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ABSTRACT 

Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) 

is an important component of this process. PSII is the only enzyme capable of oxidizing water 

and is largely responsible for the primordial build-up and present maintenance of the oxygen in 

the atmosphere. This thesis endeavoured to understand the link between structure and function in 

PSII with special focus on primary photochemistry, repair/photodamage and spectral 

characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of 

the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage 

with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated 

fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present 

in the various compartments of the thylakoid membrane. It was found that the pooled PSII

LHCII pigment populations were connected in the grana stack and there was also a progressive 

decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample 

origin moved from grana to stroma. The results were consistent with PSII complexes becoming 

damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable 

fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order 

to investigate the mechanism by which the quenching operated. It was determined that the source 

of the quenching was a novel long wavelength emitting external quencher. Point mutations to 

amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria 

to determine the role of specific chromophores in energy transfer and primary photochemistry. 

These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at 

low temperature and that the Q130E mutation imparts considerable changes to PSII electron 

transfer kinetics, essentially protecting the complex via increased non-radiative charge 
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recombination and also apparently exhibiting increased charge stabilization. Overall, the results 

demonstrate the challenge of studying the link between structure and function in PSII. The 

results also indicate that PSII structure and function are in large part a product of PSII 

repair/photoprotection based factors as well as that of photochemical yield. This complexity is 

compounded by the association of PSII with other components of the photosynthetic apparatus as 

well as the heterogeneity necessitated by PSII protection/repair. It would appear that the study of 

PSII requires the development of a more comprehensive model of the PSII supercomplex. The 

MD simulation as utilized in this thesis is a nascent step toward such a model. . 
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INTRODUCTION 

Significance of Photosynthesis 

The capturing of light energy from the sun to drive chemical reactions was an early 

innovation during the history of life on Earth, with initial forms of the process thought to have 

first occurred as long ago as 3.5 billion years (1). Although the precise life forms and chemical 

processes involved in the early evolution of photosynthesis remains uncertain (2); the initial 

paradigm of photosynthetic activity is presumed to have involved the use of compounds such as 

hydrogen sulfide as an electron source (3). Since these compounds were in limited supply on 

primordial Earth, while water was ubiquitous; selective pressures highly favored the subsequent 

nascence of photosynthetic organisms capable of oxidizing water for use as an electron source 

(4). The use of water as a reactant resulted in the production of molecular oxygen, representing a 

pivotal point in the evolution of life on Earth (4), as the early atmosphere to this point was both 

anaerobic and reducing (5). Oxygenic photosynthesis progressively increased the oxygen content 

of the atmosphere over billions of years which has been correlated with the advent of complex 

aerobic eukaryotic life forms (3). Since the supply of water, carbon dioxide and sunlight were 

essentially unlimited for the purposes of oxygenic photosynthesis, the process also resulted in a 

substantial increase in the biomass present on the planet as well as a decreased level of carbon 

dioxide through carbon fixation (6). These changes resulted in conditions amenable to complex 

aerobic life using oxygen as a reactant and producing carbon dioxide as a waste product (6). This 

dynamic extends to the present day with the current situation of an atmosphere containing life 

sustaining oxygen, ozone that shields the surface of the planet from UV radiation and carbon 

dioxide present at a relatively low concentration that serves to mitigate the greenhouse effect on 

the Earth's temperature (5). In addition, most of the biomass and bioavailable energy on the 
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planet can be ultimately attributed to oxygenic photosynthesis (7). 

As indicated above, oxygenic photosynthesis remains an intriguing phenomenon in 

regards to the formation and evolution of life on Earth. In addition, the nebulous beginnings of 

photosynthesis and the evolutionary steps required for the apparatus to evolve as seen in the 

present day remain interesting( 4), even in isolation. However, oxygenic photosynthesis is also a 

process that remains both remarkably efficient and chemically unique (3;8). In particular, 

Photosystem II (PSII) represents such efficiency, with a quantum yield of approximately 0.95 for 

charge separation of the primary radical pair per photon absorbed by PSII(9) as well as the 

ability to oxidize water. Water oxidation is unique to PSII: no other enzyme is able to split water 

(3); while PSII performs this feat repeatedly when active. There is a good reason why water, 

while plentiful, is not utilized as an electron source by any other enzyme: the midpoint reduction 

potential required for water oxidation is 0.82 volts (3). However, the reaction center ofPSII 

produces a potential in excess of 1 volt (10), the highest potential produced by any enzyme. 

Although PSII remains interesting because of its unique and complex abilities, 

mysterious evolutionary history and importance regarding the evolution of life on Earth; the 

research of PSII has many potential applications. Since photosynthesis is the source of the 

world's food supply, PSII function and overall efficiency have potential applications in farming 

and by extension the growing biofuel sector (11). Since PSII generates such a high redox 

potential and is light driven, the complex has also generated interest for possible roles in 

industrial chemistry, with the idea being that PSII could be modified so as to perform a variety of 

chemical reactions. Similarly, PSII has also been identified as a candidate for possible use in 

solar cells; as such cells would use water as a reactant and produce oxygen as a waste product. In 

addition, the entire photosynthetic apparatus might be modified to produce hydrogen as well as 
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oxygen (12; 13; 13). At the very least, the principles gleaned from studying PSII could result in 

the development of artificial systems inspired by the complex, and researchers are presently 

working in such a capacity (14). Although these potential innovations are long-term overriding 

goals, they still provide impetus for research into how PSII functions. 

Focus: Key Factors Affecting Photosystem II Photochemistry 

The high redox potentials produced by PSII cause the complex to operate with a 

relatively high chance of damage due to the complex oxidizing or reducing itself (15). 

Interestingly, PSII incurs such a high rate of damage and the energy cost is such that the rate of 

repair is limited by the ATP produced by photosynthesis (16). The light harvesting process of 

PSII is a delicate balance between excitation energy and electron transport. In order to mediate 

this balance photosynthetic organisms have evolved energy dissipation mechanisms known as 

quenching as well as excitation energy redistribution mechanisms such as state transitions to 

protect PSII from damage and balance the activity ofPSII and PSI (17). As a result, both 

quenching and PSII damage/repair mechanisms remain an area of intense interest due to the 

importance of each to the overall yield of photosynthesis and what they can reveal about PSII 

photochemisty . 

The overall efficiency of PSII within the context of the photosynthetic apparatus is 

essentially a function of the amount of energy required to maintain the population of active PSII 

centers as compared to the photochemical yield of the population per photon absorbed. 

While such efficiency is highly dependent on the aforementioned repair/protective mechanisms, 

the structure of the complex is perhaps the key to understanding how PSII functions. In PSII, 

function follows forms, where the location and presence of various cofactors, pigments, proteins, 

metal ions and lipids all contribute to how the complex works (18). The structure directly relates 
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to PSII light harvesting efficiency, damage and repair as well as quenching and thus has been an 

area under considerable investigation, with crystal structures being pursued and produced with 

vigor (19-21). 

Photosystem II Structure and Function 

PSII is a membrane bound pigment protein complex consisting of 35 chlorophyll a (ChI 

a) molecules, 12 cartenoid pigment molecules, 20 protein subunits along with various cofactors, 

ions and lipids(18). The subunits CP43 and CP47 both contain pigment molecules and serve to 

funnel energy into the reaction center of PSII. The reaction center consists of the D 1 and D2 

subunits, which host cofactors involved in the electron transport chain as well as the oxygen 

evolving complex (OEC). The luminal side of the complex consists of three subunits, PsbU, 

PsbO and PsbV, these serve to shield the OEC and also support oxygen evolution (22). 

When the energy derived from an absorbed photon in the form of the lowest stable 

excited state, or exciton, enters the reaction center via exciton transfer (Figure 1); charge 

separation occurs at P680 (Figure 2), the electron is transferred to the D 1 pheophytin then 

Quinone A (QA) then Quinone B (QB). On the donor side, Tyrosine Z is oxidized to the Tyrosine 

Z+ radical which in turn oxidizes the manganese cluster of the OEC. The oxidation of the 

manganese cluster occurs successively four times then two water molecules are oxidized 

resulting in the release of molecular oxygen and protons. 

Although PSII includes integral ChI a based antennae in CP43 and CP47, these are 

supplemented by auxiliary antennae; in cyanobacteria this antennae takes the form of the 

phycobilisome (PBS) as shown in Figure 1. The PBS complex consists of phycobilin 

chromophores covalently bonded to linker proteins to form phycobiliproteins: Allophycocyanin 

(AP), Phycocyanin (PC) and Phycoerythrin (PE) (23). The superstructure of the PBS consists of 
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Figure 1. The photosynthetic apparatus in cyanobacteria, showing PBS, PSII dimer and PSI as 

well as the enzymes involved with the electron transport chain as well as various metabolic 

pathways both central and peripheral to the photosynthetic apparatus. Figure reproduced from 

(46) used with permission. 
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a AP core with PC 'rods' extending outward, with some species of cyanobacteria also 

incorporating PE into the ends of 'rods'. The energy transfer interlink between the PBS and PSII 

is facilitated by the Allophycocyanin terminal emitter (APE)(24), which is excitonically coupled 

to PSI!. The exciton energy levels of the phycobiliproteins decrease in a classic 'downhill' 

energy transfer scheme with the energy successively decreasing from outer rod to the core and 

APE (Table 1 and Figure 1). It should be noted that most of the experiments on cyanobacteria 

presented in this thesis were carried out exclusively on Synechocystis PCC 6803, which possess 

PBS with AP and PC but without PE. 

In higher plants, light harvesting complex II (LHCII) serves as an auxiliary antennae and 

contains both ChI a and b pigment molecules. These antennae complexes have known quenching 

properties (25;26) and serve to supplement the light harvesting capacity ofPSII under low light 

level conditions. PSII-LHCII super complexes include CP24, CP26 and CP29 monomers as well 

as LHCII trimers as shown in Figure 2. 

Photosynthetic Apparatus 

In order to fully understand the role of PSII, the complex must be appreciated in the 

context of the entire photosynthetic apparatus. As shown in Figure 3, PSII operates in concert 

with Photo system I (PSI), the Cyt b6f complex and ATP synthase. As mentioned earlier, PSII 

absorbs light and uses the energy to split water and drive the electron transport chain. This leads 

to QB being reduced and after accepting two electrons and being protonated the molecule 

migrates to the Cyt b6f complex, reducing the complex and transferring electrons further down 

the chain. The Cyt b6f complex then reduces and subsequently releases plastocyanin (PC) which 

travels to PSI, acting as an electron donor. PSI then uses light energy to reduce ferredoxin and 

ultimately convert NADP+ to NADPH for use in carbon fixation reactions. These reactions also 
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Table 1. Absorbance and fluorescence maxima for PBS constituent phycobiliproteins (23;24). 

Phycobiliprotein :::::Amax (nm) :::::Fmax (nm) 

PE 498*, 560 575 

PC 620 640-650 

AP 650 660 

APE 657 676 

* Alternate Forms of PE wIth shorter wavelength absorbance maxima are present In a few types 

of marine cyanobacteria 

17 



A 
Figure 2. Schematic ofPSII-LHCII supercomplex from spinach, PSII protein backbone alpha 

helixes shown in center with adjacent LHCII monomers and trimers on the periphery. M 
and S denote medium and strongly associated LHCII, with L assigned to trimer found in 
spinach only. Figure reproduced from (47) used with permission. 
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PLANT PHYSIOLOGY , Third Edition. Figure 7.10 @2oo2SinauerAssociates. Inc. 

Figure 3. Schematic representation of exciton transfer from pigment to pigment and the resulting 
energy being used for electron transfer. Figure reproduced from (48) used with 
permISSIon. 
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facilitate the generation of a proton gradient across the thylakoid membrane that is utilized by 

ATP synthase to produce ATP. 

Since PSII works in tandem with PSI, the overall quantum yield of the photosynthetic 

apparatus is thought to be maximized when both complexes are operating synergistically (27). 

The rate at which each complex performs photochemistry is highly dependent on the distribution 

of the aforementioned auxiliary antennae, with LHCII in higher plants or PBS in the case of 

cyanobacteria redistributing with respect to connectivity to PSII and PSI based on light 

conditions so as to balance the excitation energy and thus activity of the PSII and PSI 

populations (27). These changes in distribution of auxiliary antennae are known as state 

transitions and are an important factor in both the efficiency of PSII and the overall efficiency of 

photosynthesis. 

Photosystem II Repair System 

As mentioned earlier, the structure of PSII coupled with the high redox potential 

produced, results in a high rate of damage to the complex during charge separation (J 5). PSII 

repair predominantly consists ofDl subunit replacement (28) as shown in Figure 4 and requires 

a complex repair apparatus to facilitate the disassembly, replacement of damaged subunits and 

reassembly (J 5). 

In higher plants, the repair of PSII is known to be compartmentalized with the grana 

stacks of the chloroplast representing a region where PSII is active, while the stroma portion acts 

as the site ofPSII repair (29). Existing models ofPSII repair proceed as follows: PSII damaged 

in the grana stack is progressively disassembled while being transported to the stroma lamellae 

where subunits are replaced and the complex is subsequently reassembled and reinserted into the 

grana stack (30). The reactivation and reassembly phase of the repair system is schematically 
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and OEC being represented as well. Figure reproduced from (49) used with permission. 
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represented in Figure 5: which is essentially the opposite of the damagelinactivation and 

disassembly process leading up to D 1 and/or other protein subunit replacement. 

PSII Quenching 

Since PSII is highly vulnerable to damage under unfavorable conditions, mechanisms and 

specific structures present in PSII have evolved to protect the complex. Thus decreasing the 

energetic investment required by the PSII repair system as a means to maximize the overall 

photochemical yield of photosynthesis. These include the detachment of auxiliary antennae from 

PSII under high light level conditions or the evolution of certain subunits present in PSII such as 

PsbU and PsbV which serve to reduce the chance of damage occurring by shielding the OEC. 

However, perhaps the most important protective aspect ofPSII is the aforementioned quenching 

(31). There exist two types: non-photochemical quenching (NPQ) and photochemical quenching 

(qP). qP denotes the quenching of the excited state through photochemical means (32). Such 

reactions include primary photochemistry: the transfer of electrons from P680* to Pheophytin 

and down the electron transport chain. In the case ofNPQ, energy derived from light in the form 

of an exciton is transferred to a quencher then dissipated as heat (33). 

NPQ quenching mechanisms generally occur when PSII is subjected to high light levels, 

is damaged in some other manner via heat or oxidizing agents or is exposed to unfavorable 

physiological conditions such as desiccation (33). Perhaps the most striking example of effective 

NPQ is in the special case of lichens, which are organisms containing both a fungal portion and 

photosynthetic portion which includes cyanobacteria or algae (34). Lichens are immobile and 

often inhabit harsh environments where they are exposed to unshielded sunlight, temperature 

extremes and desiccation (33). Many species oflichen can withstand extended periods 

completely desiccated and exposed to direct sunlight and still retain substantial PSII activity 
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upon hydration. This is accomplished largely through quenching of PSII, with a variety of 

mechanisms involved, both intrinsic to PSII and mediated by other proteins or antennae (35). 

As alluded to above, excitation energy quenching is an integral part of PSII function and 

is heavily related to PSII repair and efficiency. Quenching mechanisms are also, as with PSII 

repair and damage mechanisms, dependent on PSII structure. Thus, determining the mechanisms 

of PSII quenching aids in ascertaining how the structures within PSII operate and perhaps how 

they can be improved. It should also be noted that PSII quenching is thought to be both native to 

PSII and a result of activity by auxiliary antennae or perhaps other complexes evolved 

specifically for quenching PSII (32). As such, studies involving PSII quenching provide potential 

for a better understanding of how PSII operates within the context of the photosynthetic 

apparatus as well as providing a means to discover new complexes associated with PSII. 

PSII Mutation Studies and Modeling 

Researchers often use mutations of genes encoding the protein subunits of PSII in order to 

determine the role of specific structures. Point mutations to ChI or pheophytin ligands are 

capable of altering the redox potentials, spectral properties and the orientation/position of the 

ligated pigment molecules. Observing the effect of such alterations to pigment properties on PSII 

light harvesting function serves to reveal the function of the specific pigment molecule and as 

such have been widely used previously to investigate PSII (36). While point mutations are meant 

to have a very specific effect on a single molecule, deletion mutations omitting an entire subunit 

from PSII have also been used such as in the case ofPsbU and PsbV (37;38). Although the scale 

and location of the mutations involved in such research can be highly disparate ranging from an 

entire pigment protein complex such as in PSI-less mutants (39) to point mutations (40), the 

objective is the same: to determine the functional role of a specific structure in PSI!. 
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Mutation studies, when combined with crystal structures of PSII, readily facilitate forming 

a link between the structure of PSII and the function of each component. However, this approach 

remains limited because the number of combinations of mutations required to elucidate how all 

the components in PSII work together is prohibitively high. Computer modeling represents an 

elegant solution to this problem, whereby a simulation of PSII is created using information from 

various experiments and models (41). The computer model can then be tested for validity by 

attempting to predict experimental results and revised as needed, providing a more accurate 

model with each successive revision. Simple kinetic models have been used to simulate PSII 

photochemistry (42), and auxiliary antennae can also be included in such a model (29). However, 

one of the most comprehensive and complex models used to date is the molecular dynamic 

simulation ofPSII as generated by Sergei Vassilev (43). The model includes the lipid bilayer, 

water molecules, PSII complex in dimer form and can be paired with a variety of other programs 

to obtain useful data. 

The ultimate goal of such a model would be to include the various aspects of PSII 

function such as PSII photochemistry, interactions with auxiliary antennae and the rest of the 

photosynthetic apparatus, PSII damage and repair and the facility of each structure in PSII. At 

this point existing models include light harvesting and photochemical aspects of PSII with some 

level of ability to include auxiliary antennae and quenching when paired with kinetic models 

(29;41;44). 

Putting it all together: Investigating Photosystem II 

Since the link between structure and function remains an intense area of interest in 

photosynthesis research, this thesis involved studying the effect of alterations to the structure of 

PSII on light harvesting efficiency and photochemical function. In Chapters 1 and 4 mutations 
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were utilized to target structures in PSII for removal or replacement in order to determine the 

role of the structure or related structures. To this end, ligands of the DI pheophytin and the most 

red-shifted chlorophyll present in CP47 were altered by point mutations and a mutation featuring 

the deletion ofPsbU from the luminal side ofPSII was utilized. Deletion ofPsbU was found to 

impair PSII photochemistry and to disrupt the association of PSII with the PBS and had been 

shown previously to increase the probability ofPSII damage rates (38). It is also interesting to 

note that a recent study indicated that the observed decoupling of the PBS from PSII represents a 

mechanism which serves to protect PSII from photo damage by regulating the influx of 

excitation energy (45). The point mutations shifted the Qy transition of the red shifted 

chlorophyll in CP47 and the Qy absorbance band in the Dl pheophytin. The Dl pheophytin point 

mutation produced profound effects on PSII photochemistry. The Q130E mutation increased the 

rate of non-radiative dissipation of the radical pair in the reaction center of PSII, protecting the 

complex from photodamage. Interestingly, the fluorescence decay kinetics of open cyanobacteria 

PSII reaction centers became similar to those of higher plant PSII complexes. In addition, a 

molecular dynamic simulation (43) of PSI! was also used to model the point mutations. The 

simulation was able to reasonably predict the shifts in the energy level of the D I pheophytin as a 

result of the Q130E mutation to the pheophytin ligand. 

Compartmentalized PSII repair in thylakoid membranes was also studied since the repair 

system involves the progressive disassembly then reassembly of PSI! and leaves different 

compartments in the thylakoid membrane with populations of PSII complexes in various states 

of assembly as shown in Figure 6. These various states of assembly exemplify modified PSII 

structures that occur naturally. Many of these structures are comprised of damaged or quenched 

states, which represent significant regulation of PSII light harvesting and photochemical 

26 



Stroma 
lamellae 

PSI I 
ph otoaclivation 

~. oxidation. Cyt b .. and V D 
as donorIaccepor. NlI1Iber of PSII 

oentert Is growfng ( ... 16%). Mn-dUSler fs 
actlY91n ca 40% of centers. 

, or PStile I_ted. 

Grana 

01 PSII centers 
fUlly adIVe. ca 60% 

of total PSiI. 
PhOtoactlVtilOn 

18 ooJll)l8t9d. 

Figure 6. PSII location dependent activation and assembly involved in compartmentalized repair 
in higher plant thylakoid membranes is illustrated. Figure reproduced from (51) used with 
permISSIOn. 
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function. This system of compartmentalized PSII repair was investigated, as reported in Chapter 

2, using isolated fractions of the thylakoid membrane representing different compartments. The 

results revealed that PSII was progressively disassembled while being moved from grana to 

stroma, and that PSII possessed profoundly altered kinetics when damaged and/or under repair. 

Although it was unclear whether the altered kinetics were due to damage or a novel state of PSII 

when the complex is inactivated during repair. An antennae based kinetic model was also used to 

determine PSII functional antennae size, reaction rates and quantum yield of primary 

photochemistry in the different compartments of the thylakoid membrane. 

In Chapter 3 the special case of lichen quenching was studied. PSII exists in a unique 

state in desiccated lichens, likely both with respect to the native structure of PSII and also the 

association of PSII with auxiliary antennae. It is also true that the quenched state of PSII under 

desiccated conditions denotes one of the most pronounced alterations in PSII light harvesting 

function known. Thus, as in the case of PSII compartmentalized repair, desiccated lichens 

allowed for the study of PSII in an altered/unique structural and functional configuration. PSII 

quenching was investigated in the lichen Parmelia su/cata, where it was found that a novel long 

wavelength quencher appeared responsible for the NPQ. The identity of the long wavelength 

quencher was not determined but it is probable that it is an as yet unsequenced antennae 

complex. 

The approaches outlined above are articulated in this thesis in the following four 

chapters, but the overriding goals and objectives remain the same: to highlight the role of 

structure to the function of PSII and to derive how the complex operates as a light harvesting 

enzyme. In addition, many of the altered structures investigated are also physiologically 

significant and thus merit investigation. 
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ABSTRACT 

The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with 

stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated 

the influence ofPsbU on excitation energy transfer and primary photochemistry by spectroscopic 

analysis of a PsbU-Iess (or dPsbU) mutant. The absence of PsbU was found to have multiple 

effects on the excited state dynamics of the phycobilisome and PSII. dPsbU cells exhibited 

decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin, 

but not when excited with light absorbed primarily by chlorophyll a. 77K fluorescence emission 

spectra showed evidence for impaired energy transfer from the allophycocyanin terminal 

phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in 

both allophycocyanin and PSII associated decay components. These changes were consistent 

with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of 

closed PSII reaction centers in the dark-adapted dPsbU mutant. Our results are consistent with 

the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII 

assembly. 
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INTRODUCTION 

Photo system II (PSII)l is the site of water splitting and oxygen evolution during oxygenic 

photosynthesis (1). This pigment-protein complex consists of at least 19 proteins, with ~ 16 

being integral membrane subunits, and the complex contains ~36 chlorophyll (ChI) molecules 

(2). Two ChI a-binding core antenna subunits known as CP43 and CP47 (3,4) serve to absorb 

incident light and funnel the energy into the reaction center of the complex. The reaction center 

is composed of the D 1 and D2 protein subunits which contain a ChI dimer known as P680, that 

serves as primary donor for electron transport (1,2). Oxidation of P680 results in the successive 

oxidation of the inorganic core of the oxygen-evolving complex (OEC). This incorporates a 

manganese cluster containing Ca2+ and cr co-factors (2,5) that exists in five oxidation or S-states 

which undergo a cyclic pathway of univalent oxidation steps from states So to S4, returning to So 

after O2 release (6). The OEC is located on the lumenal side of the thylakoid membrane and in 

cyanobacteria the surrounding environment additionally contains the extrinsic PsbO, PsbU and 

PsbV (or cytochrome c-550) protein subunits (7). 

The efficiency of primary photochemistry is largely dependent on the ability of the organism to 

absorb photons and direct the energy into the PSII reaction center so that charge separation and 

plastoquinone reduction can take place (1). This is achieved by transferring energy through 

peripheral antenna complexes to the core antenna pigment proteins. In cyanobacteria, the 

peripheral complex is the phycobilisome (PBS), which serves as antenna to both PSII and 

photo system I (PSI). Changes in the distribution of absorbed energy between PSII and PSI are 

regulated via the light state transition. (8,9,10). 

The mechanism(s) by which the PBS physically binds to the thylakoid membrane and/or 

photo systems are unclear as are the details of PBS energy coupling to PSII and PSI. An 
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exogenous hydrophobic linker polypeptide consisting of 54 amino acid residues, and referred to 

as the PB-Ioop, has been implicated in PBS/thylakoid interactions (9,10). However, there is also 

evidence that indicates that PSII has a native binding affinity for the PBS, even in the absence of 

the PB-Ioop (11,12) and it is possible that the PBS may associate with the membrane through 

interactions with lipid head groups (13). It has been suggested that the terminal emitter or the 

PBS ApcE anchor polypeptide is required for PBS assembly and PBS/PSII energy coupling (14). 

Fluorescence recovery after photobleaching (FRAP) measurements support a transient binding of 

PBS to PSII, as they show diffusion rates for the PBS to be much higher than for PSII (10,13). 

Despite the lack of agreement on the precise mechanism of binding and energy coupling, it is 

clear that changes in orientation or distance of the PBS from PSII would greatly affect energy 

transfer efficiency (8). 

The 12 kDa PsbU protein, encoded by psbU, is thought to impart structural stability to the 

OEC and to shield the manganese complex from cellular reductants. Inactivation of the psbU 

gene in Synechococcus sp. PCC 7002 demonstrated that PsbU stabilized oxygen evolution at 

elevated temperatures and was also required for the acquisition of cellular thermo-tolerance 

(15,16). Similar results were obtained with Synechocystis sp. PCC 6803 although the 

requirement of PsbU was less stringent in this strain (17). In addition, in vivo, the removal of 

PsbU also resulted in reducing oxygen evolution to ~80% of the wild-type rate and 

photo autotrophic growth was slowed in the absence of either Ca2
+ or cr and abolished under 

CaCh-limiting conditions (17-19). Moreover, thermoluminescence measurements have 

demonstrated that the S2-state of the OEC is modified in ~PsbU cells where the recombination 

reactions are shifted to higher temperatures for both the Q and B-bands (18). 
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The importance of PsbU for optimal rates of oxygen evolution was also observed in vitro 

where full reconstitution of PSII activity required the re-binding of PsbU to isolated PSII 

complexes from Thermosynechococcus vulcanus and removal of PsbU in ilPsbO cells prevented 

photoautotrophic growth in a ilPsbO:ilPsbU strain of Synechocystis sp. PCC 6803 (20,21). 

Despite the importance of PsbU for PSII activity the number of PSII centers assembled in ilPsbU 

cells was found to be similar to wild type when assayed using 3-(3,4-dichlorophenyl)-I,I

dimethylurea (DCMU)-replaceable e4C]-atrazine binding to detect assembled photo systems 

(22). Unexpectedly, assays of PSII abundance using variable ChI a fluorescence yield 

measurements indicated that fluorescence was quenched in the ilPsbU strain (22). The present 

study was undertaken to determine the origin of the quenched variable fluorescence and ascertain 

the effect of PsbU removal on energy transfer and primary photochemistry in PSI!. To this end 

the psbU gene in Synechocystis sp. PCC 6803 was interrupted to produce a ilPsbU strain which 

was then characterized by room temperature, low temperature and picosecond time-resolved 

fluorescence spectroscopy. Our results indicate that both energy transfer from the PBS to PSII 

and primary photochemical processes within PSII were altered in the ilPsbU mutant. 

MATERIALS AND METHODS 

Growth of Synechocystis sp. PCC 6803 strains. Cultures were maintained on BG-ll plates 

containing 5 mM glucose and 20 f.!M atrazine and, when required, chloramphenicol was present 

at a concentration of 15 f.!g/mL in both solid and liquid BG-ll media. The solid media were 

supplemented with 10 mM TES-NaOH (PH 8.2) and 0.3% sodium thiosulfate (23) and liquid 

cultures were grown photoautotrophically unless otherwise noted. Cells were grown under a 

continuous illumination of 30 f.!E m-2 
S-I and the temperature in the growth chamber was 30°C. 

38 



The Synechocystis sp. PCC 6803 strain used in this study was the glucose-tolerant strain from 

Williams (24) and this is referred to throughout as wild type. 

Construction of a Synechocystis sp. PCC 6803 strain lacking PsbU. The open-reading frame 

sIll 194, encoding the Psb U protein, was obtained by PCR using the forward primer 5'

CCCAAAATCGGATCCGTCGGCATAATTTTC-3' and the reverse primer 5'

AAAGGGTACGCAA TGGAA TTCGGTTAGCAG-3'. The underlined bases correspond to 

introduced BamHI and EcoRI sites, respectively, that were incorporated into the primer design 

and used to clone the PCR product into pUC19 (New England BioLabs, USA). The clonedpsbU 

gene was interrupted at a unique intragenic SwaI site by a chloramphenicol-resistance cassette 

derived from pBR325 (25,26) and then used to transform Synechocystis sp. PCC 6803 according 

to established protocols (23,24). Complete segregation for the introduced antibiotic-resistance 

cassette was verified by PCR using the forward and reverse primers described above. 

Photo inactivation and Oxygen Evolution Assays. For these measurements cells were grown in 

BG-ll containing 5 mM glucose before being harvested for the experiments. Following the 

removal of glucose, cells, maintained at 30°C and at a ChI a concentration of 10 Ilg/mL, were 

inactivated by 2.0 mE m-2 
S-2 white light provided by a Kodak Ektalite 1000 slide projector. 

Oxygen evolution was measured with a Clark-type electrode (Hansatech, UK) at 30°C in BG-ll 

containing 25 mM HEPES-NaOH, pH 7.5. Saturating actinic light (2 mE m-2 
S-I) was provided 

by an FLSllight source (Hansatech, UK) passed through a Melis Griot OG 590 sharp cutoff red 

glass filter. The electron acceptors were 3.0 mM K3Fe(CN)6 and 0.6 mM 2,5-dimethyl-p

benzoquinone. When added, lincomycin was at 250llg/mL 

Room temperature fluorescence. Cell cultures were place in a 1 cm path glass cuvette at a 

volume of ~3 mL and dark adapted to state 2 (27) and measurements made with a PAM 
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fluorometer (model Pam 101, H.Walz, Effeltrich, Germany). The minimal ChI a fluorescence 

yield, Fo, was determined by exposing dark-adapted cells to a low intensity modulated 

measuring light of either 655 nm or 440 nm (28). To obtain the variable ChI a fluorescence 

yield, Fv, saturating white light pulses of 600 ms duration were used to close the PSII reaction 

centers and determine the maximum fluorescence yield, Fm, from which Fv was calculated as 

Fm-Fo. 

77K fluorescence emission spectra. Cells were harvested during exponential growth phase 

and the ~PsbU mutant and wild-type samples were adjusted to equal absorbance at 435 nm as 

determined with an Aminco DW-2 absorbance spectrometer equipped with a light scattering 

correcting frosted glass between the sample and photomultiplier tube. Samples were dark

adapted to state 2 and then transferred to glass tubes that were ~5 mm in radius and 10 cm in 

length with one end sealed. Tubes were placed in a dewar filled with liquid N2 and positioned so 

that the glass tube could be manually turned about its lengthwise axis while retaining its position 

and orientation. Fluorescence emission spectra were collected using an EG&G 1461 diode array 

detector (E.G. & G., Salem, MA, USA) as described previously (29). In order to account for 

position sensitive variation in fluorescence yield from the frozen samples, each sample tube was 

rotated incrementally and measured a total of sixteen times to generate one averaged emission 

spectra. Three independent repeats of this procedure were used to generate the final emission 

spectrum for each sample. 

Fluorescence decay kinetics. Fluorescence decay kinetics were measured with dark-adapted 

whole cell cultures at a ChI a concentration of 1 0 ~g/mL using the single photon timing 

apparatus previously described (30-32). Both the 407 nm and 650 nm picosecond pulsed diode 

lasers (Picoquant, Berlin, Germany) used for excitation were operated at 10 MHz. For each 
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measurement a 200 mL sample was circulated at a flow rate of -4 mL S-I. The detector was a 

Hamamatsu R3809 microchannel plate (Hamamatsu, Japan). Decay data were collected in 4096 

channels over 50 ns with a Becker & Hickl SPC-630 single photon timing card (Berlin, 

Germany) in a Pentium Pc. Decay data were collected at Fo from dark-adapted samples and Fm 

from preilluminated samples in the presence of DCMU as described in (32). 

Global lifetime analysis. Global lifetime analyses of fluorescence decays at multiple emission 

wavelengths were done as described previously (32). The detection wavelength ranges were 

640-730 nm for 650 nm excitation, and 660-730 nm for 407 nm excitation, taken at 10 nm 

increments. All programs used for data manipulation and global analysis were written by Sergei 

Vassiliev. 

Chlorophyll and phycocyanin determination. Chlorophyll concentrations were determined 

from methanol extracts by the method of MacKinney (33). Phycocyanin concentrations were 

determined from whole cell absorption by the method of Myers et al (34). 

RESULTS 

Construction and physiology of the !1PsbU mutant. 

The strategy to construct the L1PsbU mutant used in this report is shown in Figure I.IA. Also 

shown is the result of a PCR using primers specific for the psbU gene and confirming full 

segregation of the inactivated psbU carrying a 2.0 kb chloramphenicol-resistance cassette in the 

L1PsbU strain. The rates of oxygen evolution for the L1PsbU mutant were found to be ca. 52% of 

the wild-type rate (Figure l.IB). In addition the effect of 45 min illumination at 2 mE m-2 
S-I is 

shown. In wild-type cells the initial rate of oxygen evolution was reduced by 20% while the 
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Figure 1.1. Construction of the i1PsbU mutant. (A) Diagram of the psbU region in the 
Synechocystis sp. PCC 6803 genome with or without the insertion of a 2.0 kb chloramphenicol
resistance marker (CamR) inserted at a SwaI site 160 bp from the initial base of the start codon. 
A PCR was run that confirmed complete replacement ofpsbUwith the interrupted gene in the 
L1PsbU strain. The primers used in the reaction are indicated with arrows. The lanes on the gel 
are: M, 1 Kb Plus DNA ladder, supplied by Invitrogen; Lane 1, PCR product from wild type, and 
Lane 2, PCR product from the i1PsbU strain. (B) Oxygen evolution traces before and after 
illumination at 2 mE m-2 

S-I with white light. Trace (i) wild type at 0 min: 503 /lmoles O2 (mg of 
Chlyl h- I

; trace (ii) wild type after 45 min illumination: 402 /lmoles O2 (mg of Chlyl h- I
; trace 

(iii) i1PsbU at 0 min: 262 /lmoles 02 (mg of Chlyl h-1
, and trace (iv) i1PsbU after 45 min 

illumination: 84 /lmoles O2 (mg of Chlyl h- I
. The data in panel (B) were repeated in three 

independent experiments with similar results. (C) Time course of photo inactivation of oxygen 
evolution in wild type (circles) and i1PsbU (squares). Open symbols contain lincomycin. The 
results from two independent experiments are shown. The ChI concentration was 10 /lg mL-1 

during exposure to 2 mE m-2 
S-I white light and during the oxygen evolution assays in panels (B) 

and (C). 
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~PsbU strain exhibited only 32% of its initial rate and underwent rapid photoinactivation during 

the period that the actinic light was on. The susceptibility of the ~PsbU mutant to high light was 

investigated in the time course shown in Figure 1.1 C. Rates of oxygen evolution in ~PsbU cells 

exposed to 2 mE m-2 
S-1 illumination fell by ca. 50% within 30 min. In contrast, oxygen

evolution rates in the wild type initially decline by ca. 25% but then were able to acclimate to the 

high· light conditions. These data suggest that the rate of repair of photo damaged PSII was able 

to keep up with the rate of inactivation in the wild type but not in the ~PsbU mutant under these 

conditions. This interpretation was supported by the addition of lincomycin before the onset of 

the high light treatment. Under these conditions oxygen evolution in the wild type was reduced 

by 50% in ca. 80 min, although in the ~PsbU cells PSII activity declined at a similar rate in the 

presence or absence of lincomycin. However, without the protein synthesis inhibitor, PSII 

activity of the ~PsbU mutant remained at ca. 30% of the initial level before exposure to high 

light, whereas PSII activity was completely abolished in the presence of lincomycin. We also 

found that photoinactivated ~PsbU cells recovered oxygen-evolving activity to the level 

observed before exposure to 2 mE m-2 s-1 illumination following a further incubation at 0.07 

mE m-2 s-1 over 2 h, and that this recovery was completely prevented by the presence of 

lincomycin (data not shown). 

The results obtained in Figure 1.1 therefore confirm that the ~PsbU cells created for this study 

represented a homoplasmic line and that oxygen-evolving activity was impaired in agreement 

with earlier studies (17,22). These cells were therefore used to evaluate the anomalously low 

estimates of PSII abundance measured in ~PsbU cells using ChI a variable fluorescence yield 

measurements as previously reported (22). 

43 



........ 
~ 
t: 
~ 

104 

1.2 

_ 1.0 

~ 
~ 0.8 
t: 
Q) 

~ 0.6 

~ 
o 
~ 0.4 u:: 

0.2 

I 
t ,\ " ~ J ~ " h II' ~ 5 ~ , , . ., I' . .. .. . , . . 
j. j. i! !i .! j! !! !! !i .i !i 'i ---_.\ .. _. \._. _. __ ..".1 \, .. _' "", .. _ .... __ ._ ..... J ._ .. _ .,.,. • .,- ...... 

0.0 +-"--.,....--.------.---.---.---.---~-,__---.-
o 5 10 15 20 

Time (5) 

1.2 

en 1.0 
I ; - ~ .' ·c 

" ~ 
., .' ,. 

" 0.8 .\ .' 
~ 

,. II .' .. , .... 
Q) 
U 0.6 t: 
Q) 
U 
II) 
Q) .... 004 
0 
~ 

u:: 
0.2 

0.0 
5 10 15 20 

Time (5) 

Figure 1.2. Pulse amplitude modulated (PAM) room temperature fluorescence kinetic traces. 
Upper panel, excitation wavelength 665 nm; lower panel, excitation wavelength 440 nm. Solid 
traces are wild type, dashed traces for the the i1PsbU strain. Wild-type and i1PsbU cells were at 
equal ChI concentrations. Multiple turnover saturating white light flashes (600 ms duration) were 
used to determine Fm (spikes on traces). Traces are not normalized. This experiment was 
repeated 5 times, a representative trace is shown. Repeated measures of Fo and Fm between 
individual experiments were within 10%. 
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Room temperature fluorescence. Steady-state room temperature variable fluorescence (Fv) was 

measured using a PAM fluorometer. Figure 1.2 clearly indicates that variable fluorescence 

(Fv/Fm) of the dPsbU mutant was decreased when compared to the wild-type when using a 655 

nm measuring light (preferentially exciting allophycocyanin). The data in Figure 1.2 were not 

normalized and wild-type and dPsbU mutant samples were at equal ChI concentrations. This 

revealed that much of the decrease observed in Fv/Fm arose from a large increase in Fo in the 

dPsbU mutant relative to wild-type cells. Interestingly, the Fv/Fm ofthe dPsbU mutant was not 

smaller that that of the wild-type when variable fluorescence was determined with 440 nm 

measuring light (preferentially exciting ChI a) although both the Fo and Fm levels of the wild

type were slightly lower than those of the dPsbU strain. Observation of the decreased FvlFm in 

the dPsbU mutant was thus dependent on excitation of the phycobilisome. These data suggest 

that the decreased Fv/Fm in the mutant arises from an increase in phycobilin fluorescence 

contributing to the Fo yield and not necessarily to an intrinsic change in PSII photochemistry. 

This was confirmed with room temperature emission spectra at Fo and Fm, shown in Figure 1.3. 

For excitation of the PBS at 600 nm the emission spectra of both Fo and Fm in the dPsbU 

mutant and wild-type are dominated by phycobilin fluorescence. The data from mutant and wild

type are similar, however the relative contribution of phycobilin to ChI emission is higher in the 

dPsbU mutant. In both wild-type and mutant the contribution of ChI to the Fo emission spectra is 

minimal. The F 0 spectra are also characterized by a long wavelength tail, a characteristic of 

phycobilin emission, that extends beyond 740nm. 

From the shape of the room temperature emission spectra it is clear that the amplitude of 

Fv/Fm, determined with a PAM type fluorometer, will depend heavily on the detection 

wavelength and the excitation wavelength of the instrument. The emission filter used in the 
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Figure 1.3. Room temperature fluorescence emission spectra. Excitation wavelength was 600 
nm. Upper panel is wild type and lower panel is the dPsbU strain. All samples were measured at 
equal phycocyanin concentrations. Solid lines are cells at Fo and dashed lines are cells at Fm 
(see text for details). 
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standard PAM fluorometer is a long pass (> 710 nm) red filter which will unfortunately block 

the bulk of the ChI a variable fluorescence and allow detection of much of the long wavelength 

phycobilin emission. This will have the effect of decreasing the apparent Fv/Fm when 

determined with phycobilisome excitation wavelengths. As the contribution of phycobilin 

fluorescence relative to ChI fluorescence is higher in the ilPsbU mutant than in the wild type 

(Figure 1.2) the Fv/Fm as measured with the PAM appears lower in the mutant cells for 

excitation at 650 nm. Chlorophyll fluorescence 

makes a much larger relative contribution to the room temperature emission for ChI a excitation 

(data not shown) and Fv/Fm determinations with the PAM for excitation at 440 

nm are not as confounded by phycobilin emission and are thus more similar in mutant and wild

type cells. However, at either excitation wavelength the multiple components contributing to the 

steady state PAM fluorescence measurements complicate the interpretation of variable 

fluorescence and limit the conclusions made possible by simple comparisons of FvlFm. 

Absorbance spectra of the ilPsbU mutant and wild-type cells show similar relative 

contributions from ChI a and phycobilin pigments (data not shown). The fluorescence yield of 

phycobilin pigments is, however, consistently higher in the ilPsbU mutant than in the wild type 

when samples are measured at either equal ChI (data not shown) or equal phycocyanin 

concentrations (Figure 1.2). This increased phycobilin fluorescence may be characteristic of a 

partially decoupled PBS. 

To investigate energy transfer from the PBS to ChI a in the thylakoid membrane, 77K 

fluorescence emission spectra were determined (Figure 1.4). The 77K fluorescence spectra of 

the LlPsbU mutant and wild type were similar when 435 nrn light was used to preferentially 

excite ChI a (Figure 1.4, upper panel). In contrast, excitation of the PBS with 600 nm light 
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Figure 1.4. 77K fluorescence emission spectra of wild type and the L\PsbU strain using dark
adapted cells excited at either 435 nm (upper panel) or 600 nm (lower panel). Solid lines are for 
wild-type cells and the dashed lines are for the L\PsbU strain. Samples were all at equal ChI 
concentrations. Spectra were collected from three independent experiments, one representative 
trial is presented. Spectra were not normalized. Repeat measures of peak amplitudes between 
independent experiments were within 10%. 
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revealed large differences between the ~PsbU mutant and wild type (Figure 1.4, lower panel). 

The ~PsbU mutant is characterized by increased emission from allophycocyanin at 665 nm 

relative to phycocyanin at 650 nm and by a large increase in the 685 nm peak, which has 

contributions from both PSII ChI a and the terminal phycobilin emitters, relative to all other 

emission peaks. The 695 nm emission peak (red shifted core antenna ChI in CP47) does not 

increase with the 685 nm peak which suggests that the increase observed at 685 nm results 

mostly from the terminal phycobilin emitters rather than PSII core antenna ChI. The 77K 

emission data are thus consistent with a decrease in efficiency of energy transfer from PBS to 

ChI a in the ~PsbU cells. 

Changes in the relative efficiency of energy transfer from the PBS to PSII and to PSI are 

regulated by the light state transition in cyanobacteria. The increase in emission at 685 nm in the 

~PsbU mutant is somewhat reminiscent of the increases in emission at 685 nm and 695 nm (PSII 

ChI a) relative to 725 nm (PSI ChI a) that are characteristic of the transition to light state 1 in 

cyanobacteria. To investigate possible connections we compared state transitions in the wild 

type and ~PsbU mutant. As shown in Figure 1.5 the ~PsbU cells are state transition competent 

and undergo transitions of similar magnitude (changes in Fv) to the wild type as assayed by room 

temperature fluorescence kinetics. Changes in 77K fluorescence emission spectra typical of light 

state transitions and of similar magnitude to those observed in the wild type are also observed in 

the ~sbU mutant (data not shown). The increase in emission at 685 nm observed in the 77K 

emission spectra of the ~PsbU mutant relative to the wild type is thus not indicative of cells with 

an inhibited state transition that are "stuck" in state 1. 

Fluorescence decay kinetics. Picosecond fluorescence decay kinetics were collected to help 

interpret the differences in emission we observed between the wild type and ~sbU mutant with 

49 



1.2 r 

..-.. 1.0 r
en 

+-' 

c: 
::::::I 

- 0.8 r-
i I I I I I I I I 

~ -....-
ii, I I', I I I I I 

liil,II' I lill 
CD i!:".,II~' ,I 1,llli,1 
u .,' ~ l'llli I 
~ 0.6 f-J.-J-.... J.i L!u.Li~i __ !""NGlJIllt;I~' ~.I ~j~1 M11~1-Al1 ... I.liu.I~,J~~ 
en i' " ~ o I light on light off 
:::J 0.4 i 
u. i . 

I 
i I I I 0.2 L.L...-----'_....L...-__ ....L-__ ---'-__ ---'-__ ----'L.....-__ -'--_-----' 

o W ~ M 

Time (s) 

Figure 1.5. Pulse amplitude modulated (PAM) fluorescence kinetic traces for wild type (solid 
line) and for the ~PsbU strain (dashed line). Excitation wavelength was 665 nm. Fm was 
determined with saturating flashes (600 ms) of white light (spikes on traces). Dark-adapted cells 
(state 2) were exposed to blue light excitation (430 nm excitation, 100 IlE m-2 

S-I) to induce a 
transition to state 1. The blue light was turned on and off as shown by the arrows underneath the 
traces. Samples were measured at equal ChI concentrations, the trace for the ~PsbU strain was 
displaced vertically downwards so that the traces overlapped at the Fo level to facilitate 
comparison of the blue light induced changes in Fv. 
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Figure 1.6. Fluorescence decay kinetics of wild type (solid trace) and dPsbU strain (dotted 
trace) for excitation at 407 nm (panel A) and at 650 nm (panel B). The emission wavelength was 
680 nm. The traces are for dark-adapted cells at Fo, data were collected to 30,000 counts in the 
peak channel. 
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steady-state fluorescence spectroscopy. The fluorescence decay kinetics at Fo for the ~PsbU 

strain and wild type are shown in Figure 1.6 for excitation at 407 nm (absorbed by phycocyanin, 

allophycocyanin and ChI a) and for excitation at 650 nm (absorbed predominantly by 

allophycocyanin). Both excitation wavelengths generated decay kinetics that were slower in the 

~PsbU cells than in the wild type. This suggests that differences between the wild type and 

mutant may not be restricted to phycobilin emission. 

Global lifetime analysis. A global fluorescence decay analysis was done to characterize the 

individual decay components contributing to the altered fluorescence decay kinetics resulting 

from loss of PsbU. As described previously (31), fluorescence decays were collected at a 

number of emission wavelengths and fit simultaneously to a sum of exponential decay 

components. Component lifetimes were assumed invariant across emission wavelength and 

decay associated spectra (DAS) were constructed by plotting the yield of each decay component 

as a function of emission wavelength. This approach facilitates the separation of the many 

components contributing to steady state fluorescence emission and offers more insight into the 

origins of changes in variable fluorescence. To further facilitate the identification of the origin of 

the decay components, two different excitation wavelengths were used. Excitation pulses at 407 

nm were used to excite ChI a, phycocyanin and allophycocyanin to similar extents whereas the 

650 nm excitation was used to more selectively excite allophycocyanin. 

The DAS from both wild-type and ~PsbU cells at Fo are shown in Figure 1.7 for excitation at 

650 nm and at 407 nm. The fastest kinetic component had a lifetime of approximately 40 ps and 

was observed only for excitation at 407 nm. This component was clearly a mixture of at least 

two components as it had a negative yield (rise component) at short wavelengths and a positive 

yield (decay component) at longer wavelengths. The short wavelength negative peak at 660 nm 
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Figure 1.7. Decay associated spectra (DAS) of globally fitted fluorescence decay kinetics from 
dark-adapted wild type (filled symbols) and i1PsbU cells (open symbols) at Fo for excitation at 
407 nm (upper panel) and for excitation at 650 nm (lower panel). The fluorescence yields 
(lifetime times amplitude) of each decay component are plotted versus emission wavelength. 
Five decay components were required for the global fit of the decay data for 407 nm excitation, 
the X2 value was 1.08 for the mutant and 1.09 for the wild type. Three decay components were 
required for the global fit of the decay data for 650 nm excitation, the X2 value was 1.14 for the 
mutant and 1.13 for the wild type. Cells were measured at equal ChI concentrations and overall 
fluorescence yields (sum of all decay components) were normalized to the steady-state 
fluorescence emission yields. 
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Figure 1.8. Decay associated spectra (DAS) of globally fitted fluorescence decay kinetics from 
dark-adapted cells. The fluorescence yields (lifetime times amplitude) of each decay component 
are plotted versus emission wavelength. The upper panel shows the ~PsbU strain at Fo (filled 
symbols) and Fm (open symbols) for excitation at 407 nm. Five decay components were required 
for the global fit of the decay data for 407 nm excitation, the X2 value was 1.08 for the Fo data 
and 1.14 for the Fm data. The lower panel shows wild-type cells at Fo (filled symbols) and Fm 
(open symbols) for excitation at 650 nm. Three decay components were required for the global 
fit of the decay data for 650 nm excitation, the X2 value was 1.13 for the Fo data and 1.14 for the 
Fm data. Cells were measured at equal ChI concentrations and overall fluorescence yields (sum 
of all decay components) were normalized to the steady-state fluorescence emission yields. 
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likely reflects a rise component in allophycocyanin emission resulting from energy transfer from 

phycocyanin to allophycocyanin. The longer wavelength peak at 690 nm with a shoulder at 710 

nm is typical of PSI decay. The yield of this component did not change when PSII reaction 

centers were closed by illumination in the presence of DCMU (Figure 1.8) which is also 

consistent with these assignments. A component with a lifetime of approximately 150 ps 

peaking at 660 nm was observed for 650 nm excitation and 407 nm excitation in both mutant and 

wild-type cells. This component was by far the major contributor to decay for 650 nm excitation 

but had a much smaller relative yield for excitation at 407 nm. The yield of this component was 

independent of PSII trap closure (Figure 1.8). This and the emission peak at 660 nm clearly 

localize this component to the PBS. Both phycocyanin and allophycocyanin may contribute to 

this component at 407 nm excitation, but due to its strong absorption at 650 nm allophycocyanin 

will dominate the decay at 650 nm excitation. The lifetime of this component may thus reflect 

excitation energy transfer processes from phycocyanin to allophycocyanin to the terminal long 

wavelength phycobilin emitters and also possibly from allophycocyanin to ChI a. This 

component makes very similar contributions to wild-type and ~PsbU cells under all conditions 

suggesting that these kinetic processes are relatively unaffected by the lack ofPsbU. 

A decay component with a shoulder at 660 nm and a peak at 680 nm having a lifetime in the 

300 ps region was seen for excitation at both 407 nm and 650 nm. Interestingly the spectral 

shape of this component was independent of excitation wavelength. This component was the 

largest contributor to the decay for excitation at 407 nm and the second largest for excitation at 

650 nm. The yield of this component increased by approximately 30 to 40% when PSII reaction 

centers were closed by illumination in the presence of DCMU (Figure 1.8). At 407 nm 

excitation the lifetime of this component was almost invariant across samples. In the wild type 
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the lifetime was 280 ps at Fo and 310 ps at Fm and in the mutant 325 ps at Fo and 320 ps at Fm. 

Interestingly, for 650 nm excitation the lifetime of this component appeared to increase upon trap 

closure and was also somewhat longer in the mutant than the wild-type cells at both Fo and Fm. 

Lifetimes in the control were 265 ps at Fo and 320 ps at Fm and in the mutant they were 350 ps 

at Fo and 400 ps at Fm. The most striking feature of this component was the much larger 

contribution it made to the overall decay at Fo in the mutant than in the control at both excitation 

wavelengths (Figure 1.7). This was especially apparent at 407 nm, where the yield of this 

component in the ~PsbU mutant was twice that of the wild type. For all conditions the relative 

contribution of the 660 nm emission to the 680 nm emission of this component was larger in the 

mutant than the wild-type. The spectra of this component suggests emission from PBS core 

components (allophycocyanin and the terminal phycobilin emitters) and PSII ChI a. It is 

interesting that the shape of the 300 ps decay component spectra is the same for excitation at 407 

nm (bilin and ChI a) and at 650 nm (predominantly allophycocyanin). This could be consistent 

with an equilibrium population of PBS core components and PSII ChI a. Upon trap closure, the 

spectral shape remains the same, and changes in the amplitude of this component were more 

dominant than changes in its lifetime. Photo system II associated decay components in intact 

cyanobacteria were previously reported to change yield rather than lifetime upon trap closure 

(35). Our 300 ps decay component may have such an origin and arise from ChI a and PBS core 

components that are tightly coupled energetically and whose lifetimes predominantly reflect the 

processes within PSI!. An alternative possibility, especially for the 650 nm excitation of 

allophycocyanin is that the component reflects emission from the core of the PBS and the 

lifetime is related to the relative efficiency of energy transfer to ChI a and/or some other 

quencher. 
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Two slow decay components with nanosecond lifetimes were distinguished with excitation at 

407 nm, the faster one with an approximately 1 ns decay and a clear peak at 680 nm and the 

slower, a 3.3 ns component peaking at 660 nm. Upon trap closure the yield of the 1 ns 

component increased greatly in both mutant and wild type (Figure 1.8 shows the mutant data), 

identifying its origin in closed PSII reaction centers as described previously (35,36). The yield of 

the 3.3 ns component was much smaller and not as sensitive to trap closure. In contrast, at 650 

nm excitation a 1.3 ns decay component with a peak at 660 nm and broad shoulder at 680 nm 

was observed. In both mutant and wild-type cells the 680 nm shoulder increased upon trap 

closure, but not the 660 nm peak (Figure 1.7 shows the wild type). As direct excitation of 

allophycocyanin at 650 nm did not generate the 3.3 ns component we assign this longest-lived 

decay to uncoupled phycocyanin. The 1.3 ns component observed for excitation of 

allophycocyanin is clearly a mixture of a component associated with closed PSII reaction centers 

and a long-lived allophycocyanin decay component. The 1.3 ns allophycocyanin decay 

component made a much more significant contribution to the overall decay at 650 nm than did 

the 3.3 ns phycocyanin component at 407 nm. Although both of these components were higher in 

the mutant than in the wild type, the 1.3 ns component will have contributed more significantly 

to the increased phycobilin emission observed in the steady-state emission spectra of the mutant. 

However, the most dramatic difference between mutant and wild type was for the 1 ns PSIl 

component observed at 407 nm excitation whose yield was three times higher in the mutant than 

the wild type. This suggests that a significant number of PSII reaction centers were closed in the 

mutant cells at Fo. 

DISCUSSION 
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Previous work with a Synechocystis sp. PCC 6803 psbU deletion mutant indicated that the 

PsbU protein affected PSII electron transport by moderating the S-state transitions and 

stabilizing the S2 state (18,37). The psbU deletion mutant was also shown to have a reduced rate 

of oxygen evolution (17,18). These results are consistent with the lumenal side location of the 

PsbU protein and its role in stabilizing the OEC. Our picosecond fluorescence decay data 

confirm an inhibition of electron transport capacity of PSII in the ~PsbU mutant and show 

increases in the contribution of fluorescence decay components associated with closed PSII 

centers in dark-adapted ~PsbU cells. Specifically the presence of the I ns PSII associated 

component at Fo clearly indicates that a significant number of PSII centers remain closed in the 

mutant in the dark and are thus unavailable for photochemistry and will not contribute to oxygen 

evolution. The lack ofPsbU thus affects the efficiency ofPSII photochemistry. 

In addition our results also indicate an increase in the numbers of partially excitonically 

decoupled PBS in the ~PsbU strain. This result was unexpected as the PBS and PsbU are 

located on opposite sides of the thylakoid membrane. Room temperature PAM and fluorescence 

emission spectroscopy indicate a significant increase in phycobilin fluorescence in cells without 

PsbU. The 77K fluorescence emission spectra localize this to allophycocyanin and the terminal 

phycobilin emitters. This result was confirmed by time-resolved fluorescence decay 

spectroscopy which showed a large increase in the yield of a 1.3 ns, allophycocyanin associated, 

decay component in the mutant cells. This component likely reflects allophycocyanin that is 

uncoupled from the terminal phycobilin emitters in the PBS. 

The mutant cells were also characterized by an increase in a 300 ps fluorescence decay 

component at Fo whose origin is complex. This component increased in amplitude upon PSII 

trap closure but also showed significant contributions by phycobilin core components. The 300 
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ps component we observed was likely a mixture of two previously observed fluorescence decay 

components, one associated with closed PSII centers (500 ps) and the other believed to arise 

from the terminal phycobilin emitter (200 ps) (36). The increase in the 300 ps component upon 

trap closure and in the ~PsbU mutant at Fo is consistent with the previously observed increase in 

contribution of the 500 ps PSII component upon trap closure in intact cyanobacteria. This 

interpretation is supported by the increased yield of the 1 ns decay component, indicative of 

closed PSII reaction centers, observed in the mutant cells at Fo. Another possible interpretation, 

especially for 650 nm excitation, is that this component could reflect decay from phycobilin core 

components including the terminal phycobilin emitters. A 200 ps component associated with the 

terminal phycobilin emitters had previously been observed in intact cyanobacteria (36). In that 

study the lifetime was attributed to relatively inefficient energy transfer from the terminal emitter 

to PSII ChI a. In a separate study (38), a 500 ps component was attributed to the terminal 

phycobilin emitters in a PSII-Iess mutant of Synechocystis sp. PCC 6803. That decay was much 

faster than the 1.5 ns decay associated with emission from the terminal phycobilin emitters in 

isolated PBS and was attributed to quenching associated with PBS binding to the thylakoid 

membrane. The increased amplitude of the 300 ps component observed in the ~PsbU cells in 

our study may thus reflect an increase in the number of PBS energetically uncoupled from PSII, 

but still attached to the thylakoid membrane. This interpretation would be consistent with the 

transient coupling model of PBS and PSII interaction supported by FRAP data (10,13) assuming 

that the terminal emitters decay in the coupled PBS/PSII complex was much shorter than the 300 

ps decay component and not observed in our measurements. 

Any assessment of the effect that the removal of PsbU has on the energetic coupling of the 

PBS to PSII is hampered by the lack of consensus on the mechanism of coupling (8,13). There is 
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a PB-Ioop of the L(CM) domain or hydrophobic linker peptide chain that has been suspected to 

be involved in either PSII or membrane binding and energy transfer (8). Thus it is plausible to 

infer a disruption in the binding of this linker peptide to PSII andlor the thylakoid membrane 

when PSII centers do not contain PsbU. However, previous work has shown that the PBS still 

assembles and functions comparably with wild type in mutants that have the PB-Ioop deleted 

from the L(CM) domain (12). A "native affmity" has also been demonstrated in vitro, whereby 

isolated PSII complexes and PBS were found to energetically couple without a thylakoid 

membrane or PB-Ioop on the PBS (11). The native affinity between PSII and the PBS may 

provide the most likely factor in PSII/PBS energy coupling that is being affected by the removal 

of PsbU. Energetic coupling from the PBS to PSII and PSI is likely mediated through the 

phycobilin terminal emitters which are three long wavelength allophycocyanin pigments 

associated with ApcD, ApcE and ApcF. It is uncertain how these long wavelength emitters 

couple energetically to the ChI of PSII and PSI, although a number of proposals have been put 

forward (8, 39, 40). It is clear, however, that the energetic coupling of the PBS will be highly 

dependent on the distance between, and relative orientations of, the terminal PBS emitters and 

ChI molecules in the PSII core. We propose that the absence ofPsbU on the lumenal side of the 

PSII core may affect a small overall change in PSII core structure which is correlated with a 

subtle change in the stromal exposed surface of PSII. Modification of the donor side of PSII has 

previously been shown to influence the acceptor side (41). A small change in the shape of the 

stromal exposed surface of PSII could significantly effect the interaction of the PSII core with 

the PBS and thus disrupt energy transfer from one or more of these pigments to the core ChI of 

PSII. We have demonstrated that the PsbU protein influences diverse processes in PSII. 

Electron transport activity is limited in the absence of PsbU as a proportion of PSII centers 
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remain closed in dark-adapted cells. In addition, the absence of PsbU impairs energy transfer 

from the PBS to PSII. PsbU thus serves roles in stabilizing both electron transport and energy 

transfer in the PBS/PSII assembly in Synechocystis sp. PCC 6803. 
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1 Abbreviations: PS, photo system; RC, reaction center; ChI, chlorophyll; P680, primary electron 

donor in photo system II; QA, primary quinone electron acceptor in photo system II; DAS, decay-

associated spectrum; FO, the minimal fluorescence level associated with photochemically active 

or "open" reaction centers with an oxidized primary quinone electron acceptor, QA, FM , the 

maximal level of fluorescence associated with photochemically inactive or "closed" reaction 

centers with reduced primary quinone electron acceptor, QA. 

70 



Preface 

This chapter was published in the high impact Journal Biochemistry in 2007. I wrote the 

first draft of this article and was heavily involved in revisions and addressing the concerns and 

critique of both reviewers and the editor of Biochemistry. 

The thylakoid fractions were produced at the University of Lund in Sweden by Professor 

Stenbjorn Styring and Dr. Fikret Mamedov. Dr. Mamedov also produced Table 2.1 for the 

purpose of this study. Dr. Michael McConnell who was a Masters student in our lab before I 

arrived, collected and analyzed the data presented in Figure 2.2 and the measured absorbance 

cross sections in Table 2.2. Dr. McConnell also performed a significant amount of work 

characterizing the thylakoid membrane fractions and was involved in revising the paper for 

publication. I produced all other figures, tables and illustrations and collected and analyzed the 

data contained therein. 
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ABSTRACT 

A mild sonication and phase fractionation method has been used to isolate five regions of the 

thylakoid membrane in order to characterize the functional lateral heterogeneity of 

photosynthetic reaction centers and light harvesting complexes. Low temperature fluorescence 

and absorbance spectra, absorbance cross-section measurements and picosecond time resolved 

fluorescence decay kinetics were used to determine the relative amounts of photosystem II 

(PSII) and photo system I (PSI), the relative PSII antenna size and to characterize the excited 

state dynamics of PSI and PSII in each fraction. Marked progressive increases in the proportion 

of PSI complexes were observed in the following sequence: grana core (BS), whole grana (B3), 

margins (MA), stroma lamellae (T3) and purified stromal fraction (YIOO). PSII antenna size was 

drastically reduced in the margins of the grana stack and stroma lamellae fractions as compared 

to the grana. Picosecond time-resolved fluorescence decay kinetics of PSII were characterized by 

three exponential decay components in the grana fractions, and were found to have only two 

decay components with slower lifetimes in the stroma. Results are discussed in framework of 

existing models of chloroplast thylakoid membrane lateral heterogeneity and the PSII repair 

cycle. Kinetic modeling of the PSII fluorescence decay kinetics revealed that PSII populations in 

the stroma and grana margin fractions possess much slower primary charge separation rates and 

decreased photosynthetic efficiency when compared to PSII populations in the grana stack. 
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INTRODUCTION 

In the process of oxygenic photosynthesis plants utilize light energy to split water into 

molecular oxygen, protons and electrons and produce both ATP and NADPH for use in carbon 

fixation. This process requires photosystem I (PSI) and photosystem II (PSII) operating in 

tandem. 

PSI and PSII core complexes are large supramolecular pigment-protein complexes 

containing 96 and 35 chlorophyll a (ChI a) molecules (1;2) and (3;4), respectively. In higher 

plants both photosystems are associated with peripheral ChI a and ChI b - containing antennae 

complexes, known as light harvesting complex I (LHCI) and light harvesting complex II 

(LHCII). The PSII associated LHC family includes the ChI binding proteins, CP24, CP26 and 

CP29. The PSI core complex associates with four LHCI monomers, while two LHCII trimers 

and three monomers (CP24, CP26 and CP29) are coupled to each PSII core. The association of 

the auxiliary antennae with the PSI core complex has generated a model ofPSI-LHCI with a 

total of 167 ChI molecules (5;6) and a ChI alb ratio of about 9. The PSII-LHCII complex is 

characterized as possessing about 150 ChI molecules, with a ChI alb ratio of about 2.5 (7;8). In 

addition to these basic structural units, higher plants produce variable amounts of additional 

LHCII serving to supplement the light harvesting capacity of each photosystem. These 

additional LHCII complexes can be dynamically reallocated between the two photo systems to 

optimize cooperation between them in a process denoted as state transitions, see (9) for review. 

Photosynthetic membranes of chloroplasts consist of the appressed regions (grana stacks) 

and the unappressed regions (stroma lamellae). Grana stacks contain a preponderance ofPSII 

and the stroma lamellae PSI (10-12). PSII populations localized in these two membrane areas are 

fundamentally different with respect to antenna size and photochemical activity. PSII complexes 
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in the grana stack represent a highly active population with respect to donor and acceptor side 

electron transport, while those in the stroma lamellae have been observed to be relatively 

inactive (13-15). 

A mild sonication and phase fractionation method has been developed to isolate several 

grana and stroma fractions (13; 14; 16); these membrane fractions are illustrated with respect to 

their location in chloroplast thylakoid membranes in Figure 2.1. Studies of these fractions have 

indicated that inactivation of PSII with respect to oxygen evolution and forward electron transfer 

from QA progressively increases with increasing distance from the grana core (13-15). Lateral 

heterogeneity of PSII was explained by damage of highly active PSII complexes in the grana 

core and their subsequent reallocation to the stroma membrane regions, which are accessible to 

ribosomes, for repair, see for review (17). After repair in the stroma, QB binding affinity and the 

oxygen evolving complex were proposed to be restored during transport back to the grana. By 

the time PSII complexes reach the margins of the grana stack most are activated and the 

activation process was proposed to reach completion in the core of the grana stack (13;14). The 

isolation of thylakoid membrane fractions has allowed for the assessment of lateral heterogeneity 

with respect to ChI a and ChI b content, PSII/PSI ratio and overall PSII activity as measured by 

secondary electron transport rates. In addition, the distribution of different forms of PSII, 

including PSII-LHCII supercomplexes, PSII dimers, PSII monomers, PSII monomers lacking 

CP43 and DlID2 reaction centers has been shown to vary greatly across fractions (18). The 

grana core contains most of the supercomplexes and the PSII population in the Y -100 fraction 

mostly consists of monomers lacking CP43 and DIID2 reaction centers. 

Characterization of primary energy conversion events in PSII, including excitation 

energy transfer, primary photochemical charge separation, charge stabilization and 
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recombination in the different thylakoid membrane fractions has not yet been done. The rates of 

charge separation and stabilization can be obtained from picosecond time resolved fluorescence 

decay kinetics. However, sophisticated kinetic modeling is required to estimate rates of 

photochemical processes in such complex pigment aggregates as PSI and PSII. Kinetic 

modeling, utilizing available structural information and assignment of site energy levels has been 

applied to estimate rates of photochemical processes from fluorescence decay kinetics of isolated 

PSI and PSII particles (2;19-22). In the case of whole thylakoids many other factors (PSII 

heterogeneity, heterogeneity of the peripheral antenna, presence of unconnected light-harvesting 

complexes in the stroma lamellae and mixing of PSI fluorescence with faster PSII decay 

processes) contribute to the complexity of the fluorescence decay kinetics and determination of 

the intrinsic charge separation and charge stabilization rates becomes even more complex .. 

Correct assignment of the observed fluorescence decay components is the first and the most 

critical step in the interpretation of fluorescence decay components in higher plant thylakoids. 

Previously, fluorescence decay components of whole thylakoids have been assigned 

assuming that homogeneous PSI kinetics are monoexponential and PSII kinetics are 

biexponential (23;24). Two populations ofPSII were required to fit data and both populations 

were inferred to have two decay components with indistinguishable lifetimes of the fast decay 

components at F o. The two populations were distinguished by finding a minimal physically 

reasonable kinetic model capable of describing a set of fluorescence decay kinetics measured at 

different wavelengths using samples with both closed (FM) and open reaction centers. At FM all 

four lifetimes could be distinguished and, as the relative amount of the two PSII populations was 

independent of the state of the reaction centers, it was possible to extract kinetic parameters of 

both PSII populations at Fo by imposing this constraint on the fit of the Fo kinetics. 
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Since then many studies have followed this assignment, particularly in interpretation of kinetic 

changes due to non-photochemical quenching (25;26). Recent studies of isolated PSI and PSII 

particles have shown, however, that fluorescence decay kinetics of both photo systems are 

intrinsically more complex (21;22;27;28). Thylakoid membrane fractions isolated using the 

phase fractionation method represent simpler systems than whole thylakoids and are ideally 

suited for identification of fluorescence decay components. At the same time study of 

fluorescence decay kinetics in these fractions are critically important for understanding how the 

photochemical properties of PSII vary in situ in different thylakoid membrane regions and thus 

with different stages of the PSII repair cycle. 

In this paper we present time-resolved fluorescence data, and measurements of the 

functional PSII antenna size of the aforementioned fractions of thylakoid membranes. We make 

use of independent measurements of relative PSI and PSII content, functional PSII antenna size 

and global analysis of fluorescence decay kinetics collected with open and closed PSII reaction 

centers to identify decay components. Our data shows that the functional antenna size of PSII 

was drastically reduced in the margins of the grana stack and stroma fractions as compared to the 

grana. We found that fluorescence decay kinetics were relatively fast and three exponential in 

the grana fractions, while PSII in the stroma was characterized by slower and biexponential 

decay kinetics. Kinetic modeling of our data revealed essential differences in primary charge 

separation between PSII localized in the grana and stroma membrane regions. PSII primary 

charge separation rates and photosynthetic efficiency were depressed in the stroma derived 

fractions and the grana margins as compared to the grana stack. We discuss our results in the 

framework of the existing models of chloroplast thylakoid membrane structure and the PSII 

repair cycle. 
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MATERIALS AND METHODS 

Preparation of thylakoid membrane fractions. All thylakoid membrane fractions were 

isolated from home grown spinach as described in (14; 15). 

Steady state spectroscopy. Absorption spectra were measured at 10K using an intensified 

diode array detector (model 1461 EG&G Princeton Applied Research) and a helium cryostat 

(Advanced Research Systems, Inc., model DE-202). Samples were resuspended in 50 mM 

HEPES buffer, pH 7.6, containing 0.1 M sorbitol, 5 mM MgCh, 5 mM NaCI, and 60% glycerol. 

Emission spectra were measured at 77 K with the same detector. Chlorophyll concentration of 

less than 5 Ilg/ml was used in fluorescence measurements. 

PSII absorbance cross-sections. PSII absorption cross-sections were determined by flash 

saturation curves of variable ChI a fluorescence. An optical parametric oscillator (VislR2, 

GWU-Lasertechnik) pumped by the third harmonics of a Q-switched Nd:Y AG laser (Spectron 

Laser Systems) was used to provide 6 ns long actinic flashes at a wavelength of 435 nm. The 

actinic light was delivered via the optical fiber to a 250 ilL flow through cuvette where the 

sample was circulated at the rate of about 1 mLisec. Chlorophyll concentration of about 5 Ilg/ml 

was used in cross-section measurements. Non-actinic 60 IlS long measuring light pulses were 

supplied by blue light emitting diode (450 nm) 100 Ils after the pump flash to determine the 

amplitude of fluorescence. Chlorophyll fluorescence was detected by a photomultiplier tube 

(Hamamatsu RG967), screened by a Y4 meter monochromator. A small fraction of the actinic 

flash was directed toward a photodiode so that the energy of each laser pulse could be measured. 

20 fluorescence yield and flash energy signals were averaged simultaneously at a flash frequency 

of 2.5 Hz. Data were fit with the cumulative Poisson single-hit probability distribution (29): 

<1>(1) = <1> max (1- e-1
-
u

) where I is the pulse energy, <1>(1) is the yield ofthe fluorescence, <1>max is 
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the maximal yield detennined at saturating flash intensity, cr is the effective absorption cross

section. 

Absorbance cross sections were also calculated based on the distribution of different 

types of PSII complexes found in the different fractions of the thylakoid membrane as reported 

by (18). This was perfonned by representing each sUbpopulation of PSII with a cumulative 

Poisson single-hit probability distribution; taking into account the relative proportion and the 

presumed antennae size of the PSII subpopulation. For each fraction the cumulative Poisson 

single-hit probability distribution for each constituent subpopulation of PSII were added to 

produce a simulated curve. The simulation was then fit in the same manner as the experimentally 

obtained data. The relative antenna sizes of the various subpopulations ofPSII identified in (18) 

(PSII-LHCII supercomplexes, PSII dimers, PSII monomers, CP43-less PSII monomers and 

D lID2 reaction centers) were calculated based on the following assumptions concerning the 

number of antenna ChI associated with each "type" of PSI!. The D lID2 reaction centers were 

assumed to contain the equivalent of 6 ChIs, CP43-less centers had 22 ChIs, PSII monomers and 

PSII dimers possessed 35 ChI per reaction center (30). While the PSII-LHCII supercomplexes 

were assumed to possess a variable number of Chi ranging from a minimum of 125 ChI to a 

maximum of 253 ChI per reaction center. The antennae size ofPSII-LHCII was derived via use 

ofCP24 (10 ChI), CP26 (9 ChIs) and CP29 (8 Chi) monomeric subunits (31); and the LHCII 

trimers (42 Chi) (32) as the building blocks of the PSII auxiliary antennae. It should also be 

noted that the stroma derived fractions (Margins, T3 and YlOO) were assumed to possess PSII

LHCII complexes that were relatively disassembled when compared to the grana derived 

fractions (BS and B3); while PSII monomers and dimers in the grana derived fractions were 

assumed to possess some measure of auxillary antennae. This disparity was mandated in order to 
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detennine if the PSII subpopulations were relatively more disassembled in the stroma as 

compared to the grana. The precise details regarding the implementation of this bias in our 

calculations can be found in the results section. 

Picosecondfluorescence decay kinetics. A single photon timing apparatus utilizing a 

picosecond pulsed diode laser was used to measure the kinetics of chlorophyll fluorescence 

decays (33). Excitation pulses were delivered at 407 nm by a picosecond diode laser 

(PicoQuant, PDL 800-B), 54 ps FWHM. Chlorophyll fluorescence was measured by a 

Hamamatsu R-3809 micro channel plate photomultiplier screened by a double monochromator. 

A single photon counting PC card (Becker & Hickl, SPC-730) was used for data collection. 

The instrument response function of the system was 68 ps. To maintain PSII reaction centres in 

the open (Fo) state samples were circulated with a flow rate of 4 mL/s and low measuring 

light intensities were used. The F m state was achieved by addition of DCMU, slowing down the 

circulation rate and increasing the measuring light intensity. Fluorescence decay data were 

collected for four detection wavelengths between 680 nm and 730 nm until 20,000 counts in the 

peak channel were attained. Fluorescence decay curves taken at all wavelengths were fit with 

the sum of exponential decay functions globally with the model of parallel decaying 

compartments as described previously (34;35). 

PSII Kinetic Modeling. Modeling of PSII fluorescence decay kinetics was based on a 

recently published "coarse grained" model which takes into account supramolecular organization 

of PSII and LHCII in thylakoid membranes to model the energy migration and charge separation 

processes in the PSII-LHCII supercomplex (22). In this model each pigment-protein subunit in 

the PSII-LHCII supercomplex is represented by one compartment. The excitation transfer rate 

between all compartments was assumed to be (17 psr l and charge separation in PSII was 
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modeled by one reversible radical pair. The antennae size of the PSII population in each fraction 

was determined from the measured absorbance cross sections and analysis of protein gels, the 

connectivity between antennae compartments was based on the structural organization ofPSII

LHCII complexes. The fitting parameters in the model were the rate constants of charge 

separation (Kes), its reversal (Kes") and charge stabilization by secondary electron transfer to QA 

(KsT). This model is approximate, however, it was demonstrated previously that it allows one to 

draw conclusions about the relative contributions of excitation energy transfer and charge 

separation to excited state dynamics.(22). 

RESULTS 

Low temperature fluorescence spectra. Low temperature fluorescence emission spectra 

were measured to assay for relative amounts of PSII and PSI in the thylakoid membrane 

fractions. The fluorescence peak at -730 nm (F730) arises from PSI, the fluorescence peak at 

-695 nm (F695) from PSII; while the fluorescence peak occurring at -685 nm (F685) originates in 

both PSII and LHCII. The F6951F730 ratio is a reasonable indicator of the relative PSIIIPSI ratio. 

The F6951F730 ratio was high in the grana BS and B3 fractions. It sharply dropped in the margins, 

and decreased further in stroma fractions (Figure 2.1). The trend observed shows the amount of 

PSII decreasing from grana fractions to stroma fractions, while relative PSI content increases 

(Figure 2.1). This is consistent with existing models of PSI liPS I lateral heterogeneity in 

chloroplast thylakoid membranes and with EPR measurements performed on similar fractions 

(see Table 2.1) (15). 

Low temperature absorbance spectra. Low temperature absorption spectra from the B3 

and grana core BS regions are very similar to each other and are characterized by a peak in the 

80 



(]) 
"'C 
:::J 

+-' 

Co 
E « 

1.0 

0.8 

0.6 

0.4 

0.2 

680 

--88 
----- 83 

700 720 740 760 780 

Wavelength (nm) 

Figure 2.1. 77K fluorescence spectra of chloroplast thylakoid fractions. Spectra were normalized 
to peak emission. BS, grana core fraction; B3, entire grana stack; margin, grana margins; T3, 
stroma thylakoid membranes; YlOO, purified stroma thylakoid membranes. See materials and 
methods for details. Diagram illustrating the origin of the specific membrane fractions in relation 
to the structure of the chloroplast thylakoid membrane is shown in the insert. 
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Table 2.1. Characterization of the different fractions of the thylakoid membrane. 

O2 evolution A 
Chllfraction B, PSIIIfraction B, 

Fraction ChI alb [flmol of O2/ PSI/PSII C Chll YD" D ChllP700+D 

%,±5 %,±5 
(mollmol) (mg ofChlr1h-ll mollmol 

Grana Core 2.27 271 51 71 0.25 ±0.06 355 1300 

Grana 2.60 240 64 81 0.43 ±0.05 408 980 

Margins 3.62 94 13 10 1.28 ±0.14 667 508 

Stroma 4.40 87 36 19 3.10 ±0.11 971 316 

Y-IOO 7.51 0 5 1 12.75±1.6 2780 222 
5 

Thylakoids 3.11 127 100 100 1.13 ±0.05 617 552 

A _ measured with 2 mM ferricyanide and 0.5 mM PpBQ as electron acceptor. B - calculated 
from the counter current distribution that provide the ChI yield in each fraction and from the EPR 
measurements for the PSII content in the different thylakoid fractions, data from (18). C - on the 
basis ofEPR measurements, data from (15). D - on the basis ofEPR measurements, data from 
(15). Shows total number ofChl(a+b) molecules per PSII or PSI center. Note that not all these 
chlorophylls are connected to PSII or PSI (see discussion in (15) for explanation of the 
calculation of antenna size). 
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Figure 2.2. 10K absorbance spectra of chloroplast thylakoid fractions. Spectra were normalized 
to peak absorbance. BS, grana core fraction; B3, entire grana stack; margin, grana margins; T3, 
stroma thylakoid membranes; YIOO, purified stroma thylakoid membranes. Insert shows 
magnified picture of changes in the maximum absorption peak around 680 nm in the different 
fractions. See materials and methods for details. 
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ChI a Qy region at 676 nm for B3 and BS (Figure 2.2). Both fractions also exhibit a distinct 

short wavelength shoulder on the Qy band at 671 nm. These two spectra show a relatively large 

contribution from ChI b observed as a distinct peak at 650 nm. Absorption spectra from the T3 

and Y 1 00 stroma membrane fractions are characterized by significantly increased contributions 

of long wavelength ChI a forms of PSI to the Qy band. Increase of the abundance of these forms 

results in a red shift and broadening of the absorption peak in the ChI a Qy region. The 

contribution of Chi b to the absorption of these fractions (especially in the YI00 fraction) is 

much lower than in the grana fractions. The spectra from the grana margins are intermediate 

between the grana and stroma membrane fractions for all of the above described characteristics. 

The absorption data follows the same trend as the emission data indicating that the amount of 

PSI! and ChI b containing LHC complexes decreases from grana fractions to stroma fractions, 

while relative PSI content increases. 

PSII absorbance cross-sections. The absorbance cross-sections of the PSI! complexes 

present in the thylakoid fractions were determined using pump probe fluorescence flash 

saturation curves as described in Methods. Analysis of the saturation curves showed the 

absorbance cross section ofPSII to be the largest in the whole grana and grana core fractions and 

sharply decrease in the grana margins and stroma fractions (Table 2.2). There was a threefold 

reduction of the functional antennae size of the PSI! complexes from the grana core fraction (BS) 

to the grana margins, and a five fold decrease from the BS fraction to the YlOO fraction. Since 

the amplitude of the ChI b peak in the absorbance spectra does not decrease proportionally to the 

decrease of the functional PSII antenna size, a dissociation of LHCI! complexes from PSI! in the 

grana margins and stroma fractions is likely responsible for much of the decrease in functional 

antenna size and is consistent with existing models of PSI! repair and measurements of PSI! 
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heterogeneity in chloroplast thylakoid membranes (18). 

The observed relative difference in PSII antennae size found between the different 

thylakoid membrane fractions was compared to calculated relative differences 

in antenna size that were based on a recent proteomic analysis of the thylakoid fractions (18). 

The proteomic analysis showed each isolated thylakoid fraction to have a unique heterogeneous 

population ofPSII centers consisting ofPSII-LHCII supercomplexes, PSII dimers, PSII 

monomers, CP43-less PSII monomers and DIID2 reaction centers. Our calculation assumed 

different antenna sizes for each of the different types of PSII centers and two different analyses 

were done assuming variable sizes for the PSII-LHCII supercomplexes, see Methods section for 

details. Both calculations assumed that PSII dimers and PSII monomers found in the margins, 

stroma and YIOO fractions were not associated with any LHC's and that any PSII 

supercomplexes found in the margin fraction were associated with the equivalent of 3 LHCII 

trimers per PSII-LHCII supercomplex (125 ChIs per reaction center). Both calculations also 

assumed that PSII dimers and PSII monomers in the grana core were associated with 2 LHCII 

trimers and 1 LHCII trimer respectively (106 ChIs per reaction center). The only difference 

between the two calculations was the assumed size of the PSII-LHCII supercomplex in the grana 

core. The first calculation assumed that the PSII-LHCII supercomplexes found in the grana core 

were associated with the equivalent of 5 LHCII trimers per PSII-LHCII supercomplex (169 Chi 

per reaction center), which is the upper limit for size of an isolated PSII-LHCII supercomplex 

(36). The second calculation assumed that the PSII-LHCII supercomplexes in the core were 

associated with 9 LHCII trimers (253 ChIs per reaction center). This assumption was based on 

previous studies that indicated a possible PSII antennae size of250 ChIs (37-39); provided that 

all the LHCII present in the grana were utilized by PSII. In the first calculation, the assumptions 
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used served to maximize the antennae size disparity between the grana fractions as compared to 

the margins, stroma and Y-IOO by using the largest isolated PSII-LHCII antennae size as an 

upper limit (37-39) and the logical boundaries imposed by the PSII population distribution as 

reported previously in the proteomic data (18). Interestingly, in our first calculation, the relative 

PSII absorbance cross-sections for the margins, stroma and Y -100 fractions were consistently 

higher than the experimentally determined cross-sections (Table 2.2). The much larger antenna 

size for PSII-LHCII supercomplexes, that represented the only difference between the two 

calculations, generated relative absorbance cross-sections which were much closer to the 

experimental results (Table 2.2). 

Time resolved fluorescence decay kinetics. A global analysis of time resolved 

fluorescence decay kinetics collected at both Fo and FM was undertaken to identify decay 

components originating from PSII and PSI. To facilitate the identification of the decay 

components we took advantage of the fact that PSI decay kinetics exhibit negligible changes 

between Fo and FM states. This allowed us to share the amplitudes and lifetimes of PSI 

components in simultaneous fits of data collected at both Fo and FM of the PSII reaction centers. 

Since the best fits were obtained when the putative PSI components were linked in this manner, 

the assignment of components to PSII and PSI can be regarded as robust. It should also be noted 

that the PSI components were not only determined to be static from Fo to FM, but these same 

components have been observed in isolated PSI-200 preparations (40;41) and the fast component 

has been also been observed in isolated PSI cores (27). In addition, as will be detailed in the 

following section, these assigned PSI components gradually emerge as the measurements move 

from grana to stroma; which is in accordance with our low temperature fluorescence and 

absorbance measurements as well as a previous study of these fractions (15) and other grana and 
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Table 2.2. PSII absorbance cross sections obtained from flash saturation curves. The fit error is 
less than 5%. The calculated cross-sections are based on biochemical data for the relative 
number ofPSII supercomplexes, PSII cores, and CP43-less PSII cores found in each fraction in 
(18). See text for details 

Fraction Measured Calculated Calculated 
Cross section Cross sectionA Cross sectionB 

BS 1 1 1 

B3 0.9 0.91 0.9 

Ma 0.31 0.43 0.29 

T3 0.27 0.38 0.25 

YlOO 0.2 0.37 0.24 

All cross sections are expressed relative to the grana core fraction. A - Cross-sections based on 
the numbers of LHCII associated with PSII supercomplexes, dimers, and monomers in each of 
the fractions as determined by proteomic analysis in (18). B - Cross sections based on the same 
assumptions as above with the additional assumption that that all of the "free" LHCII trimers 
that were associated with the grana core fraction were energetically coupled to PSII-LHCII 
supercomplexes. 
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stroma preparations (10-12). We were particularly interested in characterization of fluorescence 

decay components originating from open PSII reaction centers as they reflect charge separation 

and charge stabilization processes. 

The decay associated spectra for the grana core fraction BS are shown in Figure 2.3. 

Four components were required for the best possible fit of the data. Lifetimes of the three fastest 

decay components (tl=130 ps, t2= 280 ps and t3= 530 ps ) increased upon closure ofPSII 

reaction centers (data not shown) and all of them had similar spectra. We assigned these 

components to open PSII reaction centers. The fourth minor component with the lifetime t4= 2.4 

ns was assumed to originate from a small fraction of closed PSII centers and/or uncoupled 

LHCII complexes. A similar component was observable in all of the fractions. Global analysis of 

the BS fraction generated decay associated spectra that lacked any identifiable PSI component, 

exemplifying the dearth of PSI complexes in the core of the grana stack. 

Decay associated spectra of the whole grana (Figure 2.4) were quite similar to the grana 

core; with triphasic (tl=120 ps, t2= 270 ps and t3= 510 ps ) PSII kinetics and a minor t4= 2.0 ns 

component. However, the shape of the spectra of the fastest decay component was altered when 

compared with the BS fraction. In the B3 fraction the 120 ps component showed an elevated 

amplitude at both 700 nm and particularly at 720 nm. This indicated a contribution from PSI 

convolved with the fast component of PSII, attesting to a relative increase in the amount of PSI 

present when compared to the BS fraction. The contribution of PSI fluorescence to the fast decay 

phase was fairly small and virtually absent at wavelengths shorter than 700 nm. Decay kinetics 

of both grana fractions were found to be similar to the decay kinetics ofBBY particles reported 

recently (22). 
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Figure 2.3. Decay-associated fluorescence emission spectra obtained from global analysis of 
picosecond fluorescent decay kinetics from. the grana core fraction BS. See materials and 
methods for details. 
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Fluorescence decay kinetics of the margins of grana stacks were more complex than the 

kinetics of grana fractions (Figure 2.5). Along with four components with lifetimes similar to 

corresponding components found in the grana fractions an extra component with a lifetime 

"Cs=60 ps was required to describe the data. The amplitude and lifetime of this component were 

unaffected by the closure of PSII reaction centers, suggesting an origin in PSI. The red shifted 

fluorescence emission peak of the 60 ps component was also indicative of PSI emission. A 

similar component was also observed in the decay kinetics of isolated PSI-200 particles (40). 

Thus, the 60 ps decay component of margins was assigned to PSI. This component was therefore 

shared and held constant in the global analysis ofFo and FM data. As was observed for grana 

fractions, the lifetimes of three of the decay components ("Cl=120 ps, "C2= 260 ps and "C3= 580 ps ) 

increased upon closure ofPSII reaction centers (data not shown), indicating their origins in PSII. 

However, the spectral shape of the "Cl=120 ps component exhibited an even greater bias toward 

emission at 720 nm as compared to the B3 fraction, indicating that this PSII component is mixed 

with PSI emission. Considering the emergence of the 60 ps PSI component and the change in 

shape of the PSII fast component; the relative proportion of PSI complexes clearly increases in 

margins compared to the whole grana. The two slow components of PSII were also apparent 

("C2=260 ps and "C3=580 ps), with "C3=580 ps exhibiting a relatively increased amplitude as 

compared to the BS and B3 fractions. This indicates that the mean lifetime ofPSII decay kinetics 

in the grana margins was slower than in the other grana fractions. The slow 2.3 ns component 

also showed a significantly larger amplitude in the margins than in either the BS or B3 fractions. 

This could be indicative of an increase in the amount of uncoupled antenna. 

Five components were also required to fit fluorescence decay kinetics of the stroma T3 

fraction, similar to the case of margins (Figure 2.6). Based on results from steady state 
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Figure 2.5. Decay-associated fluorescence emission spectra obtained from global analysis of 
picosecond fluorescent decay kinetics from the grana margin fraction. 
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spectroscopy (Figure 2.1) we expected this fraction to contain more PSI reaction centers. As 

anticipated, the contribution of PSI to the fluorescence decay was larger, thus allowing us to 

identify two distinct PSI decay components with lifetimes L5=60 ps and Ll=120 ps. The 120 ps 

component had a similar lifetime to the PSI! fast component from the grana fractions but its 

spectral shape was clearly indicative of PSI emission. Similar to what was observed for the 60 

ps component, the 120 ps component showed no changes upon closure of PSI! reaction centers. 

In our global analysis we, therefore, linked these two PSI components between the Fo and FM 

data sets through both amplitude and lifetime. Both the spectral shapes and relative amplitudes 

of the 60 ps and 120 ps components that emerged from fit of our data were very similar to the 

PSI decay components observed in isolated PSI-LHCI particles (27;40;41). The contribution of 

the PSI components confirmed an increased preponderance of PSI in the stroma lamellae as 

compared to the margins of the grana stack as seen in the fluorescence emission and absorption 

spectra (Figures 2.1, 2.2). The triphasic PSI! decay kinetics observed in the grana fractions and 

grana margins were not present in the T3 stroma fraction. Only two decay components were 

found to be sensitive to trap closure and they had lifetimes of 260 ps and 570 ps. Although a 

small amount of a fast 120 ps PSI! component may have been mixed with the trap closure 

insensitive 120 ps PSI decay component, its relative amplitude, as compared to the two slow 

PSI! decay kinetics, would be much smaller than that observed in the grana fractions. PSI! decay 

kinetics are clearly different and much slower in the T3 stroma membrane fraction than in the 

grana or grana margin fractions. The contribution of the very slow 2.6 ns component to the 

fluorescence decay of T3 particles was larger than in grana fractions but similar to grana margins 

which may be indicative of more energetically uncoupled ChIs in these regions. 

The Y 1 00 fraction, representing the purified stroma lamellae, showed the same two PSI 
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Figure 2.7. Decay-associated fluorescence emission spectra obtained from global analysis of 

picosecond fluorescent decay kinetics from. the purified stroma fraction YIOO. See materials 

and methods for details. 

95 



components as observed in the T3 stroma lamellae (Figure 2.7). The spectral shapes, relative 

amplitudes and lifetimes of these two components are very similar in both fractions and also to 

those previously determined in isolated PSI-LHCI particles (27;40;41). As found for the T3 

fraction, the PSII decay kinetics in the YIDO fraction showed no evidence ofa fast decay 

component. The two PSII associated decay components did, however, have even slower 

lifetimes, 340 ps and 87D ps, The very slow component was of similar amplitude to that observed 

in the T3 stroma lamellae. The YlOO fraction was thus characterized by significantly slower PSII 

decay kinetics as compared to the T3 fraction. The YIDO fraction also showed an increased 

contribution from PSI components, attesting to the increase in proportion of PSI complexes in 

the YIDD fraction. The analysis of this fraction completed the survey of PSI and PSII in the 

fractions; confirmed the increase in the PSI population, and revealed a slowing down of PSII 

kinetics when the sample origin moved from grana to stroma. In addition, the 

slower biphasic kinetics of PSII complexes in the stroma sharply contrasted with the triphasic 

kinetics in the grana supporting the idea of fundamentally different PSII populations in the grana 

as compared to the stroma with respect to charge separation and stabilization. 

PSII kinetic modeling. The global analysis of the fluorescence decay kinetics revealed 

considerable differences in the decay components associated with PSI!. Previous studies have 

shown that the migration time of excitation through the antennae complexes associated with PSII 

likely contribute to the overall fluorescent decay measured (22;42;43). Thus, differences in PSII 

fluorescence decay kinetics can originate from different auxiliary PSII antenna and/or 

differences in the rates of charge separation in PSI!. Since the measured differences in PSII 

antennae size were considerable between the grana and stroma derived fractions, a recently 
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c 

Figure 2.8. Schematic ofPSII antennae size and connectivity between antennae compartments in 
the BS(A), B3(B), Margins(C) and T3NIOO(D) thylakoid fractions used in the kinetic model of 
PSII. Excitation transfer pathways are represented by the bars connecting compartments. 
isolated LHCII trimers (42). 
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introduced kinetic model (22), which could account for the antennae size differences, was used 

to model PSII decay kinetics. 

The mean number of chlorophylls in the kinetic models for each PSII population was 

assigned as described above in the "PSII absorbance cross-sections" section. The resulting 

models are shown in Figure 2.8. In modeling of these "coarse-grained" representations of the 

PSII antennae system we assumed a uniform migration time of (17 psr1 between all 

compartments. This value of inter-compartment transfer time has been shown to describe BBY 

fluorescence decay kinetics within the context of this model (22) and is similar to the 

experimental value observed for excitation equilibration time in. 

The kinetic model used in our study is approximate, we do not expect to determine 

absolute values for charge separation rates with high accuracy. Nevertheless it is useful to 

compare results of our analysis of the kinetics with previous studies of isolated RC, PSII cores 

and BBYparticles. The rate ofQA reduction in our fractions varies from (243 psr1 in margins to 

(590 psr1 in YlOO. Holzwarth, et.al. (44) reported (350 psr1 for PSII core complexes. We found 

the same value in the grana core fraction, Table 2.3. The free energy difference between the RC 

excited state and the radical pair is 1036 cm-1 for grana core fraction. Broess et al. (22) reported 

2380 cm-1 for BBY preparations while in another study free energy difference between RC 

excited state and second radical pair was 930 cm-1 for PSII cores (44). Our estimation of the rate 

of charge separation in the grana core (2.5 psr1 is between the rate determined in (22) for BBY 

preparations (1.25 psr1 and the rate of charge separation determined by Holzwarth et al. (44) 

(5.5 psr1 for PSII cores and isolated reactions centers. We have observed that when the size of 

antenna is close to the size of PSII antenna in the grana stack, the model becomes transfer to the 

trap limited, kinetics become insensitive to increase of Kcs and alternative fits with higher Kcs 
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Table 2.3. Photochemical rate constants and QA reduction efficiency in each fraction as 

determined via kinetic modeling. 

Fraction 

BS 

B3 

Ma 

T3 

Y100 

Kcs, 
-1 ns 

403 

143 

33.8 

13.1 

7.7 

LtG, KsT, Efficiency of charge 
cm-1 (AJ -1 stabilization, (%) (BJ ns 

1036 2.82 92.8 

894 4.11 90.4 

690 3.46 73.2 

807 3.06 65.6 

597 1.7 49.6 
(A) _ Free energy difference between the excited state of the RC and the radical pair was 

calculated from the forward and backward rates of electron transfer. (B) - To characterize changes 
in efficiency of the reaction centers independently of the antenna size the number of pigments in 
the BS fraction was used for calculation in all fractions. 
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are possible. Thus, our analysis of the grana core fraction representing active PSII revealed 

reasonable charge separation rates comparable with previous studies. 

The rate constants for charge separation obtained by fitting fluorescence decay kinetics 

with the model are shown in Table 2.3. The results show a stark decrease in the rate of primary 

charge separation (Kes) and photosynthetic yield characterizing the differences observed when 

moving from grana to stroma. The free energy difference 

between the excited state of RC and the radical pair also shows a similar trend while charge 

stabilization (KsT) shows a modest relative increase in the Margins, T3 and B3 fractions as 

compared to BS. This increase in KST may be attributable to alternate forms of electron transfer 

and will be dealt with in the discussion section in more detail. 

The modeling results indicate that vast differences in PSII charge separation and by 

extension photosynthetic efficiency exist between the grana and stroma derived fractions. These 

results suggest that the grana core represents the only compartment in the thylakoid membrane 

with a highly functional PSII population, with the grana margins containing relatively inactive 

PSII while the stroma and Y -100 fractions contain PSII populations that are severely limited with 

respect to charge separation. If the relative antennae size of each PSII population is considered, 

the margins of the grana stack and stroma lamellae represent areas where the PSII population 

would provide a negligible contribution to overall photochemistry in the chloroplast. 

DISCUSSION 

Our low temperature steady state absorbance and fluorescence emission spectra are 

consistent with previous work describing the heterogeneous distribution of PSII and PSI within 

the thylakoid membrane (11;14;45). We found, as expected, a substantial increase in PSI 
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associated long wavelength absorbance and emission peaks and decrease in PSII associated short 

wavelength absorbance and emission peaks in the T3 and Y100 stroma membrane regions as 

compared to the B3 and BS grana fractions. Absorbance and fluorescence spectra of the grana 

margins appeared to be intermediate in character between the spectra of grana and stroma 

membrane regions. These results are consistent with previous characterizations of the isolated 

fractions by room temperature fluorescence induction, EPR spectroscopy and pigment analysis 

(13;14) 

We addressed the question of activity differences between PSII centers originating in 

different thylakoid regions by measuring the functional absorbance cross-sections and 

picosecond fluorescence decay kinetics of the fractions. Our single turnover flash saturation 

measurements determine the functional absorbance cross-section of PSII centers that are 

competent to undergo charge separation, reduce QA and generate variable fluorescence. Our 

results show the PSII population in the whole grana and grana core fractions to have the largest 

absorbance cross-sections. This is an expected result due to the clear association of PSII with 

LHCII in the grana (7;9;46;47). In contrast, PSII cross-sections in the grana margins and stroma 

thylakoid membranes (T3 fraction) were considerably smaller. The decrease in functional 

antennae size in both margins and stroma regions was more than threefold compared to the grana 

core consistent with a large scale dissociation of LHCII from PSII in the grana margins and in 

the stroma membrane regions. These results are consistent with recent models for PSII repair 

processes which propose the stripping off of LHCII as photodamaged PSII complexes leave the 

grana stacks for repair in the stroma membrane regions (48). However, when we attempted to 

model the decrease in antenna size of PSII between the grana core and margins and stroma 

membrane fractions based on recent proteomics data for the membrane fractions (18); it could 
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not match the experimental result unless we assumed that the PSII-LHCII supercomplexes had a 

much larger antenna size (253 ChIs per reaction center) than the largest isolated PSII-LHCII 

supercomplexes would be predicted to have (169 ChI per reaction center). A significant amount 

of "free" LHCII, existing as both trimers and monomers, is ubiquitous in non-denaturing gels of . 

grana thylakoids (47;48), and a recent proteomic study of the different thylakoid membrane 

fractions also showed a significant amount of "free" LHCII in the grana core fraction as well as 

in the margin and stroma fractions (18). Early studies calculated an effective antenna size for 

PSII in the grana of approximately 253 ChIs per reaction center based on the assumption that all 

of the LHCII present was energetically coupled to all of the PSII centers (37-39). Our 

absorbance cross section data is thus strong evidence that the "free" LHCII monomers and 

trimers observed in proteomic studies are functionally energetically connected to PSII in the 

grana cores, but not in the margins or stroma membrane regions. 

The measured absorbance cross section of PSII in the Y 1 00 fraction of the stroma 

lamellae was significantly smaller than for PSII in the margins or overall stroma membrane 

regions. This result was not predicted from the calculated absorbance cross-sections based on the 

heterogeneity ofPSII observed in the stroma and YIOO fractions (18). Until recently, the most 

highly disassembled type of PSII that could be observed using proteomics methods in the stroma 

lamellae had been identified as CP43-less PSII monomers (47;48). Recent work has shown that 

DlID2 reaction centers are also found in stroma lamellae and YIOO fractions (18). The 

preponderance of disassembled PSII's (CP43-less PSII cores and psn reaction centers) found in 

the YIOO fraction (18) is consistent with the idea that disassembly ofthe PSII core for purpose of 

repair may occur in the YIOO fraction. It has been previously shown that PSII repair specifically 

requires the removal of CP43 to allow access to the D 1 protein subunit for removal and 

102 



replacement (47); the physical reasons for this can be readily observed by considering the crystal 

structure of the PSII complex (3;4). Although additional patterns ofPSII disassembly may occur 

during the repair cycle in order to facilitate the replacement ofD2, psbH ,CP-47, CP-43 and even 

the entire PSII complex via degradation and de novo synthesis; the majority of PSII repair 

involves DI replacement (47;49). The smaller than expected cross-section ofPSII found in the 

Y -100 fraction may arise from some form of additional excitation energy quenching in this 

fraction. 

The PSII population in the core of the grana stack was characterized by triphasic 

fluorescence decay kinetics with lifetimes, relative amplitudes and spectral shapes very similar to 

those of isolated BBY particles (22). There were no detectable PSI decay kinetics in this fraction. 

The grana margins exhibited noticeably slower PSII kinetics (larger contribution of slower decay 

components) as compared to the grana core and whole grana fractions. Slower PSII decay 

kinetics can result from increases in the antenna size as exemplified by recent model studies of 

PSII-LHCII (22). However, the PSII population in the margins had a much smaller antenna size 

than the PSII from the grana core so the slower decay kinetics must reflect changes in charge 

separation and/or stabilization in the PSII reaction center. Our data thus indicate a decline in the 

primary electron transport capability ofPSII in the grana margins; a finding corroborated by a 

previous study showing that both donor and acceptor side electron transport in PSII is impaired 

in the margins of the grana stack (14). In the stroma derived fractions, the PSII-associated fast 

decay component is missing entirely and the remaining slow biphasic decay kinetics of PSII 

signify a drastic change in function, indicating a significant alteration of primary photochemistry. 

The slow biphasic decay we observe may be a characteristic of an over-riding mechanism 

responsible for inactivation of PSII in the stroma lamellae as part of the PSII repair process. 
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Such an inactivation has been proposed to be due to disassembly of the manganese cluster 

(13;14); with eventual near total loss of the cluster in the Y100 fraction. Supporting this idea was 

the fact that the YIOO fraction exhibited even slower PSII decay kinetics than the stroma 

lamellae. 

The differences observed in the kinetic modeling were pronounced; the difference 

between grana and stroma derived PSII populations Kcs was approximately 30 times, while a 

previous study on whole thylakoids determined the difference to be about 2.5 times (23). This 

disparity illustrates the utility of isolating fractions from each compartment; as the domination of 

the whole thylakoid PSII population by PSII originating in the grana core (Table 3) and the 

heterogeneity of PSII in whole thylakoids complicate the assignment of PSII components. In the 

case of the Y100 fraction, which only represents 1 % of the total PSII population; observation of 

this compartment would be nearly impossible in whole thylakoids. In our measurements, the 

grana margins were the most complicated, due to the emergence of PSI components and the 

heterogeneity of the PSII population (18). As such, it should be noted that the modeling of the 

grana margins and to some extent the whole grana; which includes a considerable margin 

fraction, should be examined with some reservation. However, the rate constants and efficiency 

of the grana margins remain reasonable as previous studies show the compartment as containing 

a PSII population with intermediate electron transfer facility (13; 14). In the case of the stroma 

derived fractions, PSII assignment of decay components appears critical since the proportion of 

PSII decreases and the emergence of a possible PSII/PSI composite component in the 100 ps 

range. However, we did model this possibility in the YIOO fraction; a reasonable assignment of 

20% of identified PSI components to PSII in our modeling yielded a Kcs of 23 and efficiency of 

62%; while assigning all fast decay to PSII in the Y100 fraction yielded a Kcs of only 41 and an 
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efficiency of 74%. Considering this, our assignment ofa low amplitude fast component to PSI in 

the margins, although reasonable, had a nominal effect on the modeling results. As stated in the 

results section, the KST was elevated in the B3, margins and T3 as compared to the BS fraction. 

This increase in stabilization rate may represent the loss of excitation through unconventional 

channels, as the margins represent the beginning of PSII assembly and inactivation in the repair 

cycle (13; 14). 

In summary, our data shows that PSII centers capable of generating variable fluorescence 

are only functionally connected to peripheral antenna within the core of the grana stacks and 

primary electron transport is highly modified in PSII centers found in the stroma membrane 

regions. Specifically, decreased primary charge separation, decreased free energy difference 

between the excited state ofthe RC and the radical pair, and decreased overall photosynthetic 

efficiency characterize the PSII population in the grana margins and stroma lamellae. The 

heterogeneity in PSII absorbance cross-sections and primary PSII activity of the thylakoid 

membrane fractions we observed supports existing models of compartmentalized PSII repair in 

chloroplast thylakoid membranes (14;47;48). 
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ABSTRACT 

Lichens, a symbiotic relationship between a fungus (mycobiont) and a photosynthetic 

green algae or cyanobacteria (photobiont), belong to an elite group of survivalist organisms 

termed resurrection species. When lichens are desiccated they are photosynthetically inactive, 

but upon re-hydration they can perform photosynthesis within seconds. Desiccation is correlated 

with both a loss of variable chlorophyll a (ChI a) fluorescence and a decrease in overall 

fluorescence yield. The fluorescence quenching likely reflects photoprotection mechanisms 

which may be based on desiccation induced changes in lichen structure that limit light exposure 

to the photobiont (sunshade effect) and/or active quenching of excitation energy absorbed by the 

photosynthetic apparatus. To separate and quantify these possible mechanisms we have 

investigated the origins of fluorescence quenching in desiccated lichens with steady state, low 

temperature and time-resolved ChI fluorescence spectroscopy. We found the most dramatic 

target of quenching to be photosystem II (PSII), which produces negligible levels of fluorescence 

in desiccated lichens. We show that fluorescence decay in desiccated lichens was dominated by 

a short lifetime, long wavelength component energetically coupled to PSII. Remaining 

fluorescence was primarily from PSI and although diminished in amplitude, PSI decay kinetics 

were unaffected by desiccation. The long wavelength quenching species was responsible for 

most (about 80%) of the fluorescence quenching observed in desiccated lichens, the rest of the 

quenching was attributed to the sunshade effect induced by structural changes in the lichen 

thallus. 

114 



Lichens are made up of two main components: the mycobiont, or fungal portion, and the 

photobiont, which may be algae or cyanobacteria. The mycobiont affords protection for the 

photobiont which supplies energy to the mycobiont in the form of reduced carbons. Lichens can 

contain several different photobionts, these may be different types of green algae, cyanobacteria, 

or a mixture of the two (Green et aI., 2002). It has, however, been observed that the green algae 

Trebouxia is the most abundant photobiont, and it is found in approximately 75% of Ii cheni zed 

relationships (Green et aI., 2002). Trebouxia species have been found living outside a mycobiont, 

however this is rarely seen. 

Lichens are poikilohydric, and can survive severe bouts of desiccation, which has 

profound effects on most physiological factors. This is manifested by a reduction in growth rates 

and reduced photosynthesis (Scheidegger et aI., 1995; Bukhov, 2004). Lichens are often found 

growing on exposed rocks or trees, where they may face high levels of irradiation while in the 

desiccated state (Gauslaa and Solhaug, 1999). This is particularly problematic as it has high 

potential to be damaging to the photosynthetic apparatus of the photobiont under conditions 

where metabolic activities, including repair mechanisms, are shut down (Gauslaa and Solhaug, 

1999). However, lichens are found in almost every ecological niche and thrive in extreme 

environments. They clearly possess the ability to survive dehydrated conditions while protecting 

the photosynthetic apparatus from light damage and can regain photosynthetic competency 

immediately upon hydration. 

With water as its electron donor, photo system II (PSII) is an obvious target of desiccation 

induced damage. PSII often suffers from light induced damage (Aro et aI., 1993; Melis, 1999; 

Ohnishi et aI., 2005) and even a low level of PSII activity would be hazardous when water is 

unavailable. PSII damage under desiccated conditions would also inhibit the recovery of lichens 
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upon rehydration as PSII repair requires large amounts of protein synthesis (Allakhverdiev et aI., 

2005) . As a result, lichens must render PSII largely inactive andlor minimize the amount of solar 

radiation reaching it to maximize their endurance while desiccated and their recovery upon 

rehydration. 

PSII activity is often assessed in vivo by the measurement of variable ChI a fluorescence, 

which originates from active PSII reaction centers. The minimal level of fluorescence (Fo) is 

associated with "open" reaction centers that have an oxidized primary quinone electron acceptor 

(QA). "Closed" reaction centers, where QA is reduced, exhibit a maximal yield of fluorescence 

(FM)' Exposure ofPSII to saturating light induces an increase in fluorescence from Fo to the FM 

level which is often used as a measure ofPSII activity. The difference between FM and Fo (FM-

Fo) is called variable fluorescence (Fv). 

In lichens, the desiccated state is characterized by a shutdown of photo system II (PSII), 

manifested by the lack ofFv. Desiccated lichens emit a level of fluorescence much lower than 

Foofhydrated lichens. Upon exposure to water, an immediate increase in fluorescence, back to 

Fo, is observed, followed by a resumption of normal PSII activity as indicated by a return ofFv 

upon exposure to saturating light flashes (Heber et aI., 2000; Green et aI., 2002). This ability to 

resume photosynthesis almost immediately after hydration of desiccated lichens is an adaptation 

to their particular cycles of wetting and dehydration. These cycles have been found to occur on a 

daily basis in some species (Gauslaa et aI., 2001). The ability to withstand exposure to light 

while desiccated is extremely important for these organisms. 

The decrease in fluorescence emission observed in desiccated lichens is likely 

associated with their phototolerance and could be caused by multiple mechanisms. One 

mechanism occurs primarily in the fungal thallus and involves structural changes which induce 
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changes in light-scattering and "shading" properties. During desiccation the algae aggregate and 

change shape to limit exposure to light, while at the same time the lichen thallus curls to 

minimize the available surface area and reduce light absorbance (Scheidegger et aI., 1995; de los 

Rios et aI., 2007). The thallus also offers some protection against photodamage through the use 

of light absorbing pigments (Gauslaa and Solhaug, 1999; Holder et aI., 2000). All of these 

mechanisms decrease the exposure of the photosynthetic apparatus of the photobiont to light and 

can be grouped as "sunshade" mechanisms. 

Protection from photodamage also exists within the photobiont. Many photobionts 

contain the carotenoid zeaxanthin which is involved in non-photochemical quenching (Demmig

Adams and Adams, 1990; Farber et aI., 1997). The existence of a zeaxanthin dependent 

quenching pathway in green algal containing lichens has been documented, however there is also 

an additional desiccation induced fluorescence quenching which is independent of zeaxanthin 

(Heber et aI., 2001; Heber and Shuvalov, 2005; Heber et aI., 2006). 

Previous studies have characterized the desiccated state of lichens using steady-state 

spectroscopy and pulse amplitude modulated (PAM) ChI a fluorescence measurements. While 

these methods provide information about the relative decrease in measured fluorescence and the 

spectral properties of the quenched and unquenched states, they are not able to separate 

decreases in emission induced by changes in the structural organization and/or light scattering 

properties of the thallus from mechanisms of fluorescence quenching within the photosynthetic 

apparatus. 

Based on the observation of an enhanced 720 nm fluorescence emission feature in 

desiccated lichens, it was previously suggested that a red-shifted form of chlorophyll acts as a 

putative long wavelength quencher (Heber and Shuvalov, 2005). However, long wavelength 
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emission can originate from a number of sources and there was no direct evidence that this 

particular long wavelength feature originated from a quenching species. In addition, any 

quantitative analysis of the contribution of various emitting species to overall emission in the 

hydrated and desiccated state is complicated by the pronounced changes in light-scattering 

properties and structural organization of the thallus. 

In the present study we investigate the mechanism of fluorescence quenching in 

desiccated lichens using a combination of time-resolved and steady-state fluorescence 

spectroscopy at room and low temperatures. This approach allowed us to separate and quantify 

the contributions of mechanisms which serve to minimize the absorption of light by the 

photobiont (sunshades) from mechanisms involving the dissipation of absorbed energy by the 

photosynthetic apparatus of the photobiont (quenchers). 

RESULTS AND DISCUSSION 

PAM measurements. 

A representative PAM trace of hydration is shown in Figure 3.1. As observed previously 

for other species of lichens (Bukhov, 2004; Heber et aI., 2006), the room temperature 

fluorescence yield of desiccated P. sulcata (FD) was low and there was no induction of maximal 

fluorescence (FM) with saturating multiturnover flashes of light. Hydration induced a marked 

increase in the dark-adapted fluorescence level followed quickly by the appearance of variable 

fluorescence in response to saturating light flashes. Variable fluorescence appeared within a few 

seconds of the addition of water. Most ofthe hydration induced changes were complete in 10 to 

15 minutes. Typically the fluorescence in desiccated lichens (FD) was about 5 times lower than 

118 



Fo in hydrated lichens. As discussed previously this change may arise from anatomical changes 

of the thallus, including changes in its light scattering properties as well as changes in excited 

state quenching within the photosynthetic apparatus of the photobiont. 

Steady-state room temperature fluorescence spectroscopy. 

Room temperature fluorescence emission spectra of P. sulcata are shown in Figure 3.2. 

Fluorescence spectra of desiccated samples showed an apparent PSII peak at 685 nm and a broad 

(720-750 nm) long wavelength emission peaking at 740 nm. Interestingly, the relative 

contribution of the 685 nm peak increases dramatically from its start as a relatively low 

amplitude shoulder in the desiccated sample to becoming the dominant peak in fully hydrated 

lichens. In addition, overall emission from both regions increases greatly in the sample during 

hydration. Similar results were reported by (Heber and Shuvalov, 2005) who identified a 720 

nm emission peak in P. sulcata under desiccated conditions. The wavelength discrepancy may 

be related to the enhanced spectral response in the red region characteristic of the CCD detector 

used in our study. 

Steady state 77 K emission spectra. 

Low temperature fluorescence emission spectra allow for the observation of ChI forms 

associated with PSII and PSI and were determined for desiccated and hydrated samples (Figure 

3.3). The 77 K emission spectrum of the hydrated lichen sample was similar to spectra of most 

green algae and shows characteristic contributions from two shoulders at 685 nm and 695 nm 

(PSII associated) and a peak at 720 nm (PSI associated). In desiccated lichens the overall 

fluorescence yield at 77 K was approximately ten times lower than in hydrated lichens and the 
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Figure 3.1. Pulse amplitude modulated (PAM) ChI a fluorescence kinetic trace following the 
hydration of a desiccated sample of P. sulcata. Time of addition of water is indicated by the 
arrow. Multiturnover saturating light flashes (50 ms duration) were delivered to the sample at a 
frequency of 1 Hz starting at time zero on the trace. 
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Figure 3.2. Room temperature fluorescence emission spectra measured during the hydration of 
desiccated P. Sulcata. Spectra were recorded every 15 seconds over a six minute hydration 
period. The excitation wavelength was 435 nm. 
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spectra in Figure 3 have been normalized to facilitate comparison. In desiccated lichens the 

contributions from PSII at 685 and 695 nm were barely discemable and the spectrum is 

dominated by the PSI emission at 720 nm. The longer wavelength band, peaking at 740 nm, 

observed at room temperature appeared largely absent from the 77 K spectra of both hydrated 

and desiccated samples. However, the PSI emission peak in the desiccated sample appears 

slightly red shifted which may indicate increased fluorescence under desiccated conditions from 

longer wavelength (> 720 nm) forms, as was observed for the room temperature fluorescence 

data. The apparently minor contribution of the long wavelength pigments to the low temperature 

emission spectra would be consistent with a quenching role. 

Room temperature time-resolvedfluorescence decay kinetics. 

To obtain a better understanding of the origin of fluorescence bands observed in the 

steady state spectra of the lichens, we measured the picosecond fluorescence decay kinetics of 

desiccated and hydrated P. sulcata (Figure 3.4). Hydrated lichens show decay kinetics that are 

typical of green algae and higher plants at both the Fo and FM states. The overall decay at Fo is 

much faster than at FM reflecting efficient photochemical trapping in open PSII reaction centers. 

FM decay is dominated by slow PSII components, contributed to by charge recombination in the 

absence of photochemistry, that are characteristic of closed reaction centers. The fluorescence 

kinetics are very different in desiccated lichens, and the decay at FD is dominated by much faster 

decay components than are observed in hydrated samples at either FM or Fo. This rapid decay 

demonstrates that a significant fraction of quenching in desiccated lichens arises from excited 

state lifetime shortening of pigments energetically coupled to PSII. Interestingly, the relative 

contribution and lifetime of a low amplitude slow decay component to the decay kinetics at both 
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Figure 3.3. Low temperature fluorescence emission spectra of hydrated and desiccatedP' 
sulcata. The spectra have been normalized to peak emission for comparison, the fluorescence 
yield of the desiccated sample was approximately ten times lower than the hydrated sample. 
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Figure 3.4. Fluorescence decay kinetics of desiccated P. sulcata (FD), hydrated samples 
with open reaction centers (Fo) and hydrated samples with closed reaction centers (FM) and 
instrument response function (IRF). Detection wavelength was 680 nm. 
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FD and Fo is the same, indicating that it originates from a small pool of pigments unaffected by 

quencher. 

To determine the origin of components contributing to the fluorescence decay, kinetic 

measurements were taken at 11 emission wavelengths covering the range from 660 nm to 760 

nm. The data collected at all detection wavelengths were analyzed with a model of parallel 

decaying compartments in order to determine the spectra of decay components and further 

explore the origins of desiccation induced quenching. The resulting decay associated spectra 

(DAS) are shown in Figure 3.5. Four decay components were required to describe the 

fluorescence decay kinetics at FD and FM and five at Fo (Figure 3.5). Of the five components 

contributing to decay at Fo, the spectral shape (peaks at 720 nm and 700 nm) and lifetimes of the 

two fast decay components (L\ = 40 ps and L2 = 90 ps) were indicative of PSI emission. We 

assigned the next two slower components (L\ = 300 ps and L2 = 640 ps), which had emission 

peaks in the 685 nm to 690 nm region, to PSII. The last slow decay component L5 = 2.1 ns with 

very low amplitude and peak in the 685 nm to 690 nm region was assigned to a small fraction of 

closed PSII reaction centers and/or uncoupled antenna. 

The components contributing to the decay of fluorescence at Fo (Figure 3.5) had DAS in 

the short-wavelength range (660-700 nm) which were similar to those previously studied in the 

free growing green algae, Trebouxia which also included decay components with lifetimes of 80 

ps, 300 ps, 600 ps and 2 ns (Wendler and Holzwarth, 1987). We resolved an additional short 

component (L5 = 40 ps) in the present study and assigned it to PSI. Fast decay components with 

similar lifetimes have been reported in recent studies of various PSI preparations from higher 

plants (Croce et aI., 2000; Ihalainen et aI., 2002; Melkozemov et aI., 2004) and PSI rich 
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Figure 3.5. Decay-associated fluorescence emission spectra obtained from global analysis 
of 407 nm laser induced picosecond fluorescent decay kinetics from the lichen P. sulcata under 
desiccated conditions (Fo), hydrated conditions with open centers (Fo) and closed centers (Fm). 
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thylakoid membrane compartments (Veerman et aI., 2007). Two distinct PSI decay components 

are thought to originate from the peripheral and inner PSI antenna correspondingly (Croce et aI., 

2000; Melkozemov et aI., 2004). It is noteworthy that in all ofthese previous studies the 

amplitude of the 40 ps component was larger than the 80 ps component, indicating a larger size 

of the inner PSI antenna; while in P. sulcata it is the another way round. This observation may 

indicate a different organization of the peripheral PSI antenna in this organism. There are also 

significant differences in the spectral shapes of the 40 ps and 90 ps components which may be 

indicative of a mixture of PSII and PSI contributions in the 90 ps component. 

Interestingly, although the DAS of the PSII components were similar to previously 

reported DAS in the range of 660-700 nm, they appeared to have unusual long wavelength 

contributions. It is well established that PSII emission in many organisms, including higher 

plants and cyanobacteria, has only one peak at 685 nm at room temperature. In the present study 

we observed a pronounced long wavelength emission peaking at 740 nm that had the same decay 

kinetics as fluorescence at 685 nm in both of the PSII decay components. This observation 

suggests that a novel long-wavelength pigment species is energetically coupled to PSII pigments. 

If this is the case then DAS components with the same spectral signatures are expected to also be 

observed in hydrated samples in the FM state and in the desiccated samples (FD) as well. 

Four components were required to fit the fluorescence decay kinetics of P. sulcata at FM. 

Only one PSI associated component was observed with a lifetime of 50 ps and an emission peak 

at 700 nm. This component is likely a mixture of the two decay components we observed at Fo. 

As expected, the closure of PSII reaction centers resulted in a pronounced slow down of PSII 

associated decay components. We observed two decay components with lifetimes of 1.48 ns and 

2.1 ns that had DAS which appeared to be the same as the 300 ps and 600 ps components 
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observed in the F 0 state. The appearance of peaks in both the characteristic PSII region of about 

685 run and in the long wavelength region from 720 run to 740 run strongly supports the idea that 

a long wavelength emitter is energetically coupled to PSII. We found that an additional 410 ps 

component was required to fit the data. The origin of this component is not quite clear. It 

resembles DAS ofPSII components, but its long-wavelength emission peak is shifted to 710 nm. 

It is known that PSII has complex decay kinetics at FM . For example, in a previous study ofthe 

algae Scenedesmus obliquus PSII decay kinetics were described by three components: 380, 1300 

and 2100 ps (Roelofs and Holzwarth, 1990) which are quite similar to our 400, 1480 and 2100 ps 

lifetimes. Therefore it is reasonable to suggest that 410 ps component at least partially arises 

from PSII as well. Origins of the enhanced emission of this component at 710 nm are not clear at 

present. 

The DAS of desiccated P. sulcata are dominated by two short lifetime components at 40 

ps and 80 ps. Both components exhibited shapes reminiscent of PSII components observed at 

both Fo and FM . However, the spectra were broadened as compared to PSII components most 

likely due to convolution with PSI components which would have similar lifetimes. The 

consistent spectral shape of the PSII DAS components observed at all three measured states 

indicates that the long wavelength pigment pool is energetically coupled to PSII regardless of the 

physiological state of the reaction centers. A 240 ps component of low amplitude was also 

observed in the desiccated sample with peaks at 685 nm and 720 nm. This component is 

somewhat similar to the 300 ps PSII component observed in the Fo DAS and may reflect a small 

fraction of relatively unquenched PSII. The relatively large contribution of the 720 nm peak to 

this component suggests some contribution from PSI, however the 240 ps lifetime is longer than 
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expected. There was also a very low amount ofa long lived component (1.1 ns lifetime) with 

significant short and long wavelength contributions which may arise from uncoupled antennae. 

Low Temperature Fluorescence Decay Kinetics. 

Low temperature fluorescence decay kinetics were measured to facilitate the 

identification of the quenching species. At room temperature the broad absorption and emission 

spectra of antenna chromophores make it possible for a quencher of relatively high energy to still 

efficiently quench emission from a broad range of emitters. However, at low temperatures only 

a long wavelength quencher would be able to decrease the fluorescence lifetime of low energy 

pigments. 

Assignment of DAS components at low temperature is complicated due to pronounced 

decay components arising from unidirectional energy transfer from higher energy to lower 

energy pigments that are mostly irreversible at 77 K. This is clearly observed in the short 

wavelength spectral region (680-730 nm) of the measured DAS in P. sulcata (Figure 3.6). The 

general trend in this spectral region is that shorter wavelength components have shorter lifetimes 

and the fastest lifetime component (20 ps) exhibits the shortest wavelength peak at 680 run. Such 

behavior is expected for systems where several long-wavelength forms are coupled to the bulk 

short wavelength pool. Similar features have been observed in PSII, PSI and LHCII of many 

other photosynthetic organisms where long wavelength pigment pools are not quenched and have 

long lifetimes at low temperature (Mullineaux et aI., 1993; Pals son et aI., 1995; Komura et aI., 

2006). However, the longer wavelength ChI forms of P. sulcata do not follow this trend. 

Interestingly, the amplitudes of the two shortest lifetime components (20 and 120 ps) increase 

again at wavelengths >730 nm and these components exhibit a large peak at 740 nm. Lifetime 

analysis showed that most of the steady-state fluorescence yield at 77 K originates from the two 
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Figure 3.6.77 K decay-associated fluorescence emission spectra obtained from global 
analysis of 407 nm laser induced picosecond fluorescent decay kinetics from the lichen P. 
sulcata under desiccated conditions. 
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slow (0.9 and 2.6 ns) components, associated with the long wavelength forms of PSI while the 

longest wavelength species have very short lifetimes, similar to those observed at room 

temperature. These results indicate that PSI is unquenched in desiccated lichens and support the 

assignment of a PSII associated low energy quencher as responsible for the long wavelength 

emission observed. 

CONCLUSIONS 

Photoprotection in dessicated lichens, "sunscreen" or excited state decay? 

The ability of lichens to survive severe desiccation while exposed to solar radiation is 

correlated with a large decrease in the yield of steady state ChI a fluorescence emission. 

Photoprotection associated with a decreased yield of fluorescence could arise from the action of 

a "sunscreen" type mechanism that decreases the amount of light absorbed by the photobiont 

and/or an excitation energy quenching mechanism that safely dissipates energy absorbed by the 

photosynthetic apparatus as heat. 

There are changes in the morphology of the thallus of lichens upon desiccation that 

increase light scattering and decrease the transmission of light to the photobiont. This 

"sunscreen" mechanism must contribute, at least to part, to the decrease in fluorescence 

characteristic of desiccated lichens. But how much, and is there another quenching mechanism? 

Based on the observation of a relative increase in the contribution of long-wavelength emission 

in fluorescence spectra of desiccated lichens it was previously suggested that low energy ChI 

forms may act as a quencher ofPSII (Heber and Shuvalov, 2005). Reliable identification of a 

quencher must be based on the lifetime of its excited state: an efficient quencher will have a 

short lifetime and be capable of fast energy dissipation. Increases in the contribution of long 
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wavelength emission to steady-state spectra are not necessarily related to quenching. For 

example, long wavelength species with peaks near 700 nm were observed previously in the 

fluorescence of aggregated LHC II at low temperature and were suggested to be involved in non

photochemical quenching of excitation energy in higher plants. (Horton et aI., 1991; Ruban and 

Horton, 1992). However, this postulate was later discarded because the decay lifetime of the 700 

nm species was found to be only slightly shorter (3.3 ns) than the lifetime of the bulk LHC II 

species (4 ns) (Mullineaux et aI., 1993). To date there has been no direct proof of an excitation 

energy quenching mechanism in desiccated lichens. 

Our steady state emission spectroscopy confirmed the relative increase in long 

wavelength ChI a fluorescence in desiccated lichens. We observed a somewhat broader emission 

than previously reported with a peak at 740 nm. In addition, our room temperature fluorescence 

decay kinetics revealed the presence of novel short lifetime components in desiccated lichens 

that were associated with both PSII emission and long wavelength emission. This is clear 

evidence for excited state energy quenching. Our data showed that long wavelength emission 

was also present in hydrated lichens at both F 0 and F m where its fluorescence lifetimes were 

identical to those of PSII. This important result indicates a tight energetic coupling between the 

long wavelength emitters and PSII antenna. In desiccated lichens we observe de-excitation of the 

bulk PSII pool with a rate constant of 25 ns· l
. This rate is almost 8 times faster than the rate 

constant for exciton trapping in active PSII species at Fo (3 ns· l
) (Roelofs et aI., 1992). It is clear 

that an excitation energy quenching mechanism is efficiently down-regulating PSII in desiccated 

lichens. 

How much do the two mechanisms, "sunscreen" and excitation energy quenching, 

contribute to the measured decrease in fluorescence yield in desiccated lichens? Fluorescence 
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yield changes measured by the analysis of steady state fluorescence emission spectra or with a 

pulse amplitude modulated (PAM) ChI a fluorometer will be affected by contributions from both 

of these mechanisms. In contrast, yield changes determined from an analysis of changes in the 

excited state decay lifetimes will only be influenced by excitation energy quenching. Comparing 

these two techniques allowed us to determine that most of the decrease in fluorescence emission 

was a result of excitation energy quenching within the photobiont. In all of our samples, less 

than 25 % of the observed fluorescence decrease in desiccated lifetimes arose from the 

"sunscreen" effect of desiccated thallus. 

Identification of the quenching species. 

Even though the room temperature decay data showed fast decay components at long 

wavelengths, it is not clear that the lowest energy emitters are indeed the origin of quenching. 

Due to the large overlap between the relatively broad absorbance and emission spectra of PSI! 

antenna pigments at room temperature, a quencher of intermediate or relatively high energy 

could also be responsible for the quenching observed at 685 nm and 740 nm in desiccated 

lichens. However, our low temperature fluorescence decay measurements showed that the 

fluorescence lifetime of the longest wavelength emitters remained short at 77 K, clearly showing 

the long wavelength emitting species as being actively involved in quenching. This is in contrast 

to "unquenched" PSI! in higher plants, algae or cyanobacteria where the longest wavelength 

emission at 77 K (695 nm) exhibits the longest decay lifetime (3.5 ns) (Komura et aI., 2006). In 

desiccated lichens we observed no long lived PSI! component at 695 nm at 77 K: more evidence 

that the quencher is coupled to PSI!. 
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The decay lifetime of the long wavelength (740 nm) quenching species at room 

temperature in desiccated lichens (40 ps) was much faster than the lifetime of the major decay 

component of PSII with open reaction centers (300 ps) indicating that the quencher can 

efficiently compete for excitation with open PSII reaction centers. Thus, the long wavelength 

quencher closely coupled to PSII identified in the present study is clearly capable of providing 

efficient down regulation of PSII in desiccated lichens and fast restoration of PSII upon 

rehydration. 

The composition and structure of the long wavelength quencher is unknown. Tight 

energetic coupling to PSII reaction centers implies that the red-shifted emission originate from a 

pigment pool located in the vicinity of PSI!. This could be either a group of pigments within the 

PSII core or a novel antenna pigment-protein complex specific to lichen photobionts. The key to 

the quencher is the desiccation induced shortening of its excited state lifetime. The mechanism 

by which this occurs is still unknown, but it could, in principle be quite simple, e.g. analogous to 

the mechanism proposed for non-photochemical quenching in CP24 and CP29 proteins by 

(Crofts and Yerkes, 1994). Formation of new energy levels is known to introduce thermal 

pathways of energy deactivation of chlorophylls (Beddard et aI., 1976). Desiccation-induced 

conformational change in the hypothetical long-wavelength antenna pigment-protein complex 

could allow certain chlorophyll to interact at a short enough range with neighboring chlorophylls 

or carotenoids to form exciton-coupled bands and thus form an efficient quencher. 

MATERIALS AND METHODS 

Sample preparation. 
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Parmelia sulcata was utilized for all measurements. Samples were collected on the 

campus at Brock University primarily off the tree species Robinia pseudoacacia (Black Locust). 

Lichen samples were taken from the north facing side ofthe trees at a height between 0.9 and 1.8 

m from the ground in an effort to control for any variables associated with spatial orientation. 

Steady-state and PAM spectroscopy. 

Room temperature fluorescence measurements were all obtained with the use of a 

standard pulse amplitude modulated fluorometer (PAM), (H. Walz, Effeltrich, Germany). The 

pulsed measuring beam had a peak wavelength of 660 nm. Unless stated otherwise, FM was 

determined by using 500 ms saturation pulses of white actinic light at an intensity of 4200 

/lmoVm2/s. Re-hydration of desiccated samples was achieved by placing the sample on a section 

of filter paper and adding distilled water to the filter paper. 

Fluorescence emission spectra were measured at 77 K with Triax-320 imaging 

spectrograph and back illuminated deep depleted nitrogen cooled CCD array (Jobin Yvon). 

Lichen samples assayed by this method were sandwiched between a glass slide and a purpose 

built sample holder. The lichens were hydrated while on the sample holder and then immersed in 

liquid nitrogen in the case of the 77K measurements. The excitation wavelength was 435 nm. 

Picosecond fluorescence decay kinetics. 

A single photon timing apparatus utilizing a picosecond pulsed diode laser was used to 

measure the kinetics of chlorophyll fluorescence decays (Vasil'ev et aI., 2002). Excitation 

pulses were delivered at 407 nm by a picosecond diode laser (PicoQuant, PDL 800-B), 54 ps 

FWHM. Chlorophyll fluorescence was measured by a Hamamatsu R-3809 micro channel plate 
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photomultiplier screened by a double monochromator. A single photon counting PC card 

(Becker & Hickl, SPC-730) was used for data collection. The instrument response function of 

the system had a width at half height of 68 ps. To maintain PSII reaction centres in the open (Fo) 

state samples were held in a rotating sample wheel (140 mm diameter, 500 rpm) and low 

measuring light intensities were used. P. sulcata lobes cut from a variety of colonies and 

desiccated in the dark for 24 hours were loaded into a groove near the periphery of the disk and 

held in place with a 140 mm petri dish cover. Averaged data was thus collected from a large 

number of samples (typically 50 lobes). The FM state was achieved by treating samples for 45 

min with DCMU (samples exposed to a 10 jJ.M solution of DCMU in water), slowing down the 

rotation rate to 0.1 rpm, and increasing the measuring light intensity. For all samples, 

fluorescence decay data were collected for 11 detection wavelengths between 660 nm and 760 

nm until 20,000 counts in the peak channel were attained. After lifetime data was collected from 

the desiccated samples, distilled water was added to the lichens while they were still held in the 

sample wheel. The lichens were allowed to hydrate fully for one hour in the dark before 

subsequent measurement at Fo and at FM. Fo and FM were considered to be obtained when 

further decreases or increases, respectively, of excitation laser intensity did not affect the decay 

kinetics. Fluorescence decay curves taken at all wavelengths were fit with the sum of 

exponential decay functions globally with the model of parallel decaying compartments as 

described previously (Vasil'ev et aI., 1998; Vasil'ev and Bruce, 1998). 
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ABSTRACT 

Various point mutations targeting the ligands of chromophores in the CP47 and Dl 

protein subunits were assayed for changes in PSII spectral properties and function. It was found 

that the Hl14Q mutant exhibited a blue-shifted 695nm fluorescence peak at low temperature, 

while various other point mutants including the 'linker' chlorophyll ligated H466Q and H469Q 

did not exhibit a shift in the 695nm peak. The Q130E mutant possessed a red-shifted Pheophytin 

Qy transition absorbance band as well as increased charge stabilization and non-radiative charge 

recombination rates. The increased rate of non-radiative charge recombination likely serves to 

protect PSII and is consistent with previous observations of 130E containing D 1 type 2 PSII 

centers resisting photoinhibition. Interestingly, higher plants use the 130E configuration and the 

fluorescence kinetics observed for the Q130E mutant approach those of higher plant PSII 

complexes at Fo. These results indicate that this single mutation is partially or perhaps even 

completely responsible for the previously observed attenuation of PSII photodamage in D 1 type 

2 substituted centers. An MD simulation of PSII was utilized and was able to reasonably predict 

the red-shift in the Q130E mutant Pheophytin Qy transition. 
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INTRODUCTION 

The varying light levels encountered by photosynthetic organisms and propensity for 

PSII to incur damage during operation (1-3) has resulted in the emergence of various 

mechanisms by which energy flow into the photosynthetic apparatus is regulated. In higher 

plants, complex mechanisms involving quenching of excitation energy are utilized, to ensure that 

PSII activity and excitation remain balanced (4). In cyanobacteria, a number of excitation energy 

related regulatory mechanisms are also present, such as blue light induced quenching (5), state 

transitions (6) and PBS quenching (7). However, in contrast to higher plants, cyanobacteria, such 

as Synechococcus PCC 7942, directly regulate PSII activity by alternating from one type ofDl 

protein to another, depending on light conditions (8). 

The two main varieties ofDl are known as type I(Dl:l) and type 2(D1:2), and are 

encoded by three genes, pshAI encoding D I: 1 while pshAII and pshAIII encode D 1 :2; the two 

isoforms are quite similar as the disparity in sequence identity amounts to lO% (9). Under high 

light conditions and/or elevated UV-B exposure Dl:2 is expressed and replaces Dl: I in the PSII 

population (10; 11). However, D I replacement is transient under high levels of visible light while 

excessive exposure to UV-B light results in the replacement ofDl for the duration of the 

exposure (11). Other forms of stress such as low temperature or anoxia also induce D 1 

replacement (12). PSII populations containing D 1:2 are resistant to photoinhibition, exhibit 

increased variable fluorescence, elevated oxygen evolution rates and appear ideal for high light 

conditions (10;13). Of the two forms ofDl, Dl:2 more closely resembles the amino acid 

sequence of the D 1 protein subunit present in higher plants (9; 11). 

Of the differences between D 1 : land D 1 :2, a particular mutation has been implicated as a 

crucial factor regarding the differences observed with respect to primary photochemistry (12; 14); 
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this mutation also represents a key similarity between D 1:2 and higher plant D 1. The mutation is 

the Q 130E substitution present in D 1 :2, the amino acid position ligates the D 1 pheophytin 

(D 1 :Ph) in the RC of PSII (15). The ligation takes the form of a hydrogen bond between the 

residue and Dl:Ph, and the Q130E substitution is thought to cause a weakening of this bond (16). 

Such modification of the hydrogen bond has been implicated in the alteration of spectral 

properties of the D 1 :Ph as well as causing the midpoint potential of D 1 :Ph to shift to a value 

closer to that observed in higher plants (16-18). These changes, particularly the shift in midpoint 

potential, cause the Q 130E mutant to exhibit a higher quantum yield of primary charge 

separation (19;20). The mutation also confers resistance to photoinhibition and has been 

observed to increase the rate of direct charge recombination from P680+QA - (14). 

The spectral properties of the cofactors and pigments present in PSII remains an area of 

intense interest in the field because of the associated functional implications with respect to 

primary photochemistry (21). Qy transitions in particular are important for energy transfer from 

pigment to pigment; and together with the orientation and location of each pigment determine the 

efficiency with which excitons are funneled to the reaction center (22;23). Previous research has 

implicated the chlorophyll ligated to the Hl14 residue in CP47 as exhibiting the most red-shifted 

Qy transition of any antennae chlorophyll in PSII as evidenced by a blue shift in the spectra of 

H114Q mutant PSII complexes (24). This chlorophyll is located in the periphery of the PSII 

complex and is likely of unremarkable contribution to the overall yield ofPSII relative to the 

other chlorophylls present (22). However, other studies based on hole burning data have 

implicated the 'linker' ChI a molecules which serve to excitonically link CP47 to the reaction 

center as the source of the red shifted features observed in CP47 at low temperature (25). The 

source of the red shifted spectral features originating from CP47 remains important to identify 
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because this information could potentially shed light on the spectral shifts of other chromophores 

in PSII by providing a verifiable example of such a shift and absolute energy level(Qy transition) 

of this specific chlorophyll. If the relationship between spectral shift and local protein 

environment can be delineated then the spectra distribution of all the chlorophylls in PSII and in 

other pigment protein complexes might be derived using computer simulations. 

In the present study, Q130E mutant Synechocystis PCC 6803 was assayed for changes in 

PSII absorbance and fluorescence decay kinetics. We found that the Q130E mutant exhibited a 

red shift in the Qy absorbance band and global analysis of time resolved fluorescence kinetics 

revealed faster PSII kinetics in whole cells were consistent with increased rates of non-radiative 

charge recombination of the primary radical pair. In addition, the Hl14 ligated chlorophyll was 

confirmed as the most red-shifted chlorophyll in PSII. 

MATERIALS AND METHODS 

Growth of Synechocystis sp. PCC 6803 strains. Cultures were maintained on BG-ll 

plates containing 5 mM glucose and 20 /lM atrazine and, when required, chloramphenicol and/or 

kanamycin was present at a concentration of 30 /lg/mL and 50 /lg/mL respectively; this was the 

case in both solid and liquid BG-ll media. The solid media was supplemented with 10 mM 

TES-NaOH (PH 8.2) and 0.3% sodium thiosulfate and liquid cultures were grown 

photo autotrophic ally unless otherwise noted. Cells were grown under a continuous illumination 

of30 /lE m-2 
S-l and the temperature in the growth chamber was 30°C. The Synechocystis sp. 

PCC 6803 strain used in this study was the glucose-tolerant strain from Williams (26) and this is 

referred to throughout as wild type. 

Steady state spectroscopy. Absorption spectra were measured at 10 K using a back 

illuminated deep depleted nitrogen cooled CCD array (Jobin Yvon) and a helium cryostat 
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(Advanced Research Systems, Inc., model DE-202). Samples were re-suspended in 50 mM 

HEPES buffer, pH 7.6, containing 0.1 M sorbitol, 5 mM MgCh, 5 mM NaCl, and 60% glycerol. 

Emission spectra were measured at 77 K with Fluorescence emission spectra were measured at 

77 K with Triax-320 imaging spectrograph and the same detector. Chlorophyll concentration of 

less than 5 /-tg/ml was used in fluorescence measurements. 

Molecular Dynamic Simulation of PSII. The MD simulation of PSII was performed as 

described in (27), with the AMBER-8 package (University of Cali fomi a, San Francisco, CA) of 

the NAMD program (28). While quantum calculations were performed using the GAUSSIAN-98 

(Gaussian, Wallingford, CT) package and ab initio Qy transitions were calculated using the 

single excitation configuration interaction method (CIS). The molecular visualization program 

VMD(29) was also utilized. 

The simulation consisted of the PSII complex without the 0, U and V subunits existing in 

a lipid bilayer with PSII associated lipids and water molecules also present. Point mutations were 

inserted into the simulation by editing PDB files so as to replace the atoms differing between the 

amino acids in question, performing energy minimization on the substituted amino acid, and then 

on the entire system and finally raising the temperature to 300K over a time period of 200ps. The 

system was equilibrated for 500ps and then four sets of single point excited state calculations 

were performed for each mutation at an interval of 500ps. Each set consisted of 240 single point 

excited state energy calculations at an interval of 5ps. The system used for the excited state 

energy calculations included acetamide and acetic acid which were used to represent Gin and 

Glu residues respectively. The acetic acid group was protonated as Poisson-Boltzmann 

calculations on the D I-Glu 130 mutant indicated that this was the case for the residue when 

present in the local protein environment of the PSII reaction center. 
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Fluorescence decay kinetics. Fluorescence decay kinetics were measured with dark

adapted whole cell cultures at a ChI a concentration of 10 /lg/mL using the single photon timing 

apparatus previously described (30-32). The 650 nm picosecond pulsed diode laser (Picoquant, 

Berlin, Germany) used for excitation was operated at 10 MHz. For each measurement a 200 mL 

sample was circulated at a flow rate of ~4 mL S-I. The detector was a Hamamatsu R3809 

microchannel plate (Hamamatsu, Japan). Decay data was collected in 4096 channels over 50 ns 

with a Becker & Hickl SPC-630 single photon timing card (Berlin, Germany) in a Pentium Pc. 

Decay data was collected at Fo from dark-adapted samples and Fm from preilluminated samples 

in the presence ofDCMU as described in (32). 

Global lifetime analysis. Global lifetime analyses of fluorescence decays at multiple 

emission wavelengths were done as described previously (32). The detection wavelength range 

was 660-720 nm taken at 10 nm increments. All programs used for data manipulation and global 

analysis were written by Sergei Vasil'ev. 

RESULTS 

Low temperature fluorescence emission spectra. In order to confirm the results of a 

previous study (24) that showed a blue-shift in the characteristic PSII 695nm fluorescence peak, 

a low temperature fluorescence emission spectrum of the H114Q cells was collected. The results 

are displayed in both Figure 4.1 and 4.2 which show the shoulder/peak at 695nm in the wild-type 

emission spectrum had been blue-shifted in the H114Q mutant cells by ~3nm. This shift suggests 

that the chlorophyll ligated to this histidine in CP47 is the source of the 695nm fluorescence peak 

observed at 77 degrees Kelvin. 

Low Temperature absorbance spectra. Since the Q130E mutation had been previously 

shown to red-shift the Qy absorbance band of the D 1 :Ph (15), the effect of the mutation on the 
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Figure 4.1 Low temperature fluorescence emission spectra of wild-type (WT) and H 114Q 
Synechocystis sp. PCC 6803 cells using an excitation wavelength of 590nm. 
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Figure 4.2 Low temperature fluorescence emission spectra of wild-type (WT) and Hl14Q 
Synechocystis sp. PCC 6803 cells using an excitation wavelength of 435nm. 
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Qy band was assessed by obtaining 10K absorbance spectra of isolated thylakoid membranes. 

The results shown in Figure 4.3 show a distinct change in shape in the spectra, as the shoulder 

observed at 671nm becomes more prominent and the peak at 679nm was red-shifted by ~0.6nm. 

These results are consistent with a change in the Qy absorbance band of the D 1 :Ph, specifically 

the aforementioned red-shift. However, the red-shift reported in the previous study was from 

685.6nm to 686.9nm for the Dl:Ph (15). This 1.3nm shift represents the shift for the pheophytin 

only and is insufficient to explain the ~0.6nm shift in the absorbance peak of isolated thylakoid 

membranes, which include both PSII and PSI associated chlorophylls. The shape of the shoulder 

at 671nm also indicates there has been a loss of absorbance between the 671nm shoulder and the 

679nm peak. The difference spectra shown in Figure 4.4 corroborates these qualitative 

observations as the roughly Gaussian shaped negative component at ~675nm and positive 

component at ~685nm indicate at least a 2nm red-shift of D 1 :Ph present in the Q 130E mutant. 

This was an interesting finding as the D2:Ph has been previously implicated as possessing a Qy 

absorbance band centering at 670nm and the Dl:Ph exhibiting a Qy absorbance band at 681nm 

(33); thus ~680nm is a plausible assignment for Dl:Ph. In addition, the relative area displaced as 

shown in the difference spectra corresponds to a ratio of approximately 179 chlorophyll pigment 

molecules per D 1 :Ph and suggests a PSII:PSI ratio of ~0.66; which is within established 

parameters for cyanobacteria cells (34). 

Molecular Dynamic Simulation of PSI/. The Q130E point mutation affords an 

opportunity to model subtle changes in the properties of D 1 :Ph which result in gross alterations 

of PSII spectral properties/photochemical function. In order to facilitate such modeling a 

molecular dynamic(MD) simulation ofPSil (27), was utilized in conjunction with ab initio 

calculation of the Qy transition (see methods). The Q130E ligated Ph was red shifted by 2.18 
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Figure 4.3 10K absorbance spectra of wild-type and Q130E Synechocystis sp. PCC 6803 isolated 
thylakoid membranes. 
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Figure 4.4 Difference spectra obtained by subtracting Q130E 10K thylakoid membrane 
absorbance spectra from WT. 
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nm, which was consistent with the values reported previously in the literature (15) as well as that 

reported in the present study. 

Fluorescence decay kinetics. The status of the Q130E mutant as a key factor affecting 

PSII photochemistry through altering the potential associated with the ligated pheophytin (16-

19;35;36) rendered the mutant highly interesting with respect to PSII kinetics. For this reason, 

time resolved fluorescence measurements were carried out on the Q 130E mutant. 

The results displayed in Figure 4.5 and Figure 4.6 both show that the Q 130E mutant 

displays faster decay kinetics than the wild-type cells. This data, considered in isolation, suggests 

that the yield of primary photochemistry was substantially elevated in Q 130E mutant cells. 

Global lifetime analysis. In order to confirm PSII as the origin of the faster kinetics 

observed and to attempt to resolve the photochemical process inside PSII that were altered by the 

Q 130E substitution, global analysis of the fluorescence decay kinetics was performed. The 

results are displayed in Figure 4.7 and 4.8, under both Fo and Fm conditions a ~200ps component 

which we had previously identified as a PSII fluorescence decay component present in intact 

Synechocystis pee 6803 cells (37;38) was observed. Similarly, under Fo conditions a second 

characteristic PSII component associated with intact Synechocystis pee 6803 cells was also 

present in the form of a 473ps component for the wild-type and 762ps component for the Q 130E 

mutant. This component was of a lower relative amplitude as compared to the -200ps 

component and of a longer lifetime in the Q 130E mutant. This component can be reasonably 

ascribed to PSII(38;39), specifically to PSII charge recombination. The longer lifetime and lower 

amplitude of this component in the Q130E mutant cells indicated that radiative charge 

recombination in the Q 130E mutant is of a lower rate and population. Since the apparent 

quantum yield of PSII was higher in the Q 130E mutant, the lower population of charge 
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Figure 4.5 Fluorescence decay kinetics of wild-type and Q130E Synechocystis sp. PCC 6803 
cells at Fo. Detection wavelength was 680 nm and excitation was 650nm. 

154 



C/) -C 
::I 
o 
() 

"0 
Q) 

.!:::! 
cti 
E 
I.-
o 
Z 

1 

0.1 

0.01 

3 6 

Time (ns) 

9 

Figure 4.6 Fluorescence decay kinetics of wild-type and Q130E Synechocystis sp. PCC 6803 
cells at Fm. Detection wavelength was 680 nrn and excitation was 650nrn. 
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Figure 4.7 Decay-associated fluorescence emission spectra obtained from global analysis of 650 
nm laser induced picosecond fluorescent decay kinetics from wild-type (A) and Q130E (B) 
Synechocystis sp. PCC 6803 cells at F o. 
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recombination was likely due to increased rates of charge stabilization or increased non-radiative 

internal conversion (12), possibly both. Certainly the non-radiative internal conversion could be 

a result of non-radiative charge recombination. Interestingly, the apparent decreased rate of 

radiative charge recombination indicates that both forms of recombination occur along the same 

pathway. Although the total rate of charge recombination might be higher, the rate for radiative 

appears lower and yields a longer lifetime in this analysis because only radiative recombination 

is measured. Longer lifetime components, 1414ps in WT cells and 1602ps in the Q 130E mutant 

were also present but with nominal amplitudes. These components likely included both 

decoupled PBS and closed PSII centers. 

The ~30ps component in the WT cells at both Fo and Fm can be attributed to PBS 

components due to the rise component at ~685nm and also includes PSI components as 

evidenced by the peak observed at ~ 700nm. In the WT this component exhibits a negative peak 

at 680nm; suggesting a rise component attributable to exciton transfer from AP to the APE and 

perhaps also transfer from the APE to ChI a populations. However, in the Q130E mutant cells the 

fastest component was of a longer lifetime exhibiting 78ps and 98ps lifetimes at Fo and Fm 

respectively and also was of a different shape. Interestingly, the shape of the component is 

relatively unaffected by trap closure in the WT cells, while the Q 130E mutant cells exhibits a 

noticeable shape change roughly consistent with the loss of a Guassian shaped peak at ~685nm 

at Fm. This suggests that a novel PSII component at ~90ps is present in the Q130E mutant when 

the PSII centers are open. Interestingly, higher plant PSII exhibits a ~ lOOps component as well 

as the aforementioned ~200ps and ~600ps PSII components observed in the PSII rich thylakoid 

fractions studied in Chapter 2 of this thesis and also in previous studies (40). It appears that the 

Q 130E mutation changes the kinetics of the open PSII centers to resemble the kinetics observed 
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in higher plants (Figure 4.9); as the ~ lOOps component observed in both the PSII rich BS 

thylakoid fraction from Chapter 2 of this thesis and BBY preparations (40) appears to emerge in 

the Q130E mutant. 

The results under Fm conditions were similar as the 650ps component for the wild-type 

was again of a larger amplitude relative to the ~200ps component than the 897ps component of 

the Q130E mutant. The trend was akin to the difference between the wild-type 1473ps 

component and Q 130E 2286ps component; which likely represent charge recombination related 

components in closed PSII centers. Interestingly, the longer lifetimes of these components in the 

Q 130E mutant reflect the aforementioned decreased recombination rates but the lower amplitude 

cannot be explained via charge stabilization. PSII complexes do not appreciably undergo charge 

stabilization under Fm conditions, particularly in this case, when DCMU is used to block the 

electron transport chain at the QB binding pocket. The lower amplitude of these components 

suggests that the radical pair in the Ql30E mutant is more likely to be internally converted via 

non-radiative internal conversion. Again, as was the case under Fo conditions, the data would be 

consistent with non-radiative charge recombination and would presumably contribute to the 

resistance of D 1:2 substituted PSII to photoinhibition. 

DISCUSSION 

The observed blue-shift of the 695nm peak in the Hl14Q mutant was in agreement with 

that reported for a PSI-less and APC-less cell line possessing the same mutation (24). However, 

previous research in the field based on hole burning data had indicated that the 'linker' 

chlorophylls were the source of this fluorescence peak (25). This assertion included the idea ofa 

lower energy charge separated state of P680, specifically in the ~ 730nm range, and thus indicates 

that the so called 'trap' chlorophyll(s) emitting at 695nm is not a trap at all but a primary site of 
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energy transfer. At low temperature, PSII centers would be essentially in a closed state and thus 

energy transfer would be effectively slowed down at the RC allowing for the high yield of the 

695nm peak. This model, as presented in the literature (25;41) is both plausible and consistent 

when considered with the assumptions associated with the argument. However, the data obtained 

in this study remains difficult to reconcile with this model of PSII exciton transfer. The mutation 

is a single substitution and PSII light harvesting function in the H114Q mutant appears relatively 

unaffected with the exception of the shift observed in the 695nm fluorescence peak at 77K. It is 

generally known that the introduction of point mutations is capable of impairing PSII assembly 

and assembly is indeed marginally impaired in the H114Q mutant (24). However, a total of five 

other point mutations to chlorophyll ligands (HlOOQ, H455Q, H466Q, H469Q and H198Q) were 

assayed for the presence of fluorescence shifts in the 695nm peak; without any discemable 

differences identified (data not shown). Thus, from the data presented in the present study it 

appears unlikely that differences in assembly caused the observed shift in the 695nm peak in the 

H114Q mutant. It should also be noted that the data implicating the H114 ligated chlorophyll as 

the most red shifted in the complex might have useful applications in computer simulations of 

PSII(22;42) as the distribution of excited state energy levels has important implications when 

modeling exciton transfer. 

Previous studies have identified the Q130E mutation as perhaps the most important 

difference between PSII type 1 and type 2 reaction centers in cyanobacteria in regards to 

primary photochemistry (8; 1 0; 15). The present study corroborates these ideas as this single 

mutation significantly alters PSII photochemistry. In particular, the kinetics of open PSII reaction 

centers begin to resemble those of higher plant centers; illustrating the significance of the 

mutation in relation to PSII kinetics. If using prevailing models ofPSII primary photochemistry 
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(23;43;44) as a basis for the analysis, charge recombination rates appear to be decreasing in 

addition to a marked reduction in the population of the charge separated state in the Q130E 

mutant. However, as stated in the results section, non-radiative recombination of the primary 

radical pair is also capable of explaining these results. It has been previously reported that the 

shift in Em of the Ph could conceivably increase the rate of non-radiative charge recombination 

(12); which might be accomplished by both increasing the rate of charge recombination overall 

and/or decreasing the probability of triplet state formation upon charge recombination. This 

pathway would aid in explaining the apparent resistance of the Q130E substituted PSII 

complexes to photodamage as P680+ would be effectively quenched by such recombination. 

This is important because a major mechanism ofPSII damage is caused by inactivation of the 

manganese cluster of the OEC; effectively blocking donor side electron transport and causing an 

increase in highly oxidizing P680+ in the PSII population. The non-radiative recombination 

would also change the intrinsic ratio of singlet to triplet states that occur as a result of 

recombination itself, thereby further decreasing the rate of damage. It should also be noted that 

the differences in charge recombination were much more pronounced at F 0 as compared to F m. 

Since charge stabilization does not occur at an appreciable level at Fm the results suggest an 

increased rate of charge stabilization in the Q 130E mutant; although it is also possible that the 

presence of charges in the electron transport chain under Fm conditions alter the kinetics 

differentially in the Q130E mutant as compared to wild-type cells. 

The MD simulation ofPSII was of utility in the present experiment as the simulation did 

show a red shift in the Qy transition of the ligated pigments in the Q 130E mutant. This 

simulation represents a remarkably comprehensive model with membrane, water molecules and 

the PSII complex present and the electrostatic environment inside the protein was assayed for 
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protonation states in the immediate vicinity of the mutation. Since the point mutation was located 

deep within the protein the Poisson-Boltzmann based method for titrating the proimal amino 

acids was used to render the Qy transition calculation both more accurate and representative (45). 

Looking to the future, the protonation states of various amino acids and their effect on the 

pigments in PSII may yield additional insights into the importance of various conserved residues 

and related motifs. It is also conceivable that amino acids which are located at a distance 

exceeding that which would directly affect cofactors or pigments might cause a 'chain' of 

changed protonation states that do influence the local protein environment. However, at the 

present time the computing power required to achieve this remains prohibitively high. 

The use of protonation state calculations represents a single step in the incremental 

improvement that is a key element when utilizing such a simulation, with the ultimate goal being 

to reproduce results from a variety of sources. Provided the shifts in the Qy transitions observed 

can be reproduced through spectroscopy, the next logical step would be to model the effect on 

light harvesting efficiency particularly in the case of the Q 130E mutant. Such a method would 

include the aforementioned protonation state calculations and use the empirical equation known 

as "Dutton's Ruler" as reported in the literature previously (27). 
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CONCLUSIONS AND IMPLICATIONS 

PSII Repair is an Overriding Consideration in the Structure of the Complex 

The investigations of the structures and related processes during this thesis were 

performed in order to delineate the link: between PSII structure and function. Structures that were 

investigated included the PBS, a long-wavelength quencher and various states of PSII 

disassembly and/or inactivation as related to compartmentalized repair as well as PSII complexes 

containing point mutations to specific ligands of co-factors/pigments. Although the structures 

and processes studied were in many ways disparate, in each Chapter the results illustrate the 

importance of PSII repair as a factor in the structure of the complex and associated antennae. 

In Chapter 1, we showed that the deletion ofPsbU resulted in the PBS decoupling from 

PSII, likely a result of the increased rate of inactivation of the OEC in the mutant (1). This 

decoupling of the PBS would serve to protect PSII from further damage by lowering the 

excitation energy flowing into the complex from the PBS. In Chapter 2, the importance ofPSII 

repair was outlined explicitly, with the compartments of the thylakoid membrane showing the 

extent of coordinated and compartmentalized PSII repair. Certainly, it can be surmised that the 

superstructure of the thylakoid membrane, with the grana stacks and intervening stroma might 

exist in large part to facilitate such compartmentalized repair. In Chapter 3, drastic and novel 

quenching via a long wavelength antennae appear to be primarily responsible for the resistance 

of desiccated Parmelia sulcata to PSII damage. This quencher is so important that it was found 

to be present and coupled to PSII under all conditions, apparently serving as both auxiliary 

antennae and quencher as the conditions dictate. In Chapter 4, the Q130E mutation, which 

represents the key difference between Dl:l and Dl:2, apparently increases the rate of non

radiative decay of the radical pair. This increase in the rate of non-radiative charge 
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recombination serves to decrease the rate of photodamage to PSII and is at least partially 

responsible for the diminished photoinhibition observed in D 1:2 substituted PSII centers. This 

change in electron transfer kinetics might well reduce the overall quantum yield of primary 

photochemistry, while at the same time allowing for greater overall production via attenuated 

damage rates. 

In all the investigations presented in this thesis, PSII repair was repeatedly shown as a 

key factor when considering the structure of PSII and associated complexes as well as the 

interactions of these elements. Even structural components endemic to PSII inthe reaction center 

were subject to these considerations, with the Q130E mutation appearing to be an adaptation 

serving to reduce the rate of damage. This is an important point since the high quantum yield of 

PSII(>90%) is often cited as a measure ofPSII efficiency (2;3). However, the rate ofPSII 

damage and thus repair is high and the overall 'economics' of photosynthesis appears to be 

heavily dependent on this. PSII repair is also a key factor in the evolution of PSII and related 

elements and structures, such as quenchers, thylakoid membrane ultrastucture and auxiliary 

antennae. Thus, it can be concluded that understanding the link between structure and function in 

PSII will ultimately require that the PSII repair system be delineated in detail. If the PSII repair 

system is well defined this will facilitate the identification of structures in PSII or those related to 

the complex that are present to reduce the rate of damage or to facilitate repair. 

Regulation of PSII is of Paramount Importance 

PSII efficiency can be expressed by the quantum yield of primary photochemistry within 

the context of a fully functional complex and this model of PSII is represented in many 

simulations and explanations present in the literature (3-6). Certainly, the present thesis 

expounds on these ideas with the utilization of models which include quantum yield within the 
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context ofa single representative fully functional complex (7). The yield of primary 

photochemistry is an integral part of the thought process and invariably the importance of each 

component in PSII is placed in this context. However, the 'economics' of photosynthesis and 

particularly PSII function are not limited to the quantum yield of primary photochemistry. The 

previous section outlined the importance of PSII repair/damage which is largely a matter of 

regulation. There are other reasons for regulation besides PSII repair based considerations, such 

as balancing the activity of PSIIIPSI or optimizing the absorbance profile of the photosynthetic 

apparatus for existing light conditions. The regulation of PSII can be performed via alteration of 

the complex itself or through methods that do not require modification of PSII structure. This has 

led to probable compromises in the structure of PSII between the efficiency of primary 

photochemistry and regulation. As well, the ability of Eukaryotic photosynthetic organisms such 

as higher plants to regulate PSII using external elements shows that supporting elements such as 

antennae/quenchers and even the ultrastructure of the thylakoid membrane are of comparable 

significance to the structure of PSII itself. 

Chapter 1 showed that the PBS PSII coupling was disrupted by the luminal side protein 

subunit deletion ofPsbU, it is probable that this disruption was due to the increased chance of 

inactivation of the OEC (8). PBS decouples from PSII with an inactive OEC to protect PSII from 

damage, this also occurs under high light conditions along with PBS quenching (9). From this 

data it becomes clear that a key element in PBS function is to not only supplement PSII light 

harvesting capacity but also to closely regulate excitation energy influx into the complex. State 

transitions balance the excitation energy between PSII and PSI but the PBS must also be able to 

rapidly energetically decouple from PSII complexes. Therefore, this might factor into the 

structure of both the PBS and PSII, possibly competing with the demands of quantum yield of 
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the PBS-PSII supercomplex. It is conceivable that the stromal surface ofPSII has been optimized 

to facilitate the PBS-PSII postulated weak charge-charge interactions(10) for instance. Although 

these considerations are reasonable there remains the issue of the high yield of PSII primary 

photochemistry, which has been cited as being >90% (3;11). Such a highly efficient process 

might bring into question whether or not there exists any significant compromise between 

quantum yield of primary photochemistry and regulation, or if the small differences in quantum 

yield implied by such compromises would be significant enough to affect selection during 

evolution. It does appear that within the context of the existing structure of PSII, the most 

significant pigments with respect to energy transfer have orientations that are optimized for 

efficiency and this efficiency gain is on the order of only 0.3-1 % (11). In addition, chlorophylls 

key to exciton transfer are conserved in PSII and PSI (2). Considering the modest increase in 

quantum yield conferred by such chlorophyll orientations the existence of compromises between 

regulation and quantum yield seems likely. 

In Chapter 2, the compartmentalized repair system showed the significance and extent of 

PSII heterogeneity resulting from repair in higher plants. Interestingly, higher plants contain PSII 

complexes that are remarkably similar to cyanobacteria and the repair strategy is essentially 

unchanged: D 1 replacement (12). It is interesting to note that higher plants use their larger gene 

complement and metabolic/structural complexity to provide an array of supporting elements for 

PSII, both logistical as in the case of compartmentalized PSII repair and operational with respect 

to PSII quenching and light harvesting. For instance, Chapter 2 showed that the antennae size of 

PSII indicated that LCHII elements in the grana stack acts at least partially as a pool of antennae 

that is coupled to the pool of PSII complexes effectively maximizing the effective antennae size 

of the complexes. The superstructure of the thylakoid also facilitates the compartmentalization of 
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PSII repair, as damaged complexes can be moved from the grana stack to ensure that the PSII 

present in the stack is for the most part functional and activated. These supporting elements and 

mechanisms used by higher plants combined with the similarity of PSII in higher plants and 

cyanobacteria suggest that it is more feasible for the evolution of ancillary strategies to enhance 

or modify PSII function rather than to modify the PSII complex. Of course, higher plants do 

possess a longer generation time and do not exhibit the mutation rates that cyanobacteria or their 

progenitors would likely have possessed and so the development of novel genes or modification 

of complex enzymes such as PSII would be limited. However, no matter the reason for the 

conservation of PSII genes in higher plants the fact remains that PSII light harvesting is highly 

dependent on the regulation of PSII activity independent of the structure of the complex. It seems 

that higher plants essentially possess conserved D 1:2 protein, apparently using the most damage 

resistant PSII complex available. Then, instead of modifying the complex for regulatory 

purposes as cyanobacteria do, the progenitors of higher plants evolved elements independent of 

the structure of PSII to serve the same purpose. This is interesting because this essentially means 

that the same or at least similar results can be obtained by directly altering PSII structure or 

through indirect regulation. This suggests that the supporting elements involved, whether it be 

membrane structure, repair chaperons or quenchers of PSII are in at least some cases tantamount 

to the structure ofPSII itself in regards to primary photochemistry. 

In Chapter 3 and Chapter 4, PSII light harvesting activity was shown to be heavily 

modified by quenching, in the case of the lichens an external quencher is probable while the 

quenching of PSII in the Q 130E mutant was a result of a modification to PSII. This echoes the 

assertions outlined in the previous paragraph: that PSII primary photochemistry can be modified 

by changes to PSII or to supporting elements. The mechanisms are different, for the long 
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wavelength quencher in lichens it appears that excitons are effectively siphoned from PSII and 

then dissipated as heat. While the Q130E mutant likely includes non-radiative dissipation by way 

of recombination, effectively quenching P680+ and also decreasing the rate of triplet formation. 

However, in both cases PSII photo damage is significantly mitigated and resistance to high light 

level conditions is increased. In the case of the lichens, this resistance to photodamage is 

pronounced, allowing for extended periods of light exposure with only negligible photoinhibition 

(13). The quenching observed may have also been due to other mechanisms at work in addition 

to the long wavelength quencher. However, since the rate of dissipation for the quencher was 8 

times faster than the rate of charge separation in PSII, the quencher must be significantly or 

wholly responsible for the resistance to photodamage on a molecular level. This resistance is 

among the most pronounced known to date (13) and it might well be due to a complex external 

to PSI!. Such an example illustrates the principle of such PSII structure independent regulation 

of primary photochemistry. 

The Q 130E mutation is not only an example of PSII structure based regulation of psn 

activity but also exemplifies the compromises present in the structure of the PSII complex. These 

compromises between efficiency and regulation might be the source of apparent paradoxical 

structures/configurations in PSII. Certainly, the Hl14 ligated chlorophyll stands out as an 

example of a peculiar element in the structure of PSII, being significantly red-shifted compared 

to the other chlorophylls present in CP47. This could be due to evolutionary constraints 

regarding the difficulty of selective pressure reconfiguring complex protein structures because 

the number/combination of mutations required is prohibitive. Perhaps the shift in the Qy 

transition matches the absorbance more closely to light conditions present during the evolution 

of the complex or perhaps the shift has a negligible effect on efficiency. These explanations, 
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while not without merit are all based on the idea of PSII quantum yield as an overriding 

consideration. What the Q130E mutant shows is that the structure ofPSII is also a result of 

regulation, in this case perhaps a decrease in PSII quantum yield per individual center but an 

increase in the overall yield of the PSII population by way of a decreased rate of damage. 

Concordant with these ideas, a recent modeling study has implicated the Hl14 ligated chI as 

being important for photoprotection via cartenoid mediated non-photochemical quenching (6). 

It is also worth noting that the Q 130E mutation causes the F 0 state of PSII in 

synechocysitis PCC.6803 to resemble higher plant PSII kinetics. However, closed PSII reaction 

centers in higher plants still possess much longer fluorescence decay lifetimes than the Q 130E 

mutant (14), indicating that regulatory elements likely external to PSII contribute significantly to 

the kinetics at F m. 

Both the structure independent regulation of PSII and the seemingly counterintuitive 

elements of PSII structure indicate the complexity of PSII function. Modest changes in the 

quantum yield of PSII are sufficient to drive evolution but yield is sacrificed in order for the 

complex to operate in a 'safer' manner. Structure independent regulation ofPSII function can 

induce profound changes to primary photochemistry and illustrates the importance of 

understanding the structure of PSII in context of the entire photosynthetic apparatus. 

Physiologically PSII Must be Considered as a PopUlation 

Measurements on populations in science are often performed to reveal 

information regarding the specific characteristics of individuals in a population. For instance, if a 

solution of a specific enzyme exhibits a reaction rate with or affinity for specific compounds then 

the binding pocket is thought to directly reflect the data collected. This assumes that the 

population of enzymes is homogeneous with respect to structure and interactions. When the 

173 



enzyme in question is isolated and exposed to a specific substrate these assumptions regarding 

homogeneity might be reasonable. However, in the case ofPSII, the nature of the enzyme means 

that a number of complexes will be in various states of repair or rather disassembly and/or 

inactivation and there will also be a proportion damaged. In vivo, PSII is also associated with a 

number of antennae complexes as well as quenchers in various permutations, further adding to 

the heterogeneity of the PSII population. For this reason PSII complexes must be considered as a 

heterogeneous population rather than representative of a single standard complex. This is a 

significant problem as models of PSII often aim to be representative of individual complexes 

rather than the entire population, so that reaction mechanisms can be attributed and the 

population data can be reconciled on a molecular level. 

Chapter 1 is a clear example of the difficulties surrounding PSII measurements and the 

application of measurements to models ofPSII function. Deletion ofPsbU caused a decoupling 

of the PBS from PSII and this also altered the kinetics of the PSII/PBS. This could be due to the 

physical coupling of the PBS being affected in a subtle manner that decreased the level of energy 

transfer to the PSII complex from the PBS. Alternatively, the PBS might have been decoupling 

from PSII due to an increase in the proportion of inactivated OEC, which is rendered relatively 

vulnerable with the deletion ofPsbU. A subsequent study (1), indicated that the PBS decouples 

from PSII upon inactivation of the OEC, which supports the idea of a larger proportion of PBS 

decoupled from PSI!. This would essentially mean a shift in the population of PBS towards a 

higher proportion decoupled from PSII, rather than a specific change to the interactions between 

PSII and the PBS on an individual basis. If this is true, then the data obtained from the PBS-PSII 

population is that of at least two subpopulations, PSII complexes decoupled from the PBS and 

PSII coupled to the PSB. Thus, if we don't know in what proportion these populations occur then 
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our models that are derived from such data will represent an average PSII complex rather than a 

physiologically relevant one. 

In Chapter 2, itself a study of PSII heterogeneity, in large part represented an attempt to 

reconcile the aforementioned difficulties using previously published proteomic data to determine 

the antennae size of PSII supercomplexes. The antennae sizes were then cross referenced with 

the absorbance data collected to determine the relative level of assembly of the PSII populations 

in the different compartments of the thylakoid membrane. This was shown to be a valid approach 

as the two data sets did correspond to each other closely, showing that the sizes of PSII 

supercomplexes obtained from the proteomic data were representative of the spectrally 

determined antennae sizes of the PSII populations. However, the proteomic data still showed that 

each compartment contained a number ofPSII popUlations in various states of disassembly. As 

well, the model used, although it included the antennae sizes, assumed that the reaction pathway 

was identical for all PSII centers even though the different centers in states of 

damagelinactivation and/or repair might possess reaction pathways quite different from fully 

functional centers. The methods used did include fairly homogeneous populations of active and 

inactive PSII supercomplexes in the form of the YlOO(purified stroma) and BS(purified grana) 

fractions and the fluorescence decay kinetics were consistent with reaction kinetics similar to 

standard models of PSII function. There was also a gradual shift from highly functioning PSII to 

inactivated and disassembled PSII as the sample origin moved from grana to stroma, 

demonstrating that there was a decided gradient with respect to PSII kinetics and assembly when 

moving from one compartment to another. Thus, Chapter 2 was a successful attempt to account 

for the fact that PSII exists as a heterogeneous population in that the attributes of the PSII 

population in each fraction of the thylakoid membrane were delineated. However, the treatment 
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of heterogeneity was incomplete as the PSII population likely exists as a distribution with a 

multitude of structural/functional states far in excess of those used in the model. As such, 

Chapter 2 illustrates both the facility of considering PSII as a population and the rather daunting 

level of complexity involved when attempting to account for the heterogeneity of such a 

population. 

In Chapter 3 PSII complexes were shown to be coupled with a long wavelength 

quencher, this state ofPSII was apparently true under all conditions. From the data it was 

apparent that under desiccation the quencher was actively quenching PSII and under Fo 

conditions the quencher was probably supplementing the light harvesting capacity of PSI I. It 

would appear that the level of quenching was variable and rapid as reported in previous studies, 

dynamically adjusting to the conditions. This means that there might be some level of quenching 

under all conditions, introducing heterogeneity into the PSII population. However, when 

desiccated, the PSII population likely exists in a relatively homogenous state, at least with 

respect to reaction kinetics and perhaps structurally as well as every PSII complex appeared 

quenched in the same manner. Interestingly, this apparent homogeneity occurs in a state of 

virtual suspended animation with a complete lack of photosynthetic activity. 

Chapter 4 represented an attempt that in part, served to ameliorate the difficulties of 

heterogeneity by changing a single important amino acid in PSII. This ensured that the change in 

structure was known and discrete. However, point mutants in general impair the assembly of 

PSII to a degree (15). It should also be noted that this impairment has been shown to cause a 

proportion of PSII centers to fail to assemble but it is also possible that the assembly problems 

affect assembled complexes in subtle ways as well. In spite of the assembly issue, using point 

mutations in this manner, much like the use of multiple sources of information in Chapter 2, 
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increases the certainty of changes observed being representative of changes to the PSII complex 

itself and not a result of introduced heterogeneity. Although, it should be noted that the Q 130E 

mutation decreases rates of PSII photodamage and thus could alter the ratio of active to 

damaged/under repair complexes in the PSII population. 

The nature of PSII regulation and repair ensures that populations of PSII complexes will 

almost always represent an array of different PSII subpopulations. This problem can be 

ameliorated to some extent by utilizing point mutations or using various sources of data 

pertaining to aspects of PSII heterogeneity and then reconciling such data through cross 

referencing and modeling. Systems exhibiting relatively homogeneous PSII populations, such as 

the BS fraction of the thylakoid membrane or desiccated Parmelia Sulcata can also be utilized. 

Heterogeneity ofPSII might also be addressed using single molecule measurements (16), but 

many of the techniques proposed alter the PSII complex and suffer from significant difficulties 

due to lack of signal strength. 

Simulations of PSII Hold Promise 

This thesis endeavoured to investigate PSII function as it relates to PSII structure by 

studying altered PSII, using both naturally occurring structures and those produced through 

mutation. This approach yielded interesting data, such as Chapter 2 showing that the antennae 

size of the PSII supercomplex significantly contributes to PSII fluorescence decay lifetimes and 

that PSII photochemistry is slowed down in PSII complexes that are damaged/under repair. In 

Chapter 1, loss of the PsbU protein caused decoupling of the phycobilisome, consistent with a 

greater chance of inactivation of the OEe. Although the structure of the long-wavelength 

quencher is unknown at this time, Chapter 3 illustrated the facility of exciton trapping by the 

quencher and that the exciton trapping was capable of protecting PSII from damage. In Chapter 
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4, point mutations pointed toward specific co-factors as unique or capable of significantly 

altering the kinetics of primary photochemistry in PSII. These results provide glimpses into the 

mechanisms and processes involved: in Chapter 2 enough information was available for 

modeling of the populations of PSII in each thylakoid compartment. It was found that integrating 

the data from various sources yielded a reasonable model of the populations of PSII in question. 

Certainly, the results from the other 3 Chapters in this thesis might be integrated into a model in 

much the same manner. If the PBS-PSII interaction could be better understood along with the 

changes to PSII involved with OEC inactivation then the precise effect of PSII removal might be 

modeled. Similarly, if the structure of the long wavelength quencher from Chapter 3 could be 

determined or better yet the PSII-quencher complex, then the mechanism of this rather drastic 

example of PSII down regulation might be delineated. In Chapter 4, such modeling was 

attempted with a MD simulation ofPSII and yielded a reasonable red-shift in the Qy transition in 

the D1:Ph of the Q130E mutant. 

The approaches outline above, even the potential modeling as a result of likely future 

directions, would serve to study a specific instance or instances of PSII function. There is a lack 

of reconciliation between differing studies and approaches, certainly the results are compared but 

a comprehensive model is lacking. The MD simulation of PSII introduced in a previous 

study( 17) and utilized in the present thesis, although still used at this point for modeling specific 

instances of PSII function still represents a step toward this type of consolidation. The simulation 

includes a protein environment and at present also includes the protonation states of amino acids 

involved (Vasil'ev, unpublished). Such a model or at least the general objectives tacitly highlight 

the interconnected nature of the differing structures and interactions related to PSII. This 

connectedness is illustrated by comparing Chapter 1 and 2, if the PBS decouples from PSII upon 
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inactivation of the OEC and the OEC is the source ofPSII damage then it follows that this 

decoupling might be a result of PSII damage. Thus, the potential structural changes that occur in 

PSII are the initial stages ofPSII disassembly and repair, and since the structures of higher plant 

PSII and cyanobacteria are very similar, it is likely that such a change occurs in higher plants as 

well. This damage/repair based reduction in antennae size was evident in Chapter 2 and such 

damage induced reductions in PSII antennae size have also been observed in higher plants 

previously (18; 19). Thus, the structural changes brought on due to the inactivation of the OEC 

might be quite similar in both cyanobacteria and plants so a simulation of psn modeling this 

change would be applicable to both and likely to all organisms containing PSI!. 

The approaches used in this thesis, such as point mutations and assaying physiological 

states ofPSII remain limited in facility. Each experiment requires considerable resources to 

perform and the possible permutations, particularly in regards to point mutations is prohibitively 

high. A comprehensive PSII simulation might be used to decide which point mutations to 

employ, much as the structure of PSII and list of conserved residues have been used in the past 

(20;21). Such a simulation might also be used to run virtual experiments and then carry out the 

successful experiments in the laboratory using standard techniques to validate the simulation. As 

more information and predictive powers are developed, the simulation would be revised in a 

cyclic manner and synergistically with 'wet' lab work. This building of a model would reduce 

the need for further experiments or at least target improved experimental strategies. This type of 

modeling is certainly not exclusive to this field as many areas now use comprehensive computer 

modeling to explore experiments which are infeasible (22) or to enhance and supplement more 

conventional methods (23). However, the application of such comprehensive models to PSII 

remains an exciting area and appears to hold considerable promise. 
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