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Abstract

Complex networks can arise naturally and spontaneously from all things that act as

a part of a larger system. From the patterns of socialization between people to the

way biological systems organize themselves, complex networks are ubiquitous, but

are currently poorly understood. A number of algorithms, designed by humans, have

been proposed to describe the organizational behaviour of real-world networks. Con-

sequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecom-

munications and the social sciences have recently resulted. The algorithms, called

graph models, represent significant human effort. Deriving accurate graph models

is non-trivial, time-intensive, challenging and may only yield useful results for very

specific phenomena. An automated approach can greatly reduce the human effort

required and if effective, provide a valuable tool for understanding the large de-

centralized systems of interrelated things around us. To the best of the author’s

knowledge this thesis proposes the first method for the automatic inference of graph

models for complex networks with varied properties, with and without community

structure. Furthermore, to the best of the author’s knowledge it is the first applica-

tion of genetic programming for the automatic inference of graph models. The system

and methodology was tested against benchmark data, and was shown to be capable

of reproducing close approximations to well-known algorithms designed by humans.

Furthermore, when used to infer a model for real biological data the resulting model

was more representative than models currently used in the literature.
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Chapter 1

Introduction

The main contribution of this thesis is the introduction of the first automated ap-
proach to inferring graph models for complex networks. A complex network is defined
as a collection of interrelated elements where the pattern of relations or connections
between elements is meaningful; they are becoming an integral tool for our under-
standing of an enormous variety of natural and artificial systems [74]. For instance, a
social network is a kind of complex network and the elements in the network are peo-
ple and the connections between them imply friendship [86, 95]. We build networks
like the internet to transmit signals [5, 99], or networks like a citation network to
organize information [22,42,49,76,79], there are many networks found in nature like
food webs, metabolic pathways, gene regulatory networks, and networks of neurons
in the brain [4, 11, 26, 41, 43, 62]. Although real networks are most often very large
and are not entirely regular, nor are they entirely random, making them difficult to
analyze, it is the inherent meaning behind the pattern of connections rather than
the size of the networks, or the difficulty of analysis, that makes them complex. The
nature of complex networks is such that understanding their structure and dynamics
as a whole is vital to understanding of the behaviour of the elements within them,
as well as to understanding the behaviour of processing acting upon them. Unfor-
tunately, our capacity to analyze complex networks is limited due to the prohibitive
time complexity of many graph algorithms, the enormous size of many real networks,
the frequent inability to collect data for whole networks, and the otherwise absence
of many tools capable of providing meaningful information about such networks. For
example, nearly three-hundred years of graph theory [24] have been aided by visu-
alizations [68], and now with many networks consisting of millions or even billions
of vertices (the internet, for example), searching for meaning in a visualization is an
exercise in futility. Our frequent inability to properly study complex networks means
that many systems are still not well-understood, despite their prevalence and impor-
tance in our lives. We require new tools for the study of complex networks that will
enable us to better understand their structure, behaviour, and their functions.

To understand complex networks we must understand why the elements within the
network interact, and to understand why they interact it is crucial to understand how
they came to interact. If the processes that define how elements came to interact can
be described as an algorithm, that algorithm, called a graph model, has an enormous
number of applications. Graph models can be used to validate data sets, produce
synthetic data on which to run simulations or test algorithms, infer how a network
came to its current state, or check for the significance of connectivity patterns in
real data. For example, in epidemics, human contact networks are constructed that
provide information about how people in an environment interact with each other.
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The human contact networks can be used to estimate how a disease will spread and
at what rate, as well as help to devise effective vaccination schemes. However, re-
constructing entire large networks from real data is often expensive, labour intensive,
and time consuming [84]. Furthermore, it is difficult to interpret the data once it
is collected. If a graph model could be derived that was capable of describing how
human contact networks are structured, then it could be used to simulate unseen
populations for which data cannot be collected, to extrapolate on existing population
data, or to describe a contact network with only a few parameters. Furthermore, the
algorithm itself can be analysed in such a way that many properties of the networks
it generates can be computed in their limits.

Many human-designed graph models have been proposed over the last fifty years
that reasonably reproduce specific real-life phenomena (see, for example [7, 21, 41,
43, 50, 79, 97–99]), and these models have been used to great effect in all manner of
sciences, from diagnosing neurological disorders [9, 39, 67] to better understanding
natural languages [27], revealing the structure of the internet [99], and even to better
understand the essential processes of life itself [11, 44, 93]. However, the relationship
that graph models have with the complex networks they model is necessarily a cycli-
cal one: we need to understand a complex network in order to model it in order to
understand it. Therefore, the act of crafting an accurate graph model is a very time
intensive and challenging task that depends heavily upon the ingenuity and knowledge
of the crafter. Naturally, reusing existing models has become preferable to deriving a
model for new kinds of data, sometimes at the risk of using an inaccurate model, and a
large number of researchers have dedicated their time to the task of classifying differ-
ent complex networks such that they may be modelled, at least somewhat effectively,
with existing graph models (see, for example [1,2,4,5,8,13,26,27,62,67,78,88]). How-
ever, the decision as to which graph model should be used is sometimes non-trivial,
e.g., with some brain networks [101], and once a model is selected parameters may
need to be tuned in order to use it effectively. Thus, we have arrived at the major
motivating factors for the work contained in this thesis:

1. Complex networks are ubiquitous, and understanding them will necessarily lead
to a greater understanding of our universe.

2. Graph models are an indispensably useful tool for the analysis and understand-
ing of complex networks.

3. Graph models are non-trivial to design, because complex networks are hard to
understand.

4. It is not obvious how to select an existing graph model to simulate a given
network.

5. It is not obvious how to tune a graph model’s parameters when it is selected.

6. Most importantly, the process of creating graph models has always been done
manually.
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1.1 Main Goals

This thesis proposes the first ever methodology for the automatic inference of graph
models for complex networks, and contends that by automating the process of graph
model construction the challenges of designing, selecting, and tuning a graph model
can be overcome. An automated approach to the construction of graph models would
significantly reduce the amount of human effort required to create a model, and
would be particularly useful in cases where existing graph models do not exactly
fit the features of the network or networks at hand. The ease of designing a graph
model robust to more specific or exotic networks would eliminate the need to select or
tune an existing model where human efforts have failed to produce accurate models.
Furthermore, automatically generated models may out-perform human attempts at
constructing graph models, especially when a good model may exist but remains du-
bious to human designers because the network at hand has a large number vertices or
edges making it difficult for a human to identify patterns in vertex connectivity. The
utility of an automated approach is undeniable, providing it is capable of generating
accurate and meaningful models.

Secondly, this thesis proposes the first ever application of genetic programming
(GP) for the task of graph model inference. Genetic programming, inspired by pop-
ulation genetics and Darwin’s theory of evolution, “evolves” populations of programs
representing solutions to a problem, by allowing the most fit to mate while the least
fit die out – the best solution in the population after some number of generations
is saved. Genetic programming is a natural fit to this problem because the goal
here is to reproduce an algorithm that grows a structure, an application at which
GP excels [54, 77]. Genetic programming has also been shown to produce good re-
sults in areas where the domain is not well understood [52, 53]. Further motivation
for the use of GP results from the multi-objective nature of the problem, whereby
multiple graph structure properties must be simultaneously considered during the
design process. There is a large body of work concerning multi-objective strategies
for Evolutionary Algorithms (EA) [15,102].

1.2 Challenges and Contributions

The application of GP to the task of automatically creating graph models is non-
trivial, especially given that there is no prior work on this problem. First, it should
be noted that there are many different types of networks: dynamic, static, weighted,
unweighted, directed, undirected, etc. Each network type has its own unique chal-
lenges and to design a methodology capable of deriving models of each type is far
beyond what could be accomplished within the scope of this thesis. Therefore, the
focus of this thesis is on undirected, unweighted networks, which are very general and
find applications in many areas. Three major challenges exist in the design of a GP
methodology for inferring graph models of any kind, however the comments here are
made with undirected, unweighted, networks in mind. The first: how should a fitness
function be defined? The second: how can a GP language / function set be effectively
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designed? The third: how do we know the results are meaningful?

1.2.1 Fitness Function

Genetic programming relies on an ability to gauge the fitness of a program for its
purpose. In the case of evolving graph models, the GP needs to know how well
a program in the population approximates the underlying process that created the
network at hand. If this information was known a priori then GP would not be
needed to construct a graph model. However, the information required should be
somehow encoded into the network of interest, which must be somehow compared to
the programs in the GP population. Of course, a network cannot be compared to a
program, so the programs in the population must be used to generate networks to
which the network of interest must be compared. Now this has become a problem
of graph comparison, however, the goal is not to reproduce a specific network (this
is not an isomorphism problem), but rather to reproduce the underlying processes
which created that network, and those processes are likely capable of generating a
large number of different graphs. This thesis proposes that statistical measures of
the large-scale structure of the network are sufficient to construct a fitness function,
as evidenced by empirical studies of such measures and their ability to predict the
behaviour and dynamics of processes enacting on complex networks [6,94], as well as
their continued use in classifying different types of complex networks.

1.2.2 Function Set

Genetic Programming requires a set of functions related to the task at hand in order
to construct meaningful programs for the population. Since no prior work could be
drawn from to derive a function set it was not obvious how to do so. The function set
must be of sufficiently high-level to express meaningful relationships, allowing GP to
not become bogged-down in its search for useful constructions, while being expressive
enough that a large variety of models can be created. This thesis proposes the first
GP language for the construction of graph models for complex networks.

1.2.3 Validation

Once the GP system is designed and a graph model generated, it cannot be assumed
that the model is meaningful or useful. To validate the system and gauge its ability
to infer meaningful models, it was first used to re-create human designed models
from benchmark networks created by the Erdös-Rényi, Watts-Strogatz, and Barabási-
Albert models, three well-known and very different graph models. Each benchmark
model was designed by humans and each one represents a significant advancement in
our ability to understand and study complex networks. The resulting evolved models
were sampled and the networks generated by the evolved models were rigorously
compared to the benchmark networks. More importantly, the evolved algorithms
could be directly compared to the known algorithms that generated the benchmark
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networks – GP proved very capable of creating close approximations to the human-
designed models.

To further evaluate the GP approach, it was used to infer a model for a real-world
network common in computational neurology literature, which represents a cat’s cor-
tex. The cortical network is interesting because there has been some disagreement
as to which graph model is best suited to approximating the data, and at least one
author that found commonly applied graph models to be insufficient [101]. The cor-
tical data also possesses a common organizational feature of networks in which some
groups of vertices are more densely interconnected than others, and is said to exhibit
community structure. With some small extensions to the original methodology, the
GP was able to create models capable of accounting for the community structure of
the cortical network, and outperform commonly used human designed models.

1.2.4 Contributions

In summary, the following major contributions are made by this thesis:

1. Proposes the first ever methodology for the automatic inference of graph models
for complex networks.

2. Proposes the first ever application of GP to the problem of automatically infer-
ring graph models for complex networks.

3. Proposes a fitness function suitable for evolving graph models for complex net-
works.

4. Proposes a GP function set for the construction of graph models for complex
networks.

5. Proposes a methodology for automatically inferring graph models exhibiting
defined community structure.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 provides a brief
summary of the study of networks over the years, and takes an intuitive tack at
familiarizing the reader with some real-world networks and the concept of a graph
model. Chapter 3 provides the tools necessary to understand and analyze complex
networks as graphs within the context of this thesis. Having the requisite tools,
Chapter 4 describes some common graph models that have been used to model real-
world systems and have been used to generate benchmark data, or have been the
source of inspiration when designing the GP function set. Chapter 5 gives a short
overview of GP and details its workings, leading into Chapter 6 which describes the
exact methods used by the proposed GP system. Chapter 7 shows how the system
was used to reproduce some of the models discussed in Chapter 4 and Chapter 8 shows
how the system was used to infer a model for the cortical structure of a cat. Finally,



Chapter 1. Introduction 6

Chapter 9 offers some conclusions and reflections on this work as well as motivation
for future work. Additionally, for interested readers, there are three appendices A,
B, and C, which describe some of the early results of this work, as well as expanded
results not shown in Chapter 7 and 8.
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Chapter 2

Complex Networks and Graph
Models

Complex networks are everywhere, they often arise naturally, and as such the pro-
cesses which govern their behaviour and structure are usually decentralized. Their
decentralized nature has two implications. First that their structure is not always
obvious because it is emergent from a collection of interrelated things, and second,
that an understanding of the rules governing how elements interact reveals an under-
standing of the structure as a whole. It may be expected that networks of the same
kind can be characterized in the same way, e.g., two different groups of people might
have similar patterns of socialization. Perhaps more interesting is that two networks
of apparently different kinds can also be characterized in the same way, e.g., social-
ization patterns of children and the Internet. Observations of this kind have led to a
push to identify properties common to all or many networks, and a few prevalent fea-
tures have been the focus of a large number of studies. Various properties of complex
networks will be defined and discussed in the next chapter. This chapter provides
some context for the modern study of networks by giving an overview of the study
of networks through the years. This chapter also provides a vehicle to familiarize the
reader with a number of real-world networks and the categories to which they belong.

2.1 Complex Networks

The study of networks is intimately related to the field of graph theory, which has
formed the foundation for observations and analytical treatment of various networks
that have been the object of interest across different disciplines. However, many of
the questions posed by traditional graph theory consider only small groups of vertices
in practice, which is impractical relative to the millions of vertices in many real-world
networks [68]. It has become necessary to find ways to characterize and study the
structure of large networks, shifting the focus away from traditional graph theoretic
approaches, although the new approaches are deeply rooted in graph theory. The new
forms of complex network analysis are typically statistical in nature [68] or look for
the significance of connections relative to a null model of random connections, and
have been able to shed some light on the structure of very large networks.

The social sciences have had a long standing history of studying networks, and
some of the earliest studies of real networks come from that discipline [30]. The social
sciences are naturally concerned with the interactions of people, social networks, in
which the elements are people and two elements are linked if they interact. Early
studies of social networks appeared in the 1930s, a notable study by Moreno focused
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on the friendship patterns of small groups of children [63]. Moreno observed patterns
of association related to the number of friends people already had, similar levels of
motivation, etc. The study was important because it marked a new era of social
study through networks, Moreno himself introduced the sociogram, a graphical rep-
resentation of a network of people, and the macroscopic study of social phenomena
called sociometrics revealed through his sociograms. Another famous study, focused
on social patterns between a group of 18 women in a community in the Southern
United States [18]. The study reports that the women had organized themselves into
two distinct groups, and by looking at maps of their interactions, it was possible to
determine which person played a core or peripheral role in those groups, based on
the kinds of events they attended. The “southern women” network has also known
to possess some interesting properties and details in its organization that are not
obvious, despite the data set being small [32]. The southern women study contin-
ues to be important today because it is an excellent example of the complexity and
subtleties of the organization of even small networks. The southern women study
also posed a precursor to the problem of giving the terms “group” and “position”
an exact definition in the context of a social environment which saw nearly everyone
interact with each other [32]. Finally, an important study by A. Rapoport should
be mentioned, as he may have been the first theorist to stress the importance of the
degree distributions in all kinds of networks, not just social networks [68,80].

These developments have come to play a crucial role in the modern study of
networks and their organization. However, early studies often suffered from problems
of inaccuracy or bias, this was perhaps unavoidable given that the primary method
of social data collection was by interview or survey [74]. Once the challenges of data
collection were realized, many studies shifted their focus to more reliable sources of
data, such as co-authorship networks. Co-authorship networks can be reconstructed
from publication records, are a kind of collaboration network (which is itself a kind
of social network), and are usually expected to be accurate (because people take
authorship seriously) [68]. Co-authorship networks naturally bring to mind a related
kind of network, a network of publications, in which two publications are linked if one
cites the other. This is a new kind of network, and brings us to our next category.

Information networks are typically networks of abstract things and the links be-
tween them represent the sharing or flow of information. Citation networks are a
good example of information networks which possess many interesting properties (in-
teresting enough that the study of citation networks has a name, bibliometrics) [22].
Citation networks were an excellent source of reliable data for early studies of net-
works, and have been the basis for some important observations. For instance, work
by Price showed that papers in a citation network which already had some citations
were more likely to be cited than those papers which had fewer citations. He called
this property cumulative advantage [79], and although Price made some vague refer-
ences to other “social phenomena”, he himself focused only on the role of cumulative
advantage in citation networks. Although, his ideas served as a catalyst for the study
of other networks of information in which the same phenomena can be observed.
For example, Price’s phenomena is also observed in the network of co-occurrences of
words in sentences [27], as well as the number of hyperlinks a webpage on the World
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Wide Web (WWW) will have pointing to it [42]. The WWW is of course, related to
another network of a different category, called the Internet.

Technological networks, are typically made up of machines that pass signals or
commodities. Power grids, for example, have been studied in the past [97]. Airline
routes [5], are another example of a technological network. Distribution and collec-
tion systems also fall into this category [74], and so some natural systems also fall
into this category such as river systems. A network of particular significance is the
Internet, the Internet differs from the WWW, as it is not a conceptual network of
information but a physical network of computers and other devices that are linked to-
gether by physical (or maybe wireless) connections [99]. The Internet naturally has a
hierarchical structure, Network Backbone Providers (NBPs) connect Internet Service
Providers (ISPs) that finally connect end users. However, the specific structure of
the Internet is maintained by different entities, and there is no central authority that
knows routes between autonomous systems, this is handled by a reachability protocol
called the Border Gateway Protocol (BGP) [74].

We have seen that technological networks, such as the internet, are capable of
operating in a decentralized way, and the same is true of many biological systems.
Biological networks are the final category of networks, and in this category exists
many fascinating systems. For example, metabolic pathways, which are a series of
chemical reactions within a cell that are catalysed by enzymes and are responsible
for necessary cellular functions [44]. Another example of a biological network is a
Protein-Protein Interaction (PPI) network, the network is formed by proteins, which
interact with each other physically “folding” each other into shapes that define their
function [11].

Many of the networks mentioned require specific properties to function properly.
Communication networks require short routes between points in the network for effi-
cient signal transmission, as well as a relatively small number of links between points
because of the costs associated with creating links. It is not hard to imagine that
biological networks may have similar constraints, i.e., there are many biological com-
munication networks and it costs energy for biological systems to produce anything.
Many networks require fault tolerant structures, robust to the failure of random or
targeted attacks on network infrastructure, such as in communication networks or
gene regulatory networks. These factors manifest themselves in similar ways across
networks with entirely different functions, such as multiple alternative short routes
between any two points [97], or the presence of highly connected “hubs” within the
network [7]. Vertices with common functions or that require more frequent inter-
communication will often arrange themselves into tightly knit “groups” which are
less connected to the rest of the network than they are with each other [73]. Fig-
ures 2.1, 2.2, 2.3, and 2.4 show plots of a social network, an information network, a
technological network, and a biological network respectively. The reader is invited to
examine the figures for evidence of interesting structures and structures common to
more than one network.

Perhaps the most fascinating thing about the organization of the networks men-
tioned in this chapter, is that they have no central planning agent. Network organi-
zation arises naturally from the function of each element within the network as the
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network grows. The processes governing the growth and dynamics of complex net-
works have therefore garnered an increasing amount of attention in the literature, as
an understanding of these processes constitutes a much deeper understanding of the
network as a whole [7,37,50,56,74,93,97]. As a side effect to learning the underlying
processes governing the behaviour and structure of networks, algorithms called graph
models can be created, which are capable of constructing simulated networks with
behaviour and organization similar to real networks of importance.

2.2 Graph Models

A graph model is an algorithm designed to simulate the processes which govern the
connection patterns between elements in real networks. Graph models are usually
probabilistic in nature, and capable of producing an infinite set of networks, all similar
to each other in some way (Figure 2.5 illustrates this process). If an algorithm can
successfully be designed, which produces graphs that share similar properties with a
real-world network then we can say we have a graph model for that network. Note
that it is not necessary that the model reproduce the exact network it is modelling.
In fact, it is preferable that it does not do this. A real-world network is most likely
one instance of how such a network could form, graph models provide information
about all networks with the same growth dynamics.

Graph models, can be used to simulate large networks when collection of real
data is not feasible due to cost, or technical limitations, or predict how a network will
change over time. If a collection of networks are simulated, the impact of destructive
or diffusive processes on modelled networks can be explored. Graph models can also
provide useful null models that can be used to check for the significance of patterns
in real data. Furthermore, the models can be used to validate large noisy data sets,
or to solve for behaviour in the limit of large networks.

The genesis of network modelling is usually associated with a 1950’s publication
of the Random Graph Model by Erdös and Rényi [23], and the random graph was
used to inform many studies of network organization until the publication of the the
Barabási-Albert (BA) model [7] and the Watts-Strogatz small-world (WS) model [97].
The BA model and the WS model characterized some seemingly universal properties
of a large number of real networks which could not be explained by the random
graph. Since then, a variety of models have been proposed [37,41,50,56,93] and used
to study the behaviour of many networks with great success. For example, graph
models have been used to study the spread of disease [6], assist in the diagnosis
of degenerative brain diseases [20, 90], characterize brain activity in patients with
epilepsy [67], simulate the effect of white-matter lesions on the brain [45], discern
the organization of cortical structure in mammalian brains [83], better understand
the function of interacting proteins [93], explore the topology of the internet [99],
scientific collaboration networks [8], metabolic networks [26], food webs [62], and
many more [74].

For more than fifty years humans have been constructing graph models manually,
and they have proven to be useful tools. However, a significant amount of human
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Figure 2.1: The personal friendship
network of a faculty of a UK univer-
sity [65].

Figure 2.2: Citations between papers
in high energy physics between Jan.
1992 and June 1993, isolated from
data published in [55].

Figure 2.3: Airline routes between
Canadian airports, network recon-
structed from data in the OpenFlight
database [92].

Figure 2.4: Connections between cor-
tical areas of a Macaque monkey (one
vertex represents a large number of
neurons) [75].
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Figure 2.5: A graph model produces a set of graphs

effort and domain knowledge is required to construct graph models accurately. Fur-
thermore, it is also not always clear how to select a model for a given network.
Automatic construction or inference of graph models contributes a solution to both
challenges. Providing researchers with a method for quickly creating accurate graph
models for any real-world network could facilitate a deeper understanding of many
complex systems, leading to more of the important discoveries existing graph models
have afforded. The remainder of this thesis will focus on how to facilitate the auto-
matic inference of graph models, the challenges encountered while seeking a solution,
and some necessary and thorough results that serve as validation for the proposed
mechanism. Following the initial analysis some exciting results are presented, showing
the performance of the system on real-world data. However, some basic definitions of
graph theory and properties of networks must first be given in the proceeding chapter.
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Chapter 3

Measurable Properties of Networks

This chapter provides an overview of many useful measures that can be used to
quantify network structure. The measures permit inferences concerning the structural
or functional behaviour of the network, while also providing a means to ascertain the
dis/similarity of two networks by the presence or absence of particular properties.
While some of the properties come directly from graph theory, some have also found
their way into the study of networks from physics and the social sciences. The study
of real-world networks is most usually complimented by measures which consider
the large-scale dynamics of the entire network, and come in the form of statistical
measures.

There are a very large number of results and properties related to networks. Only
those relevant to this thesis will be discussed here, beginning with defining graph
representations in Section 3.1, followed by some basic graph properties in Section 3.2,
and finally descriptions of the large-scale organization of networks in Section 3.3. A
comprehensive overview of network properties can be found in [74].

3.1 Representation

A graph is the mathematical abstraction of a network, and a graph G is defined such
that G = (V,E) where V is the vertex set and E is the edge set, the size of the vertex
set is |V | = n, and |E| = m. Graphs can be represented in a number of different ways,
and each way has some advantages and disadvantages. For mathematical treatment
they are typically represented as an adjacency matrix, which is an n × n matrix
of values in which the value at the ith row and jth column is non-zero if vertex j
is connected to vertex i (or more succinctly iff (i, j) ∈ E) [74]. Graphs can also
represented as an adjacency list, which is a list of lists where the ith list will contain
j if vertex i is connected to vertex j.

Graphs may also be represented as an edge list which is a list of tuples, where
a tuple (i, j) is in the list if vertex i is connected to vertex j. The latter two are
sometimes used for digital representation because they require less space (linear in
terms of edges and vertices versus quadratic with respect to vertices). However,
adjacency matrices are more intuitive and more convenient to manipulate using matrix
operations on paper. Fig. 3.1 gives an example of an adjacency matrix, and the
corresponding graph is shown Fig. 3.1.

Some observations can be made about the adjacency matrix in Fig. 3.1, it is
symmetric, the values are binary, and the diagonal consists of all zeros. This kind
of adjacency matrix corresponds to simple graphs [74]. If the diagonal contained
non-zero elements they would correspond to a self-edge or self-loop in which vertex
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A =


0 1 1 0 1
1 0 0 1 0
1 0 0 1 1
0 1 1 0 0
1 0 0 1 0

 . Aij =

{
1 if there is an edge from j to i
0 otherwise

Figure 3.1: An adjacency matrix.

Figure 3.2: The graph corresponding to the adjacency matrix in Fig. 3.1

i connects to itself [74]. If the elements were not binary the values in the matrix
could correspond to multiple edges connecting i and j, called multi-edges, or possibly
a graph which had weights associated with the edges, a weighted graph [74]. If the
adjacency matrix was not symmetric then it would correspond to a graph in which
the edges were not bi-directional, called a directed graph, meaning i may be connected
to j without requiring that j be connected to i [74]. If a graph contains self-loops,
multi-edges, weights, or directed edges it is not simple [74].

Undirected, unweighted, graphs are sufficient to capture the structure of a large
number of networks, and often a relaxation from a directed graph to an undirected one
can reasonably be made in cases where the majority of associations between vertices
are bi-directional. For purposes of this thesis only undirected, unweighted, graphs
are considered.

3.2 Properties and Measures

This section will provide some basic definitions and properties of graphs which can
be used to describe facets of a network, and upon which a greater understanding
of networks can be built. As with the rest of this thesis, properties are given with
respect to undirected unweighted graphs, which is the focus of this thesis.
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3.2.1 Degree

Perhaps the most basic, albeit, very important property of a vertex is its degree. The
degree of a vertex in an, undirected and unweighted graph corresponds to the number
of edges connected to it. Given n vertices in such a graph, the degree ki of vertex i
can be written in terms of the adjacency matrix A as [74]

ki =
n∑
j=1

Aij. (3.1)

The number of edges m in the graph can also be expressed in terms of the vertex
degrees. Given that there are two ends of an edge for every node the number of edges
is

m =
1

2

n∑
j=1

ki, (3.2)

and the average vertex degree c is computed as

c =
1

n

n∑
j=1

ki =
2m

n
. (3.3)

It is also useful to note that the maximum possible number of edges in a simple graph

is

(
n
2

)
= 1

2
n(n− 1), i.e., the number of all two-tuples (i, j) ∈ E where i, j ∈ V and

|V | = n.

3.2.2 Paths

A path in a network is made up of a sequence of vertices P = (p1, p2, ..., pm) such that
for every consecutive pair of vertices pi−1 and pi there is a tuple (pi−1, pi) ∈ E. That
is to say, there is an edge joining consecutive vertices in a path. The length of a path
P is the number of edges traversed or |P | − 1. Generally speaking, a path can revisit
edges or vertices, or intersect itself, however, a path that does not do these things is
called a self-avoiding path.

A specific kind of self-avoiding path, called a geodesic path, or path of shortest
length between two vertices (a path can always be made shorter by removing a loop or
not backtracking) is of particular interest [74]. Geodesic paths play important roles
in communication networks or networks on which diffusive processes are at work.
Geodesic paths are not always unique, and it is simple to construct a graph which
has more than one geodesic path between two vertices. See Fig. 3.3.

It is often useful to characterize the network by the average geodesic path length or
characteristic path length [97], which describes the average communication or distance
of travel between any pair of vertices. The average geodesic path, l, can be computed
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Figure 3.3: A graph with multiple geodesic paths from i to j.

as [74]

l =
2

n(n+ 1)

∑
i≥j

dij, (3.4)

where dij is the geodesic path length between vertices i and j in an undirected graph.
A specific geodesic path, called the diameter of the network, is defined as the

longest geodesic between any vertex pair i and j. It is important because it provides
an upper bound on the length of communication pathways between points in the
network

Geodesic path lengths can be found by traversing the network using a breadth
first search (or any search algorithm). Search algorithms will not be discussed here,
but an excellent overview of search algorithms can be found in [82], or see [74] for a
collection of algorithms relevant to graph searches.

3.2.3 Betweenness Centrality

The concept of centrality is used to describe how important a vertex may be within
a network [74]. There is more than one way to decide how important a vertex is
within a network, and a commonly used measure of centrality considers how many
geodesic paths pass through a vertex i, and the count is normalized by the number of
geodesic paths in the network. This measure of centrality is referred to as betweenness
centrality [31]. Vertices with relatively high betweenness centrality values can have a
significant influence on the flow of information within a network given that messages
will usually be ushered along the shortest path between any two points. The removal
of nodes with high betweenness therefore can be very disruptive to network commu-
nication. Consider the large vertex in Fig. 3.4. It necessarily has high betweenness
because it controls the flow of information between two large clusters of vertices, re-
moving it would disconnect those clusters from each other and block communication.
Betweenness centrality xi for a vertex i is computed as

xi =
1

n2

∑
st

nist
gst
, (3.5)
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Figure 3.4: The large node in the graph has the highest betweenness, removing it
would disconnect the graph into two separate subgraphs.

where nist is the number of geodesic paths from vertices s to t which pass through
vertex i, and gst is the total number of geodesic paths from s to t. By convention it

is usual to set
ni
st

gst
= 0 if there are no paths from s to t [74].

3.2.4 Closeness Centrality

Closeness centrality measures the importance of a vertex in the network by measuring
its mean distance to other vertices in the network [74]. The logic behind this measure
being that other vertices may need to be close to important vertices in a network
above being close to unimportant vertices. For example, in a collaboration network
of actors in which two actors are linked if they worked on the same film, an actor with
high closeness centrality has likely worked with a large number of actors or a small
number of actors who have worked with many others [74, 97]. Closeness centrality is
defined as [74]

Ci =
n∑
j dij

, (3.6)

where dij is the geodesic path length between i and j.
There are some problems with closeness centrality, for example it tends to have a

low dynamic range due to a property of many networks in which the average geodesic
path length between most nodes is small. It is not clear how to apply the measure
when some vertices are completely disconnected from others, and is typically only
used for groups of connected vertices.
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3.2.5 Other Centrality Measures

There are many other ways to define the centrality or importance of a vertex in
a network, and indeed there have been many centrality measures proposed in the
literature. However, most of them do not find an immediate application in this
thesis, but a brief overview of some of them will be given here for cohesion.

Perhaps the most obvious way to describe the importance of a vertex is by the
number of connections to other nodes it has. This measure of centrality is called
degree centrality. The degree is a fairly straightforward and intuitive way of measuring
importance. For example, a person in a social network with many friends might be
expected to be important. Although, this measure does not capture other important
information. For example, the large vertex in Fig. 3.4 would have a low degree
centrality but should probably be considered important in some way.

Another measure of centrality might consider the importance of a vertex’s neigh-
bours. For example, a person in a social network with a few very influential friends
may be considered more important than a person in a social network with a large
number of less influential friends. Quite a few centrality measures take this line of
reasoning, with the most basic possibly being eigenvector centrality [12]. Eigenvector
centrality works by first assigning an initial centrality estimate, xi = 1, to all vertices.
A better estimate x′ is generated iteratively as

x′i =
∑
j

Aijxj, (3.7)

where A is the adjacency matrix. In matrix form, x′ = Ax, where x is the vector of
elements xi. After t steps a vector x(t) of centralities is given by

x(t) = A′x(0), (3.8)

The important property to be noted is that the eigenvector centrality measure
will assign vertices with high degree a high importance as well as vertices which are
connected to other important vertices. Eigenvector centrality has some problems on
directed graphs that are addressed by other proposed centrality measures such as
Katz centrality [46], PageRank [76], and hyperlink-induced topic search (HITS) [49].
However, directed networks are outside the scope of this thesis and these centrality
measures will not be discussed here.

3.3 Properties of Overall Graph Structure

3.3.1 Clustering Coefficient

The number of triangles in many real-world networks is much higher than expected
when compared to a network comprised of random connections, where the probability
of finding a triangle should decrease with the size of the network. To illustrate the
point: given a randomly connected network the degree of each vertex k would be
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roughly the same, based on the number of edges we chose to add to our random
network. Given three vertices i, j, z, and knowledge that ∃(i, j), (j, z) ∈ E then then
it is straightforward to see that the probability of z being connected to i should be1
k
n
. Obviously as n→∞ the probability of (z, i) ∈ E should become very small. As it

turns out, this is not the case for a great number of real-world networks (which will
be discussed a little later in this chapter, or see [68]).

It is easy to imagine why some real-world networks may contain so many triangles,
consider for example the “a friend of a friend is my friend” relationship in social
networks – given two friends, A and B, and a third person C, who is a friend to A, B
is probably also a friend of A. Besides the dynamics of social relationships, in other
networks it is easy to imagine that triangles may imply functional relationships or
arise due to spacial proximity of vertices.

The global clustering coefficient, or simply clustering coefficient, or sometimes
transitivity, provides a measure of the number of triangles in a network, normalized
by the number of “possible triangles”. A “possible triangle” or connected triple [68]
is a set of three vertices connected by at least two edges such that if a third exists
then the connected triple would also be a triangle. Therefore the clustering coefficient
can be defined as

C =
number of triangles× 3

number of connected triples
. (3.9)

The factor of 3 exists because in an undirected network a triangle is counted three
times depending on the vertex used as the starting point. This definition assumes
triangles are being counted only once at each vertex, but if triangles are being counted
twice (once for each direction) then the factor of 3 would become a factor of 6.

The clustering coefficient also has a local counterpart, Ci, which can be used to
assign a clustering coefficient to a single vertex i. This is done by considering all pairs
of vertices which are neighbours to i and computing the fraction of those neighbours
which are also connected to each other. The local clustering coefficient is defined
as [74]

C =
number of pairs of neighbours of i that are connected× 3

number of pairs of neighbours of i
. (3.10)

Note that the number of pairs of neighbours of i is

(
ki
2

)
= 1

2
ki(ki − 1). The local

clustering coefficient can be considered as a measure of the number of redundant
paths between neighbouring vertices, and is often found to have a lose dependence on
vertex degree as vertices with higher degree tend to have lower values of Ci (although
this is a lose observation, not a rule) [74].

1This is a fairly crude calculation but it suits the illustration and is not incorrect given the
assumptions.
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The average of the local clustering coefficients is also sometimes used as an ana-
logue to the value of the global clustering coefficient, defined as [74,97]

CWS =
1

n

n∑
i=1

Ci. (3.11)

However, (3.11) is not equivalent to (3.9) and tends to be dominated by large numbers
of nodes with small degrees, skewing the value away from what would be given by
(3.9) [74]. In the context of this thesis the terms clustering coefficient, and transitivity
will refer to the global clustering coefficient defined in (3.9).

3.3.2 Small-world Effect

The small-world effect states that the average distance between any pair of nodes in
a network tends to grow only logarithmically with respect to the number of nodes in
that network [74]. The small world effect does not apply to all networks, but it has
been shown to be true in many [5, 97]. The property was demonstrated, and made
famous by Stanley Milgram, a social scientist, in the 1960s [58] by his small-world
experiments. Milgram demonstrated the small-world effect by sending 96 packages to
randomly chosen recipients which instructed those recipients to attempt to get those
packages to a specified target individual who lived over 1500 kilometres away. The
initial recipients were given the name and address of the target but were instructed
to send their packages only to people they knew on a first-name basis, who were then
to do the same. Eighteen of the 96 packages arrived at their targets, and the mean
length of the journey of the packages was found to be 5.9 steps. A remarkable result.
This result may be surprising because [96]:

• The number of people in the world is large (billions).

• People are acquainted with a number of people, which at most is on the order
of thousands.

• The network of acquaintances is decentralized, that is to say there is no one
person who knows everyone.

• Circles of friends are usually overlapping – friends of one person are generally
friends with each other.

However surprising, the small-world property explains many network phenomena
such as why many message-passing systems are able to work efficiently on many
kinds of decentralized networks. For example, communication packets sent across
the Internet are typically expected to arrive in a small number of steps even though
the exact location of the destination computer is not usually known by the sending
computer. Examples of the small-world effect in real networks will be discussed
further in Section 4.2. It is also important to note that the small-world effect is often
used to refer to not only short path lengths, but a high clustering coefficient [97], as
is observed in social and other networks.
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3.3.3 Degree Distribution

The degree distribution refers to the probability distribution that corresponds to
choosing a random vertex with a given degree within a network [74]. The degree
distribution is constructed from a simple network by finding all of the values pk for
the number of nodes fk with degree k = 0, 1, ..., n− 1 such that

p0 =
f0
n
, p1 =

f1
n
, ..., pn−1 =

fn−1
n

, (3.12)

where n is the total number of vertices in the network. For networks which are not
simple, the term n − 1 would be changed to the maximum degree in the network.
An essentially equivalent construct is the degree sequence of the graph, which is the
sequence k0, k1, ..., kn where ki is the degree of vertex i. Degree sequences are often
sorted so that the degrees are listed in increasing or decreasing order.

The degree distribution can reveal quite a bit about a graph’s structure. For exam-
ple, Fig. 3.5 shows the (truncated) degree distribution of the network of autonomous
systems on the Internet [70]. The skewness of the distribution shows us that the
internet is dominated by systems with very few connections (∼ 90% of all systems
have fewer than 5 links), while a very small number of systems have a large number of
connections (the largest degree is 2390 in this data set). The highly connected nodes
are called hubs, and they are a common and interesting property in many real-world
networks and will be discussed further in the next subsection. The degree distribu-
tion is often enough information to identify networks with very different underlying
structure, or networks that were generated by very different processes [68, 74]. Con-
sider Figure 3.7 that plots the degree distributions of two 100 vertex graphs, each one
produced by a different graph model. One distribution shows that most vertices in
the graph have a degrees of roughly 6, give or take 3 vertices, a relatively small range.
The other distribution possesses hub nodes similar to those found in Fig. 3.5. From
the degree distribution plots we can infer that the graphs are probably not similar in
structure and this is typical of graphs produced by very different models.

Although the degree distribution can reveal interesting structural properties of
networks, it should be stressed that it does not give all structural information alone
(this is probably obvious). Consider, the two graphs in Figure 3.6; the graph on
the left and the graph on the right have the same degree distribution but are not
equivalent.

Scale-free Networks

Scale-free is a term that refers to networks with a particular kind of degree distri-
bution, and in fact we have already seen a scale-free distribution in Fig. 3.5, and
discussed some scale-free networks in terms of Price’s cumulative advantage property
found in citation networks. The term means that the degree distribution, at least
roughly speaking, follows a power-law such at the probability pk of a vertex having
degree k is

pk = Ck−α, (3.13)
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Figure 3.5: The degree distribution of the internet at the autonomous system level [70]

Figure 3.6: Two non-equivalent graphs
with the same degree distribution

Figure 3.7: The degree distributions of
a graphs produced by two different graph
models.
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Figure 3.8: The degree distribution of the internet at the autonomous system level, loga-
rithmic axes [70]

where C is some constant and, α is the exponent of the power law distribution. Many
real world networks have a values in the range 2 ≤ α ≤ 3 [3, 74]. If (3.13) is restated
in terms of the logarithm of the degree distribution it is also plain to see that if the
distribution follows a power law then vertex degrees should decrease linearly such
that

ln(pk) = −αln(k + c), (3.14)

where c = ln(C). If the distribution in 3.5 is re-plotted on logarithmic axes (a log-log
plot) the relation is somewhat apparent as shown in Fig. 3.8, although the histogram
is noisy because the bins appear to become smaller as the space along the x axis is
compressed. A better option for plotting scale-free degree distributions is to adjust
the bin sizes of the histogram so that they increase logarithmically, such that the nth

bin covers the interval an−1 ≤ k ≤ an. The value of a is often chosen to be 2 [74]. In
many real-world networks only the tail of the distribution follows a power-law, and in
these cases excluding the first bin from the histogram will provide a cleaner looking
plot. Figure 3.9 shows another log-log plot of the degree distribution of the internet
at the autonomous systems level, this time with logarithmic bins with a = 2 and
excluding the first bin. It is more obvious from this plot that the frequency of nodes
of degrees decreases linearly as the degree increases, suggesting that at least the tail
of this degree distribution probably follows a power-law.

Although plotting the degree distributions can provide some idea as to whether
or not the degree distribution for the network in question follows a power-law, it can
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Figure 3.9: The degree distribution of the internet at the autonomous system level [70],
log axes, log bin sizes. The linearly decreasing degree frequencies are a good indication that
this is a scale-free network.

introduce bias. It is better to compute the value α by using the following formula [14]

α = 1 +N

[∑
i

ln
ki

kmin − 1
2

]−1
, (3.15)

where kmin is the minimum degree for which the power law holds, N is the total
number of vertices having a degree k ≥ kmin, and the sum is over those same vertices
rather than all vertices. The statistical error, σ, can be computed as [14]

σ =
√
N

[∑
i

ln
ki

kmin − 1
2

]−1
=
α− 1√
N

. (3.16)

It should also be noted that (3.15) is an approximation of the full formula also pro-
vided in [14]. The full formula has no closed form, making it difficult to compute.
The full form is required if kmin is less than about 6, however, the approximation is
suitable for most networks [74]. The value of α, when computed for the autonomous
systems data is about 2.1, falling within the expected range of power-laws for real-
world networks.
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Figure 3.10: The co-authorship relations between scientists in the field of network science
[69]. The network has many components, with one large one.

3.3.4 Components

A connected component, or simply a component in the case of undirected networks
refers to a set of vertices that are interconnected such that every vertex pair in the
component is connected by at least one path. Although they will not be discussed
in detail here, directed networks require a slightly different definition of component.
Directed networks have both weakly connected components in which every vertex pair
is connected by a path if the edges are made unidirectional, and strongly connected
components in which no modification to edges is needed to connect every vertex pair
by a path.

Real-world networks are often made up of multiple components [74]. For example,
a network of co-authorship patterns in the field of network science [69] as shown in
Fig. 3.10 has one large component and many smaller ones. As it turns out, this is
common of many networks and it would be unusual to find a network with two large
components of the same size [74]. The reason for the ubiquity of one much larger
component can be demonstrated by an intuitive argument. Suppose there were a
network with two large components such that each contained half of the vertices.
This would mean that there would be 1

4
n2 possible pairings of vertices in different

components, and if any of those pairs were to join then the two large components
would become a single component. Similarly, suppose there is already a much larger
component which includes 2

3
n vertices and a smaller component which includes 1

3
n

vertices. There are 2
9
n2 ways for those components to join.
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The existence of components in a network can have some impact on other prop-
erties discussed in this chapter, such as the average geodesic path length. When two
vertices are in separate components there is no path to join them, and so the geodesic
path length between them is undefined. There are different approaches which can be
used to handle this type of situation. For example, never consider two vertices which
are not connected by at least one path, so when computing the average geodesic path
the average of geodesic paths in each component is returned. Another approach is
to assign the value of n which is greater than the maximum possible path length to
the geodesic path length of node pairs in separate components. Similar complications
arise when computing diameter, betweenness and closeness centrality. However as
they all depend on computing geodesic paths these are handled implicitly by correct-
ing the problem with geodesic path length.

3.4 Community Structure

The final property of networks which will be discussed in this chapter is called com-
munity structure. The term community structure comes from the study of social
networks, but used generally it refers to densely connected groups of vertices with
sparse connections between groups [71]. The densely connected groups are some-
times referred to as modules, communities, or clusters. Dividing a graph into separate
communities based on natural divisions is called community detection or sometimes
clustering2

Communities are different than components because more than one community
can exist within a component. Dividing a network into communities is useful because
it reveals additional organizational dynamics of the network beyond a single vertex
or necessarily a fixed group of vertices. For example, recall the network representing
associations between faculty members in a university shown in Fig. 2.1, the network
is comprised of one large component, and portions of the network corresponding to
departments are clearly more dense; a good community detection algorithm should be
able to find them. Identifying parts of a network which are more densely connected
by visual inspection can be a useful tool. However, visual inspection can introduce
bias, and for very large networks it is not always possible. There have been numerous
community detection algorithms proposed in the literature, and a good overview of
methods brought together from many disciplines can be found in [25]. Only two
methods will be discussed here to facilitate a general understanding of the problem
because community detection is largely outside the scope of this thesis.

3.4.1 Modularity Optimization

A problem central to finding good divisions of communities within a network is to
somehow define what is a “good” or “bad” community. One of the most intuitive,
and therefore most common way to define a good community is by the modularity

2As opposed to graph partitioning, a related problem, which requires the number or size of the
divisions to be known in advance. For a simple but effective graph partitioning algorithm see [47].
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function or quality function [25, 73]. The modularity function compares the density
of edges between groups of nodes to the expected density of a null model with the
same degree sequence of the given network. If two nodes with degree ki and kj are
connected when it is expected that they should only be connected with low probability
then the connection is likely to be significant. The modularity Q of the network is
defined as [73]

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj), (3.17)

where Aij is the adjacency matrix, ki and kj are the degrees of vertex i and j respec-
tively, m is the number of edges, and Ci and Cj are the clusters of i and j respectively.
The function δ is the Kronecker delta which returns 1 if Ci = Cj, such that only nodes
within the same cluster contribute to the sum. Note that the quality function only
tells us how good a community assignment is, not how to assign communities.

Now that a quality function is defined, the modularity of the network can be
optimised by any number of techniques, such as genetic algorithms, simulated an-
nealing, or greedy algorithms [74]. Some more exotic methods are also possible using
the modularity function, such as spectral-based community detection, which exploits
properties of the eigenvectors of the adjacency matrix [71]. Figures 3.11 and 3.12
show the results of the leading eigenvector community detection algorithm [71] and a
graph spectra based algorithm [17,19] run on the immunoglobulin protein interaction
network [34].

3.4.2 Betweenness Methods

Another way to find a community in a network is to identify those edges which
straddle the boundary between two communities, called between group edges [74]. A
common way to do this is to define an edge betweenness value which is an intuitive
extension of the betweenness centrality measure discussed in Section 3.2.3. The edge
betweenness value for an edge counts the number of geodesic paths passing through
that edge [73].

A community detection algorithm can be defined then as follows. All edge be-
tweenness scores are calculated, and the edge with the highest score is removed. This
process is repeated, eventually the network will be split into many pieces and it will
continue to be split until only single vertices are left. If the number and boundaries
of the splits are kept track of, the algorithm can produce a tree-structure showing a
hierarchical organization of the network which may be more useful than the clustered
view generated by modularity optimization. Alternatively, a user could select one of
many possible divisions which best suits their purpose. Figure 3.13 shows the den-
drogram of hierarchical communities in the karate club network [100] as found by the
edge betweenness community detection algorithm. Beside the dendrogram, Fig. 3.14
shows one particular division which had the most optimal modularity of the possible
divisions.



Chapter 3. Measurable Properties of Networks 28

Figure 3.11: The community structure
of interactions within the immunoglobu-
lin protein [34] identified by the leading
eigenvector algorithm [71].

Figure 3.12: The community structure
of interactions within the immunoglobu-
lin protein [34] identified by a graph spec-
tra algorithm [17,19].

1
2

3

4

5

6
7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25
26

27
28

29

30

31

32

33
34

Figure 3.13: The dendrogram of the
karate club network. The colours corre-
spond to the divisions with the best mod-
ularity.

●

● ●

●

● ●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

1

2
3

4

5
6

7

8

9

10

1112

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28
29

3031

32

33
34

Figure 3.14: One particular division of
the karate club network.



Chapter 4. Graph Models 29

Chapter 4

Graph Models

Graph models are a valuable tool for the study of complex networks because they
allow the characterization of network organization without having to describe the
entire network. For example, a graph model could be created to characterize the way
business collaborators interact, and then be used to make predictions about their
interaction or simulate scenarios that may influence their actions. The graph model
could be applied again and again for any group of business collaborators (probably
within some constraints, e.g., people who own small businesses may socialize differ-
ently than people who own large ones). The business collaborators example highlights
two things of note. First, that graph models allow us to generalize on observations
of real networks so that we may characterize other similar ones. Secondly, once a
graph model is designed it may only be robust to certain kinds of networks. However,
despite the differences between many real-world networks, scale-free degree distribu-
tions and the small-world effect appear to do a good job of characterizing a large
number of real-world networks.

This chapter introduces the Erdös and Rényi (ER) random graph, the Watts-
Strogatz (WS) small-world model, and the The Barabási-Albert (BA) model, followed
by a few other common models. The models presented here were chosen for their
historical significance and impact on the study of complex networks and graph models,
and are later used in this thesis to generate benchmark data. The ER model is perhaps
the first graph model ever studied, while the WS and BA models are important
because they showed that the small-world effect and scale-free degree distributions
could be used to characterize a large number of real networks. The graph models
discussed in this chapter are by no means an exhaustive list. Many graph models
exist and more extensive surveys can be found in [37,74].

4.1 The Random Graph Model

The Random graph model is usually associated with Erdös and Rényi and their 1959
publication [23], although earlier work on the random graph appeared in 1951 by
Solomonoff and Rapoport [87]. It is also sometimes called the Poisson random graph,
or the Bernoulli random graph. This model generates a graph by adding n vertices,
and adding each possible edge with probability, p. This produces a graph denoted
Gn,p. The model represents the ensemble of all Gn,p graphs in which a graph having m
edges appears with probability pm(1−p)(M−m), where M = 1

2
n(n−1) is the maximum

number of edges [68]. In the limit of large n, keeping the mean degree z = p(n − 1)
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Figure 4.1: A graph generated by the Erdös and Rényi model with n = 100, and
p = 0.022

constant, the probability, pk, of a vertex having degree k is

pk =

(
n
k

)
pk(1− p)n−k ' zke−z

k!
(4.1)

with the approximation becoming exact in the limit of large n and fixed k. Thus,
the degree distribution for the random graph is a Poisson distribution [68]. Figure
4.1 is an example of a graph generated by the Erdös and Rényi model. Note that
the graph is not necessarily connected, and that there is one component that most
of the vertices belong to. The average number of edges 〈m〉 for some p can also be
calculated as

〈m〉 =

(
n
2

)
p, (4.2)

which is simply a statement that the expected number of edges is the expected number
of edges p, between a pair of vertices, multiplied by the number of pairs of vertices
in the graph. Given (4.2) and that the mean degree 〈k〉 of a vertex in an undirected
graph with m edges is 〈k〉 = 2m/n, it is straightforward to see the mean degree of a
vertex in a random graph is

〈k〉 =
2

n

(
n
2

)
p = (n− 1)p. (4.3)

While the random graph was an important first step in graph modelling it is now
understood to be a poor model of complex networks [74]. The Poisson distribution
of node degrees is generally unlike real networks, and by definition the links between
elements in a complex network are not entirely random. However, the random graph
continues serves as a useful null model by which to detect non-random organization.
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Figure 4.2: A graph generated by the Watts-Strogatz model where n = 100, and
prw = 0.2.

For example, social networks tend to have clustering coefficients orders of magnitude
higher than what is found in random graphs [3, 72,74,97].

In fact, many real-world networks have clustering coefficients much larger than
random graphs (see Section 3.3.1 for an explanation why triangles are unexpected).
The difference between random networks and real ones is so stark with respect to
triangles that it is expected that the triangles must possess a function, one of the
primary observations leading to the creation of the small-world model.

4.2 The Small-world Model

The Watts-Strogatz (WS) small-world model focuses on modelling two properties
observed in real-world networks. First, there tends to be a large number of triangles
in many real-world networks [97], the small-world model can reproduce this. Secondly
it maintains a small average geodesic path length between any two vertices as network
size grows large, the so-called small-world effect [74, 97].

The Watts and Strogatz small-world model builds graphs by creating a ring of n
vertices in which each vertex is connected to each of its neighbours up to k spaces
away from itself. Each edge is then considered in turn and with probability prw one
of its ends is “rewired” to a new vertex chosen uniformly at random. This results
in a high connectivity among a vertex’s neighbouring vertices as well as a low upper
bound on average geodesic path length. Figure 4.2 shows a graph generated using the
Watts-Strogatz small-world model. Figure 4.3 illustrates how shortcuts are used to
decrease the average geodesic path length and how the graph approaches a random
one as prw increases, thereby decreasing the number of triangles.

While the Watts-Strogatz model produces graphs with transitivity values and
path lengths that are similar to some real-world networks, it fails to produce graphs
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Rewire probability prw =
0.0, each node has 4 neigh-
bours – lots of triangles,
but path lengths are long.

prw is increased to 0.1 –
fewer triangles, but path
lengths are shorter.

prw is increased to 0.5. The
graph approaches random.

Figure 4.3: The relation between average geodesic path and transitivity in graphs
generated by the WS model, n = 20.

with realistic degree distributions. It can be shown that the degree distribution of
small-world graphs corresponds to [74]:

pk = e−cp
(cp)k−c

(k − c)!
(4.4)

where pk is the probability of a vertex having degree k, c is the initial degree of
each vertex before the rewiring process, p is the probability of rewiring. However,
despite this shortcoming the small-world model has been used to characterize a large
number of real-world networks. Including power grids, airline routes, the collaboration
network of movie actors, high school friendships, the neural network of the C. elegans
worm, and more [5].

Depending on the application, the unrealistic degree distribution may or may not
be a problem. The model was never intended to produce graphs with distributions
that matched those found in real-world networks – the transitivity and path length
were the main considerations. Models such as the Barabási-Albert model explicitly
provide mechanisms for reproducing the degree distributions found in many real-world
networks.

4.3 The Barabási-Albert Model

Many real-world networks such as the WWW, social networks, the nervous system,
the interactions of proteins and more follow a power law degree distribution [7, 68].
The Barabási-Albert model [7] provides a mechanism to create networks with power-
law degree distributions, related to the cumulative advantage process observed by
Price [79]. In such networks, the probability Pk ≈ k−α, where α is some constant
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Figure 4.4: A graph generated by the Barabási-Albert model with n = 100, and
m0 = 1

(typically in the range [2, 3]), is the probability that a vertex chosen uniformly at
random has degree k.

The Barabási-Albert (BA) model was premised on two important observations.
Firstly, that real-world networks grow over their lifetime. Secondly, the higher the
degree of a vertex, the greater is its propensity to collect new edges, this is known
as Preferential attachment [3, 7, 68]. Two mechanisms were proposed to describe the
behaviour, and they work as follows:

1. Growth: Starting with (m0) vertices, at each time step add a vertex with,
m ≤ m0 edges, and attach to m different existing vertices.

2. Preferential attachment: Connect the new vertex to vertex i with a probability
dependent on the degree ki of i, such that

Π(ki) = ki

[∑
j

kj

]−1
. (4.5)

It can be shown that after t time steps the scale-free network will have n = t + m0

vertices and mt edges. Figure 4.4 shows a graph generated using the Barabási-Albert
model.

The BA model is not able to generate all kinds of power-law degree distributions,
and in the original study it was shown that scale-free behaviour was only present for
linear preferential attachment, or α = 1 [7]. The model, typically generates graphs
with a tree (or near tree-like) structure, and so naturally such graphs have a clustering
coefficient of zero. Although, an increase in the value of m can increase the clustering
coefficient, it does so at the expense of creating a more dense network (the minimum
node degree must be m), and it does not guarantee better transitivity in the limit of
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large graphs [50]. The limitations also mean that even if the BA model is capable
of reproducing the clustering coefficient found in a real-world network, it may not be
able to model it with a high degree of accuracy without impacting the goodness of
fit of the degree distribution.

4.4 Other Graph Models

This section will provide an overview of some other less-common graph models which
have are of some interest with respect to this work, although they may not be men-
tioned explicitly in later chapters. The Forest Fire (FF) model, Klemm’s model and
the Duplicate-Diverge (DD) model all propose additional mechanisms for construct-
ing scale-free behaviour although they create different networks in some respect than
the BA model.

4.4.1 Forest Fire Model

The Forest Fire model [55] was proposed to address two points which were not ad-
dressed by previous models. First, that the average vertex degree increases over time
in many networks, so that the network becomes more dense (in fact, they find that
the number of edges increases exponentially with the linear increase of vertices). Sec-
ond, that the diameter of many networks also shrinks in accordance with the increase
in node degree. The observations made appear to hold for a number of real-world
graphs, including citation networks, collaboration networks, and the autonomous sys-
tems level of the Internet [55]. The authors proposed a model based on the spread
of forest fires to address their observations. The FF model probabilistically creates
outgoing links with a forward burning probability and incoming links with a backward
burning probability, to create directed graphs. The method can easily be generalized
to undirected graphs by making all links bidirectional after they have been estab-
lished. The FF model is described as follows:

1. Choose a forward burning probability p and a backward burning probability r.

2. Consider a node v joining the network at time t > 1, Gt is the graph so far.

3. v chooses an ambassador node w uniformly at random and connects to it.

4. Two random numbers, x and y, are chosen from a geometric distribution with
means (1− p)−1 and (1− rp)−1 respectively.

5. v selects x out-links and y in-links incident to nodes not yet visited. Let
w1, w2, ..., wx + y denote the other ends of the selected links. If not enough
in or out-links are available, v selects as many is it can.

6. v forms out-links to w1, w2, ..., wx and then applies step 4 and 5 recursively
to each of w1, w2, ..., wx. As the process continues, nodes cannot be visited a
second time, preventing the construction from cycling.
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The FF model generates heavily tailed degree distributions, which are intended to
mirror the evolution of real-world networks over time, and addresses some perceived
problems with the BA model. It works by “burning” outward starting from w, though
to wx, proceeding recursively before dying out [55]. The model as presented here
creates directed networks, although they could easily be converted to undirected
networks after they are generated.

4.4.2 Duplicate-Diverge Model

The Duplicate-Diverge (DD) model [93] was proposed as a possible mechanism to
describe the dynamics of interacting proteins, which was derived from observations
of biological systems. The DD model works on two simple principles, duplicate and
diverge. These describe how a vertex once added to the network copies some links
from another vertex and then diverges from its behaviour by randomly rewiring some
connections. The model is very simple, and is similar in many respects to other vertex
copying models initially proposed for simulation of the structure of the web [48]. The
duplicate and diverge steps are described as [93]:

Duplicate A vertex i is selected at random. A new node i′, with a link to all
the neighbours of i, is created. With probability p a link between i and i′ is
established.

Diverge For each of the nodes j linked to i and i′, one of the links (i, j) or (i′, j) is
randomly chosen and removed it with probability q.

The DD model is able to create degree distributions in which the probability of a ver-
tex gaining another link is proportional to (1−q) k

n
, and it will generate triangles with

a probability (1− q) [93]. The model is interesting because it independently proposes
a mechanism entirely different but equivalent to preferential attachment for scale-free
network behaviour, premised on observations of biological systems. Furthermore, it is
also interesting that the duplication mechanisms potentially responsible for scale-free
behaviour in protein interaction networks have also been proposed as a model of the
WWW.

4.4.3 Klemm-Egúılez Model

The last model which will be discussed in this section was proposed by Klemm and
Egúılez [50] as a method for growing scale-free networks which also possessed small-
world behaviour (including high clustering coefficients), unifying the two properties.
The model is described as [50]:

• Create a fully connected network of size m.

• The first m nodes go into an ‘active’ list

• Introduce n − m remaining nodes one at a time, attaching each to one of m
existing nodes from the active list with probability 1− µ.
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– If a node from the active list is not chosen, it is added to the active list
after removing a node already in it with probability pi = ak−1i , where
a =

∑
j k
−1
j ; j is the number of nodes in the active list.

The proposed model produces degree distributions such that a vertex has probability,
P (k) = 2m2k − 3, (k ≥ m) of having degree k and is shown to have a maximum
clustering coefficient value of C = 5/6 in the limit of large n [50]. The model has
some similarities to the BA model (adding nodes iteratively, probability of attachment
related to degree), but introduces a mechanism for the reliable increase of clustering
coefficients even in the limit of large n.
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Chapter 5

Genetic Programming

The previous chapters have introduced complex networks, and properties with which
to describe and analyze them, as well as the concept of a graph model and some
specific human-designed graph models. The question remains, how do we infer a
model from the structure of a network? When humans are faced with the task of
designing models they typically look for interesting properties within certain networks,
such as scale-free degree distributions, or high clustering coefficients and low path
lengths, and then attempt to define a mechanism for creating those things (as has
been the case with the models in Chapter 4). This thesis proposes that the process of
finding interesting structure within a network and designing a mechanism to express
that structure can be automated, and furthermore, proposes that the automation can
be done by way of genetic programming.

Genetic programming (GP) is an evolutionary paradigm modelled after Darwinian
evolution in which populations of randomly generated programs compete, mate, and
breed new programs [52]. The programs are selected probabilistically for mating
proportionally to their fitness. This means fit programs tend to mate together, pro-
ducing offspring which are usually more fit than their parents. Fitness is usually a
user-defined function and describes how well a program achieves a particular goal.
The search that GP performs tries to optimize the fitness of the individuals, so an
appropriate fitness measure is crucial for effective evolution because it actually de-
scribes the objective of the search. An inappropriate fitness measure will therefore
guide the search away from the intended region and produce undesirable results.

In the past, GP has proved successful in learning suitable programs to perform
a wide variety of tasks such as classification, symbolic regression, growing various
structures, and other inference problems such as bio-network modelling [77, 81]. It
has also been shown to find good results in areas where the domain is not well
understood [52–54], making it a natural fit for inferring graph models for complex
networks. The general flow of execution of a GP is given in algorithm 1.

Algorithm 1 Genetic Programming

Randomly generate initial population;
while termination criteria is not met do

Execute each program and assign a fitness;
Select two programs probabilistically according to fitness;
Create new individuals via crossover and mutation;

end while
Return best individual so far;
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Figure 5.1: A GP Tree

5.1 GP Chromosomes

Programs, called chromosomes, in a GP population are constructed from a set of
primitives called the language, or function set, which consists of operators that are
relevant to manipulating data which corresponds to the problem to which the GP is
being applied. The structure of the chromosome varies per GP system, but commonly
they are represented as parse trees. Operators are placed in the tree according to their
arity – operators which take arguments form the internal vertices and operators which
return data and take no arguments, called terminals, form the leaf vertices. In order
to translate the GP chromosome into a program the operators are executed on their
operands, recursively, starting from the root vertex. For example, the GP tree shown
in figure 5.1 would parse to the expression (5− 2) + 1.

5.2 Population Initialization

In tree-style GP the initial population is generated by randomly building a tree. Trees
can either be of the full style or of the grow style [77]. Full trees are constructed by
selecting non-terminal vertices until the tree reaches a certain depth, at which point
terminal vertices are selected to ensure a valid GP individual has been created. Grow
trees are constructed by selecting either terminals or non-terminals according to some
probability, and like the full trees a depth limit for selecting non-terminals is imposed
to keep trees from becoming arbitrarily large.

Full trees tend to be very bushy, whereas grow trees are sparse. One or the other
style of tree may be more suitable for a particular problem or search space. Some
researchers have found it advantageous to use both full and grow methods to each
generate half of the initial population generation in order to generate a wider variety
of tree shapes, this is called ramped half-half [77].

5.3 Multi-Objective Fitness

Once a population has been generated, some indication of which chromosomes are
“good” or “bad” is required so that suitable programs can be selected for breeding.
This is accomplished by fitness. Fitness measures the suitability of an individual in
the population for its intended purpose, and describes the objective of the search. For



Chapter 5. Genetic Programming 39

many problems there is often only one objective to optimize, e.g., generate a program
which will complete a task quickly. In such a problem, time is the only consideration,
so programs that are able to complete the task are automatically better than those
that cannot, and those that can do it quickly are better than those that do it slowly,
etc. However, for many other problems there is more than one objective of interest,
e.g., complete two tasks quickly. In these cases it is not always clear how to assign a
fitness, and a multi-objective fitness strategy is needed.

There have been many multi-objective fitness strategies proposed in the literature
[15] and handling multiple objectives is non-trivial. Quite often the properties which
are being optimized are not independent from each other and changes in one will
impact the other, sometimes in ways which are at odds with one another. The simplest
way to handle multiple objectives is to sum the values of each fitness measure together.
However, if the fitness values from each objective are not on the same scale, then one
objective could be under or over-represented in the sum. The obvious solution to
the scaling problem is to add weights, so the fitness becomes a weighted sum of the
fitness values of each objective. Weights now introduce a new problem, how do you
decide on a suitable weight assignment? If the weights are used to scale the objective
values so they contribute equally then a decision has been made that each objective is
equally important, maybe this is not the case. It may be equally likely that a decision
cannot truly be made about the importance of the objective (consider an example
where both safety and cost of a solution are being optimized). Most proposed multi-
objective strategies provide some solutions for the problems with a weighted sum
fitness, although weighted sum continues to be useful for ease of implementation and
in cases where weighting schemes are obvious. This thesis has made some use of
the summed-ranks, and Pareto multi-objective strategies as well as weighted sum in
conjunction with an adaptive weighting mechanism in Chapter 6, 7, and 8 so they
will be defined here.

5.3.1 Summed-Ranks

Summed-ranks [10, 29] works by assigning each individual j a raw fitness value for
each objective i. Individuals are then assigned a rank Rankji with respect to each
objective, such that zero is the worst rank. The fitness Fj of an individual then used
for selection for a maximization problem is defined as:

Fj =

∑
i∈O wi ×Rankji
max(Ranki)

(5.1)

where O is the set of objectives and wi is the weight placed at objective i. This
is the same formulation given by Bentley and Wakefield in [10] for their Weighted
Average Ranking with the addition of a rank normalization by the maximum rank
in each objective. Generally speaking, rank weightings are kept at 1 to preserve the
independence of ranks, although more exotic weighting schemes are possible at the
risk of re-introducing the problem of weight tuning.
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Adaptive Weighting

To eliminate the need to search for useful objective weights, an adaptive weighting
mechanism is devised here which can be used in conjunction with weighted normalized
summed-ranks or weighted sum. The weight or rank weight for each objective i ∈ O
at generation t, denoted w(t)i was computed as:

w(t)i =

√
1.0− A(t− 1)i∑

j∈O

√
1.0− A(t− 1)j

(5.2)

where O is the set of objectives, A(t− 1)i is the average adjusted fitness value (where
fitness is normalized to [0, 1], 1.0 being the best possible fitness) for objective i at
generation t − 1. In the case of weighted normalized summed-ranks the value for
w(t)i is used in place of wi in (5.1). See Section 6.2 for definitions of adjusted fitness
values.

5.3.2 Pareto Ranking

Pareto ranking is a common strategy for handling multiple objectives with GP be-
cause it preserves the independence of objectives [36]. If we define an individual’s
fitness as a vector of objective fitness values, then we say individual x dominates
individual y, when each element of its fitness vector, ~x, is less than the corresponding
element in y’s fitness vector, ~y (assuming a minimization problem). That is to say,
~x dominates ~y iff ∀i ∈ O : (xi ≤ yi) ∧ ∃i ∈ O : (xi < yi). If Pareto ranking is used,
an individual’s Pareto rank is used for selection.

5.4 Selection

Selection is the mechanism which guides the search through the search space and
provides the necessary competition for effective evolution, pitting programs against
each other to compete for the opportunity to reproduce, and have their offspring
move on to future generations. Selection works by probabilistically choosing two
individuals from the population, based on their fitness values. The selected individuals
are then mated and their offspring are placed in the next generation. The amount of
importance the selection mechanism places on the fitness of the individual during the
selection process is referred to as the selection pressure. Usually selection methods
are tuned to exert a moderate amount of selection pressure on the search.

The two most common selection methods are tournament and roulette selection
[77]. Roulette selection selects a program i with probability

pi =
fi∑N
j fj

, (5.3)

where N is the size of the population. The probability of selection is proportionate
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to fitness, but it is straightforward to see that if all programs have similar fitness
values (as is common toward the end of a GP run) it may be probable that the worst
programs are selected for breeding. The ability of the selection mechanism to drive
the search toward good solution is called selection pressure, and roulette selection is
not always able to apply even selection pressure. However, it is possible to adjust
selection pressure by applying various transforms to the distribution of probabilities
pi such that the selection pressure can be increased. A more straightforward and
elegant solution is often to simply use tournament selection.

Given k individuals, Tournament selection chooses the best. The mechanism is
easy to implement, and as a side effect of its operation tournament selection is able to
apply equal selection pressure over the duration of the search, regardless of whether
or not all members in the population are similar in fitness. The selection pressure
can also be adjusted by increasing the size of the tournament. For its simplicity and
ability to apply constant selection pressure tournament selection is often preferable
to roulette selection, and will thus be the operator of choice in this thesis.

5.5 Genetic Operators

Once all the individuals in the population have been assigned a fitness value, and a
pair of individuals are selected for reproduction, they are subjected to the genetic
operations of crossover and mutation. Crossover is the act of mating two individuals
such that their genetic material is combined to produce offspring. In tree-style GP
crossover usually takes the form of subtree crossover where a crossover point is chosen
randomly from both parents and the subtrees from those points are swapped. Figure
5.2 illustrates the result of a mating of two parent trees to form two offspring. The
dark vertices indicate the crossover points.

While crossover is valuable as a exploratory strategy during search, it does not
create any new genetic material in the search and it also tends to make fairly large
movements through the search space. Additionally, it depends on adequate diversity
among the population to produce useful offspring. For more subtle movements, and
to introduce new genetic material into the population a mutation operator is used.
Mutation makes small, random, changes to offspring before they are placed into the
next generation and it is usually applied with some small probability. In tree-style
GP mutation often takes the form of subtree mutation where a random subtree is
generated and then inserted in the tree at some random point. Now that GP has
been introduced, the following chapters focus on how GP was used to infer graph
models of complex networks and the efficacy of the approach.
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Figure 5.2: Subtree crossover
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Chapter 6

Evolving Graph Models of
Complex Networks

The GP system for automatically inferring graph models for complex networks was
built using the RobGP system, a Koza-style GP system written in C++ [28,29]. In-
dividuals in the population are represented by program trees where functions create
the internal nodes and the leaf nodes are so-called terminal values, which are made
up of nullary functions or constants. The initial populations can be randomly gen-
erated using the “full” or “grow” operations and they can be combined to perform
a “ramped half-and-half initialization” [52]. Program trees in the population are re-
combined during a crossover and mutation breeding phase using a subtree crossover
that swaps a subtree from each parent, and grow mutation, which replaces a ran-
domly selected subtree within a program with a randomly generated one. To chose
individuals from the population for either of the breed phases tournament selection
is used. Parameters used with the system are given with the results presented in
Chapter 7 and 8. Network properties were computed using the iGraph C library [17].
All operations were strongly typed [61].

The system was designed in order to evolve a graph model given a specific network,
called the target network. The evolved models should produce graphs that are similar
to the target network with respect to the fitness measures. The following sections
describe the challenges encountered in designing the system, fitness measures, the
shape of the GP tree as well as the GP language used.

6.1 Challenges

When this work began, it was unclear whether or not it was even possible to accom-
plish the automatic inference of graph models. Genetic programming seemed a logical
starting point because it is good at building structures and has been successful in the
past at deriving solutions to problems when little is known about the domain. How-
ever, the choice to use GP necessitates the definition of at least one fitness objective,
as well as the definition of a set of functions with which the GP can construct models.
The GP function set will be discussed in Section 6.3.

Defining a fitness function is that it requires knowledge of some ideal target per-
formance. In the case of evolving a graph model the ideal is to actually reproduce
the process which created the network at hand. Of course, if the process that created
the network was known, then there would be no reason to derive a graph model. So,
if there is no knowledge of the ideal performance then how can performance be mea-
sured? The answer to this question is to use the available information embodied in
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Figure 6.1: The comparison necessary to generate a fitness value.

the network for which a graph model needs to be derived, but obviously an algorithm
cannot be compared to a network so the problem becomes a comparison of networks
(see Fig. 6.1).

Comparing networks presents two immediate challenges, the first is that there
is no known polynomial time algorithm for comparing graphs, meaning a structural
comparison metric is prohibitively expensive with respect to computational time for
any network of interest. The second challenge is a practical one. Real-world network
data is often hard to come by, because the collection of connectivity data for large
decentralized systems is a non-trivial task, and with GP it is typical to have a set
of various training examples on which to test the evolved programs. Due to the
uniqueness of many network data, it cannot be assumed that data for more than one
network of the same category is available.

There is not much to be done about the unavailability of data. However, if one
considers that a complex network is decentralized in nature and that the process
of growing it comes from how each node connects itself, then perhaps the network
should be considered as a collection of separate (each node behaves independently)
but not independent points of data (we are interested in the emergent behaviour
and organization of the group). In this view each node is itself a training example.
Although, ultimately the features of interest only become apparent after a number
of nodes is generated, so only after an evolved model generates approximations of
all training examples do we measure performance. The solution to the challenge of
designing the fitness functions will be discussed in the next section, and came from an
examination of the methods used to categorize real-world networks, as well as the way
in which the behaviour of diffusive processes have been estimated on epidemiological
networks.

6.2 Selection and Fitness Assignment

Commonly, graph models designed by humans have focused on reproducing statistical
features of real-world networks that differ from randomly connected networks, such
as a large clustering coefficient, distinctive degree distributions, or small average path
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lengths [7,11,50,97]. Although an entire network cannot be fully described by a small
collection of statistical measures, they are tractable to compute, are commonly used to
classify different types of complex networks [74], and may be sufficient to describe sets
of networks that share similar behaviour. In particular, there is empirical evidence
to support that diffusive behaviour on a network can be predicted with a high degree
of accuracy (e.g., in an epidemiological network) using the degree distribution, the
clustering coefficient, and average path length [6, 94].

Given that we wish to produce an algorithm that generates graphs that can de-
scribe real-world network behaviour, it is logical to produce algorithms that generate
graphs that are similar to a given real-world network with respect to features that
are known to affect such behaviour. The fitness functions are therefore designed to
compare the target network to graphs produced by the evolved models, called the
active graphs with respect to the degree distribution, average path length, and the
clustering coefficient. It should be noted that while these three features are known
to provide a fairly accurate general description of many real-world networks, it is not
known if there is an optimal set of features to consider. Some properties may be more
useful than others depending on the target network, and the method proposed here
can easily be extended to include or exclude any desired property.

Each feature considered for comparison necessitates its own fitness objective, so
this is a multi-objective problem. We consider five different methods for handling
the multiple fitness objectives. These include a standard weighted sum, a normalized
summed-ranks strategy [10], Pareto ranking [36] and an adaptive weighting scheme
used in conjunction with summed-ranks and weighted sum, which were introduced in
Section 5.3. The fitness objectives are described below. The raw fitness objectives
are defined as:

Minimize:

F1Raw = |l(Gt)− l(Ga)| (6.1)

F2Raw = [C(Gt)− C(Ga)]
2 (6.2)

F3Raw = DGt,Ga (6.3)

F4Raw =
1

|H|
∑
i

(hti − hai )
hti + hai

. (6.4)

Where l(Gt) is the average geodesic path length of the target graph, l(Ga) is the
average geodesic path length of an active graph, C(Gt) and C(Ga) are global clustering
coefficients of the target and an active graph respectively, and Dt,a is the KS-test
statistic comparing the degree distribution of the target graph to an active graph.
|H| is the number of discrete values in the degree distribution histogram, hti and
hai are the ith values in the target network and active graph’s degree distributions
respectively.

Note that there are two functions, (6.3), and (6.4), comparing the degree distri-
butions of the active and target graphs. This is somewhat redundant, but Eq. (6.4)
was introduced because (6.3) had a tendency to under-emphasize the importance of
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low-frequency high-degree nodes in a degree distribution (see Appendix A for details).
Consider a star graph that contains 99 nodes with one edge and a single node with 99
edges. Eq. (6.3) would consider missing a one-degree node as importantly as missing
the hub node. Eq. (6.4) maps the differences between frequencies in the distribution
to a percentage domain so that missing all nodes of a particular frequency is equally
detrimental regardless of the number of those nodes in the target graph. However,
due to its nature (6.4) is also the most difficult objective to satisfy given that two
distributions must be identical to receive a perfect score with a linear fitness gradient,
with respect to the number of different degree frequencies (in some cases this is less
useful, e.g., a network entirely made up of nodes of degree 3 and one of 4 may function
very similarly to a network of nodes of degree 3 and two of degree 4).

Although the raw fitness values are used during evolution and selection for all
methods, for presentation they are mapped to the range [0, 1] with a value of 1 being
the most desirable. These adjusted fitnesses are computed as follows:

Maximize:

A1 =

[
1 +

(
F1Raw

n

)]−1
(6.5)

A2 = [1 + |C(Gt)− C(Ga)|]−1 (6.6)

A3 = 1− F3

n
(6.7)

A4 = 1− F4Raw (6.8)

If a weighted sum fitness is used, objectives are summed to F =
∑

i∈O wi × FiRaw,
where O is the set of objectives and wi is the weight of objective i, F is the fitness
value assigned and used for selection in this case. If summed-ranks is used, then the
raw fitnesses FiRaw are used as the values Fi to compute the ranks Rankji described
in (5.1). The rank weights are set to 1 for a normalized sum of ranks, or they can be
set by the adaptive weighting mechanism (5.2). If Pareto ranking is used, as described
in Chapter 5 an individual’s Pareto rank, derived from the fitness values FiRaw, is
used for selection.

Before the fitness objective values were computed for any graph produced by an
evolved model, the generated graph was first simplified to remove any self-loops or
multi-edges. When calculating the average geodesic path length, if there was no path
between a vertex pair the length of the path was returned as the size of the vertex
set, a value larger than any possible path. If the graph was empty, the worst possible
fitness values were assigned. If the user chose for the evolved model to be executed
more than once during evaluation then the model was assigned the average fitness
value per objective.
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Figure 6.2: The shape of the trees used by the GP

6.3 GP Language

Strong typing [61] was used to enforce a specific tree shape, which was evaluated
in the following manner. The root node has three branches, each containing a list
of actions: one branch for initialization, one branch that defines growth actions,
and one branch that describes finalization actions. Operations in the initialization
branch are responsible for adding vertices or specifying how vertices are to be added
during the graph building process. These actions are executed once per evaluation.
Growth operations are responsible for adding edges to the graph, and are executed
n times per evaluation, where n is the desired number of vertices in the generated
network. Finalization operations are any operations that require edges and vertices
to be present in the graph; for example, edge removal. Figure 6.2 illustrates the tree
structure.

The three branches of the tree structure were based on a conceptualization that the
construction of most anything could require some overhead for initialization or setup,
followed by the construction process, and finally once the construction is complete
may require some modifications. For example, the Watts-Strogatz model requires an
initial network lattice to be constructed before the rewiring process begins.

While the tree model used by the GP is intuitive, there is at least one assumption
implied by the GP tree structure, which is that the target network can be described as
homogeneous in the process that constructed it. However, this is also an assumption
made by each of the human designed models discussed here and it would be possible
to extend the tree definition such that it represented a model of models.

The GP language used to construct the tree-based model includes a basic set of
math operators {+,−, ∗,%}, Ephemeral Random Constants (ERC), boolean func-
tions, IF structures, and the relational < operator that takes two float arguments
and returns a boolean (only the < operator was included because swapping the ar-
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guments is equivalent to flipping the operator). It also includes a number of other
functions that were tailored to generate graphs, sometimes in a probabilistic way.
The GP language functions are defined in the following list:

• L = {0.01, 0.02, 0.025, 0.05, 0.1, 0.2, ..., 1.0}.

• P (index) takes an integer value as an argument and returns a floating point
value from L at the location specified by index MOD |L|, where |L| is the length
of the list. If the value of index is negative then the absolute value is used.

• P (float) takes a floating point value and returns a value between [0, 1]. If the
argument’s absolute value is already within that range, it simply returns the
absolute value of the argument. If the absolute value of the argument is greater
than one then it computes b|float|c and behaves in the same way as P (index).

• ERC : An ephemeral random constant, initialized to a random floating point
value which remains constant throughout the GP run.

• Math

– + : Takes two floating point numbers and returns their sum.

– − : Takes two floating point numbers and returns their difference.

– ∗ : Takes two floating point numbers and returns their product.

– % : Divides the left argument by the right argument and returns the result,
if the denominator is zero, then one is returned.

• Boolean

– TRUE : A statement of truth.

– FALSE : Not TRUE.

– AND : Returns TRUE if both operands resolve to TRUE.

– OR : Returns TRUE if at least one operand resolves to TRUE.

• Relational

– < : Takes two floating point numbers and returns TRUE if the left operand
is less than the right one.

• Probability

– prob addProb: Adds two probabilities, and clamps to the range [0, 1] using
the function P (float).

– prob subProb: Subtracts two probabilities, and clamps to the range [0, 1]
using the function P (float).

– prob floatToProb: Converts an arbitrary floating point value to a prob-
ability, using the function P (float).
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– prob indexToProb: Converts an integer value to a probability, using the
function P (index).

• Structure Nodes

– INIT_LIST INIT_LIST(INIT_ACTION): Structure to capsulize an initial-
ization action.

– GROW_LIST GROW_LIST(GROWTH_ACTION, GROW_LIST): Structure to chain
together growth actions.

– FINISH_LIST FINISH_LIST(FINISH_ACTION, FINISH_LIST): Structure to
chain together finalization actions.

• Initialization Actions

– INIT ADD_ALL_NODES: Add all nodes to the graph with no edges.

– INIT BUILD_RING: Add all nodes and build a ring.

– INIT SET_GROW_NODES: One node is added at each iteration (grow).

• Growth Actions

– GROW CREATE_TRIANGLE: Creates a triangle that includes the current node
in the active graph.

– GROW CONNECT_W_PROB(prob): Connect to each node with probability
prob.

– GROW CONNECT_RAND: Connects the current node in the active graph to
some random node in the active graph.

– GROW CONNECT_STUB(prob, bool): Connects an edge from the current
node to a node that has previously executed CONNECT_STUB. The node that
will be connected to is selected from the front prob portion of a priority
queue arranged by node degree, either randomly if the second boolean
argument is false, or probabilistically according to the degree of the node
in the queue. Once a node has been connected to, it is removed from the
queue of available nodes. If no nodes were available to the calling node
then it is entered into the request queue of nodes available for connection.

– GROW CONNECT_STUB_PERSIST(Prob, bool): Connects an edge as
CONNECT_STUB does, but it always adds its own request to the request
queue and it does not remove any requests it satisfies from the request
queue.

– DUPLICATE(prob): Connects the current node to the neighbours of a ran-
domly selected node. With probability p the current node is also connected
to the selected node. This is based on models of protein interaction and
this behaviour is known to generate an exponential degree distribution [93].

• Branching and Conditional
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– GROW_LIST if(bool, GROW_LIST, GROW_LIST): Executes the second ar-
gument if bool = TRUE, otherwise the third argument is executed.

– TRUE_WITH_PROB(prob): Returns TRUE with with probability prob.

• Finalization Actions

– FINAL REWIRE_EQUAL_PROB(prob): Rewire all edges with probability prob.

– FINAL REWIRE_RANDOM: Randomly rewire edges.

– FINAL REMOVE_PROB(prob): Remove each edge with probability prob.

• Terminals

– prob baseIndexM: An integer of type index, whose value is M = {1, 3, 5}.
– prob baseProb001: An float of type prob, whose value is 0.001.

– float CUR_NODE_DEGREE: Returns the current node degree as a float.

– float AVG_DEGREE: Returns the average node degree in the active graph
as a float.

– float MAX_DEGREE: Returns the max node degree in the active graph as
a float.

– float TOTAL_VERTEX_COUNT: Returns the total vertex count in the active
graph as a float.

– float FINAL_VERTEX_COUNT: Returns the final expected vertex count in
the active graph.

– float FINAL_EDGE_COUNT: Returns the edge count in the active graph.

– GROWTH_ACTION NO_GROW: A null grow action.

– GROWTH_ACTION NO_FINISH: A null finalization action.

– GROW_LIST EMPTY_GROW_LIST: Specify no growth actions.

– GROW_LIST EMPTY_FINISH_LIST: Specify no finalization actions.

The motivation for each operator came from isolating important components of
human-designed models and by a consideration of the features considered important
in describing complex networks (the same ones used by the fitness functions). The
BUILD_RING, ADD_ALL_NODES, SET_GROW_NODES functions exhibit graph initialization
behaviour that has been shown to have a measurable impact on graph dynamics [7,97].
Probabilistic connections are utilized because they provide a method for tuning node
degrees, CREATE_TRIANGLE was created because it can alter the clustering coefficient,
and the CONNECT_STUB functions can produce preferential attachment behaviour, or
produce disjoint sets of connected pairs. The finalization actions that rewire edges
were inspired by the rewire process used in the Watts-Strogatz model [97] and the
functions to remove edges can control network edge density.

Whatever the motivations may have been for adding each function, there are impli-
cations of their interactions that are not obvious. For example, if the CREATE_TRIANGLE
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function is applied repeatedly in conjunction with the SET_GROW_NODES operation it
will create an exponential degree distribution – measured on average over 50 graphs of
500 nodes each, α ≈ 2.98, using the power law fitting method described in Chapter 3.
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Chapter 7

Reproducing Existing Models

In order to examine the efficacy of the approach, graph models were evolved to match
target networks generated by the ER, WS, and BA models described in Chapter
4. Generating models for known algorithms allows a direct comparison of the final
evolved model to the known model, providing a strong validation. A graph was
generated with 200 nodes by each model and these graphs were then used as input to
the GP system. These graphs are called the target graphs. The GP system was run
50 times for each target graph, producing a set of candidate models.

A single evolved model must be chosen from the set of candidates for further
experimentation and we would like to choose a model that performs well with respect
to all fitness objectives. However, to avoid over-fitting it may be advantageous to
select a model which performs somewhat worse in some objectives than other models,
but much better than most of the candidates with respect to a few objectives. To
select a model that fits this requirement, the following post-processing step was used
for automatic model selection.

The final evolved models were used to generate 50 graphs that were in turn com-
pared to the target graph. The comparisons were used to assign a final fitness value to
each model with respect to each objective, i. The models were then ranked according
to these values. The rankings were then automatically assigned a weight, αi, based
on the variance between average objective values across all candidate models:

αi =
max(µji)−min(µji)∑
i=1 max(µji)−min(µji)

(7.1)

where µji is the average fitness objective produced by the jth evolved model. Each
evolved model j was then assigned a final weighted rank sum, RankSumj, used to
automatically select a final model for further experimentation (note that this value
is used only for final model selection and not as a fitness value during evolution).
RankSumj is computed as:

RankSumj =
∑
i

αi × rankji (7.2)

where rankji is the rank of the jth individual with respect to the ith objective. The
motivation for this method came from an information theory idea that the fewer
times a value occurs the more information it provides and the more valuable it is.
By selecting a model that generates features that the others are incapable of, it is
more advantageous than selecting a model that does well in one or many objectives
that all candidates are able to produce reasonably well. Once the ranking process
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Table 7.1: Symbolic program simplification rules. The * matches any string.

Rule Description

(T | ∗) or (∗ | T ) = T If either argument to the boolean OR function is
TRUE then replace the operator with TRUE.

(F & ∗) or (∗ & F ) = F If either argument to the boolean AND function is
FALSE then replace the operator with FALSE.

IF(F ) BRANCH1, BRANCH2 If the boolean argument to an IF is FALSE then
replace the operator with BRANCH2.

IF(T ) BRANCH1, BRANCH2 If the boolean argument to an IF is TRUE then
replace the operator with BRANCH1.

LIST(NO*, TAIL) If the list head specifies no action, replace the op-
erator with TAIL.

was completed the best model was selected for growth experiments.
Growth experiments measure how well the model performs at the task of project-

ing the growth of a complex network over time. This is done by comparing graphs
produced by the evolved model at various sizes to graphs produced at the same sizes
by the known target algorithm. The networks produced are compared with respect
to the fitness measures, the average Geodesic Path length Difference (GPD), the dif-
ference in global clustering coefficients or the Global Transitivity Difference (GTD),
the KS-test statistic (KS), and the Normalized Sum of Percent Differences (SPD).

The following sections describe how a model was evolved for the random graph
model, the Watts-Strogatz model, and the Barabási-Albert model. All experiments
were conducted using the parameters specified in Table 7.2, which were established
empirically and found to produce good results for all target model types. The results
are presented in the form of degree distribution plots for the growth experiments, and
pseudocode of the evolved algorithms where it is helpful, as well as tables containing
the numeric comparison of fitness values. In the cases where pseudocode is given for
the evolved models, the models were first simplified symbolically by the system using
a set of simple rules which are defined in Table 7.1. Once this process was complete
the output was then further simplified by hand and translated from the GP language
into more readable pseudocode.

7.1 Handling Multi-Objectivity

Given that multiple objectives were used to judge the fitness of graph models during
evolution, and that different methods for handling the objectives may effect the opti-
mization process, a comparison of different methods was performed to establish which
method yields the best results for the input graphs generated by the Erdös-Rényi,
Watts-Strogatz, and Barabási-Albert models. The comparison includes a weighted
sum with equal objective weights (WSum) because of its simplicity; a weighted sum
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Table 7.2: GP parameters.

Parameter Value
Initialization Method Grow
Grow Min 3
Grow Max 5
Maximum Tree Size 17
Population Size 100
Generations 50
Selection Tournament: k=3
Crossover Subtree Crossover: 0.95
Mutation Grow: 0.2, linearly decreasing,

min depth = 1,max depth = 4
Runs 50
Executions per eval. 10

with adaptive weighting (AWSum) because equal weights may not be suitable and
a manual search of weights is time consuming; normalized sum of ranks (NSR) as a
simple multi-objective approach that does not require weighting; normalized sum of
ranks with adaptive weighting as a biased multi-objective approach meant to promote
less common solutions; finally, Pareto ranking because it is a common multi-objective
approach [36]. The adaptive weighting used for AWSum and ANSR is described
by (5.2).

The comparison was performed by evolving a set of graph models for each input
graph by each of the different methods for handling multiple fitness objectives. When
a GP run has been completed using WSum or AWSum, a single model is output, NSR
and ANSR will output all of those that share the highest rank sum (usually one), and
Pareto will output the entire non-dominated set in the population. Fifty GP runs
using the parameters given in Table 7.2 were conducted per method per input target
graph for 200 node graphs.

The best models produced by each method were compared per input graph type
with respect to their fitness as computed over 50 evaluations against the target. To
choose the ‘best’ model with respect to the target type and the optimization method,
the fitness of each model was given a rank that was normalized by dividing by the
maximum rank in that objective. The rank sum was then computed and models were
sorted by the rank sum where a rank one model is considered the best. One model is
selected at the end of this process for each network target and multi-objective fitness
evaluation strategy.

The fitness values across optimization methods were computed within each input
target group via a non-parametric one-way analysis of variance [51]. The test showed
there were significant differences with 95% confidence for all methods for all input
classes except for the case of the BA input types (making 8 significant comparisons).
Next, a non-parametric version of Tukey’s HST test [51, 59] was used post-hoc to
discern which optimization methods had significantly different means outside of a 95%
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GTD GPD KS SPD
ER 1.23·10−30 1.15·10−20 9.12·10−17 2.51·10−2

BA - - - -
WS 2.08·10−116 2.39·10−45 2.03·10−16 1.63·10−8

Table 7.3: The p-values for the non-parametric one-way test. There was not enough
variance to report p-values for the BA results. The acronyms GTD, GPD, KS, and
SPD correspond to the global transitivity difference, geodesic path difference, KS test
statistic (D-value), and the sum of percent differences.

confidence interval within those comparisons deemed significant by the one-way test.
Figures 7.1, 7.2, and 7.3 show box plots of the performance data per multi-objective
strategy, per fitness objective, per input type – the mean value is represented as the
dark horizontal line, while the interquartile range forms the upper and lower edges of
the box, the vertical lines indicate the maximum and minimum values while the dots
indicate outliers. Table 7.3 shows the p-values from the one-way test, while Table
7.4, to 7.10 show the results of the post-hoc test. The post-hoc tables are read such
that the cell at row i and column j indicates the number of times method j was
significantly better than method i (out of 50 comparisons). The post-hoc test was
not able to identify which differences were significant within the ER data for the SPD
objective (corresponding to the largest p-value in 7.3), so the table was omitted.

Table 7.11 is a summary of the previous post-hoc tables where the cell at row i
and column j indicates the fraction of times method j was significantly better (or
negative if it was worse) than method i across all objectives. The final row gives the
column sum, and indicates the quality of the column method versus all other methods
(a negative value means it was generally worse, while a positive value means it was
generally better), the larger the number the better the method. Finally, Table 7.12
was constructed in the same way as Table 7.11, only the values within the table were
normalized by the number of significant comparisons. The last row in Table 7.12
continues to give the column sum.

Based on the comparison of multi-objective fitness strategies WSum consistently
produced the best models given the set of GP parameters, target graphs, and selection
criteria for comparison used. Although weight selection for WSum can be problematic,
equal weighting in this context does well, and the WSum approach is very simple.
The remainder of the results presented here will thus use the WSum method.

7.2 Model Inference From A Random Graph

A model was evolved over 50 generations, with a population size of 100 individu-
als, against a 200 node target graph generated using the Erdös-Rényi model, with
p = 0.05. All other parameters are the same as those given in Table 7.2. The best
model, ER200 (that was selected using the ranking system previously described).
The evolved model made use of the ADD_ALL_NODES initialization function and it
made heavy use of the CONNECT_W_PROB function. Following this, it then removed
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Figure 7.1: Box plots of ER input
data, 50 graphs from the best result
produced by each multi-objective tech-
nique.
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Figure 7.2: Box plots of BA input
data, 50 graphs from the best result
produced by each multi-objective tech-
nique.
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Figure 7.3: Box plots of WS input
data, 50 graphs from the best result
produced by each multi-objective tech-
nique.
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ER input data, GTD objective
ANSR AWSum NSR Pareto WSum

ANSR 0 0 -1 -1 1
AWSum 0 0 0 0 0
NSR 1 0 0 0 1
Pareto 1 0 0 0 1
WSum -1 0 -1 -1 0

Table 7.4: Comparison of multi-objective techniques on ER data for the GTD objec-
tive. The value at row i and column j indicates how many times method j was better
than method i.

ER input data, GPD objective
ANSR AWSum NSR Pareto WSum

ANSR 0 0 1 1 1
AWSum 0 0 0 0 1
NSR -1 0 0 1 1
Pareto -1 0 -1 0 1
WSum -1 -1 -1 -1 0

Table 7.5: Comparison of multi-objective techniques on ER data for the GPD objec-
tive. The value at row i and column j indicates how many times method j was better
than method i.

ER input data, KS objective
ANSR AWSum NSR Pareto WSum

ANSR 0 1 1 1 1
AWSum -1 0 -1 0 0
NSR -1 1 0 1 1
Pareto -1 0 -1 0 0
WSum -1 0 -1 0 0

Table 7.6: Comparison of multi-objective techniques on ER data for the KS objective.
The value at row i and column j indicates how many times method j was better than
method i.
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WS input data, GTD objective
ANSR AWSum NSR Pareto WSum

ANSR 0 1 1 -1 -1
AWSum -1 0 -1 -1 -1
NSR -1 1 0 -1 -1
Pareto 1 1 1 0 1
WSum 1 1 1 -1 0

Table 7.7: Comparison of multi-objective techniques on WS data for the GTD ob-
jective. The value at row i and column j indicates how many times method j was
better than method i.

WS input data, GPD objective
ANSR AWSum NSR Pareto WSum

ANSR 0 -1 -1 -1 1
AWSum 1 0 1 0 1
NSR 1 -1 0 -1 1
Pareto 1 0 1 0 1
WSum -1 -1 -1 -1 0

Table 7.8: Comparison of multi-objective techniques on WS data for the GPD ob-
jective. The value at row i and column j indicates how many times method j was
better than method i.

WS input data, KS objective
ANSR AWSum NSR Pareto WSum

ANSR 0 1 1 0 0
AWSum -1 0 1 0 0
NSR -1 -1 0 0 -1
Pareto 0 0 0 0 0
WSum 0 0 1 0 0

Table 7.9: Comparison of multi-objective techniques on WS data for the KS objective.
The value at row i and column j indicates how many times method j was better than
method i.
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WS input data, SPD objective
ANSR AWSum NSR Pareto WSum

ANSR 0 0 0 1 0
AWSum 0 0 0 1 0
NSR 0 0 0 1 1
Pareto -1 -1 -1 0 0
WSum 0 0 -1 0 0

Table 7.10: Comparison of multi-objective techniques on WS data for the SPD ob-
jective. The value at row i and column j indicates how many times method j was
better than method i.

ANSR AWSum NSR Pareto WSum
ANSR 0 2 2 0 3
AWSum -2 0 0 0 1
NSR -2 0 0 1 3
Pareto 0 0 -1 0 4
WSum -3 -1 -3 -4 0
Col. Sums: -7 1 -2 -3 11

Table 7.11: A summary of the post-hoc tables. The larger the number in the last
row, the better the performance of the column method.

ANSR AWSum NSR Pareto WSum
ANSR 0.000 0.250 0.250 0.000 0.375
AWSum -0.250 0.000 0.000 0.000 0.125
NSR -0.250 0.000 0.000 0.125 0.375
Pareto 0.000 0.000 -0.125 0.000 0.500
WSum -0.375 -0.125 -0.375 -0.500 0.000
Col. Sums: -0.875 0.125 -0.250 -0.375 1.375

Table 7.12: A summary of the normalized post-hoc tables. The larger the number in
the last row, the better the performance of the column method.
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Algorithm 2 ER200 algorithm

ADD ALL NODES; {Add all nodes with no edges.}
for each node n do

CONNECT W PROB(0.05);
CONNECT STUB(prob 0.01), FALSE);

end for
REMOVE PROB(0.05);

edges it had added using the REMOVE_PROB function using a probability of 0.09. Pseu-
docode for the ER200 algorithm is given in Alg. 2. The evolved algorithm achieves
the random graph model behaviour by initializing the graph with all nodes using
ADD_ALL_NODES utilizing the CONNECT_W_PROB function, adding additional edges with
CONNECT_STUB and finally uses REMOVE_PROB to remove a small portion of edges. Fig.
7.4 to Fig. 7.7 are degree distribution comparison plots for graphs at 200, 400, 600,
and 800 nodes respectively. The model ER200, evolved against a 200 node target, was
used to generate 50 graphs at each size, which was then compared against a graph
generated at the same size by the Erdös-Rényi algorithm. The distributions labelled
as “Evolved Model” are the average degree distributions of the 50 graphs generated
by ER200. The average distributions have error bars at one standard deviation about
the means. These plots show that the average degree in the graphs produced by both
ER200 and the Erdös-Rényi model both increase with the number of nodes in the
graph and both produce graphs containing nodes with similar degrees with similar
frequencies. The mean p-values for KS tests comparing distributions for each graph
produced by the evolved model against the corresponding target graph are given be-
low the distribution plots. The results of the KS tests show that the distributions are
the same with a mean confidence of between 0.7851 and 0.828 depending on the size
of the graph, although the best matches have corresponding p-values not worse than
0.9425 regardless of graph size.

The results of the comparison with respect to the other fitness measures are given
in Table 7.13. A value of 1.0 is best and a value of 0.0 is worst. All average values
are at least 0.9 regardless of the size of the graph produced, except the value of the
SPD, which is the most difficult fitness objective (consider that in order to achieve a
SPD value of 1.0 the degree distributions of all 50 graphs generated by the evolved
model would need to match the target distribution perfectly). The small amount of
variation in the fitness values, regardless of the output network size, indicates that
the evolved model continues to perform well even when generating graphs at four
times the size of the network used as input during evolution.

The evolved model and the target model also generate similar edge densities.
Given that the evolved model also uses only probabilistic connections this means
The probability of edge occurrences should also be similar. The edge probability

can be computed as p = m

(
n
2

)−1
in a random graph [74], and this value was

computed for all graphs of all sizes generated by ER200. The value was found to be
0.047 ≤ p ≤ 0.05, which includes the probability of 0.05 used to construct the target
model.
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Table 7.13: Comparison of graphs produced by ER200 to graphs produced by the
Erdös-Rényi model. Size refers to the number of nodes, µ contains average values, σ
contains standard deviations.

Size Measure Min µ Max σ

200

GPD 1.000 1.000 1.000 3.86·10−5

GTD 0.997 0.998 1.000 8.67·10−4

KS 0.935 0.939 0.950 5.44·10−3

SPD 0.776 0.793 0.820 2.11·10−2

400

GPD 1.000 1.000 1.000 6.61·10−6

GTD 0.995 0.997 0.998 9.67·10−4

KS 0.925 0.942 0.958 1.27·10−2

SPD 0.756 0.774 0.791 1.30·10−2

600

GPD 1.000 1.000 1.000 2.74·10−6

GTD 0.995 0.997 0.998 5.33·10−4

KS 0.938 0.950 0.962 6.78·10−3

SPD 0.725 0.754 0.779 1.38·10−2

800

GPD 1.000 1.000 1.000 1.43·10−6

GTD 0.996 0.997 0.997 3.73·10−4

KS 0.949 0.963 0.974 5.79·10−3

SPD 0.728 0.751 0.788 1.47·10−2

Averaged over 50 graphs per size. Similarity measures are defined in (6.5), (6.6), (6.7), and (6.8).

Figure 7.4: ER200 vs. Erdös-Rényi degree distribution, n = 200. Mean KS test
statistic, D = 0.204. Mean p-value p = 0.779.
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Figure 7.5: ER200 vs. Erdös-Rényi degree distribution, n = 400. Mean KS test
statistic, D = 0.152. Mean p-value p = 0.806.

Figure 7.6: ER200 vs. Erdös-Rényi degree distribution, n = 600. Mean KS test
statistic, D = 0.127. Mean p-value p = 0.836.
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Figure 7.7: ER200 vs. Erdös-Rényi degree distribution, n = 800. Mean KS test
statistic, D = 0.117. Mean p-value p = 0.807.

7.3 Model Inference From A Watts-Strogatz

Graph

Next, a model was evolved against a 200 node Watts-Strogatz target graph over 50
generations, using a population size of 100 individuals. All other parameters are the
same as those given in Table 7.2. The target graph was generated with a rewiring
probability prew = 0.15.

Pseudocode for the SW200 algorithm is not reproduced here because the evolved
model contained 171 different functions and terminals and 18 conditional branches.
However, it can be found in Appendix B. Looking at only the 19 functions that add
or remove edges and nodes to the graph some observations can be made. The SW200

model uses the BUILD_RING function to initialize a graph, this behaviour is consistent
with the Watts-Strogatz model, it also contains 6 instances of CREATE_TRIANGLE,
4 instances of CONNECT_RAND, and 8 instances of CONNECT_STUB. The construction of
triangles influences the clustering coefficient and edges created by CONNECT_RAND, and
CONNECT_STUB provide shortcuts across the ring. The finalization branch was empty.
The evolved algorithm will produce graphs with a mean degree of approximately 6
±1 for any size graph. A comparison of the clustering coefficient values of graphs
produced by the evolved model versus the clustering coefficient for a random graph
with the same number of nodes and edges is given in Table 7.14. Note that even
the minimum values for the evolved model are an order of magnitude higher than
the random graph values, so the values observed in the evolved model cannot be
attributed to random chance.
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Table 7.14: Clustering coefficient comparison. The first and third quartiles are no-
tated as Q1 and Q3 respectively.

Size Min Q1 Median Q3 Max Random

200 0.181 0.193 0.203 0.203 0.203 1.49·10−2

400 0.172 0.172 0.189 0.185 0.193 2.01·10−2

600 0.161 0.164 0.174 0.174 0.185 3.02·10−2

800 0.153 0.167 0.169 0.171 0.177 6.02·10−2

Fig. 7.8 to Fig. 7.11 are degree distribution comparison plots for graphs at 200,
400, 600, and 800 nodes respectively. The distributions labelled as “Evolved Model”
are the average degree distributions of the 50 graphs generated by SW200. The plots
show that the evolved model and the target model have produced graphs with the
same minimum k values, and a similar frequency of nodes with those values. Both
the evolved and target models create degree distributions with maximum frequencies
between 0.3 and 0.4 at k = 5 or k = 6 regardless of the number of nodes in the graph.
This behaviour is very different from the random graph model and the ER200 model
in the previous section that produced graphs with an average degree that increased
with the number of nodes in the graph. The mean p-values for KS tests comparing
distributions for each graph produced by the evolved model against the corresponding
target graph are once again given below the distribution plots. The results of the KS
tests show the distributions are the same with an average confidence of at least 97% in
all instances. The results of the comparison with respect to the other fitness measures
are given in Table 7.15. A value of 1.0 for each objective is best and a value of 0.0 is
worst. The average values are at least 0.8. These values show that the quality of fit
is maintained even when generating graphs much larger than the graph used as input
to the GP system with respect to all objectives.

7.4 Model Inference From A Barabási-Albert

Graph

Finally, a population of 100 was evolved over 50 generations against a target generated
by the Barabási-Albert algorithm.

Pseudocode for the BA200 algorithm is given in Alg. 3. The evolved algorithm
makes use of the SET_GROW_NODES initialization function that helps generate the
branching structure. It achieves the preferential attachment behaviour by using the
CONNECT_STUB_PERSIST function using a small range specification (only the top 2%
of nodes in the priority queue will be selected), and a degree-proportionate selection
from that range.

Fig.7.12 to Fig. 7.15 are degree distribution comparison plots for graphs at 200,
400, 600, and 800 nodes respectively. The distributions labelled as “Evolved Model”
are the average degree distributions of the 50 graphs generated by BA200. When the
evolved model degree distributions are compared to the target graphs, it is observed
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Table 7.15: Comparison of graphs produced by SW200 to graphs produced by the
Watts-Strogatz model. Size refers to the number of nodes, µ contains average values,
σ contains standard deviations.

Size Measure Min µ Max σ

200

GPD 1.000 1.000 1.000 2.09·10−5

GTD 0.970 0.987 0.991 5.22·10−3

KS 0.920 0.927 0.940 5.05·10−3

SPD 0.828 0.850 0.920 3.11·10−2

400

GPD 1.000 1.000 1.000 6.68·10−5

GTD 0.963 0.975 0.982 7.69·10−3

KS 0.825 0.844 0.873 1.50·10−2

SPD 0.808 0.879 0.913 4.51·10−2

600

GPD 1.000 1.000 1.000 2.71·10−5

GTD 0.948 0.960 0.972 9.02·10−3

KS 0.835 0.868 0.885 1.57·10−2

SPD 0.851 0.878 0.938 3.04·10−2

800

GPD 1.000 1.000 1.000 2.14·10−5

GTD 0.942 0.958 0.972 7.75·10−3

KS 0.861 0.874 0.901 1.17·10−2

SPD 0.833 0.876 0.903 2.40·10−2

Averaged over 50 graphs per size. Similarity measures are defined in (6.5), (6.6), (6.7), and (6.8).

Figure 7.8: SW200 vs. Watts-Strogatz distribution, n = 200. Mean KS test statistic,
D = 0.105. Mean p-value p = 1.000.
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Figure 7.9: SW200 vs. Watts-Strogatz distribution, n = 400. Mean KS test statistic,
D = 0.105. Mean p-value p = 1.000.

Figure 7.10: SW200 vs. Watts-Strogatz distribution, n = 600. Mean KS test statistic,
D = 0.132. Mean p-value p = 0.978.
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Figure 7.11: SW200 vs. Watts-Strogatz distribution, n = 800. Mean KS test statistic,
D = 0.091. Mean p-value p = 1.000.

Algorithm 3 BA200 algorithm

SET GROW NODES; {Add one node per iteration.}
for each node n do

CONNECT STUB PERSIST(FLOAT TO PROB(0.02), TRUE);
end for
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Table 7.16: Comparison of graphs produced by BA200 to graphs produced by the
Barabási-Albert model. Size refers to the number of nodes, µ contains average values,
σ contains standard deviations.

Size Measure Min µ Max σ

200

GPD 0.997 0.999 1.000 1.12·10−3

GTD 1.000 1.000 1.000 0
KS 0.955 0.956 0.960 2.27·10−3

SPD 0.725 0.734 0.737 5.45·10−3

400

GPD 0.996 0.996 0.997 2.26·10−4

GTD 1.000 1.000 1.000 0
KS 0.965 0.976 0.988 1.14·10−2

SPD 0.659 0.706 0.753 4.74·10−2

600

GPD 0.999 1.000 1.000 3.22·10−4

GTD 1.000 1.000 1.000 0
KS 0.982 0.982 0.983 8.24·10−4

SPD 0.717 0.749 0.786 2.62·10−2

800

GPD 1.000 1.000 1.000 1.51·10−4

GTD 1.000 1.000 1.000 0
KS 0.988 0.988 0.991 1.62·10−3

SPD 0.709 0.725 0.736 1.02·10−2

Averaged over 50 graphs per size. Similarity measures are defined in (6.5), (6.6), (6.7), and (6.8).

that they have almost identical frequencies of low degree nodes and are both heavily
tailed distributions with a small number of nodes with high degrees. The mean p-
values for the KS test are given with these figures and show the distributions are
the same with at least 95% confidence for all input graph sizes. The results of the
comparison with respect to the other fitness measures are given in Table 7.16. A value
of 1.0 for each objective is best and a value of 0.0 is worst. The comparisons show
that the model performance is maintained even when generating graphs at 800 nodes.
The values of 1.0 for the difference in global transitivity fitness objective reflects the
strong tree-like structure of the graphs generated by the Barabási-Albert graphs and
the corresponding BA200 model, neither model is very likely to produce any triangles
at all.

7.5 Effective Difference Between Graph

Properties

A models evolved by the GP system represents an estimate of the true model T that
generated the target graph. The estimate is created based on a sample of nodes
in a single graph target. We have also shown via the fitness functions that the
evolved models are able to provide a good approximation of much larger graphs
generated by T . However, we expect some differences between the evolved model



Chapter 7. Reproducing Existing Models 69

Figure 7.12: BA-M200 vs. Barabási-Albert distribution, n = 200. Mean KS test
statistic, D = 0.0825. Mean p-value p = 0.969.

Figure 7.13: BA-M200 vs. Barabási-Albert distribution, n = 400. Mean KS test
statistic, D = 0.1136. Mean p-value p = 0.961.
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Figure 7.14: BA-M200 vs. Barabási-Albert distribution, n = 600. Mean KS test
statistic, D = 0.0563. Mean p-value p = 1.000.

Figure 7.15: BA-M200 vs. Barabási-Albert distribution, n = 800. Mean KS test
statistic, D = 0.0712. Mean p-value p = 0.999.
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Table 7.17: Effect sizes of graph properties vs. targets, 1000 samples, Global cluster-
ing coefficient (GC), Avg. geodesic path length (GP).

Size Property gER gWS gBA

200
GP 0.009 0.044 0.060
GC 0.005 0.035 0.000

400
GP 0.024 0.076 0.125
GC 0.004 0.043 0.000

600
GP 0.028 0.089 0.142
GC 0.004 0.044 0.000

800
GP 0.027 0.099 0.049
GC 0.004 0.047 0.000

and T because the fitness functions show us the approximations are not optimal.
Thus, the distribution of network characteristics is likely to differ, but as long as the
effective difference is negligible then our model is very reasonable. We show that
using Hedges g-statistic [40] the effect size between the evolved models and and T is
small (much less than 0.2) [16], thus the models represent good approximations of T .
Moreover, these small differences are practically negligible in the context of the graphs
themselves. Table 7.17 gives the effect size of the distributions of average geodesic
path length (GP) and global clustering coefficient (GC) between the evolved models
ER200, WS200, and BA200 and the Erdös-Rényi, Watts-Strogatz, and Barabási-Albert
models, respectively.

No g-statistics are given comparing degree distributions because they would first
need to be collapsed to a single descriptive statistic. Given the various shapes of the
degree distributions it makes no sense to compare them in that context. However,
comparing the degree distribution is implicit in the KS test statistic, which is already
known to have evolved to a good value based on the p-values given in the Sections
7.2 to 7.4.

7.6 In Summary

The experiments in the previous section show the proposed GP system is able to
approximate known graph models given only a sample of the networks they generate
as input. The results are validated by a manual comparison of algorithms (because in
this case we know the target algorithm) as well as by a comparison of graph properties
coupled with goodness of fit tests for their degree distributions and effect sizes for the
remaining properties. Five different multi-objective strategies were compared and it
was shown that a simple weighted sum of the objective functions was suitable for this
problem, although different input networks may give different results.

Out of curiosity (it was never intended to be within the scope of this thesis), the
system was applied to a cortical network which had no obviously suitable model [101].
The initial results were very promising, see Appendix C. However, the GP system
could not generate models able to reproduce the defined community structure of the
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cortex, although neither could well-known models traditionally used to model cortical
networks. With some alterations to the system, it was coerced into generating models
of community structure and the following chapter explains how.
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Chapter 8

Application to Cortical Networks

The experiments and results detailed here outline how a model for the cat cortex
was generated. The model is significant on two levels. First, it is significant because
it was automatically inferred by the proposed GP system, which was the first (to
this author’s knowledge) system for automatically inferring graph models for com-
plex networks – making this network the first real network to have a graph model
automatically inferred for it. Second, it is significant because the graph model which
was inferred possesses important features which graph models traditionally used to
approximate the cortex do not possess.

8.1 Cortical Networks

Cortical networks, having a low average geodesic path length and a high clustering
coefficient are often modelled with the Watts-Strogatz (WS) small-world model [78,
89, 90, 97]. However, the WS model does not produce highly connected hub nodes,
an important feature of brain structure. The hub nodes present in cortical networks
have given rise to the idea that the connectivity may follow a power law. If it is
necessary to model hub nodes then a model such as the Barabási-Albert (BA) is
usually used [7, 78, 90]. Both of these models have been important in the analysis of
brain networks [90], however neither of them model both the degree distribution as
well as the transitivity and path length properties.

The experiments in this section will focus on the cortical connectivity within the
brain of a cat because it has the most complete available data of its kind [101]. The
dataset was created via a collation of tract-tracing experiments and literature report-
ing, supported by analytical treatment of the results [85]. It has been found that
this network is dominated by paths of length one and two, that it contains a high
density of connections, it has highly connected hubs, and that it is segregated into
communities (which closely align with the visual, auditory, somatosensory-motor, and
frontolimbic centres) [101]. It is also speculated that the number of alternative path-
ways between cortical nodes plays an important role in the brain’s ability to process
complex information [101]. Cortical networks are often classified as small-world net-
works [89, 101]; however, there is also some debate as to whether or not they could
be scale-free networks [38,45,91]. As such, these networks are often modelled or sim-
ulated using algorithms that generate scale-free or small-world networks. Although,
it is known that the cortical data in the literature suggests neither model is quite
suitable given that they do not describe the inter-community dynamics of the cortex
well [101].

The proposed system for the automatic inference of graph models works only with
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undirected networks, and while cortical networks are thought to be directed networks,
it has been shown that an undirected approximation is a reasonable relaxation because
the majority of connections are reciprocal [66,101]. The cat cortical network dataset
[85] in its undirected form contains 52 cortical nodes and 515 edges. It has a clustering
coefficient of Cc = 0.585 and an average geodesic path length of lc = 1.636 and a
diameter of dc = 3. These simple properties are useful because they are known to
be good classifiers of the behaviour of message propagation across a network [6]. If
multiple paths are used for processing then it may be that the longest path is also
of consequence, especially if the temporal aspect of these signals is important, so the
diameter will also be considered.

8.2 Generating Hierarchical Models of

Community Structure

This thesis does not focus on the problem of discovering communities directly with the
GP system itself, although it may be an effort for future work. Instead, we endeavour
to model communities that we are able to identify in a target network via an external
algorithm (many exist [25]). We propose a system which represents the first effort to
automatically infer graph models for networks which exhibit a hierarchical clustered
organization for a defined community structure. It works as follows:

1. A black-box method is employed to identify the communities within the target
network.

2. The communities are isolated and fed into the GP as the target set for the
community model population.

3. The inter-community edges form a graph which is fed into the GP as the target
for the inter-community model population.

4. Select two models, one evolved from each population, and combine them to
create a hierarchical model.

Note that Steps 2 and 3 are performed in parallel. Step 4 is accomplished by
using the community model to generate a number of small graphs {C1, .., Cl} that
are combined into a graph GC using a disjoint union. Next a graph, GO, is generated
by the inter-community model using an initially empty edge set, and the vertex set
of GC . The final graph is then constructed G = {V (GC), E(GC) ∪ E(GO)} where
V (GC), E(GC), and E(GO) are the vertex set for GC , and the edge sets for GC and
GO respectively. The process of selecting a model from each population for Step 4
will be described in Section 8.3. Figure 8.1 illustrates the steps above.

The community detection algorithm is responsible only for dividing the initial
target graph and informing the final model about how many communities it should
create. The evolved model is responsible for deciding how it initializes a graph, in
what way it adds nodes, how to connect those nodes, and how many edges to do
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Figure 8.1: The process of generating hierarchical models.

it with. It should also be noted that the community detection algorithm could be
exchanged for any method which divides the original network. In this paper, the
algorithm used is the leading eigenvector community detection algorithm [71].

There are some issues for further investigation in the proposed method, in particu-
lar the number of communities is dependent on a the community detection algorithm
external to the GP system. Secondly, the GP system is aware of how the commu-
nity and inter-community models perform independently, but their interaction is not
evaluated. Hence, while a future study will evaluate what the best method for hier-
archical model generation is, and further address these issues, this chapter represents
the first effort at automatically generating these types of models and our preliminary
results already outperform existing models.

8.3 Construction of The Final Model

From the community and inter-community populations, a set of candidate community
models, and a set of candidate inter-community models are evolved. Exactly one
model from each pool of candidates is needed to construct the final model, in order
to select these models from their respective pools, each candidate from each pool was
used to create 30 graphs that were compared to their respective target graphs. The
comparisons were used to assign a final fitness value to each candidate community
and inter-community model with respect to each objective, i. The models were then
ranked according to these values. The rankings were then automatically assigned a
weight, αi, according to (7.1) defined in Chapter 7 reproduced here:

αi =
max(µji)−min(µji)∑
i=1 max(µji)−min(µji)

where µji is the average fitness objective produced by the jth evolved model. Each
evolved model j was then assigned a final weighted rank sum, RankSumj, which
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was used to automatically select a model from each pool to construct the final model
(note that this value is used only for candidate model selection and not as a fitness
value during evolution). RankSumj was defined in (7.2) in Chapter 7, computed as:

RankSumj =
∑
i

αi × rankji

where rankji is the rank of the jth individual with respect to the ith objective. Once
the ranking process was completed the median, not the best, model was selected to be
used for the final hierarchical model. Selection of the best model often led to selection
of a model that was both over-fit, and not representative of the quality of the models
the GP system was likely to produce. Thus, in selecting the median model the results
were found to improve.

8.4 Parameter Tuning

The Barabási-Albert model is primarily concerned with matching the degree distri-
bution of real-world networks [7], and so this the feature that we will focus on tuning.
There are two parameters that can be adjusted, the power of the preferential attach-
ment αBA and the number of edges added per iteration, m. By adjusting the power
we can influence the shape of the degree distribution, and adjusting m will translate
it. The effect of the parameters αBA and m are illustrated in Fig. 8.2 and 8.3. The
two parameters were tuned by a linear search of parameter combinations beginning
with m = 1, and αBM = 0.1 and incrementing them by 1 and 0.1 respectively. Fifty
graphs were generated with each parameter combination and the tuning process was
terminated when the difference between the cumulative average degree distribution
histogram from the fifty graphs and the cortex network was minimized. The difference
was measured via the KS test statistic and the final values chosen were αBA = 0.3
and m = 11. This combination produced a KS test statistic of D = 0.1 and a p-
value of 0.9899, indicating this was a very good fit. Fig. 8.4 show how the clustering
coefficient and the parameter αBA relate to the value of m, the points are labelled
with the values of m they represent. The triangle on the plot shows the values for
the clustering coefficient and average geodesic path length of the cortical network for
reference. Note that an m value of 15 would have produced graphs with transitivity
values more similar to the cortical network. However, an m value of 15 produces
a poorer match with respect to the degree distribution, and average geodesic path
length.

In tuning the small-world model the value prew = 0.08 was taken from [101] in
which the authors were fitting the same model to the same data, and the number of
neighbours for the initial lattice was set at 10 to most closely match the number of
edges in the cortex network.
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Figure 8.2: The effect of the parameter m on the degree distribution

8.5 Evolving A Cortical Model

A hierarchical model was generated as described in Section 8.2. The parameters used
to evolve the model are listed in Table 8.1.

8.5.1 Performance of the Evolved Model

The final model constructs communities by initializing them with a ring of nodes,
and then proceeds to create dense interconnections via the DUPLICATE function, as
well creating some heavily connected hubs with the CONNECT_STUB_PERSIST function.
It then probabilistically connects all pairs of nodes, and finally rewires a portion of
the edges. The inter-community model, responsible for joining the communities, con-
nects nodes by triangles and features hubs created again with a combination of the
DUPLICATE and CONNECT_STUB_PERSIST functions, it also adds some edges proba-
bilistically between all nodes. Finally, it probabilistically removes some edges. The
combination of these models produces graphs with dense clusters, prominent hubs,
and less dense inter-community connections which are joined with hubs. It also fea-
tures short-cuts in the form of random edges between communities. The evolved
model possess features of both WS model as well as the BA model. The average
cumulative degree distributions of 50 graphs produced by each model are plotted
against the cumulative degree distribution of the cat cortex in Fig. 8.5. The degree
distribution of the WS graphs are clearly dissimilar to the cortical network, while
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Figure 8.3: The effect of the parameter αBA on the degree distribution

the BA distribution and the evolved model distributions are very similar. A KS test
comparing the evolved model’s average degree distribution to the cortical network’s
gives a test statistic of D = 0.1053, with p-value of 0.9844 which is similar to the fit of
the BA model. Even more striking is how the degree distribution of a single evolved
graph looks against the cortical degree distribution, as seen in Fig. 8.6. The cortical
network distribution has a periodic look to it which is different than the unimodal
distributions produced by the BA and WS models. The evolved model is capable
of producing these unusual distributions which have reoccurring degree frequencies,
similar to the distribution observed in the cortical model.

Tables 8.2, 8.3, and 8.4 show how the models perform with respect to the size of
the edge set |E|, transitivity (clustering coefficient), diameter, average geodesic path
lengths, and the number of communities in the graphs. The far right column shows
the squared error between the average values and the values found in the cortical
network t. If the error value is bold it means it is at least as small as the smallest
error of any of the models. The BA model produces the greatest errors, while the WS
model is the closest in terms of edges and is able to consistently match the diameter
of the cortical network. However, the evolved model also consistently matches the
diameter, and is more similar to the cortical network than the other models with
respect to these properties than the other models except the edge count where it falls
between the BA and WS models. For reference, the cortical network has |Ec| = 515
edges, a transitivity of Cc = 0.585, a diameter of 3, an average geodesic path length
of lc = 1.636 and 3 communities.
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Figure 8.4: The shape of the trees used by the GP

It is thought that the number of alternate shortest paths between any two node
pairs (i, j) may have an important impact on information processing within the cor-
tex [101], this value is called the multiplicity, Mi,j. A good cortical model should be
capable of generating similar frequencies of geodesic paths between node pairs. Fig.
8.7 shows how the average frequency of multiplicity values in 50 graphs generated
by each model compare to the cortical network. While all three models reasonably
reproduce the frequencies of path lengths of one and two, only the evolved model pro-
duces a number of paths of length three comparable to those observed in the cortical
network. Longer cortical pathways generally travel between different functional areas
of the cortex [101], and in the evolved model graphs they travel between different
communities. This is a feature the BA and WS models lack, and it is an important
feature of the cortical networks given that these longer paths may be responsible for
multisensory modulation and integration [101].

Another property which describes how elements of a network communicate is the
betweenness centrality, it is affected by community structure and is an important
property with respect to cortical networks [35, 90]. The mean betweenness was mea-
sured in the fifty graphs generated by each model, and the average of those scores was
then taken. The BA and WS models both generate graphs with average betweenness
scores more than twice as high as the cortical network, while the evolved model’s
average betweenness score is within one standard deviation of the cortical network,
Table 8.5 lists the results.

Lastly, Figure 8.8, shows the cortical network, and examples of one randomly
selected BA, WS and evolved model graph. The node sizes in the plots are propor-
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Table 8.1: GP parameters.

Parameter Value
Initialization Method Koza’s ‘grow’ method
Grow Min 3
Grow Max 5
Maximum Tree Size 17
Population Size 200
Generations 150
Selection Tournament: k=3
Crossover Subtree Crossover: 0.95
Mutation Grow: 0.2, linearly decreasing,

min depth = 1,max depth = 4
Runs 50

Table 8.2: Properties of graphs generated by the BA model compared to the cortical
network, t.

Min. Q1 µ Q2 Max. (µ - t)2

|E| 506 506 506 506 506 8.10·101

Trans. 0.47 0.48 0.49 0.49 0.50 9.71·10−3

Diam. 2 3 2.92 3 3 6.40·10−3

Avg. geo. 1.62 1.62 1.62 1.62 1.62 2.48·10−4

Comm. 2 3 3.52 4 5 2.70·10−1

tional to their degree, and the nodes were positioned using the Fruchterman-Reingold
algorithm [33]. It is possible to visually distinguish the clustered organization of the
cortical network as well as the network generated by the evolved model and how they
differ from the BA and WS graphs. The cortex is a complicated structure which
possesses an inhomogeneous distribution of connections to other cortical areas, with
communities of nodes more densely connected than others. This is reflected in the
number and length of communication paths through the cortex. The organization of
the communication pathways is important to healthy brain function, and classifica-
tion and modelling of this behaviour has led to advancements in identifying unhealthy
or injured brains. However, the important community structure of the cortex is not
modelled by existing algorithms in common use and it is unclear how to properly
design or select better algorithms. The results from the previous chapter have shown
that GP is a promising method for automatically generating graph models robust
to any real-world data, such as cortical networks, especially in the case where good
algorithms are unknown. This chapter detailed the first GP system for the auto-
matic inference of graph models capable of generating graphs which exhibit a strong
community structure, and it was applied to infer a model of the cat cerebral cortex.
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Table 8.3: Properties of graphs generated by the WS model compared to the cortical
network, t.

Min. Q1 µ Q2 Max. (µ - t)2

|E| 520 520 520 520 520 2.50·101

Trans 0.47 0.52 0.53 0.54 0.56 3.22·10−3

Diam 3 3 3 3 3 0

Avg. geo. 1.61 1.61 1.62 1.62 1.62 4.30·10−4

Comm. 3 3 3.72 4 4 5.18·10−1

Table 8.4: Properties of graphs generated by the evolved model compared to the
cortical network, t.

Min. Q1 µ Q2 Max. (µ - t)2

|E| 450 546 523 546 546 6.40·101

Trans. 0.55 0.55 0.55 0.55 0.55 1.04·10−3

Diam. 3 3 3 3 3 0

Avg. geo. 1.61 1.61 1.64 1.61 1.72 1.81·10−5

Comm. 3 3 3 3 3 0

Table 8.5: Betweenness centrality comparison

Model µ σ
Evolved 16.31 1.22

BA 37.85 0.144
WS 43.03 0.70

Cortex Mean Betweenness = 16.21
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Figure 8.5: Cumulative degree distributions of the models compared to the cortical
network
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Figure 8.7: The number of shortest paths between all node pairs i, j in all models
versus the cortical network.
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Figure 8.8: The cortical network and a graph generated by each model.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

There have been a number of things that did not come to light until near the conclu-
sion of this research, and from the outset it was not even so clear if these investigations
would yield any useful results. The unavailability of prior work in creating a func-
tion set for the problem proved to be a formidable obstacle, and some of the early
attempts at constructing a useful one were unsuccessful. In reflection, it would have
been advantageous to spend a great deal more time on the function set, and in regard
to that, it would have been doubly advantageous to construct some proofs as to the
behaviour of each function in the limit of large graphs. Though, such an endeavour
may still be the focus of future work, it had remained outside the scope of this thesis
to the end of showing the application of GP to the problem was at all soluble (which
was in itself a considerable effort).

Perhaps equally difficult to establishing a GP function set was the task of deriving
a fitness function, or set of functions, capable of guiding the search for useful graph
models. The proposed fitness functions have largely been based on empirical evidence
as to the usefulness of their related network properties in categorizing different kinds
of networks. There has been no work to show the necessity or sufficiency of any one of
them, or any set of them, either in the task of categorizing networks or in the context
of fitness functions. Exploring the possibility of different fitness functions was briefly
considered in various trials of the proposed GP system and they were executed with
little success. It is entirely possible that the answer to the question of which prop-
erties are optimal lies within the structure of each network considered, and to that
end selection of a fitness function may be a combinatorial problem worthy of its own
study. The shape of the GP tree was also something derived from intuition and ob-
servation of existing models and therefore suffers from the same drawbacks (inability
to construct defined community structures, for example). Some modifications to the
process used in Chapter 7 were used in Chapter 8 to allow the GP to evolve models for
community structure, but the method relies on an external algorithm, further work
should consider a more general and expressive structure.

Another important realization that came partway into this journey was that com-
plex networks are truly decentralized in nature and reasoning about connectivity
should come almost exclusively from local properties of vertices (or perhaps from a
“nearby” area). In some early trials, various node properties (such as centrality) were
included as terminals in the GP language and were sometimes effectively used by the
GP system, but largely they were used ineffectively as a way to generate floating point
values, etc. Obviously, the ineffective use of such functions made the system unusable
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on larger input graphs and initially the decision to remove them from the function set
was resisted because they seemed important, at least ostensibly. However, removing
them had little impact on the system’s ability to yield useful results, corroborating
the feeling that connectivity should not depend on more information than what can
be determined locally.

It seems plausible that local connectivity rules could be responsible for many net-
work properties (cumulative advantage, transitivity, etc.), but what about community
structure? There was no obvious answer to this question uncovered in the short time
during this research that community structure was “under the microscope,” so to
speak. Community structure was never intended to be an object of study here, but
the preliminary examinations of cortical networks and other real-world networks have
suggested that it is perhaps one of the most powerful factors in the organization of
real networks. Further studies would do well to determine how community structure
can be derived spontaneously without the need for considering the global importance
of vertices.

The challenges of this work did not begin or end at the theoretical, a challenge of
significant proportion was computational. The complexity of many graph algorithms
make them prohibitive to execute on large graphs, and in particular an evolutionary
system may execute them many times depending on their use in the system (as a GP
language function perhaps). This line of research would naturally be complemented
by the derivation of fast graph algorithms, whether they be methods for computing
network properties or estimates of those properties, or methods of fast graph sampling.

This research has contributed the proposal of the first system for the automatic
inference of graph models for complex networks. It has showed that GP is a capable
tool for this problem, and laid the groundwork for future research by proposing a GP
function set and fitness function able to create useful and expressive graph models.
It was also shown that the proposed system could be used to infer models for real
systems by evolving a model for the cortical network of a cat, which was more accurate
than standard models. Finally, the cortical model also showed that evolving models
for community structure was possible.

9.2 Future Work

This thesis has discussed only undirected and unweighted networks, and briefly touched
upon the issue of community structure. Many natural and artificial systems are ac-
tually best represented by directed or weighted networks (or both). For example,
social networks may best be represented as directed, because friendship may not be
reciprocal, and weighted, because some people may be better friends or more imme-
diately influential than others. Furthermore, because of the complications that arise
from dealing with large datasets this work has focused on relatively small networks
(hundreds of nodes at most). However, given the size of many real-world networks
it may be more realistic to use much larger datasets when deriving a model. The
following subsections will briefly discuss these possible future research directions.
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9.2.1 Directed and Weighted Networks

There is no obvious way to extend the GP methodology discussed in this thesis for
directed networks. The function set specific to directed networks would need to be
derived. Although, it is possible that the shape of the GP tree could be adapted and
that the functions in a directed language could be similar in some ways. Furthermore,
a fitness function or functions suitable for use in evolving graph models of directed
networks would need to account for both the in and out degree distributions in a
directed network.

Weighted networks would again present the challenge of designing a new function
set, as an appropriate mechanism for creating edge weights would need to be present.
Additionally, at the very minimum a fitness function would be required to measure
differences in weight distributions between the active and target networks.

9.2.2 Models of Community Structure

It is presently unclear how to best tackle the challenge of evolving models with nat-
urally occurring community structure. The mechanisms that cause communities to
appear and grow likely depend on dynamic network properties. Therefore, a method-
ology for inferring models of community structure would need access to, or be able
to synthesize, information about how properties that influence communities change
over time. For example, one study proposes “trendiness” as a function of node degree
and time [60]. Identifying the features that encourage community structure and uni-
fying their properties would itself be a significant contribution to the field of network
science.

9.2.3 Large Networks

Networks such as the Internet, WWW, protein-protein interaction networks, and net-
works of neural connectivity in the brain are enormous and could contain millions or
billions of nodes. Furthermore, these networks are of great importance to understand-
ing our world. It may be possible to infer useful models from small subsets of these
networks, but gathering a representative subset is sometimes in itself a challenge.
In some cases, there is network data over time. These kinds of networks are perfect
candidates for automatic model inference as a sequence of small networks can be used
to infer a model capable of generating an enormous network.

If network growth data is not available the network may need to be sampled.
However, generating representative network samples is non-trivial, and has been a
topic gathering increasing interest in the social science community [64]. If the net-
work cannot reasonably be sampled the methodology proposed here could potentially
still be used with some modifications. Fortunately, GP is a so-called “embarrassingly
parallel” algorithm [77] so the process of selection, crossover and mutation, and evalu-
ation is simple to scale for many CPUs or distributed architectures. Additionally, it is
possible to compute many graph properties using massively parallel systems designed
for processing huge graphs of millions or billions of vertices [57]. Access to such a
system would obviously be advantageous for serious research in the area of complex
networks.
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Appendix A

Early Experiments: Establishing a
Function Set and Fitness
Objectives

This appendix shows some abbreviated results from an earlier iteration of the GP
system outlined in Chapter 6, which may be of some interest because they highlight
some successes and failures of an earlier GP function set. More importantly, these
results led to some important improvements to the GP language, specifically the cre-
ation of the CONNECT_STUB_PERSIST function and the addition of the Sum of Percent
Differences fitness objective.

GP Language

This particular early iteration of the GP system outlined in Chapter 6 shared with
it the same GP tree structure, and much of the function set was identical. However,
it lacked the DUPLICATE and CONNECT_STUB_PERSIST functions. The function set
also included some now defunct operators, such as terminals to compute a node’s
betweenness and closeness centrality.

The function set of the old system is given below without descriptions, except
where they vary from those described in Chapter 6. In addition to a basic set of
math operators, {+,−, ∗,%}, Ephemeral random constants (ERC), IF structures,
and the relational < operator, the language includes:
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• Initialization actions:

– ADD_ALL_NODES

– BUILD_RING

– SET_GROW_NODES

• Growth actions:

– CREATE_TRIANGLE

– CONNECT_W_PROB(p)

– CONNECT_RAND

– CONNECT_STUB(p)

• Finalization actions:

– REWIRE_EQUAL_PROB(p)

– REWIRE_RANDOM

– REMOVE_PROB(p)

• Terminals:

– CURRENT_NODE_DEGREE

– AVG_DEGREE

– MAX_DEGREE

– BETWEENESS_CENTRALITY:
Gives the betweenness cen-
trality of the current vertex
in the active graph.

– CLOSENESS_CENTRALITY:
Gives the closeness centrality
of the current vertex in the
active graph.

– TOTAL_VERTEX_COUNT: Re-
turns the vertex count of the
active graph.

– TOTAL_EDGE_COUNT: Returns
the edge count of the active
graph.

Probabilities are automatically selected from a pre-generated list, P of probabili-
ties where,

P = {0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

All functions that take probabilities as an argument take a floating point number, a,
as a parameter. The value a is mapped to an index, i = a MOD |P |. The probability
p = Pi is then passed to the function.

Fitness Function and Evaluation

The fitness functions defined for the old system were identical to those given in Chap-
ter 6, except that the Sum of Percent Differences (SPD) function had not yet been
included. Weighted and normalized summed-ranks was used as the multi-objective
strategy with manual weight selection. The weights were empirically established and
set at 1

4
, 1

4
, 1

2
, for F1Raw, F2Raw, and F3Raw, respectively. It was found via prelim-

inary experimentation that the KS-test statistic was much harder to minimize than
the average path length or clustering coefficient.

Objective weighting was the simplest way to keep the GP from trading off small
gains in the differences in average path length and clustering coefficient at the expense
of the fit of the degree distribution. The decision for using a squared difference versus
an absolute difference was established empirically for F1Raw and F2Raw.
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Active graphs were simplified as described in Section 6.2 before fitness values were
computed, and any edge cases (no paths between vertex pairs, etc.) were also handled
similarly.

Experimentation and Results

Experiments were conducted with the intent to see if the GP system was capable of
reproducing good approximations of the ER, BA, and WS models (the same as the
experiments discussed in Chapter 7). The target graphs used as input were generated
using the same parameters as those in Chapter 7. However, some other parameters
and are shown in Table A.1 and some methods were changed as well (more input
graphs, etc.) and the experiments are described below.

Table A.1: GP parameters.

Parameter Value
Generations 70
Population Size 50
Initialization Method Grow
Grow Min 3
Grow Max 5
Maximum Tree Size 17
Selection Tournament, k=3
Graphs per evaluation 3
Crossover Subtree Crossover, 0.90
Mutation Grow, 0.1, linearly decreasing

min depth = 1,max depth = 4
Runs 30

In the first experiment the GP system was initially used to evolve three populations
of algorithms meant to approximate the Erdös-Rényi model. Data was collected using
200, 300, and 400 vertex target graphs, respectively. The second experiment was
meant to evolve individuals which approximated the Barabási-Albert model, a 200
vertex graph generated by the Barabási-Albert model was used as a target. The third
experiment evolves individuals to approximate the Small-world model, a 200 vertex
graph was used as a target. The best individuals from each experiment were collected
by comparing their fitness values, and by inspection of the average degree distribution
plot vs the degree distribution plot of the target models. The best of these evolved
algorithms were called ERo200, ERo300, ERo400, SWo200, and BAo200. The first two
letters of their names indicate the type of target model which was used to evolve the
individual, and the numeric part indicates the size of that target model.

The fourth and final experiment, was conducted in order to examine how well the
evolved models predicted the growth of their target graphs. Once the individuals are
collected, they are each used to generate thirty graphs at sizes of 200, 400, 600, 800,
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Algorithm 4 ERo200 algorithm

P [] = {0.01, 0.02, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0};
BUILD_RING(); {Add all nodes and connect in a ring.}
for each node n do
CONNECT_W_PROB(P [TOTAL_EDGE_COUNT() MOD 13]);

end for

Algorithm 5 ERo300 algorithm

ADD_ALL_NODES();
for n in 1..N do
CONNECT_W_PROB(0.01);
CONNECT_RAND(); {Connect node n to a random node.}
CONNECT_STUB(TOTAL_VERTEX_COUNT()); {Satisfy an edge request in the first
P [|V |] ∗ |queue| portion of the request queue or make a request if there are none
to satisfy.}
CONNECT_W_PROB(0.01);

end for
REWIRE_RANDOM(); {Randomly rewire all edges.}

and 1000 vertices. Graphs of the same number of vertices were then generated by
the Erdös-Rényi, Barabási-Albert, and Small-world models. The graphs produced by
ERo200, ERo300, ERo400, SWo200, and BAo200 were compared to graphs of the same
size produced by the model they were to approximate. The fitness functions were
applied in order to compare the graphs produced by the evolved models to the graphs
produced by the original algorithms. The average fitness values, µ, and the standard
deviations, σ, were recorded. Being able to predict future trends with the model is
enormously important and informative, and it is a major motivation for this work.
That is, producing only graphs of the same size as the target is of very limited use
and we show here the ability of the evolved graphs to capture the growth dynamics
of the given algorithms.

Results

The ERo200 algorithm in Algorithm 4 bears a strong similarity to the Erdös-Rényi
model given in Chapter 4. It makes use of the CONNECT_W_PROB function. However,
the BUILD_RING function adds some additional structure, guaranteeing a connected
graph exists, the Erdös-Rényi model makes no such guarantee. However, the target
graph does contain a very large connected component which seems to have led to this
outcome.

The ERo300 algorithm is more similar to the Erdös-Rényi model, as shown in
Algorithm 5. It adds all vertices to the graph, then systematically adds edges. Note
that in the case of a 300 node graph the probabilistic section adds nodesp = 0.01 ∗
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Algorithm 6 ERo400 algorithm

P [] = {0.01, 0.02, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0};

ADD_ALL_NODES();
for n in 1..N do
CONNECT_W_PROB(P [TOTAL_EDGE_COUNT() MOD 13]);
CONNECT_STUB(CLOSENESS_CENTRALITY() MOD 13);
CONNECT_W_PROB(P [TOTAL_EDGE_COUNT() MOD 13]);
CONNECT_RAND();
CONNECT_STUB(BETWEENNESS_CENTRALITY() MOD 13);

end for
REWIRE_RANDOM();

300 ∗ 2 ∗ 300 = 1800 nodes. The CONNECT_STUB function adds 150 edges – one edge
for each vertex pair. This gives a total of 1800 + 150 = 1950 edges. The edges are
then rewired uniformly over the entire graph. This is similar to the idea of adding a
set number of edges randomly to a graph which contains only vertices. In fact, the
algorithm automatically discovered a different formulation of the Erdös and Rényi
model. The probability of adding an edge in the evolved model becomes [74]:

p = m

(
n
2

)−1
= 1950

(
300
2

)−1
= 0.0435, (A.1)

which is very close to the probability parameter used to construct the target graph.
The ERo400 model in Algorithm 6 also uses ADD_ALL_NODES initialization function.

Note the use of the REWIRE_RANDOM function, which destroys any initial structure to
the graph. The sum result of these operations is to assure the correct number of edges
are in the model – similar to the behaviour observed in ERo300.

Algorithm 7 BAo200 algorithm

SET_GROW_NODES(); {Create an empty graph, add a new node at each iteration.}
for n in 1..N do
CONNECT_RAND();

end for

The BAo200 model in Algorithm 7 utilizes the GROW_NODES function, the Barabási-
Albert algorithm also adds nodes on each iteration as opposed to all at once. Although
the BAo200 algorithm shows no solid mechanism for preferential attachment. Using
GROW_NODES in conjunction with the CONNECT_RAND function means that nodes added
earlier on in the construction of the graph will have higher opportunity to gather
edges. The Barabási-Albert model produces many nodes of low degree and only a
small number of nodes of high degree, and thus the evolved model is capturing some
of this preferential attachment behaviour. However, objective F3 will not heavily
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Algorithm 8 SWo200 algorithm

BUILD_RING();
for n in 1..N do
CONNECT_RAND();
CREATE_TRIANGLE();
CREATE_TRIANGLE();

end for
REMOVE_PROB(TOTAL_VERTEX_COUNT() MOD 13);
REMOVE_PROB(TOTAL_VERTEX_COUNT() MOD 13);

penalize models which do not produce node degrees that occur with low frequency.
Future research will propose methods capable of addressing this issue.

The SWo200 model, shown in Algorithm 8 is strikingly similar to the actual Small-
world algorithm which produced its target graph. The SWo200 algorithm creates a
ring, creates two triangles – the connection pattern which contributes to a high clus-
tering coefficient – and adds one random edge, creating shortcuts across the ring and
a short average path length. It finally removes some number of edges probabilisti-
cally, breaking up some of the structure introduced by the triangles. A similar effect
to rewiring some edges with equal probability as occurs in the target model.

Figures A.1, A.2 show comparisons of the average histogram produced by thirty
1000 vertex evolved graphs per model to a target graph of the same size of the
corresponding target algorithm. The error bars represent one standard deviation.
The plots show that the distributions are approximately the same shape and that they
overlap considerably. Figure A.3 shows a 200 node graph generated by the BAo200
evolved model and the corresponding target graph produced by the Barabási-Albert
model is shown in Figure A.4. They display a similar branching structure, but the
graph produced by the evolved model does not contain a similar number of high
degree vertices. As previously indicated, this will be resolved in subsequent research.

Table A.2 shows the average results, µ, and the standard deviations, σ, of the
comparisons of graphs produced by the evolved models to target graphs of various
sizes which were produced by the algorithms the individuals were evolved to emulate.
A fitness value of 1 is the best possible, and 0 is the worst.

Also, Table A.2 shows how the evolved models performed when they were used
to generate graphs much larger than the initial target graphs. Each evolved model
generated thirty graphs of each size and the graphs they produced were compared to
target graphs of the same size using fitness functions F1, F2, and F3. The averages
and standard deviations from the comparisons are shown in the table. Each model
does very well at each target size, and the standard deviations show there is very
little variation in the kinds of graphs the evolved models produce.

Three problems with the old system were evident from these results. First, that
the fitness functions were not sensitive enough to tailed degree distributions (this was
apparent from the SWo200 model’s propensity to generate a long tail, and the failure
of the BAo200 to generate a tail long enough coupled with the fact that the fitness ob-
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Figure A.1: The average ERo400 histogram of thirty 1000 vertex graphs to the his-
togram of a 1000 node Erdös-Rényi graph.

o

Figure A.2: The average SWo200 histogram of thirty 1000 vertex graphs to the his-
togram of a 1000 node Small-world graph.
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Figure A.3: A 200 node graph pro-
duced by the BAo200 model.

Figure A.4: A 200 node graph pro-
duced by the Barabási-Albert model.

jectives never indicated a poor fit). What was needed was a fitness objective sensitive
to relative differences in degree frequency, and thus the SPD objective was devised.
Secondly, upon further experimentation it became obvious that the language was in-
capable of generating scale-free behaviour, and the closest it could come to it was
to use the GROW_NODES function combined with random connections. However, this
kind of model has been considered by others and has been shown incapable of gener-
ating scale-free behaviour [7]. The solution to the second problem was to introduce
a function able to create scale-free behaviour, and thus the CONNECT_STUB_PERSIST

function was created (although its expressive power seems to not be limited to gener-
ating scale-free degree distributions). Lastly, there was no method by which to select
a final model from the candidates and in this iteration of the system it was a manual
process, the problem was eventually rectified by using the model selection method
outlined in Chapter 6.
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Appendix B

Reproducing Existing Models:
Supplementary Results

These are supplementary results to those presented in Chapter 7. The first section
of this appendix contains samples of graphs generated by the evolved models, the
section section contains the convergence chart for the experiments, and the third
section contains the actual programs output from the GP system which were used to
generate the results.

Graph Figures

Fig. B.1 is the Erdös-Rényi graph which was used as a target for the GP system.
Fig. B.2 is a graph produced by the evolved model ER200. Both graphs are very
dense, and from the node sizes it can be observed that the node degrees are roughly
equal throughout and between the two graphs. There is no clear tree-like structure
or important hubs in these graphs, as should be expected from a random graph.

The Watts-Strogatz model was used to produce the graph shown in Fig. B.3.
The evolved model, SW200, was used to generate the graph shown in Fig. B.4. Note
that the graphs lack any obvious hubs or branches, and ostensibly look similar to the
Erdös-Rényi graph in Fig. B.1. However, these graphs are much less dense than the
Erdös-Rényi graph and the node degrees are noticeably smaller. It is also possible to
pick out triangles around the edges of Fig. B.3 and Fig. B.4, whereas the Erdös-Rényi
graph has no apparent triangles.

The Barabási-Albert target graph, is shown in Fig. B.5. It is sparse, and has an
easily discernible tree-like structure with obvious hubs. The evolved model, BA200,
was used to generate the graph shown in Fig. B.6. Fig. B.7 and Fig. B.8 show the
800 node target used for growth experiments and an 800 node graph generated by
BA200 respectively.

GP Convergence

Figures B.9, B.10, and B.11 show the average per generation behaviour of the absolute
fitness objectives (0 is the worst value, 1 is the best) over 50 runs for the ER200,
SW200, and BA200 experiments respectively. The difference in average geodesic path
length (GPD), and the difference in clustering coefficients (GTD) is effectively zero
throughout the run while the difference in KS test statistics (KS) and Sum of Percent
Differences (SPD) are more slow to change – Matching the degree distribution of the
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Figure B.1: Erdös-Rényi target, n = 200
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Figure B.2: ER200 graph, n = 200



Appendix B. Reproducing Existing Models: Supplementary Results 101

Figure B.3: Small-world target, n = 200
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Figure B.4: SW200 graph, n = 200
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Figure B.5: Barabási-Albert target, n = 200
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Figure B.6: BA200, n = 200
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Figure B.7: Barabási-Albert target, n = 800



Appendix B. Reproducing Existing Models: Supplementary Results 106

Figure B.8: BA200, n = 800
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Figure B.9: Erdös-Rényi experiment. Average fitness convergence over 50 runs.

target is more difficult than matching the average path length value or the global
transitivity values. However, without the presence of the GPD or GTD objectives
the quality of the final results may suffer.

GP Trees

This section contains the actual output from the GP system for the experiments
presented in Chapter 7. Anything appearing after a ‘#’ character is a comment, and
spacing and indentation have been added for readability.

### ER_200 ###

network_builder main(): (ROOT

(INIT_NODE (ADD_ALL_NODES))

(GROW_NODE

(CONNECT_W_PROB (INDEX_TO_PROB (addIndex (index_1) (index_1))))

(GROW_NODE (CONNECT_STUB (prob_0.01) (false))

(EMPTY_GROW_LIST)))

(FINISH_NODE

(REMOVE_PROB (INDEX_TO_PROB (index_3)))

(EMPTY_FINISH_LIST)))

### END ER_200 ###
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Figure B.10: Watts-Strogatz experiment. Average fitness convergence, over 50 runs.

Figure B.11: Barabási-Albert experiment. Average fitness convergence, over 50 runs.
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### SW_200 ###

network_builder main(): (ROOT

(INIT_NODE (BUILD_RING))

(grow_list_t_if (TRUE_WITH_PROB (prob_0.01))

#then

(EMPTY_GROW_LIST)

#else

(GROW_NODE (CONNECT_STUB (subProb (prob_0.01) (prob_0.01))

(TRUE_WITH_PROB (prob_0.01)))

(grow_list_t_if (TRUE_WITH_PROB (INDEX_TO_PROB (index_3)))

#then

(GROW_NODE (CREATE_TRIANGLE)

(EMPTY_GROW_LIST))

(grow_list_t_if (TRUE_WITH_PROB (prob_0.01))

#then

(GROW_NODE (CREATE_TRIANGLE)

(grow_list_t_if (TRUE_WITH_PROB (prob_0.01))

#then

(EMPTY_GROW_LIST)

#else

(GROW_NODE (CONNECT_STUB (addProb (prob_0.01)

(FLOAT_TO_PROB (MAX_DEGREE))) (false))

(GROW_NODE (CONNECT_RAND)

(EMPTY_GROW_LIST)))))

(GROW_NODE (CONNECT_STUB (addProb (prob_0.01)

(FLOAT_TO_PROB (CURRENT_NODE_DEGREE))) (false))

(GROW_NODE (CONNECT_RAND) (EMPTY_GROW_LIST)))))))

(EMPTY_FINISH_LIST))

### END SW_200 ###

### BA_200 ###

network_builder main():(ROOT

(INIT_NODE (SET_GROW_NODES))

(GROW_NODE

(CONNECT_STUB_PERSIST

(INDEX_TO_PROB (index_1)) (true))

(EMPTY_GROW_LIST))

(EMPTY_FINISH_LIST))

### END BA_200 ###
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Appendix C

Application to Cortical Networks:
Supplementary Results

Evolution of a Cortical Model Without

Community Structure

The GP system was originally applied as it was in Chapter 7 to the cortical data
discussed in Chapter 8. The preliminary results showed that the GP system was
able to evolve a model able to produce some of the interesting features of the cat
cortex, including its unusual degree distribution (see Fig. C.2). The preliminary
results also showed that the evolved model was competitive with the Watts-Strogatz
(WS) and Barabási-Albert (BA) models in terms of the degree distribution (see Fig.
C.1), and some of the properties of interest discussed in Chapter 8. However, plots
of the graphs generated by the evolved model (see C.3) indicated the model failed
to create the defined communities apparent in the cortical data. These preliminary
results motivated a deeper look at creating models with community structure.

The final decision to use a black-box community-detection algorithm to inform
the GP system came after a suspicion that the GP language likely cannot handle
creating communities like those found in the cortical data on its own (it was never
designed to), and given that community detection and evolution was never intended
to be within the scope of this thesis the solution proposed in Chapter 8 is somewhat
of a compromise. However, the proposed method does provide a useful first step in
the direction of evolving models of complex networks with community structure; a
significant contribution given that there is no prior work in this area.

GP Trees

This section contains the GP trees evolved by the intercluster and cluster models
which were used to construct the final model that generated the results presented in
Chapter 8.

### Cluster Model ###

network_builder main(): (ROOT

(INIT_NODE (SET_GROW_NODES))

(GROW_NODE (CONNECT_W_PROB (FLOAT_TO_PROB 0.985054))

(GROW_NODE (CONNECT_STUB_PERSIST

(INDEX_TO_PROB (addIndex (index_1) (index_7))) (true))
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(GROW_NODE (CONNECT_STUB_PERSIST (subProb

(addProb (INDEX_TO_PROB (index_7)) (subProb

(subProb (addProb (INDEX_TO_PROB (index_7))

(prob_0.01)) (addProb (FLOAT_TO_PROB 0.47837)

(prob_0.01))) (FLOAT_TO_PROB 0.985054)))

(subProb (prob_0.01) (prob_0.01))) (true))

(GROW_NODE (CONNECT_STUB_PERSIST (prob_0.01) (true))

(GROW_NODE (CONNECT_STUB_PERSIST (addProb

(INDEX_TO_PROB (addIndex (addIndex (index_1)

(index_3)) (index_3))) (prob_0.01)) (true))

(GROW_NODE (CONNECT_STUB_PERSIST (addProb

(FLOAT_TO_PROB (AVG_DEGREE))

(addProb (FLOAT_TO_PROB (FINAL_VCOUNT))

(FLOAT_TO_PROB (CURRENT_NODE_DEGREE)))) (true))

(EMPTY_GROW_LIST)))))))

(FINISH_NODE (REMOVE_PROB (INDEX_TO_PROB (index_3)))

(FINISH_NODE (REMOVE_PROB (prob_0.01))))

### END Cluster Model ###

### Intercluster Model ###

network_builder main(): (ROOT

(INIT_NODE (SET_GROW_NODES))

(GROW_NODE (CREATE_TRIANGLE)

(grow_list_t_if (TRUE_WITH_PROB (FLOAT_TO_PROB 0.758118))

#then

(grow_list_t_if (< (FINAL_VCOUNT) (CURRENT_NODE_DEGREE))

#then

(GROW_NODE (CONNECT_STUB (FLOAT_TO_PROB (AVG_DEGREE)) (false))

(GROW_NODE (CONNECT_STUB (FLOAT_TO_PROB (TOTAL_VERTEX_COUNT)) (false))

(GROW_NODE (CREATE_TRIANGLE)

(GROW_NODE (CONNECT_STUB (FLOAT_TO_PROB (AVG_DEGREE)) (true))

(GROW_NODE (CREATE_TRIANGLE)

(GROW_NODE (DUPLICATE (subProb (addProb

(FLOAT_TO_PROB (AVG_DEGREE)) (prob_0.01))

(addProb (FLOAT_TO_PROB (TOTAL_VERTEX_COUNT))

(INDEX_TO_PROB (index_7)))))

(GROW_NODE (CREATE_TRIANGLE) (EMPTY_GROW_LIST))))))))

#else

(GROW_NODE (CONNECT_STUB_PERSIST (subProb

(addProb (prob_0.01) (prob_0.01))

(subProb (FLOAT_TO_PROB (FINAL_VCOUNT))

(addProb (subProb (prob_0.01) (prob_0.01))

(INDEX_TO_PROB (index_7))))) (false))

(EMPTY_GROW_LIST)))

#else
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(GROW_NODE (CONNECT_STUB_PERSIST (INDEX_TO_PROB

(subIndex (index_1) (index_7)))

(TRUE_WITH_PROB (prob_0.01)))

(GROW_NODE (DUPLICATE (addProb (prob_0.01) (addProb (prob_0.01)

(subProb (FLOAT_TO_PROB (((TOTAL_EDGE_COUNT) - (FINAL_VCOUNT))

* (TOTAL_VERTEX_COUNT))) (addProb (addProb (FLOAT_TO_PROB

(TOTAL_VERTEX_COUNT)) (INDEX_TO_PROB (index_7))) (prob_0.01))))))

(GROW_NODE (CONNECT_STUB (addProb

(INDEX_TO_PROB (subIndex (index_1) (index_7)))

(subProb (INDEX_TO_PROB (index_7))

(INDEX_TO_PROB (index_1)))) (true))

(GROW_NODE (CONNECT_RAND)

(GROW_NODE (CONNECT_STUB_PERSIST (subProb (addProb

(subProb (subProb (prob_0.01) (prob_0.01))

(addProb (addProb (addProb (FLOAT_TO_PROB (TOTAL_VERTEX_COUNT))

(INDEX_TO_PROB (index_7))) (prob_0.01)) (prob_0.01)))

(FLOAT_TO_PROB (0.758118 - 0.758118)))

(subProb (addProb (prob_0.01)

(prob_0.01)) (prob_0.01))) (< (FINAL_VCOUNT) (TOTAL_EDGE_COUNT)))

(GROW_NODE (CONNECT_W_PROB (prob_0.01))

(EMPTY_GROW_LIST)))))))))

(FINISH_NODE (REMOVE_PROB (INDEX_TO_PROB (index_7))))

### END Intercluster Model ###
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Table C.1: Values of network properties WS, BA, and Evolved models vs. Cortical.

|E| transitivity diameter geodesic communities
WS 520 0.53 2.98 1.61 3.76
BA 506 0.48 2.84 1.62 3.66
Evolved 550 0.52 3 1.59 3
Cortex 515 0.58 3 1.64 3
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