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Abstract

The enigmatic heavy fermion URu2Si2, which is the subject of this thesis, has attracted intensive

theoretical and experimental research since 1984 when it was firstly reported by Schlabitz et al. at

a conference [1]. The previous bulk property measurements clearly showed that one second order

phase transition occurs at the Hidden Order temperature THO ≈ 17.5 K and another second order

phase transition, the superconducting transition, occurs at Tc ≈ 1 K. Though twenty eight years

have passed, the mechanisms behind these two phase transitions are still not clear to researchers.

Perfect crystals do not exist. Different kinds of crystal defects can have considerable effects

on the crystalline properties. Some of these defects can be eliminated, and hence the crystalline

quality improved, by annealing. Previous publications showed that some bulk properties of URu2Si2

exhibited significant differences between as-grown samples and annealed samples. The present study

shows that the annealing of URu2Si2 has some considerable effects on the resistivity and the DC

magnetization. The effects of annealing on the resistivity are characterized by examining how

the Residual Resistivity Ratio (RRR), the fitting parameters to an expression for the temperature

dependence of the resistivity, the temperatures of the local maximum and local minimum of the

resistivity at the Hidden Order phase transition and the Hidden Order Transition Width ∆THO

change after annealing. The plots of one key fitting parameter, the onset temperature of the Hidden

Order transition and ∆THO vs RRR are compared with those of Matsuda et al. [2]. Different media

used to mount samples have some impact on how effectively the samples are cooled because the

media have different thermal conductivity.

The DC magnetization around the superconducting transition is presented for one unannealed

sample under fields of 25 Oe and 50 Oe and one annealed sample under fields of 0 Oe and 25 Oe.

The DC field dependent magnetization of the annealed Sample1-1 shows a typical field dependence

of a Type-II superconductor. The lower critical field Hc1 is relatively high, which may be due to



Abstract iii

flux pinning by the crystal defects.



Contents iv

Contents

Abstract ii

Contents iv

List of Tables vii

List of Figures viii

Acknowledgements xii

1 Basic Review of URu2Si2 1

1.1 Space Group of URu2Si2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Resistivity of URu2Si2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Susceptibility of URu2Si2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 DC Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 AC Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.3 Elastic Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Inelastic Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Specific Heat Capacity of URu2Si2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Optical Measurements of URu2Si2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Defects in Crystals 15

2.1 Point Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Vacancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Interstitial Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Frenkel Defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



Contents v

2.1.4 Schottky Defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.5 Impurity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.6 Phonon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.7 Methods to create point defects . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Line defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Burgers Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Edge Dislocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Screw Dislocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Surface defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 External Surface Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Grain Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Twin Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Stacking Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Volume Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Czochralski Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Annealing Samples 31

3.1 Annealing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Strain Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Recrystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Grain Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.5 Various Annealing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Review of Annealing Effects on URu2Si2 . . . . . . . . . . . . . . . . . . . . . . . . 43

4 3He Refrigerator 49

5 Resistivity Measurement 54

5.1 Van der Pauw Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Four Contacts in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . 54



Contents vi

5.1.2 Four Contacts in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.3 f factor in Van der Pauw theorem . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Some Other Models of Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 DC Magnetization Measurement at SC Transition 80

6.1 Meissner Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Type-I superconductor and Type-II superconductor . . . . . . . . . . . . . . . . . . 86

6.3 Josephson effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Superconducting Quantum Interference Device . . . . . . . . . . . . . . . . . . . . . 91

6.5 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Conclusions 100

Bibliography 102



List of Tables vii

List of Tables

3.1 Effects of atomic 0.01% impurity on the recrystallization temperature of pure cop-

per [29, p. 240] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Annealing Effects on Resistivity of URu2Si2 [33] . . . . . . . . . . . . . . . . . . . . 44

5.1a RRR, fitting parameters, local maximum and local minimum at HO and ∆THO . . . 77

5.1b RRR, fitting parameters, local maximum and local minimum at HO and ∆THO CONT. 78



List of Figures viii

List of Figures

1.1 Crystal Structure of URu2Si2 [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Resistivity vs Temperature for single crystal URu2Si2 [10] . . . . . . . . . . . . . . 3

1.3 Low Temperature Resistivity for single crystal URu2Si2 [10] . . . . . . . . . . . . . 3

1.4 DC Susceptibility and 1
χDC

for single crystal URu2Si2 [8] . . . . . . . . . . . . . . . 4

1.5 Upper critical field µ0Hc2 and AC susceptibility for single crystal URu2Si2 [8] . . . 5

1.6 Hysteresis magnetization loop for single crystal URu2Si2 [8] . . . . . . . . . . . . . 5

1.7 Temperature-dependent AFM moment of URu2Si2 under hydrostatic pressure [11] . 6

1.8 Pressure-Temperature phase diagram of URu2Si2 [11] . . . . . . . . . . . . . . . . . 7

1.9a Inelastic scattering above THO [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.9b Inelastic scattering below THO [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.10 Shifts of resonance frequencies from normal state to superconducting state in single

crystal URu2Si2 [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.11 Specific heat capacity for polycrystal URu2Si2 [8] . . . . . . . . . . . . . . . . . . . 10

1.12 Magnetic Entropy Smag vs Antiferromagnetic Moment µord for some heavy fermions [15] 11

1.13a Real part of optical conductivity above THO for single crystal URu2Si2 [16] . . . . 11

1.13b Real part of optical conductivity below THO for single crystal URu2Si2 [16] . . . . 12

1.14 Real part of optical conductivity for single crystal URu2Si2 Upper Image: Along

a-axis Lower Image: Along c-axis [17] . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Vacancy and Interstitial Defect [22, p. 92] . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Frenkel Defect [21, p. 97] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Schottky Defect [21, p. 97] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Substitutional Impurity and Interstitial Impurity [22, p. 94] . . . . . . . . . . . . . 19



List of Figures ix

2.5 Burgers vector Upper Image: Edge Dislocation Lower Image: Screw Dislocation [24] 21

2.6 Edge Dislocation [22, p. 99] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7a Screw Dislocation [22, p. 100] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7b Screw Dislocation Line [22, p. 100] . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 The dark lines are dislocations [22, p. 102] . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 External Surface Defects [21, p. 101] . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Low angle grain boundary and high angle grain boundary [22, p. 103] . . . . . . . . 25

2.11 Upper Image: Tilt Boundary Lower Image: Twist Boundary [25] . . . . . . . . . . 25

2.12 Tilt boundary of low misorientation angle [21, p. 102] . . . . . . . . . . . . . . . . 26

2.13 Grain Boundaries [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.14 Twin Boundary [21, p. 103] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.15 Regular Stacking Sequence for FCC [26] . . . . . . . . . . . . . . . . . . . . . . . . 28

2.16 Intrinsic Stacking Fault for FCC [26] . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.17 Extrinsic Stacking Fault for FCC [26] . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.18 Three steps of the Czochralski Process [27] . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Isothermal anneal curve of highly purified copper [29, p. 218] . . . . . . . . . . . . 32

3.2 Edge Dislocation Slip [30, p. 110] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Positive Dislocation Climb [29, p. 103] . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Negative Dislocation Climb [29, p. 104] . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Screw Dislocation Cross Slip [30, p. 111] . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Edge Dislocation Annihilation [22, p. 202] . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Edge Dislocation Polygonization [29, p. 225] . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Isothermal recrystallization curve for pure copper [29, p. 230] . . . . . . . . . . . . 35

3.9 Time-Temperature recrystallization curve for zirconium (iodide) [29, p. 233] . . . . 36

3.10 Fully Recrystallized Grain Size versus Percent Elongation in α-Brass [29, p. 237] . 37

3.11 Atomic diffusion during grain growth [22, p. 224] . . . . . . . . . . . . . . . . . . . 38

3.12 Five basic geometrical changes during grain growth [29, p. 244] . . . . . . . . . . . 39

3.13 Growing grain diameters versus annealing time for brass [22, p. 225] . . . . . . . . 40



List of Figures x

3.14 Retardation on grain growth in aluminum by second-phase inclusions [29, p. 251] . 40

3.15 Retardation on grain growth by pores [29, p. 252] . . . . . . . . . . . . . . . . . . . 41

3.16 Thermal Grooving [29, p. 254] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.17 Specific Heat Capacities of the annealed URu2Si2 and the as-grown URu2Si2 [34] . 45

3.18 Resistivities of the annealed URu2Si2 and the as-grown URu2Si2 [34] . . . . . . . . 46

3.19 DC magnetic susceptibility of the annealed URu2Si2 and the as-grown URu2Si2 [34] 46

3.20 Elastic Neutron Scattering of the annealed URu2Si2 and the as-grown URu2Si2 [34] 47

3.21 Resistivities of the annealed URu2Si2 and the as-grown URu2Si2 from Honma et

al. [35] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1a Cryostat Outer View [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1b Cryostat Inner View [37] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2a Bolometer Stage and Sample Stage of 3He Refrigerator [38, p. 26] . . . . . . . . . . 50

4.2b Side View of 3He Refrigerator [39, p. 34] . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Upper Half Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 W Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 f factor as a function of RMN,OP/RNO,PM [45] . . . . . . . . . . . . . . . . . . . . 61

5.4 Set Up of Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5a RMN,OP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5b RNO,PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Annealed Sample3-2 (left) and unannealed Sample1-2 mounted by five-minute epoxy

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7a Resistivity vs Temperature for Sample1, Sample1-1 and Sample1-2 . . . . . . . . . 67

5.7b Resistivity vs Temperature T ≤ 22.5K for Sample1, Sample1-1 and Sample1-2 . . . 68

5.7c Resistivity vs Temperature T ≤ 2K during cooling down for annealed Sample1-1

mounted using five-minute epoxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.8a Resistivity vs Temperature for Sample2 . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8b Resistivity vs Temperature T ≤ 22.5K for Sample2 . . . . . . . . . . . . . . . . . . 70

5.9a Resistivity vs Temperature for Sample3-1 and Sample3-2 . . . . . . . . . . . . . . . 71



List of Figures xi

5.9b Resistivity vs Temperature T ≤ 22.5K for Sample3-1 and Sample3-2 . . . . . . . . 72

5.9c Resistivity vs Temperature T ≤ 22.5K for annealed Sample3-2 . . . . . . . . . . . 73

5.10 Exponent C vs RRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.11 Hidden Order Temperature vs RRR . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.12 Temperature Transition Width at HO vs RRR . . . . . . . . . . . . . . . . . . . . 76

6.1 A comparison of response to applied magnetic field between ideal conductor and

superconductor [54, Sec. 2.3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 London penetration length in a superconductor [23, p. 31] . . . . . . . . . . . . . 86

6.3 Equilateral-triangle array in the vortex state [23, p. 39] . . . . . . . . . . . . . . . 87

6.4 Magnetization curves for Type-I and Type-II superconductors [56, p. 161] . . . . . 88

6.5 Two Josephson-junction loop in a applied field [58, p. 479] . . . . . . . . . . . . . 91

6.6 DC-SQUID [58, p. 485] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Basic set up for detecting signal [59, p. 4-2] . . . . . . . . . . . . . . . . . . . . . 93

6.8 Temperature dependent DC magnetization under 25 Oe and 50 Oe field for unan-

nealed Sample1-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.9 Temperature dependent DC magnetization under 0 Oe field for annealed Sample1-1 95

6.10 Temperature dependent DC magnetization under 25 Oe field . . . . . . . . . . . . 96

6.11 Temperature dependent DC magnetizations for unannealed Sample1-2 and annealed

Sample1-1 under 25 Oe field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.12 Field dependent DC magnetization up to 104 Oe field . . . . . . . . . . . . . . . . 97

6.13 Field dependent DC magnetization up to 600 Oe field . . . . . . . . . . . . . . . . 98



Acknowledgements xii

Acknowledgements

Even though lots of difficulties appeared unexpectedly during my graduate study, I obtained help

from many people. First of all I want to thank my family, who give me moral support. I am

really grateful to Prof. Maureen Reedyk for supervising me to work on the challenging compound

URu2Si2 and correcting my thesis. I want to thank Prof. Fereidoon Razavi and Prof. David

Crandles, who gave me lots of help during my research. I want to thank the Machine Shop, Glass

Shop and Electronic Shop for making and fixing components for our research. I want to thank

Mr. David Genkin, Prof. Edward Sternin and Mr. Phil Boseglav for helping me with Linux. I

want to thank ITS for fixing our computer. I want to thank Prof. Kirill Samokhin for helping

me to apply for a bursary. I want to thank Prof. Shyamal Bose and Prof. Reinhard Kremer for

teaching me theoretical physics. I want to thank Prof. Thad Harroun and Prof. Bozidar Mitrovic

for being the members of my supervisory committee. I want to thank Dr. Hanna Dabkowska at

McMaster for accepting the invitation to be the external examiner. I want to thank Mr. Frank

Benko for his cooperation during my TA work and ordering supplies for our research. I want to

thank Mrs. Elizabeth Horvath for her cooperation during my TA work and delivering my mail.

I want to thank the graduate students Artorix On̋a and Peng Xiao as well as the undergraduate

student Tyler Meadows for their cooperation in our research. I also want to thank all the other

graduate students and postdocs in the Department of Physics for their cooperation and for fruitful

discussions in the research and the physics courses. Finally I would like to gratefully acknowledge

receiving samples from Prof. Graeme Luke at McMaster and Prof. Fereidoon Razavi at Brock,

which were from the time he cooperated on a study reported in reference [3].



Chapter 1. Basic Review of URu2Si2 1

Chapter 1

Basic Review of URu2Si2

1.1 Space Group of URu2Si2

URu2Si2 has a body centered tetragonal structure belonging to space group No. 139 represented

by International Symbols (I, 4/m, 2/m, 2/m) [4].

Figure 1.1: Crystal Structure of URu2Si2 [5]

The magnitudes of the three dimensions are related by a = b 6= c and the three axes are orthogonal

to each other. All possible combinations between the 32 point groups and the 14 Bravais lattices

give in total 230 crystal space groups and the body centered tetragonal is labelled as No. 139.

I means body centered. In 4/m, 4 means the four-fold rotational symmetry axis, which is the

c-axis, and m means a mirror symmetry plane, which is the x-y plane and perpendicular to the

c-axis. In the next symbol, 2/m, 2 means the two-fold rotational symmetry axis, the a or b axes

equivalently and m means a mirror symmetry plane, the y-z plane, which is perpendicular to the a

or b axis. In the last symbol, 2/m, 2 means the two-fold rotational symmetry axis, the 〈110〉 axis
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and m means a mirror symmetry plane containing the c-axis, which is perpendicular to the 〈110〉

axis. [6, Ch. 3, p. 4–5, p. 10]

The intersection line of any two mirror symmetry planes generates the corresponding rotation

axis. The only four angles permitted between any two mirror symmetry planes are 90◦, 60◦, 45◦

and 30◦. 90◦ generates a two-fold rotational symmetry axis. 60◦ generates a three-fold rotational

symmetry axis. 45◦ generates a four-fold rotational symmetry axis. And 30◦ generates a six-fold

rotational symmetry axis. In the body centered tetragonal structure the angle between the x-y

and the y-z planes is 90◦ so their intersection line generates the two-fold rotational symmetry axis,

the a-axis 〈100〉. The angle between the y-z plane and the mirror symmetry plane containing the

c-axis is 45◦ so their intersection line generates the four-fold rotational symmetry axis, the c-axis.

The angle between the x-y plane and the mirror symmetry plane containing the c-axis is 90◦ so

their intersection line generates the two-fold rotational symmetry axis, the 〈110〉 axis. All of the

rotational symmetry axes and mirror symmetry planes intersect at one point, the original point

at which the uranium atom is. This point is the inversion center. Any two points having equal

distances at opposite sides from the inversion center are duplicates but the chirality is reversed. [7]

Palstra et al. gave the lattice constants for two as-grown single crystals, as a = b = 4.1279(1)

Å and c = 9.5918(7) Å at 294 K, and a = b = 4.1239(2) Å and c = 9.5817(8) Å at 4.2 K [8].

Niklowitz et al. showed that in a wide temperature range below room temperature a becomes

shorter as the temperature decreases while c has the same behaviour above 40 K but below 40 K

becomes longer as the temperature decreases. At the Hidden Order transition the lattice constant

has drastic change for both a and c axes. The magnitude of the change becomes more notable as

the pressure increases from below the critical pressure, Pc, to above the critical pressure, where

Pc ≈ 4.5 kbar. [9] Using a magnetic torque technique Okazaki et al. showed that below the Hidden

Order temperature, THO, the four-fold rotational symmetry is broken in the ab plane and thus the

magnetic susceptibility becomes anisotropic in the ab plane below THO. [5]

1.2 Resistivity of URu2Si2

Palstra et al. measured the anisotropic resistivity of URu2Si2 [10]. It is shown in Fig. 1.2.
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Figure 1.2: Resistivity vs Temperature for single crystal URu2Si2 [10]

The resistivities along the a axis and the c axis are highly anisotropic from 300 K down to the

coherence temperature 75 K. It looks independent of temperature along the c axis while it increases

along the a axis in this temperature range. Below 75 K both decrease drastically down to the

superconducting transition temperature at 0.8 K. A small λ shaped cusp appears at 17.5 K, the

Hidden Order temperature THO. The low temperature resistivity is shown in Fig. 1.3.

Figure 1.3: Low Temperature Resistivity for single crystal URu2Si2 [10]

The resistivity between 1 K and 17 K was fitted to the following equation,

ρ− ρ0 = bT (1 + 2T/∆) exp(−∆/T ) + cT 2 [10], (1.1)
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where ρ0 is the residual resistivity. The term having the energy gap ∆ is due to gapped spin waves

in antiferromagnetism. The quadratic term is the fit for Fermi Liquid behaviour. [10] However

Matsuda et al. showed that this equation was not adequate for the experimental data at low

temperature and their fittings showed some non-Fermi liquid behaviour, which will be discussed in

Sec. 5.3. [2]

1.3 Susceptibility of URu2Si2

1.3.1 DC Susceptibility

Palstra et al. measured the DC susceptibility of single crystal URu2Si2 under a 2 T magnetic field.

Measurements were done for the field along both the a-axis and the c-axis. [8] The plots are shown

in Fig. 1.4 [8].

Figure 1.4: DC Susceptibility and 1
χDC

for single crystal URu2Si2 [8]

The c-axis is the easy axis since the susceptibility along the c-axis is higher than that along the

a-axis. The maximum of dχ
dT

is at THO = 17.5K. Above about 150K 1
χDC

along the c-axis can be

fitted to the Curie-Weiss law but it deviates from this law at lower temperature.

1.3.2 AC Susceptibility

Palstra et al. also measured temperature-dependent AC susceptibility of single crystal URu2Si2

under different applied field. [8] The plots are shown in the inset to Fig. 1.5 [8].
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Figure 1.5: Upper critical field µ0Hc2 and AC susceptibility for single crystal URu2Si2 [8]

The SC transition temperature is defined as the middle point of the transition width. The applied

field gives the upper critical field µ0Hc2 which is shown in the main figure. As the temperature

decreases, the slope −dµ0Hc2

dT
is initially the same for both directions but then decreases along the

c-axis while it increases rapidly along the a-axis when the temperature is well below 0.8K, the

zero-field Tc. The inset of Fig. 1.5 [8] shows AC susceptibility along c axis under zero field, 0.52T

and 0.81T from right to left respectively. They also measured the hysteresis magnetization loop of

URu2Si2 in an arbitrary direction. The plot is shown in Fig. 1.6 [8].

Figure 1.6: Hysteresis magnetization loop for single crystal URu2Si2 [8]

The field-dependent magnetization loop was measured at 0.657 K and the maximum applied field

was close to 0.03 T , which is well below the upper critical field µ0Hc2 = 0.86 T for the same

arbitrary direction at this temperature. The lower critical field determined from the virgin curve

is µ0Hc1 = 1.4 mT . The relations among µ0Hc1, µ0Hc2 and Ginzburg-Landau parameter κ are

discussed in Section 6.2.
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1.3.3 Elastic Neutron Scattering

Butch et al. performed elastic neutron scattering on a single crystal of URu2Si2. The energy of

incident neutrons was 14.7 mV and the corresponding wavelength λ was 2.36 Å. The plane of

reflection was (100), which forbids the nuclear reflection. The plots are shown in Fig. 1.7 [11].

Figure 1.7: Temperature-dependent AFM moment of URu2Si2 under hydrostatic pressure [11]

Under ambient pressure a small magnetic moment of 0.011 µB/f.u. was detected below the Hidden

Order temperature (/f.u. means per Uranium atom, which has three 5f electrons). As the pressure

increases, the magnitude of magnetic moment increases drastically below THO. The small ambient

pressure magnetic moment becomes smaller as the sample quality has been improved compared

with the earlier measurements [1, 9, 11, 12]. Thus the small magnetic moment may be due to

crystal defects, which is not an intrinsic property of URu2Si2. With the resistivity measurements

under hydrostatic pressure Butch et al. gave the following Pressure-Temperature phase diagram

Fig. 1.8 [11]
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Figure 1.8: Pressure-Temperature phase diagram of URu2Si2 [11]

From Fig. 1.8 [11] below the critic pressure Pc = 0.80(1) GPa the THO increases and the Tc of

the SC transition decreases as the pressure increases. The transition temperature between the

paramagnetic phase and the Hidden Order phase is T0 ≡ THO. Above Pc there is a first order

phase transition from the Hidden Order phase to the antiferromagnetic phase with decreasing

temperature. The corresponding transition temperature at which the paramagnetic phase transfers

to the antiferromagnetic phase is the Néel temperature TN . Another feature shown is that the SC

phase and the antiferromagnetic phase are excluded from each other. These results generally agree

with previous publications. However variations in the phase boundary between Hidden Order and

antiferromagnetism are likely due to the differing stabilities of the different methods for applying

hydrostatic pressure. [11]

1.3.4 Inelastic Neutron Scattering

Bourdarot et al. performed inelastic neutron scattering on single crystal URu2Si2 in the normal

state. One of the reflection planes is at (100) perpendicular to the scattering plane, which contains

the wave vector Q0 = 〈1, 0, 0〉. For the polarization of neutron spin along the b-axis no magnetic

response was detected in the range of energy transfer explored below the Hidden Order temperature.

For the polarization along the c-axis sharp resonances are found as shown in Fig. 1.9a [13] for the

sample temperature above THO and in Fig. 1.9b [13] for the sample temperature below the THO
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respectively.

Figure 1.9a: Inelastic scattering above
THO [13]

Figure 1.9b: Inelastic scattering below
THO [13]

The energy axes in the two figures give the energy difference between the incident neutrons and

the scattered neutrons. Above THO = 17.5 K no sharp resonance peak was detected. Below THO

the sharp resonance peak shifts to higher energy and the Full Width at Half Maximum (FWHM)

decreases as the temperature goes down. Below about 14 K the sharp resonance peak is fixed at

about 1.7 meV ≈ 19.7 K and the FWHM also approaches a constant. Besides the sharp resonance

peak a broad magnetic continuum is also detected from 1.5 K to 27.1 K. In Fig. 1.9a [13] the

Bragg peak at zero energy transfer corresponds to the small magnetic moment detected in the

elastic neutron scattering. Bourdarot et al. suggest that the 5f electrons at Uranium sites have

both localized and itinerant characteristics. [13]

Bourdarot et al. performed inelastic neutron scattering on an annealed single crystal of URu2Si2

in its superconducting state. The SC transition temperature Tc was verified to be 1.36 ± 0.3 K

by AC susceptibility measurement. The reflection plane was (100). The shifts of the resonance

frequencies from normal state to superconducting state are shown in Fig. 1.10 [14].
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Figure 1.10: Shifts of resonance frequencies from normal state to superconducting state
in single crystal URu2Si2 [14]

The resonance frequencies at 1.7 K and 2 K are at about 1.7 meV . Below Tc the resonance fre-

quency shifts towards higher energy as the temperature decreases. From their fitting the resonance

frequency shifts 47 µeV ≈ 0.546 K from the normal state to the temperature of absolute zero. [14]

1.4 Specific Heat Capacity of URu2Si2

Palstra et al. also measured specific heat capacity of polycrystal URu2Si2. The plots are shown in

Fig. 1.11 [8].
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Figure 1.11: Specific heat capacity for polycrystal URu2Si2 [8]

Though the specific heat capacity was measured on polycrystal, at low temperature the strain

energy released by crystal defects should be negligible. Around THO = 17.5 K it shows a λ shaped

cusp. At Tc = 0.8 K another small λ shaped cusp indicates the superconducting transition. The

discontinuity of the specific heat capacity measurement indicates a second order phase transition.

Between 2 K and 17 K the specific heat measurement is fitted by,

C = γT + αT 3 + δ exp (−∆/T ) [8]. (1.2)

The derived Sommerfeld coefficient γ is equal to 180 mJ/(K2 · mol), which is contributed by

itinerant electrons. The cubic term is the phonon contribution. The derived energy gap ∆ is equal

to 115 K. The derived entropy balance is about 0.2R ln 2 (R, Universal Gas Constant). [8] The

small antiferromagnetic moment 0.02-0.04 µB/U detected by the elastic neutron scattering cannot

explain this relatively large entropy balance if Hidden Order is due to a magnetic phase transition.

This unusual relation is compared with those of other heavy fermions in Fig. 1.12 [15].
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Figure 1.12: Magnetic Entropy Smag vs Antiferromagnetic Moment µord

for some heavy fermions [15]

Obviously the disproportionate relation between Smag and µord for URu2Si2 deviates from those for

other heavy fermions. [15]

1.5 Optical Measurements of URu2Si2

The earliest representative optical measurements were done by Bonn et al.. The polarization of the

electric field was along the a-axis. The real parts of the optical conductivity for the temperature

above THO and below THO are shown in Fig. 1.13a [16] and Fig. 1.13b [16] respectively.

Figure 1.13a: Real part of optical conductivity above THO

for single crystal URu2Si2 [16]

The coherence temperature Tco is at about 70K. Two sharp peaks due to lattice vibrations appeared
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at 108 cm−1 ≈ 156K and 377 cm−1 ≈ 543K respectively. At 90K the optical conductivity increases

with increasing photon frequency. At low frequencies the optical conductivities at 20 K and 40 K

show upturns. It is much sharper at 20 K. The upturns correspond to a Drude peak resulting from

the drastic decrease of the DC resistivity below Tco.

Figure 1.13b: Real part of optical conductivity below THO

for single crystal URu2Si2 [16]

Below THO the optical conductivities show a gap like structure, which may be due to a partial

removal of the Fermi surface by the Hidden Order. At 2 K the peak is at about 65 cm−1 and it

shifts down to about 46 cm−1 at 14 K. Converted to absolute temperature 65 cm−1 and 46 cm−1

correspond to 94 K and 66 K respectively. [16]

More recent optical measurements were carried out by Levallois et al.. The polarization of the

electric field was along either the a-axis or the c-axis. The real parts of optical conductivity at four

different temperature are shown in Fig. 1.14 [17]. The upper image is for the a-axis and the lower

image is for the c-axis respectively.
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Figure 1.14: Real part of optical conductivity for single crystal URu2Si2
Upper Image: Along a-axis

Lower Image: Along c-axis [17]

As expected from DC resistivity measurements, since the c-axis is the easy axis, the optical con-

ductivities along the c-axis are higher than those along the a-axis for a given temperature. Two

sharp peaks due to lattice vibration appear at 109 cm−1 ≈ 157 K and 380 cm−1 ≈ 548 K along the

a-axis while one sharp peak due to lattice vibration appears at 342 cm−1 ≈ 493 K along the c-axis.

Below Tco as the temperature decreases, a notable dip develops along both the a-axis at 120 cm−1 ≈

173 K and the c-axis at 90 cm−1 ≈ 130 K corresponding to a reduction in the spectral weight in

this region of the spectrum. The FWHM of the Drude peak becomes narrower as the temperature

decreases. Its width is the scattering rate Γ at zero frequency and the loss of spectral weight results

from the decrease in Γ. The spectral weight can be calculated from the following relations,

ω2
p

8
=

∫ ∞

0

σ1(ω) dω =
πNe2

2m∗
, (1.3)

where ωp is the plasma frequency, σ1(ω) is the real part of optical conductivity, the integral is

the spectral weight, N is the density of charge carriers, e is the electron charge and m∗ is the

effective mass of the electron [18, p. 66]. From Tco to THO the electron effective masses increase

forming a heavy fermion liquid, which is due to the hybridization between the itinerant electrons
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and the localized electrons. The N increases from Tco to THO from the Hall coefficient measurement

performed by Dawson et al. [3]. The loss of spectral weight in this temperature range corresponds

to the changes of the m∗ and the N . Below THO the sudden reduction of effective mass is shown by

the specific heat capacity measured by Maple et al.. Their fittings gave the values of Sommerfeld

coefficient γ 112 mJ/(K2 ·mol) above THO and 65.5 mJ/(K2 ·mol) below THO respectively. The

ratio of the two shows about 40% reduction in effective mass since the Sommerfeld coefficient is

proportional to effective mass. [19] But the loss of spectral weight continues below THO, from Eq. 1.3

the N has to decrease substantially. The loss of N corresponds to the Hall coefficient measurement.

It showed that the Hall coefficient jumped by a factor more than four around THO. [3]
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Chapter 2

Defects in Crystals

Crystals are like people, it is the defects in them which tend to make them interesting!

— Colin Humphreys [20]

Perfect crystals do not exit in nature. Real crystals always have some kinds of defects. These

defects affect their physical properties, e.g. stiffness, colour, electrical conductivity, magnetic hys-

teresis, dielectric strength, etc.. Sometimes the defects are desired. For example, in electronics

the silicon used requires a small concentration of chemical impurities such as phosphorus and ar-

senic [21, p. 95-96] [22, p. 91]. Steel needs to be carbonised properly for different strengths.

As another example, a Type-II superconductor needs some lattice distortions so that vortices can

be pinned by these defects and the transport current can flow around the votices without resis-

tance [23, p. 42].

The defects are sorted by dimension as follows,

(i) Point defects

(ii) Line defects

(iii) Surface defects

(iv) Volume defects

[21, p. 96]

2.1 Point Defects

Point defects occur at lattice points and are due to imperfect packing of atoms during crystallization

or to vibrations of atoms at high temperatures [21, p. 96]. The number of defects at equilibrium
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concentration at a certain temperature is given by Eq. 2.1,

nPD = N exp

(

−
E

kT

)

, (2.1)

where nPD is the number of point defects, N is the number of lattice points, E is the free energy

needed to form a point defect, k is the Boltzmann constant and T is the absolute temperature [21,

p. 96] [22, p. 92]. The typical value of nPD

N
is 10−5. nPD

N
can be reduced by slowly cooling the

sample. [21, p. 96]

The kinds of point defects are as follows,

(i) Vacancies

(ii) Interstitial Defects

(iii) Frenkel Defect

(iv) Schottky Defect

(v) Impurity

(vi) Phonon

2.1.1 Vacancies

A lattice point is normally occupied by an atom. But in the case it is missing, a vacancy defect

forms as shown in Fig. 2.1 [22, p. 92].

Figure 2.1: Vacancy and Interstitial Defect [22, p. 92]

The vacancies increase the entropy of the crystal. At a temperature of 20 ◦C − 25 ◦C copper has
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10−13 vacancies [21, p. 97]. Just below the melting point most metals have 10−4 vacancies calculated

by Eq. 2.1 [22, p. 93]. As the temperature increases, the probability for individual atoms escaping

from their equilibrium positions increases and so do the number of vacancies as indicated by Eq.

2.1. The vacancies can be formed in a di-vacancy or a tri-vacancy [21, p. 97].

2.1.2 Interstitial Defects

Interstitial defects happen when the volume fraction of the crystal structure is low so there are

some voids among regular lattice points. Then some extra atoms can insert into these interstitial

spaces, which can cause large structural distortions if the size of these atoms is comparable to

that of the surrounding atoms. An example of an interstitial defect is also shown in Fig. 2.1.

The interstitial defects can also be formed in di-interstitial or tri-interstitial configurations. The

probability for forming an interstitial defect is lower than that for a vacancy since it needs higher

free energy. [21, p. 97] [22, p. 93]

2.1.3 Frenkel Defect

A Frenkel defect occurs when an atom immigrates from its normal position to an interstitial site

and hence the original point becomes a vacancy. This is illustrated in Fig. 2.2 [21, p. 97].

Figure 2.2: Frenkel Defect [21, p. 97]

Frenkel defects happen more commonly in ionic crystals because the smaller cations can easily fit

into the interstitial spaces.
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2.1.4 Schottky Defect

Schottky defects occur when a pair consisting of a cation and an anion is missing from their normal

positions so that the crystal is still charge neutral [21, p. 98]. An example is shown in Fig. 2.3

[21, p. 97].

Figure 2.3: Schottky Defect [21, p. 97]

Frenkel defects need higher energy to form than Schottky defects.

2.1.5 Impurity

Real crystals always contain impurities. It is very difficult to purify metals in excess of 99.9999%.

With this percentage 1022 to 1023 foreign atoms dissolve in one cubic meter of host material [22,

p. 93]. There are two kinds of impurity defects, substitutional and interstitial. For substitutional

impurities the foreign atoms substitute the host atoms. For interstitial impurities the foreign atoms

occupy the interstitial spaces. These are shown in Fig. 2.4 [22, p. 94].
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Figure 2.4: Substitutional Impurity and Interstitial Impurity [22, p. 94]

The Hume-Rothery rules state that four factors affect the degree to which the foreign atoms

dissolve into the host material as follows,

(i) Atomic size factor

The foreign atoms can dissolve into the host material without substantial structural distortion

if the difference of atomic radii between the foreign atoms and the host atoms is less than about

±15%.

(ii) Crystal structure

If the foreign atoms and the host atoms have similar crystal structure, it will be easy for the

foreign atoms to dissolve into the host material.

(iii) Electronegativity

The more electropositive elements and the more electronegative elements are likely to form an

intermetallic compound other than a substitutional impurity.

(iv) Valences

A metal is more likely to dissolve into another metal with higher valency than a metal with

lower valency. [22, p. 95]

2.1.6 Phonon

The importance of lattice vibrations will increase as the temperature increases. The lattice vibration

will deform the structure symmetry [21, p. 98].
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2.1.7 Methods to create point defects

There are several processes by way of which point defects are created. They include,

(i) Thermal vibrations

(ii) Quenching the samples rapidly from high to low temperature.

(iii) Mechanically deforming the crystal lattice.

(iv) Bombarding the host material by foreign atoms. [21, p. 98]

2.2 Line defects

Line defects are also called dislocations. Line defects are a one dimensional defect around which

some of the atoms are misaligned. There are two basic types of dislocations: the edge dislocation

and the screw dislocation.

2.2.1 Burgers Vector

The Burgers vector is used to describe the magnitude and direction of the dislocation. There are

two steps to find the Burgers vector in a distorted crystal structure. Firstly one needs to draw

an arbitrary contour in an ideal lattice, which has a length of multiple lattice constants. Secondly

one tries to use a contour of the same length to enclose the dislocation in the distorted lattice. It

turns out that an extra vector will be needed to enclose the dislocation completely. Or vice versa

if a contour enclosing the dislocation completely in the distorted lattice is to be fitted into an ideal

lattice, an extra vector appears. This vector is the Burgers vector denoted by b. Burgers vectors

for edge and screw dislocations are shown in Fig. 2.5 [24].
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Figure 2.5: Burgers vector
Upper Image: Edge Dislocation

Lower Image: Screw Dislocation [24]

2.2.2 Edge Dislocation

An edge dislocation occurs when an extra atomic plane inserts into the regular lattice as shown in

Fig. 2.6 [22, p. 99].

Figure 2.6: Edge Dislocation [22, p. 99]

The edge dislocation centers on a line which is along the end of the extra atomic plane. This line is

called a dislocation line. The dislocation line is perpendicular to Burgers vector. The atoms above

the dislocation line are squeezed together and those below the dislocation line are spread apart.

As the distance becomes further away from the dislocation line, the distortion is less severe. The
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dislocation is denoted by ⊥ if the extra atomic plane is above the dislocation line. It is denoted by

⊤ if the plane is below the dislocation line. [22, p. 99] [21, p. 98]

2.2.3 Screw Dislocation

A screw dislocation can be thought to be formed by a shear stress as shown in Fig. 2.7a [22, p. 100].

Figure 2.7a: Screw Dislocation [22, p. 100]

The upper atomic plane shifts relatively to the lower plane. In Fig. 2.7b [22, p. 100] line AB is the

screw dislocation line. The screw dislocation line is parallel to the Burgers vector.

Figure 2.7b: Screw Dislocation Line [22, p. 100]

The open circles denote the upper plane and the solid circles denote the lower.

Dislocations have the following three geometrical characteristics,

(i) Natural dislocations are usually mixed dislocations, which are combinations of edge and screw
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dislocations. In this case Burgers vectors are neither perpendicular nor parallel to the dislocation

lines but the Burgers vector will be the same at any point of the same dislocation. [22, p. 100]

(ii) The vectorial sum of the Burgers vectors at a meeting point of different dislocations must be

zero. This point is called a node. [21, p. 101]

(iii) A dislocation line must end at a node or the sample surface. It cannot end inside the sample.

Alternatively the dislocation line can end itself in a loop. [21, p. 101]

The total length of all dislocation lines divided by the sample volume gives the dislocation

density. For semiconductor crystals it may have a value of 104 − 105 cm−2. For annealed metals it

may have a value of 106 − 108 cm−2. As an approximation for elastic strain the distortional energy

E per unit length associated with the dislocations can be calculated by,

E =
µb2

2
, (2.2)

where µ is the shear modulus and b is the Burgers vector. [21, p. 101]

Impurity atoms tend to concentrate inside the dislocations. The dislocation lines of a titanium

alloy are shown in a transmission electron micrograph in Fig. 2.8 [22, p. 102].

Figure 2.8: The dark lines are dislocations [22, p. 102]
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2.3 Surface defects

Surface defects are two-dimensional defects. Surface defects are divided into external and inter-

nal surface defects. Internal surface defects are further subdivided into grain boundaries, twin

boundaries and stacking faults.

2.3.1 External Surface Defects

External surface defects are due to the fact that surface atoms of samples are not bonded on one

side so they have higher energy than that possessed by the interior atoms. A sketch of this defect

is shown in Fig. 2.9 [21, p. 101].

Figure 2.9: External Surface Defects [21, p. 101]

A liquid drop tends to minimize such surface energy by forming in a sphere, which reduces the total

surface area. But this is impossible for a rigid crystal. [22, p.103]

2.3.2 Grain Boundaries

When two grains of different orientations are neighbouring, there is a distorted transition zone

between them, which is not aligned with either of the two grains. This zone is called the grain

boundary. The atoms in the grain boundaries have higher energy than that possessed by the atoms

in the grains. Grain boundary defects can occur during nucleation or crystallization and their

thickness may be from 1nm to 5nm. The grain boundary defects can be divided into low angle

grain boundaries and high angle grain boundaries. For low angle grain boundaries the angle between
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two neighbouring grains is less than 10◦. For high angle grain boundaries it is more than or equal

to 10◦. [21, p. 101-102] These two cases are shown in Fig. 2.10. [22, p. 103]

Figure 2.10: Low angle grain boundary and high angle grain boundary [22, p. 103]

Grain boundary defects can also be divided into tilt boundaries and twist boundaries. For tilt

boundaries the angle of misorientation is perpendicular to the boundary, which can be thought of

as an array of edge dislocations [21, p. 102]. For twist boundaries the angle of misorientation is

parallel to the boundary, which can be thought of as an array of screw dislocations [22, p. 104].

These two cases are shown in Fig. 2.11 [25].

Figure 2.11: Upper Image: Tilt Boundary
Lower Image: Twist Boundary [25]



Chapter 2. Defects in Crystals 26

If the misorientation angle θ of the tilt boundary is small enough, since tan θ ≈ θ, θ can be

calculated by,

θ ≈
b

D
, (2.3)

where b is the Burgers vector and D is the average vertical distance between two edge dislocations.

This is illustrated in Fig. 2.12 [21, p. 102].

Figure 2.12: Tilt boundary of low misorientation angle [21, p. 102]

If two neighbouring grains have different crystal structures or compositions, the grain boundary

is called an interphase boundary. Because the atoms in grain boundaries have higher energy, these

boundaries are more chemically reactive and more likely to host impurity atoms. [21, p. 101] [22,

p. 103-104] Fig. 2.13 shows grain boundaries of an acid-etched polycrystalline metal [25].

Figure 2.13: Grain Boundaries [25]
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2.3.3 Twin Boundaries

Crystal structures on the two sides of the twin boundary have a mirror symmetry as shown in

Fig. 2.14 [21, p. 103].

Figure 2.14: Twin Boundary [21, p. 103]

There are two types of twin boundaries according to how they form. Mechanical twins are

due to atomic displacements made by mechanical shear forces. Annealing twins are due to the

displacements made by annealing after plastic deformation. Mechanical twins typically appear in

Body Centered Cubic (BCC) and Hexagonal Close Packed (HCP) metals. Annealing twins typically

appear in Face Centered Cubic (FCC) metals. [22, p. 106] [21, p. 103]

2.3.4 Stacking Faults

Stacking faults happen when the regular stacking sequence of atomic planes is interrupted. There

are two types of stacking faults, intrinsic stacking faults and extrinsic stacking faults. If an atomic

plane is missing from the regular sequence, it is an intrinsic stacking fault. If an extra atomic plane

appears in the regular sequence, it is an extrinsic stacking fault. We can take the FCC lattice as an

example. The regular sequence of atomic planes for an FCC lattice is ABCABCABC· · ·, as shown

in Fig. 2.15. [26]
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Figure 2.15: Regular Stacking Sequence for FCC [26]

The stacking sequence is along the [111] direction. The cross-sectional view is along the [110]

direction. When an intrinsic stacking fault happens, for example, part of a C atomic plane is

missing, the stacking sequence becomes ABCABABC· · · as shown in Fig. 2.16. [26]

Figure 2.16: Intrinsic Stacking Fault for FCC [26]

When an extrinsic stacking fault happens, for example, part of an A atomic plane tucks between

the B plane and the C plane, the stacking sequence becomes ABCABACABC· · · as shown in

Fig. 2.17. [26]

Figure 2.17: Extrinsic Stacking Fault for FCC [26]

Since ABABAB· · · is HCP structure, FCC with stacking fault is a mixture of FCC and HCP.

There is a certain stacking fault energy in the defects. [26]
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2.4 Volume Defects

Volume defects include cracks, large vacancies, foreign particle inclusions and non-crystalline regions

with dimensions over 0.20 nm. Volume defects usually occur during processing and fabrication. [21,

p. 104] [22, p. 106]

2.5 Czochralski Process

The samples used for the measurements were grown by the Czochralski Process. As an example,

the three steps of growing single crystal silicon is shown in Fig. 2.18. [27]

Figure 2.18: Three steps of the Czochralski Process [27]

The three steps are carried out in a vacuum or an atmosphere of inert gas.

Step 1: Melting the elements in a crucible.

Step 2: A precisely oriented small seed crystal is mounted on the end of a rotating rod. The seed

is lowered just a little below the surface of molten elements.

Step 3: The rod and the crucible rotate in opposite directions. The rotating rod is slowly raised up

while a cylindrical boule grows below the seed, which has the same orientation of the seed. Three

parameters need to be precisely controlled, the temperature gradients, the rate of pulling and the

speeds of the two opposite rotations.

The main defects generated during the Czochralski Process are due to impurities dissolved into the

molten elements from the crucible. [27]
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Matsuda et al. claimed that the quality of URu2Si2 mainly depends on the purity of uranium,

which usually has lower purity than those of Ru and Si. They found that for Czochralski grown

crystals URu2Si2 on the surface of the ingot has better quality than crystals derived from near the

core of the ingot. [2, 28]
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Chapter 3

Annealing Samples

3.1 Annealing Mechanisms

Annealing is one method of several heat treatment processes. The purposes of annealing are,

(i) relieve stresses,

(ii) increase softness, ductility or toughness,

(iii) produce a specific micro structure.

Annealing has three steps, which are,

(i) raise the sample temperature to a certain level,

(ii) keep the sample at this temperature for a certain period of time,

(iii) slowly cool the sample down.

During step one and step three a temperature gradient exists between the interior and the exterior

of the sample so the rate at which temperature is changed should not be too fast. A fast changing

rate can induce high internal stress, which may warp or even crack the sample. For step two the

annealing time needs to be long enough for an effective transformation. The temperature needs to

be controlled accurately because it plays a key role in the annealing process, which will be discussed

in the following sections. [22, p. 422] [21, p. 322]

3.1.1 Strain Energy

The crystal distortions store a certain amount of energy. The increased Gibbs free energy is,

∆G = ∆H − T∆S. (3.1)



Chapter 3. Annealing Samples 32

∆H is the increased enthalpy, namely the stored strain energy. ∆S is the increased entropy. It is

assumed that the distortions happen at a constant temperature T . [29, p. 217] The stored strain

energy will be released during annealing as shown in the isothermal anneal curve, Fig. 3.1 [29, p. 218].

Figure 3.1: Isothermal anneal curve of highly purified copper [29, p. 218]

In this example, the temperature is kept at 473.9 K. Initially a small amount of energy is released

during the time before the dashed curve. This first stage of annealing is called recovery. As the

time increases, the released energy reaches a peak and then slows down. This second stage is called

recrystallization. As the time increases further, a third stage occurs called grain growth. For the

anisothermal annealing these three stages continue as a function of temperature. All three stages

happen below the melting point. [29, p. 218-219]

3.1.2 Recovery

The recovery process usually happens below one-third of the melting temperature and involves

edge dislocation slip, edge dislocation climb, screw dislocation cross slip, dislocation annihilation

and polygonization.

The plane that contains both the Burgers vector and the dislocation line is defined as a slip

plane. For edge dislocation the extra atomic rows can only slip in a certain slip plane. This

restriction is because its Burgers vector is perpendicular to the dislocation line. The slip is shown

in Fig. 3.2 [30, p. 110].
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Figure 3.2: Edge Dislocation Slip [30, p. 110]

The edge dislocation slip can happen at a relatively low temperature. To move in a direction

perpendicular to the slip plane the edge dislocation needs vacancy defects to assist. This movement

is called dislocation climb. Positive climb is illustrated in Fig. 3.3 [29, p. 103].

Figure 3.3: Positive Dislocation Climb [29, p. 103]

The atom a at the bottom of the extra plane moves into a neigbouring vacancy. Atom c is behind

a. If atoms of the entire bottom row move into vacancies, the extra plane become shorter. The

negative climb is shown in Fig. 3.4 [29, p. 104].

Figure 3.4: Negative Dislocation Climb [29, p. 104]

Individual atom a moves to a neighbouring vacancy just below the bottom of the extra plane. Atom

c was originally behind a. If this individual process makes an entire row just below the original

extra plane, the extra plane become longer. To complete dislocation climb it needs a certain number
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of highly mobile vacancies. Such vacancies increase in number as temperature rises so it can only

happen at a relatively high temperature.

For screw dislocation because its Burgers vector and the dislocation line are parallel, it can slip

in any plane which passes the dislocation line. This is illustrated in Fig. 3.5 [30, p. 111].

Figure 3.5: Screw Dislocation Cross Slip [30, p. 111]

The original screw dislocation moves into a slip plane through a step, which is higher than the

original slip plane. This is called cross slip.

If two edge dislocations have the same sign and lie in the same slip plane, they will repel each

other. If they have opposite sign, they will attract each other and annihilate eventually as shown

in Fig. 3.6 [22, p. 202].

Figure 3.6: Edge Dislocation Annihilation [22, p. 202]

A right hand screw dislocation can also annihilate with a left hand screw dislocation.

A plastically bent crystal will have a certain number of positive edge dislocations towards the

curvature. This is shown in Image A of Fig. 3.7 [29, p. 225]. After annealing these randomly dis-

tributed edge dislocations will align between any two subgrains, forming low angle grain boundaries.
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The strain fields of aligned edge dislocations can be partially canceled. This is shown in Image B

of Fig. 3.7 [29, p. 225]. This process is called polygonization.

Figure 3.7: Edge Dislocation Polygonization [29, p. 225]

3.1.3 Recrystallization

If the annealing temperature is higher or the annealing time is longer at high enough temperature,

recrystallization will happen after the recovery. During recrystallization some small crystals nucleate

most likely at the distorted regions. The orientations of these nucleations are different from the

surrounding areas. The nucleations may continue to grow and consume the surrounding subgrains if

they have the advantage in sizes. The growth will continue until new strain free grains form, which

will have high angle boundaries with the surrounding grains. The rate of recrystallization depends

on three important factors, (i) the annealing temperature, (ii) the level of deformation during cold

works and (iii) the purity of samples. [30, p. 352]

A plot of percent recrystallization versus log time at different annealing temperature is shown

in Fig. 3.8 [29, p. 230].

Figure 3.8: Isothermal recrystallization curve for pure copper [29, p. 230]

So for a certain percentage of recrystallization the annealing time decreases rapidly with increasing

temperature. The relation between annealing time and temperature for a certain percentage of
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recrystallization is given by,

1

τ
= A exp (−

QA

RT
), (3.2)

where τ is the annealing time, A is a constant, QA is the activation energy for the recrystallization, R

is the gas constant and T is the annealing temperature. The recrystallization temperature is defined

as the temperature at which full recrystallization is completed during one hour. [29, p. 231-232]

The plots of annealing time to complete recrystallization versus temperature of two zirconium

crystals are shown in Fig. 3.9. The plots are for full recrystallization. One crystal had 13% defor-

mation during the cold works (A metal is plastically deformed below its melting temperature.) and

the other had 51%. [29, p. 233]

Figure 3.9: Time-Temperature recrystallization curve for zirconium (iodide) [29, p. 233]

So for the same annealing time the zirconium of higher deformation needs lower annealing temper-

ature to fully recrystallize. And for the same annealing temperature the one of higher deformation

needs much less annealing time to complete. The two plots also have different slope and from Eq.

3.2 this means the one of higher deformation needs lower activation energy to complete.

The grain sizes at the end of full crystallization depend on the deformation level during the cold

works other than the annealing temperature. This is evident in Fig. 3.10 [29, p. 237].
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Figure 3.10: Fully Recrystallized Grain Size versus Percent Elongation
in α-Brass [29, p. 237]

For five different annealing temperatures and any given percent elongation the grain sizes are

almost the same. The plots also show that with higher elongated percentage the final grain sizes

are smaller. Another important feature shown is that below a minimum amount of elongation

the recrystallization cannot happen. This minimum value of deformation during cold works is

called critical strain and it is about 3% in Fig. 3.10. The critical strain depends on what kind of

deformation exists. If a certain kind of deformation is below its critical strain, the recrystallization

cannot happen at any annealing temperature. [29, p. 237-239]

The recrystallization temperature can be increased by several hundred degrees even though only

0.01% foreign atoms are present in the sample. Table 3.1 [29, p. 240] shows how different kinds of

foreign atoms increase the recrystallization temperature of pure copper by an impurity level of 0.01

atomic percent.
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Impurity
Atoms

Increase in the recrystallization
temperature (K)

Ni 0

Co 15

Fe 15

Ag 80

Sn 180

Te 240

Table 3.1: Effects of atomic 0.01% impurity on
the recrystallization temperature of pure copper [29, p. 240]

Foreign atoms reduce the mobility of grain boundaries, which retards the recrystallization.

3.1.4 Grain Growth

The new strain free grains can grow further after the full recrystallization. Atomic diffusion during

grain growth across a grain boundary is shown in Fig. 3.11 [22, p. 224].

Figure 3.11: Atomic diffusion during grain growth [22, p. 224]

Atoms diffuse from the convex side to the concave side and in the opposite direction simultaneously.

Fig. 3.11 shows the net diffusion is from the concave side to the convex side and the grain boundary

migrates towards the concave side. The 3-D geometrical changes during grain growth are shown in

Fig. 3.12 [29, p. 244].
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Figure 3.12: Five basic geometrical changes during grain growth [29, p. 244]

Fig. 3.12 [29, p. 244] image A shows a tetrahedral grain being consumed by the neighbouring

grains. Image B shows the meeting of two grains forming a high angle boundary. Image C shows

the separation of two grains which have a high angle boundary initially. Image D shows the meeting

of two grains forming a low angle boundary, which could make a geometrical coalescence happen,

so two grains become a larger grain. Image E shows one grain separating into two grains.

An empirical equation for isothermal grain growth is given by,

D −D0 = ktn, (3.3)

where D is the growing grain size, D0 is the initial grain size and t is the annealing time. k is

a time independent constant but may depend on the level of previous deformation. n is also a

time independent constant but generally increases with increasing annealing temperature. [29,

p. 249] [22, p. 224] The log of growing grain diameter versus log of annealing time for brass at

different annealing temperature is shown in Fig. 3.13 [22, p. 225].
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Figure 3.13: Growing grain diameters versus annealing time for brass [22, p. 225]

Impurity defects can inhibit grain growth. The effect of foreign inclusions retarding grain growth

in aluminum is shown in Fig. 3.14 [29, p. 251].

Figure 3.14: Retardation on grain growth in aluminum by second-phase inclusions [29, p. 251]

The aluminium has 1.1% manganese impurity, which forms second-phase inclusions MnAl6. The

second-phase inclusions retard the grain growth up to 898 K. At 923 K MnAl6 dissolves in the

crystal, which has much less retardation on the grain growth. And at this relatively high tempera-

ture the exponent n in Eq. 3.3 is 0.42 close to the theoretical value 0.5 predicted by a mathematical

model in reference [29, p. 247]. In another case the foreign inclusions may coalesce into fewer larger

clusters at high temperature, which can also weaken the retardation of grain growth. For individual

foreign atoms provided that the impurity percentage is not too high, high enough annealing tem-
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perature will also weaken the retarding effects and the exponent n approaches the theoretical value

0.5. It is supposed that thermal vibration at high enough temperature breaks up the environments

of foreign atoms.

Some other point defects have similar retarding effects such as holes or pores. The retarding

effect of pores on grain growth is shown in Fig. 3.15 [29, p. 252]. The crystal is Remalloy (12%

Co, 17% Mo and 71% Fe). A number of pores can be seen lying on the grain boundaries. In

particular, several pores retard the boundary motion of the uppermost large grain towards the

concave side. [29, p. 249-253]

Figure 3.15: Retardation on grain growth by pores [29, p. 252]

When the grain size grows to a level comparable to the dimensions of samples, another important

retardation on the growth appears. This is called thermal grooving and is shown in Fig. 3.16 [29,

p. 254].

Figure 3.16: Thermal Grooving [29, p. 254]

The grain boundary attaches to the left surface and to the right. A certain amount of energy is

required for the grain boundary to escape from the thermal grooving. This is the reason why the rate
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of grain growth decreases after 625-minute annealing at 923 K in Fig. 3.14 [29, p. 251]. [29, p. 253-

254]

With these inhibitions presented, if the annealing temperature is raised further above that at

which the initial grain growth happens, secondary recrystallization will happen. Interestingly the

grain growth due to secondary recrystallization is not affected by the retarding factors during the

grain growth due to primary recrystallization. [29, p. 256]

3.1.5 Various Annealing Processes

There are five types of annealing processes, (i) Process Annealing or Partial Annealing, (ii) Stress

Relief Annealing, (iii) Diffusion Annealing, (iv) Full Annealing and (v) Spheroidising Annealing.

Full annealing and spheroidising annealing deal with carburised steel. The other three annealing

processes are briefly described as follows,

(i) Process Annealing or Partial Annealing

Process annealing is used to remove the distortions induced by the cold works. It is also used in

fabricating metals to avoid cracks. The controlled temperature allows recovery and recrystallization

to happen but not grain growth to have a fine grain micro structure. To prevent oxidization the

temperature cannot be too high or it must be processed in a non-oxidizing atmosphere.

(ii) Stress Relief Annealing

Internal residual stresses may remain in crystals due to, (1) plastic deformation processes, (2)

nonuniformly cooling down crystals from hot works or (3) phase transformations during cooling

down. These stresses may lead to distortions or warpages. To relieve the stresses the crystals are

soaked at an elevated temperature provided that this temperature will not affect any result from

other processes. Following the soak, the crystals are cooled down to room temperature in a prepared

atmosphere. [22, p. 422-423] [21, p. 322-324]

(iii) Diffusion Annealing

When alloyed crystals grow, the chemical compositions may non-uniformly distribute, particu-

larly liquation inhomogeneities (Non-equilibrium solidification from liquid phase to solid phase [31,

p. 114-115]. Liquation regions have high hardness. As the annealing temperature or time increases,
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the overall hardness decreases and the crystal dendrites are smeared. [32, p. 159]

3.2 Review of Annealing Effects on URu2Si2

Since the defects in crystals do have a significant effect on their properties, removing the defects by

annealing may change these properties to a considerable level.

Menovsky et al. measured the resistivity of URu2Si2 for annealed single crystal and unannealed

single crystal. They also cited the measurements of annealed polycrystal from other groups. The

results are shown in Table 3.2. [33]
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It seems the resistivities for annealed single crystals at different distances from the seed vary consid-

erably. They claim three factors may cause such large variation, the compositional gradients along

the crystal growing direction as a result of the Czochralski method, crystalline defects, and nonuni-

formly distributed impurities. They also claim that ρ300K has no significant change by annealing

and ρ300K/ρ4.2K increases mainly due to the decreasing of ρ4.2K . The resistivities of polycrystals are

larger than those of single crystals by a factor of 1.5 to nearly 10. They propose that polycrystals

may have significantly more microcracks and impurities.

B. F̊ak et al. grew two single crystals also by the Czochralski method. They kept one as grown

and annealed the other wrapped in a tantalum foil under vacuum (5×10−7 Torr) at 950 ◦C for eight

days. [34] There are some significant differences between the two in several kinds of measurements.

The heat capacity measurements are shown in Fig. 3.17 [34].

Figure 3.17: Specific Heat Capacities of the annealed URu2Si2 and the as-grown URu2Si2 [34]

The hidden order temperature, THO, of the as-grown sample is 17.1 K and THO for the annealed

sample is 17.6 K. One big difference is that the annealed sample shows the superconducting

transition at 1.2 K but the as-grown sample doesn’t show the SC transition down to 0.3 K.

The resistivity measurements along the a-axis are shown in Fig. 3.18 [34].
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Figure 3.18: Resistivities of the annealed URu2Si2 and the as-grown URu2Si2 [34]

The resistivity measurements of both show a SC transition but Tc for the annealed sample is 1.6

K and Tc for the as-grown sample is 0.75 K. Their fittings show that the residual resistivity ρ0 for

the annealed sample is 14.9 µΩ · cm and ρ0 of the as-grown sample is 27.0 µΩ · cm. The higher ρ0

of the as-grown sample is claimed to be caused by its larger amount of crystal defects. A surprising

difference is that the annealed sample has a maximum resistivity of 380 µΩ · cm at its coherence

temperature, Tcoh, but the as-grown sample has a smaller maximum of 250 µΩ · cm at its Tcoh. And

below some temperature around 10 K the resistivity of the annealed sample appears to be smaller

than that of the as-grown sample.

The DC magnetic susceptibility measurements are shown in Fig. 3.19 [34].

Figure 3.19: DC magnetic susceptibility of the annealed URu2Si2 and the as-grown URu2Si2 [34]

The 1 T field direction is along the c-axis. There are no significant differences from 2 K to 300 K.
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However the as-grown sample has a small upturn at lower temperature. This upturn is claimed to

be caused by the crystal defects because heavy fermions are sensitive to dislocations and stacking

faults, which affect 5f electrons at uranium sites.

The elastic neutron scattering measurements are shown in Fig. 3.20 [34].

Figure 3.20: Elastic Neutron Scattering of the annealed URu2Si2 and the as-grown URu2Si2 [34]

The Bragg reflection plane is (100). The integrated intensity is the square of the magnetic moment.

The magnetic moment of the annealed sample increases as the temperature decreases from 20 K

and saturates at low temperature. The as-grown doesn’t show a magnetic moment between 14 K

and 20 K and its magnetic moment increases much more slowly as the temperature decreases from

14 K to 2 K. Between 5 K and 10 K the normalized magnetic moment of the as-grown sample is

five times smaller than that of the annealed sample. The magnetic moment of the as-grown sample

suddenly increases below 2 K and saturates close to that of the annealed sample at 0.5 K. The

difference of THO determined by specific heat capacity and elastic neutron scattering is about 2 K

for the annealed sample while it is about 3 K for the as-grown sample. [34]

Honma et al. also measured the resistivities of an as-grown single crystal of URu2Si2 and an

annealed crystal. The crystals were grown by the Czochralski method too. The samples were

wrapped in tantalum and zirconium foils and were annealed under vacuum of 1×10−7 Torr at 1000

◦C for one week. The resistivities were measured along the a-axis from 0.5 K to 300 K. [35] The

measurements below 6 K are shown in Fig. 3.21 [35].
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Figure 3.21: Resistivities of the annealed URu2Si2 and the as-grown URu2Si2
from Honma et al. [35]

The SC transition width of the as-grown sample is between 0.82 K and 1.2 K while it is between 1.2

K and 1.5 K for the annealed sample. The residual resistivity ratio (RRR defined as the resistivity

at room temperature ρRT divided by the residual resistivity ρ0) for the as-grown sample is 19 while

it is 40 for the annealed sample. [35]
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Chapter 4

3He Refrigerator

The cryostat used for all temperature dependent measurements is a 3He Refrigerator, which is a

multistage cooling system [36]. One temperature sensor at the sample stage is used for T > 6 K

and the other one at the bolometer stage is used for T < 6 K. Below 2 K the temperature at

the sample stage is somehow higher than at the bolometer stage. The outer view of the cryostat is

shown in Fig. 4.1a [37]. The inner view of the cryostat is shown in Fig. 4.1b [37].

Figure 4.1a: Cryostat Outer View [37] Figure 4.1b: Cryostat Inner View [37]

The explanatory drawings of inner view of 3He refrigerator are shown in Fig. 4.2a [38, p. 26].
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Figure 4.2a: Bolometer Stage and Sample Stage of 3He Refrigerator [38, p. 26]

The side view of of 3He refrigerator are shown in Fig. 4.2b [39, p. 26].
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Figure 4.2b: Side View of 3He Refrigerator [39, p. 34]

The procedure used to cool the cryostat to temperature below 1 K is the following,

Stage 1:

By using a rough pump the pressure in the cryostat is reduced from ambient pressure to 10−3

Torr. The pressure is then further reduced to 10−5 Torr or less using a turbomolecular pump.

Stage 2:

Before initiating the cooling process, the four heat switches labeled in Fig. 4.2b [39, p. 26] are

closed, namely sample stage pump switch, sample stage refrigerator switch, bolometer stage pump

switch and bolometer stage refrigerator switch. This ensures that the sample stage, the bolometer

stage, the sample stage charcoal and the bolometer stage charcoal are in equilibrium with the

temperature of the Helium vessel. Furthermore the green valves connecting the two 3He storage

cylinders with the 3He bath inside the cryostat need to be open so the 3He can be driven from the

cylinders onto the cold charcoal during the cooling process described next. The green valves are
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labeled in Fig. 4.2b.

Both the nitrogen vessel and the helium vessel are filled with liquid nitrogen so the temperature

of the system decreases from the ambient temperature to the boiling point of nitrogen 77 K.

Stage 3:

After about two hours, when the system reaches temperature equilibrium at 77 K, the liquid

nitrogen in the helium vessel is extruded into a storage container by pressurizing with nitrogen

gas. Then the system is flushed by using nitrogen gas firstly and 4He gas secondly to remove any

liquid nitrogen residue at the bottom of the helium vessel. This procedure is to prevent any liquid

nitrogen residue from solidifying when we transfer 4He. The melting point of nitrogen is 63.15 K

under ambient pressure [40, p. 51]. The boiling point of 4He is 4.2 K under ambient pressure [41].

Stage 4:

Liquid 4He is transferred from a storage container to the emptied helium vessel through a U-

shape transfer tube.

Stage 5:

When the temperature of the system is cooled down to 4.2 K, a rough pump is used to pump

on the liquid 4He so the temperature can go down further. Above the λ point ≈ 2.17 K under

saturated pressure 4He is a normal fluid [42, p. 115] and the evaporative cooling is explained by the

Clausius-Clapeyron equation [43],

lnP = −
∆Hvap

RT
+ const. [43]. (4.1)

It relates the pressure and temperature of the co-existing phases of liquid and gas. P is the pressure.

∆Hvap is the enthalpy change per mole on vapourization. R is the Universal Gas Constant. T is

the temperature. The constant is the intercept of plotting lnP vs 1
T
. As the pressure goes down,

the temperature decreases. The pumping continues until the temperature reaches approximately 2

K which is below the boiling point of 3He (3.2 K under ambient pressure [41]).

Meanwhile the bolometer stage charcoal pump and/or the sample stage charcoal pump need

to be isolated from the 4He bath. The charcoal is then heated so that the 3He stored during the

previous cooling process is released and condenses into the 3He bath. Before heating the charcoal the
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green valves discussed above need to be closed so the released 3He will not flow back to its storage

cylinders. The charcoal temperature is indicated by a resistor mounted on its storage vessel. The

heating of charcoal continues until its temperature rises to 30 K and the resistor decreases to 2.5

kΩ.

Stage 6:

Pumping on the 4He bath and heating of the charcoal pumps are stopped. The bolometer stage

refrigerator and/or the sample stage refrigerator switches are opened to isolate the 3He bath from

the 4He bath. The bolometer stage pump and/or the sample stage pump switches are connected

to the 4He bath so that the charcoal becomes colder. 3He vapour will be adsorbed onto the cold

charcoal from the 3He bath resulting in a lowering of the pressure of the vapour above the 3He bath.

This process of pumping on the 3He bath makes the temperature decrease approximately to 0.3 K,

which again is explained by the Clausius-Clapeyron equation [43] above the superfluid transition

temperature of 3He which is about 2 mK [42, p. 124–p. 125].

Stage 7:

The temperature can be maintained at about 0.3K until all 3He is adsorbed by the cold charcoal.

After that the temperature will increase drastically and the green valves leading to the 3He storage

cylinder need to be opened before the temperature rises so that as the charcoal gets warmer, the

released 3He can flow back to the 3He storage cylinder. The bolometer stage refrigerator and/or the

sample stage refrigerator heat switches then need to be closed so that the bolometer stage and/or

the sample stage contacts the 4He bath and all stages reach thermal equilibrium with the 4He cold

plate. When the pressure inside the 4He vessel goes back to ambient pressure, the valve used to

close it off from the rough pump must be opened so that the 4He bath can boil off safely. This

prevents the pressure in the enclosed vessel to accumulate to a dangerous level. If there is still

some 4He in the 4He vessel, a 100 Ω resistor can be used to gently apply heat to the cold plate of

the vessel to evaporate the 4He so that the temperature does not stay at the 4He boiling point too

long. It may take two days for the temperature to raise back to room temperature, ensuring good

thermal equilibrium.
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Chapter 5

Resistivity Measurement

5.1 Van der Pauw Method

The Van der Pauw Method is a technique used to measure the resistivity of a sample of arbitrary

shape [44–46], provided that the following conditions are satisfied,

(1) The contacts are on the perimeter of the sample.

(2) The contacts are sufficiently small.

(3) The sample is homogeneous in thickness.

(4) The surface of the sample is singly connected without isolated holes.

5.1.1 Four Contacts in One Dimension

Consider four contacts M, N, O and P are in a line on a real axis x at the edge of an Upper

Half Complex Plane Z as shown in Fig. 5.1. The sample is in the Upper Half Plane (UHP). And

xN − xM = a, xO − xN = b and xP − xO = c.

Figure 5.1: Upper Half Complex Plane

Let a current i enter into M and exit out of N. Firstly we consider the entering current density Jent.
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at a point z, which has a distance rM from M(xM , 0),

~rM = ~z − ~M [47, p. 168–p. 170], (5.1)

~Jent. =
i

~A
=

i

π~rMd
[45] [47, p. 168–p. 170], (5.2)

assuming i flows radially. ~A is the cross section of current i. d is the sample thickness. Secondly

we consider the exiting current density Jexit at the point z, which has distance rN from N(xN , 0),

~rN = ~z − ~N [47, p. 168–p. 170], (5.3)

~Jexit =
i

~A
=

i

π~rNd
[45] [47, p. 168–p. 170]. (5.4)

Then the vector sum of the two current densities at the point z is,

~Jsum = ~Jent. − ~Jexit =
i

π~rMd
−

i

π~rNd
[45] [47, p. 168–p. 170]. (5.5)

The generalized Ohm’s law is,

~J = σ ~E, (5.6a)

where σ is the electrical conductivity, which is the reciprocal of electric resistivity ρ. ~E is the applied

electric field. The negative gradient operator −~∇ of potential U gives ~E,

~E = −~∇U, (5.6b)

so we have,

~Jsumρ = −~∇U. (5.7)

To calculate the potential difference between O and P (UP −UO), we need to take the line integral

of the vector sum ~Jsum and for simplicity we choose the shortest line between O and P, namely from
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xO to xP along the x axis,

UP − UO = −ρ

∫ xP

xO

(

i

π~rMd
−

i

π~rNd

)

dx

= −ρ

∫ xP

xO

[

i

π(~x− ~M)d
−

i

π(~x− ~N)d

]

dx

=
iρ

dπ
ln

{

(xP − xN )(xO − xM )

(xP − xM)(xO − xN )

}

=
iρ

dπ
ln

{

(b+ c)(a+ b)

(a+ b+ c)b

}

[45] [47, p. 171].

(5.8)

a is the distance between M and N. b is the distance between N and O. c is the distance between O

and P. So the resistance RMN,OP is given by,

RMN,OP =
UP − UO

i
=

ρ

dπ
ln

{

(b+ c)(a+ b)

(a + b+ c)b

}

[45] [47, p. 171]. (5.9)

Rearranging Equation 5.9 we get,

exp (−
dπ

ρ
RMN,OP ) =

(a+ b+ c)b

(b+ c)(a+ b)
[45] [47, p. 172]. (5.10)

Next let the current i enter into N and exit out of O. Similarly we consider the entering current

density, the exit current density and the vector sum ~Jsum of the two current densities at a point z.

Then by taking the line integral of the vector sum along the shortest distance from xP to xM along

the x axis we have the potential difference between P and M,

UM − UP = −ρ

∫ xM

xP

(

i

π~rNd
−

i

π~rOd

)

dx

= −ρ

∫ xM

xP

[

i

π(~x− ~N)d
−

i

π(~x− ~O)d

]

dx

=
iρ

dπ
ln

{

(xM − xO)(xP − xN )

(xM − xN )(xP − xO)

}

=
iρ

dπ
ln

{

(b+ c)(−(a+ b))

c(−a)

}

[45] [47, p. 172],

(5.11)
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so the resistance RNO,PM is given by,

RNO,PM =
UM − UP

i
=

ρ

dπ
ln

{

(b+ c)(a+ b)

ca

}

[45] [47, p. 172]. (5.12)

Rearranging Equation 5.12 we get,

exp (−
dπ

ρ
RNO,PM) =

ca

(b+ c)(a+ b)
[45] [47, p. 172]. (5.13)

Summing both sides of Eq. 5.10 and Eq. 5.13, we get,

exp (−
dπ

ρ
RMN,OP ) + exp (−

dπ

ρ
RNO,PM) =

(a + b+ c)b

(b+ c)(a+ b)
+

ca

(b+ c)(a+ b)

=
(a + b+ c)b+ ca

(b+ c)(a+ b)

= 1 [45] [47, p. 172].

(5.14)

This is the Van der Pauw theorem in one dimension.

5.1.2 Four Contacts in Two Dimensions

To extend the Van der Pauw theorem to the edge along an arbitrary shape in two dimensions as

shown in Fig. 5.2, we invoke the method of Conformal Mapping.

Figure 5.2: W Complex Plane
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The general idea is to find a pair of transform functions relating the points M, N, O and P in the

Z complex plane to the one-by-one corresponding points wM , wN , wO and wP in another complex

plane W [45] [47, p. 172–p. 173]. We will have a pair of transform functions,

w = f(z), (5.15a)

z = g(w). (5.15b)

In the Z plane we have the potential difference between O and P,

UP − UO =
iρ

dπ
ln

{

(xP − xN )(xO − xM)

(xP − xM )(xO − xN )

}

. (5.16)

Then we transform M, N, O and P to wM , wN , wO and wP by z = g(w). The result is,

UwP
− UwO

=
iρ

dπ
ln

{

[g(wP )− g(wN)][g(wO)− g(wM)]

[g(wP )− g(wM)][g(wO)− g(wN)]

}

. (5.17)

The resistance RwMwN ,wOwP
in the W plane is thus,

RwMwN ,wOwP
=
UwP

− UwO

i

=
ρ

dπ
ln

{

[g(wP )− g(wN)][g(wO)− g(wM)]

[g(wP )− g(wM)][g(wO)− g(wN)]

}

.

(5.18)

For mapping from the W plane to the Z plane by using w = f(z) we will have wM = f(xM),

wN = f(xN ), wO = f(xO), and wP = f(xP ) and also z = g(w) = g(f(z)) so,

RwMwN ,wOwP
=

ρ

dπ
ln

{

[g(f(xP ))− g(f(xN))][g(f(xO))− g(f(xM))]

[g(f(xP ))− g(f(xM))][g(f(xO))− g(f(xN))]

}

=
ρ

dπ
ln

{

(xP − xN)(xO − xM)

(xP − xM)(xO − xN)

}

=
ρ

dπ
ln

{

(b+ c)(a + b)

(a+ b+ c)b

}

[45] [47, p. 173],

(5.19)

for which the resistance value is invariant under the transformation. Similarly we can find the value
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of the resistance RwNwO,wPwM
which is also invariant under the transformation. Hence the Van der

Pauw theorem is valid in two dimensions.

Mahan used a Conformal Mapping method called Schwarz-Christoffel transformation in his book

to extend the Van der Pauw theorem to the vortices of a polygon in two dimensions [47, p. 173].

The generalized transform function w = f(z) for Schwarz-Christoffel transformation is,

w = w0 + A

∫ +∞

−∞

1

Πj(z − zj)
φj

π

dz [47, p. 158]. (5.20)

The subscript j is the number of pairs of points in the two complex planes. The angle φj is

between two boundaries at the vortex j in a counterclockwise direction. The constants w0 and A

are determined by the values of the points in a pair [47, p. 158].

5.1.3 f factor in Van der Pauw theorem

Following from Van der Pauw’s second paper regarding his theorem [45], we next derive Eq. (4) of

this second paper, which is used in our resistivity measurement.

Let

RMN,OPdπ = α, (5.21a)

and

RNO,PMdπ = β, (5.21b)

[45] and substitute into Eq. 5.22

exp (−
dπ

ρ
RMN,OP ) + exp (−

dπ

ρ
RNO,PM) = 1 [45], (5.22)

so we have

exp (−
α

ρ
) + exp (−

β

ρ
) = 1 [45]. (5.23)

Let

α =
1

2
[(α + β) + (α− β)], (5.24a)
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β =
1

2
[(α+ β)− (α− β)], (5.24b)

[45] and substitute Eq. 5.24a and Eq. 5.24b into Eq. 5.23 so we have

exp

(

−
(α + β) + (α− β)

2ρ

)

+ exp

(

−
(α + β)− (α− β)

2ρ

)

= 1 [45], (5.25)

and factor out exp(−α+β
2ρ

) and we have

exp

(

−
α + β

2ρ

)

[

exp

(

−
α− β

2ρ

)

+ exp

(

α− β

2ρ

)

]

= 1 [45], (5.26)

and divide both sides by 2 so we have

exp

(

−
α + β

2ρ

)







exp
(

−α−β
2ρ

)

+ exp
(

α−β
2ρ

)

2






=

1

2
, (5.27a)

exp

(

−
α + β

2ρ

)

cosh

(

α− β

2ρ

)

=
1

2
, (5.27b)

exp

(

−
α + β

2ρ

)

cosh

[

(α− β)(α + β)

2ρ(α + β)

]

=
1

2
, (5.27c)

exp

[

−
α + β

2ρ

]

cosh

[

β(α
β
− 1)(α + β)

2ρβ(α
β
+ 1)

]

=
1

2
, (5.27d)

[45] and let

α + β

2ρ
=

ln 2

f
[45]. (5.28)

Making this substitution in Eq. 5.27d we have,

exp

(

−
ln 2

f

)

cosh







(

α
β
− 1

)

(

α
β
+ 1

) ×
ln 2

f






=

1

2
[45], (5.29)
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substituting Eq. 5.21a and Eq. 5.21b into Eq. 5.29 so we have,

exp

(

−
ln 2

f

)

cosh







(

RMN,OP

RNO,PM
− 1

)

(

RMN,OP

RNO,PM
+ 1

) ×
ln 2

f






=

1

2
[45], (5.30)

and rearranging,

cosh







(

RMN,OP

RNO,PM
− 1

)

(

RMN,OP

RNO,PM
+ 1

) ×
ln 2

f






=

1

2
exp

(

ln 2

f

)

[45]. (5.31)

Eq. 5.31 gives the relation between
RMN,OP

RNO,PM
and the f factor [45]. Rearranging Eq. 5.28 we have,

ρ =

(

α + β

2 ln 2

)

× f [45], (5.32)

substituting Eq. 5.21a and 5.21b into Eq. 5.32 so we have,

ρ =
πd

ln 2

(RMN,OP +RNO,PM)

2
f [45], (5.33)

which is Eq. (4) in Van der Pauw’s second paper [45]. Eq. 5.31 has no analytic solution. Van der

Pauw gave a graphic solution in his paper, which is reproduced in Fig. 5.3 [45],

Figure 5.3: f factor as a function of RMN,OP/RNO,PM [45]

In our measurement we use an algorithm written in Pascal to give a numerical solution for the
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f factor. Rearranging Eq. 5.31 we obtain,

exp





−2 ln 2

f(1 + 1
RMN,OP /RNO,PM

)



 + exp





−2 ln 2

f(1 +
RMN,OP

RNO,PM
)



 = 1. (5.34)

The initial minimum and maximum values of f are set as 0 and 1 respectively. The trial f value is

set as fmin+fmax

2
so the initial f value is 0.5. If 0.5 makes the left side of Eq. 5.34 smaller than 1,

then fmin is set as 0.5 and fmax is still 1. The new f value 0.75 is substituted into Eq. 5.34 and the

output from the left side will be compared with 1 again. On the other hand if 0.5 makes the left

side of Eq. 5.34 larger than 1, then fmax will be set as 0.5 and fmin remains 0. The new f value

0.25 is substituted into Eq. 5.34 and the output from the left side will be compared with 1 again.

If the new trial f value makes the output smaller than 1, the next fmin is set as this f value and

fmax remains unchanged. If the new trial f value makes the output larger than 1, the next fmax is

set as this f value and the next fmin remains unaltered. The loop for the comparison will continue

until the absolute value of the difference between the output and 1 is less than 10−6 or the number

of iterations reaches 100.

5.2 Experimental Methods

The set up for mounting the sample is shown in Fig. 5.4.

Figure 5.4: Set Up of Sample
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It is essential to mount samples using a good thermal bonding which has high thermal conductivity

so the samples can be effectively cooled down especially at low temperature. A sample is mounted

on the copper plate by double-sided tape, VGE-7031 or five-minute epoxy, which also acts as an

insulator between the sample and the copper plate. The thermal conductivity for VGE-7031 is 0.034

W/(m ·K) at 1 K and 0.062 W/(m ·K) at 4.2 K respectively [48]. The thermal conductivities for

the double-sided tape and the five-minute epoxy used for the measurements are not available.

Four indium coated brass shims are epoxied to a thin piece of glass and the glass is epoxied to

the copper plate. The glass needs to be thin enough to conduct heat from the indium contacts to

the copper plate effectively. Four gold wires are attached to the four contacts near the circumference

of the sample by silver paint under a microscope. A great effort is required to make good contacts.

The other ends of the gold wires are soldered to the four indium contacts respectively. The indium

contacts are connected to four pins respectively, which will be inserted into a mating connector

inside the cryostat. Since below 2 K the temperature at the bolometer stage can go down lower

than it can at the sample stage, the copper plate is screwed onto the cold plate of the bolometer

stage. Four brass screws are used to mount the copper plate to the 3He stage, by which the thermal

conductivity between the copper plate and the cold plate can be improved. The illustrations of the

measurements of RMN,OP and RNO,PM are shown in Fig. 5.5a and Fig. 5.5b respectively,

Figure 5.5a: RMN,OP

Figure 5.5b: RNO,PM



Chapter 5. Resistivity Measurement 64

For fig. 5.5a firstly the applied current flows from the contact WM to WN and the corresponding

potential difference between the contact WO and WP is measured so RMN,OP can be calculated

once. Then the applied current flows from the contactWN toWM and again the potential difference

between the other two contacts is measured so RMN,OP can be calculated a second time. An average

value of the two calculations is used for RMN,OP . For fig. 5.5b by using a programmable switching

instrument the applied current can flow between the contact WN and WO and the corresponding

potential difference between the contact WP and WM is measured. RNO,PM is calculated by the

same method. Then RMN,OP and RNO,PM are used by the algorithm discussed in Section 5.1.3

to numerically calculate the f factor of Eq. 5.34 and thereafter the resistivity ρ by Eq. 5.33.

The temperature is read by a temperature sensor at the sample stage above 6 K and by the

other temperature sensor at the bolometer stage below 6 K. The communications between the

instruments and the computer are through General Purpose Interface Buses (GPIB), which are

designed by National Instruments [49]. The data points are recorded by using MPMS MultiVu

Software, which is designed by Quantum Design [50].

For annealing, some samples were wrapped in tantalum foil and then put in a quartz tube. The

inner wall of the quartz tube was covered by zirconium foil. The quartz tube was vacuumed to

4.4× 10−7 Torr. The samples were annealed at 1000 ◦C for about three weeks. The warming rate

and the cooling rate were not set up. [34, 35]

The sample designated as Sample1 is unannealed and was measured once before cleaving to

Sample1-1 and Sample1-2. It was attached to the copper plate by double-sided tape for the mea-

surement.

Sample1-1 was measured three times after annealing. For the first measurement it was mounted

on the copper plate by double-sided tape and measured about seven weeks after the annealing. For

the second measurement it was attached by VGE-7031 and measured about fourteen weeks after

the annealing. For the third measurement it was mounted on the copper plate by five-minute epoxy

and measured about twenty six weeks after the annealing.

Sample1-2 was unannealed and attached to the copper plate by five-minute epoxy for the mea-

surement.

Sample2 was also unannealed and mounted on the copper plate by double-sided tape.
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Sample3-1 and Sample3-2 were split from one unannealed sample. Sample3-1 was measured

twice after the annealing. For the first measurement it was attached to the copper plate by double-

sided tape and measured about six weeks after the annealing. For the second measurement it was

mounted on the copper plate by five-minute epoxy and measured about thirty two weeks after the

annealing.

Sample3-2 was also measured twice. For the first measurement it was unannealed and attached

to the copper plate by double-sided tape. For the second measurement it was mounted on the

copper plate by five-minute epoxy and measured about forty three weeks after the annealing.

Annealed Sample3-2 (left) and unannealed Sample1-2 mounted by five-minute epoxy (right) are

shown in Fig. 5.6.

Figure 5.6: Annealed Sample3-2 (left) and unannealed Sample1-2 mounted by five-minute epoxy
(right)

Sample1-1, Sample2 and Sample3-1 melted unexpectedly during the second round of annealing.

Samples 1 and 2 were provided by Prof. Razavi, and were used in the study reported in reference [3].

Sample 3 was provided by Prof. Luke at McMaster. All three samples were grown by the Czochralski
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Process. Samples 1 and 2 were single crystal and were spark cut perpendicular to the c-axis, which

was verified by X-ray measurements. [3] For Sample1, Sample1-1, Sample1-2 and Sample2 the four

contacts were on the cross section, which is supposed to be the ab plane.

5.3 Experimental Results

The samples were measured from about 0.5 K to room temperature. For nine of the ten measure-

ments R1 and R2 (In the algorithm for calculating the resistivity RMN,OP and RNO,PM are written

as R1 and R2 respectively.) appear to be along the a-axis. For annealed Sample1-1 mounted by

five-minute epoxy one of the two resistances is along the a-axis while the other looks as if it is along

the c-axis. This is likely because the four contacts were not at the same level. All experimental

data below the Hidden Order temperature were fitted by,

ρ(T ) = ρ0 +BTC +D exp (−∆/T ), (5.35)

where ρ0 is the residual resistivity at absolute zero, B, C and D are constants and ∆ is the energy

gap. [2] The values of these parameters are summarized in Table 5.1a and Table 5.1b.

All of the measurements for Sample1,Sample1-1 and Sample1-2 are plotted in Fig. 5.7a.
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Figure 5.7a: Resistivity vs Temperature for Sample1, Sample1-1 and Sample1-2

For all of the measurements the resistivity slowly goes up as the temperature decreases from room

temperature to the coherence temperature Tco. Then the resistivity drops drastically below Tco. At

THO a λ shaped cusp appears. Below about 5 K the resistivity decreases slowly with decreasing

temperature and no clear superconducting transition shows down to about 0.5 K. The resistivity

after annealing appears to be increased. F̊ak et al. had a similar surprising result [34]. Tco was

about 75 K for annealed Sample1-1 mounted by double-sided tape or VGE-7031. Tco was about 50

K for unannealed Sample1 mounted by double-sided tape, annealed Sample1-1 attached by five-

minute epoxy and unannealed Sample1-2 mounted by five-minute epoxy. For annealed Sample1-1

attached by five-minute epoxy R1 appears to be along the a-axis while R2 appears to be along the

c-axis. At room temperature R1 is about five times that of R2. At Tco R1 is about seven times

that of R2. Otherwise we expect that its resistivity would have approached those for it mounted by

double-sided tape and by VGE-7031. The plots below 22.5 K are shown in Fig. 5.7b.
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Figure 5.7b: Resistivity vs Temperature T ≤ 22.5K for Sample1, Sample1-1 and Sample1-2

The dashed lines are the fitting curves. Fig. 5.7c shows that annealed Sample1-1 mounted using

five-minute epoxy had evidence of a SC transition below 0.6 K.
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Figure 5.7c: Resistivity vs Temperature T ≤ 2K during cooling down
for annealed Sample1-1 mounted using five-minute epoxy

The superconducting transition was observed when the applied current was switched from 3 mA
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to 1 mA followed by 0.5 mA but smaller current increased the noise level. Annealed Sample1-1 is

approximately a rectangle. From Eq. 5.36a,

P = I2R, (5.36a)

where P is the dissipated power, I is the applied current and R is the resistance and Eq. 5.36b,

R = ρ
l

S
, (5.36b)

where ρ is the resistivity, l is the length of sample and S is the cross-section area, the dissipated

power of annealed Sample1-1 mounted using five-minute epoxy was about 4.58 × 10−11 Watt at

about 0.5 K. (The dimensions of annealed Sample1-1 were 5 mm × 3.5 mm × 0.87 mm at room

temperature. The average resistivity was about 1.12 × 10−7 Ω · m at about 0.5 K. The applied

current was 0.5 mA.) However the resistance of the interface between the contact and the sample

surface can be from several ohms to above ten ohms at room temperature. This likely generates

much more heat than the sample itself does even at low temperature (Increasing the dissipated

power by a few orders).

The resistivity did not go down to zero because the R1 and R2 were unwisely forced to be

absolute values. Otherwise in the superconducting state the measured resistivity oscillates around

zero according to Eq. 5.33.

The plot for unannealed Sample2 is shown in Fig. 5.8a.
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Figure 5.8a: Resistivity vs Temperature for Sample2

Tco is about 62.5 K. No SC transition shows down to about 0.5 K. The plot below 22.5 K is shown

in Fig. 5.8b.
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The dashed line is the fitting curve. The data have relatively larger noise for Sample2. The noise

level along the resistance R1 is much larger than it is along R2. In an excellent paper Vandamme
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explained all kinds of noise sources in electronic measurements [51]. Two factors may cause the

large noise along R1 in Sample2. One factor is that the defects along R1 are more prevalent than

along R2. Vandamme showed that annealing reduced the noise. The other factor is that the contact

resistances along R1 are much greater than those along R2.

All measurements for Sample3-1 and Sample3-2 are shown in Fig. 5.9a.

 0

 1e−06

 2e−06

 3e−06

 4e−06

 5e−06

 6e−06

 7e−06

 0  50  100  150  200  250  300

ρ 
(Ω

⋅m
)

Temperature (K)

Resistivity vs Temperature

Ann−Sample3−1−Double−Side−Tape
Ann−Sample3−1−Five−Minute−Epoxy
Ann−Sample3−2−Five−Minute−Epoxy

Unann−Sample3−2−Double−Side−Tape

Figure 5.9a: Resistivity vs Temperature for Sample3-1 and Sample3-2

For these samples, the resistivity after annealing appears to be decreased. This may be because the

crystal defects in Sample3-1 and Sample3-2 are at a much higher concentration level than those for

Sample1-1, which can be seen from their RRR. The annealing appears to be not quite as effective for

Sample3-1 and Sample3-2 as it was for Sample1-1 because RRR for Sample3-1 and Sample3-2 has

almost no enhancement after annealing while RRR for Sample1-1 has a notable enhancement after

annealing. Tco is about 50 K for annealed Sample3-1 attached by double-sided tape. Tco was about

62.5K for unannealed Sample3-2 attached by double-sided tape, annealed Sample3-1 mounted using

five-minute epoxy and annealed Sample3-2 attached by five-minute epoxy. Annealed Sample3-2

mounted with five-minute epoxy exhibits a SC transition as shown in Fig. 5.9c. The starting point

and ending point of the SC transition width are at about 1.36 K and 0.85 K respectively. For this

measurement when the temperature rose to 228.08 K, one contact split off from the sample. The
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data at room temperature were measured before cooling down. The plots below 22.5 K are shown

in Fig. 5.9b.
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Figure 5.9b: Resistivity vs Temperature T ≤ 22.5K for Sample3-1 and Sample3-2

The dashed lines are the fitting curves. For annealed Sample3-1 attached with double-sided tape

the refrigerator switch at the sample stage was accidentally not tightened. When the temperature

rose above 6 K, the temperature sensor was switched from the one at the bolometer stage to the

one at the sample stage and it was measured as about 12 K. The misalignment of data for this

part makes it invalid for fitting. The plot for annealed Sample3-2 attached with five-minute epoxy

below 22.5 K is shown in Fig. 5.9c.
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Figure 5.9c: Resistivity vs Temperature T ≤ 22.5K for annealed Sample3-2

The dashed line is the fitting curve. Though RRR does not increase much after annealing for

Sample3-2, the annealing may effectively remove the defects which can destroy heavy fermion su-

perconductivity. The mounting medium, five-minute epoxy, has better thermal conductivity. The

size of Sample3-2 is also much smaller than that of other samples so the interface between the

contact and the sample surface needs to be small in order that four contacts can be placed on the

sample. These factors effectively reduce the heat generated due to the applied current during the

measurements. The Residual Resistivity Ratio (RRR) defined by Matsuda et al. is the resistivity

at 300 K divided by that at 2 K [2]. For all of our measurements the resistivity below 5 K in the

normal state decreases slowly with decreasing temperature so the RRR is the average resistivity

at about room temperature divided by that at about the lowest temperature in the normal state

around 0.5 K. For annealed Sample3-2 it is divided by the average resistivity at about 2 K since

the data have some noise near the onset of the SC transition. The plots of the exponent C in Eq.

5.35 versus RRR compared with those obtained by Matsuda et al. are shown in Fig. 5.10.
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Figure 5.10: Exponent C vs RRR

Our data along with those of Matsuda et al. seem to show that for the lowest values of RRR C

approaches 2, which shows Fermi liquid behaviour. For intermediate RRR C approaches 1. For high

RRR the measurements done by Matsuda et al. show that C values approach 1.5. [2] The brown

arrow shows the effect of annealing on Sample3-2. The black arrow shows the effect of annealing

on Sample1.

The Hidden Order temperature is defined by the local minimum temperature at HO. The plots

of THO vs RRR compared with those obtained by Matsuda et al. are shown in Fig. 5.11.
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Figure 5.11: Hidden Order Temperature vs RRR

For low RRR like our samples THO has a notable drop as RRR decreases. For high RRR the

measurements carried out by Matsuda et al. show that THO saturates to some higher temperature

as RRR increases. The brown arrow shows the effect on THO of annealing on Sample3-2. The black

arrow shows the effect on THO of annealing on Sample1.

The temperature transition width at HO ∆THO is defined as the temperature at the local

minimum subtracted by that at the local maximum. The plots of ∆THO vs RRR compared with

those obtained by Matsuda et al. are shown in Fig. 5.12.
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Figure 5.12: Temperature Transition Width at HO vs RRR

For low RRR like our samples ∆THO has a notable rise as RRR decreases. For high RRR the

measurements carried out by Matsuda et al. show that ∆THO saturates to some lower value as

RRR increases. The brown arrow shows the effect of annealing on ∆THO for Sample3-2. The black

arrow shows the effect of annealing on ∆THO for Sample1.

The values of RRR, fitting parameters, local maximum and local minimum at HO and ∆THO

are summarized in Table 5.1a and Table 5.1b.
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J parallel to a-axis, Resistivity Fitting to ρ(T ) = ρ0 + BTC + D exp (−∆/T )

URu2Si2 Ann-Sample1-1-Five-
Minute-Epoxya

Ann-Sample1-1-
VGE-7031

Unann-Sample1-
Double-Side-Tape

Ann-Sample1-1-
Double-Side-Tape

Unann-Sample1-2-
Five-Minute-Epoxy

RRRb 21.92 22.62 10 18.09 12.928

ρ0 (Ω · m) (2.05± 0.06)× 10−7 (4.59± 0.10)× 10−7 (2.79± 0.07)× 10−7 (4.84± 0.02)× 10−7 (3.07± 0.03)× 10−7

B (Ω · m ·K−C) (1.1± 0.3)× 10−8 (2.0± 0.5)× 10−8 (8± 4)× 10−9 (5.2± 0.7)× 10−9 (10± 2)× 10−9

C 1.3± 0.1 1.1± 0.1 1.2± 0.2 1.80± 0.07 1.13± 0.08

D (Ω · m) (3.0± 0.7)× 10−4 (5.3± 0.8)× 10−4 (7± 2)× 10−5 (3.5± 0.5)× 10−4 (9.4± 0.8)× 10−5

∆(K) 89± 4 88± 3 79± 5 85± 3 74± 1

Local Maximum at
HO

T=16.623 K, ρ =
2.019445× 10−6Ω ·m

T=17.12 K, ρ =
3.647411× 10−6Ω ·m

T=16.469 K, ρ =
1.15906× 10−6Ω ·m

T=16.657 K, ρ =
3.348107× 10−6Ω ·m

T=16.631 K, ρ =
1.561795× 10−6Ω ·m

Local Minimum at
HO

T=17.941 K, ρ =
1.369568× 10−6Ω ·m

T=17.719 K, ρ =
3.191629× 10−6Ω ·m

T=17.663 K, ρ =
8.948714× 10−7Ω ·m

T=17.43 K, ρ =
2.987854× 10−6Ω ·m

T=17.441 K, ρ =
1.335378× 10−6Ω ·m

Hidden Order
Transition Width

(∆THO)

1.318 K 0.599 K 1.194 K 0.773 K 0.81 K

a R1 ‖ a-axis & R2 ‖ c-axis.
b Explained in Sec. 5.3
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J parallel to a-axis, Resistivity Fitting to ρ(T ) = ρ0 + BTC + D exp (−∆/T )

URu2Si2 Unann-Sample2-
Double-Side-Tape

Ann-Sample3-1-
Double-Side-Tape

Ann-Sample3-1-Five-
Minute-Epoxy

Ann-Sample3-2-Five-
Minute-Epoxy

Unann-Sample3-2-
Double-Side-Tape

RRR 13.32 8.71 9.24 8.376 7.54

ρ0 (Ω · m) (3.20± 0.09)× 10−7 N/A (3.67± 0.04)× 10−7 (3.82± 0.02)× 10−7 (6.62± 0.02)× 10−7

B (Ω ·m · K−C) (1.2± 0.6)× 10−8 N/A (3 ± 2)× 10−9 (3.1± 0.5)× 10−9 (1.1± 0.4)× 10−9

C 1.1± 0.2 N/A 1.6± 0.3 1.70± 0.07 2.2± 0.2

D (Ω · m) (2.3± 0.8)× 10−4 N/A (2 ± 2)× 10−4 (1.6± 0.1)× 10−4 (2.6± 0.4)× 10−4

∆(K) 89± 7 N/A 84± 10 82± 1 85± 3

Local Maximum at
HO

T=16.682 K, ρ =
1.923534× 10−6Ω ·m

T=14.842 K, ρ =
1.094138× 10−6Ω ·m

T=14.785 K, ρ =
1.341572× 10−6Ω ·m

T=15.821 K, ρ =
1.408347× 10−6Ω ·m

T=16.136 K, ρ =
2.202796× 10−6Ω ·m

Local Minimum at
HO

T=17.348 K, ρ =
1.052761× 10−6Ω ·m

T=15.779 K, ρ =
7.681365× 10−7Ω ·m

T=16.086 K, ρ =
1.177532× 10−6Ω ·m

T=16.747 K, ρ =
1.281394× 10−6Ω ·m

T=17.102 K, ρ =
1.963180× 10−6Ω ·m

Hidden Order
Transition Width

(∆THO)

0.666 K 0.937 K 1.301 K 0.926 K 0.966 K
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5.4 Some Other Models of Resistivity

For conduction electron-phonon interaction the resistivity is given by the Bloch-Grüneisen formula.

Its high temperature solution is,

ρ =
A

4

(

T

θD

)

for T ≥ θD, (5.37a)

and its low temperature solution is,

ρ = 124.4A

(

T

θD

)5

for T ≪ θD, (5.37b)

where A is a constant and θD is Debye temperature. [52, p. 58-59]

For conduction electron-magnetic ion interaction in dilute solid solution the resistivity is given

by the Kondo effect,

ρ = cρ0 − cρ1 lnT, (5.38)

where c is the concentration of magnetic ions, ρ0 is the residual resistivity, ρ1 is a constant and T

is temperature. [40, p. 639]

If different scatterings of conduction electron exist simultaneously, according to Matthiessen’s

Rule the resultant resistivity will be a simple summation of resistivities due to each scattering

process. However this rule does not consider the interactions among different scattering mechanisms

so some experimental observations deviate from this rule. [52, p. 43-44] [53, p. 9-10]
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Chapter 6

DC Magnetization Measurement at SC

Transition

6.1 Meissner Effect

Besides zero resistivity a superconductor exhibits another fundamental property, the Meissner effect.

The Meissner effect distinguishes a superconductor from an ideal conductor. W. Meissner and R.

Ochsenfeld discovered the Meissner effect in 1933 [23, p. 9]. The response to an applied magnetic

field for a superconductor and an ideal conductor is shown in Fig. 6.1 [54, Sec. 2.3].

Figure 6.1: A comparison of response to applied magnetic field between ideal conductor and
superconductor [54, Sec. 2.3]
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In Fig. 6.1 (a) [54, Sec. 2.3] an ideal conductor is initially cooled under zero magnetic field until

below the critical temperature, when its resistivity becomes zero. Then an applied magnetic field

is turned on and the screening current produced on the surface repels the applied magnetic flux.

So the magnetic flux cannot penetrate inside the ideal conductor. After the field is turned off, the

magnetic flux is zero inside the ideal conductor. [54]

In Fig. 6.1 (b) [54, Sec. 2.3] the ideal conductor is cooled under an applied field from the normal

state to a temperature below Tc. At temperatures both above and below Tc the magnetic flux can

penetrate inside the ideal conductor. After the applied field is turned off below Tc, the magnetic

flux remains inside the ideal conductor. [54]

In Fig. 6.1 (c) [54, Sec. 2.3] a superconductor is initially cooled under zero magnetic field until

the temperature is below Tc. Then an applied field is turned on and the screening current produced

on the surface repels the applied magnetic flux. The magnetic flux inside the superconductor is

zero and it remains zero after the applied field is turned off.

In Fig. 6.1 (d) [54, Sec. 2.3] the superconductor is cooled under a non-zero magnetic field.

In its normal state the magnetic flux can penetrate inside the superconductor but below Tc in its

superconducting state the magnetic flux is repelled by the screening current on the superconductor

surface. Below Tc after the applied field is turned off, no magnetic flux is inside the superconductor.

The field inside the superconductor is zero below Tc no matter whether the applied field is zero or

not.

Superconductivity implies perfect diamagnetism. The relative permeability µr is zero. The

applied field H is related to the induced field B through,

B = µ0(H +M)

= µ0(1 +
M

H
)H

= µ0(1 + χ)H,

(6.1)

where µ0 is the permeability in free space, M is the volume magnetization and χ is the susceptibility.
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The induced field B is zero so,

µr = 1 + χ = 0, (6.2a)

and

χ = −1. (6.2b)

The susceptibility for perfect diamagnetism like superconductivity is -1.

In 1935 the brothers Fritz London and Heinz London derived a set of two equations, which

give mathematical descriptions of the two fundamental properties of superconductivity. These are

the first London equation and the second London equation [54, Sec. 3.3] [55, p. 5]. From a

Drude-Lorentz model for electrons in a metal, Newton’s second law is [55, p. 5],

m∗(
dv

dt
+ Γv) = eE, (6.3)

where m∗ is the effective mass of electron, v is the drift velocity, Γ is the scattering rate, e is

the electron charge and E is the applied electric field. Since for either an ideal conductor or a

superconductor the relaxation time τ goes to infinity, the scattering rate

Γ =
1

τ
= 0. (6.4)

The current density is given by,

J = nev, (6.5)

where n is the conduction electron density. So we have

∂J

∂t
= ne

dv

dt
. (6.6)

Combining Eq. 6.3, Eq. 6.4 and Eq. 6.6 we have,

∂J

∂t
=
ne2E

m∗
. (6.7)

Eq. 6.7 is the first London equation. It states that a constant current can flow in either an ideal
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conductor or a superconductor without applied electric field. The fourth equation of Maxwell’s

equations in matter is,

∇×H = Jf +
∂(P + ǫ0E)

∂t
= Jf +

∂D

∂t
, (6.8)

where Jf is the free electron current density, P is the volume polarization, ǫ0 is the permittivity in

free space, E is the applied electric field and D is the electric flux density. Assuming the electric

flux density is independent of time then we have,

∇×H = Jf . (6.9)

Taking the time derivative on both sides of Eq. 6.9 we have,

∇×
∂H

∂t
=
∂Jf
∂t

. (6.10)

Substituting Eq.6.10 into Eq. 6.7 we have,

∇×
∂H

∂t
=
ne2E

m∗
. (6.11)

Taking the curl of both sides of Eq. 6.11 we have,

∇×∇×
∂H

∂t
=
ne2

m∗
∇×E. (6.12)

Substituting the third equation of Maxwell’s equations in matter

∇× E = −µ0
∂H

∂t
, (6.13)

into Eq. 6.12 we have,

∇×∇×
∂H

∂t
+
ne2µ0

m∗

∂H

∂t
= 0. (6.14)

By the vector identity,

∇×∇×H = ∇(∇ ·H)−∇2H, (6.15)
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and the second Maxwell’s equation,

∇ ·H = 0, (6.16)

we have,

∇×∇×H = −∇2H. (6.17)

Substituting Eq. 6.17 into Eq. 6.14 we obtain,

∂(−∇2H)

∂t
+
ne2µ0

m∗

∂H

∂t
= 0. (6.18)

Rearranging we find,

∇2∂H

∂t
−
ne2µ0

m∗

∂H

∂t
= 0. (6.19)

For an applied field H perpendicular to the surface of an ideal conductor, the only solution to Eq.

6.19 is ∂H/∂t = 0 but this doesn’t mean H = 0. For H parallel to the conductor’s surface, e.g. in

z direction as shown in Fig. 6.2 we have,

∂2

∂x2
(
∂H

∂t
)−

ne2µ0

m∗

∂H

∂t
= 0. (6.20)

Replacing ne2µ0/m
∗ by 1/λ2 we have,

∂2

∂x2
(
∂H

∂t
)−

1

λ2
∂H

∂t
= 0. (6.21)

Eq. 6.21 is a second order linear and homogeneous differential equation with respect to x and its

characteristic equation is,

1 · C2 + 0 · C −
1

λ2
= 0, (6.22)

which is a quadratic equation. The coefficients of Eq. 6.22 satisfy,

02 − 4 · 1 · (−
1

λ2
) > 0, (6.23)
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and the two roots of Eq. 6.22 are ± 1
λ
so the general solution to Eq. 6.21 is,

∂H

∂t
ẑ = A exp(

−|x|

λ
) + B exp(

|x|

λ
), (6.24)

where A and B are constants. B has to be zero to have physical meaning. By applying a boundary

condition at x = 0 we have,

∂H0

∂t
ẑ = A, (6.25)

so that,

∂H

∂t
ẑ =

∂H0

∂t
ẑ exp(

−|x|

λ
), (6.26)

and ∂Hẑ/∂t decreases exponentially inside an ideal conductor. Again it doesn’t mean Hẑ has the

same behaviour. To conform with the experimental observation for a superconductor, Eq. 6.19 has

to be corrected to

∇2H −
1

λ2L
H = 0. (6.27)

Thus for H perpendicular to a superconductor surface, H has to be zero inside the superconductor.

For H parallel to a superconductor surface, we have a solution,

Hẑ = H0ẑ exp(
−|x|

λL
), (6.28)

so the applied field decreases exponentially inside a superconductor as shown in Fig. 6.2 [23, p.

31].
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Figure 6.2: London penetration length in a superconductor [23, p. 31]

λL is the London penetration length, at which the applied field decreases to 1
e
of the value at the

boundary. λL is dependent on temperature.

6.2 Type-I superconductor and Type-II superconductor

The response to applied magnetic field for Type-I and Type-II superconductors has some differences.

For a Type-I superconductor the applied magnetic field can be expelled up until a critical field Hc.

At Hc it is in intermediate state, at which normal state and superconducting state coexist alternately

inside the body. Above Hc it is in the normal state. [23, p. 37]

The response of a Type-II superconductor to the applied field has some differences. Below a

lower critical field Hc1 it is in the Meissner state. Between Hc1 and an upper critical field Hc2 it

is in a vortex state. Above Hc2 it is in the normal state. In the vortex state some magnetic flux

penetrates inside the body with a super eddy current flowing around each of them. Each flux has

a value of the flux quantum Φ0, where

Φ0 =
hc

2e
= 2.07× 10−7Gauss/cm2. [23, p. 44] [56, p. 12] (6.29)

These vortices form an equilateral-triangle array as shown in Fig. 6.3 [23, p. 39].
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Figure 6.3: Equilateral-triangle array in the vortex state [23, p. 39]

As the applied field increases, the density of these vortices increases until the upper critical field

is reached. Above Hc2 the applied magnetic flux will penetrate the body completely so it is in the

normal state. The relation between Hc1 and Hc2 is given by,

Hc1

Hc2
=

ln κ

2κ2
[56, p. 154] [57, p. 89], (6.30)

where κ is the Ginzburg-Landau parameter equal to λ∗(T )/ξ∗(T ), where λ∗(T ) is the effective

London penetration length and ξ∗(T ) is the effective coherence length. The coherence length ξ is

another characteristic length, within which the density of super electrons depends on the position

from the surface into the body of a superconductor in a magnetic field. λ∗(T ) and ξ∗(T ) are

temperature dependent while κ is approximately independent of temperature. For κ < 1√
2
it is a

Type-I superconductor and for κ > 1√
2
it is a Type-II superconductor. [56, p. 161] Hc1, Hc2 and

κ given by Palstra et al. for URu2Si2 are 1.4mT , 0.86T and 33 respectively at 0.657 K [8], which

approximately satisfy Eq. 6.30.

Although the response to an applied field is different for Type-I and Type-II superconductors,

the free energy released during the transition from the normal state to the Meissner state at zero

field is H2
c /(8π) for both types if they have the same thermodynamic critical field Hc. For a Type-II

superconductor the relation among Hc1, Hc2 and Hc is given by,

Hc1Hc2 = H2
c ln κ [56, p. 154] [58, p. 344]. (6.31)

Fig. 6.4 shows the magnetization for three superconductors, which have the same thermodynamic
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critical field Hc [56, p. 161].

Figure 6.4: Magnetization curves for Type-I and Type-II superconductors [56, p. 161]

For κ < 1√
2
it is a Type-I superconductor. The curves for κ ≈ 0.8 and κ ≈ 2 correspond to Type-II

superconductors. The area under the magnetization curve is the same for all three superconductors,

and is given by,

for a Type-I superconductor,
∫ Hc

0

(−4πM) dH =
H2

c

2
, (6.32a)

and for a Type-II superconductor,

∫ Hc2

0

(−4πM) dH =
H2

c

2
. (6.32b)

6.3 Josephson effect

For a superconductor sandwich, two superconductors separated by a thin insulator, the Cooper

pairs can tunnel through the thin insulator. The theory is cited following the references [40, p.

289-p. 290] and [58, p. 460-p. 461].

The wave functions of the Cooper pairs for each superconductor are,

ψ1 = n
1

2

s1e
iθ1 , (6.33a)

and

ψ2 = n
1

2

s2e
iθ2 . (6.33b)
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Applying the time dependent Schrödinger equation,

i~
∂ψ

∂t
= Ĥψ, (6.34)

to the wavefunctions ψ1 and ψ2 we have,

i~
∂ψ1

∂t
= ~Tψ2, (6.35a)

and

i~
∂ψ2

∂t
= ~Tψ1, (6.35b)

where ~T is the coupling operator due to the interaction among Cooper pairs through the sandwich.

Substituting Eq. 6.33a and Eq. 6.33b into Eq. 6.35a and Eq. 6.35b respectively we have,

i~

(

1

2
n
− 1

2

s1

∂ns1

∂t
eiθ1 + n

1

2

s1e
iθ1i

∂θ1
∂t

)

= ~Tn
1

2

s2e
iθ2, (6.36a)

and

i~

(

1

2
n
− 1

2

s2

∂ns2

∂t
eiθ2 + n

1

2

s2e
iθ2i

∂θ2
∂t

)

= ~Tn
1

2

s1e
iθ1. (6.36b)

The terms in the brackets on the left sides of Eq. 6.36a and 6.36b are from the product rule of

differentiation. The complex conjugates of ψ1 and ψ2 are respectively,

ψ∗
1 = n

1

2

s1e
−iθ1, (6.37a)

ψ∗
2 = n

1

2

s2e
−iθ2, (6.37b)

and multiplying Eq. 6.36a by 6.37a and Eq. 6.36b by 6.37b, we have

i~

(

1

2

∂ns1

∂t
+ ns1i

∂θ1
∂t

)

= ~T (ns1ns2)
1

2 ei(θ2−θ1), (6.38a)

i~

(

1

2

∂ns2

∂t
+ ns2i

∂θ2
∂t

)

= ~T (ns1ns2)
1

2 ei(θ1−θ2). (6.38b)
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Dividing both sides of Eq. 6.38a and 6.38b by i~ and letting θ2 − θ1 = ϕ, we obtain

1

2

∂ns1

∂t
+ ns1i

∂θ1
∂t

= −iT (ns1ns2)
1

2 eiϕ, (6.39a)

1

2

∂ns2

∂t
+ ns2i

∂θ2
∂t

= −iT (ns1ns2)
1

2 e−iϕ. (6.39b)

The Euler formula gives,

eiϕ = cosϕ+ i sinϕ, (6.40a)

and

e−iϕ = cos(−ϕ) + i sin(−ϕ) = cosϕ− i sinϕ. (6.40b)

Substituting Eq. 6.40a and 6.40b into Eq. 6.39a and Eq. 6.39b respectively gives,

1

2

∂ns1

∂t
+ ns1i

∂θ1
∂t

= −iT (ns1ns2)
1

2 (cosϕ+ i sinϕ), (6.41a)

and

1

2

∂ns2

∂t
+ ns2i

∂θ2
∂t

= −iT (ns1ns2)
1

2 (cosϕ− i sinϕ). (6.41b)

Equating the real part and the imaginary part on both sides of Eq. 6.41a and Eq. 6.41b respectively

gives,

1

2

∂ns1

∂t
= T (ns1ns2)

1

2 sinϕ, (6.42a)

ns1
∂θ1
∂t

= −T (ns1ns2)
1

2 cosϕ, (6.42b)

1

2

∂ns2

∂t
= −T (ns1ns2)

1

2 sinϕ, (6.42c)

ns2
∂θ2
∂t

= −T (ns1ns2)
1

2 cosϕ. (6.42d)

Subtracting Eq. 6.42c from Eq. 6.42a gives,

∂(ns1 − ns2)

∂t
= 4T (ns1ns2)

1

2 sinϕ. (6.43)

Multiplying both sides of Eq. 6.43 by the electron charge e and the length of the thin insulator l
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gives,

el
∂(ns1 − ns2)

∂t
= J = 4elT (ns1ns2)

1

2 sinϕ = J0 sinϕ, (6.44)

where J is the super current density tunneling through the thin insulator as a function of the

phase difference between the Cooper pairs on the two sides. This superconducting sandwich is

called a Josephson junction. The DC Josephson effect is the basis for the AC Josephson effect and

Macroscopic long-range quantum interference. [40, p. 290-p. 293]

6.4 Superconducting Quantum Interference Device

For a short Josephson junction in an applied field the relation between the tunnelling current density

and the applied magnetic flux is,

J = J0 sinϕ0

sin
(

πΦJunction
Φ0

)

πΦJunction
Φ0

[58, p. 475], (6.45)

where J0 is from Eq. 6.44. ϕ0 is the phase difference of the Cooper pairs at some reference position

on the junction. ΦJunction is the applied flux through the effective area of the junction. Φ0 is the

flux quantum. Eq. 6.45 is called the Josephson junction diffraction equation, which is similar to

the single-slit Fraunhofer diffraction equation in optics. [58, p. 475]

Consider a two-junction loop as shown in Fig. 6.5 [58, p. 479].

Figure 6.5: Two Josephson-junction loop in a applied field [58, p. 479]
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If the two junctions are short enough and the current densities through them are equal, the total

current density and the flux through the loop have the following relation,

JTotal = 2J0

∣

∣

∣

∣

∣

cos

(

π
ΦLoop

Φ0

)

∣

∣

∣

∣

∣

[58, p. 479]. (6.46)

Eq. 6.46 is called the Josephson loop interference equation and is similar to Young’s double-slit

interference equation in optics. [58, p. 480]

If these two junctions have large enough area, since Φapp = Bapp×area, taking into account flux

through both the loop and the junction areas and hence combining Eq. 6.45 and 6.46 we have,

J = 2J0

∣

∣

∣

∣

∣

∣

∣

cos

(

π
ΦLoop

Φ0

)

· sinϕ0

sin
(

πΦJunction
Φ0

)

πΦJunction
Φ0

∣

∣

∣

∣

∣

∣

∣

. (6.47)

Eq. 6.47 is the Josephson loop diffraction equation, which is similar to the interference of Fraunhofer

diffraction from two identical wide slits in optics. [58, p. 482]

A Superconducting Quantum Interference Device (SQUID) is shown in Fig. 6.6 [58, p. 485].

Figure 6.6: DC-SQUID [58, p. 485]

This is a DC-SQUID composed of a two Josephson-junction loop and a voltage transformer to

output the signal. An AC-SQUID is composed of a single Josephson-junction loop coupled with an

LC-tuned circuit. [58, p. 486]
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6.5 Experimental Methods

The Quantum Design’s Magnetic Property Measurement System (MPMS) was used for the low

temperature magnetic measurements. The basic set up for detecting the magnetic response of

samples is shown in Fig. 6.7 [59, p. 4-2].

Figure 6.7: Basic set up for detecting signal [59, p. 4-2]

The detection coils are made of superconducting materials. The upper coil and the bottom coil

are a single turn wound clockwise. The center coil has two turns wound counter-clockwise. This

configuration is known as a second-order gradiometer, which can effectively reduce the noise. Dur-

ing the measurements a sample is oscillating through the superconducting detection coils. Hence

the magnetic moments of the sample induce an electric current in the detection coils. Correspond-

ingly the SQUID will output a voltage proportionally, which couples with the detection coils. The

integration of output voltage with respect to the sample position is proportional to the magnetic

moment. [60, p. 5-7, 10-11] Therefore the magnetization per unit mass can be calculated by,

Mmass =
µ

m
, (6.48)

where µ is the overall magnetic moment and m is the sample mass.
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6.6 Experimental Results

The temperature-dependent and field-dependent DC magnetization measurements were made by

Prof. Razavi at the Max Plank Institute for Solid State Research in Germany in the summer of

2011. The field direction was within the ab plane. The temperature dependent magnetization under

25 Oe and 50 Oe fields for the unannealed Sample1-2 is shown in Fig. 6.8.
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Figure 6.8: Temperature dependent DC magnetization under 25 Oe and 50 Oe field
for unannealed Sample1-2

The temperature reached a lower limit of 0.7 K and only the onset of the superconducting transition

was seen for both cases. For the same temperature range the magnetization for the 50 Oe field is

positive while for the 25 Oe field it is negative, which is due to the diamagnetism of 3He, in which

the sample was immersed. For the 25 Oe field the onset of the SC transition is about 1 K while for

the 50 Oe field it is suppressed down to about 0.8 K.

The temperature dependent magnetization under zero field for annealed Sample1-1 is shown in

Fig. 6.9.
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Figure 6.9: Temperature dependent DC magnetization under 0 Oe field
for annealed Sample1-1

If Tc is defined as the temperature where ∂M
∂T

is maximum, it is about 1.15 K. The onset of the SC

transition is at about 1.4 K and the end of the SC transition is at about 0.9 K. Hence the transition

width is about 0.5 K. The kink at about 1.35 K may be due to a double SC transition. Note that

this feature is absent in Fig. 6.10 under the higher field of 25 Oe for the same sample. The sudden

rise of the magnetization from about 1.2 K to about 1.15 K may be due to temperature oscillations

during cooling rather than to a ferromagnetic impurity because this feature was also not observed

in Fig. 6.10.

The temperature dependent DC magnetization under 25 Oe is shown in Fig. 6.10.
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Figure 6.10: Temperature dependent DC magnetization under 25 Oe field

For the same definition Tc is about 0.95 K under the 25 Oe field. The onset of the SC transition

is at about 1.3 K and the end of SC transition is at about 0.8 K. Hence the transition width is

about 0.5 K the same as it was under zero field. However Tc, the onset of the SC transition and

the end of the SC transition are suppressed down to lower temperature by 0.2 K, 0.1 K and 0.1 K

respectively. The magnitude of the magnetization below the onset temperature of the SC transition

is greater for the 25 Oe field than for zero field for the same temperature range, which may be

because 25 Oe is below the lower critical field Hc1 at any given temperature in this range and Eq.

6.2b applies.

The temperature dependent magnetizations of unannealed Sample1-2 and annealed Sample1-1

measured at 25 Oe are shown in Fig. 6.11.
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Figure 6.11: Temperature dependent DC magnetizations for unannealed Sample1-2
and annealed Sample1-1 under 25 Oe field

Obviously the annealing has induced superconductivity.

The field dependent DC magnetization at a temperature of 0.731 K up to 104 Oe for annealed

Sample1-1 is shown in Fig. 6.12.
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Figure 6.12: Field dependent DC magnetization up to 104 Oe field
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This is a typical field dependent magnetization for a Type-II superconductor. Below the lower

critical field Hc1 perfect diamagnetism is exhibited in the Meissner state and its response to the

applied field is given by Eq. 6.2b. Between Hc1 and the upper critical field Hc2 it is in the vortex

state and its magnetization is still negative though the magnitude is reduced. Above Hc2 it is in

the normal state. The magnetization of the data point at 104 Oe is above zero. The low field region

is shown in Fig. 6.13.

−0.00035

−0.0003

−0.00025

−0.0002

−0.00015

−0.0001

−5e−05

 0

 5e−05

 0  100  200  300  400  500  600

M
ag

ne
tiz

at
io

n 
(e

m
u/

m
g)

Magnetic Field (Oe)

Magnetization vs Magnetic Field (H ≤ 600 Oe)

URu2Si2
Ann−Sample1−1 (Average Temperature 0.731 K)

Figure 6.13: Field dependent DC magnetization up to 600 Oe field

The lower critical field Hc1 is about 70 Oe at the temperature of 0.731 K without taking the

demagnetization effect into account. The field at which the first magnetic flux penetrates from the

edge of a sample, Hp, along the a-axis obtained by Okazaki et al. was about 0.6 mT = 6 Oe at

0.7 K, which had RRR over 700. Okazaki et al. determined Hc1 along the a-axis as 1.15×Hp. 1.15

is due to the demagnetization effect. [61] They calculated Hc1 using the following formula for a

platelet sample,

Hc1 =
Hp

tanh
√

0.36b/a
[62]. (6.49)

tanh
√

0.36b/a is the demagnetization factor, where a and b are the two dimensions of the surface

which is parallel to the field direction. b is along the field direction and a is perpendicular to

the field direction. Using the same formula the demagnetization factor of annealed Sample1-1 is
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estimated to be 0.615 so the Hc1 is 70Oe
0.615

. Compared with the sample of Okazaki et al. the RRR

of the annealed Sample1-1 is quite low. Crystal defects can pin the magnetic flux, which may

retard the flux from penetrating into the sample, yielding a higher value of Hc1 for the annealed

Sample1-1. Note that in resistivity measurements for this sample the superconducting transition

was only observed when it was mounted using five-minute epoxy (See Fig. 5.7c). This indicates

that thermal bonding is extremely important. Also in order to obtain a measurable value of ρ,

in the DC-resistivity measurements the applied current had to be relatively high, which increased

the generated heat and therefore likely also suppressed the superconducting transition in those

measurements.
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Chapter 7

Conclusions

The resistivity of URu2Si2 was found to slowly increase from room temperature down to the coher-

ence temperature Tco and then decrease drastically below Tco. A small λ shaped cusp appears at

the Hidden Order temperature THO. These are in agreement with literature results.

The residual resistivity ratio RRR was found to increase after annealing. The resistivity was

found to decrease only very slowly with decreasing temperature below 5 K and for all but two

measurements didn’t show the SC transition down to about 0.5 K. The one measurement showing

most clearly the SC transition does not correspond to the sample with the highest RRR. For this

measurement the sample was annealed and mounted using five-minute epoxy. Three factors were

likely helpful in allowing the SC transition to be observed. For this sample though the annealing

did not remove all kinds of defects effectively as demonstrated by the low RRR, it did likely remove

certain defects which can destroy heavy fermion superconductivity. Second, the mounting medium,

five-minute epoxy, has better thermal conductivity than double-sided tape does. Third, its small

size and the small interface area between the contact and the sample surface effectively reduced the

generated heat due to the applied current. For the same annealed samples the RRR for samples

mounted with five-minute epoxy or VGE-7031 was higher than the RRR for samples mounted using

double-sided tape likely due to the fact that a lower temperature and hence lower residual resistivity

could be reached in the former cases.

The magnitude of the resistivity was found to be enhanced after annealing in some samples.

The enhancement of resistivity after annealing was also found by F̊ak et al. [34]. The resistivity was

lowered after annealing for other samples likely because the annealing for these samples was not

effective enough, which can be deduced by comparing the RRR for measurements of the annealed

samples and the unannealed sample. In the former case RRR increases substantially after annealing

while in the latter it is virtually unchanged.
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A plot of the Exponent C of the temperature dependence of the resistivity below the Hidden

Order transition vs RRR compared with those of Matsuda et al. showed that C for low RRR

approaches 2, for medium RRR approaches 1 and for high RRR approaches 1.5.

Our data of the Hidden Order temperature THO vs RRR together with those of Matsuda et al.

showed that THO for low RRR has a sharp dip at RRR ≈ 10 and that THO for high RRR saturates

to some higher temperature as RRR increases. We further found that as THO drops near RRR ≈

10, its transition width ∆THO increases significantly beyond the value found by Matsuda et al. at

large RRR. [2]

The superconducting transition was easier to be observed using DC magnetization measure-

ments. A higher field was found to suppress the SC transition to lower temperatures for both the

unannealed sample and the annealed sample. The annealing was found to enhance the SC transition

temperature when measurements were taken under the same field, namely 25 Oe. The magneti-

zation of the annealed sample exhibits the typical field dependent magnetization for a Type-II

superconductor. Hc1 was found to be higher than literature values for samples with much higher

RRR [61]. This may be due to the fact that crystal defects in our sample with a low value of RRR

can pin the magnetic flux and hence retard the flux from penetrating.

A logical next step would be to measure the optical properties of URu2Si2 to temperatures

below the Tc of the SC transition. As the electronic band structure evolves with temperature, the

optical reflectivity of the sample, and in particular the optical response of the electrons, can reveal

information about the scattering rate, the charge carrier concentration, the effective mass and the

excitation gap in the Hidden Order phase and notably in the superconducting state, which has

not yet been investigated. Additionally it will be of interest to examine the effect of the onset

of superconductivity on the resonance frequencies of the lattice vibrations. Such information is

certainly important to further the understanding of the temperature dependent evolution of the

localized and itinerant electrons as well as their hybridization.
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