume

to the contrary that v3 is a 2-vertex with a neighbour u3 different from

v and v4, v5, v6 are pendant light 3-vertices of vas in Figure 3.19. By the

v v1

v2v3
v4

v5
v6

u1

x2
y2

u3

x4

y4

x5
y5 x6

y6

Figure 3.19: A 6-vertex adjacent to two 2-vertices and incident a (3, 4, 6)-face.

minimality of G,G − {v, v1, v3, v4, v5, v6} admits an acyclic list 5-colouring

π. Let S = {u1, u3, x4, y4, x5, y5, x6, y6}. It is easy to see that there exists a

colour belonging to L(v)\{π(v2)} appearing at most twice on the set S, since
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3.7 Restrictions on a 7-vertex 3

|L(v) \ {π(v2)}| ≥ 4 and |S| = 8. Consider the following two cases. First

assume that there exists a colour c ∈ L(v) \ {π(v2)} which appears at most

once on the set S. Colour v with c first, then colour v3 with a colour different

from c, π(u3), π(v2), and vi with a colour different from c, π(v2), π(xi), π(yi)

for i = 4, 5, 6. Then colour v1 in the following way: If π(u1) = π(v2), then

assign v1 a colour in L(v1) \ {c, π(v2), π(x2),

pi(y2)}. Otherwise, assign a colour in L(v1) \ {c, π(v2), π(u1)} to v1.

Now assume, without loss of generality., that L(v) = {1, 2, 3, 4, 5}, π(v2) =

1, and each colour in {2, 3, 4, 5} appears exactly twice on the set S. Then

there exist two vertices x and y belonging to {x4, y4, x5, y5, x6, y6} having the

same colour. Without loss of generality., assume that π(x4) = π(x5) = 2.

First colour v with 2, v3 with a colour different from 2, π(u3), v4 with a colour

a ∈ L(v4) \ {1, 2, π(y4)}, v5 with a colour b ∈ L(v5) \ {1, 2, a, π(y5)}, v6 with a

colour different from 2, π(x6), π(y6), and finally colour v1 in the following way:

If π(u1) = π(v2) = 1, then assign v1 with a colour in L(v1)\{1, 2, π(x2), π(y2)}.

Otherwise, assign a colour in L(v1) \ {1, 2, π(u1)} to v1.

3.7 Restrictions on a 7-vertex

Proof. (C7.1) Suppose that G contains a 7-vertex v adjacent to six 2-vertices

v1, . . . , v6 and one other vertex v7 as in Figure 3.20

Let G′ = G − {v, vi} for 1 ≤ i ≤ 6. Then G′ admits an acyclic list

5-colouring π by the minimality of G. There exists a colour c ∈ L(v)\{π(v7)}
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3.7 Restrictions on a 7-vertex 3

v v1

v2v3

v4

v5

v6 v7

u1

u2
u3

u4

u5

u6

Figure 3.20: A 7-vertex adjacent to six 2-vertices

which appears at most once in ui for 1 ≤ i ≤ 6, so let π(v) = c. Assuming

π(u1) = c, let π(vi) = ci ∈ L(vi) \ {c, π(ui)} for 2 ≤ i ≤ 6 and let π(v1) =

c1 ∈ L(v1) \ {c, π(v7)}.

Proof. (C7.2) Assume to the contrary that the neighbours of v have de-

grees as follows: v1, v2, v3, v4 are 2-vertices and v5, v6, v7 are 3-vertices. Let

u1, u2, u3, u4 be, respectively, the neighbours of v1, v2, v3, v4 that are different

from v. Let x5, y5, x6, y6, x7, y7 be, respectively, the neighbours of v5, v6, v7

that are different from v as in Figure 3.21.

By the minimality of G,G′ = G − {v, v1, v2, v3, v4} has an acyclic list

5-colouring π. Let α = |{π(v5), π(v6), π(v7)}| and let S = {u1, u2, u3, u4}.

Consider the following possibilities:

1. α = 3. If there exists a colour c ∈ L(v) \ {π(v5), π(v6), π(v7)} ap-

pearing at most once on S, say π(u1) = c, then colour v with c, let

π(v1) = c1 ∈ L(v1) \ {c, π(v5), π(v6), π(v7)} and colour vi with a colour
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3.7 Restrictions on a 7-vertex 3

v v1

v2v3

v4
v5

v6 v7

u1

u2
u3

u4

x5

y5

x6
y6 x7

y7

Figure 3.21: A 7-vertex adjacent to four 2-vertices and three 3-vertices.

different from c and π(ui) for i = 2, 3, 4.

Otherwise, colours c and c′ each appear twice in the colouring of

S, so assume that π(v1) = π(v2) = c. If L(v1) 6= L(v2), then let

π(v) = c, let π(v1) = c1 ∈ L(v1) \ {c, π(v5), π(v6), π(v7)} and let

π(v2) = c2 ∈ L(v2) \ {c, c1, π(v5), π(v6), π(v7)}. Finally colour v3 and

v4 differently from there respective neighbours. If L(v1) = L(v2) and

a proper acyclic list 5-colouring G′ cannot be extended to G when

π(v) = c, then |L(v1) − {c, π(v5), π(v6), π(v7)}| = 1 and there ex-

ists a (c, π(vj))-path from ui to v for i = 1, 2 and j = 5, 6, 7. Then

colour v with c′, v1 and v2 with a colour different from c and c′,then

let π(v3) = c3 ∈ L(v3) \ {c′, π(v5), π(v6), π(v7)} and π(v4) = c4 ∈

L(v4) \ {c′, c3, π(v5), π(v6), π(v7)}. If there is no such c4, then colour v4

with one of π(v5), π(v6), π(v7) as there does not exist a (c′, π(vj))-path

from u4 to v for some j = 5, 6, 7 because G is planar.

2. α = 2. Without loss of generality, assume that π(v5) = π(v6). If
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3.7 Restrictions on a 7-vertex 3

π(x5) 6= π(y5) or π(x6) 6= π(y6), recolour v5 or v6 to reduce to the

previous case (1). Thus, suppose π(x5) = π(y5) and π(x6) = π(y6).

There exists a colour c ∈ L(v) \ {π(v5), π(v7), π(x5)} appearing at

most twice on S, say π(u1) = π(u2) = c. Colour v with c, v1 with a

colour c1 different from {c, π(v5), π(v7)}, v2 with a colour different from

{c, c1, π(v5), π(v7)}, and give a proper colouring for v3 and v4.

3. α = 1. If there exists j ∈ {5, 6, 7} such that π(xj) 6= π(yj), then recolour

vj to reduce to the former case (2).

Otherwise, π(xj) = π(yj) for all j ∈ {5, 6, 7}. There exists a colour c ∈

L(v) \ {π(v5), π(x5), π(x6)} appearing at most twice on S, say π(u1) =

π(u2) = c. Colour v with c, v1 with a colour in L(v1) \ {π(v5), c}, v2

with a colour different from {π(v5), c, π(v1)}, then properly colour v3

and v4.

The resulting colouring is an acyclic L−colouring of G. This contradicts the

choice of G.

Proof. (C7.3) Let v be a 7-vertex with neighbours v1, . . . , v7 such that

v1, . . . , v5 are 2-vertices having neighbours u1, . . . , u5 different from v as in

Figure 3.22. By the minimality of G,G′ = G − {v, v1, v2, v3, v4, v5} has an

acyclic list 5-colouring π. Consider the following two cases:

1. Assume for contradiction that f = [vv6v7] is a 3-face in G. Then

there exists a colour c ∈ L(v) \ {π(v6), π(v7)} which appears at most

once in the colouring of u1, . . . , u5, say π(u1) = c. Let π(v) = c, let
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3.7 Restrictions on a 7-vertex 3

v v1

v2v3

v4
v5

v6 v7

u1

u2
u3

u4

u5

x6
y6

Figure 3.22: A 7-vertex adjacent to five 2-vertices and a 3-vertex or incident
a 3-face (v6 is gray as it is either a 3-vertex or incident to a 3-face).

π(v1) = c1 ∈ L(v1) \ {c, π(v6), π(v7)} and give a proper colouring to vi

which is different from c and π(ui) for i = 2, 3, 4, 5.

2. Assume for contradiction that d(v6) = 3. If π(v6) 6= π(v7), then the

colouring of v, v1, v2, v3, v4, v5 is as in case (1), so assume π(v6) =

π(v7). If the neighbours, x6, y6 of π(v6) different from v are not as-

signed the same colour; i.e., π(x6) 6= π(y6), then recolour π(v6) with

a colour in L(v6) which is different from π(v6), π(x6), π(y6) and colour

v, v1, v2, v3, v4, v5 as in case (1). Assume then that π(x6) = π(y6).

There exists a colour c ∈ L(v) \ {π(v6), π(x6)} which appears at most

once in the colouring of u1, . . . , u5, say π(u1) = c. Let π(v) = c, let

π(v1) = c1 ∈ L(v1) \ {c, π(v6)} and give a proper colouring to vi which

is different from c and π(ui) for i = 2, 3, 4, 5.

The resulting colouring is an acyclic L−colouring of G. This contradicts the

choice of G.
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3.7 Restrictions on a 7-vertex 3

Proof. (C7.4) Suppose to the contrary that v1, . . . , v4 are 2-vertices, [vv5v6]

is a 3-face, and v7 is a pendant light 3-vertex of v as in Figure 3.23. By

the minimality of G, G′ = G − {v, v1, v2, v3, v4, v7} admits an acyclic list 5-

colouring π. Let S = {u1, u2, u3, u4, x7, y7}, the neighbours of v1, v2, v3, v4, v7

respectively.

v v1

v2v3

v4

v5

v6 v7

u1

u2
u3

u4

x7
y7

Figure 3.23: A 7-vertex adjacent to four 2-vertices a pendant light 3-vertex
and a 3-face.

Obviously, |L(v) \ {π(v5), π(v6)}| ≥ 3 and |S| = 6. This fact implies

that there exists a colour c belonging to L(v) \ {π(v5), π(v6)} appearing at

most twice on the set S. If c appears at most once on the set S, then

let π(v) = c, colour vi different from c, π(v5), π(v6) (and, without loss of

generality, π(y7) if π(x7) = c), and colour the remaining vertices the set

{v1, v2, v3, v4, v7} which have not yet been coloured. If c appears exactly twice

in S, say π(vi) = π(vj) = c for (i 6= j) ∈ {1, 2, 3, 4, 7}, let π(v) = c, let

π(vi) = ci ∈ L(vi) \ {c, π(v5), π(v6) (and, without loss of generality, π(y7)

if π(x7) = c), let π(vj) = cj ∈ L(vj) \ {c, ci, π(v5), π(v6), and colour the

remaining vertices the set {v1, v2, v3, v4, v7} which have not yet been coloured.
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3.7 Restrictions on a 7-vertex 3

The resulting colouring is an acyclic list 5-colouring of G. This contradicts

the choice of G.

Proof. (C7.5) Suppose to the contrary that [vv1v2] is a (7, 3, 3)-face such

that d(v1) = d(v2) = 3, v3, v4, v5 are 2-vertices and v6, v7 are pendant

light 3-vertices of v. By the minimality of G,G′ = G − {v, v1, . . . , v7} ad-

mits an acyclic list 5-colouring π. Let N(v1) = (u1, v, v2) and N(v2) =

(u2, v, v1). Let u3, u4, u5 be, respectively, the neighbours of v3, v4, v5. Let

S = {u1, u2, u3, u4, u5, x6, y6, x7, y7} where x6, y6, x7, y7 are the neighbours of

v6 and v7 different from v as in Figure 3.24.

v v1

v2v3

v4

v5

v6 v7

u1

u2
u3

u4

u5

x6

y6

x7
y7

Figure 3.24: A 7-vertex adjacent to three 2-vertices, two pendant light 3-vertex
and a (7, 3, 3)-face.

Since |S| = 9 and |L(v)| = 5, then there exists a colour c ∈ L(v) which

appears at most once on the set S. The colouring of G′ can be extended

in the following way: colour v with c, v1 with a colour c1 ∈ L(v1) different

from c, π(u1) and π(u2), v2 with a colour c2 ∈ L(v2) different from c, c1, π(u1)
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3.8 Restrictions on a 8-vertex 3

and π(u2), vi with a colour different from c and π(ui) for i = 3, 4, 5, and vj

with a colour different from the colours assigned to c, xj and yj for j = 6, 7.

The resulting colouring is an acyclic L−colouring of G. This contradicts the

choice of G.

3.8 Restrictions on a 8-vertex

Proof. (C8.1) Suppose that G contains an 8-vertex v adjacent to seven

2-vertices

v1, v2, v3, v4, v5, v6, v7 and one other vertex v8 as in Figure 3.25.

v
v1

v2

v3

v4
v5

v6

v7
v8

u1

u2
u3

u4

u5

u6

u7

Figure 3.25: An 8-vertex adjacent to seven 2-vertices

Let G′ = G − {v, vi} for 1 ≤ i ≤ 7. Then G′ admits an acyclic list

5-colouring π by the minimality of G. There exists a colour c ∈ L(v)\{π(v8)}

which appears at most once in ui for 1 ≤ i ≤ 7, so let π(v) = c. Assuming

π(u1) = c, let π(vi) = ci ∈ L(vi) \ {c, π(ui)} for 2 ≤ i ≤ 7 and let π(v1) =

c1 ∈ L(v1) \ {c, π(v8)}. The resulting colouring is an acyclic L−colouring of
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3.8 Restrictions on a 8-vertex 3

G. This contradicts the choice of G.

Proof. (C8.2) Assume to the contrary that v1, v2, v3, v4, v5, v6 are 2-vertices

with neighbours u1, u2, u3, u4, u5, u6 different from v and let [vv7v8] be a 3-face

as in Figure 3.26. Note that by (C9.1), no 2-vertex is contained in a 3-face.

v
v1

v2

v3

v4
v5

v6

v7
v8

u1

u2
u3

u4

u5

u6

Figure 3.26: An 8-vertex adjacent to six 2-vertices and incident to a 3-face

Let π be an acyclic list 5-colouring of G − {v, v1, . . . , v6}. Obviously,

π(v7) 6= π(v8). Let S = {u1, u2, u3, u4, u5, u6}. Then there exists a colour

c ∈ L(v) \ {π(v7), π(v8)} appearing at most twice on the set S, say π(u1) =

π(u2) = c. Then colour v with c, colour v1 with a colour c1 different from

{c, π(v7), π(v8)} and colour v2 with a colour c2 different from {c, c1, π(v7), π(v8)}.

Finally colour vi with a colour different from {c, π(ui)} for i = 3, 4, 5, 6. The

resulting colouring is an acyclic L−colouring of G. This contradicts the choice

of G.
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3.9 Restrictions on a 3-face 3

3.9 Restrictions on a 3-face

Proof. (C9.1) Let f = [xyz] be a 3-face and assume for contradiction that

d(x) = 2 as in Figure 3.27. By the minimality of G, the graph G− x admits

x
y

z

Figure 3.27: A 3-face [xyz] with d(x) = 2.

an acyclic L-colouring π. Since π(y) 6= π(z) in G− x, extend this acyclic list

5-colouring letting π(x) = c ∈ L(x) \ π(y), π(z). The resulting colouring is an

acyclic L−colouring of G. This contradicts the choice of G.

Proof. (C9.2) Suppose that G contains a 3-face [xyz] with d(x) = d(y) = 3

and d(z) = 5 as in Figure 3.28. Notice that be Lemma ??, d(z) ≥ 5

z

y

x

y1

x1

z1

z2

z3

Figure 3.28: A 3-face [xyz] with d(x) = d(y) = 3 and d(z) = 5.

Let x1, y1, and z1, z2, z3, be, respectively, the neighbours of x, y, and

z that are not on the face [xyz]. Let π be an acyclic list 5-colouring of

46



3.9 Restrictions on a 3-face 3

G− {x, y} and consider the extension of this colouring in the following four

cases. If the colours of x1, y1, z are pairwise distinct, colour x with a colour

cx ∈ L(x) \ {π(x1), π(z)} and y with a colour cy ∈ L(y) \ {cx, π(y1), π(z)}.

By symmetry, consider if π(x1) = π(z) and π(y1) 6= π(z), colour x with cx ∈

L(x)\{π(z), π(z1), π(z2), π(z3)} and y with a colour cy ∈ L(y)\{c, π(y1), π(z)}.

If π(x1) = π(y1) and π(z) 6= π(x1), colour x with cx ∈ L(x) \ {π(x1), π(z)}

and y with a colour cy ∈ L(y) \ {cx, π(y1), π(z)}. Finally suppose that

π(x1) = π(y1) = π(z). If z1, z2, z3 have pairwise distinct colours, recolour z

with a colour different from the colours the colours assigned to z, z1, z2, z3 and

then reduce to the previous case. If at least two of z1, z2, z3 have the same

colour, say π(z1) = π(z2), colour x with a colour different from the colours

assigned to z, z2, z3 , and y with a colour different from the colours assigned

to x, z, z2, , z3. The resulting colouring is an acyclic L−colouring of G. This

contradicts the choice of G.

Proof. (C9.3) Suppose that G contains a 3-face [xyz] with d(x) = 3 and

d(y) = d(z) = 4 as in Figure 3.29. Let x1, y1, y2, and z1, z2 be, respectively,

the neighbours of x, y, and z that are not on the face [xyz]. Let π be an

acyclic list 5-colouring of G− x.

If x1, y, z have pairwise distinct colours, colour x properly. Otherwise,

suppose that π(y) = π(x1) 6= π(z). In this case, colour x with a colour

different from the colours assigned to y, z, y1, y2. The resulting colouring is

an acyclic L−colouring of G. This contradicts the choice of G.
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x
y

z

x1

z1

z2

y1
y2

Figure 3.29: A 3-face [xyz] with d(x) = 3 and d(y) = d(z) = 4.

x1

x2
x3

x4

x5

u
vw

y

Figure 3.30: A 5-face [x1, . . . , x5] with d(x1) = 2, d(x2) = 5 and d(x3) = 3.

3.10 Restrictions on a 5-face

Suppose to the contrary that G contains a 5-face f with boundary vertices

x1, . . . , x5 such that d(x1) = 2, d(x2) = 5 and d(x3) = 3. Let u, v, w be the

neighbours of x2 different from x1 and x3. Let y be the neighbour of x3

different from x2 and x4 as in Figure 3.30.

By the minimality of G, the graph G−x1 admits an acyclic L-colouring π.

To extend the colouring ofG−x1 toG, consider the following. If π(x2) 6= π(x5),

let x1 be coloured with c ∈ L(x1) \ {π(x2), π(x5)}. If π(x2) = π(x5), then

let x1 be coloured with c ∈ L(x1) \ {π(x2), π(x3), π(u), π(v), π(w)}. If there
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3.10 Restrictions on a 5-face 3

is no such colour c and if x1 cannot be acyclically coloured with π(x3),

L(x1) = {π(x2), π(x3), π(u), π(v), π(w)} and π(y) = π(x2). If L(x2) 6= L(x1),

recolour x2 with a colour in L(x2) \ L(x1) and give a proper colouring to

x1. If L(x2) = L(x1) consider that π(x4) 6= π(x2) and π(x3). Recolour x2

with π(x3), let x3 be recoloured with a colour different than those assigned

to y, x4, x2, and give a proper colouring to x1. The resulting colouring is an

acyclic L−colouring of G. This contradicts the choice of G.
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Chapter 4
Proof of Theorem

4.1 New Reducible Configurations

The list of reducible figures provided in previous work is not sufficient to ensure

that a proof using the discharging method would lead to a contradiction. A

closer look at the possible structure of a minimum counterexample G need

exploration. Many shortcomings during the discharging portion of this proof

came about when

• a 6-vertex had many neighbours of degree 2;

• a vertex had degree 9, 10 and 11.

The following proofs reveal more about the structure G in the same manor as

in the previous chapter.
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4.1 New Reducible Configurations 4

4.1.1 Weak 6-vertex

Definition 1. We define a weak 6-vertex as a vertex of degree 6 with the

following properties:

1. v is adjacent to exactly four 2-vertices

2. v is incident to either

• three 4-faces or

• two 4-faces containing all four 2-vertices in N(v), and one 5-face.

Since, by assumption, a 4-face is not adjacent to a 4- or 5-face, and by

condition (C6.3), v is not incident to a 3-face, then the number 4- and 5-faces

incident to v is less than or equal to 3. Figures 4.1 and 4.2 show the three

possible configurations of a weak 6-vertex.

v

v1

v2

v3v4

v5

v6 u1

u2

u3

v

v1

v2

v3v4

v5

v6

u1

u2u3

Figure 4.1: A weak 6-vertex incident to three 4-faces.

As a consequence of this definition, a weak 4- or 5-face is a 4- or 5-face

which is incident to a weak 6-vertex. Let w6(f) denotes the number of weak
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v

v1

v2

v3

v4

v5

v6 u1

u2u3

u4

Figure 4.2: A weak 6-vertex incident to a 5-face.

6-vertices incident to f .

The following lemma will prove the non-adjacency of two weak 6-vertices.

Lemma 2. Every weak 4-face [wxyz]; where w is a weak 6-vertex, satisfies

one of the following:

(A1.1) x is not a weak 6-vertex.

(A1.2) If d(x) = 2 and d(z) 6= 2, then y is not a weak 6-vertex.

Proof.(A1.1) Assume otherwise and let x be a weak 6-vertex as in Figure 4.3.

Let w1 . . . w4 be the neighbours of w different from x and z. Let

d(w1) = d(w2) = d(w3) = 2. Since w is weak, then either d(w4) = 2 or

d(z) = 2. With a similar labelling, let x1 . . . x4 be the neighbours of x

different form w and y, and let d(x1) = d(x2) = d(x3) = 2. Again, since

x is weak, then either d(x4) = 2 or d(y) = 2. By (C2), it is not the case

that d(y) = d(z) = 2. Let G′ = G− {w,w1, w2, w3, x, x1, x2, x3}. Then

G′ admits an L-colouring π by the minimality of G. Let S denote the
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4.1 New Reducible Configurations 4

set of colours which π has assigned to {y, z, w4, u1, u2}. If there exists

a colour c ∈ L(w) \ S then colour w with c. Otherwise, consider the

following two cases.

Assume first that d(w4) = 2. Colour w with π(w4), recolour w4 different

from w and u2, and colour each of w1, w2, w3, differently than its two

neighbours. Now, if d(z) = 2, then let π(w) = π(z), let z be recoloured

with a colour different from π(w) and π(y) and colour each of w1, w2, w3

differently than its two neighbours. All that remains is to colour

x, x1, x2, x3.

Let T denote the set of colours which have been assigned to

{x4, y, v1, v2, π(w)}. If there exists a colour c′ ∈ L(x) \ T , then colour

x with c′ and colour each of x1, x2, x3 differently from their neigh-

bours. Otherwise, consider the following two cases. First assuming

that d(x4) = 2. Colour x with π(x4) and give a proper colouring to

x1, x2, x3.

Assuming now that d(y) = 2, let π(x) = π(y), let y be recoloured

with a colour different from π(x) and π(z) and colour each of x1, x2, x3

differently than its two neighbours. Since the colouring of G′ has been

extended to G, then this contradicts our choice of G.

(A1.2) Let d(x) = 2, d(z) > 2 and assume that both w and y are weak 6-

vertices, as in Figure 4.4. Let w1, . . . , w4 be the neighbours of w different

from x and z. Let d(w1) = d(w2) = d(w3) = 2. With a similar labelling,
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w
x

y

z

w1

w2 w3

w4

u1 u2
x1 x2

x3x4

v1

v2

Figure 4.3: A weak 4-face incident with adjacent weak 6-vertices.

let y1, . . . , y4 be the neighbours of y different form x and z, and let

d(y1) = d(y2) = d(y3) = 2.

w
x

y
z

w1

w2 w3

w4

u1 u2

y1

y2 y3

y4
v1 v2

Figure 4.4: A weak 4-face incident with non adjacent weak 6-vertices.

Let G′ = G− {w,w1, w2, w3, x, y, y1, y2, y3}. Then G′ admits an

L-colouring π by the minimality of G. Let S denote the set of colours

which π has assigned to {z, w4, u1, u2}. Colour w with c ∈ L(w) \ S.

Let T denote the set of colours which π has assigned to {z, y4, v1, v2}.
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4.1 New Reducible Configurations 4

Colour y with c′ ∈ L(y) \ T . Let π(x) = a ∈ L(x) \ {π(z), c, c′}. Now

let w1, w2, w3, y1, y2, y3 each be coloured with a colour different from its

neighbours. Since the colouring of G′ has been extended to G, then this

contradicts our choice of G.

Lemma 3. Let f be a weak 5-face. Then f is not incident to two adjacent

weak 6-vertices.

Proof. Assume the contrary, that a 5-face [vwxyz] has two adjacent weak

6-vertices v and w as in Figure 4.5. Let v1, . . . , v4 be the neighbours of v

different from w and z. Let d(v1) = d(v2) = d(v3) = d(v4) = 2. With a similar

labelling, let w1, . . . , w4 be the neighbours of w different form v and x, and

let d(w1) = d(w2) = d(w3) = d(w4) = 2.

v
w

xy

z

v1

v2 v3

v4

u1 u2
w1 w2

w3w4

r1

r2

Figure 4.5: A weak 5-face incident with adjacent weak 6-vertices.

Let G′ = G−{v, v1, v2, v3, v4, w, w1, w2, w3, w4}. Then G′ admits an acyclic

L-colouring π by the minimality of G. Let S denote the set of colours which
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4.1 New Reducible Configurations 4

π has assigned to {z, x, u1, u2}. Colour v with c ∈ L(v) \ S. Let T denote

the set of colours which π has assigned to {x, r1, r2} and c. Colour w with

c′ ∈ L(w) \ T . There is a proper colouring of {v1, v2, v3, v4, w1, w2, w3, w4} by

colouring each differently from its two neighbours. Since the colouring of G′

has been extended to G, then this contradicts our choice of G.

4.1.2 Restrictions On A 6-vertex

The following lemmas are new and explore some necessary conditions in which

a 6-vertex may appear in G.

Lemma 4. Let v be a vertex of degree 6.

(B1.1) If n2(v) = 3 and incident to a (3, 5+, 6)-face, and two 4-faces, then

n3(v) = 1.

(B1.2) If n2(v) = 3 and incident to a (3, 5+, 6)-face, and two 4-faces, then

w6(v) = 0.

(B2) If n2(v) = 2 and v is incident to a (6, 3, 4−)-face, then t(v) = 1.

Proof.(B1.1) Suppose that v is a 6-vertex v with neighbours v1, . . . , v6 where

d(v1) = d(v2) = d(v3) = 2 and d(v5) = 3. Suppose to the contrary that

d(v4) = 3. Let [vv1wv2] and [vv3xv4] be two 4-faces and, by (C9.1), let

[v5v6v] be a (3, 5+, 6)-face as in Figure 4.6. Let y be the neighbour of

v4 different from v and x. Let z be the neighbour of v5 different from v

and v6.
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v6
v

v5

w

xy

z

v1

v2

v3

v4

Figure 4.6: A degree 6-vertex v with n2(v) = 3, n3(v) = 2 and incident to a
(3, 5+, 6)-face and two 4-faces.

Consider the graph G′ = G− {v1, v2, v3}. By the minimality of G, G′

admits an acyclic L-colouring π. Let α = |{π(v4), π(v5), π(v6)}| and

consider the following two cases:

α = 3 If there exists a colour c ∈ L(v) \ {π(v4), π(v5), π(v6)} which does

not appear in π(w) and π(x), then recolour v with c and properly

colour v1, v2 and v3 with an admissible colour different from their

two neighbours (note that if π(v) does not appear in π(w) and

π(x), then no recolouring of v occurs). Otherwise each colour in

L(v) \ {π(v4), π(v5), π(v6)} appears exactly once in π(w) and π(x).

Recolour v with π(x) (recolouring will not occur if π(v) = π(x)),

properly colour v1 and v2 with an admissible colour different from

π(w) and π(v) and colour v3 with an admissible colour different

from π(v), π(v4), π(v5), π(v6).

α = 2 If π(v) appears at most once in π(w) and π(x), then if π(x)=π(v)
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colour v1, v2 different from π(v), π(w) and colour v3 different from

π(v), π(v4), π(v5), π(v6). Otherwise, π(w)=π(v). Colour v3 differ-

ent from π(v), π(x), colour v1 different from π(v), π(v4), π(v5), π(v6)

and v2 different from π(v), π(v4), π(v5), π(v6), π(v1).

Since π(v4) is coloured the same as one of π(v5) or π(v6), then if

π(v) = π(w) = π(x) recolour v with a colour c ∈ L(v)\{π(v), π(v4),

π(v5), π(v6), π(y)} and give a proper colouring to v1, v2 and v3 with

colours different from their two neighbours.

Since the colouring of G′ has been extended to G, then this contradicts

our choice of G.

(B1.2) Suppose that v is a 6-vertex v with neighbours v1, . . . , v6 where d(v1) =

d(v2) = d(v3) = 2 and d(v5) = 3. Suppose to the contrary that v4

is a weak 6-vertex. Let [vv1wv2] and [vv3xv4] be two 4-faces. Since

a weak 6-vertex is not incident to a 3-face and by (C9.1), let [v5v6v]

be a (3, 5+, 6)-face as in Figure 4.7. Let u1, . . . , u4 be the neighbours

of v4 different from v and x such that all are 2-vertices. Let z be the

neighbour of v5 different from v and v6.

Consider the graph G′ = G−{v, v1, v2, v3, v4, u1, u2, u3, u4}. By the min-

imality of G, G′ admits an acyclic L-colouring π. Let π(v) = c ∈ L(v) \

{π(v5), π(v6), π(w), π(x)}, let v4 = c4 ∈ L(v4) \ {c, π(x), π(y1), π(y2)}.

Since both π(w) and π(x) 6= π(v) and both π(y1) and π(y2) 6= π(v4),

colour each of v1, . . . , v3, u1, . . . , u4 with an admissible colour which is
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v

v1

v2

v3
v4v5

v6

w

x
y1

y2

z

u1

u2 u3
u4

Figure 4.7: A degree 6-vertex v with n2(v) = 3, w6(v) = 1 and incident to a
(3, 5+, 6)-face and two 4-faces.

different from that of its two neighbours. Since the colouring of G′ has

been extended to G, then this contradicts our choice of G.

(B2) Suppose to the contrary that v is adjacent to two vertices with degree

2, say v1 and v2, a (6, 3, 4)-face [vv3v4] and, by (C9.1), a second 3-face

[vv5v6]. Let ui be the neighbour of vi different from v for i = {1, 2} and

u3 be the neighbour of v3 different from v and v4. Let x (and y) be the

neighbours of v4 different from v and v3 as shown in Figure 4.8.

Consider the graph G′ = G− {v, v1, v2, v3}. By the minimality of G, G′

admits an acyclic L-colouring π. Let α = |{π(v4), π(v5), π(v6)}| and consider

the following two cases:

• If α = 3 then there exits a colour c ∈ L(v) \ {π(v4), π(v5), π(v6)} which

appears at most once in the colouring of u1, u2 and u3.

� If π(u1) = c, then let π(v) = c, let π(v1) be coloured with c1 ∈
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v6
v

v5

xy

v1

v2

v3v4

u1
u2

u3

Figure 4.8: A degree 6-vertex v with n2(v) = 2 and t(v) = 2.

L(v1) \ {c, π(v4), π(v5), π(v6)}, let π(v2) = c2 ∈ L(v2) \ {c, π(u2)

and let π(v3) = c3 ∈ L(v3) \ {c, π(v4), π(u3).

� If π(u2) = c, then with a similar argument to π(u1) = c, let π(v) =

c, let π(v2) be coloured with c2 ∈ L(v2) \ {c, π(v4), π(v5), π(v6)},

let π(v1) = c1 ∈ L(v1) \ {c, π(u1) and let π(v3) = c3 ∈ L(v3) \

{c, π(v4), π(u3).

� Otherwise π(u3) = c. Let π(v) = c, let π(vi) be a colour different

from c and π(ui) for i = {1, 2}, and let π(v3) be a colour different

from c, π(v4), π(v5), π(v6).

• If α = 2, then consider the following.

� If π(x) 6= π(y) then recolour v4 with a colour different from π(x),

π(y), π(v5), π(v6), then colour v, v1, v2 and v3 as above, since π(v4),

π(v5) and π(v6) are now pairwise distinct.

� Otherwise π(x) = π(y). Since |{π(v4), π(v5), π(v6), π(x), π(y)}| ≤

3, then there exits a colour c ∈ L(v)\{π(v4), π(v5), π(v6), π(x), π(y)}
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which appears at most once in the colouring of u1, u2 and u3. With

a similar argument to the case when α = 3, let π(v) = c, colour

two of v1, v2 and v3 with a colour different from it neighbours if

v is the only neighbour coloured with c, and colour one of v1, v2

and v3 with a colour different from c, π(v4), π(v5), π(v6) if two of

its neighbours are coloured with c. This contradicts our chose of

G, as we can obtain an acyclic colouring of G.

4.1.3 Restrictions On A 9-, 10-, 11-vertex

Lemma 5. Let v be a 9-, 10- or 11-vertex. Then n2(v) ≤ d(v)− 2.

Proof. Let v be a 9- 10- or 11-vertex and letN(v) = {v1, . . . vk} for 9 ≤ k ≤ 11

be the neighbours of v. Assume for contradiction that n2(v) = d(v)− 1, with

d(v2) = . . . = d(vk) = 2. Let u1, . . . , uk be the neighbour of v1, . . . vk different

than v, as in Figure 4.9.

Let G′ = G − {v, v2, . . . , vk}. Then G′ admits an acyclic L-colouring π

by the minimality of G. There exists a colour c ∈ L(v) \ {π(v1)} which

appears at most twice in u2, . . . , uk. Let π(v) = c and assume without

loss of generality that π(u2) = π(u3) = c. Let π(v) = c, let π(v2) = c2 ∈

L(v2)\{c, π(v1)}, π(v3) = c3 ∈ L(v3)\{c, c2, π(v1)} and colour each of v4, . . . vk

with a colour different c, π(ui) for i = 4, . . . , k. Since the colouring of G′ has

been extended to G, then this contradicts our choice of G.
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v
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v2
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Figure 4.9: A 9-, 10-, 11-vertex with n2(v) = d(v)− 1.

4.2 Initial Charging

In order to complete the proof, we suppose that G is a counterexample to

Theorem 1 with the least number of vertices. Let L be a list assignment such

that |L(v)| ≥ 5 for all v ∈ V (G). Thus, G satisfies Lemma 1 to 5. Since

G is a planar graph, then; using Euler’s formula, G has the characteristic

that |V (G)| − |E(G)| + |F (G)| = 2. With some arithmetic manipulation,

the relation yields (4|E| − 6|V |) + (2|E| − 6|F |) = −12. When summing the

degree of the vertices and the degrees of the faces of G, we can derive the

following identities:
∑
d(v) = 2|E(G)| and

∑
d(f) = 2|E(G)|, since each
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edge is counted twice in each summation.

∑
v∈V (G)

(2d(v)− 6) +
∑
f∈F

(d(f)− 6)

= 4|E| − 6|V |+ 2|E| − 6|F |

= 6(|E| − |V | − |F |) = −12.

If G is assigned charges of 2d(v) − 6 to each vertex v ∈ V (G) and is

assigned charges of d(f)− 6 to each face F ∈ V (G), where F (G) is the set

of faces G, then the total charge assigned to G is −12. We define a charge

function ch by ch(v) = 2d(v)− 6 for all v ∈ V (G), and ch(f) = d(f)− 6 if

f ∈ F (G). It follows from the above identity that the total sum of charges

ch(G)− 12. We design appropriate discharging rules and redistribute charges

accordingly. Once the discharging is finished, a new charge function ch∗ is

produced. However, the total sum of charges is kept fixed when the discharging

is in process. Nevertheless, after the discharging is complete, the new charge

function ch∗(x) ≥ 0 for all x ∈ V (G) ∪ F (G). This leads to the following

obvious contradiction,

0 ≤
∑

x∈V (G)∪F (G)

ch∗(x) =
∑

x∈V (G)∪F (G)

ch(x) = −12.

For x, y ∈ V (G) ∪ F (G), let τ(x → y) denote the amount of charges

transferred from x to y. Suppose that f = [v1v2v3] is a 3−face with d(v1) ≤
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d(v2) ≤ d(v3). We use (d(v1), d(v2), d(v3)) → (c1, c2, c3) to denote that the

vertex vi gives f the amount of charge ci for i = 1, 2, 3. For example, R2(d)

in section 4.3 states as follows:

(4+, 4+, 4+)→ (1, 1, 1).

This discharging rule states that each 4+-vertex gives 1 charge to each incident

3-face. In other words, each 3-face having all incident vertices with degrees

at least 4 receives 1 charge from each of these vertices. Our discharging rules

are as follows:

4.3 Discharging Rules

R1 Every 5+-vertex v gives

(a) 1 charge to each adjacent 2-vertex

(b) 1
2
charge to each adjacent pendant light 3-vertex.

R2 Let f = [v1v2v3] be a 3-face with d(v1) ≤ d(v2) ≤ d(v3). Then

(a) (3, 3, 6+)→ (1
2
, 1
2
, 2);

(b) (3, 4, 5+)→ (1
2
, 1, 3

2
);

(c) (3, 5+, 5+)→ (1
2
, 5
4
, 5
4
);

(d) (4+, 4+, 4+)→ (1, 1, 1).
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R3 Let f = [v1v2v3v4] be a weak 4-face with w being a weak 6-vertex and

d(x) = 2. By Definition 1, f has two possible configurations. Then

(a) (6, 2, 6+, 2)→ (1, 0, 1, 0);

(b) (6, 2, 5+, 4+)→ (1
2
, 0, 3

4
, 3
4
);

R4 Let f be a 4+-face in G with boundary vertices v1, . . . , vk, for k = d(f).

Let Γ(f) be the set of vertices {v1, . . . , vk} \ {vi} such that vi is a 2-, 3-

or weak 6-vertex in the boundary of f . Let γ(f) = |Γ(f)|. Then each

vertex v ∈ Γ(f) gives

(a) 2
γ(f)

to each 4-face which is not weak;

(b) 1
γ(f)

to each 5-face.

4.4 Proof of Theorem 1

For each x ∈ V (G) ∪ F (G) we will show that ch∗(x) ≥ 0, which produces a

contradiction.

Proof. 4.4.1 Faces

d(f) = 3 An initial charge of ch(f) = −3 is assigned to all 3-faces f = [xyz] ∈ G.

By (C9.1), a 2-vertex is not incident to a 3-face. By (C9.2), G does not

contain a (3, 3, 5−)-face. So all 3-faces with n3(f) = 2 are (3, 3, 6+)-faces.

By R2(a), ch∗(f) = ch(f) + τ((x, y, z) → (f)) = −3 + 1
2

+ 1
2

+ 2 = 0.
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By (C9.2), G does not contain a (3, 4, 4)-face. If d(x) = 3 and d(y) = 4,

then z is a 5+-vertex. By R2(b), ch∗(f) = ch(f) + τ((x, y, z)→ (f)) =

−3 + 1
2

+ 1 + 3
2

= 0.

If f is a (3, 5+, 5+)-face, then by R2(c), ch∗(f) = ch(f) + τ((x, y, z)→

(f)) = −3 + 1
2

+ 5
4

+ 5
4

= 0.

Otherwise, f is a (4+, 4+, 4+)-face. By R2(d), ch∗(f) = ch(f) +

τ((x, y, z)→ (f)) = −3 + 1 + 1 + 1 = 0.

d(f) = 4

Observation 1. Let f = [wxyz] be a 4-face. If f is not weak then by

(C2) and (C3.1), n2(f) + n3(f) ≤ 2 and hence Γ(f) ≥ 2. Otherwise,

if f is weak, then consider the following two cases. If n2(f) = 2, then

Γ(f) ≤ 1. If n2(f) = 1, then by (C2) and Lemma 1, Γ(f) = 2.

An initial charge of ch(f) = −2 is assigned to all 4-faces f = [wxyz] ∈ G.

Consider first if f is weak. If γ(f) = 0 or 1, then by R3(a), ch∗(f) =

ch(f) + τ((w, x, y, z)→ (f)) = −2 + 1 + 0 + 1 + 0 = 0. Otherwise, by

Observation 1, γ(f) = 2. By R3(b) ch∗(f) = ch(f) + τ((w, x, y, z)→

(f)) = −2 + 1
2

+ 0 + 3
4

+ 3
4

= 0. If, f is not weak, then by R4(a),

ch∗(f) = ch(f) + τ(Γ(f)→ (f)) = −2 + 2
γ(f)
∗ γ(f) = 0.

d(f) = 5

Observation 2. Let f = [vwxyz] be a 5-face. If f is not weak, then

by (C2), n2(f) ≤ 2. If n2(f) = 2, then Γ(f) = 3. If n2(f) ≤ 1,
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then by (C3.1), Γ(f) ≥ 2. If w is a weak 6-vertex then by (C6.2) and

Definition 1, then vertices v and x are not 2-, 3-, or weak 6-vertices.

Hence, γ(f) 6= 0.

An initial charge ch(f) = −1 is assigned to all 5-faces f ∈ G. Since

by Observation 2 and by R4(b), ch∗(f) = ch(f) + τ(Γ(f) → (f)) =

−1 + 1
γ(f)

γ(f) = 0.

d(f) ≥ 6 An initial charge ch(f) ≥ 0 is assigned to all 6+-faces f ∈ G. Then

ch∗(f) = ch(f) ≥ 0, as the discharging rules do not transfer charges

from faces to either vertices or faces.

4.4.2 Vertices

d(v) = 2 An initial charge ch(v) = −2 is assigned to all 2-vertices v ∈ G. By

(C2), if u and w are the two neighbours of v with d(u) ≤ d(w), then

5 ≤ d(u) ≤ d(w). By R1(a), both u and w give 1 charge to v. Hence,

ch∗(v) = ch(v) + τ((u,w)→ v) = −2 + 1 + 1 = 0.

d(v) = 3 An initial charge ch(v) = 0 is assigned to all 3-vertices v ∈ G. If v is

a pendant light 3-vertex of a vertex u, and is incident to a 3-face f ,

then by R1(b) and R2(a),(b),(c), ch∗(v) = ch(v) + τ(u→ v)− τ(v →

f) = 0 + 1
2
− 1

2
= 0. Otherwise, v is not incident to a 3-face, hence

ch∗(v) = ch(v) = 0.

Observation 3. By Observation 1, R3 and R4(a), every 4+-vertex v ∈

G gives at most 1 charge to each incident 4-face. Since, by assumption,
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a 4-face is not adjacent to a 3-, 4- or 5-face, then every 4+-vertex v ∈ G,

on average, gives at most 1
2
charge to each of two adjacent faces f1 and

f2 is one of these faces is a 4-face. By Observation 2 and R4(b), since

γ ≥ 2 for all 5-faces in G, then every v ∈ G gives at most 1
2
charges to

each incident 5-face. Similarly, since a 3-face is not adjacent to a 4-

or 5-face, then a pendant light 3-vertex v of u is incident to one 3-face

and two 6+-faces. And, like the 5-face, a pendant light 3-vertex requires

only 1
2
charges from its neighbour u. Hence, a vertex having d(v)

2
charges

available to distribute to its incident faces has sufficient charge if v is

not incident a 3-face.

If, however, v is incident to 3-faces, then for any 6+-vertex, v distributes

up to 2 charges to a 3-face by R3. Since, by the assumption that a 3-face

is not adjacent to a 3-, 4- or 5-face, then every v ∈ G, on average, at

most 1 to each of two adjacent faces f1 and f2 is one of these faces

is a 3-face. Hence, a vertex v which has at least 1 charge available to

distribute to each of d(v) incident faces has sufficient charges for any

configuration which contains bd(v)
2
c 3-faces.

Lastly, since a 2-vertex is not incident to a 3-face by (C9.1), then we

consider a vertex v which is incident a 4-face containing two 2-vertices.

By R1(a), R3(a) and R4(a), every 6+-vertex v distributes 1 charge to

each 2-vertex and 4-face. Since, by assumption a 4-face is not adjacent

to a 3-, 4- or 5-face, then a vertex with
⌊
3d(v)
2

⌋
has sufficient charge for

every possible configuration.
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In the following lemmas we define N2(v) as the set of vertices vi ∈ N(v)

such that d(vi) = 2. Similarly, N3(v) as the set of vertices vi ∈ N(v) such

that vi is a pendant light 3-vertex of v. Lastly, we define {f1, . . . , fk} is

the set of faces incident with one common vertex v, where k = d(v).

d(v) = 4 An initial charge ch(v) = 2 is assigned to all 4-vertices v ∈ G. By (C2)

and (C4), v in not adjacent to a 2-vertex or a pendant light 3-vertex.

By (C9.3), v is not incident a (3, 4, 4)-face. By Observation 3, R2(b)(d)

and R4, ch∗(v) ≥ ch(v)− τ(v → (f1, . . . , fk)) = 2− 4(1
2
) = 0.

d(v) = 5 An initial charge ch(v) = 4 is assigned to all 5-vertices v ∈ G. By

(C5.1), v is adjacent to at most one 2-vertex. Consider the following

two cases:

n2(v) = 1 By (C5.2), if v is adjacent to a 2-vertex u, then v is not adjacent to

a pendant light 3-vertex. Since, by (C5.3), v distributes one charge

to each incident 3-face as per R3(d). Hence, as in Observation 3,

ch∗(v) ≥ ch(v)−τ(v → u)−τ(v → (f1, . . . , fk)) = 4−1(1)−5(1
2
) =

1
2
by R1(a), R4 and by Observation 2.

n2(v) = 0 If v is not incident to a 3 or 4-face, then v is incident to at most

five 5-faces which require charge, meaning ch∗(v) ≥ ch(v)− τ(v →

(f1, . . . , fk)) = ch(v)−5(1
2
) = 3

2
by R4(b) and Observation 2. If v is

incident to one 4-face, then v is incident to at most three 5-faces or

three pendant light 3-vertices by (C5.4). By R1(b) and R4(a)(b),

ch∗(v) ≥ ch(v) − τ(v → (f1, . . . , fk)) = ch(v) − 1(1) − 3(1
2
) = 3

2
.
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If v is incident to two 4-faces, then v is not incident to a 5-face,

but adjacent to at most one pendant light 3-vertex. By R1(b) and

R4(a), ch∗(v) ≥ ch(v) − τ(v → (f1, . . . , fk)) − τ(v → N3(v)) =

ch(v)− 2(1)− 1(1
2
) = 3

2
. If v is incident to one 3-face f1, then v

is incident to at most three 5-faces or at most two pendant light

3-vertices by (C5.5) and (C5.6). Since by (C9.2) f1 6= (3, 3, 5)-face,

then by R1(b), R2(b)(c)(d) and R4(b), ch∗(v) ≥ ch(v) − τ(v →

N3(v)) − τ(v → (f1, . . . , fk)) = ch(v) − 1(3
2
) − 3(1

2
) = 1. If v is

incident to two 3-faces, then v is not incident to a 5-face, but

adjacent to at most one pendant light 3-vertex. Hence, ch∗(v) ≥

ch(v)−τ(v → (f1, . . . , fk))−τ(v → N3(v)) = ch(v)−2(3
2
)−1(1

2
) =

1
2
.

d(v) = 6 An initial charge ch(v) = 6 is assigned to all 6-vertices v ∈ G. By

(C6.1), v is adjacent to at most four 2-vertex. Consider the following

cases:

n2(v) = 4 If v is weak, then by Definition 1, it is incident to either three

4-faces or to two 4-faces and one 5-face. By R1(a) and R3(a),

either ch∗(v) = ch(v) − τ(v → N2(v)) − τ(v → {f1, . . . , fk}) =

6− 4− 1− 1 = 0 if every vertex in N2(v) are contained in only two

4-faces. Otherwise by R1(a) and R3(b), ch∗(v) = ch(v)− τ(v →

N2(v)) − τ(v → {f1, . . . , fk}) = 6 − 4 − 1 − 1
2
− 1

2
= 0. If v

is not weak, then by R1, it distributes one to each incident 2-
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vertex, leaving two charges to distribute amongst its incident

faces. As a consequence of (C6.2) and by (C6.3), p3(v) = 0 and

v is not incident to a 3-face. By Definition 1, v is incident to

at most two 4-faces (else, it would be weak), so consider the

following cases: If v is incident to two 4-faces, then ch∗(v) =

ch(v)− τ(v → N2(v))− τ(v → {f1, . . . , fk}) = 6− 4− 1− 1 = 0 if

v is incident to four 6+-faces. Otherwise, ch∗(v) ≥ ch(v)− τ(v →

N2(v)) − τ(v → {f1, . . . , fk}) = 6 − 4 − 1(1) − 1(2
3
) − 1(1

3
) = 0

If v is incident to a 5-face. If v is incident one 4-face then by

assumption, v is incident to at most three 5-faces. By (C2), (C3.1)

and Definition 1, each of these 5-faces has Γ ≥ 3. By R1(a) and

R4(b), ch∗(v) ≥ ch(v)− 4(1)− 1(1)− 3(1
3
) = 0.

n2(v) = 3 Then by (C6.8) and (C9.1), v is incident to at most one 3-face

which is not a (3, 4−, 6)-face. Consider the following two cases:

If v is incident to a (3, 5+, 6)-face, then by (C6.4), p3(v) = 0. If v is

not incident to a 4-face, then v is incident to at most three 5-faces.

Hence ch∗ ≥ ch(v)− 3(1)− 1(5
4
)− 3(1

2
) = 1

4
by R2(a) and R4(b).

Otherwise, v is incident to at most two 4-faces. By Lemma 4, R2

and R4, ch∗ ≥ ch(v)− 3(1)− 1(5
4
)− 1(1)− 1(2

3
) = 1

12
.

n2(v) = 2 By R1(a), v has four charges to distribute to its adjacent pendant

light 3-vertices and its incident faces. By (C6.5) and (C6.6) and by

lemma 4, ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v → {f1, . . . , fk}) =

6 − 2(1) − 2(5
4
) − 2(1

2
) = 1

2
since by assumption, a 3-face is not
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adjacent to a 3-, 4- or 5-face.

n2(v) = 1 Then by R1(a), R2, R4, and Observation 3 then ch∗(v) ≥ ch(v)−

τ(v → N2(v))−τ(v → {f1, . . . , fk}) = 6−1(1)−6(1
2
) = 2 if v is not

incident to a 3-face and ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v →

{f1, . . . , fk}) = 6− 1(1)− 4(1)− 2(1
2
) = 0.

n2(v) = 0 If n2(v) = 0, then v has at least one charge to give to each incident

face. By the assumption that G contains no adjacent small cycles

and by R2 and R4, this is sufficient charge. Hence ch∗(v) ≥ 0 for

every 6-vertex in G.

d(v) = 7 An initial charge of ch(v) = 8 is assigned to each 7-vertex in G. By

(C7.1), since n2(v) ≤ 5, consider the following cases:

n2(v) = 5 By (C7.3), n3(v) = 0 and t(v) = 0. If v is not incident to a

4-face then ch∗(v) ≥ ch(v)−τ(v → N2(v))−τ(v → (f1, . . . , fk)) =

8− 5(1)− 7(1
3
) = 1

3
, as per Observation 2. Otherwise, v is incident

to at most three 4-faces. Hence, ch∗(v) ≥ ch(v)− τ(v → N2(v))−

τ(v → (f1, . . . , fk)) = 8− 5(1)− 3(1) = 0 since by assumption no

4-face is adjacent to a 3-, 4- or 5-face.

n2(v) = 4 By (C7.2) and (C7.4), consider the following three cases. Since

v is incident to at most one 3-face, then if v is incident to a

(3, 3, 7)-face, it is not adjacent to a pendant light 3-vertex. Hence,

ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) = 8− 4(1)−

1(2)−4(1
2
) = 0 by Observation 3. If t(v) = 0, then by R1(a)(b) and
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R4(a)(b), ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) =

8 − 7(1
2
) = 1

2
if v is adjacent to pendant light 3-vertices, and

incident to 5−-faces.

n2(v) = 3 By (C9.1), v is incident to at most two 3-faces. If t(v) = 2 then

ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) = 8− 3(1)−

2(2)−2(1
2
) = 0 since by assumption, a 3-face is not incident a 3-, 4-

or 5-face. if t(v) = 1, then ch∗(v) ≥ ch(v)−τ(v → N2(v))−τ(v →

(f1, . . . , fk)) = 8−3(1)−1(2)−6(1
2
) = 0. Hence, by Observation 3,

v has sufficient charge to distribute to at most one adjacent pendant

light 3-vertex (as per C7.5), and any configuration of 5−-faces.

n2(v) = 2 By R1(a)(b) and R4, if v is not incident a 3-face, then ch∗(v) ≥

ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) = 8− 2(1)− 7(1
2
) = 5

2

by Observation 3. Otherwise, by (C9.1), t(v) ≤ 2. If t(v) = 2,

then ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v → (f1, . . . , fk)) =

8 − 2(1) − 2(2) − 2(1
2
) = 1, by R1(a), R2(c) and R4, and by

the assumption that a 3-face is not adjacent to a 3-, 4- or 5-

face. If t(v) = 1, then ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v →

(f1, . . . , fk)) = 8− 2(1)− 1(2)− 4(1
2
) = 2.

n2(v) ≤ 1 If n2(v) ≤ 1, then ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v →

(f1, . . . , fk)) = 8− 1(1)− 7(1) = 0. Since v has at least one charge

to give to each incident face, then by Observation 3, v has sufficient

charge.
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d(v) = 8 An initial charge of ch(v) = 10 is assigned to each 8-vertex in G. By

(C8.1), n2(v) ≤ 6. If n2(v) = 6, then by Observation 3, R1(a), R2(c)

and R4(a)(b), ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) =

10 − 6(1) − 8(1
2
) = 0, since v is not incident a 3-face by (C8.2). If

n2(v) = 5, then t(v) ≤ 1. If v is incident to a 3-face then ch∗(v) ≥

ch(v)−τ(v → N2(v))−τ(v → (f1, . . . , fk)) = 10−5(1)−1(2)−5(1
2
) = 1

2

since, by assumption, a 3-face is not adjacent to a 3-, 4- or 5-face.

Otherwise, ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v → (f1, . . . , fk)) =

10− 5(1)− 8(1
2
) = 1 if v is not incident to a 3-face. If n2(v) = 4, then

t(v) ≤ 2. If v is incident to two 3-faces then ch∗(v) ≥ ch(v) − τ(v →

N2(v)) − τ(v → (f1, . . . , fk)) = 10 − 4(1) − 2(2) − 4(1
2
) = 0 since, by

assumption, a 3-face is not adjacent to a 3-, 4- or 5-face and not every

incident face of v requires charge distribution. If v is incident to at most

one 3-face then ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) =

10− 4(1)− 1(2)− 7(1
2
) = 1

2
.

d(v) = 9 An initial charge of ch(v) = 12 is assigned to each 9-vertex in G. By

Lemma 5, n2(v) ≤ 7. By Observation 3, R1(a), R2(c) and R4, if

n2(v) = 7, then v is incident to at most one 3-face by (C9.1). If v

is incident to a 3-face then ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v →

(f1, . . . , fk)) = 12− 7(1)− 1(2)− 6(1
2
) = 0 since a 3-face is not adjacent

to a 4- or 5-face. Otherwise, if v is not incident a 3-face, then ch∗(v) ≥

ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) = 12− 7(1)− 9(1
2
) = 1

2
. If

n2(v) = 6, then v is still incident to at most one 3-face, so consider that
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n2(v) = 5. Then v is incident to at most two 3-faces, hence ch∗(v) ≥

ch(v)−τ(v → N2(v))−τ(v → (f1, . . . , fk)) = 12−5(1)−2(2)−4(1
2
) = 1

since at least three faces incident to v are 6+-faces. If n2(v) = 4 then

again v is incident to at most two 3-faces. By R2, ch∗(v) ≥ ch(v)−τ(v →

N2(v))− τ(v → (f1, . . . , fk)) = 12− 4(1)− 2(2)− 7(1
2
) = 1

2
. Finally, if

n2(v) ≤ 3 then by Observation 3, R1(a), R2 and R4, ch∗(v) ≥ ch(v)−

τ(v → N2(v))− τ(v → (f1, . . . , fk)) = 12− 3(1)− 9(1) = 12− 12 = 0.

d(v) = 10 An initial charge of ch(v) = 14 is assigned to each 10-vertex in G.

By Lemma 5, n2(v) ≤ 8. By Observation 3, R1(a), R2(c) and R4, if

n2(v) = 8, then v is incident to at most one 3-face by (C9.1). If v

is incident to a 3-face then ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v →

(f1, . . . , fk)) = 14− 8(1)− 1(2)− 7(1
2
) = 1

2
since a 3-face is not adjacent

to a 4- or 5-face. Otherwise, if v is not incident a 3-face, then ch∗(v) ≥

ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) = 14− 8(1)− 10(1
2
) = 1. If

n2(v) = 7, then v is still incident to at most one 3-face, so consider that

n2(v) = 6. Then v is incident to at most two 3-faces, hence ch∗(v) ≥

ch(v)−τ(v → N2(v))−τ(v → (f1, . . . , fk)) = 14−6(1)−2(2)−8(1
2
) = 0.

If n2(v) = 5 then again v is incident to at most two 3-faces. By R2,

ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v → (f1, . . . , fk)) = 14 − 5(1) −

2(2)− 8(1
2
) = 1. Finally, if n2(v) ≤ 4 then by Observation 3, R1(a), R2

and R4, ch∗(v) ≥ ch(v)− 4(1)− 10(1) = 14− 14 = 0.

d(v) = 11 An initial charge of ch(v) = 16 is assigned to each 11-vertex in G. By
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Lemma 5, n2(v) ≤ 9. By Observation 3, R1(a), R2(c) and R4, if v

is incident to a 3-face then ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v →

(f1, . . . , fk)) = 16 − 9(1) − 1(2) − 10(1
2
) = 0. If v is not incident to

a 3-face then ch∗(v) ≥ ch(v) − τ(v → N2(v)) − τ(v → (f1, . . . , fk)) =

16 − 9(1) − 11(1
2
) = 3

2
. If n2(v) = 8, then ch∗(v) ≥ ch(v) − τ(v →

N2(v)) − τ(v → (f1, . . . , fk)) = 16 − 8(1) − 1(2) − 10(1
2
) = 3

2
if v is

incident to one (3, 3, 11)-face. If n2(v) = 7, then v is incident to at most

two 3-faces. Hence, if all other incident faces are 4- or 5-faces, then by

Observation 3, ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) =

16−7(1)−2(2)−91
2

= 1
2
. If n2(v) = 6, then again v is incident to at most

two 3-faces. Hence, if all other incident faces are 4- or 5-faces, then by

Observation 3, ch∗(v) ≥ ch(v)− τ(v → N2(v))− τ(v → (f1, . . . , fk)) =

16− 6(1)− 2(2)− 91
2

= 3
2
. If n2(v) ≤ 5, then v has at least one charge

to give to each incident face. By Observation 3, v has sufficient charge

to distribute to its incident faces.

d(v) ≥ 12 An initial charge of ch(v) ≥ 18 is assigned to each 12+-vertex in G. By

Observation 3, ch∗(v) ≥ ch(v)−
⌊
3d(v)
2

⌋
≥ 18−

⌊
3(12)
2

⌋
= 0.

It was discusses earlier that

∑
v∈V (G)

(2d(v)− 6) +
∑
f∈F

(d(f)− 6) = −12.
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is the total charge on the graph G because of the fact that G is planar.

We have shown through careful redistribution of charges demonstrated in

Lemmas 4.4.1 to 4.4.2 yields the desired contradiction that

0 ≤
∑

x∈V (G)∪F (G)

ch∗(x) =
∑

x∈V (G)∪F (G)

ch(x) = −12.

This last equation clearly shows that the assumption of the existence of a

minimum counterexample G was incorrect. Without the existence of such

a graph, we have succeeded in proving that every planar graph which does

not contain a 3- or 4-cycle adjacent to a 3-, 4- and 5-cycle is acyclically

5-choosable.
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Chapter 5
Conclusion

An improvement on this work will need further knowledge of the structure

of G, especially the understanding of if and when triangles and 4-cycles

can intersect, as most previous work does not allow intersections of such

configurations. It was recently asked by Borodin and Ivanova [Bor13]

Is it true that every planar graph satisfies χ(G) = χl(G)?

One might then ask about the relationship between χl(G) and χla(G).

What, if any, is the connection between the k-choosability of planar graphs

and general graphs?

Some progress has also been made in finding a bound for the k-choosability

of general graphs for 3 ≤ k ≤ 5. In this case, the maximum average degree,

Mad(G) of a graph G is considered [MOR06]. Some recent results have found

bounds of

• Every graph G with Mad(G) < 8
3
is acyclically 3-choosable
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• Every graph G with Mad(G) < 19
6
is acyclically 4-choosable

• Every graph G with Mad(G) < 24
7
is acyclically 5-choosable

where

Mad(G) = {max2|E(H)|
|V (H)|

, ∀H j G}.

These answers is still far off but strides are still being made. I myself

have found many results on the restrictions of intersecting triangles and the

restrictions on the degrees of the vertices of a 4-cycle in an attempt to allow

a 3- and 4-cycle to exist adjacent a 5-cycle. There has been some difficulty in

disproving the existence of some suns, i.e., a polygon with n sides adjacent to

n triangles but early discharging attempts look promising.
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Appendices

Appendix A

List of Symbols

Symbol Description
v The end point of an edge.

k − vertex A vertex with exactly k neighbours.

k+ − vertex A vertex with at least k neighbours.

k− − vertex A vertex with at most k neighbours.

N(v) The set of neighbours adjacent to v.

ni(v) The number neighbours of v having degree i.

t(v) The number of 3-faces incident to a vertex v.

f A polygon enclosed by its outer edges.
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k − face A face with exactly k edges in its boundary.

k+ − face A face with at least k edges in its boundary.

k− − face A face with at most k edges in its boundary.

nj(f) The number of incident vertices with degree j.

(a1, a2, a3)-face A 3-face with vertices having degrees a1, a2 and a3 respectively.

p3(u) The number of pendant light 3-vertices of a vertex u.

(α, β)-path A path coloured with two alternating colours α and β.

w6(f) The number of weak 6-vertices incident a 4- or 5-face.

N2(v) The set of 2-vertices in the neighbourhood of v.

N3(v) The set of pendant light 3-vertices in the neighbourhood of v.

τ(x→ y) The amount of charge redistributed from x ∈ V (G) ∪ F (G) to

y ∈ V (G) ∪ F (G).
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