
A System for Models of
First Order Theories

Anwar AbdalBari

Department of Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Mathematics and Science, Brock University
St. Catharines, Ontario

@Anwar AbdalBari, 2011

Abstract

If you want to know whether a property is true or not in a specific algebraic structure,

you need to test that property on the given structure. This can be done by hand,

which can be cumbersome and erroneous. In addition, the time consumed in testing

depends on the size of the structure where the property is applied. We present an

implementation of a system for finding counterexamples and testing properties of

models of first-order theories. This system is supposed to provide a convenient and

paperless environment for researchers and students investigating or studying such

models and algebraic structures in particular.

To implement a first-order theory in the system, a suitable first-order language
.(

and some axioms are required. The components of a language are given by a collection

of variables, a set of predicate symbols, and a set of operation symbols. Variables and

operation symbols are used to build terms. Terms, predicate symbols, and the usual

logical connectives are used to build formulas. A first-order theory now consists of a

language together with a set of closed formulas, i.e. formulas without free occurrences

of variables. The set of formulas is also called the axioms of the theory.

The system uses several different formats to allow the user to specify languages, to

define axioms and theories and to create models. Besides the obvious operations and

tests on these structures, we have introduced the notion of a functor between classes

of models in order to generate more co~plex models from given ones automatically.

As an example, we will use the system to create several lattices structures starting

from a model of the theory of pre-orders.

Acknowledgements

I would like to gratefully thank Prof Michael Winter for his guidance, support, and

patience.

I would like to gratefully acknowledge the support of all my family. Without their

help, encouragement and support, this project wouldn't be completed.

A.A

Contents

1 Introduction

2 First Order Logic

2.1 Syntax

2.1.1 Terms

2.1.2 Formulas.

2.1.3 Free and Bound Variables

2.2 Semantics
2.3 First-order Theory

2.4 Functor

3 The System

3.1 System Overview

3.2 The Example Structure.

3.2.1 Order
3.2.2 Lower Semilattice .

3.2.3 Lattice

3.2.4 Bounded Lattice
.,

3.2.5 Pseudocomplement Lattice .

3.2.6 Quasicomplemented lattice.

3.2.7 Orthocomplemented Lattice

3.2.8 p-Ortholattices

3.2.9 A Stonian p-ortholattice

4 The Technical Specification

4.1 Overview of the System .

III

J

1

4

5

5

6

8

11

13

16

19

19

21

22

28

31

32

35

38

40

42

44

47

47

4.2 The Parser.

4.3 A Manual for the System .

4.4 Tools Used

5 Conclusions

5.1 Summary

5.2 Future Work.

Bibliography

Appendices

50

51

53

54

54

55

56

56

List of Tables

2.1 FO L Symbols Conversion . 10

2.2 FO L Formula Conversion . 11

2.3 The Lattice Model ... 15

2.4 Less Than Predicate .. 16

2.5 Greater Than Predicate 16

2.6 Meet Operation ./. 16

2.7 Join Operation 16

List of Figures

2.1 Atomic Formula .

2.2 Complex Formula

2.3 Four-elements Lattice.

3.1 The Outer Structure of C14

3.2 Order Language.

3.3 Order Theory ..

3.4 Order Model. . .

3.5 Reflexive, antisymmetric, and transitive formulas

3.6 Snapshot of order workspace

3.7 Snapshot of order theory

3.8 Snapshot of lower semi-lattice functor.

3.9 Snapshot of a lattice functor

3.10 Snapshot of a bounded lattice functror

3.11 Snapshot of a bounded lattice model

3.12 Snapshot of a pseudo complemented functor

3.13 Snapshot of a pseudo complemented lattice model

3.14 Snapshot of a quasicomplemented functor ...

3.15 Snapshot of a quasicomplemented lattice mociel

3.16 Snapshot of a p-ortholattices functor ..

3.17 Snapshot of a p-ortholattices workspace.

4.1 Snapshot of a p-ortholattices workspace.

VI

8

8

14

21

23

24

25

26

27

28

30

33

34

35

37

37

39

40

44

45

52

Chapter 1

Introduction

Logic is the study of reasoning. The language of logic consists of rules and techniques

dedicated to logical reasoning. In logic, we are interested whether a given statement

is true or not. In addition, by using the rules and t1;t>e principles of the language, we

can differentiate a true statement from false statement based on other statements. A

Knowledge of logic helps to solve problems in more systematic way, and the solutions

of the problems are more certain and easier than the solutions of informal method.

There are different types of logic such as propositional logic, first-order logic, second­

order logic etc. In this thesis, we are going to be concerned with first-order logic or

predicate logic.

First-order model theory deals with the relationships between descriptions in first­

order languages and the structures that satisfy these descriptions. Structures in par­

ticular and models of first-order theories in general play an important role, not only

in mathematics but also in adjacent disciplines such as logic and computer science

[2]. For example, certain types of lattices such as Boolean algebras, ortholattices, and

pseudo-complemented lattices are essential in qualitative spatial reasoning. This area . ~

of artificial intelligence tries to describe and to reason 'about spatial objects and their

relationship in human-like terms instead of abstract topological notions.

An algebraic structure is a model of a theory that is based on operations only, i.e.,

does not use any relation symbols. Therefore, such a structure consists of a set, closed

under one or more operations, satisfying some axioms. No one can deny the simplicity

of checking small structures satisfying some axioms with large ones. In this thesis,

we present an implementation of a system for finding counterexamples and testing

properties of models of first-order theories, algebraic structures in particular. As a

1

CHAPTER 1. INTRODUCTION 2

special case of algebraic structures, we use lattices to visualize their structures and

to determine if the underlying operations satisfy a certain property true or not.

To illustrate the concept of a first order theory, consider this example of a partially

ordered set (E, ::;). The elements of a partially order set are arranged in an ordered

fashion where a binary relation is needed to manage this order. A binary relation

(a binary predicate) ::; that satisfies the partial order property should be reflexive,

antisymmetric, and transitive. A lattice is a partially ordered set in which any two

elements have a unique supremum (the elements' least upper bound; called their join)

and an infimum (greatest lower bound; called their meet). This concept could be im­

plemented in first-order model theory. In particular first order model theory deals

with the relationships between descriptions in first order language and the structures

that satisfy these descriptions [3J. Moreover, in first-order model theory the mathe­

matical objects can be represented as models for a language. Helice, in this thesis,

first order theory concepts are fully implemented, t~~refore the following steps were

performed to achieve that implementation.

First-order theory consists of a first-order language and some axioms. Hence, the first

step is to implement a suitable language. A language is a collection of variables, set of

predicate or relation symbols, and set of operation or function symbols. Each of the

predicate symbols and the operation symbols has its arity. An operation symbol with

zero parameters can be considered as a constant symbol. The collections of first-order

language are used to build the formulas of the language in stepwise manner. Hence,

variables , constant symbol, and operation symbols are used to build terms. Terms,

predicate symbols, and logical connectives are used to build formulas. First-order

theory deals with closed formulas. A closed formula is a formula where its variables

are bound by a quantifier.

The next step is to provide a suitable model of a language. A model of a language

consists of a non-empty set of elements' called the universe together with interpreta­

tions for the function and predicate symbols in term of functions (or operations) and

predicates over the universe. Such a model is a model of a theory if it is a model of

the language and all axioms are true in the model. Within the system the underlying

universe is always supposed to be finite and given by the integers 0 to n - 1 where n

is the total number of elements. Refer to the lattice example mentioned earlier, the

model of the lattice consists of meet and join binary operations. Whereas, less than

(<) and greater than (» denote the predicates of that model.

CHAPTER 1. INTRODUCTION 3

The creation of models in the system can be done by two methods. The first method

is to provide a proper model to the system. The next method is to use the notion of

a functor between classes of models in order to generate more complex models from

given ones. In this method, various theories like current theory, new theory, a set of

current predicates and operations, definitions of new predicates and operations, and

a model are applied to a functor to construct a new model.

The next chapter gives introduction to first-order logic.

Chapter 2

First Order Logic

Before we explain first-order logic, we provide a brief summary of a formal language

and logic. A language is formal if the syntax of the language is defined with proper

rules that are suitable for a computer to check whethef"{any particular sentence belongs

to the language. A logic is a formal language together with a notion of trueness and a

proof systems for deriving true statements. However, there are many different kinds

of logical system where proofs can be constructed. First-order logic is included in

these systems.

First-order logic (FOL) is a formal logical system used in mathematics, philosophy,

and computer science. First-order logic is distinguished from propositional logic in

that it has quantifiers and predicates. In addition, first-order logic is symbolized

reasoning in which each sentence or statement is broken down into a subject and a

predicate. The predicate modifies or defines the properties of the subject. In first­

order logic, a predicate can only refer to a single property, i.e., one cannot quantify

over predicates.

The structure of first-order logic simu~ates the nature of the languages. It assumes

the world contains the following:

• Objects e.g. people, cities, colors, numbers, theories, categories, ...

• Relations e.g. blue, has color, inside, greater than, less than, ...

• Functions e.g. mother of, union, intersection, plus, minus, ...

Predicates and functions in first order logic have one or more arguments, e.g.

P(x, y, z) or f(a, b, c, d). Based on predicates one can build sentences such as Vx

4

CHAPTER 2. FIRST ORDER LOGIC 5

(Vy: (Vz: P(x, y, z))). This sentence has a value which is either true or false. In the

previous statement, the identifiers (x, y, z) represent variables and some values could

be assigned to them from the domain of these variables.

Consider this statement in first order logic, 3x : (Vy : (3z : P(x, y, z))). This means

there exists a value of x and no matter what value of y, there will be a value of z

which is able to satisfy P(x,y, z). Note that 3x : (Vy: (3z: P(x,y,z))) is not the

same as Vy : (3x: (3z: P(x, y, z))), so they are not equivalent.

2.1 Syntax

To build a suitable language in first-order logic, we require the following components:

1. X a set of variables.

2. F a set of function (or operation) symbols. Each symbol has its arity.

3. P a set of predicate (or relation) symbols. Each symbol has its arity.

Functions with zero parameter are called constant symbols. As mentioned earlier

predicate symbols are used to build sentences, and function symbols can be used to

build terms.

2.1.1 Terms

The objects of the language consist of collections of variables, a set of predicate sym­

bols, and a set of operation symbols. Variables and operation symbols are used to

build terms. Hence, the following is the definition of a. term in first-order logic.

Definition 1 [10] The set Term of terms is recursively defined by the following:

1. Each variable x E X is a term, i.e., X ~ Term.

2. If f E F is an n-ary function symbol and t l , .. . ,tn E Term are terms, then

f(t l , ... , tn) E Term.

3. Nothing else is a term.

CHAPTER 2. FIRST ORDER LOGIC 6

From Definition 1, an individual variable is a term. An individual constant, i.e.,

a O-ary function symbol is a term. A function symbol with n terms as parameters

is a term. Nothing else is a term. Examples of terms are: A, 5, John, a, and

MotherOf(y). where A, 5, and John are constant symbols.

2.1.2 Formulas

Terms and predicate symbols are used to build formulas.

Definition 2 [10] The set POL of first-order formulas (or formulas) is defined as

follows:

1. Iftl , ... ,tn E Term are terms, and If pEP is an n-ary predicate symbol, then

p(t l , . .. ,tn) E FOL.

2. -.l is a formula, i.e, -.l E POL.

3. If <P E FOL then --, <P E POL.

4· If tl and t2 E Term are terms, then tl = t2 E FOL.

5. If <PI, <P2 E FOL then <Pl 1\ <P2 E FOL.

6. If <Pl, <P2 E FOL then <PI V <P2 E FOL.

7. If <Pl, <P2 E FOL then <PI ---7 <P2 E FOL.

8. If <P E FOLand x E X then

(a) \Ix: <P E FOL and

(b) :Jx: <P E FOL .

9. Nothing else is a formula.

In first-order logic, formulas should be read in a unique way. To ensure that

formulas are not ambiguous, rules have been developed about the precedence of the

connectives to limit the need to write parentheses in writing formulas. These rules

are shown as follows:

• --, is evaluated first.

CHAPTER 2. FIRST ORDER LOGIC 7

• 1\ and V are evaluated next.

• 'II and ::3 are evaluated next.

• -t and f-+ are evaluated last.

From the above rules we see that negation (-,) has the highest precedence. Con­

junction (1\) and disjunction (V) have the same level of precedence. In addition, they

have higher precedence than ('11,::3) quantifiers. Finally, implication (-t) and equiva­

lence (f-+) logical symbols have the lowest precedence.

Let us illustrate the precedence of the connectives through an example.

-, ('II x P (x)) -t ::3x (-, (p (x)))

By using the above rules of the precedence of the connectives, the above formula

could be written as

-,'IIx P(x) -t ::3x -,P(x)

From Definition 2, a predicate symbol with n terms as parameters is a formula. The

propositional symbol (.l) is a formula. The equality of two terms is a formula. If cp

is a formula, then -, cp, ::3x : cp, 'IIx : cp are formulas, where x is an individual variable.

If CPI and <P2 are formulas then, CPI 1\ <P2, <PI V CP2, and <PI -t <P2 are formulas.

An atomic formula is a formula of kind 1 or 4. of the previous definition. Hence,

it is constructed using a predicate symbol, including =, and a suitable number of

term. Such an atomic formula does not have any logical connectives. A complex or a

compound formula is a formula that contains atomic formula with logical connectives.

Figure 2.1 represent an atomic formula. Notice that "Length" and "Tower" are unary

operations. The parameter of these functions maybe variable, function, or constant

like in this case.

Figure 2.2 represents a complex formula, which is built from two atomic formulas and

a connective symbol. From both figures we can distinguish between a predicate and

a function by the fact that, a function returns value such as "Length" and "Tower"

functions, while a predicate returns either true or false such as "Sibling" and ">"
predicates.

In the following section, we want to introduce the concept of free and bound

variables in a formula.

CHAPTER 2. FIRST ORDER LOGIC

> (Length (Tower (Dubai » ~ Length (Tower (Toronto)))
"-v-' '-v-'" "'-v-'"" '--.-" '-v--" ~

predicate function function constant function function constant
" 'V' .J '" ____ -..,oy,,..-----J

term term
\",

v .I

atomic sentence

Figure 2.1: Atomic Formula

Sibling (William J Hal1Y)
'--v-" "--v-" '-v-'"

=> Sibling(Harry , William)
'--v-" '-v-'" "--v-"

predicate term term predicate term term

~ ----------~v"..---------~~
atomic sentence atomic sentence

~ ------------------------~v"..------------------------~.1 complex se,ntence

.;'
Figure 2.2: Complex Formula

, (
"

2.1.3 Free and Bound Variables

8

Any variable may occur free and bounded in the same formula. Hence, an occurrence

of variable in a sentence is free if it is not in the scope of any quantifier with the same

variable. Otherwise, non-free variable occurrence is bound.

Definition 3 [10] An occurrence of a variable x E X in a formula is bounded iff

it is in a subformula of the form Vx : <p or 3x : <p • An occurrence is free iff it is not

bounded.

According to the last definition, consider this example:

Vx : P(x) /\ Q(x)

Notice that, both occurrences of x are"bounded by Vx·; In the following example, the

first occurrence of x is bound by V x, while the second occurrence is free.

(Vx : P(x)) /\ Q(x)

Another example is:

Vx: R(x, z) /\ 3y : S(x, y)

CHAPTER 2. FIRST ORDER LOGIC 9

In this example both occurrences of x are bounded by \:Ix , while the occurrence of y

is bound by :Jy, and the occurrence of z is free.

To illustrate the difference between free and bounded variables, consider these two

examples of formulas.

::Ix : (:Jy: (Female(x) /\ Human(y) /\ MotherOj(x,y))) and

:Jx: (Female(x) /\ MotherOj(x,z)).

There is an important difference between the two examples. The first might be trans­

lated as: There is a female and a human so that the female is the mother of the

human. Whereas, the second example might be translated only as incomplete sen­

tence as: There is a female, and that female is a mother of something. We are unable

to complete the sentence because we don't have enough information about the term z.
(

We will say that z occurs free in that formula. In contrast, no free variables occur in

the first example. In a first-order theory, we will be interested in closed formulas only.

As mentioned earlier, the language of first-order logic contains quantifiers and con­

nectives symbols. A convenient conversion of these symbols are used in the system.

Table 2.1 shows the quantifiers and the connectives of the language and their conver­

sion in the system.

Recall the (E; /\, V, ~) structure mentioned earlier. The structure represents a lattice.

The relation::; is reflexive, transitive and antisymmetric, and every pair of the set

elements has meet and join operations. Table 2.2 shows the formulas that satisfied by

that structure and their representations in first-order logic. In the case of reflexivity

notice that, the word (AIl) in languag.e of FOL denotes (\:I) symbol, (x) denotes a
o ·

variable symbol, and «) denotes a binary predicate symbols of the language.

The system allows the user to specify the notation of the predicate and the oper­

ation symbols of the language. Hence, the logical notation could be infix, prefix, or

postfix. We use infix logical notation in case of binary predicate symbol. Therefore,

instead of writing a reflexive relation in this way (Allx < (x, x)), for more convenience

we write it as (Allx (x < x)).

CHAPTER 2. FIRST ORDER LOGIC 10

Table 2.1: FOL Symbols Conversion

Symbols in FO L Symbols in the system

Not

All

Exists

&

v
Rightarrow

Leftrightarrow

Equal

i t
In the next section we will introduce the interpretation of a language in FOL, and

the notion of a model of a theory.

CHAPTER 2. FIRST ORDER LOGIC 11

Table 2.2: FOL Formula Conversion

I FOL Notation I The System Notation

Reflexive 'ix: R(x,x) All x (x < x)

Antisymmetric
'ix: 'iy: R(x,y) 1\ All x (All y ((x < y) & (y < x))

R(y,x) ~ (x = y) Rightarrow (x = y))

'ix: 'iy: 'iz: All x (All y (All z (
Transitive R(x, y) 1\ R(y, z) x<y&y<z

~ R(x, z) Rightarrow x < z)))

'ix : 'iy : :3z : All x (All y (Exists z (

Meet [z ::; x and z ::; y, 'iu (z < x & z < y &

[u ::; x and u ::; y) (All u (u < x & u < y)

~ u ::; z} Rightarr6w u < z)))))

'ix : 'iy : :3z : All x (All y (Exists z (

Join [x ::; z and y ::; z, 'iu (x < z & y < z &

[x ::; u and y ::; u) (Allu (x< u& y < u)

~ z ::; u} Rightarrow z < u)))))

2.2 Semantics

We need an interpretation and a model in order to define whether a formula is true or

not. A model consists of objects and relations between these objects. The interpre­

tations are based on functions that connect the symbols in the language of first-order

logic to elements and sets of objects in a model or a domain. First we have to define

the model.

Definition 4 [10] Let F be a set of function symbols, and P be a set of predicate

symbols. A model M consists of the following data:

1. I M I a non-empty set, called the domain or the universe.

2. For each function symbol f E F with arity n a n-ary function jM :

IMln~IMI·

3. For each predicate symbol pEP with arity n a subset pM ~ I M In.

CHAPTER 2. FIRST ORDER LOGIC 12

From the above definition, notice that the constant symbols of the language are

mapped to elements of the domain. Furthermore, unary predicate symbols are

mapped to sets of elements of the domain, while the binary predicate symbols are

mapped to sets of pairs of the domain elements.

Because the variables have no real meaning, and the meaning of variables is defined

by an assignment, we have to know the semantics of terms and the formulas that

contain these variables. In addition, we have to replace these variables by real values.

Definition 5 [10] Let M be a model. An environment a : X -----+ 1M I is a function

from the set of variables X to the universe of the model. For an environment a, a

variable x, and a value a E IMI denote by ala/xl the environment defined by

a[a/x](y) = { a
a(y)

iff x = y,

iff x ~1 y.
-;"

A term should denote an element in first-order logic so that the interpretation of

a term is an element of the universe.

Definition 6 [10] Let M be a model, and a be an environment. The extension

a : Term -----+ 1M I of a is defined by:

1. a(x) =a(x) for every x E X.

The previous definition defines the interpretation of terms. More specifically rule

one defines the interpretation of variables terms while rule two defines the interpre­

tation of functional terms .. Next, we want to define the validity of formulas.

Definition 7 [10] Let M be a model, a be an environment, and cp be formula.

The satisfaction relation F M cp fa} is recursively defined by:

CHAPTER 2. FIRST ORDER LOGIC 13

4. FM CPI 1\ CP2 [0"] iff FM CPI [0"] and FM CP2 [0"].

5. FM CPI V CP2 [0"] iff FM CPI [0"] or FM CP2 [0"].

7. F M 'if : cP [0"] iff F M cP (0" [a/ x]) for all a ElM I·

8. F M :3 : cP [0"] iff F M cP [(I [a/ xll for some a ElM I·

Next, we will introduce the satisfiability and validity of formulas in general.

Definition 8 [10] Let ~ be a set of formulas, and cP be a formula.

1. cP is called valid in the model M (1= M cp) iff F M cP [0"] for all environments 0".

2. cP is called valid (1= cp) iff F M cP for all models,M.
<"

3. cP is called satisfiable iff there is a model M and an environment so that F M cP

[0"].

4. cP follows from ~ in M (2:: F M cp) iff for all environments 0", whenever F M 1jJ[0"]
for all 1jJ E ~, then F M cp[O"].

5. cP follows from ~ (~ F cp) iff ~ F M cP for all models M.

If a formula cP or a set of formulas ~ is valid in a model M, we will call M a

model of cP or ~, respectively.

2.3 First-order Theory

In this section, we want to introduce a theory of first-order logic. Moreover, we want

to introduce the notion of a model of such a theory.

Definition 9 [10] A theory T is a set of closed formulas in first-order language.

If we have a theory T and a model M such that the model M satisfies all the

sentences of T, we say that the model M is a model of theory T. Similarly, if a

CHAPTER 2. FIRST ORDER LOGIC 14

model M satisfies a sentence cp we say that, the model M is a model of cpo

Let us recall the lattice structure (E; 1\, V,:::;) to define its language and the corre­

sponding theory. In this example, we will now provide a model of that theory.

Consider the lattice visualized in Figure 2.3. The sets consists of the following:

predicates: <, >; functions: meet, join; constant: U

Figure 2.3: Four-elements Lattice

CHAPTER 2. FIRST ORDER LOGIC 15

Table 2.3: The Lattice Model

Description Name Arity Set elements

Predicate < 2 (0,0), (0,1), (0,2), (0,3), (0,4), (1,1),

(1,4) ,(2,2),(2,4),(3,3) ,(3,4),(4,4)

Predicate > 2 (0,0), (1,0), (2,0),(3,0),(4,0) ,(1, 1),

(4,1) ,(2,2), (4,2) ,(3,3), (4,3), (4,4)

meet 2 (0,0,0), (0,1,0), (0,2,0), (0,3,0), (0,4,0), (1 ,0,0), (1,1,1),

Operation (1,2,0), (1,3,0),(1,4, 1) ,(2,0,0) ,(2, 1,0) ,(2,2,2),(2,3,0),

(2,4,2) ,(3,0,0) ,(3, 1,0), (3,2,0), (3,3,3), (3,4,3),(4,0,0),

(4,1,1),(4,2,2), (4,3,3),(4,4,4)

join 2 (0,0,0) ,(0,1,1),(0,2,2) ,(0,3,3) ,(0,4,4) ,(1 ,0, 1) ,(1,1, 1) ,

Operation (1,2,4), (1,3,4) ,(1 ,4,4)'S{2,0,2), (2, 1,4), (2,2,2), (2,3,4),

(2,4,4) ,(3,0,3), (3, 1,4), (3,2,4), (3,3,3), (3,4,4),(4,0,4),

(4,1,4),(4,2,4),(4,3,4),(4,4,4)

Next , we want to construct a finite model or a domain of the theory. The domain

of the lattice above contains operations and predicates. In this domain "meet" and

"join" denote the domain operations, while "<" and ">" denote the domain predi­

cates.

The model of the lattice visualized in Figure 2.3 is specified by Table 2.3. As we

can see from Table 2.3, each predicate and operation consists of a set of elements.

The representation of these elements is varying, depending on the arity of the rep­

resented predicate or operation. In c~se of a binary predicate, i.e. , "<" and ">",
the elements are represented by tuples. Each tuple c·onsists of two elements, these

elements satisfy the predicate functionality. While in case of binary operation, i.e.,

"meet" and "join", the elements are represented by a triple. The first two elements

of the triple are inputs to that operation, while the third element is the output. The

arity of the predicates and the operations in a model should match the arity of the

predicate symbols and operation symbols of a language.

Tables 2.4 and 2.5 show the predicates of that domain.

CHAPTER 2. FIRST ORDER LOGIC 16

II 0 1 2 3 4 II 0 1 2 3 4

0 T T T T T 0 T F F F F

1 F T T T T 1 T T F F F

2 F F T T T 2 T T T F F

3 F F F T T 3 T T T T F

4 F F F T T 4 T T T T T

Table 2.4: Less Than Predicate Table 2.5: Greater Than Predicate

Notice that the domain of the predicates is {True, False }. Therefore, if you test

any two elements of the set in Table 2.4, the result will be true or false. For example,

(1 < 0) = False is represented by the cell of the table. Similarly, if you test any two

elements of the set in Table 2.5 , the result will be tru~ or false . For example, (3)2)=

True.

II 0 11 I 2 I 3 I 4 I II 0 I ~ I 2 I 3 I 4 I
0 0 0 0 0 0 0 0 1 2 3 4

1 0 1 1 1 1 1 1 1 4 4 4

2 0 1 2 2 2 2 2 4 2 4 4

3 0 1 2 3 3 3 3 4 4 3 4

4 0 1 2 3 4 4 4 4 4 4 4

Table 2.6: Meet Operation Table 2.7: Join Operation

Notice that the domain of the operations is {O,1,2,3,4}. Therefore, the result of 2

meet 0 is 0, which is repr~sented by th~ cell of the Table 2.6. Similarly, the result of

3 join 2 is 4. In this example, we used the 1\ and V symbols as shown in the theory

formulas to represent or to map the meet and the join functions of the model.

2.4 Functor

This section gives a brief overview of the important categorical concepts, namely cat­

egory and functor.

I
• I

1

CHAPTER 2. FIRST ORDER LOGIC 17

A category is a collection of data that satisfy some particular properties. Further­

more, Category Theory studies objects and morphisms between them.

Definition 10 [1] A category C is

1. a collection abc of objects, denoted by a, b... A, B

2. a collection Morc of morphisms (arrows), denoted by f, g

3. two operations dom, cod assigning to each arrow f two objects respectively called

domain (source) and codomain (target) off.

4. an operation id assigning to each object b a morphism idb (the identity of b)

such that dom(idb) = cod(idb) = b .;"

5. an operation" 0" (composition) assigning to each pair f, g of arrows with dom(f)

= cod(g) an arrow fog such that dom(f 0 g) = dom(g), cod(f 0 g) = cod(f)

6. identity and composition, moreover, must satisfy the following conditions: iden­

tity law: for any arrows f, 9 such that cod(f) = b = dom(g)

• idb 0 f = f
• go idb = g

associative law: for any arrows f, g, h such that dom(f) = cod(g) and dom(g)

= cod(h)

• (f 0 g) 0 h =. f 0 (g 0 h) _,

We write f : a -t b to denote a morphism whose source and target are respectively a

and b.

Consider the category in which the objects are categories and the morphisms are

mappings between categories. The morphisms in such a category are known as func­

tors.

CHAPTER 2. FIRST ORDER LOGIC 18

Definition 11 [1] Let C and D be categories. A functor F : C ~ D is a pair of

operations Fob: Obc _ ObD , FmoT' : Morc _ MorD such that, for each f : a _

b, g : b _ c in C,

From Definition 11 , if two categories are given, C and D, a functor F : C _ D

maps each morphism of C onto a morphism of D, such that: F preserves identities,

i.e. if x is a C-identity, then F(x) is a D-identity and F preserves composition, i.e

F(f 0 g) = F(f) 0 F(g). From the above, a functor is a special type of mapping be­

tween categories. Functors can be thought of as homomorphisms between categories.

In abstract algebra, a homomorphism is a structure-preserving map between two

algebraic structures [1]. Next, we will define a homomorphism between models.

Definition 12 Let M and N be models, h : M _ N is a homomorphism, iff

• h:1 M I_I N I·

• for every function symbol f and aI , ... ,an ElM I

- h(fM(al'"'' an)) = f N (h(al, ... , an))

- (al,"" an) E pM {:} (h(ad, ... , h(an)) E pN.

Lemma 1 Let T be a first-order theory. Then the models of T together with the

homomorphism form a category.

Our functor F with an input language £1 and an input theory Ti and an output

language 72 and an output theory 72 is a functor between the category of those

models of Ti that give a model of 72 using the definition in F and the models of Ti.

Chapter 3

The System

This chapter will discuss the implementation of first-order logic concepts in the sys­

tem. As an example, algebraic structures will be used to illustrate the usage of the

system. We will focus on structures like order, lower-lattice, lattice, bounded lattice,

pesudocomplement lattice, quasicomplement lattice, and p-algebra. First, we will

introduce the definitions and the properties of these structures. Next, we will show

how to translate these structures into the syntax of the system.

3.1 System Overview

The system provides three main functions to the user. These functions are:

• Test a formula.

• Apply a functor to a model.

• Check if the model is a model of a given theory.
, .

By "test a formula" we mean that, if we have a model and a formula loaded in the

system, simply by using this function we can check if a selected model satisfies a

selected formula or not. Moreover, in case the selected model does not satisfy the

selected formula, the system shows the user a counterexample.

"Apply a functor to a model" function is used to generate more complex models from

given ones. For example, by using a system functor and an order model as input,

other structures like lower lattice, lattice, bounded lattice, pesudocomplement lattice,

quasicomplement lattice, and p-algebra could be generated. Additional operations

19

i

CHAPTER 3. THE SYSTEM 20

and predicates are implemented in the functor. The structure generated should satisfy

the axioms of the output theory. This is checked automatically.

Finally, "Check if the model is a model of a theory" function, is used to check if the

selected model satisfies a specific theory or not.

Formulas are used in various ways in the generation of new models in the system,

i.e., formulas are used to create theories as well as functors. Hence, given a formula

<p with free variables Xl, ... , X n , Z there are three forms of that formula used in the

system as the follows:

• <p

The first formula is typical for testing the propertieEVof a model, i.e., if we want to
"

check if a model satisfies a specific property, we use that form of formula to represent

that property. As an example, consider Vx : X < z for <po Then the following formula

denotes the top element of a lattice:

:Jz : Vx : X < z

The second form used as a component of a theory. As mentioned earlier a theory

consists of a language and some formulas. We use that form of formula to represent

a formula used to create a theory. The following form states that the constant "I" is

the top element of the bounded lattice:

Vx : (x < 1)

The third form is typical~y used when~ adding a new function using a functor, i.e.,

it used in the functor by the following format: f Xl':' . , X n Z <po In this form, "f"
denotes a function name, Xl, ... ,Xn represent the free variables in the formula, and

z denotes the output of that formula. The following formula denotes the top element

of the bounded lattice used in a functor:

1 _ z Allx (x < z)

Note that the above formula is a closed formula. Hence, no free variables are

found.

CHAPTER 3. THE SYSTEM 21

3.2 The Example Structure

Figure 3.1 shows the structure we will be using in order to illustrate the system.

Initially we will consider this structure as a model of an ordered set. Then we will

apply functors stepwise in order to extend this model into a model of the theory of

Stonian p-ortholattices.

13

/ ~
8 10

2

~t/
o

Figure 3.1: The Outer Structure of C14

In each step of this demonstration, we will use the main functions of the system

to build a new model, check if the cur.rent model satisfies a given formula, and to

check if that model is a model of the theory in question. In addition, we will check

if the structure below is a Stonian p-ortholattices or not. The structure has 14 ele­

ments. For simplicity, we use the elements set from 0 ... 13, with elements 0 and 13

to represent the bottom and the top of the structure respectively.

CHAPTER 3. THE SYSTEM 22

3.2.1 Order

Partially ordered set (or poset) generalizes the concept of an ordering. An order is the

arrangement of elements in a set in an ordered fashion. Therefore, a binary relation

is needed to manage the order of the elements pairs in the set. Hence, a poset (E, ::;)
is a tuple that consists of a set and a binary relation. A binary relation in a poset

indicates that, for certain pairs of elements in the set, one of the elements precedes

the other.

Definition 13 A binary relation::; on a set E is called partial order set if it is:

1. Reflexive, i. e., x ::; x for all x E E.

2. Antisymmetric, i.e., x ::; y and y ::; x implies x = y for all x, y E E.

3. Transitive, i.e., x::; y and y ::; z implies x ::; z,:1or all x, y, z E E.

The following steps are used to implement Figure 3.2 example in the system.

First step, we need a language to be loaded in the system. The language gives

information about predicate symbols and function symbols used to create formulas

as well as theories. Moreover, the languages files are stored in the operating system

with "lng" extension. The structure of the language file is as follows:

Language : (language name) where

Operations

(Operation name) arity: n precedence: (Infix, Prefix, or Postfix) Level: n

Assoc (Assoc!Vone, AssocLejt, or AssocRight)

Predicates

(Predicate name) arity: n precedence: (Infix, Prefix, or Postfix) Level: n

We tried to make it easy and convenient to the user to define a language. Hence,

by using the above structure, a language could be created by specifying a language

name, a set of operation symbols, and a set of predicate symbols. An operation sym­

bol takes five arguments to be defined. The first argument is the operator name. The

second argument is the arity of the operator. Operator can be Infix, Prefix or Postfix

CHAPTER 3. THE SYSTEM 23

which can be specified by the third argument. The fourth argument is the level of

the operator in the operator table. Infix operators also have an associativity: left,

right or none, which can be specified by the fifth argument. If operators are right­

associative, the operators are applied in right-to-Ieft order. Whereas, if operators are

left-associative, the operators are applied in left-to-right order.

In this example of an order implementation, the language contains one binary pred­

icate symbol "<". This predicate symbol is used to denote the order relation of

Definition 13. Figure 3.2 shows the language of the order structure example.

-

j Language : Orderlanguage where
operations
predicates

<: arity:2 precedence:lnfix level :1 Assoc ass-oeleft

Figure 3.2: Order Language

As shown above, after we specified the language name, we defined the predicate

of the language. The arity of the "<" predicate is two, which means that, we have

predicate symbol "<" with two parameters with infix logical notation. No function

symbols are needed to be. specified in tb.e language of the order structure. Particulary,

we want to define formulas contain one predicate symbol.

The second step is to define the theory of the language of the order structure. A

theory consists of a language and a set of axioms. Theories files are stored in the

operating system with "thy" extension. The following structure is used to identify a

theory in the system.

Theory: (Theory name) where

CHAPTER 3. THE SYSTEM

(Language name)

Formulas:

List of formulas separated by comma

24

The above structure is based on Definition 9, where a theory is a set of sentences

in first-order language. Hence, we used "Theory Name" to denote the name of the

theory, "Language name" to refer the a pre-defined language in the system, and "For­

mulas" to denote a list of closed formulas.

Theory: OrderTheory where
rderlanguage

Formulas:
All x (x < x). ,{
All x (aU y (all z (x < y & y " .z Rightarrow x < 'z)}) •
All x (all y ex < y) & (y < x)) Rightarrow (x = y) }

' ~ r . , .. HI . ·-i~

r
~ ~,~~~ ':.. .z_ if "~~~~"""~~:;,~tol;;~._~~*~ ,:... -~.)!-,~-~~~-. ~~~.~ .- ...
Display a fife: C:\FOl\Files\Theories\ OrderTheory.lhy

Figure 3.3: Order Theory

Figure 3.3 shows a snapshot of the theory of the order structure example. From

the figure, note that Order Language refers to the language we already defined in the

system. Also note, how we represent the reflexive, transitive, and antisymmetric for­

mulas.

The third step is to load" the model of the language of the order structure. A model

consists of non empty set of elements, called the universe, together with interpreta­

tions for the function and predicate symbols in term of functions (or operations) and

predicates over the universes. Model files are stored in the operating system with

"mdl" extension. The following structure is used to identify a model in the system.

Model: (Model name) where

Elem ents: n

Operations

CHAPTER 3. THE SYSTEM 25

List of operations separated by a semicolon

Operations are in the form (The operation name, the operation arity,

and a list of the operation elements)

Predicates

List of predicates separated by a semicolon

Predicates are in the form (The predicate name, the predicate arity,

and a list of the predicate elements)

For the order example, the system represents a model with an order relation "<"
as shown in Figure 3.4. We used an input parser in the system. More details about

the parser used in the system are covered in Chapter 4.

q , ~
f . l!

fCdicll[e~ !;.lli
. , t R

-; amy:" ' . !;,
' . Elemen15:(OJ) .{1.1).<2,.2).(3;3),i4A).{5.5).{6,5.!.(7.7J:.(!l.S}.('9,9),{10,10)l 1!.l1W 2,,12)'{13.Bl',(O,l),(O.2),{O.:I),(M),(O.5),(Q,6).fO.7),{G'sJ. 1 ~
. ,I).9),«(l,l{).{o.m.ro.12t (O)13).(1.;6}..{ t 7)ll.8M1.11),U.12}.(1.BMl.3).(2.9),(2,lOW J !},(;D.?). a ,13),{3$!).(3JO),{3, U),(3.13),{4,5),Mi. 7!. ':sI

'1\ ,8j.{4.91;(4,lm.(4,~3).{5.8MS,1~).{5.13M6 •. 7).~6.SJ.(-.12H6,13),a.8). (7,1.3) ,(8.13).(9.1OJ.(9.13).nO,13Wl, 12).{l1.l30},(12.131

Figure 3.4: Order Model

In the model class, a new predicate is defined by the following: the name of the

predicate, which is denot~d by "<" symbol, the arity of the predicate (in our example

the arity is two), and the elements of the predicate set. Moreover, the function of the

model is defined in the same way.

From the previous figure, note that, the representation of the elements in the predi­

cate set is in order manner, i.e., (2, 13) means that two is less than or equal 13, (6,

12) means that six is less than or equal 12, and (13, 13) means that 13 is less than

or equal 13 etc. In addition, note that no functions are defined in the model of order

lattice.

CHAPTER 3. THE SYSTEM 26

To verify if a model satisfies certain formulas, we need to load these formulas. For­

mulas files are stored in the operating system by "frm" extension. To accomplish the

process of loading formulas, we need a proper language to be loaded in the system.

The representation of the formula in the system is based on the syntax of first-order

logic. Precisely, Definition 2 of Chapter l.

Figure 3.5 shows the implementation of reflexive, anti symmetric , and transitive for­

mulas in the system. As mentioned earlier, the formulas used the predicate symbol

"<" which defined in the language, and the truth-value of this predicate is found in

the model of this structure.

Figure 3.5: Reflexive, antisymmetric, and transitive formulas

Now, we are ready to check if the model of Figure 3.1 structure satisfies the for­

mulas that were mentioned in Definition 13. To perform that check, we simply choose

the model and the formula we want to check, then we click on "test formula" button

as shown in the following figure.

As we can see in Figure 3.6, the figure shows the loaded model, the loaded language,

and the loaded formulas. The result of checking the model against the three formulas

respectively, shows that ~he model of the order structure satisfies these formulas, and

the results are shown in the workplace displaying of the system. Therefore, the model

of the structure shown in Figure 3.1 is an order structure.

Note that from the formula column in Figure 3.5, we used an arrow beside the formula

name to reference the language, which the formula is based on.

As shown in Figure 3.3, we defined the order theory by a predefined order language,

and formulas of reflexivity, transitivity, and antisymmetry. After loading the theory,

the system is ready to check if a model is a model of a theory. The check can be

CHAPTER 3. THE SYSTEM

r~ :tJlode!; o-ifJe-l~f,dL·1 ~ftli!,.ti t!.~ Itt,.: il-i:f'1Il!.filt: IttJ)Uil!1f'f

; ,,~ (k't 'J l PJi(:: gUt .t: y) ,~ I~Y. ... l.ii F:';J~.:urru.y IX ,;;: tlDI

I
1~ :moo~l: tirdeti.1Gdei L1us"..j!!= the fncmd.t: on1J~~'mm!'!trx
A-r); (It.'<t r H~ of :I~.a. I;).' .()i ~~ il~lJiJt ?JtN)(.:::-(I

27

fOr""" \Iy'.ork~.t
Ou<... !---.. -. --'>l'~"------'
.mlllrnn","t·.~ c.-u,;rL.1" ~ ,~ =) """".-.. ~~~

FI.IDctign\i
:l11!l~iv~"·-" (UdE,ti:tngu.tn r · '":",'" ~ ~

1 " " , ~. 1 • .s.Ht&lfl{nuhl _,_, ",. J
l_~ ·--....,·.,:"·.o..-; w::.,,,;;,,..-!<,,,,;; .. , .. , ___ ._.· ___ ,,:\,...,

l~~.~'l!~I';·~ .. ~J
(. Q":k "~J'~~ i'lI'~~~1fh~~l .'

o
Bruck
\)njwn;ity

Figure 3.6: Snapshot of order workspace

accomplished by selecting a model and a theory, and by clicking the "check if a model

is a model of a theory" button, we get the result in the workplace displaying area of

the system. Figure 3.7 shows that, the model is a model of theory.

To summarize this example, we created a model containing a binary predicate that

is in fact an order relation. Afterwards, we defined and loaded a language. The lan­

guage contained order predicate symbol. Then we loaded the formulas of reflexivity,

transitivity, and antisymmetry. Next, we defined and loaded a theory. The theory

contained order formulas. Finally, we checked the model against these formulas as

well as against the corresponding theory of orderings.

In the next subsection, we will move forward to the next algebraic structure, which

is a lower semilattice. We will show how the system will generate a semilattice model

out of the order model defined in this section using a functor.

CHAPTER 3. THE SYSTEM

Tf>oorj . li1i1g.:..'"Ig~

Ch.OO:E

fhe tr....'li~' Q'($?,;"'X~l tJ fl!m(Jd~ of ,;r,e rr~{lr,lf.l ~Jj~f .. t\;«~~
I

Figure 3.7: Snapshot of order theory
,'-

3.2.2 Lower Semilattice

28

..

0····.· ..
' . . .

Bro(:k
l'niR'rIlltr

A lower semilattice is a partially ordered set in which each pair of elements has a

greatest lower bound [2]. A lower bound of a subset F of a partially order set (P,::;)

is an element x E P that element is smaller than or equal to every element of F, i.e.,

x ::; y. An upper bound is defined dually. The greatest lower bound of F is the great

element of the lower bounds. Whereas, the least upper bound is the least element of

the upper bounds. Notice that greatest lower bounds and least upper bounds do not

necessarily exist.

The following formula denotes the greatest lower bound formula of an order set.

Vx: (Vy :(3z : (z < x 1\ z < y 1\ (Vu: (u < x 1\ u < Y)-7 U < z))))
.,

To generate a model of lower semi-lattice from an order model, we will use the con­

cept of a functor implemented in the system. In general, a functor is a notion used

in category theory. It is a mapping between categories that preserves the structure

of the categories. In that sense the functors implemented in the system are functors

between categories of models of first-order theories. If one applies a function to a

given model of a theory, the newly generated model contains the same functions and

predicates as the input model plus new functions or predicates specified by the func­

tor. Therefore, a functor is a functor between the category of models of the input

CHAPTER 3. THE SYSTEM 29

theory providing extra structure to the category of models of the enriched theory.

Functors files are stored in the operating system with "fun" extension. The following

is the structure of the functor file used in the system.

Functor: (Functor name) where

InputTheory : (The name of input theory)

Output Theory : (The name of output theory)

Operations

(A list of operations separated by a comma)

Operations are in the form

Predicates

The name of the existence operations in the input model ,

the name of a new operation in the generated model,

the free variables of a formula rep~e;ent that operation,

the output variable of that formula: and the formula itself

(A list of predicates separated by a comma)

Predicates are in the form

The name of the existence predicates in the input model,

the name of a new predicate in the generated model,

the free variables of a formula represent that predicate,

and the formula itself

From the above code, "functor name" denotes the name of the functor. "Input­

Theory" denotes a theory of a given model. "Output Theory" denotes a theory of

a new model that will be generated by a functor. "Operations" consists of names

of the existence operatio!ls in the given model separated by a comma. Also, it in­

cludes the definition of a new operation. To define 'a new operation in a functor ,

the free variables of a formula represent that operation, the output variable of that

formula, and the formula itself are needed. In the same way, "predicates" consists

of names of the exist predicates in the given model separated by a comma. Also, it

includes the definition of a new predicate. To define a new predicate in a functor, the

free variables of a formula represent that operation, and the formula itself are needed.

To generate a model of a lower lattice from an order model by a system functor,

CHAPTER 3. THE SYSTEM 30

the given model should satisfy the input theory of the functor and the output model

should satisfy the output theory of the functor. Precisely, in addition to the output

language, the output theory should contain the order formulas and the greatest lower

bound formula.

Figure 3.8 shows a snapshot of a functor used to generate a model of lower semi-lattice

from an order model. A new function called meet will be created in the new model.

The function details are given in the operations parameter of the functor. The details

include the free variables in the formula, the output of the formula, and the formula

itself. Note that, the predicates parameter of the functor has "<" symbol, without

any new predicates definitions. That means, the elements of the predicate "<" will

be copied to the new model without any updates. Also consider the representation of

the input theory and the out put theory. The input theory is denoted by "OrderThe­

ory", which is the theory of the order structure modek figure 3.6. Whereas the output

theory is denoted by "LowerSemiLatticetheory" theory, which is constructed from the

"OrderTheory" theory and the greatest lower bound formula.

Functor : LSemiLatticeFunctor where
InputTheory : OrderTheory

utputTheory: lowe6emilatticeTheory
peratIons meet x,y z

z<x&z<'l&
(All u (u < x & u < y Rightarrow u <. z»)

Predicates <

Figure 3.8: Snapshot of lower semi-lattice functor

The system is ready now to generate the model of lower semilattice. Simply, by

selecting the base model, which is the order model in this example, and the functor

of lower lattice, a new model will generate by clicking on "Apply functor to a model"

CHAPTER 3. THE SYSTEM 31

function. The new generated model has the same functions and the same predicates

of the base model. In addition, a "meet" function will be added to the model func­

tions.

The model of lower semilattice generated by the previous example satisfies the lower

semilattice theory just created. In addition, the model satisfies the lower sernilattice

formula as well as the order formulas.

3.2.3 Lattice

In the previous subsection, we introduced the meet semilattice. Also we found that a

meet sernilattice is an order set in which every pair of elements has a greatest lower

bound. Duality can be developed from the above to produce a join semilattice. A

join semillattice is an order set in which every pair of elements has a least upper bound.
,i

Definition 14 A lattice is an ordered set (E;:::;) which, with respect to its order,

is both a meet semilattice and a join semilattice.

From the above definition a lattice is a poset in which any two elements have a

greatest lower bound (meet) and a least upper bound (join); join and meet for any

two elements should be unique. The lattice is often denoted by (E; 1\, v, :::;).
It is easy to create a model of a lattice by using the system whenever there is a lower

sernilattice. In this case, the lattice is a lower sernilattice and a join function added

to it.

The following steps are used to create a model of a lattice from a lower semilattice.

First, we define the language of the lattice. The following script shows this language .

.
Language : LatticeLanguage where

operations

predicates

meet arity: 2 precedence: Infix Level: 1 Assoc assocleft,

join arity: 2 precedence: Infix Level: 2 Assoc assocleft

< arity: 2 precedence: Infix,

> arity: 2 precedence: Infix

CHAPTER 3. THE SYSTEM 32

Note that, the language is LatticeLanguage. Also, we have specified the arity, the

precedence, and the associativity for each function of the language. Moreover, we

have specified the arity of predicates of the language.

The next step is to create the theory of the lattice. The theory contains the lan­

guage definition and a set of formulas of an order, meet, and join. We will use the

lower semilattice theory which is created in the previous subsection, in addition to

the least upper bound formula which is shown below:

Vx, y :3z(x < z !\ y < z !\ (Vu (x < u !\ y < u)~ z < u))

The above formula could be implemented in the system and added to the theory of

the lattice. The following script shows the join formula implementation in the system.

All x (

All y (

x < (x join y) & y < (x join y) &

(All u (x < u & y < u Rightarrow (x join y) < u))

)

)

In the final step, we use the functor to generate the model of the lattice structure.

The functor contains the lower semilattice theory as an input theory, lattice theory

as an output theory, and the definitions of the new entities.

Figure 3.9 shows a snapshot of the functor used to generate the model of the lattice.

New definition for join function is added to the operations section. Moreover, new

definition is added to the predicate section to define the" >" predicate symbol.

The new generated model contains meet and join functions. Moreover, the model

contains "<" and ">" as predicates. In addition, the generated model satisfies the

lattice theory as well as reflexive, antisymmetric, transitive, meet, and join formulas.

3.2.4 Bounded Lattice

In what follows we introduce the bounded concept in an order set. By way of illus­

tration, if (E;~) is an ordered set then by a top element or maximum element of E

CHAPTER 3. THE SYSTEM

·lnputTheory : lowerSemilattice Theory
utputTheory : l attice Theory

. Operations meet ,
j oin x,Y Z

x < z &y<z&
(All u (x < u & y < U Rightarrow z <

Predicates <, > x,y
(y < x)

Figure 3.9: Snapshot of a lattice functor

,(

33

we mean an element x E E such that y < x for every y E E. The dual notion is that

of a bottom element or minimum element, namely an element z E E such that z < y

for every y E E [2].

A top element and a bottom element formulas are represented by the following:

Vy :Jx(y < x)

Vy :Jz(z < y)

To implement a bound lattice in the system based on the structure of Figure 3.1,

we will follow the same steps used to generate the lattice structure in the previous

subsection.

First, we define the language of the bounded lattice. The following script shows this

language.

Language: BoundLanguage where

Operations

Predicates

meet arity: 2 precedence: Infix Level: 1 Assoc assoclejt,

join arity: 2 precedence: Infix Level: 2 Assoc assoclejt

o arity: 0,

1 arity: 0

CHAPTER 3. THE SYSTEM

< arity: 2 precedence: Infix,

> arity: 2 precedence: Infix

34

From the above script, note that, we keep the same information of meet and join

functions. In addition, we add two more functions definitions for the top element and

the bottom element of the structure. The arity of the new functions is zero, which

means these functions denote constant symbols in the language.

The next step is to create the theory of the bounded lattice. We will reuse the lattice

theory file, which is created in the previous subsection to create a new theory file for

the bounded lattice and add the top and the bottom formulas to the rest of the new

file. The formulas to be added are shown below:

All x (1 > x),

All x (0 < x).

In the final step, we will use the functor to generate the model of the bounded lattice

structure. The functor will contain the lattice theory as an input theory, bounded

lattice theory as an output theory, and the definitions of the new entities.

Figure 3.10 shows the functor used to generate a model of bounded lattice. From

Functor : SoundlatticeFunctor wh.ere
nputTheory : latticeTheory

OutputTheory : BoundTheory
perations meet,

join.
O_z
All x (z < x),
l_z
All x (x<z }

Predicates < • >

Figure 3.10: Snapshot of a bounded lattice functror

the figure, note how 0 and 1 functions are defined. Also, note that we did not specify

CHAPTER 3. THE SYSTEM 35

any parameters for these functions. The model of a bounded lattice will be generated

by clicking "apply functor to a model" button after selecting the lattice model and

the functor which is shown in the above figure.

Figure 3.11: Snapshot of a bounded lattice model

Figure 3.11 shows a snapshot of the model generated by the system. Precisely,

it shows 0 and 1 constants represented in the model generated. We can check if

the bounded model satisfies the bounded theory, by clicking "Check if the model is a

model of a theory" button. In addition, we can checli1f the model satisfies the top and

the bottom formulas by clicking "Test a formula" button. The result of performing

these functions on the model of the bounded lattice is that, the model satisfies the

theory as well as the top and the bottom formulas.

3.2.5 Pseudo complement Lattice

In what follows we will define a pseudocomplement element in a lattice.

Definition 15 An element a* E L is called a pseudocomplement of a if the following

two conditions are satisfied:

• a 1\ a* = 0;
..

• al\x=O (xEL) impliesx:Sa*.

Any element of L can have at most one pseudocomplement. We say that L is a pseu­

docomplemented lattice (or p-algebra) if every element of L has a pseudocomplement,

i.e., a* = max{x ELI a 1\ x = O}. From Definition 15, the following formula denotes

a pseudo complement of an element in a lattice.

'IIx(3z:('IIy:(xI\Y=0 +-+ y<z)))

CHAPTER 3. THE SYSTEM 36

Now we are ready to use the above formula to generate a model of a pseudocomple­

mented lattice. To implement a pseudo complemented lattice in the system based on

the structure of Figure 3.1, we will follow the same steps used to generate the lattice

structure in the previous subsection.

First, we define the language of the pseudocomplemented lattice. The following script

shows this language.

Language: PseudoCLanguage where

Operations

Predicates

meet arity: 2 precedence: Infix Level: 1 Assoc assocleft,

join arity: 2 precedence: Infix Level: 2 Assoc assocleft

o arity: 0,

1 arity: 0,
J

* arity: 1 precedence: PostFix Level: 3 ;

< arity: 2 precedence: Infix,

> arity: 2 precedence: Infix

From the above script, note that, we keep the same information of meet, join, top,

and bottom functions. In addition, we add a definition of an unary function for the

pseudo complement to the structure. The arity of the new functions is one.

The next step is to create the theory of the pseudo complemented lattice. We will reuse

the bounded lattice theory file, which is created in the previous subsection to create

a new theory file for the pseudo complemented lattice and add the pseudo complement

formula to the rest of the new file. The formula to be added is shown below:

All x (Alty ((x meet y.'= 0) LeftRightArrow y < x*))

In the final step, we will use the functor to generate the model of the pseudo com­

plemented lattice structure. The functor will contain the bounded lattice theory as

an input theory, a pseudo complemented lattice theory as an output theory, and the

definitions of the new entity.

Figure 3.13 shows the functor used to generate a model of pseudocomplemented

lattice. From the figure, note how the pseudo complement function, which is denoted

CHAPTER 3. THE SYSTEM

Functor : PseudoCFunctor where
nputTheory : BoundTheory
utputTheory : PseudoCTheory
perations meet,

join,
O.
1,

• Xl
All Y «x meet y = 0) leftRightArrow y< z)

Predicates < • >

~_~ l··~:~-==~~~~·==:~]L~-=·---·=~:=~~~:~. __ ! Display a file: C:\FOl \Files\Functors\ PseudoCfunctor.fun

Figure 3.12: Snapshot of a pseudocomplemented functor

37

by *, is defined. The model of a pseudocomplemenJed lattice will be generated by

clicking "apply functor to a model" button after s~lecting the model of lattice and

the functor which is shown in the above figure.

• ari!:"l 6emenu;: (O,13}.{1.10},{2,S),{3,S),/4,11).{5,12),(6,l0}.(7,l),{S,3),(9,6).(lO,6),(1l,5}.{12.S),{13,O)
redicates <. arity:2 Elements: (O,O).{O.lj,{O,2).{O,3),(O,4),{O,5),(O.6),(O,7).{O.8).(O,9),{O.10),(O.11),(O,12),

(O,13),{1,1) ,(1.6),{1.T).{l.8),{1,1n.(1.12).(I ,B),(2,2),(2.3),{2,9),(2.10).(2,1 l).(2.12),{2.13).{3,3},(3,9).(3,10).

3.12),(3.13),{4.4),(4.5),(4,7).(4,S).(4.9),(4,10),{4.13},(S,5),{5,8) •. (S.1O),(S,13).(6,6).(6,7),(6,B),(6,12),(6.13),
(l.7),(7,8},fl,13j,{8.8).(8,13}.(9.9).(9,lO).(9.13),{10;lOj,(1O,13),(1l,11),(11,12),(11.13),(l2 12),\12,13i,
~B,13)l

Display.a file: C:\ FOL\ File5\Mode!s\Pseudola$ce.mdl

Figure 3.13: Snapshot of a pseudo complemented lattice model

Figure 3.14 shows snapshot part of the model generated by the system. Precisely,

it shows the "*,, function which is denotes the unary pseudo complement function in

the generated modeL

We can check if the generated model satisfies the pseudo complement theory, by click­

ing "Check if the model is a model of a theory" button. In addition, we can check if

the model satisfies the formula for pseudocomplements by clicking "Test a formula"

CHAPTER 3. THE SYSTEM 38

button. The result of applying these functions to the model of pseudo complemented

lattice is that, the model satisfies the theory as well as the formula for pseudo com­

plements.

3.2.6 Quasicomplemented lattice

The notion of a quasicomplement a+ of a is dual to the notion of a pseudocomple­

ment, i.e. it is characterized by a+ :::; x {::} a V x = 1. A quasicomplemented lattice

is a lattice in which every element has a quasicomplement, i.e. the dual of a pseudo­

complemented lattice [8].

Based on the above, the following formula represents a quasicomplement of an el­

ement in a lattice.

\:Ix: (3z: (\:Iy: (xVy = 1 <=?' I' Z < y)))

Now we are ready to use the above formula to generate a model of quasicomplement

lattice using the system. To implement a quasicomplemented lattice in the system

based on the structure of Figure 3.1, we will follow the same steps used to generate

the lattice structure in the previous subsection.

First, we define the language of the quasicomplemented lattice. The following script

shows this language:

Language: QuasiCLanguage where

Operations

Predicates

meet arity: 2 precedence: Infix Level: 1 Assoc assoclejt,

join arity: 2 precedence: Infix Level: 2 Assoc assocleft

° arity: 0,

1 arity: 0,

+ arity: 1 precedence: PreFix Level: 3

< arity: 2 precedence: Infix,

> arity: 2 precedence: Infix

From the above script, note that we keep the same information of meet, join, top,

and bottom functions. In addition, we add one more function definition for the qua-

CHAPTER 3. THE SYSTEM 39

sicomplement function.

The next step is to create the theory of the quasi complemented lattice. We will

reuse the bounded lattice theory file, which is created in the previous subsection to

create a new theory file for the quasi complemented lattice and add the formula for

quasi complement to the rest of the new file. The formula to be added is shown below:

All x (All y ((x join y = 1) LeftRightArrow +x < y))

In the final step, we will use the functor to generate the model of the quasicomple­

mented lattice structure. The functor will contain the bounded lattice theory as an

input theory, a quasicomplemented lattice theory as an output theory, and the defi­

nitions of the new entity.

Functor : QuasiCFunctor where
inputTheory : BoundTheory

utputTheory : QuasiCTheory

join,
0,
1,
+ x z
All y «x j oin y = l .lleftRightArrow z< y)

Predicates < , >

a file:

Figure 3.14: Snapshot of a quasicomplemented functor

Figure 3.15 shows the functor used to generate th~ model of quasicomplemented

lattice. From the figure, note how the quasicomplement function,which is denoted

by "+", is defined. The model of a quasicomplemented lattice will be generated by

clicking the "Apply functor to a model" function after selecting the model of lattice

and the functor which is shown in the above figure.

Figure 3.16 shows a snapshot of the model generated by the system. Precisely, it

shows "+" function which denotes the unary quasi complement function in the gen­

erated model. We can check if the generated model satisfies the quasicomplement

CHAPTER 3. THE SYSTEM

+ arity:l Elements: (O,13),(1,9),(2,7),(3)),(4,11),(5,l1),(6,9).{7,2),
(8,2).(9j l },(10.1).(11,4),(12,4),(13,O) I

.,_"'....Jib"",.,="""""''''''='''''''''''=='''''''''''. "",=,,,,,,,,,,,,,,,,,,,.,;,,,,;,,,;U1,,,,,,,,' _"""'s ",.,.",,""""""="""""" __ . """,",,=~:=d.[t

: I DFspJay a file: C:\fOl \Files\Modets\Qu8silattice.mdl
~: ':- " -.l~~.~.~ ~"'~........ ~'~~":~ ~ ."",. ':'~.~~~ ''"''1>.(1

Figure 3.15: Snapshot of a quasicomplemented lattice model

40

theory, by clicking the "Check if the model is a model of a theory" button. In addi­

tion, we can check if the model satisfies the pseudo complement formula by clicking

"Test a formula" button. The result of applying .tthese functions to the model of

quasi complement lattice is that, the model satisfies the theory as well as the quasi­

complement formula.

3.2.7 Orthocomplemented Lattice

An orthocomplementation on a lattice is an involution which is order-reversing and

maps each element to a complement.

Definition 16 [8] An ortholattice (or orthocomplemented lattice) is a structure

(L, v, /\,1. ,0,1) such that

1. (L, v, /\,0,1) is a bounded lattice,

2. al. is an orthocomplement of a, i:e. for all a, b E. L we have

• a /\ al. = 0 ,

An orthocomplementation on a bounded lattice is a function that maps each element

a to an "orthocomplement" al. in such a way that the pervious axioms are satisfied.

CHAPTER 3. THE SYSTEM 41

Now we are ready to use the above formulas to generate a model of orthocomple­

mented lattice using the system. To implement an orthocomplemented lattice in the

system based on the structure of Figure 3.1, we will follow the same steps used to

generate the quasicomplemented lattice structure in the previous subsection.

First, we define the language of the orthocomplemented lattice. The following script

shows this language:

Language : Ortho ComplementLanguage where

Operations

Predicates

meet arity: 2 precedence: Infix Level: 1 Assoc assoclejt,

join arity: 2 precedence: Infix Level: 2 Assoc assoclejt,

° arity: 0,

1 arity: 0,
,(

oc arity: 1 precedence: PreFix Level: {

< arity: 2 precedence: Infix,

> arity: 2 precedence: Infix

From the above script, note that we keep the same information of meet, join, top,

and bottom functions. In addition, we add one more function definition for the or­

tho complementation. The arity of the new functions is one.

The next step is to create the theory of the orthocomplemented lattice. We will

reuse the bounded lattice theory file, which is created in the previous subsection to

create a new theory file for the orthocomplemented lattice and add the formulas of

orthocomplement to the .rest of the n~w file. The formulas to be added are shown

below:

All x (oc(oc x)) = x ,

All x (All y (x < y Rightarrow (oc y < oc x))),

All x (x meet (oc x) = 0).

Notice that we use a different approach here. In the previous examples all new

concepts such as join, meet, least and greatest element, pseudo complement , and qua­

sicomplement the corresponding elements are unique if they exist. Therefore, the

CHAPTER 3. THE SYSTEM 42

formulas used an existential quantifier. Orthocomplements are not necessarily unique

so that the formulas use the function "oc" provided by the user within a model.

Because orthocomplements are not necessarily unique, we will not use a functor to

generate the model of orthocomplement lattice. Instead, we will create an ortho­

complement model file based on the bounded lattice model file created earlier. The

following function will be added to the file:

oc arity:l elements: (0,13),(1,10),(2,8),(3,7),(4,12),(5,11),(6,9),(7,3),(8,2),(9,6),

(10,1), (11,5), (12,4), (13,0)

The above script shows the "oc" function which denotes an unary orthocomplement

function in the model.

We can check if the generated model satisfies the o:r;:thocomplement theory, by click­

ing the "Check if the model is a model of a theory" button. In addition, we can

check if the model satisfies the formulas of orthocomplement by clicking the "Test

a formula" button. The result of performing these functions on the orthocomple­

mented lattice model is that, the model satisfies the theory as well as the formulas of

orthocomplement.

3.2.8 p-Ortholattices

A lattice that is both pseudo complemented and orthocomplemented is called a p­

ortholattice as the following definition declares:

Definition 17 [8]. A pseudocomplemented ortholattice (or p-ortholattice) is a

structure (L, V, /\,* ,..l, 0, J) such that .,

• (L, V, /\,* ,0,1) is a p-algebra,

• (L, V, /\,..l ,0,1) an ortholattice.

The creation of a model of p-ortholattices will be based on the model of ortho­

complemenet lattice which was generated in the previous subsection. To accomplish

this we will follow the same steps used to generate a model in the system.

CHAPTER 3. THE SYSTEM 43

First, we define the language of the p-ortholattices, the following script shows this

language:

Language : PorthoLanguage where

Operations

Predicates

meet arity: 2 precedence: Infix Level: 1 Assoc assoclejt,

join arity: 2 precedence: Infix Level: 2 Assoc assocleft

o arity: 0,

1 arity: 0,

oc arity: 1 precedence: PostFix Level: 3

* arity: 1 precedence: PostFix Level:4

< arity: 2 precedence: Infix,

> arity: 2 precedence: Infix

From the above script, note that, we keep the same information of meet, join, top,

bottom, and orthocomplement functions. In addition, we add one more function def­

inition for the pseudocomplemented function. As a whole these functions denote the

p-ortholattices definition.

The next step is to create the theory of the p-ortholattices. We will reuse the p­

orthocomplement lattice theory file, which is created in the previous subsection to

create a new theory file for the p-ortholattices and add the pseudocomplemented

formula to the rest of the new file. The formula to be added is shown below:

All x (All y ((x meet y = 0) LejtRightArrow y < x*))

In the final step, we ~ill use a functor to generate the model of the p-ortholattices

structure. The functor will contain the orthocomplem~nted lattice theory as an input

theory, a p-ortholattices theory as an output theory, and the definitions of the new

entity.

Figure 3.17 shows the functor used to generate a model of p-ortholattices. The model

of a p-ortholattices will be generated by clicking the "Apply functor to a model"

button after selecting the orthocomplement model and the functor which is shown in

the above figure.

CHAPTER 3. THE SYSTEM

unctor : Porthof uncto r where
i nputTheory : OrthoCTheory

utputTheory: PorthoTheory
1 perations meet.

join,
0,
1,
oe,
* x z
All y «x meet y: () lleftRightArrow y -< z)

. Predicates < , >-
I

Figure 3.16: Snapshot of a p-ortholattices functor

J

44

We can check if the model of p-ortholattices satisfi~s the p-ortholattices theory, by

clicking "Check if the model is a model of a theory" button. The result of performing

this function to the p-ortholattices model is that, the model satisfies the theory of

the p-ortholattices.

3.2.9 A Stonian p-ortholattice

In this section we check if the model of p-ortholattice was created in the previous

subsection is a Stonian p-ortholattice or not.

Definition 18 [8] A Stonian p-ortholattice is a structure (L, V, 1\,* ,1-,0,1) such

that

• (L, v, 1\,*,0,1) is a·p-algebra,

• (L, V, 1\,1- ,0,1) an ortholattice.

• (a 1\ b)* = a* V b* holds for all a, bEL.

From the first two axioms of Definition 18 note that a Stonian p-ortholattice is a

p-ortholattice. In addition, it should satisfy the Stone identity, which is the third

axiom of the definition. As mentioned at the beginning of this subsection we want

CHAPTER 3. THE SYSTEM 45

to check if a p-ortholattice is a Stonian p-ortholattice. To accomplish this check, we

have to load the Stone identity formula file into the system. The file looks like this:

All x (All y ((x meet y) * = (x *) join (y *)))

The Next step is to check if the model of p-ortholattice satisfies the above formula;

this can be done by using "Test a formula" button. The result is shown in Figure 3.18.

The result shows that, the p-ortholattice model satisfies the Stone identity formula.

Hence, the model of p-ortholattice is a model of Stonian p-ortholattice.

Another property we want to check regarding the model of p-ortholattice is the fol­

lowing:

On,"efM¢l1~

t:;emllaitk:e

bai;n<lf.'

.aGuMLaltice

Pse!,ll}ot{:ttl(:~

QUJ!iitilUICe'

Ormo(l.att~t;e

ilortiloilittkc

x.l ::; y = (x 1\ y)** V x** 1\ y**

(rll:; o se
1~6g""'le

(noO?o;:

b:M.'erS-emit,;mkeTheCJ!f'i~ '~ · ~ LowerSemiliJ!1?ceL1l\f1uag:£ t i!stticI!!FUl'!.ctor

timkt!lh~Qf'!}··-> t!;;;!(el~r laWf.€'LIVOIJ 'WJlfle. '$t)\J!liltt:tttf~ef ijtKtQe

Bcur'JdThe(Jr;~-:l- ek)urrdlai' Baundlangutl!}e

~9CTtI-eo'Y· ·"" Pie'tfdot P!:efldoClilng!I3:ge

Q..:~CTbe-or.y · · .. QiJaslCl..3f QUolslClangwt1g('

O!thoC;he01Y-- .~ (')n.'Y.:1CUt OrthoCtpng\l3ge

Potfuo"Iheoll " Portbuw - Pcntht\lao.gU6_fllJ'

P'ieudoCFu!1cto:"

QuaslCf rJl.'W;Eor

P"orlhQFul!'!ctOf

The model: ¥or1l1oC:-La~ji r::€!"salisfil!.-s thlll fClrrT:lAa: S!OniaD

l~n)(' 1 AR,,{"\{:-c rnes Y}l:::: ("Mjof'f!ii>{yH»)
I

Figure 3.17: Snapshot of a p-ortholattices workspace

0'.·-, ..

Brock
Univet-stty

To accomplish this check, we have to load the previous formula file into the system.

The file looks like this:

All x (

All y (

(oc x < y) LeftRightArrow x meet ((y*)*) join ((x*)*)

CHAPTER 3. THE SYSTEM

)

) meet y = ((x*)*) meet ((y*)*)

)

46

The next step is to check if the model of p-ortholattice satisfies the above formula;

this can be done by using "Test a formula" button. The result shows that, the model

of p-ortholattice does not satisfy the above formula.

Chapter 4

The Technical Specification

This chapter gives a brief overview of the main modules of the system. In addition,

it gives details on how to use the system.

4.1 Overview of the System

As mentioned before, the purpose of the system is to find counterexamples and testing

properties of models of first-order theories. To implement first order theory concept in

the system, various modules are used. Some of the important modules are: language

module, formula module, term module, theory module, model module, and functor

module. In the following, we will discuss the data type of these modules.

In the file "LanguageModule.hs" the following data type is defined:

data Language = Lan {langName :: String,

C!pLang :: [(String , Int , Int)],

predLang :: [(String, Int, Int)]

}deriving(Eq, Read)

The above script shows the language data type defined in the system, where "lang­

N arne" denotes a language name, "opLang" consists of a list of operations symbols,

and "predLang" consists of a list of predicates symbols. Each tuple of the operation

symbols list denotes the operation name, the arity of that operation, and the prece-

47

CHAPTER 4. THE TECHNICAL SPECIFICATION 48

dence of the operation order. Each tuple of the predicate symbols list consists the

predicate name, the arity of that predicate, and the logical notation of the predicate.

The logical notation could be infix, prefix, or postfix.

Next, we want to define the formula and the term data type. But before that,

consider the following productions for valid FOL formulas used in the system:

Formula ~ AtomicF ormula

F ormulaC onnectives

QuantifierVariable, ... Formula

,Formula

(Sentence)

AtomicFormula ~ Predicate(Term, ...)

T erm = Term
,~

Term ~ Function(Term) .;

Constant

Variable

Connective ~ And, Or, Implies, Equiv

Quantifier V,:J

Constant ~ XI Y 1 RED I···
Varibale ~ x l y 1 z I···
Predicate ~ Greaterthan 1 Lessthat 1 isBlue 1 ...

Function ~ Father 1 Sibling 1 ...

In the file "FormulaModule.hs", the following formula data type is defined:

data Formula Equal Term Term
.,

Pred String Int [Term]

And Formula Formula

Or Formula Formula

I mplies Formula Formula

Not Formula

All String Formula

E xists String Formula

CHAPTER 4. THE TECHNICAL SPECIFICATION 49

The representation of a formula in the system is based on the syntax of first-order

logic, in particular, Definition 2. The equality of two terms, as well as predicate

symbol with terms as parameters denote a formula. Hence, we want to define a term

in the system. In the file "TermModule.hs", the following term data type is defined:

data Term - V ar String

OP String Int Int [Term]

A theory is needed to be loaded in the system. In the file "TheoryModule.hs", the

following theory data type is defined:

data Theory = Thry {thryN ame :: String,

thry Lang :: Language,

thryFormula,9- :: [Formula]
} "

The above code is based on Definition 9, where the theory is a set of sentences in

first-order language. Hence, we used "thryName" to denote the name of the theory,

"thry Lang" to reference to a pre-defined language in the system, and "thry Formulas"

to reference a list of formulas.

In the file "ModeIModule.hs" the following model data type is defined:

data Model = M odl {name :: String,

numElements :: I nt,

operatio~s :: [(String , Int , S.Set([Int], Int))],

predicates :: [(String,1nt, S.Set([Int]))],

} deriving(Eq, Read)

From the above script, "name" consists a model name, "numElements" consist of the

number of elements in a model, "operations" consists of the operations of a model,

and "predicates" consists of the predicates of a model.

In the file "FunctorModule.hs" the following model data types is defined:

CHAPTER 4. THE TECHNICAL SPECIFICATION

data TFunctor = Func {funcName :: String,

4.2 The Parser

inputTheory :: Theory,

outputT heory :: Theory,

outputOperations .. [(String , Maybe

([String], String, Formula))]'

outputPredicates .. [(String, Maybe

([String], Formula))],

}

50

We used Parsec, a fast combinator parser written in Haskell in order to parse various

inputs within our system. We have implemented a p~fser for each kind of system file,

i.e., for model files, theory files, language files , functors files, and formula files. Some

forms of calling those parsers is as follows:

langExpr :: GenParser PosToken (M.Map String Theory,M.Map String Language) Language

termExpr :: Language --t GenParser PosToken (M.Map String Theory,M.Map String Language) Term

formulaExpr :: Language -+ GenParser PosToken (M.Map String Theory,M.Map String Language) Formula

From the above script, the "lanExpr" function is used to generate a language data

type. This function uses the general parser type "GenParser". GenParser token state

a is the type of all parsers that parse tokens as an input, utilizing a user defined

state, and producing outputs of type a. We use lexical analyzer or scanner to avoid

whitespace in the input string, and to convert the input string into a list of tokens.

We use "(M.Map String Theory,M.Map String Language)" to define a user state of

the parser. A state in P¥,sec is very useful when you want to keep track of parsed

variables. Hence, a user state is defined in the system to keep track of parsed lan­

guages and theories in the system. The importance of using a user state in a parser

appears in referring the name of a parsed variable instead of parsed it again which

lead to improve the efficiency of the system.

As mentioned before, the theory uses the language data type as one of its data type

parameter. In addition, the functor uses the theory data type as one of its data type.

Hence, the parser state is used to keep track of a parsed theory and a parsed language

CHAPTER 4. THE TECHNICAL SPECIFICATION 51

in the system to use them later in the theory parser and in the functor parser.

Also, note that the "termExpr" as well as the "formulaExpr" functions take a lan­

guage as an input with the "GenParser" type to generate term and formula data

types respectively. In addition, both functions use "build Expression Parser" function

to build an expression parser for terms term with operators from an operator table,

taking the associativity and precedence specified in that table into account. An op­

erator table is a list of operators list. The list is ordered in descending precedence.

In addition, an operator in a table is either binary infix or unary prefix or postfix

and all operators in one list have the same precedence (but may have a different

associativity). For more detail about the Parsec library refer to [6].

4.3 A Manual for the System

Figure 4.1 shows a snapshot of the system. The syst~fu consists of three main parts:

The first part consists of the loaded lists of models, theories, languages, functors,

and formulas. Each list has a set of function buttons attached to it. The function

buttons have the "Remove" button which is used to remove an element from a list.

In addition, the "Load" button is used to load an element from the system files into

a list, and the "View" button is used to view the contents of an element of a list. The

second part consists of the workspace buttons and a set of functions. By workspace

we mean the elements of all the loaded lists. The "Save" button in the workspace

is used to save the current workspace, while the "Load" button is used to load a

previously saved workspace. The set of functions are used to handle the system main

functions. For example, "Test a formula" button is used to check if a model satisfies

a specific formula. "Apply functor to a model" button is used to generate a new

model based on another model. "Check if the model is a model of a theory" button -.
is used to check if a modei satisfies a theory or not. The third part displays messages

generated by the system to the user.

To load a new file into the system two steps are needed. The first step is to cre­

ate a file with appropriate extension. This file contains an input string of an element

to be loaded. The element could be a model, a theory, a language, a functor, or a

formula. A model file has a "mdl" extension, a theory file has a "thy" extension, a

language file has a "lng" extension, a functor file has a "fun" extension, and a formula

CHAPTER 4. THE TECHNICAL SPECIFICATION

13"!I'.1'!9\!
nlOO.;<!

Figure 4.1: Snapshot of a p-ortholattices workspace

52

file has a "frm" extension. The next step is to use the load button to load a saved

file. For example, to load a language file, we click on the load button in the language

list. The language is loaded into the system, precisely, into the language list after

the system successfully parse the entire file. If the parser failed to parse a file, an

appropriate message is displayed in the messages area of the system.

In the system, we use the concept of dependency. A formula depends on a lan­

guage. Hence, the system gives us the ability to choose a language before we load a

formula. Other forms of dependency are found between a theory and a language, and

between a functor and a theory. I.e., to load a theoryjnto the system with a specific

language name, that language should be loaded before loading a theory.

If you want to check a formula regarding a model, then every quantifier is basically a

loop through all elements of that model. the worst case for exists quantifier . There­

fore, the polynomial time where the degree is given by the number of quantifiers exist

in a formula.

CHAPTER 4. THE TECHNICAL SPECIFICATION 53

4.4 Tools Used

The system has been developed by Haskell functional programming language. More

specifically, GHCI version 6.10.3. Whereas, the GUI has been developed by Glade

version 3.6.1. Glade is a user interface designer for GTK+. GTK+ is a multi-platform

toolkit for creating graphical user interfaces.

Chapter 5

Conclusions

In this chapter, we briefly review the content of the thesis. Then we discuss extensions

to our work.

5.1 Summary

Counterexample is an example that is used to disprove a statement or a theory. This

method is useful for students who do not know the steps to prove a statement or a

theory. In addition, this method helps researchers who know the proven methods by

saving their time. In this thesis , we present an implementation of a system for finding

counterexamples and testing properties of models of first-order theories.

We started by introducing the concept of first-order logic. We provided the syn­

tax and semantics of the first-order language. The language has three main types of

components: variables, a set of predicate symbols, and a set of operation symbols.

Variables and operation symbols are used to build terms. Terms, predicate symbols,

and the usual logical connectives are used to build formulas. Then we introduced a

first order theory. A first-order theory consists of a language together with a set of

closed formulas, i.e., formulas without free occurrences of variables. We also intro­

duced a model, where it consists of a non-empty set of elements, called the universe,

together with interpretations for the components of a language. Then, we introduced

the notion of a functor to generate more complex models from given ones. As an

example, we showed how the system created several lattice structures and test their

properties. Finally we gave a brief overview about types of the system.

54

CHAPTER 5. CONCLUSIONS 55

The example of Figure 3.1 was an excellent example to test the system due to its size

and complexity. The system was capable of visualize the structure of the mentioned

example. Moreover, the system was capable of creating several complex structures,

and testing these structures against several theories and formulas.

The system has three key features. First, the system uses several different formats

to allow the user to specify languages, to define axioms and theories and to create

models. Second, the system is capable of saving and loading models, theories, lan­

guages, and formulas defined by the user. Third, the whole workspace can be saved

and loaded by the user.

5.2 Future Work
/

In its current state, the system for models of first-order theories is already a useful

tool and works as designed. However, there is always room for future work.

An outstanding issue to consider is to provide more features to define a functor.

As an example, transitive closure cannot be expressed in first-order logic. Hence,

the system cannot create or represent models having transitive closure properties.

This can be solved by using second order logic, where the syntax and semantics of

first-order logics can be extended by means for quantification over sets of elements in

the universe. Another solution is by providing a Haskell function to implement the

transitive closure and allow the user to apply such a function to a binary predicate

within a functor.

.
Another issue is to add new logical operators. For example, the uniqueness quan-

tification 3! x : tp. This means" exists exactly one x such that tp is true". Uniqueness

quantification can be expressed in terms of the existential and universal quantifiers

of first-order logic by defining the above formula as follows:

3x: (tp 1\ Vy : tp [y/x] --+ x = y)

Bibliography

[1] Asperti A., Longo G.: Categories Types and Structures. Foundation of Computing

Series MIT Press (1991).

[2] Blyrh T. S.: Lattices and Ordered Algebraic Structures. Springer-Verlag London

(2005).

[3] Enderton H.B.: Mathematical Introduction to Logic (2nd edition). Hartcourt Aca­

demic Press (2001).

[4] Gelbaum B., Olmsled J.: Counterexamples in Analysis. Holden-day Inc. (1964).

[5] Hahmann T. , Winter M., Gruninger M.: Stonian p-Ortholattices: A new approach

to the mereotopology RTo. Artificial Intelligence 173(15), pp. 1424-1440 (2009).

[6] Leijen D.: Parsec, a fast combinator parser. University of Utrecht. (2001).

[7] Margaris A.: First Order Mathematical Logic. Blaisdell Publishing Company.

(1967).

[8] Steen L., Seebach J. , Jr.: Conuterexamples in Topology. Holt, Rinehart and Win­

ston, Inc. (1970).

[9] "Transitive closure." Wikipedia. 21 March 2011. Wikimedia Foundation. Inc .. 02

July 2011 (http:// en.wikipedia.org/wiki/Transitive_closure)

[10] Winter M.: Logic in Computer Science Lecture Material, Brock University.

56

