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Abstract

This work investigates mathematical details and computational aspects of Metropolis-

Hastings reptation quantum Monte Carlo and its variants, in addition to the Bounce

method and its variants. The issues that concern us include the sensitivity of these

algorithms’ target densities to the position of the trial electron density along the

reptile, time-reversal symmetry of the propagators, and the length of the reptile.

We calculate the ground-state energy and one-electron properties of LiH at its

equilibrium geometry for all these algorithms. The importance sampling is per-

formed with a single-determinant large Slater-type orbitals (STO) basis set. The

computer codes were written to exploit the efficiencies engineered into modern, high-

performance computing software. Using the Bounce method in the calculation of

non-energy-related properties, those represented by operators that do not commute

with the Hamiltonian, is a novel work.

We found that the unmodified Bounce gives good ground state energy and very

good one-electron properties. We attribute this to its favourable time-reversal sym-

metry in its target density’s Green’s functions. Breaking this symmetry gives poorer

results. Use of a short reptile in the Bounce method does not alter the quality of the

results. This suggests that in future applications one can use a shorter reptile to cut

down the computational time dramatically.
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1 Introduction

The advent of quantum mechanics brought to us a superior understanding of the

infinitesimal world around us. With it came a difficult problem of, and our futile

attempts at, solving the Schrödinger equation associated with a large many-body

system. The problem of solving such a system was first tackled by using various tricks

and approximations, such as the variational method or perturbation theory, to reduce

the complexity of the associated equations. While this led to more development in

quantum mechanics, and our deeper understanding of it, it did not lead us to our

ultimate goal of solving any possible system. With the technological progress and

the creation of computers, came the ability to perform numerical calculations with

swiftness and ease. Even so, it still proved a daunting task to find a direct and

exact solution to the Schrödinger equation (associated with large systems) through

computational means. The next natural step was to approach this problem by creating

new methods of solving it, either exactly or approximately. One approach is to apply

the classical Monte Carlo methods to the quantum system, giving rise to quantum

Monte Carlo.

Quantum Monte Carlo (QMC) is a set of versatile algorithms used to solve a mod-

ified time-independent Schrödinger equation for a system with many particles, such as

atoms or molecules. Starting with a guiding wave-function Ψ, that is used for impor-

tance sampling by guiding electrons from unimportant regions of space to important

regions of space, QMC can sample the desired, unknown, putatively exact ground

state wave-function Φ0 that describes the distribution of electrons in the system. De-

pending on the type of the QMC algorithm used, the solution to the Schrödinger

equation can yield either a mixed distribution of electrons, Φ0Ψ, or their pure distri-

bution, Φ2
0, albeit with a minimal bias originating from the guiding function’s inexact,

fixed-exchange nodes when using algorithms scalable to a large number of electrons.

The type of the distribution is important, because it dictates what observables can
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be obtained by sampling it without bias introduced by the guiding function, Ψ.

Commonly used Diffusion Monte Carlo (DMC) algorithm produces a mixed distri-

bution, from which only a fixed node energy of the system can be determined directly,

but not any other property corresponding to an operator that does not commute with

the Hamiltonian without a further modification to the algorithm. The mixed estimate

of such a property Â introduced in DMC, 〈Ψ|Â|Φ0〉/〈Ψ|Φ0〉, yields degraded results

due to its inherent large guiding function bias[1]. The actual desired result is given

by 〈Φ0|Â|Φ0〉.

Reptation Quantum Monte Carlo (RQMC), originally developed by S. Baroni

and S. Moroni[2], is a straight-forward and computationally efficient method used

to produce a pure distribution of electrons to calculate the ground-state properties

associated with operators that do not commute with the Hamiltonian, without the

guiding function bias or walker population control bias, as seen in methods such as

DMC[2]. The only disadvantage of RQMC, in common with DMC, is an introduction

of a large, but regulated time-step bias and a small, uncontrollable bias from sampling

the inexact exchange nodes of the guiding function[3]. Furthermore, a Metropolis-

Hastings variant of RQMC (RQMC-MH) developed by Yuen et al.[4] can be used

to ameliorate the failure of microscopic reversibility for the evolution of electrons

in imaginary time, ensuring the convergence of the Markov chain to the intended

distribution.

In addition to QMC methods, there exist other methods that are designed to

solve the Schrödinger equation for a system of particles. Some of these prominent

methods are Density Functional Theory (DFT), Coupled-Cluster (CC), and Configu-

ration Interaction (CI). The disadvantages of RQMC compared to these methods are

the need to include a Jastrow[5] factor to account for Coulomb correlation, guiding

function and time-step biases (detailed in the paragraph above), and the statistical

error associated with the results. In some cases, these methods tend to be more ac-
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curate than RQMC as well, but the increased accuracy comes with a large overhead

in computational resources. Hence, the big advantage of RQMC over some of these

methods is its favourable scaling. RQMC scales as O(s3), DFT scales as O(s3), CC

methods scale as O(s7)[6], and CI scales as O(s10) (s being the number of electrons in

the system). Since the scaling dictates the practical application of these algorithms

with respect to the maximum size of the system, it is evident that RQMC has the

potential to be applied to very large systems (such as large molecules, molecular clus-

ters or proteins) on par with DFT. Whereas the CC methods are used to study atoms

and small molecules, but become impractical to deal with systems containing a large

number of electrons. Despite the fact that CI methods are used on both small and

large systems, for large systems they require intensive CPU and IO resources. Fur-

thermore, RQMC is an ab initio method while DFT, when applied to large systems,

is semi-empirical in nature.

As shown by previous work in our laboratory[7], RQMC-MH is a powerful method

that can be used to calculate various ground-state properties that correspond to the

expectation values obtainable from the pure distribution of electrons in the system,

such as one- and two- electron properties and electrical response functions. Nonethe-

less, in some cases, the accuracy of RQMC-MH still falls short of reported literature

values and could be improved. RQMC-MH tends to underestimate most, if not all in

some cases, one-electron properties relative to experimental (where applicable) and

theoretical results. Henceforth, the objective of this thesis is to design methods to

improve upon RQMC-MH, demonstrated by calculating one-electron properties and

applied to LiH (a system that previously has been extensively studied by us[7]). To

achieve this, we will consider a new method that is based on original RQMC, called

Bounce[8]. We will combine RQMC-MH with Bounce and various importance sam-

pling techniques to create new ways of sampling the target distributions for our desired

properties. We will also show that using commercial software (Amsterdam Density
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Functional (ADF)[9][10][11]) generated wave-functions without resorting to an opti-

mized, explicitly correlated Jastrow[5] function will yield results in good agreement

with the accuracy of previous works, albeit with a corresponding loss of efficiency.

We will study the sensitivity of these algorithms to the position of the trial electron

density along the reptile, the effects of time-reversal symmetry of the propagators

(Green’s functions), and the consequences of varying the length of the reptile. Using

these observations we will distinguish the strengths and weaknesses of each algorithm,

learn their operational limits, and pinpoint the best candidate(s) to calculate the

most accurate and precise one-electron properties. Doing so will allow us to address

previous shortcomings of RQMC-MH that we encountered when trying to calculate

one-electron properties of larger molecules and electric response properties of LiH[7]

and other larger molecules.

The outline of this thesis is as follows. In the next section, we present the theory

behind RQMC-MH, Bounce and their variants including all the mathematical details

that describe them. Next, we will describe the theory and present the formulas used to

calculate one-electron properties studied in this work. Afterwards, we will discuss our

results and present our findings in the Results and Discussion section, and present an

overview of our findings in the Conclusions section. The theory behind our program

is described in the Appendix section, including the formulas, required computational

parameters, and structure of our output. Finally, some aspects of the wave-functions,

geometry of LiH, various computational parameters, and truncations used in this

work are discussed in more detail in the Technical Details section.
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2 Reptation Quantum Monte Carlo and Related

Methods

The baseline method used in this thesis for the calculation of various properties

(energy and one-electron properties) is the RQMC-MH variant of reptation quantum

Monte Carlo (RQMC), developed by Yuen et al.[4]. The variants designed to improve

the algorithm and described in detail below are: Bounce, RQMC-HT*, RQMC-MA*,

WB-HT, WB-MA, WB-QAHT, WB-QAS.

The basic principle behind these methods is as follows. They attempt to find a

solution to the simulated Schrödinger equation by forming a sequence of Langevin

diffusion moves to construct a “reptile”. Next, the reptile is modified by removing

a piece at one end of the reptile and adding a new piece at the opposite end (or at

the same end as in the case of Bounce and its variants). The choice of which reptile

to keep (old vs. new) is done via a Metropolis decision (described below). Each of

the methods demonstrated in this work have their own unique Metropolis acceptance

criterion, which distinguishes the methods from one another.

2.1 Modified Schrödinger Equation in Imaginary Time

The goal of the RQMC method and every one of its variants used in this work is to

successfully simulate the following modified Schrödinger equation (see the Appendix

for the derivation) in atomic units:

−1

2
∇2f2 +∇ · (f2F(x)) + (EL(x)− E0)f2 = −∂f2

∂t
= 0 (1)

where f2 is the mixed distribution given by:

f2 = Φ0Ψ (2)
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F(x) is the drift term:

F(x) =
∇Ψ(x)

Ψ(x)
(3)

EL(x) is the local energy:

EL(x) =
ĤΨ(x)

Ψ(x)
(4)

where x is the set of 3n coordinates of the n electrons and E0 is the exact (true)

ground state energy of the system. The RQMC method is not sensitive to the choice

of E0.

Ψ is called a “guiding function”. It is used to move electrons towards important

regions of space and away from unimportant regions, thereby reducing the variance

of simulated quantities. For this reason it is also called an “importance sampling

function”. Φ0 is the unknown true ground-state wave-function, within the fixed node

approximation, that we can sample for our desired properties, as described below.

2.2 Langevin Diffusion

In RQMC (and its variants), each snapshot of the electron distribution in an instance

of imaginary time (it) is called a “scale”. In the initial scale, the electrons are posi-

tioned randomly in the system. Then, Langevin diffusion is performed in succession

to the n electrons for L iterations to generate a chain of scales, called a “reptile”,

linked in imaginary time to each other, where L is the length of the reptile; Figure 1.

Langevin diffusion is the principal method of the movement of electrons in imag-

inary time. These are mathematical moves that have no underlying physical signifi-

cance. Langevin diffusion is used in order for the propagators (Green’s functions) to

be known, albeit approximately. It consists of two components: drift and diffusion:

xi+1 = xi + τ
∇Ψ(xi)

Ψ(xi)
+
√
τχ (5)
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Here, xi is a short-hand for the 3n coordinates of n electrons located in the ith scale. τ

is the time-step, a small fraction of the imaginary time (it) at which the calculation is

performed. τ ∇Ψ(xi)
Ψ(xi)

is the drift term, and
√
τχ is the diffusion term. Ψ is the guiding

function, and χ is a random number drawn from a standard 3n-dimensional normal

distribution.

1 2 3 4 5 6 7 8 9 

“scale” 

“reptile” of length 9 

Figure 1: A reptile consisting of 9 scales. Each scale contains four electrons with a
corresponding total of twelve electron coordinates. The scales are connected by drift
and diffusion moves in imaginary time.

2.3 RQMC-MH

The difference between the original RQMC, presented by S. Baroni and S. Moroni[2],

and RQMC-MH is that the latter, under the assumption of microscopic reversibility,

allows for the reptation moves (“chops”) to be performed at both the head and the

tail of the reptile, and subsequently generate new scales at both the tail and the head.

The former always adds to the tail after flipping the reptile with probability of 0.5.

The flipping makes Baroni and Moroni’s algorithm fail the reversibility test cri-

terion that would ensure the convergence to its target distribution. Nevertheless,

Yuen et al. showed that despite the algorithm’s failure of microscopic reversibility[4],
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RQMC does converge to its intended target distribution, Π:

Π(X) ∝ Ψ2(x1)G(x1 → x2)...G(xL−1 → xL) exp(−S(X)) (6)

where X is a reptile consisting of the following set of scales: x1...xL/2+1...xL−1xL.

G(x → x′) is a non-symmetric propagator (Green’s function) for the move x → x′

in imaginary time τ . S(X) is the sum of the local energies across the entire reptile,

given by:

S(X) = τ
[
1

2
EL(x1) + EL(x2) + . . .+ EL(xL−1) +

1

2
EL(xL)

]
(7)

In RQMC-MH, the original reptile, X, is formed by Langevin diffusion. The next

step, with equal probability, is to remove M scales from its head (tail) and add M

new ones to its tail (head). The addition of the scales is done by performing successful

Langevin diffusion moves M times starting from the tail (head) of X, thereby forming

reptile Y . The action of generating Y from X is called “reptation”[12][13]; shown in

Figure 2.

X 

M 

L 

Y 

L 

M 

Figure 2: RQMC-MH reptation process of forming Y from X by removing M scales
from the head of X and generating M scales at its tail.

Next, the choice of whether to accept the new reptile Y or reject it and keep
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X is given by a simple Metropolis decision. In Metropolis-Hastings, the acceptance

probability for a proposed move from X to Y with a corresponding proposal density

P (X → Y ) is given by:

A(X → Y ) = min

{
1,

Π(Y )P (Y → X)

Π(X)P (X → Y )

}
(8)

Following the work of Yuen et al.[4], by assuming microscopic reversibility for the

time evolution of electrons:

G(x→ x′)Ψ2(x) = G(x′ → x)Ψ2(x′) (9)

the acceptance probability of the new reptile Y is simply given by:

A(X → Y ) = min
{

1, eS(X)−S(Y )
}

(10)

After convergence, the algorithm generates the pure distribution, Φ2
0, at the middle

of the reptile, and the mixed distribution, ΨΦ0, at its head and tail; as it is shown

schematically in Figure 3.

1 L/2+1 L 

pure distribution 

Φ0
2 ΨΦ0 ΨΦ0 

mixed distribution 

Figure 3: Distributions after a completed RQMC-MH process.
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2.4 Bounce

The Bounce variant of RQMC was proposed by Pierleoni et al.[8]. Here, the chop-size,

M , is equal to one, and one continues chopping in one direction until the trial reptile

is rejected by a Metropolis decision. Then the chopping proceeds in the opposite

direction. A single scale is added to the opposite side of the reptile after each chop.

Pierleoni et al.[8] showed that the Bounce algorithm improves upon the RQMC (and

hence on RQMC-MH) algorithm in a sense that it is able to produce a better energy

at the head and the tail of the reptile.

The advantage of this approach is its efficient refreshment of the scales, and unlike

RQMC, its target distribution, ΠB, given by Eq. (11), has desirable symmetry under

time reversal.

ΠB(X) ∝
√

Ψ2(x1)G(x1 → x2)...G(xL−1 → xL) (11)

×
√
G(x2 → x1)...G(xL → xL−1)Ψ2(xL) exp(−S(X))

where the propagator is the Green’s function of drift and diffusion moves:

G(x→ x′) ∝ exp [−ρ(x→ x′)/(2τ)] (12)

and ρ is of the form:

ρ(x→ x′) =

∣∣∣∣∣x′ − x− τ∇Ψ(x)

Ψ(x)

∣∣∣∣∣
2

(13)

Here S(X) is the sum of the local energies accumulated on the path X given by Eq.

(7), just like in the case of RQMC-MH and the local energies are given by Eq. (4).

By simplifying Eq. (11), we can write the Bounce distribution as:

ΠB(X) ∝ |Ψ(x1)Ψ(xL)|Gs(x1, x2)...Gs(xL−1, xL) (14)
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where Gs is a symmetric propagator:

Gs(x, x
′) = exp

[
−τ

2
(Eloc(x) + Eloc(x

′))
]√

G(x→ x′)G(x′ → x) (15)

∝ exp
[
−τ

2
(Eloc(x) + Eloc(x

′))− 1

4τ
(ρ(x→ x′) + ρ(x′ → x))

]

Furthermore, unlike RQMC, the target distribution of the Bounce algorithm is

known at each instance of imaginary time: we know both distributions mathemati-

cally, but only on the average in the case of RQMC as we are moving in an arbitrary

direction and chopping more than one scale at a time. In the Bounce’s case, we only

chop one scale and know the direction of propagation of the reptile, specifying its

distribution at each instance of imaginary time. The trial move of one scale is based

on the drift and diffusion in a fixed direction until the move is rejected, in which case

the next move will be in the opposite direction.

Formally, when the current direction is adding to the tail, at xL, then the new

reptile Y = x2x3...xL+1 is accepted with probability:

At(X → Y ) = min

{
1,
|Ψ(x2)Ψ(xL+1)|Gs(xL, xL+1)G(x2 → x1)

|Ψ(x1)Ψ(xL)|Gs(x1, x2)G(xL → xL+1)

}
(16)

The ratio of the propagators can be simplified to:

Gs(xL, xL+1)G(x2 → x1)

Gs(x1, x2)G(xL → xL+1)
= exp[−τ

2
(Eloc(xL) + Eloc(xL+1)− Eloc(x1)− Eloc(x2))

− 1

4τ
(ρ(xL+1 → xL)− ρ(xL → xL+1)

+ρ(x2 → x1)− ρ(x1 → x2))]

Similarly, if the current direction is adding to the head, at x1, then the new reptile

Y = x0x1...xL−1 is accepted with probability:

Ah(X → Y ) = min

{
1,
|Ψ(x0)Ψ(xL−1)|Gs(x0, x1)G(xL−1 → xL)

|Ψ(x1)Ψ(xL)|Gs(xL−1, xL)G(x1 → x0)

}
(17)
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with the ratio of the symmetric propagators simplifying to:

Gs(x0, x1)G(xL−1 → xL)

Gs(xL−1, xL)G(x1 → x0)
= exp[−τ

2
(Eloc(x0) + Eloc(x1)− Eloc(xL−1)− Eloc(xL))

− 1

4τ
(ρ(x0 → x1)− ρ(x1 → x0)

+ρ(xL−1 → xL)− ρ(xL → xL−1))]

2.5 RQMC-MA*

Pierleoni et al. did not explore any properties which are sampled from the pure

distribution located in the middle of the reptile. When one is after such properties,

Yuen et al.[4][14] suggested that it is more advantageous to sample from the Middle-

Adjusted distribution rather than the usual RQMC-MH distribution. This approach

moves the target density to the middle of the reptile. Therefore, we investigated using

the Bounce-type moves combined with RQMC-MH and with an importance sampling

technique developed by Yuen et al. called the No-Compromise RQMC[4] (or Middle-

Adjusted RQMC[14]). We refer to the combination of the two techniques as the

RQMC-MA* method. Here, the * stresses that RQMC-MH chops are performed in

a Bounce-like fashion: chop one scale at a time (M = 1) in one direction until a

Metropolis decision rejects a trial reptile. Thereafter, the direction of the chop is

implemented in the opposite direction.

We know the distributions of the Bounce, ΠB given by Eq. (11), and RQMC-MA*,

Π stated below in Eq. (18). Henceforth, we can implement the Bounce algorithm

in a RQMC-MA* fashion by adjusting our Bounce-sampled properties with weights

applied to a sample of N reptiles in the following manner:
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Π(X) ∝ G(x2 → x1)...G(xL/2+1 → xL/2)Ψ2(xL/2+1) (18)

×G(xL/2+1 → xL/2+2)...G(xL−1 → xL) exp(−S(X))

Wk,i =
Π(Xk,i)

ΠB(Xk,i)
(19)

Here, k refers to the kth iteration in the Bounce algorithm and i refers to the ith

member of a set of N reptiles. Initially we sample the Bounce distribution at the

middle of the reptile. Then we can calculate the required weights to shift from

Bounce distribution (ΠB) to the RQMC-MA* distribution (Π) by taking a quotient

of the two known distributions, Eq. (19). Thereby we adjust our sampled properties

by using the following formula:

P̄k =

∑N
i=1Wk,iPk,i∑N
i=1 Wk,i

(20)

Here, Pk,i is a property given by the Bounce distribution for the ith reptile and P̄k

is a property in the RQMC-MA* distribution at the kth iteration. The latter quan-

tity is averaged over K iterations. The inclusion of the sum of the weights in the

denominator corrects the difference in the normalization constants between Π(Xk,i)

and ΠB(Xk,i).

To make sure that the first reptile represents a good starting distribution, we start

with an already equilibrated RQMC-MH ensemble of N reptiles. Then we perform

the Bounce method and calculate the weights required to sample in a RQMC-MA*

way. The starting weight for the ith reptile is calculated in the following matter:

W1,i =
Ψ2(xL/2+1)

Ψ2(x1)Ψ2(xL)
exp

(
−R1,i

4τ

)
(21)
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where,

R1 =
[
ρ(x2 → x1) + ...+ ρ(xL/2+1 → xL/2) + ρ(xL/2+1 → xL/2+2) + ...+ ρ(xL−1 → xL)

]
−
[
ρ(x1 → x2) + ...+ ρ(xL/2 → xL/2+1) + ρ(xL/2+2 → xL/2+1) + ...+ ρ(xL → xL−1)

]

Here and below, the k and i indicies on x are supressed for the sake of notational

simplicity.

Then, at each subsequent iteration we re-compute the weights in the following

efficient manner. If the previous move was rejected, we set Wk,i = Wk−1,i and Rk,i =

Rk−1,i. If it was accepted with an addition to the tail of the reptile, then:

Wk,i =
Ψ2(xL/2+2)

Ψ2(x2)Ψ2(xL+1)
exp

(
−Rk,i

4τ

)
(22)

where,

Rk = Rk−1 − [ρ(x2 → x1)− ρ(x1 → x2)]

+ [ρ(xL → xL+1)− ρ(xL+1 → xL)] + 2
[
ρ(xL/2+2 → xL/2+1)− ρ(xL/2+1 → xL/2+2)

]

If it was accepted with an addition to the head of the reptile, then:

Wk,i =
Ψ2(xL/2)

Ψ2(x0)Ψ2(xL−1)
exp

(
−Rk,i

4τ

)
(23)

where,

Rk = Rk−1 − [ρ(xL−1 → xL)− ρ(xL → xL−1)]

+ [ρ(x1 → x0)− ρ(x0 → x1)] + 2
[
ρ(xL/2 → xL/2+1)− ρ(xL/2+1 → xL/2)

]
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2.6 RQMC-HT*

This algorithm is analogous to the RQMC-MA*, but here the target distribution has

the trial density located at the reptile’s head (h) or tail (t) (depending on the direction

of the addition of new scales), with the following target densities:

Πh(X) ∝ Ψ2(x1)G(x1 → x2)...G(xL−1 → xL) exp(−S(X)) (24)

Πt(X) ∝ G(x2 → x1)...G(xL → xL−1)Ψ2(xL) exp(−S(X)) (25)

The idea of head-tail adjusted RQMC (RQMC-HT) is to dynamically select Πh or Πt

in the calculation of the acceptance probabilities based on where the new scales are

added.

We investigate the combination of RQMC-HT and the Bounce, both of which are

based on the Metropolis-Hastings algorithm. We consider the proposed move used

in the Bounce algorithm, in which a trial move of one scale based on the drift and

diffusion is proposed with a fixed direction until the move is rejected, in which case

the next move will be of the opposite direction. Formally, when the current direction

is adding to the tail of X = x1x2...xL at xL, we use Πt in Eq. (8) so that the new

reptile Y = x2x3...xL+1 is accepted with probability of:

At(X → Y ) = min

{
1,

Ψ2(xL+1)G(xL+1 → xL) exp(−S(Y ))

Ψ2(xL)G(xL → xL+1) exp(−S(X))

}
(26)

We can simplify the ratio of the propagators to:

G(xL+1 → xL) exp(−S(Y ))

G(xL → xL+1) exp(−S(X))
= exp[−τ

2
(Eloc(xL) + Eloc(xL+1)− Eloc(x1)− Eloc(x2))

− 1

2τ
(ρ(xL+1 → xL)− ρ(xL → xL+1))]

Similarly, if the current direction is adding to the head at x1, we use Πh in Eq. (8)
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so that the new reptile Y = x0x1...xL−1 is accepted with probability of:

Ah(X → Y ) = min

{
1,

Ψ2(x0)G(x0 → x1) exp(−S(Y ))

Ψ2(x1)G(x1 → x0) exp(−S(X))

}
(27)

with the propagators simplifying to:

G(x0 → x1) exp(−S(Y ))

G(x1 → x0) exp(−S(X))
= exp[−τ

2
(Eloc(x0) + Eloc(x1)− Eloc(xL−1)− Eloc(xL))

− 1

2τ
(ρ(x0 → x1)− ρ(x1 → x0))]

2.7 Weighted Bounce

Here, we introduce a group of algorithms, which all sample their respective dis-

tribution by taking the Bounce distribution and converting to their own distribu-

tion using a weighting scheme. The purpose of this set of methods is to move

the location of the trial wave-function in the target density, while keeping the bal-

ance and symmetry of the propagators of the Bounce distribution unchanged.

2.7.1 WB-MA

This algorithm is analogous to RQMC-MA*, but now the Bounce distribution, Eq.

(11), is generated and converted by weights to the Middle-Adjusted target distribution

given by:

Π(X) ∝ Ψ2(xL/2+1)
√
G(x1 → x2)...G(xL−1 → xL) (28)

×
√
G(x2 → x1)...G(xL → xL−1) exp(−S(X))

Since, we are sampling from the middle of the reptile via weights, we call this a

Middle-Adjusted Weighted Bounce (WB-MA) algorithm. Taking the ratio of the two
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Π’s, the weights for WB-MA are simply:

Wk,i =
Ψ2(xL/2+1)

|Ψ(x1)Ψ(xL)|
(29)

Note, the weights for WB-MA are independent of whether you are adding to the

reptile’s head or tail. The k and i indices on x are suppressed for notational simplicity.

2.7.2 WB-HT

This algorithm is also analogous to RQMC-MA*, but now the Bounce distribution is

converted by weights to the Head-Tail Adjusted target distribution. Here, we place

the trial wave-function either at the head or at the tail of the reptile in its entirety.

The target distribution for Head-Tail Weighted Bounce (WB-HT) depends on the

direction of addition of new scales.

If we’re adding to the head (h) of the reptile, the target distribution is then:

Πh(X) ∝ Ψ2(x1)
√
G(x1 → x2)...G(xL−1 → xL) (30)

×
√
G(x2 → x1)...G(xL → xL−1) exp(−S(X))

If we’re adding to the tail (t) of the reptile, the target distribution becomes:

Πt(X) ∝
√
G(x1 → x2)...G(xL−1 → xL) (31)

×
√
G(x2 → x1)...G(xL → xL−1)Ψ2(xL) exp(−S(X))

Since we know the two direction-dependent target distributions, we can formulate

the weights to go from Bounce to WB-HT as follows. If adding to the head, the

weight to convert from Bounce to WB-HT is:

W h
k,i =

∣∣∣∣∣Ψ(x1)

Ψ(xL)

∣∣∣∣∣ (32)
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If adding to the tail, the weight to convert from Bounce to WB-HT is:

W t
k,i =

∣∣∣∣∣Ψ(xL)

Ψ(x1)

∣∣∣∣∣ (33)

Again, for notational simplicity, the k and i indices on x are suppressed.

2.7.3 WB-QAHT

In this algorithm, we place the target distribution one quartile away from either the

head or the tail, depending on which direction we are adding, respectively. Hence,

we call this the Quartile-Adjusted Head-Tail Weighted Bounce (WB-QAHT).

If adding to the head, the distribution is given by:

Πh(X) ∝ Ψ2(xL/4)
√
G(x1 → x2)...G(xL−1 → xL) (34)

×
√
G(x2 → x1)...G(xL → xL−1) exp(−S(X))

If adding to the tail, the distribution is given by:

Πt(X) ∝
√
G(x1 → x2)...G(xL−1 → xL) (35)

×
√
G(x2 → x1)...G(xL → xL−1)Ψ2(x3L/4) exp(−S(X))

If adding to the head, the weight to convert from Bounce to WB-QA is:

W h
k,i =

Ψ2(xL/4)

|Ψ(x1)Ψ(xL)|
(36)

If adding to the tail, the weight to convert from Bounce to WB-QA is:

W t
k,i =

Ψ2(x3L/4)

|Ψ(x1)Ψ(xL)|
(37)

As before, the k and i indices on x are suppressed.
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2.7.4 WB-QAS

Similarily, we move the target distribution one quartile away from both the head and

the tail simultaneously, but keep the symmetry and the balance of the Bounce algo-

rithm intact. This distribution is called the Quartile-Adjusted Symmetric Weighted

Bounce (WB-QAS). Mathematically, this distribution is described by:

Π(X) ∝
√

Ψ2(xL/4)G(x1 → x2)...G(xL−1 → xL) (38)

×
√
G(x2 → x1)...G(xL → xL−1)Ψ2(x3L/4) exp(−S(X))

The weight to change the properties sampled using the Bounce distribution to the

WB-QAS distribution is given by:

Wk,i =

∣∣∣∣∣Ψ(xL/4)Ψ(x3L/4)

Ψ(x1)Ψ(xL)

∣∣∣∣∣ (39)

Note that the weights for WB-QAS are independent of whether you are adding to the

head or the tail. The k and i indices on x are suppressed for notational simplicity.

3 One-electron Properties

3.1 Electric Moments

Electric multipole moments (dipole, quadrupole, octupole, etc) are fundamental quan-

tities that arise from the charge distribution inside molecules and also influence their

interaction with external electric fields[15]. These moments are useful because they

provide an insight into the electrical and structural properties of molecules, such as

charge distribution and symmetry, respectively[15]. Depending on the structure of

the molecule, sometimes some (or all) of the moments are zero and sometimes they

are all non-zero. For example, the dipole, quadrupole and octupole moments of the
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Hydrogen atom are all zero because its electron distribution is spherically symmetric,

which serves as an indication that Hydrogen is a member of the Kh symmetry group.

On the other hand, Ethylene has dipole moment of zero but a non-zero quadrupole

moment which is indicative that it belongs to the D2h symmetry group.

In this work, we will accurately calculate all the tensor elements of the dipole,

quadrupole and octupole moments for LiH using different methods presented here.

The purpose behind this is two-fold. First, we verify the accuracy of our results by

comparing the dipole moments we calculated against values obtained experimentally.

This will allow us to test how well our theoretical methods perform against one

another and how well they agree with experiment. The quadrupole and octupole

moments haven’t yet been determined experimentally, so we will instead compare

them with values obtained through other theoretical calculations. We also exploit

the tensor properties of the moments to verify our results by observing if the tensors

are traceless and obey their sum rules (listed below). Secondly, we report all of the

components of the electric moments, unlike what is standard in the literature, for the

molecule in this work.

Following Buckingham’s work[15], we can write the traceless dipole (µ) octupole

(Θ) and quadrupole (Ω) moment tensors that describe a system of discrete charged

particles as follows:

µα =
∑
i

qiriα

Θαβ =
1

2

∑
i

qi
(
3riαriβ − r2

i δαβ
)

(40)

Ωαβγ =
1

2

∑
i

qi
(
5riαriβriγ − r2

i (riαδβγ + riβδγα + riγδαβ)
)

Here, α, β and γ represent the Cartesian coordinates x, y and z. The summation

over i indicates the summation over all the charged particles in the molecule (both

nuclei and electrons). qi is the charge of the ith particle. The vector ri represents the
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position of the ith particle with respect to the centre of mass of the molecule.

For LiH, which is a member of the C∞v symmetry group, we have the following

tensor rules[16] for Θ and Ω:

Θxx = Θyy

Θzz = − (Θxx + Θyy) = −2Θxx

Ωxxz = Ωxzx = Ωzxx = Ωyyz = Ωyzy = Ωzyy (41)

Ωzzz = − (Ωxxz + Ωyyz) = −2Ωxxz

Furthermore, due to the symmetry of LiH, µx = µy = 0 and the only non-zero

component of the dipole moment is µz. In addition, the tensors Θαβ and Ωαβγ are

symmetric under the interchange of their indices.

3.2 Hellmann-Feynman Forces

Hellmann-Feynman forces (also referred to as electric fields) are a set of intramolecular

forces that are calculated by using the Hellmann-Feynman theorem. They describe

the force that is exerted on each nucleus in the molecule by every other nucleus

and electron. For perfect equilibrium geometry (i.e. a completely optimized wave-

function), the force felt by each nucleus in the molecule should be zero. We are able

to see how accurate our methods are by calculating all the Hellmann-Feynman forces

for each nucleus and observing any deviations from zero. We adjust the equation

reported by Neumann et al.[17] to account for the difference between the SCF treat-

ment and our quantum Monte Carlo (QMC) approach and obtain the expression for

the Hellmann-Feynman force given by Eq. (42).

We also examine electric field gradients, which measure the rate of change of the

electric field at a chosen nucleus created by the other charges (nuclei and electrons)

in the system. Again, as in the case of the Hellmann-Feynman forces, we can observe
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the deviations from the true values of the electric field gradients to see how good our

algorithms are at estimating quantities that are located far away from the nucleus.

The expression for electric field gradient is given by Eq. (43), once again by taking

the one reported by Neumann et al.[17] and adjusting it for our QMC approach.

〈qα/r3
A〉 = −

∼∑
k

Zk (Rkα − Aα)

|Rk − A|3
+
∑
i

(riα − Aα)

|ri − A|′3
(42)

qA(αβ) = −
∼∑
k

Zk
[
3 (Rkα − Aα) (Rkβ − Aβ)− δαβ |Rk − A|2

]
|Rk − A|5

(43)

+
∑
i

[
3 (riα − Aα) (riβ − Aβ)− δαβ |ri − A|2

]
|ri − A|′5

Here α and β represent the Cartesian coordinates x, y and z. Variable A represents

a nucleus. The index k represents summation over the nuclei with the corresponding

location Rk and charge Zk. The index i represents summation over all the electrons

in the system. The chevrons imply averaging over all the reptiles (10) and iterations

(200 000) of the algorithm. The ∼ on the top of the sum indicates that any term

with rk = A in the summation should be omitted. The prime (′) indicates that the

1/r type singularity has been replaced with an appropriate truncation. For more

information on the truncations, see Technical Details, below.

3.3 Diamagnetic Shielding and Susceptibility

We also calculate and report diamagnetic shielding and diamagnetic susceptibility

given by Eq. (44) and Eq. (45), respectively[17]. The diamagnetic shielding is

calculated with respect to each nuclei, indicated by A in Eq. (44) and the diamagnetic

susceptibility is calculated with respect to the centre of mass, indicated by C in Eq.

(45). The calculations of paramagnetic shieldings and susceptibilities are performed
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over the excited states of the molecule, hence they are outside of the scope of this

work which deals with ground-state properties only.

〈1/rA〉 =
∑
i

1

|ri − A|
(44)

〈
r2
〉

=
∑
i

|ri − C|2 (45)

Here, the index i implies summation over all the electrons in the system. The chevrons

imply averaging over all the reptiles (10) and iterations (200 000) of the algorithm.

In summary, we calculate all the components of the dipole (µ), quadrupole (Θ)

and octupole (Ω) moments for LiH, however we only report the non-zero components

of their tensors. For the case of symmetry equivalent tensor components, for example

Θxx and Θyy, we report the average of the two, as Θxx only. We calculate and report

all the Hellmann-Feynman forces for both Li (〈qα/r3
Li〉) and H (〈qα/r3

H〉) atoms. In

addition, we calculate all of the electric field gradients on both Li (qLi(αβ)) and

H (qH(αβ)), but only report the unique non-zero tensor components in the similar

fashion of the electric moments. Finally we calculate and report the diamagnetic

shielding for both Li (〈1/r〉Li) and H (〈1/r〉H) nuclei and the overall diamagnetic

susceptibility 〈r2〉C .

4 Results and Discussion

The results of RQMC-MH have been studied previously in great detail by us[7], using

L0 = 121, M0 = 20 and τ = 0.012...0.002(0.002). Here, L0 corresponds to the (initial)

length of the reptile at the largest time-step, τ0. Similarily, M0 corresponds to the

(initial) RQMC-MH chop-size at the largest time-step. In our previous work, we

studied the behaviour of the energy (sampled at the head and the tail of the reptiles)

and the one-electron properties of interest to us in this thesis (sampled in the middle
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of the reptile). The properties we obtained in that work were of high quality and such

were obtained through heavy optimization and many CPU hours. For the purpose of

this thesis, we deliberately chose a set of time-steps and reptile lengths such that the

results obtained with them from RQMC-MH would likely be inferior to the results

obtained from our previously published work. This was done in order to test our

algorithms against RQMC-MH at a set of larger time-steps and smaller length reptiles

with a purpose of finding an algorithm that gives better properties than RQMC-MH

and takes less computational resources.

For the sake of computational efficiency, the time-steps used in this study were

τ = 0.12...0.02(0.02), a factor of 10 larger than what we published. We investigated

initial reptile lengths of L0 = 13, L0 = 61 and L0 = 121, with corresponding initial

chop-sizes for RQMC-MH being M0 = 3, M0 = 10 and M0 = 20, respectively. For all

of these explorations we kept the number of reptiles fixed at N = 10. We ran all the

algorithms using the same random seeds to be able to compare them to each other

more accurately. The length of the reptile was varied as a function of time-step[18]

(as we decrease τ , we increase L), given by:

L(τ) = L0

(
τ0

τ

)( 3
2)

(46)

The RQMC-MH chop-size, M , was also varied as a function of time-step:

M(τ) = M0

(
τ0

τ

)( 3
2)

(47)

The results of our calculations are tabulated in Tables 1-4. We also present our

results in terms of box plots in Figures 4-7 that show the relative error of our results

versus known values in the literature. The box plots contain only values that have

a corresponding non-zero literature value. This is done intentionally, because one

cannot calculate a relative error of a property that has a literature value of zero.
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Figure 4: Box plots of relative error for all LiH properties with L0 = 13. The
horizontal dashed line represents zero deviation from the literature value. Here, the
Bounce has the smallest relative error out of all the methods at L0 = 13. The
disrupting effect of placing the target distribution in the middle of the reptile or in
either the head or the tail is indicated by the large boxes for RQMC-HT*, RQMC-
MA*, and WB-MA*.

The horizontal dashed line that spans the entire diagram represents zero deviation

from the literature value. The vertical size of the box indicates the amount of devia-

tion our results have compared to the literature values. The bottom border of the box

represents the lower quartile (25th percentile), the middle line represents the median

(50th percentile) and the top border represents the upper quartile (75th percentile).

The small box within the larger box is the distribution’s mean value. The top and
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Figure 5: Box plots of relative error for all LiH properties with L0 = 61. The horizon-
tal dashed line represents zero deviation from the literature value. Here, RQMC-MH
has the smallest relative error out of all the methods at L0 = 61. The disrupting
effect of placing the target distribution in the middle of the reptile or in either the
head or the tail is indicated by the large boxes for RQMC-HT*, RQMC-MA*, and
WB-MA*.

bottom whiskers, outside of the box, represent the outliers in the data. The top and

bottom stars, located outside of the box, represent the maximum and the minimum of

the data, respectively. Besides the box plots, we also report the energy and the dipole

moment of the RQMC-MH and Bounce algorithms in Figures 8 and 9, respectively.

Here, the horizontal line denotes the literature value for those quantities.

The box plots in Figures 4-6 reveal that the accuracy of the RQMC-HT* results,
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Figure 6: Box plots of relative error for all LiH properties with L0 = 121. The horizon-
tal dashed line represents zero deviation from the literature value. Here, RQMC-MH
has the smallest relative error out of all the methods at L0 = 121. The disrupting
effect of placing the target distribution in the middle of the reptile or in either the
head or the tail is indicated by the large boxes for RQMC-HT* and WB-MA*.

both the energy and one-electron properties, is much worse than that of RQMC-

MH or Bounce for all the different cases of L0. Taking a closer look at the Tables

2-4 reveals that RQMC-HT* also has worse precision than RQMC-MH or Bounce.

We attribute the decrease in the quality of the results given by RQMC-HT* to the

following. Our target distribution only takes the head or the tail of the reptile into

account with one scale at one time (hence RQMC-HT*). Thus we effectively break

the symmetry of the propagators by making their direction point to either the head,



4 RESULTS AND DISCUSSION 32

- 0 . 3

- 0 . 2

- 0 . 1

0 . 0

0 . 1

0 . 2

 

Bo
un

ce
 L 0=1

21

Bo
un

ce
 L 0=1

3

Bo
un

ce
 L 0=6

1

RQ
MC

-M
H L

0=1
21

RQ
MC

-M
H L

0=6
1

R e l a t i v e  e r r o r  o f  e l e c t r i c  m o m e n t s  f o r  R Q M C - M H  a n d  B o u n c e

Re
lat

ive
 Er

ror

RQ
MC

-M
H L

0=1
3

Figure 7: Box plots of electrical moments for RQMC-MH and Bounce at various L0.
The horizontal dashed line represents zero deviation from the literature value. The
Bounce at L0 = 13 has the smallest relative error and the highest overall accuracy,
performing better than RQMC-MH at L0 = 121.

Eq. (24), or the tail, Eq. (25), but not both as in the Bounce method, Eq. (11).

Our results show that the Head-Tail rubric used to sample one-electron properties or

energies via RQMC-HT* method is not competitive with the other algorithms.

By virtue of its employment of the trial density at the middle of the reptile, Yuen

et al.[4] observed, for the hydrogen atom, better accuracy and less time-step bias for

properties calculated using the Middle-Adjusted (MA) version of RQMC-MH. Here,



4 RESULTS AND DISCUSSION 33

we applied Bounce-type moves to RQMC-MA, denoted here as RQMC-MA*. The

box plots in Figures 4-6, suggest that the accuracy of the results, both the energy and

one-electron properties, given by RQMC-MA* is much worse than that of RQMC-

MH or Bounce for all the different cases of L0, with the exception of L0 = 121. At

L0 = 121, RQMC-MA* gives slightly more accurate results than Bounce at L0 = 121

only. Looking closely at the Tables 2-4 reveals that RQMC-MA* also suffers from

poor precision, just like RQMC-HT* described above. The precision of RQMC-MA* is

worse than RQMC-MH or Bounce for each L0. We propose the following explanation

for this. The RQMC-MA* algorithm fails because the simulated Φ2
0 in the middle

of the reptile is less balanced than the corresponding Φ2
0 obtained in the Bounce

algorithm. The Bounce algorithm is balanced better because its target distribution is

more symmetric than RQMC-MA*, the head and the tail of the reptile being taken

into account at each Metropolis decision, Eq. (11), rather than only the middle for the

case of RQMC-MA*, Eq. (18). Therefore, we can conclude that there is absolutely

no advantage in doing the RQMC-MA* over Bounce or RQMC-MH to sample the

energy or one-electron properties.

Next, we look at the Weighted Bounce algorithms, where we keep the balance and

the symmetry of the propagators of the Bounce unchanged, but only move the position

of the trial wave-function in the target density. This gives us a better understanding

of how important the position of the trial density is. The box plots, Figures 4-6,

and the results given by WB-HT, Tables 2-4, suggests the following. In all cases of

L0, WB-HT gives results that are inferior to both RQMC-MH and Bounce, suffering

from a loss in accuracy and precision. This suggests that evaluating the trial density

in a Head-Tail fashion (either at the head or the tail of the reptile, depending on

the direction of addition of new scales) is unfavourable. We attribute the decrease in

the quality of the results to the breaking of the balance of the evaluation of the trial

density simultaneously at the head and the tail of the reptile.
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Looking at the results of the Middle-Adjusted variant of Bounce, WB-MA, we

immediately note its inferior results for all cases of L0. Both the accuracy and the

precision of the WB-MA method are very poor, as indicated by the box plots in

Figures 4-6 and Tables 2-4. In fact, this method seems to be the worst one out of

all the methods studied in this work when it comes to both one-electron properties

and the ground state energy. The failure of WB-MA can be directly attributed to the

relocation of the position of the trial density to the middle of the reptile. In the Bounce

method, the propagators are symmetric and their direction is towards the head and

the tail of the reptile, where the trial density is located. By moving the trial density

to the middle of the reptile, while keeping the direction of the propagators towards

the head and the tail of the reptile, we effectively break that favourable balance and

the symmetry of the Bounce method completely. Such a big unbalance in the target

distribution, given by Eq. (28), is what drives the WB-MA to produce such inferior

results.

The Quartile-Adjusted-Head-Tail Weighted Bounce (WB-QAHT) is just like the

WB-HT method, except we shift the trial density one quartile away from either the

head or the tail towards the middle, depending on the direction of the addition of

new scales. By observing the box plots in Figures 4-6 and results in Tables 2-4, we

note that WB-QAHT also performed worse than RQMC-MH or Bounce, but not as

poorly as WB-HT or WB-MA. At L0 = 121, WB-QAHT actually managed to be more

accurate than Bounce, but only for one-electron properties and not for the energy.

The precision of WB-QAHT is on par with Bounce but still worse than RQMC-MH.

The failure of WB-QAHT can once again be attributed to the breaking down of the

balance in its target distribution, Eq. (34) and Eq. (35), by placing the trial density

one quartile away from either the head or the tail of the reptile. For the case of

L0 = 121, the apparent improved accuracy of WB-QAHT over Bounce, as seen in

Figure 6, can be explained by the following. The combination of a long reptile and the
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placement of the trial density one quartile away from the head or the tail provide more

refreshment to those scales than the middle scale, creating a favourable simulated Φ2
0

in the middle of the reptile. This positive effect is not seen in the two other cases

when L0 = 13 and L0 = 61, because here the length of the reptile is relatively short

and the middle scale gets refreshed just as often as those containing the trial density

Ψ2.

Quartile-Adjusted Symmetric Weighted Bounce (WB-QAS) is slightly different

than WB-QAHT, in that it has a more balanced trial density positioned at both

the head and the tail of the reptile simultaneously. Observing the results for WB-

QAS, we still see that the properties sampled from it are worse than RQMC-MH and

Bounce except for the case of L0 = 121, when it has a better accuracy than Bounce.

The precision of WB-QAS is comparable to Bounce but worse than RQMC-MH. Just

like in the case of WB-QAHT, the drop in the accuracy of the results obtained via

WB-QAS can be attributed to the shift in the position of the trial wave-function from

the head and the tail to one quartile away from them. Furthermore, the improved

accuracy over Bounce at L0 = 121 is attributed to the combination of the long reptile

and the position of the trial density one quartile away from the head and the tail, just

like in the case of WB-QAHT, described in detail in the previous paragraph. It is

also important to note that the energy obtained from every single Weighted Bounce

method was very poor. The energy was worse than RQMC-MH, Bounce, RQMC-HT*

and RQMC-MA*.

Finally, we turn our attention to the results obtained from the Bounce algorithm

itself. In addition to the box plots in Figures 4-6 and results in Tables 2-4, we also

present the results for the Bounce and RQMC-MH for all the L0 values in one table,

Table 1, and a single box plot that contains the electrical moments, Figure 7. RQMC-

MH and Bounce energies and the dipole moments are shown in Figure 8 and Figure 9,

respectively. The Bounce algorithm versus RQMC-MH performed very well in terms



4 RESULTS AND DISCUSSION 36

- 8 . 0 8 6

- 8 . 0 8 4

- 8 . 0 8 2

- 8 . 0 8 0

- 8 . 0 7 8

- 8 . 0 7 6

- 8 . 0 7 4

- 8 . 0 7 2

- 8 . 0 7 0

- 8 . 0 6 8
E n e r g i e s  f o r  R Q M C - M H  a n d  B o u n c e

En
erg

y (
E h)

RQ
MC

-M
H L

0=1
3

Bo
un

ce
 L 0=1

3

RQ
MC

-M
H L

0=6
1

Bo
un

ce
 L 0=6

1

RQ
MC

-M
H L

0=1
21

Bo
un

ce
 L 0=1

21
Figure 8: Energy plot for RQMC-MH and Bounce at various L0. The hor-
izontal dashed line represents the accepted value of the ground state energy:
E0 = −8.070553(5)Eh, obtained using explicitly correlated Gaussian (ECG)[19]. The
Bounce at L0 = 61 yields energy closest to the true ground state energy.

of the accuracy and precision. The energy sampled from the Bounce distribution is

the closest to the accepted value for any choice of L0 and has a better accuracy than

RQMC-MH, as evident by Figure 8.

Examining Figure 7, which shows the relative error of selected one-electron prop-

erties for RQMC-MH and Bounce at L0 = 13, 61 and 121, we note some major

results. As L0 increases, the accuracy of RQMC-MH increases, as expected, however
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Figure 9: Plot of the dipole moment for RQMC-MH and Bounce at various L0.
The horizontal dashed line represents the accepted value of the dipole moment:
µz = 2.314(1), obtained experimentally [20]. The Bounce at L0 = 13 gives the most
accurate value for the dipole moment.

the accuracy of the Bounce algorithm decreases. This is explained by the fact that

RQMC-MH requires a large reptile with large chops to guarantee a desirable distribu-

tion at the middle scale. The Bounce method on the other hand needs the opposite.

In its nature of chopping one scale at a time, a reptile should be as short as possible

to guarantee a high refresh rate of the middle scale and thus a favourable simulated

Φ2
0 associated with it. We also note that the Bounce at L0 = 13 has better accuracy
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than RQMC-MH at L0 = 121 (essentially any RQMC-MH studied in this work) when

it comes to electrical moments, Figure 7. This is further illustrated by the plot of the

dipole moments in Figure 9. The Bounce at L0 = 13 gives the most accurate dipole

moment out of all the algorithms. The electric field gradients given by both RQMC-

MH and Bounce are fairly constant and do not change with a different L0, as shown

by Table 1. However, the precision of the Bounce algorithm for these properties is

found to be worse than that of RQMC-MH for all cases of L0, as evident in Table 1.

5 Conclusions

Figures 4-6 show that placing the trial electron density in the middle of the reptile

(or far away from the ends in general) degrades the results, contrary to the success

of this rubric when applied to the hydrogen atom[4]. We observe that changing the

symmetry of the propagators (RQMC-HT* and RQMC-MA*) also leads to a decrease

in the accuracy and precision of the ground state energy and one-electron properties.

The unadulterated Bounce gives the best ground state energy out of all the algorithms

tested and also yields the best one-electron properties for the computationally-efficient

short reptile. From this we conclude that the Bounce has favourable time-reversal

symmetry in its propagators (Green’s functions) and desirable balance in the position

of the trial densities. Thus breaking this symmetry and balance by using the variants

presented in this work gives poorer results. Sometimes, this effect is not as evident

in the short reptiles because the scales at which one places the trial density are still

refreshed often enough. But as one increases the reptile length, the effect is more

pronounced because those scales are not refreshed as often.

By analyzing all of these algorithms, we conclude (at least with respect to LiH)

that the Bounce with L0 = 13 has the best accuracy for the ground state energy

and one-electron properties out of all the methods considered in this study. It has
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favourable position of the trial electron density and time-reversal symmetry of the

propagators. Performing Bounce for this short reptile provides frequent refreshment

of the middle scale of the reptile at which the one-electron properties are sampled,

that refreshment diminishes as the reptile gets progressively longer.

Furthermore, a short reptile decreases the computational cost associated with it

dramatically. Regardless of the chosen L0 the Bounce will always perform faster than

RQMC-MH at the same L0 due to its nature of only chopping one scale at a time.

Performing RQMC-MH at L0 = 121 (which represents the best RQMC-MH results

in this study) takes 70 times more CPU time than Bounce at L0 = 13. Hence, using

Bounce at this short L0 not only gives the best results but also saves considerable

amount of CPU time. Naturally, these qualities make the Bounce algorithm a very

good candidate for applications to larger molecules, which are currently in progress

in our laboratory.
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6 Appendix

6.1 Program Structure

In the program, the computation of the wave-function and its derivatives, the local

energy and the drift is done using the method outlined by Bueckert et al.[23]. The

distinct advantage of this method is that the derivatives are calculated analytically

and not numerically. This allows for a much more efficient and precise calculation of

aforementioned quantities when working with a large number of basis set parameters

(atomic orbital exponents and the molecular orbital coefficients that are generated by

the ADF[9][10][11] software). The precision gained from analytical differentiation is

required to calculate more precise values for physical properties and for the weights

used in the RQMC-MA* and Weighted Bounce variants (recall that the weights are

proportional to a quotient of products of wave-functions evaluated at changed scales

along the reptile). Furthermore, the use of matrix representation of the basis set

parameters, wave-function and its derivatives creates more efficient and parallel code

for faster execution on supercomputers. Some further modifications were applied to

this method, with the following notable differences.

There are no Jastrow-type optimizations employed in the calculations, due to

a part of the objective being able to demonstrate that Jastrow-type optimizations

are not required when working with a sufficiently large basis set that accurately

describes a system. The equation for the local energy now becomes simpler with the

corresponding Jastrow terms removed.

EL = −1

2
(g↑ + g↓) + U (48)

Here, U is the potential energy function given by:

U = Uen + Uee + Unn (49)



6 APPENDIX 41

where, in obvious notation:

U = −
∑
i

∑
j

Zi
|Ri − rj|

+
∑
i

∑
j>i

1

|ri − rj|
+
∑
i

∑
j>i

ZiZj
|Ri −Rj|

(50)

The equations presented in this method assume that there are no unpaired elec-

trons in the system, N↑ = N↓ = N , (Bueckert et al[23] does note that this is not

true in general). However, our code was written in a more general way by taking into

account a possible future extension of this algorithm to systems with unpaired elec-

trons such that N↑ 6= N↓. This would allow us to solve systems containing radicals

with minimal modification of the code. The expressions for g↑ and g↓ are given by:

g↑/↓ =
(
CD↑/↓

)
αβ

(
CA↑/↓

)
βα

(51)

The equations for drift with no Jastrow are given by:

F
↑/↓
i =

(
CB↑/↓

)
αi

(
CA↑/↓

)
iα

(52)

Given J as the number of atomic orbitals (AO) in our basis set, C is a matrix

consisting of N↑/↓×J molecular orbital (MO) coefficients; A↑/↓ is a J×N↑/↓ matrix of

atomic orbitals (χ) evaluated at the position of every electron; B↑/↓ is a J ×N↑/↓× 3

matrix of J gradients of atomic orbitals (∇χ) evaluated at the position of every

electron for each x, y, z component; and D↑/↓ is a J ×N↑/↓ matrix of Laplacians of J

atomic orbitals (∇2χ) evaluated at the position of every electron.

The CA↑/↓, CB↑/↓ and CD↑/↓ matrices were computed directly by including the

MO coefficients in the summation over the basis set parameters. This avoids perform-

ing unnecessary matrix multiplication steps and further speeds up the computation.

The equation that describes an individual atomic orbital, χ, is given by the following
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expression:

χ = ηraxbyczdexp (−ζr) (53)

In conjunction with the use of the ADF-generated wave-functions, we used a

different normalization constant, η, to calculate our atomic orbitals than what was

used by Bueckert et al. The normalization constants, η, were evaluated via analytical

integration of χ2 using spherical polar coordinates, with results saved to the module

file, described below. The symbol χ is not to be confused with the 3n-dimensional

normal distribution function used to simulate diffusion, Eq. (5).

The program consists of three parts: a module filled with constants, a file that

contains all the necessary molecular orbital parameters, and the main program. The

module file contains all the parameters required to do the reptation process, Bounce

algorithm and its variants, and property calculations. In particular, reptile parame-

ters (number of scales, number of reptiles, length of each reptile, time-step, trunca-

tions, number of iterations to perform, etc.), description of the molecule (number of

nuclei, charges on the nuclei, bond distance(s), location of center of mass, etc.), num-

ber of properties to calculate, names of files containing the output of the calculations,

and so on. The second file contains all the molecular orbital parameters generated by

the commercial software (ADF) that describe the system; The a, b, c, d, ζ coefficients,

the molecular orbital coefficients C, and our calculated normalization constants η.

Finally, the main program contains all the methods which were used throughout this

work. It contains functions for RQMC-MH and its variants and Bounce with its

variants. It also contains the required functions for Langevin diffusion, drift, energy,

wave-function calculations, and Green’s functions for all the algorithms except for

RQMC-MH. Furthermore it contains all the subroutines we used to calculate the

one- and two- electron properties.

This design allows one to easily modify this program to calculate properties of

different molecules by generating a new file for molecular orbital parameters (via
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ADF) and by modifying some constants in the module. Furthermore one can reuse

already created modules and parameter files to calculate more properties if those

are added to the main program. The output files are broken into groups depending

on the algorithm used to calculate them: RQMC-MH, Bounce, RQMC-HT*, etc.

Each group has output files that contain the energy, one-electron and two-electron

properties, respectively.

The execution of the program is as follows. One creates a set of module files

and generates a parameter file for the system in question. Different module files will

correspond to different sets of time-steps and the corresponding reptile lengths, chop-

sizes, and number of reptiles. Then each program is compiled and run multiple times

for a number of independent initial random seeds. After the program finishes and

the output is obtained, the final quantities are obtained by the following method.

First, the results from the independent runs are averaged and the standard error is

computed at each time-step and plotted. Using the OriginPro[24] software package,

the data is fitted using weighted polynomial regression and extrapolated to zero time-

step. This gives us the values for our desired properties (energies and one-electron

properties) in the limit of zero time-step, which we have tabulated in Tables 1-4.

Finally, using the same software, we proceed to compile box plots and other graphs

of the quantities obtained in the limit of zero time-step for further analysis.

6.2 Technical Details

In this study, the initial guiding wave-function for LiH was a single determinant HF-

SCF wave-function with a QZ4P basis set generated using the ADF[9][10][11] software

package. The basis set consisted of 71 Slater-type orbitals (STOs) on Li and 23 STOs

on H with the corresponding SCF energy of −7.91957 Eh. The best know ground state

energy of LiH is −8.070553(5) Eh[19], obtained by an explicitly correlated Gaussian

(ECG) calculation. The experimental bond length of LiH was taken to be 3.0154
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bohr along the z-axis[25].

We did a total of 50 independent runs for each time-step. For both RQMC-MH

and Bounce, the number of iterations, k, for each independent run was:

k = 200 000 (54)

We used the following set of time-steps:

τ = [0.12, 0.10, 0.08, 0.06, 0.04, 0.02] (55)

with three separate initial reptile lengths:

L0 = 13, 61, 121 (56)

The reptile lengths were varied as a function of time-step using the following relation[18]:

L(τ) = L0

(
τ0

τ

)( 3
2)

(57)

In our formulation of RQMC-MH, the length of the reptile must be odd at any time-

step. This is done to insure a perfectly symmetric position of the middle scale. For

example, if L = 61, then the head is located at 1, the middle scale is located at 31,

and the tail is located at 61. Hence the middle scale is exactly 30 scales away from

both the head and the tail.

The corresponding initial RQMC-MH chop-sizes used were:

M0 = 3, 10, 20 (58)
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The RQMC-MH chop-size, M , was also varied as a function of time-step:

M(τ) = M0

(
τ0

τ

)( 3
2)

(59)

The number of reptiles, N , was fixed at:

N = 10 (60)

To control the drift velocity, Fi = ∇Ψ(xi)
Ψ(xi)

, that can push the electron too far from a

region of reasonable probability, we truncate the velocity components as follows[26]:

Fi =


Fi if |Fi| ≤ 1/τ

sign[1/τ, Fi] otherwise.
(61)

The local energy, EL, of our trial function has a singularity for when an electron

is close to a nucleus, leading to large fluctuations in the simulated energy adding to

the time-step bias of the Monte Carlo estimates. To ameliorate this, we truncate the

local energies as follows[26]:

(EL(xi)− ET ) =


(EL(xi)− ET ) if |EL(xi)− ET | ≤ 1.0/τ

sign[1/τ, (EL(xi)− ET )] otherwise
(62)

where ET is an estimate of E0.

For the Hellmann-Feynman forces, we replace a/r3 by 5
2
a/ε3, whenever r ≤ ε,

where a is a cartesian coordinate and ε = 2τ 1/3, a small, τ -dependent number. Simi-

larly for the electric field gradients, we replace (3a2− r2)/r5 by 7
2
(3a2− r2)/ε5. These

truncations[27] reduce the variance of the simulated properties by several orders of

magnitude. So as not to introduce any bias into the extrapolated values, each of

above-described truncations vanish in the τ → 0 limit.
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6.3 Derivation of the Modified Schrödinger Equation in Imag-

inary Time

To derive the modified Schrödinger equation, we write the Schrödinger equation in

imaginary time (it) using atomic units[28] as:

(
−1

2
∇2 + V − E0

)
Φ0 = −∂Φ0

∂t
(63)

where Φ0(R, t) is the exact ground-state wavefunction, V (R) is the potential and E0

is the offset ground-state energy. The (R, t) dependence is suppressed for notational

simplicity. We multiply both sides by the known guiding function Ψ(R)[28] and

suppress (R) dependence for the sake of simplicity, to get:

Ψ
(
−1

2
∇2 + V − E0

)
Φ0 = −Ψ

∂Φ0

∂t
(64)

Ψ
(
−1

2
∇2 + V − E0

)
Φ0 = − ∂

∂t
(Φ0Ψ) + Φ0

∂Ψ

∂t
(65)

since Ψ(R) is time-independent, then Φ0
∂Ψ
∂t

= 0, yielding:

−1

2
Ψ∇2Φ0 + V Φ0Ψ− E0Φ0Ψ = − ∂

∂t
(Φ0Ψ) (66)

using ∇2 (Φ0Ψ) = Ψ∇2Φ0 + Φ0∇2Ψ + 2∇Φ0 · ∇Ψ, write Eq. (66) as:

−1

2

(
∇2 (Φ0Ψ)− Φ0∇2Ψ− 2∇Φ0 · ∇Ψ

)
+ V Φ0Ψ− E0Φ0Ψ = − ∂

∂t
(Φ0Ψ) (67)

−1

2
∇2 (Φ0Ψ) +

1

2
Φ0∇2Ψ +∇Φ0 · ∇Ψ + V Φ0Ψ− E0Φ0Ψ = − ∂

∂t
(Φ0Ψ) (68)

using ∇ · (Φ0∇Ψ) = ∇Φ0 · ∇Ψ + Φ0∇2Ψ to write Eq. (68) in the following form:

−1

2
∇2 (Φ0Ψ)− 1

2
Φ0∇2Ψ +∇ · (Φ0∇Ψ) + V Φ0Ψ− E0Φ0Ψ = − ∂

∂t
(Φ0Ψ) (69)
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−1

2
∇2 (Φ0Ψ) +∇ ·

(
Φ0Ψ
∇Ψ

Ψ

)
+

(
−1

2

∇2Ψ

Ψ
+ V − E0

)
Φ0Ψ = − ∂

∂t
(Φ0Ψ) (70)

Now, substituting the following three equations into Eq. (70):

f2 = Φ0Ψ (71)

F(x) =
∇Ψ(x)

Ψ(x)
(72)

EL(x) = −1

2

∇2Ψ

Ψ
+ V =

ĤΨ(x)

Ψ(x)
(73)

we recover the modified Schrödinger equation in imaginary time:

−1

2
∇2f2 +∇ · (f2F(x)) + (EL(x)− E0)f2 = −∂f2

∂t
= 0 (74)
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