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Abstract. Niagara Peninsula of Ontario is the largest viticultural area in Canada. 

Although it is considered to be a cool and wet region, in the last decade many water stress events 

occurred during the growing seasons with negative effects on grape and wine quality. This study 

was initiated to understand and develop the best strategies for water management in vineyards and 

those that might contribute to grape maturity advancement. The irrigation trials investigated the 

impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on 

theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation 

strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape 

composition and wine sensory profiles. The irrigation experiments were conducted in a 

commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 

2005 through 2009. The two experiments that tested the combination of different water regimes 

and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three 

replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and 

veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of 

ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different 

irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x 

four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; 

Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD 

(100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were non

irrigated. 

The irrigation treatments were compared for many variables related to soil water status, 

vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic 

acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments 

between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. 

Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare 

to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most 

sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc 

and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine 

varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the 

vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and 

wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape 

quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI 

treatments were overall more consistent in their positive effect on grape composition and wine 



varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and 

irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of 

the experimental period. Soil water status had a greater and more consistent effect on red 

grapevine cultivars rather than on white winegrape cultivars. 

To understand the relationships among soil and plant water status, plant physiology and the 

hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), 

dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and 

abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and 

Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately 

described the water status in the vines. Endogenous ABA and some of its catabolites were strongly 

affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of 

irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries 

compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE 

was the main catabolite in treatments with high water deficits, while PA and DPA were higher in 

treatments with high water status, suggesting that the vine produced more ABA-GE under water 

deficits to maintain rapid control of the stomata. These differences between irrigation treatments 

with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. 

Two trials using exogenous ABA investigated the effect of different concentrations of 

ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet 

Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of 

three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + 

untreated control] while the second experiment consisted in three replicates x four treatments [(full 

canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. 

Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet 

Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both 

solution concentration and the target organ. ABA affected not only fruit composition but also yield 

components. Berries treated with ABA had lower weight and higher skin dry mass, which 

constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening 

through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in 

cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide 

considerable benefits to wine industry in terms of grape composition, wine style and schedule 

activities in the winery, particularly in wet and cool years. 
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These trials provide the ftrst comprehensive data in eastern North America on the response 

of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from 

this study additionally might be a forward step in understanding the ABA metabolism, and its 

relationship with water status. Future research should be focused on ftnding the ABA threshold 

required to trigger the ripening process, and how this process could be controlled in cool climates. 
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Chapter 1 

Introduction 

A global increase in demand for high quality wine has prompted numerous researchers to 

find efficient and reliable ways to increase wine grape qUality. Due to climate change, irrigation 

has become an integral feature of wine grape production in traditionally non-irrigated regions. The 

Niagara region of Ontario, where most of the Canadian wine grape industry is located, has become 

one of those regions. The frequency of dry weather during the growing season increased in the last 

decade; at least six of the last 10 vintages were subjected to prolonged droughts in southern 

Ontario and northeastern United States (Reynolds etal. 2007). Climate change predictions include 

an increase in summer temperature, frequent extreme weather, and altered rainfall patterns (an 

increased winter rainfall and decreased summer rainfall). The constraints posed by climate change 

require adaptive management, such as irrigation to stabilize yield and maintain or improve wine 

quality (Chaves et al. 2007, Medrano et al. 2003). 

This project was focused upon an important topic not only in Canada but also throughout 

eastern North America. Irrigation of woody perennial crops has heretofore not been a major 

concern in the humid east. However, numerous dry growing seasons have caused the eastern wine 

and tree fruit industries to reconsider use of irrigation. Several seasons of drought resulted in 

production problems including low yields, poor shoot growth and wine quality issues (low sugar, 

low pH and K, atypical aging). Irrigation may be a way of overcoming these problems, but there is 

a need to understand how physiological responses to water status affect vine performance and 

chemical composition of the fruit. The latter is the primary determinant of wine quality, and should 

provide the most accurate picture of how irrigation alleviates water stress. 

To understand the relationship among water deficit (soil and plant), plant physiology and 

fruit quality, it is necessary to understand how the water stress hormone profile [abscisic acid 

(ABA) and its catabolites] changes during the growing season under different levels of water 

status, and in different grape cultivars. ABA controls various processes in the plant including plant 

growth and fruit ripening (Dtiring et al. 1978, Matsushima et al. 1989). From a viticultural 

perspective, manipulation of ABA should be a useful tool in extreme weather conditions. Under 

low water status, ABA controls water balance in the plant, thus decreasing the irrigation needs. 

Under high water status and for high vigor cultivars, ABA could control growth and hasten 

ripening time. In the wine industry, producers are using this relationship as a management tool in 
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regulated deficit irrigation (RDI) in order to control canopy growth and berry size while improving 

wine quality (Goodwin and Macrae 1990). 

This research was focused on novel irrigation techniques that might be used with success 

in Niagara region to improve grape and wine qUality. Partial root zone drying (PRD) and RDI are 

two irrigation methods that are based on controlling long - distance chemical signaling in plants. 

Consequently, it was expected that the use of PRD will be successful in simulating drought 

conditions, resulting in increased ABA and its subsequent outcome: stomatal closure and reduced 

shoot growth. RDI, whereby irrigation water is applied in volumes less than calculated potential 

evapotranspiration (ET 0)' might also have a similar effect to PRD in modifying vine growth, yield, 

fruit composition, and possibly winter hardiness. 

Conventional and novel methods used to measure grapevine water status (leaf water 

potential, transpiration and soil moisture) might be substituted by measurements of signature 

compounds, to more accurately provide physiological evidence of how irrigation alleviates water 

stress. Since ABA, which regulates stomata activity, is the most well documented compound 

produced during water stress in plants, it was hypothesized that monitoring the levels of ABA in 

grape vine leaves might give us an accurate indication of water stress levels. There is some 

evidence that this hormone is involved in many metabolic pathways at the cell level. A better 

understanding of the physiology and biochemistry of vine drought stress could presumably lead to 

a further optimization of wine quality. 

Objectives. The goal of this project was to provide irrigation recommendations for 

premium winegrape vineyards to improve yield, fruit composition and wine quality. Different 

irrigation regimes were imposed at fruit set, lag phase, and veraison on four wine grape cultivars: a 

French American hybrid (Vitis sp. cv. Baco noir) and three European cultivars (Vitis vinifera L. 

cvs. Cabernet Sauvignon, Chardonnay and Sauvignon blanc). Three different levels of water soil 

replacement (25%,50% and 100%) and two irrigation strategies (RDI and PRD) were used. 

The second objective of this study was to find the relationship between water stress 

hormone profile (ABA and its catabolites) and water status in leaves during the growing season 

and in berries at veraison and harvest time. The last objective was to find the beneficial effect of 

using exogenous ABA on grape quality under extreme weather conditions. 
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Chapter 2 

Literature Review 

Drought is one of the main constraints that limit agricultural production worldwide (Boyer 

1982). Water availability is a major factor, which affects both quality and quantity of wine grapes 

in hot, dry regions (Wample and Smithyman 2(02). Even in more moderate, temperate climates, 

grapevines often face some degree of drought stress during the growing season (Morlat et al. 

1992). In a vineyard, irrigation management adds more challenges than in other crops since the 

link between water availability and fruit/wine quality is well recognized. Irrigation may affect 

grape quality via its effect on vegetative growth (Kliewer et al. 1983, Neja et al. 1977, Smart and 

Combe 1983), reproductive growth (Buttrose 1974b) or fundamental photosynthesis and assimilate 

partitioning (Hofacker 1977, Loveys and Kriedemann 1973). 

2.1. Water Use in Vineyards 

2.1.1. Water consumption by grapevines. A number of environmental and 

management variables such as temperature, humidity, water availability, vine nutrition, canopy 

architecture, genetic background of rootstocks and scions affect the amount of water consumed in 

the vineyard. There is still a lot of debate regarding the amount of water to be used in a vineyard. 

Numerous studies report the influence of irrigation on grapevines, but only a few report the 

quantity of water consumed with precision (Becker and Zimmermann 1984, Hardie and Considine 

1976, Van Rooyen et al. 1980). Large differences in seasonal grapevine water consumption, from 

250 mm (McCarthy et al. 1992) up to 800 mm (Prior and Grieve 1987) have been reported. 

Stevens (2002) reported values of 42 L{d per vine or the equivalent of 7 mmld for a vine spacing of 

2 x 3 m. In a benchmark study, using several wine grape cultivars and irrigation systems in the 

Sunraysia area (Australia), values of water consumption in a range of 2-9 ML ha-1 were found 

(Gidding et al. 2002). In another study on water balance using a flood irrigation method, Yunusa et 

al. (1997b) found that the evapotranspiration (ET) was 6.2 ML ha-1 in a 50 year old Sultana block. 

The same authors also reported that from the total of water consumed in the vineyard, vine water 

use was only 1.1 ML ha-1
, while cover crop water use and soil evaporation were 2.1 ML ha-1 and 3 

ML ha-1 
, respectively. In another study of water balance conducted in Murumbidgee (Australia), 

McCaffery and Tijs (2002) found water use in a vineyard between 1.5 and 4.0 ML ha-1
• Williams 

et al. (2003) stated that a direct comparison among studies on water consumption might be difficult 
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because of the differences in cultivars, training systems, agricultural practice, level of plant stress, 

and environmental conditions. 

2.1.2. Water use efficiency (WUE). WUE of a species is defined as the amount of 

water taken into a plant in order to produce a unit of output (total biomass). Using lysimeters, 

Meyer et al. (1987) determined that between 715 and 750 L of water was necessary to produce a 

kilogram of dry wheat. Skewes and Meissner (1997) showed that the WUE varied tenfold (from 

1.07 to 10.15 tlML) for wine grape production in the Riverland area of South Australia. The same 

researchers showed that the efficiency of the water used (t/ML) depended on site, irrigation 

method and grape variety. 

Novel methods of irrigation scheduling based on concepts such as stress day indices and 

soil water balance modeling together with improved systems for applying water through sprinklers 

and drippers allow improvements in WUE. The own-rooted vines of V. vinifera L. cvs. Cabemet 

Sauvignon and Shiraz, grown near Adelaide (Australia), produced a crop of 15-22 t ha-1 with an 

irrigation input of less than 1ML ha-1 by using partial root zone drying (PRD) technique (Loveys et 

al. 1998). The same authors reported that Riesling on Ramsey rootstock produced up to 30 t ha-1 

using half of the irrigation input compared to the same scion/rootstock combination used in the 

Riverland district (Australia). The physical factors important in determining the success of an 

irrigation management system include the soil water content, soil water potential, hydraulic 

conductivity ofthe soil, the amount of cover crop and the distribution ofthe roots (cover crop and 

grape vine), the quantity and temporal distribution of rain and the potential rate of evaporation 

(Gregory et al. 2000). 

Traditionally, estimates of water used in vineyard are based on measures of climate 

parameters. The water balance method is the established technique for estimating the full irrigation 

requirements when both the crop coefficients are well established and the reference 

evapotranspiration (ETo) information is available (Allen et al. 1998, Monteith and Unsworth 

1990). The Food and Agriculture Organization of the United Nations (F.A.O.) recommend 

estimating crop evapotranspiration (ETc) from the equation: ET c=Kc x ET 0, where Kc is the crop 

coefficient and ET 0 is the reference crop evaporation derived from measures of wind speed, 

temperature, relative humidity and solar radiation based on the Penman Monteith equation (Allen 

et al. 1998). ETo represents the evapotranspiration rate of a short green crop, completely shading 

the ground and having a uniform height. However, there is more uncertainty when the same 

approach is used to determine the ETc requirements of tree crops and vines (Dragoni et al. 2004, 

Fereres and Goldhamer 1990, Testi et al. 2006). 
5 



Wine grape growers have used irrigation to maximize the productivity by using the 

recommended crop coefficients (Allen et al. 1998, Doorenbos and Pruitt 1977). Such coefficients 

help predict the peak water requirement and therefore are useful in the design of the vineyard 

irrigation capacity. However, using these values results in water application rates in excess of 

those that may be optimal for keeping a balance between the vegetative and reproductive 

development required for the production of premium quality grapes. In order to calculate the Kc 

values, various techniques have been used such as lysimeters, water balance equations, changes in 

soil water content or deficit irrigation experiments have been used to calculate the Kc values 

(Evans 1993, Williams 1999, Yunusa et al. 1997a). In Australia, the ETc is usually estimated from 

US Class-A pan evaporation (Epan) and a crop factor (CF) where CF is equivalent to Kc adjusted by 

a pan factor (Kp). Some authors recommend different crop factors, which may be due to climatic 

conditions, foliage extent, leaf area density and method of irrigation (Goodwin 1995, McCarthy et 

al. 1992). In Australia, Irrigation Crop Management Services Agency (2000) derived its CF from 

Allen et al. (1998) while Goodwin (1995) reported CF values derived from drip irrigation 

experiments in the cooler climates of Victoria (Australia). 

Imposing a deficit irrigation strategy based on a water balance concept implies defining the 

plant water status based on water replacement as fractions of ETc. This aspect shows a large degree 

of uncertainty since the plant water stress development depends not only on the fraction of water 

consumption replaced to the soil but also on soil water holding capacity, growing conditions, 

climate and plant material (Reynolds and Naylor 1994). 

Soil evaporation and cover crop transpiration represent approximately 80% of total 

evapotranspiration (ET) in the vineyard. However, the same authors reported that water lost 

through cover crop and soil evaporation represent 49% and 62% of ETc in grafted and own rooted 

vines respectively, under drip irrigation. In experiments with vines grown in a semi-arid climate, 

there is a fourfold variation in the reported values of soil evaporation expressed as a percentage of 

total vineyard evapotranspiration, with values in a range of 13% to 60% (Yunusa et al. 1997a). 

Radiation intercepted by foliage is the major determinant of transpiration, and this explains 

some variation in Kc. Heilman et al. (1994) reported that both the canopy size and its shape 

changed the percentage of soil evaporation of ETc. Intrieri et al; (1998) studied the effect of row 

orientation on the diurnal and cumulative daily transpiration, and found that north-south oriented 

canopies transpired 50% less at noon than east-west oriented canopies. 
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2.2. Effect of Water Status on Grape Vine Components 

2.2.1. Root system and rootstock. One of the common responses to soil drying is that 

the roots show enhanced geotropism (Sharp and Davies 1985). As soil water potential decreases, 

roots have been observed to become thin, an adaptation to commit limited carbohydrate supply to 

extension growth, and allow thinner plants to explore deeper water reserves (Sharp et al. 1988). 

Along with physiological properties of the roots (e.g. hydraulic conductivity) and the root 

hair rhizosphere (Segal et al. 2008), root distribution and density are also critical to water uptake 

rates (Huang and Gao 2000). Rogiers et al. (2009) found that of the six cultivars (on own roots) 

that were compared, Chardonnay had the highest root biomass density and root length density, 5.9 

g dm-3 and 1682 cm dm-3 respectively. Merlot, Flame Seedless, Semillon, and Shiraz had almost 

similar root biomass densities of about 2-3 g dm-3 and root length densities ranging from 300 to 

900 cm dm-3 of soil (Rogiers et al. 2009). The relative proportion of shoot to root biomass affects 

the plant water status, too. Vigorous canopies on vines with smaller root systems may experience 

more water stress if water uptake rates are not adequate to meet the transpiration demands of the 

canopy (Dry and Loveys 1998). 

Root distribution is largely dependant on environmental conditions such as the physical 

and chemical properties of the soil and land management (Conradie 1988, Southey 1992, Van Zyl 

1988) while the root density is genetically determined (Southey 1992, Williams and Smith 1991). 

Thus, selection of rootstocks · with higher vigor will lead to a lower requirement for irrigation and 

higher efficiency for the water used. Rootstocks can affect both the vegetative growth and vine 

water status even under low water content in soil (Ezzahouani and Williams 1995). Studies 

conducted in various countries have characterized both commercial hybrid rootstocks and pure 

Vitis species with respect to their drought tolerance (Carbonneau 1985, Delas 1992, Galet 1979). 

2.2.2. Flower development and grape berry growth. Water deficits during specific 

stages of floral development can severely damage seed set, through pollen sterility or embryo 

abortion (Saini and Westgate 2000). There is also a metabolic disruption ofthecarbohydrate 

metabolism in the ovary, especially of acid invertase, that leads to the failure of the embryos to 

develop (Zinselmeier et al. 1995). Water stress must be avoided during flowering because of the 

adverse effect on yield, which is reduced up to 50% Goodwin (1995). Persistent waters stress also 

depresses the fruitfulness of latent buds (Alleweldt and Hofacker 1975, Buttrose 1974, Winkler et 

al. 1974). Soil moisture is one of the main factors influencing the inflorescence development in 

grapes (Alleweldt and Hofacker 1975). Studies on vines grown in controlled environments have 
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shown that the number and size of inflorescence primordia are reduced by water stress (Buttrose 

1974). However, there are also contradictory reports where is stated that the water stress increases 

the fruitfulness of buds (Smart 1974, Smart et al. 1974). Improving the illumination within the 

canopy due to reduction in foliage density of water stressed vines leads to increasing the fertility of 

basal buds and fruitfulness of the vine as a whole (May 1965). Moreover, water stress causes a 

decrease in cytokinins in xylem sap (Livne and Vaadia 1972) and an increase in the ABA levelsin 

leaves and stems (DUring 1973, Loveys and Kriedemann 1973), both hormones having a great 

influence on fruit bud differentiation. Both size and number of berries are significantly reduced 

when water stress occur during flowering (Hardie and Considine 1976). 

Before veraison, at a moderate level of water stress, vegetative growth is significantly 

reduced with only a small decrease in yield, while the soluble solids and pH slightly increase and 

titratable acidity decrease (Goodwin and Macrae 1990). Water stress during the period from fruit 

set to veraison heavily reduced the fruit size (McCarthy 1997) because of the detrimental effect of 

soil water deficit on early fruit growth (Ojeda et al. 2001). This deficit cannot be recovered even if 

the water supplies return at full dosage later in the season (Poni et al. 1994). Although, there is 

strong evidence for advanced maturation due to water stress in the late stages of ripening (Smart 

and Combe 1983), there are also reports about delayed maturation (Hardie and Considine 1976). 

Severe water deficit during the ripening time causes delayed maturity which leads to grapes with 

wilted berries, dull fruit color and sunburn (Winkler et al. 1974). 

2.2.3. Grape composition. Physiological reactions to water deficit affect the growth 

and development of the shoots, leaves and fruits. Positive or negative effects of water status on 

grape quality are determined not only by the severity of water stress generated at various stages of 

vegetative and fruit development but also by the effect of irrigation on the balance between the 

vegetative and fruit development (Cawthon and Morris 1982, Hofacker 1977, Kliewer et al. 

1983).Water stress occurs when the tissue moisture content, intracellular or extracellular deviates 

from the optimum, and the turgor pressure of the cell drops below its maximum value (Kays 1997). 

The extent and timing of mild water deficits have been shown to be a major factor in the 'terroir' 

effect (Koundouras et al. 1999, Seguin 1983). 

In grapes, field water deficit caused an increase of anthocyanin concentration in Cabernet 

franc (Matthews and Anderson 1988) and Shiraz (Ginestar et al. 1998) and sugar, anthocyanins and 

skin tannins in Cabernet Sauvignon grapes (Kennedy et al. 2002, Palejwala et al. 1985, Roby and 

Matthews 2004). Early season water deficits usually affect berry size, which due to a resulting 

higher surface to volume ratio, tends to intensify the color and flavor components in the skin. 
8 



Williams and Matthews (1990) observed differences in appearance, flavor, taste and aroma among 

wines made from grapes, which had experienced water deficits at different times during the 

vegetation period. Reynolds et al. (1996) reported increased monoterpene concentration in 

Gewtirztraminer berries and wines from vines that had undergone late season veraison water 

deficits compare to vines that experienced early season post-bloom or lag phase water deficits. 

Water stress also reduced shoot growth, which improved the berry composition by limiting the 

number of sinks for carbohydrates and/or by improving the microclimate inside the canopy (Smart 

et al. 1990). Berry size is smaller when the grapevines experience mild water deficits, especially 

those occurring between flowering and veraison (Becker and Zimmermann 1984, Hardie and 

Considine 1976, Van Leeuwen and Seguin 1994). 

Water deficit applied late in the season has a negative impact on the fruit quality due to the 

large canopy developed with an ample supply of water during the early part of the season, which 

reduces the ability of the crop to ripen due to shade (Wample and Smithyman 2002). A water 

deficit that occurs from veraison through the harvest also reduces berry cell enlargement and water 

accumulation (Becker and Zimmermann 1984, Smart and Coombe 1983). However, this has a less 

detrimental impact on final berry size than early season water stress (McCarthy 1997). The impact 

of water deficit on both vine development and berry composition enhances the oenological quality 

potential, especially for red wines (Williams and Matthews 1990). 

A sustained severe water stress might be detrimental to fruit quality because of poor 

canopy development and reduced leaf assimilation rate, and thus an inadequate vine capacity to 

ripen the crop (Hardie and Considine 1976), particularly under high yield levels (Freeman and 

Kliewer 1983). Severe water stress induces stomatal closure that causes reduced assimilation 

activity and shoots growth. It also has negative effects on both sugar content in berry and wood 

maturation (Escalona et al. 1999). 

2.2.4. Effects 0/ elevated soil moisture on vine components. Excessive soil 

moisture leads to increased vegetative growth and yield; however, the grape quality parameters, 

such as sugar content, pigment formation, acidity, aroma compounds and wood maturation of the 

vine are negatively affected (Van Leeuwen and Seguin 1994). Supplying irrigation in order to 

ensure the maximum potential evapotranspiration of the vine normally reduces wine quality 

because of an increase in berry size (Williams and Matthews 1990), leading to a lower skin to pulp 

ratio and a dilution of the main berry quality components that are localized in the skin. Excess 

water in the soil might also indirectly affect the berry quality because of an increased and 

prolonged period of vegetative growth. Following veraison, shoot growth competes for the 
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carbohydrates available for fruit ripening. Increased vegetative growth might also impair the cluster 

microclimate,particularly fruit light exposure. High vigor also increases the incidence for diseases 

of the fruit and leaves due to unfavorable microclimates in the dense canopy and inadequate spray 

penetration (Smart et al~ 1985). Excessive vegetative vigor has many consequences on the long

term management of grapevines such as poor floral differentiation and non-uniform bud break due 

to excess shade. In some cases, irrigation leads to a delay in obtaining desirable levels of sugar 

(Bravdo et al. 1984). 

Other irrigation studies have shown beneficial effect on fruit ripening, mainly on increasing 

sugar concentration in berry (Cline et al. 1985, Esteban et al. 1999). Relatively small water 

supplements increased both the grape production and quality (Dos Santos et al. 2003, Matthews 

and Anderson 1989, Reynolds and Naylor 1994), while full water replacement is seldom applied 

by wine grape growers due to its potential negative effect on grape quality (Peacock et al. 1998, 

Williams and Matthews 1990). 

2.3. Molecular and Biochemical Basis of the Response to Water Deficit 

2.3.1. Water status effects at the molecular level. Progress recently achieved in the 

profiling of the grapevine transcriptome, proteome and metabolome provides new opportunities 

and challenges to analyze changes in gene expression in response to water deficit (Vivier and 

Pretorius 2002). Cramer et al. (2007) analyzed the metabolite and mRNA expression in Cabernet 

Sauvignon under water and salinity stress conditions. The relative abundance of a number of 

metabolites was substantially altered by water stress over time. Of the 12 organic acids, 19 amino 

acids, and 15 sugars analyzed, the concentrations of malate, proline and glucose increased the most 

under water deficit conditions. Water stress substantially increased the abundance of transcripts 

encoding a variety of ion, amino acid, nucleotide and peptide transporters (Cramer et al. 2007). 

Under water stress, the dissipation of excess absorbed light energy is critical to the 

prevention of photo oxidative damage to the photosynthetic apparatus (Niyogi et al. 1998). Cramer 

et al. (2007) observed the accumulation of transcripts encoding enzymes of the xanthophyll cycle, 

zeaxanthin epoxide and violaxanthin de-epoxidase, particularly under water-deficit stress 

conditions. Transcript abundance of genes involved in reactive oxygen species (ROS) 

detoxification (Mittler et al. 2004), such as phospholipid hydroperoxide glutathione peroxidase, 

gamma-glutamylcysteine synthetase, and NADPH glutathione reductase was also increased under 

water-deficit stress (Cramer et al. 2007). NCED (9-cis-epoxycarotenoid dioxygenase) gene, which 
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controls one step in abscisic acid biosynthesis, has been shown to be up-regulated when plant cells 

lose turgor in response to environmental stress or during the development of seeds and buds 

(Xiong and Zhu 2003). 

2.3.2. Water status and biochemical changes in vine. Alkalization of the xylem 

sap is a common response to various environmental stresses (Wilkinson and Davies 2002). The pH 

of grapevine xylem sap is quite acidic when compared with values for other species. Under water 

stress the pH of vine sap varied from 4.2 to 4.8 (Stoll et al. 2000) while values of 5.7 to 6.9 were 

found in Thompson Seedless grapevine (Roubelakis-Angelakis and Kliewer 1979). Because the 

pH of the grapevine sap is close to the pKa value of ABA (4.8), small changes in sap pH (about 

0.24 units under drought conditions) have large effects on the proportion of ABA present as its 

anion (Stoll et al. 2000). Ability of an alkaline artificial xylem (AX) solution to close stomata was 

ABA-dependant, since the leaves detached from an ABA-deficient mutant did not show decreased 

transpiration in response to alkaline pH unless a low concentration of ABA was applied in the 

solution (Wilkinson et al. 1998). 

Flavonoids are one of the most important determinants of quality in red grapes and wines 

(Kennedy et al. 2002). Anthocyanins, proanthocyanidins and flavonols are genetically determined. 

Their presence in plant leaves differs widely, according to species and cultivar ability to synthesize 

them. Drought, insects, potassium deficiency, extreme temperature, and excessive light (Steele et 

al. 2009) often initiate anthocyanins biosynthesis. This behavior allows these pigments to be used 

as an indicator of plant stress (Neill and Gould 1999). It is generally accepted that one key 

physiological function of anthocyanins in higher plants is its photo-protective role (Chalker-Scott 

1999, Close and Beadle 2003). Liakopoulos et al. (2006) reported the photoprotective role of 

epidermal anthocyanins in young grapevine leaves. Water deficits accelerated anthocyanins 

accumulation in grape berries, particularly tri-hydroxylated anthocyanins (Castellarin et al. 2007). 

These deficits also increased the expression of many genes responsible for the biosynthesis of 

anthocyanins. 

2.4. Water Deficit Effects on Vine Physiology 

2.4.1. General physiological adaptation. Water stress is a physiological reaction of a 

vine under water deficit caused by reduced soil water availability. Most important responses are 

closing the stomata, reducing photosynthesis, cell division and cell expansion. The vine becomes 

water stressed when the water lost from the leaf canopy exceeds the supply from the soil. This 
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demand is a function of the weather, canopy size and shape (Goodwin 1995). The supply of water 

to the vine depends on soil water content, root distribution and density, and soil physical 

properties. 

Plants have evolved various protective mechanisms that allow them to acclimate to 

unfavorable environments for continuing their survival and growth. At the cellular level, increasing 

osmoregulation (DUring 1984, Schultz and Matthews 1993) and diminishing water reserves in the 

apoplast to preserve metabolic functions (Schultz 1996) have been widely documented. 

Osmoregulation is a mechanism, which results in the accumulation of certain organic metabolites 

of low molecular weight that are known as compatible solutes (Bohnert et al. 1995). Metabolites 

that serve as compatible solutes differ among plant species and include polyhydroxylated sugar, 

alcohols, amino acids and their derivatives, tertiary sulphonium compounds and quaternary 

ammonium compounds (Bohnert and Jensen 1996). Such osmolytes accumulate in a higher 

concentration in cytoplasm (Serrano 1996). Since all subcellular structures must exist in an 

aqueous environment, tolerance to dehydration also depends on the ability of cells to maintain 

membrane integrity and prevent protein denaturation. No evidence exists yet, that osmolytes 

accumulate only at specific subcellular structures. They increase the ability of cells to retain water 

without disturbing normal cellular functions (Yancey et al. 1982). 

Grapevine cultivars sensitive to drought avoided water stress by using a range of 

physiological mechanisms while the drought tolerant cultivars did not undergo any kind of 

adaptation (Schultz 1996). Generally, wine grapes cultivars avoid drought by reducing leaf area 

(Winkel and RambalI993), lowering stomatal conductance (Flexas et al. 1998), increasing the leaf 

water storage capacity (DUring and Scienza 1980), and adjusting the stomatal density (DUring 

1987). 

2.4.2. Transpiration. Transpiration is a physiological process, which is mainly driven by 

the proportion of radiant energy intercepted by the canopy, humidity of the air, turbulence, wind 

and availability of water in the soil (Hetherington and Woodward 2003). Daily rates of ETc 

between 0.8 and 2.2 mm have been reported for irrigated vines of different canopy size in North 

America (Heilman et al. 1994, Lascano et al. 1992). Transpiration is sensitive to the availability of 

soil water. Conductance of water vapors through the stomata (gs) is often restricted at low levels of 

soil water availability. The energy reflected fromthe soil surface exposed to solar radiation and 

transferred to the canopy exceeds compared to the radiant energy directly intercepted by the vine 

(Heilmann et al. 1994). Thus, the soil management could have a major impact on the water lost in 

the vineyard. 
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Water loss is restricted by stomatal closure more than the reduction in CO2 uptake, due to 

differences between the vapor pressure gradients for water and CO2 inside and outside of the 

leaves (Raven 2002). Jarvis and McNaughton (1986) pointed out that narrowing of the stomatal 

aperture may initially reduce water loss but this will result in an increase in temperature of the leaf 

which itself will drive transpiration harder to cancel out the impact of reduced conductance. 

Cuticular conductance of fully hydrated grape leaves has been estimated at about 5 mmol m-2 
S-1 

and decreased to 1 mmol m-2 
S-1 in water stressed leaves (Boyer et al. 1997). 

Transpiration rates of fruit are typically much lower than transpiration rates in leaves (Lang 

1990). In Sangiovese grapes at mid ripening, the bunch transpiration rates were generally less than 

5% of leaf transpiration rates (Poni et al. 2001). Consistent with this observation, Mullins et al. 

(1992) stated that stomatal and lenticel densities on grape berries are low and become occluded 

with wax after fruit set. 

Stomatal movement is a result of interactions between the physiological factors and 

environmental conditions (Hetherington and Woodward 2003). Stomatal guard cells integrate 

signals from both the aerial environment and soil to control the stomatal aperture, which optimizes 

the water loss and carbon dioxide gained under a given set of environmental factors. In general, 

dry air has a greater drying capacity than moister air. Plants are generally sensitive to vapor 

pressure deficit (VPD). Therefore, grapevine leaves tend to shut their stomata, as air gets drier 

(Loveys 1984). This happens even though soil water may be readily available (Larsen et al. 1989). 

2.4.3. Xylem conductance. Reduced xylem conductance influences the water use 

efficiency (WUE) via effects on leaf water potential. Hydraulic conductance of roots and shoots is 

another parameter that influences vine transpiration (Lovisolo and Schubert 1998). Differences in 

stomatal control during the water stress are linked to the vulnerability of xylem vessels to 

cavitation (Jones and Sutherland 1991). In grapevine, the differences in hydraulic architecture 

within the petioles were attributed to near-isohydric and anisohydric behavior (Schultz 2003). The 

same author suggested that stomata could react to prevent embolism at different levels of leaf water 

potential. Specifically, a lower hydraulic conductance leads to lower rates of cavitation in the 

anisohydric variety, and therefore stomatal conductance and transpiration are not limited. 

Hydraulic conductance of roots was also found to affect the drought tolerance in grapes (Vandeleur 

et al. 2009).The same authors, using one-year-oldrooted cuttings of Chardonnay and Grenache, 

found that under water stress there was a greater reduction in root hydraulic conductance of 

Grenache compared with Chardonnay, which is an anisohydric cultivar. 

13 



Grape cultivars exhibit different stomatal sensitivity to water stress (DUring and Scienza 

1980, Schultz 1996). These varietal differences in stomatal sensitivity to water stress are related to 

differences in ABA levels (Dilling and Broquedis 1980). However, the stomatal closure does not 

occur in response to hormonal signals from the roots in all cultivars (Schultz 1996). The 

importance of root sourced ABA in regulating the stomatal apertures of plant growing in dry soil 

has been re-examined with conflicting conclusions drawn (Borel et al. 2001, Holbrook et al. 2002). 

Studies using ABA deficient mutants revealed that the stomatal response to dry soil was strongly 

influenced by the capacity of the shoot to synthesize ABA (Holbrook et al. 2002). Their study 

suggested the existence of a multi-component signaling system to control the stomata activity. 

Different combinations of climatic and edaphic conditions generate different contributions to the 

signaling process trough different chemical compounds originated in different locations within the 

plant (Sauter et al. 2001). 

In a large survey of stress response variability (31 grapevine cultivars grafted on the same 

rootstock Fercal), Gaudillere et al. (2002) measured the photosynthetic carbon isotope composition 

(&13C) in sugar. Very different .i13C values were measured for Muscat de Hamburg, Chenin blanc, 

Carignane and Riesling, indicating significant variability of the stomatal control in V. vinifera 

cultivars and tolerance to water stress. Tempranillo, which is originally from the northern cool 

regions of Spain, is sensitive to water stress and prone to early leaf senescence (Gomez del Campo 

et al. 2000). In another study, Vincent et al. (2007) using two-year-old rooted cuttings in a 

greenhouse environment, found that Chardonnay was more resistant to both water deficits and 

salinity compared to Cabernet Sauvignon. 

2.4.4. Photosynthesis. Decreases in the relative water content (RWC) in leaves, initially 

induces stomatal closure, thus imposing a decrease in the supply of CO2 to the mesophyll cells. 

This leads to a decrease in the rate of leaf photosynthesis (Lawlor and Cornic 2002). Flexas et al. 

(2002) studied the effect of drought on photosynthesis in field-grown grapevine and they found 

that a 75% decrease in stomatal conductance resulted in a 54% decrease in CO2 assimilation, and 

only a 19% decrease in the estimated electron transport rate. 

The intercellular CO2 partial pressure tends to be constant in the leaves kept under well

watered conditions (Faria et al. 1998). The same authors observed that under severe drought the 

morning period is the most favorable for carbon assimilation. In the afternoon, photosynthesis was 

restricted not only by the stomatal closure but also by the photochemical and biochemical 

limitations. 
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The discrepancy in photosynthesis data reflects the heterogeneous leaf environment of a 

grapevine canopy in which the single-leaf measurements may be influenced by temperature 

(Kriedemann 1968), vapor pressure deficit (Jacobs et al. 1996), proximity and size of sinks for 

photosynthates (Petrie et al. 2000), and the age and growth stage of the leaves (Kriedemann 1968). 

Synergistic effects of water stress on photoinhibition, high temperatures, and high light intensities 

have been reported for different species (Powles 1984), including grapevine (Correia et al. 1990, 

Medrano et al. 2003, Schultz 1996). However, the ratio of assimilation and transpiration remains 

constant with variations in air humidity and leaf temperature or even irradiance (Hall and Schulze 

1980). 

The ability of Sangiovese leaves to avoid direct sunlight and excessive heat by changing 

their inclination acts as a protective mechanism, particularly under severe drought conditions 

(Palliotti et al. 2008). Lower leaf absorption (linked to low chlorophyll and carotenoid content), 

and greater leaf transmittance (associated with decreased lamina thickness) allow a vine to 

dissipate excessive light absorption and avoid chronic photoinhibition especially at the median 

leaves under water stress conditions (Palliotti et al. 2008). 

The chlorophylls a and b are essential pigments for the conversion of light energy to stored 

chemical energy. The amount of solar radiation absorbed by a leaf is a function of the 

photosynthetic pigment content (Foyer et al. 1982). Quantity of chlorophyll gives an indirect 

estimation ofthe nutrient status, senescence and plant stress (Merzlyak and Gitelson 1995, 

Merzlyak et al. 1999, Pefiuelas and Filella 1998). Since chlorophyll provides valuable information 

about the physiological status of plants, the measurement of leaf reflectance has been used for 

quickly and nondestructively assessing of the chlorophyll content in leaves and, indirectly, the 

water status (Steele et al. 2008). 

2.5. Approaches to Measurement of Water Status 

2.5.1. General comments. Precise definition of water status in different parts of the 

soil-plant system is required for the formulation and testing of hypotheses, such as those related to 

the mechanism of drought tolerance or adaptive responses in any plant. It is also essential that the 

method used to measure the water status to be relevant to the physiological process of interest. 

Reliable measures of water status provide powerful tools for irrigation scheduling. 

The available measures of soil or plant water status can be divided into those based either 

on the amount of water or on its energy status. Numerous techniques of water status evaluation 
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have been developed in the last years. Environmental water supply and actual grapevine water 

status can be assessed by measuring soil moisture status (soil water potential or soil water content), 

and physiological indicators (Boyer 1995, Kirkham 2004, Mullins 2001). However, no existing 

single method is convenient for assessing vine water uptake over the total growing season for a 

large number of plots and at a reasonable cost. 

Irrigation scheduling tools used by the industry vary widely with application decisions 

based on the calendar date, on some measurements of soil moisture or models of crop water use 

that rely on equations, such as Penman-Monteith and Priestley-Taylor. Ideally, irrigation 

scheduling should be based on some plant-based measure of water stress, such as pre-dawn water 

potential, stomatal conductance, midday leaf temperature, sap flow etc. but so far, none of these 

has reached a stage of development where it can be widely adopted practical. 

2.5.2. Soil water content Soil moisture is a reasonable measure of plant stress since 

plant water status is closely linked to soil water status through the roots. There is a wide range of 

approaches and instruments for direct and indirect measurement of soil moisture content. These 

have been extensively reviewed elsewhere (Gardner et al. 2001, Kirkham 2004). They include 

neutron probes and a wide range of capacitance or electromagnetic sensors, including time-domain 

reflectometry, capacitance probes, resistance probes, etc. The majority of these instruments 

measure the dielectric constant of the soil, and the outcome is based on the relationship between 

this and soil moisture content. Resistance and voltaic probes are more dependent on the conductive 

capacity of the soil solution rather than dielectric constant. 

A basic measurement, which can be used to calibrate other methods or instruments, is to 

measure the soil moisture directly using gravimetric measurements. In addition, there are several 

indirect approaches for estimation the soil moisture content based on remote sensing using passive 

and active microwave or radar techniques (Gardner et al. 2001). A general problem with the 

estimation of both soil moisture content and potential arises because of the substantial 

heterogeneity within most of the soils. Single point measurements are rarely representative in 

irrigation scheduling (Townsend et al. 2001). An alternative approach that is widely adopted, 

especially for agronomic and irrigation purposes, is the indirect estimation of water status based on 

the calculation of the soil moisture balance (Allen et al. 1998). 

2.5.3. Soil water potential. A major issue with the measurement of the soil water 

content is that such measures do not necessarily relate to the ease with which that water can be 

extracted or to its effect on plant function. Methods that measure the energy status (e.g. soil 
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moisture tension) provide a rigorous indication of the water availability to plants. However, even 

the use of water potential as a measure of availability is somewhat oversimplified as this strictly 

refers only to the equilibrium situation. The capacity of the soil to release water also depends on 

the hydraulic conductivity of the soil (Kirkham 2004, Mullins 2001). The most common 

instruments that measure the energy status of soil water are the tensiometers and soil 

psychrometers (Mullins 2001). Many other indirect sensors of soil moisture tension, such as 

gypsum blocks depend on the water release characteristics of different porous materials (Mullins 

2001). 

2.5.4. Plant water status measurements. Plant water status is preferably estimated 

by the direct measurement of plant water-stress variables such as the stem and leaf water potential 

and leaf conductance, rather than soil-based measurement approaches, which are prone to 

cumulative errors, require many sensors, and may not be representative due to the soil 

heterogeneity (Gruber and Schultz 2005, Jones 2004). 

2.5.4.1. Leaf water potential ('1'). For describing the plant water relations, Slatyer and 

Taylor (1960) introduced the term 'water potential' ('I') expressed in pressure units. Measurements 

of plant 'If are primarily done either by psychrometric or pressure chamber methods (Boyer 1995, 

Kirkham 2004, Jones 1992). 

Leaf 'If measured at pre-dawn ('P pd) approximates the soil water potential. According to 

Carbonneau (1998), 'Ppd values between -0.2 MPa and -0.4 MPa indicate that the vines are 

suffering slightly, while values between -0.4 and -0.6MPa indicate severe water stress. However, 

the critical leaf water potential at which stomata are dosing depends on various factors, e.g. 

environmental conditions, leaf position, age and vine prehistory (Smart and Combe 2003). A 

number of studies involving the vine responses to water have established general values of midday 

leaf water potential under adequate water status (Chone et al. 2001, Ojeda et al. 2002, Williams 

and Araujo 2002). Generally, -1.0 MPa was the preferred value at which the irrigation of vines is 

initiated in California, and -1.5 or -1.6 MPa were the lowest values achieved under dry conditions. 

According to the most recent literature, a reasonable value for a well-irrigated vine would be 

around -0.8 MPa (Girona et al. 2006). 

Schultz (1997) showed that these values could be misleading. He found that the non

irrigated Grenache vines reached a pre-dawn leaf 'If of -0.85 MPa and that of Shiraz was much 

lower (apparently more water stressed) of -1.4 MPa. The Shiraz vines were able to successfully 

ripen their crop whereas the Grenache vines did not. The explanation was that Shiraz has the 
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ability to sustain photosynthesis at lower values of soil moisture due to the osmotic adjustment 

(Schultz and Matthews 1993). 

Vitis vinifera cultivars are particularly different in their drought tolerance, largely spread 

over the isohydric-anisohydric spectrum (Carbonneau 1985, Schultz 2003, Smart and Coombe 

1983). For example, Grenache, of Mediterranean origin, was classified as near-isohydric, while 

Shiraz, of mesic origin, displayed anisohydric characteristics (Schultz 1996, 2003). Isohydry is 

generally attributed to a strong stomatal control of transpiration rate, which results in the observed 

similarity in midday leaf'll in drought and well-watered plants (Tardieu and Simonneau 1998). 

Anisohydric plants typically exhibit less stomatal control over evaporative demand and soil 

moisture, allowing large fluctuations in leaf'll (Franks et al. 2007). 

For most crops, the leaf conductance is very sensitive to actual crop water status, and 

therefore it could give a better indication of stress rather than tissue-based measures such as leaf 

and stem water potential (Jones 2004). However, leaf conductance is sensitive to other factors. The 

spatial coverage of spot leaf conductance measurements made with a porometer is very limited and 

the leaf-to-Ieaf variations require much replication for reliable data. Therefore, the porometry 

method showed to be unsuitable for commercial applications (Hsiao 1990). 

2.5.4.2. Leaf temperature. As stomata close under water deficits, the leaf temperature 

rises. Leaf temperature is inversely correlated with the transpiration rate and stomatal conductance 

(Fuchs 1990, Jones 1992). The usefulness of the canopy temperature as a measure of the "crop 

water stress" was recognized in the 1960s (Gates 1964). Infrared thermometry (Idso et al. 1981) or 

thermography methods (Jones 2004) use the same principle of measuring canopy temperature. 

However, the leaf orientation and canopy geometry (row orientation, row spacing, and plant 

height) interact with both the environmental factors and stomatal conductance in order to determine 

the temperature of the plant canopy (Boissard et al. 1990, Fuchs 1990). 

2.5.4.3. Indirect measures of water status. In addition to the various methods for 

measuring either the water content or energy status of plant or soil water, there are a number of 

widely used indirect indicators of water status based on the analysis of plant growth or 

physiological responses known to be indicative ofthe water deficits (Jones 2004). These indicators 

range from visible expression of increasing plant water deficits such as wilting, growth rate, and 

morphometric changes (stem, leaf or fruit shrinkage) to physiological responses such as stomatal 

closure and reductions in photosynthesis rate (Fereres et al. 2003, Huguet et al. 1992, Naor and 

Cohen 2003). Although irrigation scheduling based on plant performance may be desirable, 
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constraints due to cost and lack of appropriate guidelines prevented any wide adoption of these 

methods. 

Among the various plant-based sensors that have been incorporated into irrigation systems, 

stem diameter gauges (Huguetet al. 1992), sap-flow sensors (Schmidt and Exarchou 2000) and 

acoustic emission sensors (Yang et al. 2003) are the most widely used. However, alternative 

methods such as the use of dendrometry (Goldhamer and Fereres 2001), showed a relatively high 

variability (Intrigliolo and Castel 2004). 

The use of the expert systems that integrate data from several sources (inputs from thermal 

or other crop response sensors and environmental data) appears to have a great potential in order to 

calculate an accurate water budget, and derive a robust irrigation schedule (Plant et al. 1992). 

2.6. Water Status and Abscisic Acid 

2.6.1. Physiological roles 0/ abscisic acid. When the soil water availability falls 

below a certain level, both the root", and turgor reach very low values and stimulate the synthesis 

of several plant growth regulators including ABA (Wright 1977). ABA can also be synthesized in 

leaves experiencing soil or air-drying. However, according to Cutler and Krochko (1999) almost 

all cells can synthesize ABA, which is transported through the plant via both xylem and phloem. 

Today, it is accepted that many plants regulate the stomatal aperture and leaf growth rates 

independently of hydraulic signals, in many cases this being a result of some chemical regulators 

generated by the interactions between the roots or leaves and drying soil or air (Zhang and Davies 

1989). 

ABA is a key component of the signal transduction pathway for stomatal closure (Leung 

and Giraudat 1998). The concentration of the active forms of ABA in plant tissue depends not only 

on the relative rates of biosynthesis, catabolism, transport and redistribution of ABA within leaves, 

but also on the synthesis and transport from the roots (Zhang and Outlaw 2001). ABA should 

accumulate to a high concentration in order to act on its target cells to close stomata or reduce leaf 

growth (Dodd and Davies 1996, Loveys 1984). The strength of ABA signal perceived at its final 

site of action does not always reflect the coarser measurements of ABA concentration (Zhang and 

Outlaw 2001). Trejo et al. (1993) found a concentration of approximately 0.1 11M ABA in the 

xylem sap of a well-watered plant. If this entire amount reaches the guard cells, ,the stomata would 

be permanently closed and the plant would not survive (Trejo et al. 1993). 
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Slovik and Hartung (1992), using a computer simulation, predicted that even well watered 

plants contain enough ABA to accumulate in the guard cells at a concentration high enough to 

close the stomata. This could happen if the sap pH is high enough to prevent the symplast from 

trapping the ABA when this passes through the leaf. The distribution of ABA between the cells 

and compartments of the leaves follows the "anion trap" concept (Wilkinson and Davies 2002). 

ABA accumulates in the most alkaline compartments to an extent determined by the steepness of 

the pH gradient across the membrane separating two compartments. The accumulation of ABA to 

physiologically active concentrations in the leaf apoplast adjacent to the guard cells is directly 

related to the pH value. 

Sauter et al. (2002) concluded that the basic ABA signal is influenced by the soil drying 

via synthesis of ABA conjugates such as glucose ester (ABA-GE). Unlike free ABA, ABA-GE is 

lipophobic and unable to cross the lipid cell membranes between the xylem and its surrounding 

tissues. ABA-GE following arrival in the leaf apoplast is cleaved by apoplastic esterases, 

hydrolases and ~- glucosidases, to release free ABA to the target cells (Dietz et al. 2000). Since 

under certain circumstances the ABA-GE from xylem could be the major translocation pathway of 

the ABA signal, simple measurements of ABA from xylem do not always reflect the amount of the 

anti-transpirant potentially present in the xylem stream. Changes in sap pH from xylem occur in 

response to the climatic fluctuations (light intensity, temperature and vapor pressure deficit), in the 

absence of leaf water deficits (Wilkinson and Davies 2002). 

ABA is catabolized via oxidation or conjugation with glucose, which might represent an 

inactive pool of ABA (Dietz et al. 2000, Nambara and Marion-Poll 2005). Lee et al. (2006) 

demonstrated that the cleavage of ABA-GE by an ABA-specific ~- glucosidase, AtBG1, is a new 

way to produce bioactive ABA in response to dehydration stress. Another theory stated that the 

production of ABA occurs in leaves and a different signal than ABA transmits the drought stress 

response from roots to leaves, and this unknown "root-to-Ieaf' long distance signal in turn causes 

the production of ABA in leaves (Christmann et al. 2005). 

2.6.2. Plant responses to ABA. Abscisic acid plays primary regulatory roles in the 

initiation and maintenance of seed and bud dormancy and in response of plant to stress. In stressed 

roots, ABA not only maintains their growth rates (Munns and Sharp 1993) but it also increases the 

root hydraulic conductivity (Glinka and Reinhold 1971) by modifying the root membrane 

properties. Many studies have suggested that though the short-term effects of elevated ABA 

concentrations on stomatal function are reversible (Tardieu et al. 1996, Trejo et al. 1995), its long

term effects on developmental changes and functioning of stomata are permanent (Franks and 
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Farquhar 2001). Stomata of plants grown under water stress (which have higher ABA levels) are 

smaller than those of well-watered plants (Xia 1994). ABA also induces reductions in leaf and 

stem growth rates, reduces the leaf surface area and preserves water (Bacon 2004). Zacarias and 

Reid (1990) showed that ABA also accelerates the senescence of leaves, while ethylene induces 

their abscission. 

Changes in ABA content appear to trigger the final steps in the ripening process (Coombe 

1976). Later, it was demonstrated that the ABA regulates the biosynthesis of primary and 

secondary metabolites during the grape berry ripening (Antolfn et al. 2003, Davies et al. 1997). 

Increases in ABA level during berry maturation have been correlated with increases in soluble 

solids, reducing sugars, and anthocyanins (Palejwala et al. 1985). ABA has also effect on the 

expression of genes involved in anthocyanin biosynthesis, invertase activity, and ASR (ABA, 

stress, and ripening) proteins involved in sugar metabolism and ripening (Ban et al. 2003, C;akir et 

al. 2003, Gagne et al. 2006, Pan et al. 2005). 

Several studies have found positive effects of ABA applications on grape berry 

development and production of components associated with maturation and ripening. ABA applied 

to Flame Seedless grapes led to increases in berry size, skin anthocyanins and reductions in juice 

acidity and berry firmness (Peppi et al. 2006, Peppi and Fidelibus 2008). The content of 

anthocyanins also increased in Cabernet Sauvignon berries where exogenous ABA was used 

(Gagne et al. 2006). 

Munns and King (1988) have presented some evidence for the presence of a root-sourced 

chemical signal other than ABA, which is responsive to soil water potential. Synthesis of the 

ethylene precursor 1-arninocyclgpropane-1carboxilic acid (ACC) increases in roots in response to 

stress (Gomez-Cadenas et al. 1996) and it is transported to shoots where the ethylene released from 

ACC induce the ABA synthesis (Hansen and Grossmann 2000). 

2.7. Irrigation Strategies 

In the humid and sub-humid zones, irrigation has been used for some time to supplement 

rainfall as a tactical measure to stabilize production during drought seasons. This practice has been 

called supplemental irrigation (Cabelguenne et al. 1995) and is used to achieve maximum yields 

and eliminate yield fluctuations caused by the water deficits. Furthermore, supplemental irrigation 

in humid climates has often been advocated as more efficient than irrigation practiced in the arid 
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zones because lower water vapor deficits of humid zones lead to higher transpiration efficiency 

than in arid zones (Tanner and Sinclair 1983). 

2.7.1. Deficit irrigation. From the standpoint of water conservation, less water supplied 

to trees and vine canopies is translated into a greater decrease in transpiration than in field crops, 

leading to more net water savings (Dilling et al. 1997, Turner 1997). However, a consequence of 

reducing irrigation water using a deficit irrigation strategy is the greater risk of increased soil 

salinity due to reduced leaching, and its impact on the sustainability of the irrigation (Schoups et al. 

2005). 

2.7.1.1. Regulated deficit irrigation (RDI). The deliberate withholding of irrigation 

water is embodied in the technique known as regulated deficit irrigation (RDI). This technique is a 

strategy to reduce the possible negative impacts of irrigation on wine quality, where the irrigation 

input is removed or reduced for specific periods during the crop cycle (Alegre et al. 1999, 

Goodwin and Macrae 1990). This technique relies on precise knowledge of the phenology of 

vegetative and reproductive development of the vine. The concept of RDI was first proposed to 

control the vegetative growth in peach orchards (Chalmers et al. 1981). They found that savings in 

irrigation water were realized without reducing yield. The major impact of the imposed water 

deficit is to reduce the vegetative growth with little effect on fruit development (Goodwin and 

Boland 2002). However, RDI was not successful in every environment (Girona et al. 1993). The 

benefits of RDI to the yield and quality of wine grapes were clearly demonstrated relative to rain

fed production (Bravdo and Naor 1996, Girona et al. 2006). RDI found extensive application in the 

production of wine grapes in Australia (McCarthy et al. 2002). Chalmers et al. (1981) and Girona 

et al. (1993) have studied the mechanisms responsible for the lack of yield decreasing under RDI. 

Their explanation is that the high sensitivity of the expansive growth of the aerial parts to water 

deficits must affect the partitioning of assimilated carbon, as photosynthesis is not affected by mild 

water deficits. Root growth is stimulated under water deficits (Hsiao and Xu 2000). 

The RDI response is very dependent on the timing and degree of severity of the water 

deficits, as well as on crop load (Marsal and Girona 1997). McCarthy et al. (2002) showed that by 

regulating the soil water tensions carefully. iUs possible to achieve the desired balance between 

the vegetative and berry growth. RDI may also causes changes to specific characteristics such as 

the size of grape berries (McCarthy 1997). This is important because the flavor compounds that 

determine the wine quality are located principally in the berry skin, and an increase in ratio 

skin:pulp might improve the fruit quality. 
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2.7.2. Partial root zone drying. In order to manipulate WUE in the vineyard based on 

vine physiology behavior under water stress, another strategic irrigation management tool was 

developed. This is called partial root zone drying (PRD) (Dry and Loveys 1998, Loveys et al. 

2000). The PRD technique has its origin in the observation that the root-derived abscisic acid is 

important in controlling the stomatal conductance (Davies and Zhang 1991, Loveys 1984). Split

root plants were used to show that many of the effects of water stress can be explained in terms of 

the transport of chemical signals from root to shoot without changes in water relations (Gowing et 

al. 1990). The content of ABA in xylem sap from field grown Cabernet Sauvignon vines was 

significantly higher in PRD treatment than in fully irrigated control, proving that the root-sourced 

ABA is involved in the PRD response of the grapevine (Stoll et al. 2000). Although, large changes 

in the ABA content of the drying grapevine roots occur during PRD irrigation (Loveys et al. 2000), 

the changes of ABA content in leaves are relatively small (Stoll et al. 2000). 

Loveys (1991) stated that if both wet and dry root zones would be maintained alternatively, 

the vegetative development of the plant could be manipulated through an appropriate irrigation 

management. Experiments with potted and field-grown grapevines showed that shoot growth, leaf 

expansion and transpiration were significantly reduced by PRD (Dry and Loveys 1999, Dry et al. 

1996, Passioura 1988). Loveys et al. (1998) used PRD to reduce the need for pruning, and showed 

that the pruning weights were reduced between 20 to 40% compared with normally irrigated vines. 

The reduction in canopy density caused a better penetration of the light to the cluster zone and 

consequently an improvement in grape quality (Dry et al. 1996). PRD does not alter the leaf '!', and 

this lack of reaction is explained by a mechanism based on a root derived chemical signal rather 

than a hydraulic one (Stoll etal. 2000). 

Most of the studies showed that water status .affects grape quality, both low and high water 

status being associated with negative changes in wine quality. Even if many studies have been 

done on optimization of water status in the vine in order to improve wine quality, confusion still 

persist among grape growers and winemakers about the necessity of using irrigation, not only in 

cool but also semiarid area. The contradictory data from different studies were a consequence of 

the different cultivars, cultural practices and climate conditions used. As a consequence of climate 

change, more vineyards will be affected in terms of their water status. The general trend in water 

balance studies is to understand how the biochemistry and molecular changes occurs in grapevine 

under extreme water status. Winegrape quality might be improved under extreme weather 

conditions through a manipUlation of vine physiology. This could be done by using more efficient 

irrigation techniques or using exogenous plant hormones in vineyards. 
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Chapter3a 

Effect of Water Stress Level and Time Imposed Irrigation on Vine 
Physiology, Vigor, Yield, Fruit Composition, and Wine Quality on 
Baco noir Grapevines in a Cool Climate Area. I. Vine Physiology, 

Vigor, and Yield 

Abstract. Irrigation experiments were conducted on French-American hybrid Baco 
noir in a commercial vineyard, located on Niagara-on-the-Lake, Ontario, Canada, between 
2005 and 2007. The reference evapotranspiration (ETc) was calculated using the Penman
Monteith equation and further adjusted with a variable crop coefficient to obtain the crop 
evapotranspiration (ETc).The effect of three irrigation levels [two regulated deficit irrigation 
treatments (RDI) at 25% and 50% replacement of water loss through ETc and 100% ETc] 
combined with three timings of irrigation initiation (fruit set, lag phase, veraison) were studied. 
The control was non-irrigated. According to soil moisture data, the control and late deficits 
were under low water status in all seasons, even in 2006 when the total rainfall was the 
highest in the three years studied. In the soil profile, there were large differences among 
treatments up to the 50 cm. Transpiration rates were the highest in July and August and 
dropped by the end of August. Over the growing season, the control had the lowest 
transpiration rate while the 100% ETc initiated at fruit set the highest one. In 2005 and 2007, 
shoot growth rate had almost the same trend, 25 % ETc followed very close control. The 
100% ETc imposed at fruit set had the highest growth rate. Leaf water potential (lJ.I) was 
higher in 100% ETc and 50% ETc compare to the control throughout the growing season. Leaf 
lJ.I had a downward trend to the end of August in all treatments and experimental years. The 
control had the lowest leaf lJ.I value in 2007. The control and 100% ETc initiated at fruit set did 
not show significant difference in all yield components. The trends were not constant during 
the period studied for any irrigation treatment applied. RDI treatments showed an increase in 
some yield components compared to the control. RDI technique could be a profitable 
management tool in Ontario vineyards, with positive effects on vine physiology and yield. 

Introduction 

Grapevine irrigation is still a controversial subject worldwide. More debates arise between 

grape growers and winemakersabout the opportunity to use irrigation, mostly in regions with cool 

or moderate climate. The frequency of dry weather in the growing season has increased in the last 

decade in Niagara Region of Ontario, Canada; at least six of the last 10 vintages have been subject 

to prolonged drought in southern Ontario and northeastern United States (Lakso and Pool 2001, 

Reynolds et al. 2007). In recent years, water deficits have also occurred in other cool climate 

winegrowing regions (Reynolds et al. 2009, Van Leeuwen and Seguin 2006, Zs6fi et al. 2009). 

The constraints posed by climate change require adaptive management, such as irrigation to 

stabilize yield and maintainor improve wine quality (Chaves et al. 2007, Dry and Loveys 1998, 

Medrano et al. 2003). 
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The frequency of extreme weather events, such as prolonged heat or torrential rains is also 

predicted to increase, with negative effect on yield and quality of grapes. These changes will be 

also accompanied by altered rainfall patterns (an increase in winter rainfall and a decrease in 

summer rainfall; Houghton et al. 2001). Predictions on global climate change show a progressive 

shift towards hot and dry weather during the vegetation season in several viticultural areas (Schultz 

2000). This underlines the need to know more about how different cultivars react under various 

water deficit levels, and how water use efficiency in the vineyard can be improved. In order to 

avoid a damaging imbalance between vine growth and yield, there is a need to optimize the use of 

natural resources, especially water and light, and to develop appropriate management strategies. 

Although grapevine (Vitis vinifera L.) is considered a species adapted to drought stress, 

under severe soil water deficits encountered during the vegetation season, leaf photosynthesis is 

impaired (Flexas et al. 1998). Signs of current season water stress are not clearly visible on 

grapevines (Jackson and Lombard 1993). Symptoms are typically observed after repeated episodes 

of water stress (Evans et al. 1993, Kliewer et al. 1983, Porter 1996, Wample 1997), in contrast 

with many other species under the same water stress conditions. This has a dominant and limiting 

role on vine growth, yield and fruit chemical composition (Bravdo and Hepner 1986, Matthews 

and Anderson 1988, Medrano et al. 2003, Poni et al. 1994, Schultz 1996b, Schultz and Matthews 

1988). There is evidence that during the water stress in wine grapes, many physiological (Dry et al. 

1996, Matthews and Anderson 1988, Van Leeuwen and Seguin 1994) and biochemical changes 

(Ban et al. 2003, Kennedy et al. 2002) occur. Grapevine sensitivity to seasonal water deficits and 

the consequences for vegetative and reproductive growth and wine quality are well known 

(Buttrose 1974, McCarthy 1997, Williams and Matthews 1990). Soil moisture below the plant 

availability threshold, high temperature, high radiation regimes and high water vapor pressure 

deficit (VPD) are factors that unbalanc~ water status in the vine (Evans et al. 1993, Wample 1997). 

General vine metabolism and physiology can be changed in a positive or negative way depending 

on the magnitude and time when the water stress occurs (Lakso and Pool 2001). If a water deficit 

occurs early in the season, the effects will generally be achieved mostly through a reduction of 

berry cell division (McCarthy et al. 2002), while water deficits imposed at later stages inhibit the 

berry cells growth (Williams and Matthews 1990). The following season's crop potential is also 

significantly reduced (Wample and Smithyman 2002). The quality of the fruit can be increased if a 

mild water stress is imposed to reduce vine vigor, thus reducing the competition of the growing 

tips for carbohydrates (Tregoat et al. 2002). There is some evidence that reducing irrigation leads 

to increased concentration of flavor compounds in the berries (Reynolds and Wardle 1997). 
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Some researchers pointed out that the effects of soil and environmental conditions on yield 

and grape composition is cultivar dependant (De Souza et at 2005, Medrano et al. 2003, Schultz 

1996). Knowing how different grapevine cultivars perform in different environmental conditions 

and how they react at different levels of water stress is attracting an increasing interest (Williams 

2001). Baco noir, a French-American hybrid (V. vinifera cv. FolIe blanche xV. riparia) is an 

extremely vigorous growing cultivar best grown on heavier, well-drained soils. Early budbreak and 

its shallow growing well-branched root system are two traits which Baco noir inherited from its V. 

riparia parent (Gloor 1983). Due to its disease resistance and high productivity (Byrne and Howell 

1978), Baco noir is still a very popular grape wine cultivar in Niagara Region. Baco noir is also 

rich in several chemical compounds with health benefits. It had the highest resveratrol content 

(5711lg/100g) of 14 cultivars tested from Finger Lakes area of New York State (Yang et al. 2009). 

However, despite these positive characteristics, this cultivar suffers from some cold injury, which 

are be expressed as cane dieback, bud mortality and trunk cankering (Gloor 1983). In hot, dry 

years, water lost through transpiration by its large canopy generates different levels of water stress 

in the vine since its shallow root system is not able to replace the water lost at the same rate as that 

of transpiration. 

One major way that the wine industry is attempting to improve water use efficiency is 

through application of deficit irrigation. If it is managed properly, deficit irrigation can have a 

minimal impact on photosynthesis and subsequently improve grape quality (De Souza et al. 2005). 

The irrigation strategy known as regulated deficit irrigation (RDI), which has been widely 

evaluated around the world, is a viable practice in vineyards for controlling excess vigor, reducing 

pest populations and disease pressure, and improving wine quality (Jackson and Lombard 1993). 

Although many studies have investigated the effects of RDI, there is little information available to 

assist growers in determining optimum levels of water deficit at various times during the growing 

season, specifically in areas considered cool and humid. The rationale underlying this practice is to 

optimize berry number, fruit size and quality. This might be achieved by keeping grapevine vigor 

in balance with potential production. 

The objective of this research was to study the effect of different levels of water deficit and 

the timing of the imposed irrigation on vine physiology and grape quality in order to achieve 

consistent quality fruit style year after year. It was hypothesized that by controlling the vine water 

status at various vegetative stages, one could manipulate vine metabolism, increase yield and 

minimize the possible negative dilution effects of irrigation on grape quality. 
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Materials and Methods 

Experimental design and plant material. The trials were conducted at Lambert 

Vineyards, Niagara-on-the-Lake, ON (43°13' N, 79°08'W) between 2005 and 2007, inclusive. The 

experiment was set up in a Baco noir block (37 rows in total) planted in 1993. Vines were spaced 

1.5 m (between vines) by 2.7 m (between rows), trained to a four-arm Kniffin system and pruned 

to 40 nodes per vine. Rows were 200 m long and oriented north to south. 

Soil type was Chinguacousy clay loam (gleyed brunisolic gray brown luvisol) with 

imperfect drainage (7 to 9 L/h). The wilting point of the Ap horizon (0 to 27 cm) was 13.3% 

moisture, and the field capacity was 27.3 % moisture by volume. Bulk density varied between 1.25 

g cm-3 in horizon A and 1.69 g cm-3 in horizon C (Kingston and Presant 1989). The whole block 

had a subsurface drainage system, with tiles placed at a 60 cm depth in the middle of every row. 

Soil management consisted of mowed sod row middles with ~1.0 m herbicided strips under the 

vines. 

Vines were drip irrigated using RAM drip tubing. Each drip pipe was placed at 40 cm 

above the soil. Drippers with a flow rate of 1.5L1h were spaced at 0.6 m apart. A gasoline-powered 

pump supplied water to the vineyard block from Welland Canal. All water was passed through a 

sand filter and kept at a constant pressure of 275 kPa during irrigation. A randomized complete 

block design was used, and divided into three blocks where each treatment replicate corresponding 

to a row, with the outside rows used as buffers. Ten treatments were assigned randomly to each 

block, and 10 equally distributed vines were chosen for data collection in each row. Treatments 

were: control - no irrigation,and either 100%, 50% or 25% replacement of soil water lost through 

evapotranspiration (100% ETc, 50% ETc, and 25% ETc) combined with one of three irrigation 

initiation times (fruit set, lag phase, veraison). Water was applied weekly as prescribed through 

individual valves installed at the end of each row. Irrigation treatments were scheduled on Friday 

of each week. The volume of irrigation water to be applied was calculated each week according to 

the previous week's total potential evapotranspiration (ETo). Daily ETo was calculated using the 

Penman-Monteith equation (Allen et al. 1998). ETo was adjusted to the crop evapotranspiration 

(ETc) value using a crop coefficient (Kc). The Kc was calculated based on percentage of the ground 

surface shaded by the vine canopy at the time when water was applied through irrigation (Williams 

and Ayars 2005). Precipitation in excess of 12 mmlweek was subtracted from the weekly

calculated ET 0. To calculate the actual amount of water required by the vines in Llvine/day, 

equations developed by Van der Gulik (1987) were used. The time for delivering the amount of 
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water needed for each treatment was calculated by dividing the total amount for each treatment 

row to the total amount of water supplied by all drippers from one row. The mathematical steps 

taken to schedule irrigation applications were described in detail by Reynolds (2008). Weather 

variables used in the Penman-Monteith equation (daily max, min and mean temperature, rain, 

relative humidity, solar radiation and wind speed) were provided by Weather Innovation 

Incorporated (WIN) website Cwww.weatherinnovations.com). The meteorological data needed was 

accessed from the nearest meteorological station (Virgil Station, Niagara-on-the-Lake, ON). Fruit 

set treatments was initiated on 24 June (2005),23 June (2006) and 22 June (2007). Lag phase 

treatments were initiated on 15 July (2005),21 July (2006) and 13 July (2007). Veraison 

treatments began on 29 July (2005), 7 August (2006) and 28 July (2007). 

Vine water status. Transpiration. Biweekly observations were conducted over the 

growing season to monitor vine water status. In each season, an U-I600 steady-state porometer 

(LICOR, Lincoln, NE) was used to measure both the transpiration rate (Ts) and temperature of the 

grapevine leaves. Photosynthetic photon flux density (PPFD) readings were also collected using 

the U-190S-1 quantum sensor. The porometer was acclimated to ambient conditions (temperature 

and humidity) between 15 to 30 minutes before starting to collect data, and the desiccant was 

replaced before each sampling date. Three leaf samples from three different shoots (close to the 

trunk and the two extremities) were chosen from three of the ten sentinel vines per each treatment 

replication. The first sampling date was one day before the ftrst irrigation treatment was imposed. 

Lea/water potential. Biweekly observations were conducted over the growing season to 

monitor vine water status. Midday leaf water potential ('I') data was collected from mature leaves, 

fully exposed to the sun, between 1030h and 1400h. Three sample leaves from three different 

shoots (close to the trunk and the two extremities) were chosen from three of the ten sentinel vines 

per each treatment replication. The time from excision to reading was between 15 to 20 seconds. 

After excision, the lamina was quickly introduced into a pressure chamber [Model 3005 Plant 

Water Status Console (Soil Moisture, Santa Barbara, CA)], and pressure was increased slowly at a 

rate no higher than 0.02 MPa per second in order to avoid errors in reading. The pressure readings 

were taken in negative units (MPa) when ftrst sign of sap emergence occurred. The first sampling 

date was one day before the ftrst irrigation treatment was imposed. 

Soil water status. Soil moisture was assessed over a period of 3 years between 2005 and 

2007. Data was collected from soil adjacent to the 10 sentinel vines per each treatment replicate 

starting with one week before ftrst irrigation treatment was imposed and biweekly thereafter. Soil 

moisture data was collected using two different instruments. A Fieldscout-3oo soil moisture probe 
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(Spectrum Technologies Inc., East Plainfield, IL) was used to measure the volumetric water 

content. Measurements were taken in the row at 25 cm from the base of each trunk: and at 20 cm 

depth. Soil moisture readings were collected from a total of 300 vines between 0800h and 1600h. 

Starting with 2006 season, soil moisture was also collected by Profile Probe PR2™ (Delta-T 

Devices Ltd., Cambridge, UK). One access tube was inserted in the ground at 25 cm from the 

trunk in the middle of each treatment replicate row. Soil moisture was collected from six depths 

(10,20,40,60,80, and 100 em). Data was stored on soil moisture meter HH2TM (Delta-T Devices 

Ltd, Cambridge, UK) and uploaded onto a computer for statistical analyses. 

Yield and vigor components. All recorded vines were hand harvested 2 to 4 days before 

the commercial harvest date (first week of September). Before harvesting, 100 berry samples were 

collected randomly from clusters of each recorded vine. They were stored at -25°C until analysis. 

These samples were used to determine the number of berries per cluster, cluster weight, soluble 

solids (OBrix), pH, titratable acidity, color intensity, hue, total anthocyanins, and total phenols. 

Yield and number of clusters for each experimental vine were also recorded. 

During the 2006 and 2007 season, growth shoot rate was recorded. Three readings were 

collected during the season (June-July) when shoot growth rate was most active. One day before 

the irrigation treatments were initiated, three shoots of approximately the same length from three 

recorded vines were flagged. The shoots were random selected in order to avoid any potential 

hormonal distribution effect on shoot growth rate. Overall, 27 shoots (three shoots x three vines x 

three replicates) per treatment were measured each growing season. All the shoots were measured 

before fIrst irrigation treatments were imposed. The sampling dates were scheduled every other 

week, one day before the irrigation treatments were applied. Each recorded vine was pruned to 40 

buds per vine during the dormant season (December to February), and the annual wood was 

weighed using an electronic fish scale (Rapala, China). 

Data analysis. All data ('I', Ts, soil moisture, and yield components) were analyzed using 

SAS statistical software (SAS Institute, Cary, NC), with the general linear models procedure 

(PROC GLM). Duncan's multiple range test was used for means separation. Dunnett's t test was 

used to determine if differences existed between the controls and individual treatments. Principal 

components analysis (PCA) was performed on the means of the fIeld data ('1', Ts, soil moisture) 

and yield components for each year of the experiment. Partial least squares regression (PLS) was 

performed on the field and yield data in order to fInd out relationships among these variables. 
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Results and Discussion 

Weather summary. In the Niagara Region for the last decade, at least six out of 10 years 

were under water deficits during the growing season (Reynolds et al. 2007). The 2006 season was 

a wet year with a total rainfall of 220 mm during June to August; 2005 and 2007 were dry years. 

Analyzing rainfall data for a period of 4 years (2005 to 2008 helped for a better understanding of 

the necessity of this project (Fig. 3a-lA). The summer of 2007 was a challenging growing season, 

being the driest year during the experiment period. Rainfall was 56 mm from June to August, 

which was approximately 25 % of the same period in 2006. In 2007, the Niagara region fell much 

below the 30-year monthly average rainfall accumulation, from May through September. The lack 

of rainfall coincided with high daily temperatures (Fig. 3a-lB) consistently higher than the 30-year 

normals for the entire summer. However, July was below the normal temperature due to a short 

period with cool days. Rainfall followed the same trend in all 3 years, with a maximum in July and 

a minimum in August when most grape cultivars experience veraison (Fig. 3a-2). High 

temperatures (Fig. 3a-lB) and high solar radiation (data not shown) along with water shortage 

generated high ETo (Fig. 3a-3). Yearly variability in growing season conditions such as rainfall 

distribution (Fig. 3a-2) and wind speed generated a high variation in the ETo (Fig. 3a-3) with 

maximum values in 2007 and minimum values in 2008. The ETofollowed the same trend during 

summer season even in 2008, when the mean temperature for the summer months was lower than 

average (Fig. 3a-3). 

Soil moisture measured by TDR (Figs. 3a-4A-C; 3a-5A-F). The general soil moisture 

trends for all treatments as measured by TDR, followed the same trend as rainfal1-, with high values 

in July and lower values in August (Figs. 3a-4; 3a-5). The soil moisture trend in the control 

treatment reflected the air temperature and rainfall in all 3 years of the experiment, as would be 

expected, and was consistently lower than other irrigation treatments over the whole vegetation 

season (Figs. 3a-4; 3a-5). However, there were significant soil moisture differences among 

treatments. The 25% ETc and the late treatments were very close to the control treatment most of 

the season in each year of the experimental period (Figs. 3a-4; 3a-5). Except for early irrigation 

treatments, all mean soil moisture values were lower than the wilting point (13.3 %) throughout the 

season. 

In 2005, the soil moisture in the upper portion of the soil profile showed substantial 

differences among the irrigation treatments (Fig. 3a-4). However, the magnitude of difference 

among treatments was not as high as in 2006 and 2007. The treatments imposed at fruit set were 
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consistently higher all the season (Fig. 3a-4A), except the 25% ETc, while the treatments imposed 

at lag phase showed differences only at two sampling dates (Fig. 3a-4B). The readings recorded for 

50% and 100% ETc treatments imposed at veraison had lower values than the control at three 

sampling dates (Fig. 3a-4C). The data collected showed that soil moisture in the top soil profile (10 

cm) was below the wilting point (13.3%) throughout the season, even in the treatments imposed at 

fruit set. 

In 2006, the trends were consistent with those in 2005 (Figs. 3a-5; A to C). Except the 

readings collected on 18 July, which were very high for all treatments due to a heavy rainfall, all 

others followed the same general trend as the control being between wilting point (13.3%) and 

field capacity (27.3%) (Figs. 3a-5; A to C). In the upper portion of the soil profile (20 cm), 

moisture had values greater than wilting point but lower than field water capacity. Soil moisture 

was higher than the wilting point in all irrigated treatments compared to control, throughout the 

season (Figs. 3a-5; A to C). 

In 2007, there was a different trend than 2005 and 2006 (Figs. 3a-5; D to F). At the end of 

July, soil moisture reached a maximum in all treatments due to a heavy rain. At the beginning of 

August, soil moisture showed a decreasing trend with a minimum at the end of August. The 

highest magnitude of differences among the irrigation treatments was recorded in the first two 

weeks of July and the entire August (Figs. 3a-5; D to F). 

Soil moisture measured by Proide Probe PR2™ (Figs. 3a-6 A-F to 3a-ll A-F). In 2006, 

the trends were similar among all treatments regarding the sampling depths (Figs. 3a-6 to 3a-8). 

However, the magnitudes of difference between treatments generally diminished with increasing 

depths. In 2006, the trends were almost similar for 10 to 30 cm depths (Figs. 3a-6 and 3a-7; A to 

F). There were generally low fluctuations in soil moisture during the season at the lowest depths. 

The highest fluctuation in soil moisture during the season was recorded at 30, 40 and 60 cm (Figs. 

3a-7 A-F; 3a-8A-C). At the 100 cm depth, the highest values were found at beginning of the season 

followed by steadily downward trend with a minimum at the end of August (Figs. 3a-8D-F). At 

100 cm there was very little fluctuation during the growing season. However, differences were 

observed at the end of July at the 100 cm depth between non-irrigated and the irrigation treatments 

imposed at fruit set (Figs. 3a-8D-F). 

There were different trends in soil moisture in 2007 compared to 2006 at all soil depths 

(Figs. 3a-9 to 3a-ll; A to F). The early-imposed treatments had values above wilting point 

(>13.3%) throughout the season. At 10 cm depth, soil moisture from the control was below wilting 
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point «13.3 %) throughout the season following the same trend as that recorded with the TDR 

(Fig. 3a-9A-C). There were large magnitudes of difference among treatments between the middle 

of July and the end of August. The highest magnitude of difference was found between control and 

the treatments imposed at fruit set. The magnitude of difference among treatments was lowest at 

the 100 cm depth, as it was in 2006. The highest soil moisture values were found at the end of June 

at the 100 cm depth (Fig. 3a-11D-F) following the same downward trend to the end of the season 

as in 2006. In each year of the experimental period the rain events decreased the magnitude of 

difference among the treatments, however even in these conditions irrigated treatments had higher 

soil moisture than the non-irrigated treatments. These trends are similar to those found by 

Reynolds et al. (2009). 

In one irrigation experiment using Colombard grafted on Ramsey it was found that the 

maximum root densities were 1.2 and 0.6 cm/cm3
, and the estimated total root lengths per vine 

were 32 and 26 Ian for drip and microjet irrigated vines, respectively (Stevens and Douglas 1994). 

Under drip irrigation, the grape root distribution was concentrated within the vine row, whereas 

under microjet sprinkler irrigation, roots were dispersed out between the rows, both patterns 

reflecting the wetted area. Soil moisture data from the Profile Probe showed that water depletion 

rate was higher between 20 and 60 cm depth, which might be explained by higher root density at 

this depth under the various deficit irrigation regimes. This is in agreement with the observation of 

Poni et al. (1994), who found the main rooting zone and water uptake at a soil depth of 40 to 60 

cm. In the present experiment, vines of all treatments had the highest water demand·in August, 

which coincided with berry development. The same findings were also reported in another study 

carried in Australia (Stevens and Harvey 1996). Furthermore, this data showed a degree of soil 

moisture variation under drip irrigation even at 100 cm. Stevens and Harvey (1996) reported the 

same finding but even at a higher depth (120 cm). 

Soil moisture varied with soil depth at almost every sampling time. The patterns of soil 

moisture distribution illustrate these results. The moisture in the top soil profile (10 cm) decreased 

in all treatments compared with the moisture at the other depths at the end of the growing season 

(Figs. 3a-6 and 3a-9 A to C). Davenport et al. (2008) suggested that for soil moisture monitoring in 

drip-irrigated wine grapes grown under RDI, a 0- to 45-cm sampling depth collected in a 20 to 40 

cm radius either diagonal or perpendicular to the drip emitter reflected best the amount of plant

available soil water. In order to avoid any error due to any under vine hills or other surface features, 

it was also suggested that soil moisture monitoring should be conducted on both sides of the row 
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around each emitter selected and then averaged in order to reflect accurately water distribution in 

the soil. 

Soil moisture data was constant at each recorded vine from the irrigated treatments. Soil 

moisture did not show significant difference among the ten recorded vines from one individual 

treatment, when readings were collected at at 30 em away from the experimental vine (data not 

shown). However, one study showed that water distribution under drip emitters varies both 

spatially and temporally (Rolston et al. 1991). Under drip irrigation, the wetting pattern has an 

onion shape, and its vertical and horizontal dimensions are determined by the hydraulic 

conductivity and water holding capacity of the soil (Bresler 1977). The width of the wetted "bulb" 

depends mainly on the hydraulic conductivity of the soil, whereas the depth is a function of both 

saturated hydraulic conductivity and gravity (Brouwer et al. 1996). For this reason, the vertical 

axis of the water distribution is usually longer than the horizontal axis. The horizontal/vertical 

length ratio is positively correlated with the hydraulic conductivity of the soil, and the ratio is 

higher in finer textured soils like the soil from this experiment. This explains why after each 

irrigation application in 100% ETc treatments, the visual observations of the wetting pattern 

indicated a wet strip along the row without dry gaps between the two successive emitters. Long 

irrigation intervals are not normally recommended because they do not maintain a constant volume 

of irrigated soil but rather flood the majority of the root system by swelling and shrinking the 

irrigated soil volume (Davenport et al. 2008). This recommendation is relevant for coarse textured 

soils in arid and semi-arid areas, but not for soils with fine textures (clay or clay loam) that have a 

high water storage capacity (Kingston and Presant 1989). This underscores the need in the 

treatments to apply a large-volume of water weekly. 

Small roots have a relatively high surface area per unit of cross-sectional area or per unit of 

root mass (Stevens and Douglas 1994). A large mass of small rootlets will, therefore, have a 

surface area that is a several orders of magnitude greater than an equivalent mass of large-diameter 

roots. Thus, a high concentration of small rootlets in the confined volume of irrigated soil under 

the dripper could have a tremendous capacity to supply water to the above-ground canopy. Due to 

increased root surface area, the vine would become less dependent on water movement in the soil. 

Moreover, the positive effect of drip irrigation is that it concentrates the roots in a relatively small 

volume of soil, thereby making them less affected by soil heterogeneity (Stevens and Douglas 

1994). Drip irrigation (fertigation) conditions might create a dense root concentration composed of 

numerous small rootlets and root tips, with an increased root surface area that greatly enlarges the 

potential for mineral and water absorption. 
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Shoot growth and vine size (Figs. 3a-12A-F). In 2006, the shoot growth rate showed a 

decreasing trend for all treatments downward to the end of July (Figs. 3a-12A-C). The maximum 

magnitude of difference among treatments was found at beginning of July with values between 27 

and 50 cm. Even in a wet year such as 2006, shoot growth rate decreased at the end of July or 

earlier. Early-imposed treatments had the highest shoot growth rate, the magnitude of difference 

among treatments being dependant on the water deficit level applied. In 2007, the maximum 

growth rate was found at the end of July. Treatments imposed at fruit set again showed the highest 

growth rate (Figs. 3a-12D-F). Treatments imposed at lag phase showed a slightly higher rate than 

the control and late-imposed treatments. 

One interesting observation was that vine size was not correlated with shoot growth rate in 

all treatments. Shoot growth rate had a high degree of correlation with the amount of water 

applied, but it was not the case for vine size. One explanation could be that both the wood (xylem 

density) and diameter size of the canes pruned from irrigated treatments were lower compared to 

the treatments under deficit irrigation, due to carbohydrates and minerals relocation. The results do 

not agree with previous studies that found reductions in shoot and fruit growth under deficit 

irrigation (Bravdo et al. 1985, Evans et al. 1993, McCarthy and Coombe 1984, Smart and Coombe 

1983, Wample 1997). A moderate water stress reduced vegetative growth without affecting 

photosynthetic activity that could favour the partitioning of sugar to the fruit and perennial organs 

during the ripening process (Carbonneau and Deloire 2001). However, deficit irrigations of 20 and 

40% ofETo led to no differences in vegetative growth (Centeno et al. 2005). A previous study has 

showed that visible differences in shoot growth reduction do not normally occur until after full 

bloom (Wample 1997). The results from the present study agree with these findings, since water 

deficits usually occur naturally in Niagara Peninsula after fruit set (end of June). Water-stressed 

plants had lower shoot growth and total cross-sectional xylem area, which affected hydraulic 

conductivity. In vines under water stress, a decreased diameter of xylem vessels might be linked to 

limited stem hydraulic conductivity, and consequently could limit transpiration flow (Searson et al. 

2004). 

Vine size was higher in all treatments in 2006 compared to 2005 and 2007 season (Table 

3a-2). The only differences relative to the control were found in 2005 in the 50% ETc at fruit set 

(lowest) and 100% ETc imposed at lag phase treatments (highest), while the 100% and 50% 

ET JIag phase treatments increased the number of berries per cluster. However, irrigation increased 

vegetative growth in most cases, results that come in agreement with other studies (Matthews and 

Anderson 1988, Williams and Matthews 1990). 
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Transpiration (Figs. 3a-13A-C to 3a-14A-F). All treatments imposed at fruit set 

(regardless of ETc level) showed high Ts values throughout the season, more than 100% ETc 

treatments imposed at lag phase or veraison (Figs. 3a-13A-C). The vines from 100% ETc showed 

the highest values (Fig. 3a-13A). At the first sampling date, values ranged from 6 to 9 Jlg H20 cm-

2S-1 while the Ts values varied from 4 to 17 Jlg H20 cm -2S-1 in the fIrst week of August (Figs. 3a-

13A-C). The magnitude of difference between full and RDI treatments was consistent throughout 

the season, with slight variation during August. In 2005, the data indicated that the Ts rate was 

correlated with both the amount of water applied and the initiation application timing (Fig. 3a-16). 

The Ts trend for 2006 followed the soil moisture trend very closely (Figs. 3a-5; 3a-14 A-C). The 

maximum transpiration values had been reached at the beginning of August, almost one week after 

soil moisture values reached a maximum. Data showed a decreasing trend for all treatments with a 

minimum at the end of August (Figs. 3a-14A-C). The trend for Ts rates was completely different 

in 2007 (Figs. 3a-14D-F). Transpiration decreased in all treatments beginning in June and reached 

a minimum at the end of August, with values between 2.6 Jlg H20 cm -2S-1 in the control treatment 

and 13 Jlg H20 cm -2S-1 in vines from 100% ETc treatment initiated at fruit set (Figs. 3a-14D-F). In 

the Central Valley of California, Ts rates for Sauvignon blanc ranged similarly, between 4 and 14 

mmol H20 cm -2S-1(Gu et al. 2004). The highest Ts values were found in vines from early-imposed 

treatments (Fig. 3a-14A). The magnitude of difference among treatments was almost constant 

throughout the season. 

High temperature, high vapor pressure defIcits and light intensity are characteristics for the 

end of the summer in Niagara Peninsula (Reynolds 2008). Stomatal closure is the dominant factor 

that changes water use effIciency during water defIcit. Under drought conditions, vines control 

stomatal opening in order to conserve water resources via hydraulic or hormonal mechanism 

(Dilling 1990). 

An interesting observation was made on transpiration data on the last sampling date in all 

years of the experimental period. The trend of Ts rate was downward even in well-irrigated vines. 

This trend is explained in the 100% ETc treatment, as follows: the water applied weekly still 

generates some level of water stress since the larger canopy developed to veraison is not able to 

recover the whole amount of water transpired. Perhaps, by shortening the period between the 

irrigation applications towards the end of the season, water stress could be avoided and the Ts rate 

kept at a maximum. This phenomenon might also be explained by the fact that stomatal movement 

is not only dependant on soil moisture but also on light intensity and ambient temperature (Dilling 

1988, Hofacker et al. 1976). This is in agreement with data showing that stomata appear to open 
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and close at a light threshold of about 1000 J.lE m S-1 (DUring and Loveys 1982). Kramer and Boyer 

(1995) reported that the relationship between leaf'll and stomatal conductance shifts twice per day 

(morning and afternoon), which indicates that the stomata are responding to other stimuli such as 

light, ambient CO2, humidity, temperature or wind. 

High discrepancies in Ts rates values under different soil water status reported in the 

literature could be explained not only by different climatic conditions but also by grape cultivar 

(isohydric vs. non-isohydric), soil water availability to the plant, method used to calculate the 

amount of water applied, canopy size, and trellising system (Allen et al. 1998, Schultz 2003, 

Williams and Ayars 2005). Isohydry is generally attributed to the strong stomatal control of 

transpiration rate, and therefore, midday leaf'll does not differ greatly between dry and well

watered plants (Tardieu and Simonneau 1998). Anisohydric cultivars typically exhibit less 

stomatal control over evaporative demand and soil moisture, allowing large fluctuations in leaf'll 

(Schultz 1996,2003). For example, Escalona et al. (1999) reported for Tempranillo vines under 

water stress very low Ts rates (15 g h-1 m-2
) in contrast with irrigated ones with values around 250 

g h-1 m-2 
• However, a high degree of difference can also appear (280 vs. 230 g h-1 m-2

) when 

different instruments (LiCor or Dinamax) are used (Escalona et al. 2000). It is also difficult to 

extrapolate the relationship between single leaf gas exchange and total plant Ts rate (Smart 1974). 

Escalona et al. (2000) partly agreed with Smart's findings; the authors indicated that single leaf Ts 

rate changes is not representative for the whole plant transpiration under severe drought conditions 

but it could give a good estimation under irrigated conditions, which agreed with the present · 

results. Porometry measurements in this study (Figs. 3a-13A-C; 3a-14A-F) clearly reflect the 

environmental effects, which are in agreement with data found in other studies (Chaves et al. 1987, 

Delgado et al. 1995). In New York State, Concord grapevines were considered under drought 

stress when stomatal conductance decreased to -50 mmol m -2S-1 in non-irrigated treatments (Poni 

et al. 1994), while transpiration rates <2.7 mmol m-2s-1 indicated stress in V. vinifera leaves (Chone 

et al. 2001). 

Leaf water potential (Figs. 3a-15A-C; 3a-16A-F). In 2005, the control and late imposed 

treatments showed the highest absolute values. Data clearly showed a shift after each imposed 

time. The 100% ETc treatment imposed at fruit set did not show any apparent water stress, since it 

had values> -1.0 MPa throughout the season (Fig. 3a-15A). Late-imposed treatments showed a 

decreasing trend across the season, but once imposed, their readings did not drop to < -1.2 MPa 

(Fig. 3a-15B and C). The data indicated that in a dry season the vines from late imposed irrigation 

follow the non-irrigated trend being under high water stress until veraison and mild stress 
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thereafter. Water stress is generally recognized to occur when the leaf '" decreases to < -1.2 MPa 

for red cultivars and - 1.0 MPafor white cultivars (Smart and Coombe 1983). In the late imposed 

irrigation treatments, especially in 100% ETc, some competition for the carbohydrates pool might 

occur between vegetative and reproductive systems. In 2006, except for the early-imposed 

treatments, which had very low absolute values, all others had values close to -1.0 MPa, suggesting 

a low water stress leveL Since 2006 was a wet year, the trend did not show a high magnitude of 

difference between treatments (Figs. 3a-16A-C). Trends suggested an increase in water stress level 

at the end of August, when the amount of rainfall decreased considerably (Fig. 3a-2). The trend for 

2007 showed an increase in the absolute values of", for all treatments. Even the early-imposed 

treatments show a low degree of water stress at the end of August (Figs. 3a-16 D). Treatments 

imposed at lag phase did not appear to relieve water stress (Fig. 3a-16 E). The highest magnitude 

of difference was found between early treatments and controL The control had the highest absolute 

values at the end of August (1.5 MPa). 

Similar findings like those from 2007 were reported by Naor and Bravdo (1993) in one 

irrigation study conducted in Israel on Sauvignon blanc. The differences in midday leaf '" between 

well irrigated and non-irrigated vines were minimal, but they reported greater differences in the 

morning. The data showed a high correlation with soil moisture and other physiological variables 

(Figs. 3a-17, 3a-18). This is in agreement with one study from California, which showed that all 

methods to assess plant water status were comparable, as they all correlated well with the amount 

of applied water (Williams and Araujo 2002). In the present study there was also a different degree 

of correlation between midday", and soil moisture at different depths (Figs. 3a-19 and 3a-20). Low 

midday leaf", values between -1.2 to 2.0 MPa were recorded in Israel (Bravdo and Naor 1996), or 

even lower in some studies conducted in California and Australia. However, the present data did 

not show values < -1.5 MPa. However, leaf '" could be affected by leaf-to-leaf variations caused 

by other factors like light exposure or position on the shoot, possibly due to the variation in 

hydraulic conductivity. 

A greater number of small vessels would maintain xylem conductance even if the larger 

vessels were embolized, since vulnerability to cavitation has been shown to be negatively 

correlated with vessel diameter (Gullo et al. 1995). Some authors reported that leaf photosynthesis 

in grapevines is very sensitive to changes in leaf '" (Escalona et al. 2003, Kriedemann and Smart 

1971, Liu et al. 1978). Zufferey et al. (2000) suggested that maximum photosynthesis could be 

reduced at a leaf '" of -1.0 MPa, while other studies indicated that leaf '" values between -1.2 and -

1.5 MPa are required to significantly reduce photosynthesis (Kriedemann and Smart 1971). 
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Yield components (Table 3a-2). There were large differences in yield per vine between 

2005 and 2006 seasons (Table 3a-2). The same yield component had in 2007 values between those 

of 2005 and 2006. No differences were found among the control and irrigation treatments in terms 

of yield, the number of clusters per vine and vine size in 2005. However, in 2005, small 

differences were found among treatments in terms of cluster weight, number of berries per cluster 

and berry weight. This small variation in the parameters measured along the treatments could be 

explained by the particular weather conditions in 2005 (winter damage and hot-dry summer). 

Berry weights were reduced in 100% ETc initiated at lag phase and 25% ETc initiated at veraison 

treatments. In 2006, yield was almost four times higher than in 2005 (Table 3a-2). Almost all 

treatments were substantially different from the control. In 2007, the yield components values 

showed a better separation between control and the irrigated treatments. Small differences were 

also observed among the treatments in terms of berry weight. 

The findings from 2006 and 2007 contradict those of Baeza et al. (2004) and Collins et al. 

(2008) who reported that yield and yield components were not significantly affected by irrigation 

treatments. However, other studies showed that water availability had significant effect on yield 

when the vines received very different amounts of water (Ferreira et al. 2004, Medrano et al.' 

2003). Other studies reported just little differences when different water management strategies 

were applied throughout the season (Reynolds and Naylor 1994, Salon et al. 2004) 

In 2006, the increase in the number of berries per clusters in some irrigated treatments 

(Table 3a-2) was explained by the increase in the size of anlagen and the percentage of berry set 

(Bravdo and Naor 1996). This is in accordance with some studies, which have shown the effect of 

water deficits on flower induction (Bartolome 1993, Matthews and Anderson 1988). The relative 

high yield in 2006 might be explained by particular weather conditions from 2005 season. It is 

likely that different level of water stress applied in 2005, reduced vigor and probably enhanced 

inflorescence differentiation (Winkler et al. 1974). Fruit bud differentiation was found to increase 

at moderate water stress during the early growth season (Hepner et al. 1985, Winkler et al. 1974). 

However, severe water stress was found to reduce flower differentiation (Buttrose 1974) whereas, 

increased irrigation frequency positively influenced the number of clusters formed in Cabernet 

franc (Matthews et al. 1987). 

Yield component data were similar to those of Hamman and Dami (2000). An irrigation 

rate of 96 Llweek yielded the same as a 192 Llweek and 44% more than 49 Llweek. Berry weight 

also increased in response to increased irrigation rate (Hamman and Dami 2000). The authors 

concluded that a moderate irrigation treatment conserved water without reducing yields. Another 
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irrigation study conducted on Muscadinia rotundifolia grapevines showed that vines irrigated at a 

rate of 15 L/day yielded more than non-irrigated vines, but they yielded less than vines from 

treatments were 22.5 L/day of water was applied (Nesmith 2005). These findings could suggest 

that a moderate reduction of irrigation do not affect the yields. 

Relationships among soil and plant water status, yield components and chemical data. 

2005. Principal component analysis (peA) was performed on field data. Midday leaf 'If 

was correlated with soil moisture, Ts rate, and vine size values (Fig. 3a-17). Only two irrigation 

treatments (100% and 50% ETc began at set) were positively associated with these parameters, 

while all others were clustered together on the other side of the plot. The first two factors explain 

89.55% of the variability in the data, where F1 accounted for 77.6% of the variation in the data set 

and F2 just for 11.96%. The distribution of the irrigated treatments shows that the highest 

variability in field data exists between treatments imposed at fruit set (100 and 50% ETc) which are 

located on the right side, and RDI treatments imposed at veraison. 

When peA was performed on field data and yield components, only 65.96% of the 

variability was explained by the first two dimensions (Fig. 3a-18), respectively 37.96% on F1 and 

28% on F2. The field data was positively loaded on F1 while yield and the number of clusters per 

vine are negatively loaded on F1. Berry weight was negatively loaded on F2 while the number of 

berries per cluster and cluster weight were positively loaded. The peA biplot on 2005 data (Fig. 

3a-18) shows that yield and cluster number were negative correlated with physiological variables 

such as plant and soil water status. However, the length of eigenvectors indicated that the degree of 

correlation was not very strong which was explained by particular weather conditions in 2005. 

Variation in yield is also explained more by the cluster number rather than berry weight or the 

number of berries per cluster. The irrigated treatments imposed at fruit set are grouped on the right 

side of the plan, being highly associated with the soil moisture, vigor and Ts rate. Except 100% 

ETc imposed at lag phase, all other treatments were located on the left side of the plan. However, 

the cluster of RDI treatments was separated from the control treatment. 

2006. The peA plot of field and yield components data indicated that F1 and F2 explained 

81.48% ofthetotal variability in the data set (Fig. 3a-19). Soil moisture at depths between 10 and 

60 em was positively loaded on F1, along with 'If and Ts rate (Fig. 3a-19). Vigor was highly 

positively loaded on F2 being negatively correlated with soil moisture at 100 em depth (Fig. 3a-

19). Leaf temperature was highly negatively correlated with soil moisture at 20, 30, 40 and 60 em 

depth (Fig. 3a-19). The Ts rate was also highly correlated with the leaf temperature. Similar to 
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2005, there is a clear separation between treatments imposed at fruit set and the other treatments, 

the early irrigated treatments being highly associated with soil and plant water status (Figs 3a-18 

A- B). The irrigated treatments imposed at veraison showed a high degree of correlation with vigor 

(Fig. 3a-18 A). 

2007. The peA plot of soil and plant water status indicated that Fl and F2 accounted for 

74.85% and 10.58 % respectively, of the variability in the data set (Fig. 3a-20). Leaf,!" and soil 

moisture at 10, 30,40 and 60 cm were highly positively loaded on Fl, and negatively loaded with 

leaf temperature. The Ts rate was once again also highly correlated with the leaf temperature. By 

comparison with 2006, the irrigated treatments seem to be grouped based on the level of deficit 

applied rather than the time of imposition. Treatments irrigated at 100% ETc were grouped on the 

right side of the plane, 50% RDI in the middle while the control and 25% ETc were grouped close 

on the left side of the plane. However, in another study no relationship between variables affected 

by water stress such as shoot growth, leaf senescence, leaf '!', and stomatal resistance was reported 

(Fanizza et al. 1991). The peA plots of field data from 2006 and 2007 showed a clear separation 

among the treatments of the two vintages (Fig. 3a-21). Except the 100% ETc treatment imposed at 

fruit set, all other 2007 treatments were located on the left side of the plane while all 2006 

treatments were located on the right side of the plane, being highly associated with soil moisture, 

yield and leaf '!'. 

Overall, the peA results showed a high degree of correlation among transpiration, vigor, 

leaf,!, and soil moisture. However, stomatal conductance (i.e. Ts rate) is better correlated with soil 

moisture rather than with leaf '!' (Gowing et al. 1990, Naor 1998). According to Tardieu and 

Davies (1993) model, a decrease in root'!' is accompanied by an increase in intensity of root signal 

(abscisic acid), which decreases stomatal conductance and thereby, Ts rate. Yield reductions in 

drought-stressed Thompson Seedless vines were associated with increased stomatal resistance 

(Grimes and Williams 1990). As water deficit duration increases, vapor filling of xylem vessels 

(i.e., cavitation) gradually leads to increased hydraulic resistance (Schultz and Matthews 1988). 

Hence, in the present experiment, despite continually applying small volumes of water to the 

stressed vines, stomatal resistance gradually increased as the plants grew. Moreover, under water 

stress, stomata open only in the morning (DUring and Loveys 1982). This behavior has been 

reported for grapevines under various conditions (Bartolome 1993, Poni et al. 1994), and allows 

minimizing the negative effects of water stress (Kriedemann and Smart 1971). 
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Conclusions 

In summary, it is possible to optimize production of grapes by controlling irrigation at 

various phenological stages. Baco noir vines responded not only to the amount of water used but 

also at the physiological stage when irrigation was applied. However, other studies conducted in 

arid climates reported that yield and vine physiology responded to volume water used rather than 

irrigation management method. Multivariate analysis suggested that water was a very important 

factor in controlling both the vine physiology and yield components. However, high variation in 

vine physiology and yield components from season to season suggested that besides soil water 

status, other factors such as solar radiation and wind might be significant because they both impact 

ET Q. Neither the control nor the 100% ETc treatment imposed at fruit set, improved the general 

plant physiology and yield components, especially in very dry and hot years. 

Based upon values of physiological variables, irrigation was definitely needed in the 

Niagara Peninsula in 2005 and 2007. RDI treatments increased most yield components relative to 

non-irrigated treatments. However, this effect was not observed at all treatments; time of treatment 

initiation had a significant effect on vine physiology and yield components. Despite many rain 

events in 2006, the irrigation treatments led to important changes in vine physiology and on yield 

components. This study revealed, therefore, that even in regions considered cool, vines undergo 

periods of water stress which could affect fruit composition. ·Although water stress is believed by 

some to increase grape quality, it is crucial to know the degree of water deficit that occurs in the 

vineyard at any physiological stage. These results are supported by other studies (Williams et al. 

1994, Zufferey et al. 2000), which showed an increase of respiratory rates and photo inhibition in 

leaves from vines under some degree of water stress due to high temperature and light intensity. 

Despite requiring an initial high investment, drip irrigation is a very profitable management 

tool in the vineyard, and as expected, it influences soil and vine water status. Even in seasons with 

high precipitation that is distributed erratically, drip irrigation might have beneficial effects on vine 

physiology, yield components, and fruit composition. Moreover, through drip irrigation, reductions 

in vine size might lead to substantial decreases in cost of labour and materials associated with 

vineyard management practices such as irrigation, pesticide application, shoot and leaf removal, 

hedging, and pruning. Growers should nonetheless realize that irrigation rates could change at 

other sites with different soil characteristics and weather conditions. Rates of water should be 

modified according to the stage of development of grapevines and their seasonal water 

requirements. 
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Table 3a-l The weekly amount of irrigation water applied on a Baco noir block using ETo calculated with Penman-Monteith equation, 
Lambert Vineyards, Niagara-on-the Lake, ON, between 2005- 2007 

Week 2005 2006 2007 

I 
100% ETc 

* 
50%ETc 25%ETc 100% ETc 50%ETc 25%ETc 100% ETc 50%ETc 25%ETc 

mmIW LNIW LNIW LNIW mmIW LNIW LNIW LNIW mmIW LNIW LNIW LNIW 

1 38.3 153.2 76.6 38.3 16.3 65.0 32.5 16.3 44.9 179.4 89.7 44.9 

2 21.1 84.2 42.1 21.1 14.4 57.5 28.8 14.4 47.6 190.3 95.2 47.6 

3 37.5 149.8 74.9 37.5 14.6 58.2 29.1 14.6 27.9 111.6 55.8 27.9 

4 14.6 58.5 29.3 14.6 15.1 60.2 30.1 15.1 31.5 126.0 63.0 31.5 

5 38.8 155.3 77.7 38.8 20.5 82.1 41.0 20.5 24.8 99.1 49.5 24.8 

6 32.8 131.1 65.6 32.8 17.6 70.5 35.3 17.6 25.6 102.5 51.3 25.6 

7 36.3 145.1 72.6 36.3 15.4 61.4 30.7 15.4 41.2 164.7 82.4 41.2 

8 29.7 118.7 59.4 29.7 16.9 67.6 33.8 16.9 47.1 188.5 94.3 47.1 

9 30.9 123.6 61.8 30.9 14.6 58.4 29.2 14.6 47.3 189.0 94.5 47.3 

10 31.4 125.4 62.7 31.4 12.6 50.2 25.1 12.6 40.0 159.9 80.0 40.0 

25,25,50, 100 represent percentage of the water replaced in the soil; ETc- crop evapotranspiration; LNIW -liters/vine/week; 

mmlw - total amount of water applied in millimeters/week for full water replacement 
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Table 3a-2 Impact of irrigation treatments on yield components and vine size of Baco noir, Lambert Vineyards, Niagara-on-the-Lake, ON, 
2005-2007. 

Treat. Vine size (kg/vine) Yield (kg/vine) Clusters/vine Cluster wt. (g) Berries/cluster Berry wt.(g) 

2005 2006 2007 2005 2006 2007 2005 2006 2007 2005 2006 2007 2005 2006 2007 2005 2006 2007 

Control 0.75 1.08 be 0.96 a 2.3 8.6 a 4.9 be 56 135 a 75 be 39.6b 64.0 be 67.4 b 38 e 59 e 67b 1.05 ab 1.09 e 1.01 ab 

25 Set 0.89 1.02 be 0.87 ab 2.2 7.4 ab 4.9 be 50 112 be 69 be 42.4 ab 67.1 be 71.4 b 40 be 59 e 86ab 1.06 ab 1.15b 1.01 ab 

50 Set 0.88 1.02 be 1.00 a 2.4 8.5 ab 6.8 a 49 132 a 83 b 46.6 a 65.4 be 92.5 a 45 abe 58 e 95 a 1.04 abe 1.10ab 1.01 ab 

100 Set 0.7 0.84e 0.79 be 2.5 7.0 ab 4.8 e 53 101 d 73 be 45.8 ab 70.4 b 65.7b 44 abc 67b 69b 1.06 ab 1.06 e 0.96 be 

25 Lag 0.68 0.82 e 0.84 be 2.4 7.2 ab 4.0 e 51 105d 63 e 46.7 a 68.1 be 64.7b 49a 62 be 67b 0.99d 1.13 ab 0.98b 

50 Lag 0.75 1.09 be 0.70e 2.9 6.9b 5.4 be 61 lOS be 80 be 45.3 ab 66.1 be 67.9b 45 ab 58 e 70ab 1.03 bed 1.15 ab 0.94e 

100 Lag 0.68 0.8ge 0.83 be 2.5 7.6ab 5.3 be 55 96d 78 be 42.2 ab SO.Oa 69.2b 42 be 76a 70 ab 1.02 bed 1.07 e 0.99a b 

25 Ver. 0.73 1.40a 0.70e 2.4 7.6ab 6.7ab 50 124 b 101 a 43.7 ab 61.4 e 68.9b 41 be 55 e 70 ab 1.07 ab 1.49 a 0.99 ab 

50 Ver. 0.76 1.26ab 1.05 a 2.7 6.9b 5.0 be 61 lOS be 86ab 44.1 ab 64.0 be 57.7b 41 be 60e 58b 1.0Sa 1.07 e 1.01 ab 

100 Ver. 0.72 1.45a O.SS be 2.3 7.4 ab 5.3 be 52 115 be 78 be 44.1 ab 64.2 be 68.0b 44 abc 56e 66ab 1.00 cd 1.20b 1.03 a 

ns *** * ns * * ns *** ** * **** * ** **** * * * * Signific. 

*Control (non-irrigated); 100,50 and 25 means percentage of ETc Set- fruit set, Lag - Lag phase, Ver. - veraison are the irrigation initiation times. 

*,**,***,****, ns: Significant at p 5 0.05,0.01,0.001,0.0001, or not significant, respectively. Letters within columns represent means separated 
at p 5 0.05, Duncan's multiple range test. Boldfaced data indicate those values significantly greater than the control using Dunnett's t-test; 
boldfaced and underlined data are significantly less than the control 
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Figure 3a-7. Impact of irrigation treatments on soil moisture (%) of a Baco noir vineyard measured using a Profile 
Probe typePR2™ at 30 cm depth (A-C) and 40 cm depth (D-F), Lambert Vineyards, Niagara-on-the-Lake, ON, 
2006. AID, BIE, and elF represent irrigation initiation time (fruit set, lag phase and veraison) while 100, 50, 25 
represent the percentage of soil water replacement lost through evapotranspiration. *, **, ***, ****, ns: Significant 
at p < 0.05, 0.01, 0.001, 0.0001, or not significant, respectively. Letters represent means separated at p < 0.05, 
Duncan's multiple range test. 
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Figure 3a-17. Principal component analysis biplot (PI and F2) of soil water status and physiological data means 
(10 vines x three shoots x three leaves x three replicates) from ten irrigation treatments of Baco noir grapevines 
from Lambert Vineyards, Niagara-on-the-Lake, ON, 2005. Set (S), Lag (L) and Veraison (V) represent the time 
for irrigation imposition and 100 (F), 50 and 25 represent percentage of the water replaced inthesoil through 
irrigation. Abbreviations: SM-soil moisture; LWP-Ieaf water potential; Ts-transpiration; V-vine size. 
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Figure 3a-18. Principal component analysis biplot (Fland F2) of field data and yield components means (10 vines 
x three shoots x three leaves x three replicates) from ten irrigation treatments of Baco nair grapevines from 
Lambert Vineyards, Niagara-on-the-Lake, ON, 2005. Set (S), Lag (L) and Veraison (V) representthe time for 
irrigation imposition and 100 (F), 50 and 25 represent percentage of the water replaced in the soil through 
irrigation. Abbreviations: SM-soil moisture; L WP-Ieaf water potential; Ts-transpiration; V -vine size; CN -number 
of clusters per vine; C.W.-cluster weight, B/C-number of berries per cluster; B.W.-berry weight. 
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Figure 3a-19. Principal component analysis biplot (Fland F2) of A: soil water status and yield components 
means, and B: soil water status and physiological data means (10 vines x three shoots x three leaves x three 
replicates) from ten irrigation treatments of Baco noir grapevines from Lambert Vineyards, Niagara-on-the-Lake, 
ON, 2006. Set (S), Lag (L) and Veraison (V) represent irrigation initiation time while 100 (F), 50, 25 represent 
the percentage of soil water replacement lost through evapotranspiration. ). Abbreviations used: SM-soil moisture 
(depths 10 to 100 cm); TDR- soil moisture at 20 cmdepth measured by TDR, BlC-berries no. per cluster; CN
cluster per vine; BW-berry weight; CW-cluster weight; SM-soil moisture; T1eaf"" leaf temperature; Ts-transpiration, 
,!,-leaf water potential. 
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Figure 3a-20. Principal component analysis biplot (Fl&F2) ofthe soil water status and physiological data means 
(10 vines x three shoots x three leaves x three replicates) from ten irrigation treatments of Baco noir grapevines 
from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Set (S), Lag (L) and Veraison (V) represent the time 
for irrigation imposition and 100 (F), 50 and 25 represent percentage of the water replaced in the soil through 
irrigation. ). Abbreviations used: B/C-berries no. per cluster; CN -cluster per vine; BW -berry weight; CW -cluster 
weight; SM-soil moisture (depths 10 to 100 cm); TIcal leaf temperature; Ts-transpiration, ,!,-leaf water potential. 
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Figure 3a-21 . Principal component analysis biplot (FI&F2) of the soil water status and physiological data means 
(10 vines x three shoots x three leaves x three replicates) from ten irrigation treatments of Baco noir grapevines 
from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006- 2007. Set (S), Lag (L) and Veraison (V) are the time 
for irrigation imposition and 100 (F), 50 and 25 represent percentage of the water replaced in the soil through 
irrigation. Abbreviations: SM-soil moisture (depths 10 to 100 cm); T leaf -leaf temperature; LWP-Ieafwater 
potential; Ts-transpiration; V-vine size; Y -yield. 
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Chapter3b 

Effect of Water Stress Level and Time Imposed Irrigation on Fruit 
Composition, and Wine Quality on Baco noir in a Cool Climate 

Area II. Fruit Composition, and Wine Quality 

Abstract. Irrigation experiments were conducted on the French-American hybrid Baco 
noir in a commercial vineyard located on Niagara-on-the-Lake, Ontario, Canada, between 
2005 and 2007. The reference evapotranspiration (ETo) was calculated using the Penman
Monteith equation and further adjusted with a variable crop coefficient to obtain the crop 
evapotranspiration (ETc).The effect of three irrigation levels [two regulated deficit irrigation 
treatments (RDI) at 25% and 50% replacement of water loss through .ETc) and 100% ETc] 
combined with three timings of irrigation initiation (fruit set, lag phase, veraison) were studied. 
The control was non-irrigated. Berry composition varied from vintage to vintage. The highest 
soluble solids concentrations were found in 2005 and 2007. In 2005, RDI treatments applied 
at lag phase increased °Brix, while in 2007 similar results were obtained in treatments applied 
at veraison. Total acidity (TA) values were almost similar in 2005 and 2007 and higher in 
2006. The TA increased slightly in irrigated treatments when compared to control in each year 
of the experimental period. pH had the lowest values in 2005 and highest in 2006 and 2007. 
Berries from RDI treatments applied at lag phase showed higher pH values or close to those 
from the control while berries from RDI treatments applied at veraison showed lower values. 
Anthocyanins and total phenols in berries increased in almost all irrigated treatments in 2005, 
while in 2006 and 2007 the highest concentration was found in berries from treatments 
imposed at lag phase. Multivariate analyses showed that soil and plant water status were very 
well correlated with the typical descriptors for Baco noir wines. According to the sensory data 
the highest intensity of flavor and aroma attributes were associated with 50% and 25% ETc 
levels applied at lag phase or veraison. PCA analysis indicated that severe water deficit could 
negatively affect the varietal aroma profile. The sensory profiles showed that wines could be 
manipulated by regulated deficit irrigation strategy. However, vintage variation indicated that 
some other factors related to the grape microclimate could be involved as well. 

Introduction 

In the previous Chapter (3a), an extended introduction was provided in order to understand 

the need for this study. Water deficit during the vegetative period affects not only the physiology 

of the vine but also the yield and fruit quality, which finally are reflected in the wine sensory 

profile (Chapman et al. 2005). The fruit and wine quality are the most important aspects when 

using irrigation in the vineyard is discussed (Chaves et al. 2007, Dry and Loveys 1998, Medrano et 

al. 2003). However, grape quality is a complex concept, and most of the time is defined by the 

winemaker and measured in different ways; Quality in grapes is referred most often to the 

concentration of sugar and acidity (Morris and Cawthon 1982, Ough 1980), color (Tesic et al. 

2002) or polyphenols concentration (Fu1crand et al. 2006). Keeping a balance between quantity 

and quality of the grapes generates a debate between growers and winemakers regarding the 
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irrigation necessity and its impact on wine qUality. Although, many studies investigated the effect 

on wine sensory profile of different cultural practices, such as cluster thinning (Bravdo et al. 1984, 

Reynolds et al. 1996) and pruning (Freeman et al. 1980, Zamboni et al. 1996), there are just a few 

studies which investigated the irrigation effect on wine sensory characteristics (Chapman et al. 

2005, Matthews et al. 1990, Reynolds et al. 2007). 

Some authors found that water deficit during the growing season had a beneficial effect on 

grape and quality (Bravdo et al. 2004, Williams and Matthews 1990). Significant differences in the 

sensory profile were found among wines made from grapes grown under different irrigation 

treatments (Matthews et al. 1990). Wines made from vines grown under minimal irrigation had the 

intensity of aroma and flavor descriptors significantly higher than that one found in wines made 

from vines grown under standard irrigation (Chapman et al. 2005). However, no studies have 

examined the effect of water stress level and time of imposed irrigation on fruit composition and 

sensory profile in a cool region. Also, no irrigation studies have been performed on French

American hybrids. 

The objective of the present research was to study the effect of different levels of water 

deficit and time imposed irrigation on grape quality and wine sensory profile, in a cool area in 

order to achieve consistent quality fruit style. It was hypothesized that by controlling the vine water 

status at various phenological stages one could alter fruit and wine quality. 

Materials and Methods 

Experimental design and plant material. The trials were conducted at Lambert 

Vineyards, Niagara-on-the-Lake, ON (43°13' N, 79°08'W). The experiment was set up in 2005 on 

a Baco noir block (2 ha) planted in 1993. Vines were spaced at 1.5 m (between vines) by 2.7 m 

(between rows), trained to a four-cane Kniffin system and pruned to 40 nodes per vine. Rows were 

200 m long, and oriented north to south. A randomized complete block design was used and 

divided into three blocks where each treatment replicate corresponded to a row, with the outside 

rows used as buffers. Treatments were as follows: control- no irrigation, and either 100 %, 50 % 

or 25 % replacement of soil water lost through evapotranspiration (ETc) combined with one of 

three times of initiation of irrigation (fruit set, lag phase, veraison). This sub-section was described 

in detail in Chapter 3a. 

Berry sampling and harvest. Before harvesting, 100 berry samples were collected 

randomly from the clusters of each record vine (300 in total) to determine the mean berry weight, 

90 



°Brix, TA, pH, color intensity (A12o + A52o), color hue (AuolA52o), anthocyanins, and total phenols. 

The samples were stored at -25°C until analysis. Berry sample collection occurred between 0-3 

days prior of the commercial harvest date. All clusters from each recorded vine were hand 

harvested. The number of clusters and yield was recorded for each experimental vine. 

Winemaking. At harvest, about 30 kg of fruit, hand harvested only from the recorded 

vines, were pooled per each treatment replicate (row). They were transported to Brock University's 

winery. Over 900 kg of grapes were processed into wines in each year of the experiment (2005 to 

2007). Grapes from each treatment replicate were de-stemmed, crushed and treated with S02 

solution at 20 mgIL. Must samples (;::::250 mL) were collected prior to inoculation and stored at -

25°C for analyses. The must from each treatment replicate was fermented individually. Each 

treatment replicate was fermented in duplicate in 20-L food grade plastic pails each fitted with a 

lid and an airlock. They were inoculated with 0.2g/L of commercial yeast (Saccharomyces 

cerevisiae) Lalvin Selection ICV 254 (Lallemand Inc., Montreal, QB). All fermentations were 

conducted in an insulated room maintained at 26°C. The caps were submerged three times daily. 

Fermentation lasted between 4 to 7 days. When the caps fell, each fermentation replicate was 

pressed off individually in a basket bladder press (Enoagricola Rossi s.r.1, Calzolaro, PG, Italy) at 

maximum 2 bars pressure and transferred to a 20-L carboy. All carboys were sealed with an 

airlock, and they were left another 10 days at room temperature (;::::20 0c) to complete the 

fermentation. Mterwards, all wines were racked and inoculated immediately with malolactic 

bacteria Oenococcusoeni at the rate of 0.01 gIL (Lalvin VP41, St. Simon, France). The wines 

underwent malolactic fermentation at 23°C under a carbon dioxide atmosphere and completion 

was confirmed by paper chromatography. Replicate wine samples (;::::250 mL) were taken for wine 

composition analyses (ethanol, TA, pH, color, anthocyanins, and total phenols). Upon completion 

of malolactic fermentation, all wines were racked a second time and kept for 10 days at - 2 °C for 

cold stabilization. At bottling, the wines were sulfited at 30 mgIL and filtered using 0.45-1l pad and 

0.2-1l cartridge filters. The experimental wines bottled under cork between December and January, 

were stored at 12°C in the wine cellar. 

Berry and wine composition. Berry samples were removed from-25°C storage, counted, 

weighed, placed into 250-mL beakers, and allowed to thaw. The berry and must samples were 

heated at 80°C in a water bath (Fisher Scientific Isotemp 228) for one hour to dissolve precipitated 

tartrates and to facilitate extraction of anthocyaninsfromthe skins. Berry samples were cooled to 

room temperature (20°C) and juiced in a commercial fruit and vegetable juicer (Omega 500™, 

Denver, U.S.A.). The settled juice was centrifuged at 4500 rpm for 10 minutes in an IEC Centra 
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CL2 (International Equipment Company, Needham Heights, MA) in order to remove any debris 

(pulp tissue). The clear juice was used for soluble solids ('13rix) measurement using an Abbe 

refractometer (model 10450; American Optical, Buffalo, NY), pH measurement via an Accumet 

pH meter (model 25; Denver Instrument Company, Denver, CO), and titratable acidity (TA) with a 

PC-Titrate autotitrator (ManTech Associates, Guelph, ON). About 20 mL of the juice left from 

sample of each recorded vine was stored at -25°C for further analysis of total phenols and 

anthocyanins. 

Berries, musts and wine samples were analyzed for color intensity, hue, anthocyanins and 

total phenols. Total anthocyanins in berries and wines were quantified using the pH shift method 

by measuring the absorbance at 520 nm at pH 1.0 and pH 4.5 (Fuleki and Francis 1968). Details of 

buffer solution and sample preparation are found in Balint and Reynolds (2010). Absorbance was 

measured at 520 nm wavelength against blank (the appropriate buffer solution) using a Biochrom 

Ultrospec 2100 pro UVNis spectrophotometer (Biochrom Ltd., Cambridge, UK). Total 

anthocyanins concentration was calculated as malvidin 3, 5-diglucoside using the following 

formula: 

Total anthocyanins (mgIL) = (A;;l.o - A;;4.5) X 255.75 

Color intensity was determined according to a method provided by Mazza et al. (1999). 

Intensity and hue were calculated from absorbance values measured at 420nm and 520nm on an 

Ultrospec 2100 Pro UVNIS spectrophotometer. Color intensity and hue were calculated as 

follows: Color intensity = A520 + ~20; Hue: ~2rJA52o. Total phenols analysis was done on all 

prepared samples using the colorimetric method of Slinkard and Singleton (1977). 

Wine samples were analyzed for TA and pH as described above. Ethanol concentration 

was measured by gas chromatography. The wine samples were filtered through a 0.45f.lII1 Durapore 

membrane filters (Millipore, Ireland), and 1 mL of wine was diluted in 9 mL of distilled water. 

Diluted samples and nine calibration standards (% EtOH = 0.6%; 0.8%; 0.9%; 1 %; 1.1 %; 1.2%; 

1.3%, 1.4% and 1.5%) were combined with lOJlL of 100% I-butanol in 5 mL volumetric flasks, as 

an internal standard. Samples and standards were analyzed on an Agilent 6890 series GC system 

(Agilent Technologies, Mississauga, Canada) running on ChemStation software and equipped with 

a Supelco 24136 capillary column (Supelco Canada, Mississauga, ON). The column dimensions 

were 30.0 m x 0.250 mm i.d. x 0.25 f.lII1 film thickness. The carrier gas was Helium passed through 

an in-line Chromospec hydrocarbon and moisture trap (Chromatographic Specialties Inc., 
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Brockville, ON). Other conditions of operation included: oven initial temperature 60°C, injection 

temperature 230°C, and detector temperature 225 °C. 

Sensory analysis. Only wines from 2006 and 2007 vintage were subjected to sensory 

analysis, as the 2005 vintage was rejected due to high volatile acidity. The same sensory protocol 

was used for both 2006 and 2007 vintages. Each vintage was assessed following 18 months of 

ageing in the bottle. Sensory sessions occurred from February to May. Over 25 judges were 

involved in the sensory work over the 2 year period. The group was composed of Brock University 

faculty, staff, students from the viticulture and oenology program and two sommeliers. They were 

selected based on their availability and motivation. All were volunteers and underwent previous 

sensory training. A core of seven judges participated in both vintage assessments. For 

discrimination tests, 16 panelists were used for both vintages studied. The final panel used for 

descriptive analysis in each vintage consisted of 11 judges with ages ranging from 23 to 58. 

Discrimination test. A modified alternative forced choice test (n-AFC) was used to 

compare a control wine (non-irrigated) to each irrigation treatment to determine if irrigation 

treatments differ from control (O'Mahoney 1986). This was intended as a preliminary exercise to 

determine whether differences existed between treatments, what the basis for those differences 

might be, and whether the panelists were dependable. The test was conducted over a period of 

three weeks, with two sessions per day and two days per week. Each wine sample was assessed in 

six replicates by each panelist. The replicates consisted of a flight of five wine samples [a sample 

identified to panelists as the control (non-irrigated) plus four irrigation treatments]. One of the four 

irrigation treatment wines was a "blind control" inserted into each flight to test the consistency of 

the panelists. Each testing session consisted of all ET levels within single irrigation timing. The 

panelists were instructed to compare all four samples in each flight with the control. They were 

requested to determine whether each wine sample was different from the control, and to assess the 

overall intensity (orthonasal and retronasal) of each sample relative to the control. They were also 

asked to write down any flavor or aroma attributes in which they thought the control and other 

wines differed. This question was added in order to find if the wines have any off flavor. A one

way 15 cm scale was used with verbal description anchors at the ends as follows: far left (no 

difference) and far right (very different-highest). They were asked to anchor the three digit codes 

of each wine assessed based on the intensity of difference relative to the control, as follows: on the 

left end if no difference was perceived or far right if one sample was very different than the 

control. Data were thereafter digitized and subjected to analysis of variance. A questionnaire used 

during this test was presented in Appendix A. Ten wines were evaluated by 16 judges (t = 12, k = 
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4, r = 6, j = 16) where t, k, r, j were the number of wines per session, number of wines per 

flight/replicate, number of wine replicates, and number of set samples-judges. Data was collected 

on paper. A three way ANOVA (site, judge, and replicate) was performed to ascertain main effects 

as well as interactions. The reproducibility of the panel was assessed through the effect of 

replication (JxR and WxR). Judges who consistently were outliers from the panel mean were 

rejected from the descriptive analysis. 

Descriptive analysis. Six training sessions were run over a period of three weeks. For 

sensory training, the panelists tasted wines from all irrigation treatments. Samples used for training 

purposes came only from two field replicates. In each session, they tested four wines (non

irrigated, 100%,50% and 25% ETc from one particular irrigation initiation time). They were asked 

to note any flavor or aroma attributes that could describe the variability among them. The list with 

the descriptors was adjusted until all panelists agreed with definitions (Table 3b-l). After the first 

two sessions, the panelists were asked to compare all the wines with the control for each attribute 

collected. Reference standards were created to help the panelist understand how to define and rate 

each attributes (Table 3b-l). The control (non-irrigated) was assessed individually for each of the 

aroma !flavor descriptors for the last three training sessions. The intensity was evaluated using a 15 

cm scale. The references were also adjusted during the training session until everyone agreed that 

the reference was representative for that particular attribute (Table 3b-l). 

Following discussions with the panelists on the appropriate scale to be used for data 

collection, and with technical advice from Compusense Inc. (the software provider for Brock 

University sensory laboratory), a two-way unstructured scale was selected and verbal descriptions 

at the end points were used to collect sensory data. The control wine (non-irrigated) was anchored 

in the middle of the 15-cm scale. The ends of the scale were anchored with verbal descriptions: left 

(lowest) and right (highest). In each session, the control wine was assessed for each attribute. 

Panelists were instructed in the use of the line scale in order to aid in improving reliability and 

reproducibility in assessing attribute intensity. During the training session the panelists were asked 

to rate each coded wine on the left side of the scale if the intensity was lower than the control (non

irrigated) or on right side if it was higher than the control. A scale was used for each descriptor 

developed. They were also instructed to rate the wine samples in the same place as the control ifno 

difference between control and the wine sample was perceived for each attribute. All descriptors 

were assessed using the same scale. A print screen from the program was used in data collection; 

the type of scale and indications provided to panelists is shown in Appendix B. 

94 



Data collection. Data collection took place in the sensory laboratory at CCOVI (Brock 

University) using a computerized sensory software program (Compusense c5v4, Guelph, ON). 

Samples were evaluated in individual sensory booths using ISO glasses, and under red light to 

mask wine hue. The 10 wines [nine treatments plus the control from two field (fermentation) 

replicates] were assessed in four replicates (sessions). In each session, all 10 wines were evaluated 

in a randomized order according to the Williams block design. Each session had three flights. Each 

flight included four wine samples (the control-non-irrigated + 100%, 50% and 25% ETc from one 

particular irrigation initiation time). Panelists rated the samples based on the list of attributes on a 

two-way unstructured scale. They were asked to move the cursor left or right of the control's 

anchor, in order to record not only the intensity but also the direction (lower or higher) in which 

each variable explained the difference. Although, Baco noir wines are not very tannic, panelists 

were asked to rinse their palate with a solution of pectin after each sample followed by two water 

rinses in order to prevent any carry over effect. In order to rest the palate and avoid any bias, a 1 

minute rest between each sample and 5 minutes rest after each group of four wines was included as 

part of the computerized evaluation session. Evaluations were started in the morning at 1100 h and 

continued until 1300 h. All wines were presented as 25-mL samples served in ISO tasting glasses 

and coded with a three-digit random number. Each glass was covered with a Petri dish to prevent 

volatile loss. For color intensity, 10 mL of each wine sample were presented in 5 cm diameter Petri 

dish under the different codes. They were assessed against a white background under natural light. 

Aroma standards developed during the training sessions were prepared fresh and available for 

judges as reference prior each session. Panelists were asked to assess the color during the 5 

minutes breaks allowed between each flight. The sensory data was analyzed for significance using 

the real values (positive or negative values compared to control). To depict the sensory profile of 

the control and all irrigation treatments on cobweb plots, the mean intensity score for each attribute 

(irrigation sample) was subtracted or added to the corresponding descriptor score of the control 

wine (non-irrigated). A blind control was assessed during these descriptive analysis sessions for all 

the sensory descriptors to generate values for the non-irrigated treatment for the cobweb plots. 

Data analysis. All statistical procedures were performed using XLSTAT version 7.5.2. 

(Addinsoft, Paris, France). Analysis of variance was conducted on the intensity ratings with 

irrigation treatment, panelist, and replication and three-way interactions in the model. Fruit and 

wine chemical data were analyzed using the SAS statistical package (SAS Institute; Cary, NC, 

USA). Using GLM, analysis of variance was performed. Duncan's multiple range test was used for 

mean separation for all data sets (chemical and sensory data), and Dunnett's t-test was used to 
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determine those treatment means that were different from the control at a significance level of 

u::;0.05. Sensory data were analyzed using XLSTAT (Addinsoft, Paris, France). Principal 

components analysis (PCA) was performed on the means of field data, yield components, chemical 

data, and sensory scores of aroma and flavor descriptors for each year of the experiment. Partial 

least squares regression (PLS) was performed on the field, chemical and sensory data in order to 

find the relationships among these variables. 

Results and Discussion 

Berry composition (Tables 3b-2, 3b-3). Soluble solids were consistently lower in all 

treatments in 2006 compared to those from 2005 and 2007 (Table 3b-2). Except for the 2006 

season, the RDI treatments imposed at lag phase in 2005 and veraison in 2007 had higher °Brix 

than the control. Grape yields and dry matter production generally responds non-linearly to water 

consumption (Grimes and Williams 1990, Williams et al. 1994). This is in agreement with data 

from this study, which showed neither consistency from vintage to vintage, nor a linear 

accumulation of °Brix according to the amount of water applied (Table 3b-2). However, the data 

partially confirmed other findings that fruit quality is dependant on the berry developmental stage 

at which irrigation is initiated (Riihl and Alleweldt 1985). These authors found that sugar 

concentration increased when irrigation was applied during the fruit maturation stage, while 

irrigation in the early stages of berry development led to an increase in yield along with a delay in 

sugar accumulation. 

°Brix can be reduced when dilution caused by berry growth is faster than the increase in 

sugar transport into the berry (Bravdo et al. 1985). The observations from 2005 and 2007 are in 

agreement with this. The °Brix was lower in the 100% water replacement initiated at fruit set than 

the control (Table 3b-2). However, sugar accumulation in the berry remains unimpaired when high 

leaf 'I' is maintained by irrigation (Hepner et al. 1985). Some studies reported an increase in °Brix 

under irrigated conditions, which was explained by the enhanced leaf area and higher 

photosynthetic activity (Bartolome 1993, Kriedemann 1977). Consequently, under similar 

conditions, grapes from irrigated treatments accumulated higher °Brix than non-irrigated vines 

(Ginestar et al. 1998, Hamman and Dami 2000, Reynoldset al. 2007, 2009). In some RDI 

treatments, °Brix was found higher compared to the control and this might be explained by the fact 

that under severe water deficits, stomatal closure could compromise photosynthesis (Reynolds et 

al. 2009). During fruit maturation, moderate water stress retards secondary shoot growth without 

affecting photosynthetic activity, thus favoring the redistribution of sugar into the berries and the 
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perennial organs (Carbonneau and Deloire 2001). Berries from irrigated vines had lower °Brix than 

smaller berries from non-irrigated vines, due to a dilution effect (Bravdo et al. 1985, Esteban et al 

1999). 

In the present experiments, the complexity of the responses found on physiological 

variables, yield components (described in Chapter 3a) and berry composition (Tables 3b-2, 3b-3) 

might be explained not mlly by the water status level in the soil but also by different weather 

conditions (Chapter 3a). No consistency in the fruit composition data was observed. Another two 

factors which should not be neglected when interpretation of data is made are the frequency and 

the volume of water delivered to the plant (Bravdo et al. 1985). The frequency of irrigation 

treatments was weekly, while the amount of water used was estimated by using theoretical 

equations. Both high water stress and high soil moisture had a negative effect on the fruit 

maturation process (Table 3b-2). It seems that both of them delay the fruit maturation process 

through different ways (the decrease in photosynthesis and increase competition for carbohydrates) 

(Quick et al. 1992, Rogiers et al. 2004, Smith 2004). In the present study the results suggest that 

irrigation initiation time affected the fruit composition. Although, no consistency was found over 

the trial, 25% and 50 % RDI initiated at lag phase or veraison appeared to improve berry 

composition. These findings are in agreement with other studies which indicated that post-veraison 

water deficits slightly reduced berry size and improved fruit composition (Kennedy et al. 2002, 

Ojeda et al. 2002). However, because all berry samples were collected at the same date, variation 

in the berry composition data might also be explained by the length of the fruit maturation period, 

which could be extended under both severe water stress and high water status. Since the phenology 

of the fruit maturation process was not assessed in this trial, it is possible that the irrigation 

treatments affected the onset time of veraison, which subsequently affected the length of the fruit 

maturation period. This is supported by data suggesting that water deficits might also alter the 

onset or duration of the fruit maturation period (Matthews and Anderson 1988). 

Another common response to low water status is the control of leaf area (Schultz 2000, 

Winkel and RambalI993). Stressed vines have a lower leaf area and therefore both photosynthetic 

source and carbon sink capacity are lower. In addition, photosynthesis is affected indirectly by 

transpiration (Ts) rate, which protects the plant of overheating. Optimum temperature for 

photosynthesis in vine leaves is between 25 ° and 30°C (Alleweldt et al. 1982, Chaves et al. 2003, 

2007, Kriedemann and Smart 1971). In the present study the values of leaf temperature were> 30 

°C in non-irrigated treatments, especially in August, which coincided with the fruit maturation 

process of Baco noir. This could be a reasonable explanation of the variation in °Brix between 
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treatments, since the PCA showed highly negatively correlations among leaf temperature and the 

other physiological leaf measurements such as leaf'l' and Ts rate (Chapter 3a: Figs 3a-17, 3a-20). 

Titratable acidity varied little (with some exceptions) among the treatments on each season 

but the TA values showed highly differed between seasons (Table 3b-2). The highest TA value 

(22.6 gIL) was recorded in berries from 100% ETc treatment imposed at fruit set in 2006. After 

malolactic fermentation, as expected the TA decreased substantially in all wines. In this study the 

T A results are partially in agreement with those from other studies where no difference was found 

in TA among different irrigation treatments (Ginestar et al. 1998, Hardie and Considine 1976). 

Berry pH was lower in 2005 than in 2006 and 2007 (Table 3b-2). In 2006 and 2007, the pH was 

lower in the irrigated vines than in the control. The lowest values were found in the 50% and 25 % 

RDI treatments imposed at veraison, in both 2005 (3.33 to 3.34) and 2007 (Table 3b-2). The pH 

response to water deficits was not consistent over the course of the trial. However, the pH slightly 

decreased in the fully irrigated and many of the RDI treatments. This agrees with other studies 

where non-irrigated treatments had slightly higher pH than irrigated ones (Ginestar et al. 1998, 

Ligetvari 1986, Reynolds et al. 2007, 2009). The pH variation due to the irrigation treatments can 

be explained by either greater exposure of clusters in non-irrigated treatments, and concomitant 

increased malic acid catabolism (Kliewer and Lider 1968), or greater translocation of potassium 

from stressed leaves to the berries (Boulton 1980). 

The most noteworthy difference between the treatments and the control was with respect to 

concentration of anthocyanins and total phenols. Berries accumulated the most anthocyanins when 

they were under slight water stress (Table 3b-3). Both 50% and 25% ETc treatments contained a 

higher concentration of anthocyanins in the berries in 2005 and 2007 than 2006 vintages (Table 

3b-3). However, the time of irrigation initiation was as important as the amount of water used. 

Although no consistent pattern was found over the entire trial, some irrigation treatments had much 

higher concentrations of anthocyanins than the control. Despite the belief that irrigation has a 

dilution effect on chemical composition, the data showed that even the grapes from 100% ETc 

treatments in some seasons had higher anthocyanins concentrations than those from the non

irrigated treatment (Table 3b-3). This might be explained by the fact that the enzymatic systems 

involved in the biosynthetic pathway were not adversely impacted in the irrigated vines, while in 

vines under severe water stress they could have been affected. For example, wines obtained from 

moderate water stress treatments contained double the amount of anthocyanins than non-irrigated 

treatments (Peterlunger et al. 2000). However, berry °Brix, pH and color were not affected by 

either amount or type of irrigation, which was explained by the fact that the vines had reached 
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some balance between fruit load and leaf area (Collins et al. 2005, Esteban et al. 1999). In the 

berries, anthocyanins increase until a maximum is reached, after which there is a slight decrease 

due to their degradation, which is highly affected by elevated temperatures (Jackson and Lombard 

1993). According to the same authors, when average night time temperatures are> 15°C, the 

concentration of polyphenols and anthocyanins are low. This is a plausible explanation since Baco 

noir is an early maturing cultivar, and the period from veraison to harvest is dominated by nights 

that consistently have temperatures> 15°C. This might also explain the different patterns found 

from vintage to vintage in the present study. 

In general, total phenols had the same trend as anthocyanins, with the highest 

concentrations found in the treatments initiated at lag phase (Table 3b-3). In 2006, the phenol 

pattern was almost opposite that of 2007 (Table 3b-3). The control had the highest total phenols 

concentration. One plausible explanation could be the dilution process, since 2006 season was 

cooler and wetter than 2005 and 2007 (Chapter 3a: Fig. 3a-l).1t was also possible that the 

equations used to calculate water needs overestimated the actual water required. In 2007, almost 

all the irrigation treatments showed higher concentration of total phenols than the control (Table 

3b-3). However, no consistent response to irrigation was found from one vintage to the other. 

Several authors have shown that water stress increased phenol synthesis (Esteban et al. 2001, 

Hardie and Considine 1976, Ojeda 2001). This is in agreement with the results of this study, which 

showed that total phenols increased proportionally to water stress. However, other studies reported 

that water stress decreased (Chapman et al. 2005) or did not affect (Ginestar et al. 1998, Sipiora 

and Gutierrez-Granda 1998) the total phenols and anthocyanins concentration in berries. 

Must composition (Table 3b-4). In 2005, the must from most of the treatments had 

almost the same °Brix as the control except 100% ETc imposed at fruit set that had the highest 

°Brix. This finding showed that minimal dilution effect occurred in must due to irrigation. In 2006, 

due to high precipitation throughout the season, the °Brix values were almost the same and much 

lower than the values found in 2005 and 2007. The most substantial difference among treatments 

was observed in 2007. The highest °Brix values were found in the deficit irrigation treatments 

imposed at veraison. They were higher than the control and much higher than 100% ETc imposed 

at fruit set. This data therefore showed that irrigation improved must quality in dry years. In 2005, 

must TA was lower in all treatments compared to those from 2006 and 2007 seasons. The highest 

TA values in 2006 and 2007 were found in 100% ETc imposed at fruit set, while in 2005 the same 

treatment had the lowest TA values. However, the magnitude of difference among treatments was 

lowest in 2005. Overall, the must pH was highest in 2006 and the lowest in 2007. In each year of 
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the experimental period pH from treatments initiated at veraison was much lower than those 

imposed at fruit set or lag phase. 

Wine composition (Tables 3b-S, 3b-6). In 2005, most of the irrigation treatments had 

wines higher in ethanol than the control. In 2006, the ethanol concentration was lower compare to 

2005 and 2007 (Table 3b-5). The highest values (different than the control) were found in the RDI 

treatments. In 2007, the wines had overall the highest ethanol concentration compared with 2005 

and 2006 (Table 3b-5). Again, the control did not have the highest ethanol concentration, contrary 

to the expectation. In 2005, wine pH showed higher values than the control in treatments imposed 

at fruit set and veraison. In 2006, wine pH was lower than the control only at 25% ETc imposed at 

lag phase. In 2007, the wine pH from irrigated treatments did not significantly differ from the 

control except two treatments (100% ETc and 25% ETc lag phase). Overall, the anthocyanins 

values in all treatments from 2005 were lower compare to 2006 and 2007 (Table 3b-6). This might 

be explained by the sparse canopies in 2005 that resulted from 2004/2005 winter damage. These 

relatively small canopies could have increased cluster exposure to sunlight, which would have 

concomitantly increased berry temperatures. High temperatures inhibit the enzymes that control 

the biosynthesis of anthocyanins (Mori et al. 2005, Spayd et al. 2002, Yamane et al. 2006). 

Moreover, the temperature affects not only the synthesis but also their stability (Shaked-Sachray et 

al. 2002). Therefore, a decrease in anthocyanins concentration at elevated temperatures might 

result from both a decrease in synthesis and an increase in degradation. In 2006, the anthocyanins 

concentration pattern was different of that one from 2005. Wines from 50% RDI treatments 

showed consistently higher anthocyanins concentration than the control, while wines from 25% 

RDI treatments showed higher concentrations than the control only when applied at lag phase. 

Total phenols showed the same trend as the anthocyanins concentration in 2005. The 

highest concentration was found in the irrigation treatments applied at lag phase. In 2006, the 

highest total phenols concentration was recorded in both the berries and wines from the control 

treatment. In 2007, except wines from early imposed treatments, all others had higher 

concentrations of total phenols than the control. In 2007, the highest total phenols concentrations 

were found in the irrigated treatments imposed at lag phase. 

Hue had the lowest values in 2005 while those from 2006 were slightly lower than 2007. 

No differences were found between the control and 100% ETc treatments in 2005 and 2006. In 

2007, the control had higher hue value than the 100% ETc initiated at fruit set, and was lower than 

RDI treatments initiated at lag phase. Overall, wines from irrigation treatments initiated at lag 

phase had higher hue values, indicating a lower ratio of red colored to yellow brown pigments. 
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However, no consistency was found over the trial. Hue values suggested that this variable could be 

a good indicator of the water status during dry vintages when the red and yellow-brown pigments 

ratio in the wine is highly affected. In 2006, color density was lowest, perhaps due to a dilution 

effect. The general pattern showed higher color density values in 25% RDI treatments in all 

vintages. This suggests that by increasing the water status until a threshold, the anthocyanins 

metabolic process is positively affected. However, this threshold should not be considered an 

absolute value, since it could be highly affected by the climatic conditions. 

Sensory analysis (Tables 3b-7 to 3b-8). The 2006 vintage was assessed for seven aroma 

and nine flavor descriptors. As expected, the largest differences occurred between the control and 

the 100% ETc treatments (Table 3b-7). The descriptors that showed substantial variation among all 

treatments were red and dark fruits, cooked vegetable and bell pepper (Table 3b-7). The irrigation 

treatments mostly affected color, fruit and vegetal characteristics. By plotting the mean sensory 

scores on radar diagrams for each treatment imposition time, data clearly showed that not only the 

time and regime of irrigation but also the vintage affected the sensory profile of the wine (Figs. 3b-

1 to 3b-3). 

The intensity scores for these two categories of descriptors (fruity and vegetal) were 

strongly related to the water deficit level (Fig. 3b-4). Generally, vegetal descriptors were 

associated with 100 ETc while fruity descriptors were associated with 25 and 50% ETc. treatments. 

The 25% ETc treatment imposed at veraison showed the least difference for all descriptors 

compared to the control. Cooked vegetable and bell pepper descriptors had the highest scores in 

100% ETc wines at all irrigation initiation times. The irrigation initiation time had less effect on 

these two descriptors than the percentage of water deficit. The flavor descriptors, except red fruit, 

showed high variance among the treatments. The highest difference in terms of color intensity was 

perceived between the control and 100% ETc imposed at fruit set. The RDI treatments applied at 

lag phase or veraison varied a little compared to the control. These results are in agreement with 

those from a study conducted in California,where fruity wines were associated with soils with low 

water holding capacities, while vegetal wines were associated with soils with high water holding 

capacities (Noble et al. 1995). Although Niagara soils are considered to have relative high water 

holding capacities (Kingston and Presant 1989), there were differences in both fruity and vegetal 

characters, due presumably to the amount of water applied. The water deficit treatments had higher 

scores than the full irrigated treatments (100% ETc) for almost all the descriptors, vegetal attributes 

excepted. Wines from 2006 vintage had higher T A than those of the 2007 vintage, and the 

panelists were able to detect few wines that were different than the control in terms of perceived 
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acidity. In fact, in 2006, the perceived acidity was consistently high in all irrigation treatments but 

it was not strongly associated with vegetal character (Fig. 3b-4). Usually, in red grapes, acidity is 

highly correlated with vegetal notes associated with unripe fruit (Balint and Reynolds 2010). 

The wines from 2007 vintage showed a different sensory profile than in 2006 (Table 3b-8; 

Fig. 3b-l, 2, 3). Jammy fruit, sour cherry and tobacco were the three descriptors in 2007 wines that 

were not found in the wines from 2006 vintage. Green pepper was also missing from the 2007 

sensory profile. In 2006, bitterness and astringency did not account for much of the variation of the 

wines due to irrigation treatments. In 2007, not all the attributes were different in the control wine 

compared to wines from the irrigated treatments (Table 3b-8). The greatest differences were found 

when the control was compared to wines from 100% ETc treatments. Both the amount of water 

applied and initiation time greatly affected the intensity of the attributes. With a few exceptions, 

the control had lower scores for most of the attributes compared to the other treatments. Although, 

wine TA was lower in 2007 vs. 2006, the 2007 wines were inexplicably scored higher for 

perceived acidity. 

In 2006, the first two factors of peA mean sensory scores explained 52.36% of the 

variability in the data set (Figure 3b-4). The fIrst factor accounted for 32.93% of the variability and 

was most heavily loaded in the negative direction with color, prune and red fruit flavor, dark fruit 

and black pepper aroma. The second factor explained 19.43% of the variation in the data set, and 

was positively loaded with astringency, prune aroma and black pepper flavor. Dark fruit aroma and 

flavor were negatively correlated, which suggests that the odor-active compounds responsible for 

these descriptors in the wines from high water status treatments were mostly in bound forms such 

as glycosides, but were released upon contact with salivary enzymes. The peA plot illustrated that 

100% ETc imposed at fruit set and lag phase were located in the right and upper part of the plot, 

being dominated by black pepper flavor and bitterness, while 100% ETc at fruit set was highly 

associated with green pepper and cooked vegetable and flavor and black pepper aroma. However, 

the 100% ETc treatments were grouped in a loose cluster on the right side of the plot, which 

indicated that not only the amount of water but also the initiation time were responsible for 

changes in the wine sensory profile. The positive direction (to the right of pe2) was associated 

with 100 % ETc treatments, and the negative direction with deficit water treatments. In other 

words, 100% ETc treatments were associated with the unripe sensory characteristics while defIcit 

irrigation treatments were associated with the ripe ones. Moreover, 100% ETc applied at veraison 

was not correlated with color intensity, which suggests that full water replacement at veraison did 

not have either a negative or a positive effect on both color intensity and anthocyanins 
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accumulation. The 100% ETc treatments initiated at fruit set and lag phase were strongly 

negatively associated with color intensity and positively with bitterness (Fig. 3b-4). Except 50% 

ETc imposed at fruit set, all RDI treatments were located on the right side of the plot. The 

distribution of wines from 25% RDI showed a clear separation based on initiation time (Fig. 3b-4). 

All the RDI treatments were associated with dark fruit, red fruit and black pepper flavor. Color 

intensity was associated mostly with 25% ETc imposed at lag phase and veraison. 

In 2007, the PCA diagram showed that the first two factors explained 73.1 % of the 

variability (Fig. 3b-5). FI explained 52.72% while F2 explained 20.29%. The first component was 

positively loaded with sour cherry and cooked vegetable aroma, cooked vegetable and red fruit 

flavor, acidity and astringency. The same component was heavily negatively loaded with color, 

dark fruit, chocolate, tobacco, and prune aromas, jarnmy fruit, chocolate, dark fruit and tobacco 

flavors, and color intensity. The second factor was positively loaded with sour cherry flavor and 

bitterness. The distribution of the 2007 wines on the PCA plot showed a better discrimination 

among the treatments than in 2006 (Fig. 3b-5). Similar to 2006,100% ETc treatments were 

grouped together but the cluster was tighter in 2007 compare to 2006. The same treatments were 

highly associated with the variables positively loaded on PCl. However, the 100% ETc initiated at 

fruit set was located farther than those initiated later in the season, which suggests that initiation 

time still could play an important role in irrigation management from a sensory prospective. In 

2007, the 100% ETc treatment initiated at fruit set had a negative effect on wine quality, mainly 

due to a larger canopy and extended vegetative period, which translated into postponing the onset 

of veraison and extending the fruit maturation period. Moreover, the other 100% ETc treatments 

were dominated by the same descriptors related to the unripe profile. The RDI treatments were 

located on the left side of the PCA plot. The 25% ETc wines were located very close to each other 

and to PCl. This indicates that in very dry years, the initiation time does not have an impact on the 

sensory profile for 25% RDI treatments. They were highly associated with the attributes negatively 

loaded on first factor (dark fruit, jammy fruit, chocolate). The 25% ETc wines showed higher color 

intensity than 50% ETc and 100% ETc as well as the control. In 2006, the 50% ETc imposed at lag 

phase and veraison were located close to the control and were highly associated with the attributes 

loaded on factor 1, whereas in 2007 they were grouped differently, showing a better 

discrimination. The control wines were negatively associated with sour cherry, red fruit and 

bitterness. The 50% ETc imposed at lag phase and veraison were positively associated with many 

fruit aroma and flavor descriptors. However, the 50% RDI treatments were grouped in a looser 

cluster, with the late initiated treatments grouped together on the left side of the plot, while early-
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initiated treatments were located on the right side of the plot, close to the 100% ETc treatments. 

RDI treatments clearly had a positive effect on the wine quality. An interesting observation was 

that the control treatment was located on the left lower quadrant, and it was not dominated by any 

of the positive descriptors related to fruit maturity, which suggest that high water stress negatively 

affected the sensory varietal profile. 

In the current study most of the variability in wine sensory perception was explained by 

differences in the vegetal and fruity notes. These two categories of descriptors are related to fruit 

maturity. However the sensory pattern varied from vintage to vintage which suggest that besides 

soil moisture other climatic factors affect the sensory profile and its intensity. Differences in the 

sensory profiles of the wines due to the irrigation strategy used, led to two possible explanations. 

The responses of specific metabolic pathways in the yeast might have been affected by the must 

composition, which is directly related to the vine water status. Since the must was not adjusted 

with any nutrients before fermentation, it is speculated that the variation in nitrogen availability to 

the vine due to the various water deficits was translated in less assimilable nitrogen available to the 

yeast. Some studies showed that many aroma odorants are produced by the yeasts during alcoholic 

fermentation (Varela et al. 2009). Among the various yeast metabolic pathways that are influenced 

by the composition of the juice, those leading to volatile compounds are of particular importance 

due to the primary role played by fermentation-derived volatiles in the aroma character of wine 

(Smyth et al. 2005). Water deficit affects both the total available nitrogen and the ratio of amino 

acids and ammonia (Lohnertz et al. 2000, Van Heeswijcket al. 2001, Wade et al. 2004). As a 

consequence, it could affect the production of different groups of fermentation-derived volatile 

esters and other aliphatic compounds. The concentration of esters in wines is positively correlated 

with the concentration of some or all amino acids in the fruit (Guitart et al. 1999, Webster et al. 

1993). This aspect has interesting impli~ations for wine flavor as fatty acids ethyl esters and 

acetates which are generally responsible for the fruity character of wine (Ebeler 2001, Guth and 

Sies 2002). 

The second theory which supports the sensory results is that vines under low or medium 

water deficits produced more aroma precursors. The concentration of carotenoids increases under 

high water deficit and light intensity, since they are involved in the photoprotection process 

(Cramer et al. 2007). Carotenoids are also precursors for abscisic acid, which controls water 

balance through stomatal opening (Koornneet 1986)~ Furthermore, the concentration of C13-

norisoprenoids (~-damascenone, ~-ionone and 1,1,6- trimethyl-1,2-dihydronaphthalene) 

responsible for some aroma descriptors in red wines are dependant on the carotenoids 
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concentration in the berries and their subsequent breakdown (Crupi et al. 2010). In berries of vines 

that were exposed to water deficits, the concentration of the carotenoids precursors to 

norisoprenoids was increased compared to control (fully irrigated) (Oliveira et al. 2003). 

Relationships among soil and plant water status, yield components and chemical data. 

2005. Partial least squares analysis (PLS) was performed on the entire data sets in order to have a 

bigger picture on the relationship among soil and plant water status, yield components, berry and 

wine chemistry (Fig. 3b-6). The PLS plot illustrates that leaf 'I' was very strongly positively 

correlated with soil moisture, Ts rate and vigor, but negatively correlated with color intensity in the 

wine. The variability among the irrigated treatments was not well explained by pH and yield. On 

the other hand, berry weight and TA were negatively correlated with the concentrations of ethanol, 

anthocyanins and total phenols. This indicates that most of the chemical variables associated with 

fruit maturity were negatively correlated with the soil water levels. However, yield and the number 

of clusters per vine were close to the center of the figure, showing low correlations with 

physiological variables. This might indicate that in the previous year, the climatic conditions did 

not strongly affect cluster differentiation. It might also suggest that soil moisture, leaf '1', Ts rate, 

and vigor variables, if measured in the previous year, could partially predict the number of 

inflorescences and yield. Cluster weight was highly correlated with the number of berries per 

cluster and negatively correlated with berry weight. 

2006. PCA was first performed on physiological data, yield components and berry 

composition (Figure 3b-7). In this case, PCI and PC2 explained 48.37 % of the variability in the 

data set while PC3 only 18.6%. The PCA plots (3b-7 A and B) showed that the first three factors 

still did not give a good representation of the initial variability, since the next two to three factors 

carried important variability. In 2006, the soil and plant water status variables were heavily 

positively loaded on PCl as in 2005 (Fig. 3b-7 A). Berry weight was highly positively loaded on 

PC3 along with soil moisture measured by TDR. They were negatively correlated with leaf 

temperature. In the wine, the ethanol, anthocyanins, °Brix and hue were negatively correlated with 

color density in grapes and wine, vigor and number of clusters per vine. There was a clear 

separation among the irrigated treatments based on irrigation imposition time (Fig 3b-7 A). The 

treatments imposed at fruit set were grouped in the lower right plane; the treatments started at lag 

phase were grouped in the upper plane, while the treatments applied at veraison were located in the 

lower-left plane; 

In 2006, PLS analysis was performed on the whole data set including the sensory data (Fig. 

3b-8). The PLS diagram illustrated a strong negative correlation between leaf '1', Ts rate, color 
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intensity, red fruit and total phenols. The latter variables were also negatively correlated with soil 

moisture (measured by Profile Probe) at the 10,20 and 100 cm depths. This suggests that high soil 

moisture at these depths, where possibly most of the active root system is concentrated, might have 

a negative effect on color intensity on both grape and wine, respectively. Berry weight was 

positively correlated with '13rix, anthocyanins and TA and negatively with berry and wine pH. This 

suggests that overall berry size did not have a negative effect on °Brix and anthocyanins through a 

dilution effect, contrary to the expectations. Moreover, these two variables which reflect maturity 

level in red grapes did not show high correlations with soil moisture at any of the depths measured. 

Yield was located very close to the center of the PLS figure, and indicated no correlation with the 

other variables measured. The vegetal characters (e.g. green pepper and cooked vegetable) were 

positively correlated with soil moisture at the 30, 40 and 60 cm depths, and negatively correlated 

with red and dark fruit flavor, black pepper and leaf temperature. The relationships among 

variables showed that most of the typical sensory characteristics for this cultivar were negatively 

associated with the irrigation treatments imposed early in the season and less with volume of water 

applied. 

2007. The PCA plot of field, yield components and berry composition showed that PC 1 

and PC2 explained 55.93%, while PC3 explained 15.74% of the total variability in the data set 

(Fig. 3b-9A and B). Soil moisture at the 10, 20, 30 and 100 cm depths were highly positively 

loaded on PC1, while leaf temperature and color density of grapes were negatively loaded. Soil 

moisture at 40 and 60 cm depths were highly correlated withoBrix, color intensity and ethanol in 

the wine. This relationship was different compare to 2006. Anthocyanins, hue and pH were heavily 

positively loaded on PC3 while negatively loaded with vigor, berries per cluster and berry weight. 

The grapes from irrigated treatments imposed at lag phase were highly associated with 

anthocyanins, hue and pH, while the control andRDI treatments imposed at veraison were highly 

associated with color intensity, °Brix and ethanol. PLS analysis on 2007 data set showed different 

relationships than in 2005 and 2006 (Fig. 3b-1O). Soil moisture at 20 and 100 cm depths were 

highly associated with berries per cluster and cluster weight but negatively correlated with °Brix, 

ethanol, prune and tobacco aroma and dark fruit flavor. This might suggest that the root system 

activity was subdivided in the soil profile into different depths based on the relative soil moisture 

levels. Soil moisture at the 10, 30, 40, and 60 cm depths were positively correlated with sour 

cherry and cooked vegetable aroma and red fruit flavor and negatively correlated with jammy fruit, 

tobacco, chocolate and dark fruit aromas. This suggests that the soil moisture at different depths 

could impact berry composition and/or aroma profile. 
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Conclusions 

This study revealed that even in regions considered cool, vines undergo periods of water 

stress that affect both the fruit composition and wine sensory profiles. The effects of various 

irrigation regimes on vine water status varied depending on season, and as a consequence the 

effect on fruit composition and sensory profile was positive, negative, or nil. Patterns of both 

chemical composition and sensory profiles varied over the trial. It is likely that other climatic 

factors such as precipitation, temperature, light and relative humidity have overridden impacts of 

water status in terms of their effects on fruit composition in some seasons. 

DJ3rix, pH, and TA are the most commonly measured components of fruit maturity but they 

are not consistently associated with sensory varietal typicity. Therefore, it is essential, to carry out 

vineyard experiments through to sensory analysis of wines if the ultimate objective is to 

manipulate wine sensory attributes through vineyard management, particularly irrigation. Since 

these experiments were conducted over a three-year period and each vintage had different weather 

conditions, it was not found entirely consistent trends. However, even in years considered cool, 

berry composition and wine sensory profiles were affected by soil water levels and these trends 

were consistent among water deficit treatments. 

This study showed that soil and plant water status, based on their relationships with the 

sensory descriptors could predict the flavor profile of the wines. Future research should be directed 

toward chemical analyses of the odor-active compounds that might be impacted by irrigation. 

Knowing the vine water needs at any phenological stage, the grape grower and winemaker can 

manipulate through irrigation the grape composition and finally the wine quality. 

Full 100% water replacement is not recommended at any phenological stage, although in 

some seasons it had no negative effects on fruit composition. However, 50% and 25 % water 

replacement had overall positive effects on fruit composition and varietal typicity. If the water is 

applied without precision, deficit irrigation might have negative effects on fruit composition and 

wine sensory profiles. Consequently, low water status resulting from lack of precision in 

calculation of irrigation needs might have as negative impact as high water status on both the 

chemical composition and wine sensory profiles. 
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Table 3b-l. Attributes and their standard references used for sensory evaluation of Baco 
noir wines, Lambert Vineyards, Niagara-on-the-Lake, ON, 2006 and 2007 vintages. 

Sensory 

attribute 

Dark fruit 

Red fruit 

Sour cherry 

Prune 

Chocolate 

Black pepper 

Cooked 
vegetable 

Bell pepper 

Tobacco 

Acidity 

Bitterness 

Astringency 

Reference standard (prepared in 100 mL of base wine Kressmann -France) 

10 mL black currant concentrate (Ribena) , 20 g of jam (blueberry and 
blackberry)(E.D. Smith) 

20 g mixture of fresh strawberry and raspberry fruit (California, USA) 

10 g of pulp sour cherries (canned) (Del Monte) 

20 g of fresh prune puree (Chile) 

5 g of cooking chocolate-No Name (No Frills) 

0.2 g of ground black pepper 

Mixture of fresh green beans (10 g) and asparagus (15 g)- cooked for 30 sec 
in microwave and left 24h in 100 mL of base wine 

Cut pieces of fresh green pepper (lOg) 

1 g of processed tobacco leaves - cigar tobacco 
(24h maceration in 100 mL base wine) 

1.5g tartaric acid (Sigma) IL distillate water 

0.03g quinine sulfate (Sigma) IL distillate water 

0.3 g aluminum sulfate (Sigma) IL distillate water 
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Table 3b-2. Impact of irrigation treatments on berry composition of Baco noir grapes, Lambert Vineyards, Niagara-on-the-Lake, ON, 
2005-2007. 

Soluble solids eBrix) Titratable acidity (gIL) pH 

Treatment 
2005 2006 2007 2005 2006 2007 2005 2006 2007 

C 22.6c 19.3 b 23.5b 12.2b 16.8 c 12.8 b 3.36b 3.56 a 3.51 b 

Tl 22.5 c 19.7 ab 22.4c 12.4 b 22.6 a 13.3 b 3.42 ab 3.52 b 3.48 bc 

T2 23.0b 19.6 ab 23.0bc 12.3 b 18.1 b 12.1 b 3.44 ab 3.S3b 3.53 ab 

T3 22.7 c 19.5 ab 23.2 bc 1l.Oc 17.2c 18.1 a 3.55 a 3.S2b 3.56 a 

T4 23.0b 19.7 ab 23.6b 14.1 a 16.9 c 12.3 b 3.40 ab 3.57 a 3.50b 

T5 23.2 b 19.7 ab 21.9c 12.2 b 16.0d 12.5 b 3.37b 3.59 a 3.49b 

T6 23.7 a 20.0 a 23.1 bc 12.4 b 17.2 c 13.1 b 3.54 a 3.49c 3.51 b 

T7 22.7 c 19.8 ab 23.7b 12.4 b 16.0 d 12.3 b 3.36b 3.S3b 3.44c 

T8 22.6c 19.5 ab 24.1 a 12.8 b 16.0 d 12.8 b 3.34c 3.56 a 3.46 c 

T9 23.1 b 19.7 ab 24.0 a 14.3 a 17.1 c 12.0b 3.33 c 3.56 a 3.44c 

Significance **** * *** **** * * ** *** **** 

*C-contro1 (non-irrigated); Tl-T3 - irrigation treatments applied at fruit set (100,50 and 25% of ETc); T4-T6 irrigation treatments applied at lag phase (100, 
50 and 25% of ETc); and TI-T9 irrigation treatments applied at veraison (100,50 and 25% of ETc). *,**,***,****, ns: Significant at p.::; 0.05,0.01,0.001, 
0.0001, or not significant, respectively. Letters within columns represent means separated at p.::; 0.05, Duncan's multiple range test. Boldfaced data indicate 
those values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data are significantly less than the control 
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Table 3b-3. Impact of irrigation treatments on berry phenolic analyte composition of Baco noir grapes, Lambert Vineyards, Niagara-on-
the-Lake, ON, 2005-2007. 

Hue (fu.2o/A520) Color density Anthocyanins (mgIL) Total phenols 

Treatement (fu.20+A520) (mgIL gallic acid equiv.) 

2005 2006 2007 2005 2006 2007 2005 2006 2007 2005 2006 2007 

C O.Slb 0.S6b O.77a 17.1b 12.6b 21.9a 1472.8 c 1738.8 c 2087b 1935b 2717a 1897c 

T1 0.51b 0.56b 0.69ab 15.2e 11.8e 16.5e 1597.3b 1773,4bc 1716ed 1808e 2374b 1796 cd 

T2 O.72a 0.71a 0.61e 16.1e 12.2e 17.9be 1750.8a 1816.4ab 1567d 1933b 2301b 1676d 

T3 0.56b 0.48e O.72ab 17,4b 13.1b 20.1b 1661.9ab 1257.7d 1933b 1926b 2206e 2063bc 

T4 0.62ab 0.76a 0.79 a 14.6b 9.1d 18.2be 1644.7ab 1775.Sbc 2147a 2087ab 2672ab 2712 a 

T5 0.52b 0.78a O.72ab 16.7b 12.1b 17.9be 1501.4bc 1857.9ab 1965b 2091ab 2373be 2746 a 

T6 0.58ab 0.79a 0.78 a 20.2a 14.4a 22.6a 1659.5ab 2087.0a 2211a 2oo3ab 2790a 2370b 

T7 0.69 a 0.75a 0.71ab 14.3d 13.6b 15.1e 1705.5 a 1988.0b 1956b 1989ab 2305b 2805 a 

T8 0,49b 0.52b 0.73ab 16.6c 13.1b 18.9bc 1367.7 d 1482.0d 202Sb 191O.7b 2S23ab 2173 be 

T9 0.74 a 0.46e 0.69ab 19.3a 14.4a 22.1a 1760.9 a 1181.0 e 1863 e 2201.0 a 2287e 2722 a 

Significance. * * * *** * * **** **** **** * *** * 

*C-control (non-irrigated); T1-T3 - irrigation treatments applied at fruit set (100,50 and 25% of ETc); T4-T6 irrigation treatments applied at lag phase 
(100,50 and 25% of ETc); and T7-T9 irrigation treatments applied at veraison (100,50 and 25% of ETc). *,**, ***,****, ns: Significant at p.$ 0.05,0.01, 
0.001,0.0001, or not significant, respectively. Letters within columns represent means separated at p.s 0.05, Duncan's mUltiple range test. Boldfaced data 
indicate those values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data are significantly less than the control. 
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Table 3b-4. Impact of irrigation treatments on must composition of Baco noir grapes, Lambert Vineyards, Niagara-on-the-
Lake, ON, 2005-2007. 

Soluble solids (Brix) Titratable acidity (gIL) pH 

Treatment 
2005 2006 2007 2005 2006 2007 2005 2006 2007 

C 21.6 a 17.6 23.5b 11.4 b 14.2b 14.2 ab 3.13 c 3.31 a 3.09bc 

T1 21.8 a 17.6 22.4 bc 10.3 e 16.5a 15.3 a 3.24 b 3.36 a 3.08 bc 

T2 21.3 b 17.9 23.0b 11.3 b 16.2a 13.1 b 3.26 ab 3.31 a 3.05 c 

T3 20.5 e 17.8 23.2 b 10.ge 15.3ab 14.9 ab 3.35 a 3.28 ab 3.12 b 

T4 21.1 b 17.7 23.6 ab 12.1 a 14.3b 12.3 bc 3.20 b 3.36 a 3.15 b 

T5 21.1 b 18.1 21.ge 11.2 b 13.8bc 12.5 be 3.18 b 3.35 a 3.21 a 

T6 21.2 b 17.7 23.1 b 11.2 b 14.5b 13.1 b 3.35 a 3.22b 3.11 b 

T7 20.2e 17.8 23.7 a 11.3 b 12.2e 10.3e 3.12 c 3.20b 3.04c 

T8 21.6 a 17.5 24.1 a 10.Se 13.6bc 13.8 b 3.13 c 3.18b 3.06c 

T9 20.1 e 18.2 24.0 a 12.5 a 13.2bc 10.2e 3.16 c 3.20b 3.08 bc 

Significance *** ns *** *** * * * * **** 

*C-control (no-irrigated); T1-T3 - irrigation treatments applied at fruit set (100,50 and 25% of ETc); T4-T6 irrigation treatments applied at lag phase 
(l00, 50 and 25% of ETc); and T7-T9 irrigation treatments applied at veraison (100,50 and 25% of ETc). *,**,***, ****, ns: Significant at p ~ 0.05, 
0.01,0.001,0.0001, or not significant, respectively. Letters within columns represent means separated at p ~ 0.05, Duncan's multiple range test. 
Boldfaced data indicate those values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data are significantly less than 
the control 
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Table 3b-5. Impact of irrigation treatments on Baco noir wine composition, Lambert Vineyards, Niagara-on-the-Lake, ON, 
2005-2007. 

pH TA (gIL) Ethanol (%v/v) 
Treatment 

2005 2006 2007 2005 2006 2007 2005 2006 2007 

C 3.46c 3.56 ab 3.49b 7.3 b 7.8b 7.2 b 12.26 c 10.60 b 13.05 b 

T1 3.53b 3.52b 3.56 ab 7.4 b 8.3 b 7.7ab 12.14 c 11.00 a 12.39 c 

T2 3.61 ab 3.53 b 3.51 b 7.1 b 9.1 a 6.9b 12.75 a 10.89 ab 12.78 bc 

T3 3.71 a 3.52 b 3.54 ab 8.6 a 8.1 b 9.1 a 12.28 c 10.42 c 12.89 be 

T4 3.48c 3".57 ab 3.65 a 6.8c 6.9c 7.3 b 12.62 b 10.92 ab 12.65 bc 

T5 3.42c 3.59 a 3.56 ab 7.5 b 6.9c 7.5 b 12.69 b 11.11 a 12.09 c 

T6 3.59 ab 3.49c 3.62 a 7.2ab 7.2c 7.6b 12.87 a 10.93 ab 12.64 bc 

T7 3.54b 3.53b 3.50b 7.6ab 7.1 be 6.9b 12.18 c 10.68 ab 13.16 a 

T8 3.61 ab 3.56 ab 3.48b 7.9ab 7.3c 7.5 b 12.62 b 10.72 ab 13.26 a 

T9 3.53b 3.56 ab 3.51 b 6.7 c 8.3b 6.8 b 12.64 b 1O.60b 13.28 a 

Significance * * * * * * * * * 

*C-control (no-irrigated); Tl-T3 - irrigation treatments applied at fruit set (100,50 and 25% of ETc); T4-T6 irrigation treatments applied at lag phase 
(100,50 and 25% of ETc); and T7-T9 irrigation treatments applied at veraison (100,50 and 25% of ETc). *,**,***,****, ns: Significant at p ~ 0.05, 
0.01,0.001,0.0001, or not significant, respectively. Letters within columns represent means separated at p ~ 0.05, Duncan's multiple range test. 
Boldfaced data indicate those values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data are significantly less than 
the control 
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Table 3b-6. Impact of irrigation treatments on Baco noir wine color and phenolic composition, Lambert Vineyards, Niagara-on-
the-Lake, ON, 2005-2007. 

Hue Color density Anthocyanins (mgIL) 
Total phenols 

(mgIL ~allic acid eguiv.) 
Treatment 

2005 2006 2007 2005 2006 2007 2005 2006 2007 2005 2006 2007 

C 0.51 b 0.56 b 0.77 a 13.1 c 1O.6c 17.9a 1412.8 c 1628.8 b 1897.4 c 1815.3 bc 2587.1 a 2087.0 c 

T1 0.51 b 0.56b 0.69b 10.2 e 9.8c 14.5c 1497.3 b 1653.4 b 1716.1 d 1758.0 c 2214.5b 1726.7 d 

T2 0.72 a 0.71 a 0.61 c 13.1 c 11.2b 15.9bc 1650.8 a 1796.4 ab 1567.1 e 1863.0b 2261.0 b 1676.2 d 

T3 0.56b 0.48 c 0.72 ab 14.4 b 1O.1c 14.1b 1521.9 ab 1247.7 d 1923.5 c 1866.0b 1906.3 c 2032.4 c 

T4 0.62 ab 0.76 a 0.79 a 12.5 d 7.1d 13.5bc 1594.7 ab 1715.5 ab 2147.8 a 1987.3 a 2262.0 b 2562.5 ab 

T5 0.52b 0.78 a 0.72 ab 14.7 b 1O.1c 14.9bc 1501.4 ab 1818.9 ab 1965.6 b 1991.0 a 2193.0 b 2746.2 a 

T6 0.58 ab 0.79 a 0.78 a 15.2 ab 11.4b 18.6a 1596.5 ab 2043.0 a 2161.8 a 1903.3 ab 2520.5 a 2370.3 b 

T7 0.69 a 0.75 a 0.71 b 17.3 a 12.6a 13.1c 1655.5 a 1926.0 a 1956.5 b 1879.8 b 2195.2 b 2515.4ab 

T8 0.49b 0.52b 0.73 ab 15.6 ab 11.1b 12.9c 1287.7 d 1482.0 c 1985.2 b 1810.7 be 2433.4 ab 2053.8 e 

T9 0.74 a 0.46c 0.69 b 14.3b 12.4a 16.5b 1690.9 a 1181.0 d 1833.7 b 1890.0 ab 2287.1 ab 2512.6 a 

Significance * * * *** * * *** *** *** *** *** *** 

*C-control (no-irrigated); Tl-T3 - irrigation treatments applied at fruit set (100,50 and 25% of ETc); T4-T6 irrigation treatments applied at lag phase 
(100,50 and 25% of ETc); and T7-T9 irrigation treatments applied at veraison (100,50 and 25% of ETc). *,**,***,****, ns: Significant at P.$ 0.05, 
0.01,0.001,0.0001, or not significant, respectively. Letters within columns represent means separated at P.$ 0.05, Duncan's multiple range test. 
Boldfaced data indicate those values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data are significantly less. 
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Table 3b-7. Comparison of mean sensory scores among irrigation treatments of Baco noir wines, Lambert Vineyards, Niagara-on-the Lake, ON, 
2006. 

Variable T2 T3 T4 TS T6 T7 T8 T9 PDF 

Aroma 

Dark fruit 3.8a 0.ge l.Sb 2.lab 1.7b 2.9ab 0.8e 1.8b 1.6b 2.6ab 0.008 

Red fruit 2.3b 2.1b 1.9b l.1e l.1e 2.9a 2.8a 1.9b 2.1b 2.6ab 0.019 

Prune 1.8b l.1e l.5be 1.9b 1.3e 2.3a 1.9b 1.4be 2.1a 1.6be 0.049 

Chocolate 0.9b 0.8b 0.6e 0.7e l.1ab 1.2ab 1.6a 1.9a 0.7e 1.6a O.OSI 

Black pepper 1.8ab l.1e l.Sb 1.9ab 1.3e 2.3a 1.9ab 1.4be 2.1a 1.6b 0.049 

Cooked vegetable O.Se 2Aab 0.9be OAe 1.8b 0.6e 0.8be 2.9a 0.8be 0.6e 0.009 

Green pepper 0.9be 3.2a 2.9a 0.8be 1.2be 0.6e 0.Se2 2.8a 2.1b OAe 0.007 

Flavor/mouthfeel 

DARK FRUIT 2.1b 1.9b 1.7b 0.6e 1.4be 2.Sa 0.7e 1.6be l.Sbe OAe <0.001 

RED FRUIT 2.6b 2.6b 2.9b 2.9b 3.7a 2.9b 2.8b 2.7b 2.9b 3.1ab 0.046 

PRUNE 2Aa 2.1a 2.Sa 2.3a 2.6a 2.Sa 2.6a 2Aa 2.Sa 2.6a 0.S21 

BLACK PEPPER 1.9a 1.6b 1.8ab 1.9a 1.7b 1.6b 1.9a 2.1a 2.2a 2.0a 0.OS3 

COOKED VEGETABLE O.Se O.3e 1.6b 0.2e 0.9be 1.2be 0.8be 2.1a 0.8e 0.6e 0.047 

GREEN PEPPER 1.2e 3.1a 2.9a l.Se 2.9a 1.9b 1.8b 1.9b l.Sbe 1.4be 0.042 

ACIDITY 2.2b 2.6a 2.1b 2Aab 2.6a 2.8a 2.4ab 2.6a 2.3ab 1.8e 0.031 

BITTERNESS 0.9a 0.8a O.Sa 0.6a 0.6a 0.6a 0.6a O.Sb O.Sb O.3b 0.049 

ASTRINGENCY 0.7b OAe 0.6b 0.6a 1.7a OAe OAe 0.6b 0.8b 0.6b 0.0487 

COLOR 3.Sa l.1e 1.2e 2Ab 0.ge 1.3e 2.9a 2.Sab 2.9a 3.2a 0.007 

*C-control (non-irrigated); Tl-T3 - irrigation treatments applied at fruit set (100, 50 and 25% of ETc); T4-T6 irrigation treatments applied at lag phase 
(100,50 and 25% of ETc); and T7-T9 irrigation treatments applied at veraison (100,50 and 25% of ETc). Means within rows with different letters are 
significantly different, Duncan's multiple range test. 

120 



Table 3b-8. Comparison of mean sensory scores among irrigation treatments of Baco noir wines, Lambert Vineyards, Niagara-on-
the Lake, ON, 2007. 

Irrigation Treatments 

Variable I Tl T2 T3 T4 T5 T6 T7 T8 T9 C Pr>F 
Aroma 
Dark fruit 2.9a 1.7c 1.3c 2.4b 1.7b 2.lb 3.2a 2.4b 2.8a 3.2a 0.021 

Red fruit 2.1c 1.9c 3.3ab 3.6a 2.6b 3.9a 2.7ab 2.8ab 3ab 2.5b 0.006 

Jammy 3.6ab 2.5b 3.8a 3.4ab 2.1b 3.8a 4.1a 2.7b 2.5b 2.3b 0.009 

Prune 3.1c 2.9c 3.5b 3.7b 2.5c 4.0ab 4.7a 4.2ab 4.8a 4.5a 0.004 

Chocolate 2.3bc 1.3c 1.lc 3.9a 2.9b 3.4ab 3.8a 1.5c 3.2ab 3.4ab 0.006 

Sour cherry 1.7c 4.3a 4.2a 2.8b 3.8a 3.6a 2.6b 3.6a 3.4ab 2.3c <0.001 

Cooked vegetable 0.9c 2.7a 1.8b 1.lc 2.3a 1.8b l.5bc 2.6a l.8b l.2c 0.049 

Tobacco l.4b O.4c O.4c 2.6a 0.5c 2.6a 2.7a 2.3a 2.6a l.9b 0.006 

Flavor/mouthfeel 

DARK FRUIT 2.1b lbc 0.6c 2.6ab l.2bc 3.7a 2.7ab 3.0ab 3.3ab 3.7a <0.001 

RED FRUIT 1.3c 3.4a 3.2a 2.1b 3.2a 2.4b 1.6c 3.2a 2.2b 2.3b 0.014 

JAMMY 2.6b 1c 3.9a 3.0ab 1.3c 3.5ab 3.3ab l.4c 3.9a 4a 0.009 

PRUNE 2.1b 0.7c 0.9c 2.5ab 0.7c 2.9a 3a 0.8c 3.7a 2.9a 0.028 

CHOCOLATE 1.8b 1.5b 0.7c 2.6a 1.9b 2.9a 2.7a 0.9c 2.9a 3.2a 0.008 

SOUR CHERRY 2.1c 2.6b 3.5a 3.0a 2.6b 3.4a 2.5b 2.9a 3.2a 2.5b 0.051 

COOKED VEGETABLE 0.9c 3.2a 2.0bc 1.3c 2.7b 1.3c 1.lc 2.8b 1.8bc 1.0c 0.025 

TOBACCO 1.9bc l.4c 2.8b 2.5b 2.3bc 3.5a 2.8b l.4c 3.1a 3.4a 0.009 

ACIDITY 4.1b 5.7a 4.9ab 4.3b 5.6a 5.2ab 4.5b 6.0a 5.2ab 4.4b 0.047 

BITTERNESS 1.6b 2.0ab 1.9ab 2.0a 2.7a 2.7a l.9a 2.5ab 2.8a 1.8ab 0.0045 
ASTRINGENCY 0.9b 1.8ab 1.2ab l.Ob 2.0a 1.3ba 0.9b l.8a 1.6ba 1.lb 0.048 
COLOR 4.2a 1.2c 1.8bc 3.8a 1.5c 2.8b 3.6a 1.6c 2.4b 4.1a <0.001 

*C-control (non-irrigated); Tl-T3 - irrigation treatments applied at fruit set (l00, 50 and 25% of ETc); T4-T6 irrigation treatments applied at lag phase 
(100, 50 and 25% of ETc); and T7-T9 irrigation treatments applied at veraison (100,50 and 25% of ETc). Means within rows with different letters are 
significantly different, Duncan's multiple range test. 
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Figure 3b-l. Radar diagram of the mean intensity ratings of four Baco noir wines made from different 
irrigation treatments, Lambert Vineyards, Niagara-on-the-Lake, ON. (C-control, Set- irrigation initiated at fruit 
set). 100, 50, and 25 represent percentage of water replaced. A and B represent2006 and 2007 vintage, 
respectively. Aroma and flavor attributes are specified by lower and higher case letters respectively. 
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Figure 3b-2. Radar diagram of the mean intensity ratings of four Baco noir wines made from different 
irrigation treatments, Lambert Vineyards, Niagara-on-the-Lake, ON. (C-control, Lag- irrigation initiated at lag 
phase). 100, 50, and 25 represent percentage of water replaced. A and B represent 2006 and 2007 vintages, 
respectively. Aroma and flavor attributes are specified by lower and higher case letters respectively. 
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Figure 3b-3. Radar diagram of the mean intensity ratings of four Baco noir wines made from different 
irrigation treatments, Lambert Vineyards, Niagara-on-the-Lake, ON. (C-control, Ver.- irrigation initiated at 
veraison). 100, 50, and 25 represent percentage of water replaced. A and B represent 2006 and 2007 vintages, 
respectively. Aroma and flavor attributes are specified by lower and higher case letters respectively. 
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Figure 3b-4. Principal component analysis (FI&F2) of mean sensory data for wines from ten irrigation treatments 
imposed on Baco noir vines from Lambert Vineyards, Niagara-oncthe-Lake, ON, 2006. Set, Lag and Ver. are the 
initiation times of irrigation (fruit set, lag phase and veraison). 100, 50 and 25 represent percentage oithe water 
replaced in the soil through irrigation. Aroma and flavor attributes are specified by lower and higher case letters 
respectively. 
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Figure 3b-5. Principal component analysis (Fl&F2) of mean sensory data for wines from ten irrigation treatments 
imposed on Baco noir vines from Lambert Vineyards; Niagara-on-the-Lake; ON, 2007. Set, Lag and Ver. are the 
time for irrigation imposition (fruit set, lag phase and veraison) and 100, 50 and25 represent percentage of the 
water replaced in the soil through irrigation. Aroma and flavor attributes are specified by lower and higher case 
letters respectively. 
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Figure 3b-6. PLS analysis of soil water status, physiological data, yield components, berry and wine chemical 
composition means from ten irrigation treatments of Baco noir from Lambert Vineyards, Niagara-on-the-Lake, 
ON, 2005. Set (5), Lag (L) and Veraison (V) represent time for irrigation imposition and 100, 50 and 25 represent 
percentage of the water replaced in the soil through irrigation. Abbreviations used: T.Ph.-G and -W (total phenols 
in berries and wine, respectively), C.W.(cluster weight), Anth-G and -W(anthocyanins concentration in berries 
and wine, respectively), B/C (number of berries per cluster), C.D.-G and -W (color intensity of juice and wine, 
respectively), TA-G and -W (titratable acidity in berries and wine, respectively), V (vine size), Ts 
(transpiration), LWP (leaf water potential), S.M. (soil moisture). 
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Figure 3b-7. Principal component analysis [A (Fl &F2) and B (F2&F3)] of soil water status, vine physiological 
data, and berry/wine composition means (10 vines x three shoots x three leaves x three replicates) from ten 
irrigation treatments of Baco noir vines from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006. C-control 
while Set (S), Lag (L) and Veraison (V) represent time for irrigation imposition. 100,50 and 25 represent 
percentage of the water replaced in the soil through irrigation. Abbreviations used: T.Ph.-G and -W (total phenols 
in berries and wine, respectively), C.W.(cluster.weight), Anth~G and -W( anthocyanins concentration in berries 
and wine , respectively), B/C (number of berries per cluster), C.D.-G and -W ( color intensity of juice and wine , 
respectively), TA-G and -W (titratable acidity in berries and wine, respectively), V (vigor), T (transpiration), 
LWP (leaf water potential), S.M. (soil moisture). 
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Figure 3b-8. PLS analysis of soil water status, physiological data, yield components, berry and wine chemical 
composition means from ten irrigation treatments of Baco noir vines from Lambert Vineyards, Niagara-on-the
Lake, ON, 2006. Set (S), Lag (L) and Veraison (V) represent time for irrigation imposition and 100,50 and 25 
represent percentage of the water replaced in the soil through irrigation. Abbreviations used: T.Ph.-G and-W 
(total phenols in berries and wine, respectively), C.W.(cluster weight), Anth-G and -W( anthocyanins 
concentration in berries and wine, respectively), B/C (number of berries per cluster), C.D.-G and -W (color 
intensity of juice and wine, respectively), TA-G and -W (titratable acidity in berries and wine, respectively), V 
(vine size), T (transpiration), LWP (leaf water potential), S.M. (soil moisture at 10,20,30,40,60, 100 cm), ETOH 
(ethanol), Y (yield), Tleaf (leaf temperature). 
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Figure 3b-9. Principal component analysis (F1&F2) of the profile soil water status and physiological data means 
(10 vines x three shoots x three leaves x three replicates) from ten irrigation treatments of Baco noir vines from 
Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. C-control while Set (S), Lag (L) and Veraison (V) represent 
time for irrigation imposition. F-100, 50 and 25 represent percentage of the water replaced in the soil through 
irrigation. Abbreviations used: T.Ph.-G and -W (total phenols in berries and wine, respectively), C.W.(cluster 
weight), Anth -G and -We anthocyanins concentration in berries and wine, respectively), B/C (number of berries 
per cluster), C.D.-G and -W (color intensity of juice and wine ,respectively), TA-G and -W (titratable acidity in 
berries and wine, respectively), V (vine size), T (transpiration), LWP (leaf water potential), S.M. (soil moisture at 
10,20,30, 40,60, 100 cm), ETOH (ethanol),Y (yield), T1eaf(leaftemperature). 
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Figure 3b-1O. PLS analysis of soil water status, physiological data, yield components, berry and wine chemical 
composition means from ten irrigation treatments of Baco noir vines from Lambert Vineyards, Niagara-on-the
Lake, ON, 2007. Set (S), Lag (L) and Veraison (V) represent time for irrigation imposition and 100,50 and 25 
represent percentage of the water replaced in the soil through irrigation. Abbreviations used: T.Ph.-G and-W 
(total phenols in berries and wine, respectively), C.W.(cluster weight), CN (number of clusters per vine), Anth -
G and -W( anthocyanins concentration in berries and wine, respectively), B/C (number of berries per cluster), 
C.D.-G and -W (color intensity of juice and wine, respectively), TA-G and -W (titratable acidity in berries and 
wine, respectively), V (vine size), T (transpiration), LWP (leaf water potential), S.M. (soil moisture at 10,20, 30, 
40,60,100 cm), ETOH (ethanol), Y (yield), T1eaf(leaftemperature). 

133 



Chapter 4 

Impacts of Irrigation Level and Time of Imposition on Vine 
Physiology, Yield Components, Fruit Composition and Wine 

Quality on Chardonnay (Vitis vinifera L.) in a Cool Climate Area 
Abstract. An irrigation trial was carried out in a commercial vineyard block located in 
Niagara-on-the-Lake, Ontario, Canada, between 2005 and 2008. The response of 
Chardonnay vines to three irrigation levels based on % of crop evapotranspiration (ETc) [two 
deficit water regimes (50% ETc and 25% ETc) plus 100% ETc] combined with two times of 
irrigation imposition (fruit set and veraison) was studied. The control was non-irrigated. 
Volume of water applied at each irrigation time was calculated based on ETa values derived 
by the FAO Penman-Monteith equation. In 2006, in treatments imposed veraison soil 
moisture followed the same trend as those imposed at fruit set, while In 2007 the treatments 
imposed at veraison showed lower moisture than those imposed at fruit set. Plant water 
status was assessed by measuring transpiration (Ts) rate and leaf water potential (41). Ts 
followed the same trend as soil moisture in 2006, with the greatest difference between 
treatments in July and early August, but minimal differences by the end of August. In 2007, Ts 
declined until the end of August, which coincided with the highest daily temperature and light 
intensity. The 25% ETc treatments imposed at fruit set did not differ from the control in all 
aspects of soil and plant water status, while the 1 00% ETc had consistently higher soil and 
vine water status compare to the control. In terms of yield components, almost all treatments 
showed variation compared to the control in 2006-2007. The irrigated treatments had higher 
values compare to the control for most of the variable measured in 2007. Shoot growth rate 
showed the same trend in all years. The irrigated treatments had constantly higher growth 
rates compare to the control, however these were lower in RDI treatments compare to 100% 
ETc. Variation was also found on vine vigor, mostly in 2007. The multivariate analysis showed 
that soil and plant water status were well correlated. Medium water deficits in the soil were 
highly correlated with positive sensory attributes (varietal typicity) in the wines. Intensity of 
flavor and aroma attributes was highly associated with the degree of water deficit. The 50% 
ETc and 25% ETc treatments improved vine physiology overall, even in years when only short 
periods of drought occurred in the vineyard, while sensory profiles were impacted in a positive 
way. Due to high variability in weather conditions over the study period, no trends between 
irrigation and grape composition were consistently found. 

Introduction 

Wateris a major factor affecting both yield and composition of wine grapes in hot and dry 

regions (Wample and Smithyman 2002). In recent years, water deficits have occurred in cool 

climate wine regions as well (Reynolds et al. 2009, VanLeeuwen and Seguin 2006, Zs6fi et al. 

2009). In moderate temperate climates, grapevines often face some degree of drought stress during 

the growing season (Morlat et al. 1992). Applying water to table grapes is not a topic of debate 

among the grape growers, but applying irrigation to winegrapes is still controversial among not 

only winemakers but also grape growers. 
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Some studies on climatic data generated different scenarios regarding the potential impact 

of climate change on viticulture. Moderate global temperature increases of 1.6 °C between 2000 

and 2050 and 3.4 °C between 2000 and 2100 have been predicted (Dai et al. 2001). Regional 

climate models show poor reliability with respect to different climate trends (storms, flood, and 

hail) but high in respect of future temperature trends and precipitation. However, since most of the 

climate assessment models generate scenarios rather than prediction, the global warming 

phenomenon could increase the frequency of extreme meteorological events (dry and hot seasons 

alternating with wet and cool seasons). This phenomenon has been seen often in the last decade in 

Niagara Peninsula, Ontario, where dry and hot seasons occurred in three out of the past five 

vintages. This phenomenon is accompanied by a change in rainfall distribution over the year. In 

some years, even if the annual rainfall remains constant, the vineyards are subjected to prolonged 

drought during the growing season because of changing of its pattern distribution. These facts have 

caused the wine industry to reconsider using irrigation in the Niagara Peninsula vineyards. 

Too much water has the same negative effect on grape quality as lack of moisture in the 

soil profile (Van Leeuwen and Seguin 1994). This fact raised some questions about when to apply 

and how much water to use in order to obtain premium wines. This requires knowledge on 

cultivar, water requirements, yield and quality responses to water, the constraints specific to each 

irrigation method and equipment, the limitations relative to the water supply system, and the 

financial and economic implications of the irrigation practice. 

Severe water stress applied to container-grown vines of Cabernet franc reduced yield by 

94% because of lower berries per cluster and reduced berry weight (Hardie and Considine 1976). 

Greater yield losses occur as a result of water deficit during early stages of berry development 

compared with deficits later in the season (Hardie and Considine 1976, Myburgh 2003). Yield 

losses occurred due to water deficits in Cabernet Sauvignon, and this was explained by the changes 

in berry growth patterns (Matthews and Anderson 1989). Vine water status also influences the bud 

fertility either directly by the amount of water available for biosynthetic processes occurring 

during cell division and cell enlargement or indirectly via its effect on vine photosynthesis (Loveys 

and Kriedemann 1973, Smithyman et al. 2001), nutrient uptake, and microclimate surrounding the 

bud (Dry and Loveys 1998). 

Periodic measurements of soil water status are usually conducted for detection of vine 

water stress (Martin et al. 1990). However, under drip irrigation, one point measurement of soil 

water content is not representative, and many measurements are needed to be done in order to 

interpret soil moisture of the wettest zone beneath the dripper (Myburgh 1996). To determine the 
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influence of environmental and cultural conditions on vine water status, a sensitive physiological 

indicator that integrates both soil and climatic conditions is required in the application of regulated 

deficit irrigatien (RDI) (Chone et al. 2001). Therefore, physiological indicators of plant water 

status showed potential as accurate water stress indicators (Goldhammer et al. 1999, Selles and 

Berger 1990). Leaf water potential ('!'), and most recently, stem '!', measured at midday with a 

pressure chamber, have been proposed as standard parameters to determine the plant water status 

for irrigation scheduling of fruit trees (Fereres and Goldhammer 2003, Naor 2001, Shackel et al. 

1997). 

Water deficits impaire shoot growth (Vaadia and Kasimatis 1961) to a point where 

differentiation of inflorescence primordia is affected (Buttrose 1974a). Excess irrigation promotes 

unwanted shoot growth to a point where light levels in the renewal zone limit bud differentiation 

(Carbonneau and Casteran 1979). Bud fruitfulness or yield per bud depends on the number of 

clusters initiated during the previous season, the number of flowers developed early in the spring, 

the number of berries set, and the size of individual berries. Most studies indicate that early water 

deficits have more inhibitory effect on bud fruitfulness than late season deficits (Matthews and 

Anderson 1989, Myburgh 2003). Early-season water stress affects both cell division and cell 

enlargement in the developing berry, thus decreasing berry size (Matthews and Anderson 1989). 

Persistent water stress depresses the fruitfulness of latent buds through a reduction of the number 

and size of inflorescence primordia (A11eweldt and Hofacker 1975, Buttrose 1974b, Winkler et al. 

1974). Critical stages of flower formation are the induction, initiation, early differentiation during 

season one, and differentiation at budburst during season two. An inadequate water supply at any 

stage of the productive cycle of grape limits the production and the quality of the fruit, particularly 

between flowering and veraison (Peacock et al. 2000). A combination of warm temperatures, 

sufficient illumination of the bud, and absence of water stress are required for optimum initiation 

(Buttrose 1970, Dunn and Martin 2000, Kliewer 1975, Moncur et al. 1989, Petrie and Clingeleffer 

2005, Zelleke and Kliewer 1979). Environmental factors exert their influence on flowering by 

modifying the internal chemical composition of the plant, particularly the balance of endogenous 

hormones, and also via their impact on vine photosynthesis (Vasconcelos et al. 2009). 

Berry size reduction enhances the skin/pulp ratio, which provides a more abundant 

polyphenolic source (Peterlunger et al. 2002). This could be also true for white aromatic cultivars, 

which have most of their volatiles in the skin. Monoterpene concentration increased in 

Gewfuztraminer vines with deficits irrigation imposed late during veraison compared to vines with 

deficit irrigation regimes imposed early at post bloom or lag phase (Reynolds and Wardle 1997). 
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Aroma is one of the most important attributes for wine quality. The volatile compositional 

differences in grapes induced bywater status directly affected the aroma composition of the wines 

(Matthews et al. 1990, Qian et al. 2009). 

Under non-drought conditions, slight water stress seems to improve wine quality. Vine 

water stress has been reported to increase the concentration of aroma glycosides of grapes (Bravdo 

and Shoseyov 2000, Koundouras et al. 2006). The glycoside bound aroma compounds are released 

during fermentation or aging, and contribute to varietal aroma and wine quality. C13 norisoprenoids 

contribute to complex aromas, including berry, honey, and fruity in many white and red wines. The 

total concentration of all measured C13 norisoprenoids in wines is highly related to vine irrigation 

condition and vintage (Qian et al. 2009). 

Chardonnay is the most widely planted white Vitis vinifera L. winegrape cultivar in 

Ontario, exceeding Riesling, with a production of 6292 tonnes in 2009 

(http://www.vqaontario.com). Chardonnay is a cultivar with a short growth cycle and small 

clusters, originating from the humid and temperate region of Burgundy (France). Applying 

irrigation to Chardonnay in the Niagara Peninsula early in the season but ceasing it at different 

phenological stages showed an overall benefit on fruit composition, especially in very dry seasons 

(Reynolds et al. 2007). In the Niagara Peninsula, grapevines are usually confronted with drought 

conditions between fruit set and veraison, but often these conditions extend into the ripening 

process (Reynolds et al. 2007). 

The purpose of this research was to study the effect of different irrigation regimes and time 

of imposed irrigation on general vine physiology, yield components, fruit composition and the 

sensory attributes of Chardonnay. It was hypothesized that applying deficit irrigation at fruit set or 

not until veraison would improve fruit composition Without a significant change in yield, and with 

additional benefits of increasing the intensity of positive aroma and flavor attributes (varietal 

typicity). This study also endeavored to find out how variations in soil moisture at various depths 

affect yield and fruit composition of irrigated grapes in a geographical area which is considered to 

be cool and humid. 

Materials and Methods 

Experimental design and plant material. The trials were conducted at Lambert 

Vineyards, Niagara-on-the-Lake, ON, (43°13' N, 79°08' W). The experiment was set up in 2005, 

in 13 year old Chardonnay grafted to C3309 (V. riparia xV. rupestris) rootstock. Vines were 
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spaced 1.5 m (between vines) by 2.4 m (between rows) and trained to a Scott Henry system. Rows 

were 198 m long, and oriented north to south. Vines were drip irrigated using ~ drip (Netafim 

Inc., Fresno, California, USA). Each drip pipe was placed on the ground. Drippers with a flow rate 

of 1.5 Uh were spaced at 0.6 m. Water source was the municipal water network. A randomized 

complete block design was used and divided into three blocks where each treatment replicate 

corresponded to a row, with the outside rows used as buffers. Seven treatments were assigned 

randomly to each block, and 10 equally distributed vines were chosen for data collection in each 

row. Treatments were as follows: control-no irrigation, 100 %, 50 % or 25 % ETc (replacement 

water lost through evapotranspiration) combined with an early start (irrigation began at fruit set) 

and late start (irrigation began at veraison). The soil series was Chinguacousy clay loam where 

generalized characteristics were as follows: a gleyed brunisolic gray brown luvisol with imperfect 

drainage (7 to 9 L/h); wilting point of the Ap horizon (0 to 27 cm) was 13.3% moisture; field 

capacity was 27.3 % moisture; bulk density ranged from 1.25 glcm2 in horizon A to 1.69 glcm2 in 

horizon C (Kingston and Presant 1989). The whole block had a tile drainage system, with tiles 

placed at a 60 cm depth in the middle of each inter-row space (2.4 m). Soil management consisted 

of mowed sod row middles with ~ 1.0 m herbicided strips under the vines. 

Water was applied weekly as prescribed through individual valves installed at the end of 

each row. First treatments included 100% ETc, and the two RDI (50% ETc and 25% ETc) were 

initiated at fruit set, which for the period studied occurred in the last week of June - frrst week of 

July. Due to inconsistent peak water consumption during July-August, the irrigation treatments 

were scheduled on 1 to 2 day intervals and at different times during the day in order to ensure a 

constant pressure. The volume of irrigation water to be applied was determined each week 

according to the previous week's total ETo that was calculated based on the Penman-Monteith 

equation (Allen et al. 1998). ETo was adjusted to ETc value using a crop coefficient that varied

over the season (0.23 to 0.71), and was calculated based on canopy volume (peacock et al.1987, 

Williams 2001). Precipitation> 12 mmlweek was subtracted from ETc, each week. In order to 

calculate the actual amount of water required by the vines in Llvine/day, equations developed by 

Vander Gulik (1987) were used. The time required to refill the soil with the amount of water 

needed for each treatment was determined by dividing the total amount calculated for each 

treatment row to the total amount of water supplied by all drippers from one row. The 

mathematical steps taken to schedule irrigation applications were described in detail by Reynolds 

(2008). The meteorological data used in the Penman-Monteith equation (daily maximum, 

minimum and mean temperature; rainfall; relative humidity; solar radiation; wind speed) were 
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provided by Weather Innovation Network Inc. (http://www.weatherinnovations.com). These data 

were downloaded from the nearest weather station (Virgil station, Niagara-on-the-Lake, ON). Fruit 

set irrigation treatments were initiated on 24 June (2005), 30 June (2006) and 21 June (2007). 

Veraison treatments started on 29 July (2005), 7 August (2006) and 28 July (2007). 

Soil water status. Soil moisture was assessed over a period of 4 years between 2005 and 

2008. Data was collected from 10 vines per each-treatment replicate starting with one week before 

first irrigation treatment was imposed and biweekly thereafter. Data collection protocol and the 

equipment used were described in detail in Chapter 3a, as well as in Balint and Reynolds (2010). 

Vine water status. Biweekly observations were conducted over the growing season to 

monitor vine water status. Midday leaf water potential ('I') data were collected::::: 2 h each side of 

solar noon (between llooh and 1400h) from mature leaves that were fully exposed to the sun. The 

sampling and collecting data protocols were described in detail in Chapter 3a and in Balint and 

Reynolds (2010). 

Yield and vigor components. The experimental vines were harvested 1 to 2 days before of 

the commercial harvest date (the second or third week of September). The protocol for data 

collection was similar with that one described in detail in Chapter 3a. 

Winemaking. At harvest, 30 kg of fruit per treatment replicate (row) were transported at 

Brock University's winery facility. The grapes used for wine were harvest only from the recorded 

vines. Over 630 kg of grapes were processed into wines in two of four years of the experiment 

(2006 and 2007). Due to 2005 winter damage, there were insufficient volumes of grapes to process 

into wine. All wines were produced according to the following standard procedures. Grapes from 

each treatment replicate were de-stemmed, crushed and treated with S02 at 20mg/L, and then 

allowed 24 hr skin contact at 8°C. Each treatment replicate was pressed off individually in a basket 

bladder press (Enoagricola Rossi s.r.1, Calzolaro, PG, Italy)-at maximum 2 bars pressure and 

transferred to a 20-L carboy. All musts were transferred to 20-L glass carboys and sulfited to 40 

mglL. Each treatment replicate was fermented in duplicate in 20-L glass carboys. Each treatment 

replicate was inoculated with Lalvin Bourgoblanc CY0379 (Saccharomyces cerevisiae) yeast 

(Lallemand Inc., Montreal, QB). During fermentation, all carboys were kept in one room where 

temperature was set at 17°C. Fermentation lasted between 10 and 14 days. When fermentation was 

completed in all the carboys, wines were racked and sulfited to 40 mg/L. After another 10 days at 

- 2 °C for cold stabilization, all the wines were racked and stored at 6 °C until bottling. All wines 

were bottled between January and February of the following year (::::: 3 to 4 months after 
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fermentation). Before bottling, they were racked one more time, free S02 was adjusted for each 

wine, and filtration took place using 0.45-)l pad and 0.2-')l cartridge filters. The experimental wines 

were bottled under cork and stored at 12°C in the CCOVI- Brock University wine cellar. 

Fruit and wine composition. Berry, must and wine samples were analyzed using similar 

protocols as those used for Baco noir cultivar. The aforementioned methods were described in 

Chapter 3b and in Balint and Reynolds (2010). 

Sensory analysis. Only wines from 2006 and 2007 vintages were subjected to sensory 

analysis, since in the 2005 vintage grapes were not collected due to the previous winter damage. 

The same sensory protocol was used for both 2006 and 2007 vintages. Each vintage was assessed 

after 18 months of ageing in the bottle. Sensory sessions occurred from April to June. Over 25 

judges were involved in the sensory work over the 2 year period. The group was composed of 

Brock University faculty, staff, students from the viticulture and oenology program and two 

sommeliers. They were selected based on their availability and motivation. All of them were 

volunteers and had previously sensory training. A core of seven judges participated in both vintage 

assessments. The final panel used for descriptive analysis in each vintage consisted of 11 judges 

with ages ranging from 23 to 58. 

Discrimination test. A modified alternative forced choice test (5-AFC) was used to 

compare a control wine (non-irrigated) to each irrigation treatment to find differences between 

control and all others (O'Mahoney 1986). This was intended as a preliminary exercise to determine 

whether differences existed between treatments, what the basis for those differences might be, and 

whether the panelists were dependable. The protocol used in this test was similar with that one 

described in detail in Chapter 3b. 

Descriptive analysis. Six training sessions were run over a period of three weeks. For 

sensory training, the panelists tasted wines from all irrigation treatments. For training purpose, 

wines only from two field replicates were used. In each session, they tested four wines (non

irrigated, 100%,50% and 25% ETc from one particular irrigation initiation time). They were asked 

to find out any flavor or aroma attributes that describe the variability among them. The list with the 

descriptors was adjusted until all panelists agreed with definitions (Table 4.6). Following the first 

two sessions, the panelists were asked to compare all the wines with the control for each attribute 

collected. Reference standards were created to help the panelist understand how, to define and rate 

each attributes (Table 4.6). The references were also adjusted during the training session until 

everyone agreed that the reference was representative for that particular attribute (Table 4.6). 
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Following discussions with the panelists on the appropriate scale which should be used for data 

collection and with technical advice from Compusense Inc. (the software provider for the sensory 

laboratory) an unstructured scale with double way and verbal descriptions at the end points was 

used in order to collect sensory data. The control wine (non-irrigated) was anchored in the middle 

of a 15-cm long scale. The ends ofthe scale were anchored with verbal description: left (lowest) 

and right (highest). In each session, the control wine was assessed for each attribute. Panelists were 

instructed to use the line scale in order to aid in improving reliability and reproducibility in 

assessing attribute intensity. The panelists were asked during the training session to anchor each 

coded wine, on the left side of the scale if the intensity is lower than the control or right side if it is 

higher than the controL A scale was used for each descriptor developed. They were also instructed 

to anchor the wine samples on the same place as the control, if no difference between control and 

the wine sample for one particular attribute will be found. All descriptors developed were assessed 

using the same scale. 

Data collection. Before starting data collection, each panelist had opportunity to run all the 

questions of the project, at one of the collection data station from the sensory laboratory. Data 

collection took place in the sensory laboratory at CCOVI (Brock University) using a computerized 

sensory software program (Compusense 5, Guelph, ON, Canada). Samples were evaluated in 

individual sensory booths under red light in order to mask wine hue. The seven wines [six 

treatments plus the control-non-irrigated from two field (fermentation) replicates] were assessed in 

four replicate sessions. In each session, all seven wines were evaluated in a randomized order. 

Each session had two flights. Each flight included four wine samples (the control-non-irrigated + 

100%,50% and 25% ETc from one particular irrigation initiation time). Panelists rated the samples 

based on the list of attributes on an unstructured two way scale. They were asked to move the 

cursor left or right of the control anchor, in order to find out not only the intensity but also the 

direction (lower or higher) in which one variable explains the difference than the control. Panelists 

were asked to clean the palate with tap water after each sample, in order to prevent any carry over 

effect. In order to rest the palate and avoid any bias, 1 minute rest between each sample and 5 

minutes rest after each group of four wines were included as part of the computerized evaluation 

session. Evaluations were started in the morning at 1100 h and continued until 1300 h. All wines 

were presented as 25-mL sample served in ISO tasting glasses, and coded with a three-digit 

random number. Each glass was covered with a Petri dish to prevent volatiles loss. Aroma . 

standards developed during the training session were prepared fresh and available for judges as 

reference prior each session. 
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Data analysis. Fruit and wine chemical data were analyzed using the SAS statistical 

package (SAS Institute; Cary, NC, USA). Using GLM, analysis of variance was performed. 

Duncan's multiple range test was used for means separation of all data sets (chemical and sensory 

data), and Dunnett's t-test was used to determine those treatment means that were different from 

the control at a significance level of a::;0.05. Sensory data were analyzed using XLSTAT version 

7.5.2. (Addinsoft, Paris, France). Analysis of variance was conducted on the intensity ratings with 

irrigation treatment, panelist, and replication with two-way interactions in the model. Principal 

components analysis (PCA) was performed on the means of field data, yield components, chemical 

data, and sensory scores of aroma and flavor descriptors for each year of the experiment. Partial 

least squares regression (PLS) was performed on the field, chemical, and sensory data in order to 

find out the relationship among these variables. 

Results and Discussion 

Weather summary. Climate data during the experimental period was described in detail 

in Chapter 3a. In 2005 due to a severe winter, the Chardonnay block had a high percentage of bud 

damage. As a result, no yield data was collected during the first year of the experiment. In this 

particular year only field data (plant and soil water status) was collected. The amount of water 

applied over the growing season in all four years of the experimental period was calculated using 

ETo derived from the Penman-Monteith equation. The amount of water applied clearly reflected 

the particular weather conditions of each year ofthe period studied (Table 4.1). In 2008, due to a 

high frequency of rainfall (Fig. 3A-2), irrigation was applied for only 2 weeks at the end of August 

(data not shown). 

Soil moisture measured by TDR (Fig. 4.1A to D). In 2005, soil moisture had values 

below wilting point throughout almost all the growing season (Fig. 4.1A). The highest magnitude 

of difference was found between 100% ETc and control. The small canopies due to the high winter 

damage coupled with high solar radiation caused the soil below the drip line being exposed longer 

to direct solar radiation. Thus, soil evaporation increased much more than usual. In 2006, soil 

moisture had overall higher values than in 2005, and the water content in the soil was between 

wilting point and field capacity throughout almost all the growing season. Early treatments 

irrigated at 100 and 50% ETc were higher than other treatments throughout almost the entire 

season. Soil moisture in late-imposed irrigation treatments followed the control trend throughout 

the period studied (Fig. 4.1B). The trend showed a peak at the end of July, and then slowly 

decreased reaching a minimum at the end of August. The peak in July was associated with the 
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highest frequency of rainfall in the period. Although, 2006 season was considered a wet year, 

irrigation treatments were applied throughout the season since the ET 0 calculated using Penman

Monteith equation had high values, mainly due to high daily temperature and solar radiation. 

Although the soil moisture trend followed the rainfall frequency, the magnitude of difference 

between treatments was caused by the water applied through the irrigation. In 2007, the highest 

soil moisture values were found in the 100 and 50% ETc early-imposed treatments. All other 

treatments showed the same trend as the control but lower than this. Soil moisture values were 

often below wilting point for most treatments during the growing season (Fig. 4.1C). The 2008 

season was very wet and cold. Since calculated ETo values were lower than average, soil moisture 

in the top 20 cm never dropped below the wilting point throughout the season. The soil moisture 

followed the same trend in all treatments with no differences among them, even in the last 3 weeks 

of August when irrigation was applied. Overall, soil moisture trend showed slightly decreasing 

values during the ripening period (Fig. 4.1D). The soil moisture data showed clear separation 

between irrigated treatments even in 2006 when the rainfall was higher than the normal. However, 

in 2008 when the amount of rainfall and its frequency was higher compare to the previous seasons, 

no separation between treatments was found. 

Soil moisture by Profile Probe (Fig. 4.2 to 4.4) 2006 (Fig. 4.2A to F). In 2006, all 

treatments had values above wilting point at the 10 cm depth (Fig. 4.2A). The trend was upward 

throughout the season with a maximum at beginning of August. At 20 cm depth, soil moisture 

showed little difference among the irrigated treatments. However, the highest magnitude of 

difference was found between full-irrigated early start treatment and the others (Fig. 4.2B). At 30 

cm depth, soil moisture showed lower values for the control and late imposed treatments 

throughout the season than the early-imposed treatments. The irrigated treatments showed higher 

values for early-irrigated treatments except 25 % ETc (Fig. 4.2C). At 40 cm depth, soil moisture 

followed the same trend, and showed less variation than that one found at 30 cm. Differences 

among treatments were recorded at the end of July and beginning of August (Fig. 4.2D). At 60 cm 

depth, soil moisture showed values between 15 to 21 %. The trend was close to that one from 40 

cm depth but the magnitude among treatments was lower (Fig. 4.2E). In 2006, soil moisture had 

values between 13.2 to 21.3%. There was a downward trend towards the beginning of August and 

then steady until the end of August. A clear separation between early treatment full water 

replacement (100% ETc) and all other irrigation treatments was recorded (Fig. 4.2F). 

2007 (Fig. 4.3A to F). In 2007, there was a clear separation between early-irrigated full 

water replacement (100% ETc- fruit set) and the other treatments at 10 cm depth (Fig. 4.3A). At 20 
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cm depth, soil moisture showed lower values with a better separation among different irrigated 

treatments (Fig. 4.3B). The soil moisture at 30 cm depth had almost the same values for the non

irrigated treatments. The separation between early-irrigated treatments and the others was better 

reflected in the soil moisture (Fig. 4.3C). At 40 cm depth, the soil moisture showed lower values 

than in 2006. The magnitude between the early-imposed treatments and the others was higher than 

in 2006 following close to the trend at 30 cm depth (Fig. 4.3D). At 60 cm depth, soil moisture had 

lower values than those found in 2006, but the magnitude between treatments was higher showing 

a better separation between early-imposed treatments and the others (Fig. 4.3E).1n 2007, soil 

moisture at 100 cm depth showed a higher magnitude among all treatments when comparing to 

that one measured at the other depths. The trend was downward with a minimum at the end of 

August (Fig. 4.3F). 

2008 (Fig. 4.4A to F). In 2008, soil moisture at 10 cm was highly correlated with the 

amount of rainfall. Slight differences between early full-irrigated treatment and others were found 

in the middle and end of August (Fig. 4.4A). The trend at 20 cm depth showed higher values over 

all the season. The soil moisture did not drop below 16% (Fig. 4.4B). At 30 cm depth the soil 

moisture trend followed almost the same trend as that one from 20 cm depth, with little separation 

between treatments at the end of August (Fig.4.4C). At 40 cm depth, the soil moisture values were 

overall close to those at 30 cm depth. However, differences among the irrigated treatments still 

occurred at this depth (Fig. 4.4D). Soil moisture at 60 cm depth showed the same trend at that one 

found at the other depths but much higher than that one found at the same depth for the other years 

of the period studied (Fig. 4.4E). At 100 cm depth, soil moisture had the highest values. The trend 

was steady throughout the season with slightly upward at the end of August (Fig. 4.4F). 

Taking all three seasons into account, the greatest magnitude of difference was between the 

early-imposed treatments and the others, at the four upper depths (10, 20, 30 and 40 cm). At 60 

and 100 cm, there was more moisture, and the magnitude of difference between treatments was 

smaller. In 2007, most of the treatments followed the control trend. The most variation among 

treatments was observed up until the 40 cm depth. After this, the trend was similar to the control, 

but the magnitude of difference between treatments was lower compare to depths closer to the soil 

surface. At 100 cm depth, soil moisture surprisingly showed high variation throughout the period 

studied. 

Water availability depends not only on how much rainfall a vineyard receives but also on 

when the rain falls and how rapidly it evaporates. Due to differences in water holding capacity and 

effective root zone, variation in soil moisture had a pronounced impact on vine performance both 
144 



between and within the Australian vineyards (Hall et al. 2002). However, since the soil moisture 

had little variation with no effect on water holding capacity it could be speculated that differences 

in soil moisture among the irrigation treatments occurred due to the depth of the effective root 

zone. In 2008, observations from two pits dug in one full-irrigated and the control showed that 

irrigation affected the depth of the root density (data not shown). The highest percentage of the 

root density in the full-irrigated treatment was located in the upper soil depths (20 to 40 cm) and 

was concentrated on a strip along the irrigation pipe. The control vines, that were only rain fed, 

showed a very different pattern. The root density was not concentrated at any depth. The root 

system was dispersed not only on the row but also between the rows and roots were found even 

deeper than 1.2 m. A study with six grapevine cultivars grown on their own roots in Australia 

indicated that Chardonnay had the highest root biomass density (5.9 g drri-3
) and root length 

density (1628 cm dm-3
). The other cultivars, Merlot, Flame Seedless, Semillon, and Shiraz had 

similar root densities but twofold less than Chardonnay (Rogiers et al. 2009). This could indicate a 

better adaptation of Chardonnay to cope with periods under water deficits. 

Transpiration (Fig. 4.SA to C). Leaf Ts rate followed the same trend as soil moisture in 

2005 (Fig. 4.5A). The highest values were found in the early-imposed treatments. Immediately 

after the fruit set and veraison treatments were imposed, Ts increased. The 100% ETc imposed at 

fruit set had consistently the highest Ts rate throughout the season. The treatments imposed at 

veraison had higher Ts rates than the control but much lower than those imposed at fruit set. In 

2006, Ts reached a maximum at the end of July (26.2Ilg H20 cm-2s-1
), followed by a minimum in 

the middle of August (2.9Ilg H20 cm-2s-1
; Fig 4.5B). Due to rain, all treatments followed the same 

trend, and generally, no differences were found except the ftrst two readings and the last one. In 

2007, Ts followed a decreasing trend for all treatments from mid-June to late August (Fig. 4.5C). 

The highest Ts values were recorded in the early imposed treatments in the middle ofJuly (16.9 Ilg 

H20 cm-2s-1
), whereas the lowest ones were recorded at the end of August. The Ts rates decreased 

in all treatments at the last reading time, being recorded no differences among the irrigated 

treatments. In 2008, Ts followed a steady trend until mid of August when it began to decrease 

because of slight increased temperature and diminished rain frequency (Fig. 4.5.D). The Ts values 

were lower in 2008 comparing to other years despite higher soil moisture. This could be explained 

by lower vapor pressure deficit and lower daily temperatures (data not shown). 

In an Italian study on irrigation of Lambrusco grapevines, canopy Ts rates varied from 

0.915 to 1.157 mmol m-2 
S-1 for the non-stressed vines (daily recharged at fteld capacity), and from 

0.63 to 0.714 mmol m-2 
S-1 in PRD treatments (34.2% less compare to well-watered) (Poni et al. 
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2009). The daily vine water loss was around 4.36 L in well-watered plants as compared to 2.6 L in 

the stressed vines, for a canopy size of 5.49 m2 in the ftrst case and 5.00 m2 for the stressed vines. 

In another study conducted on Concord grapevines in the arid, warm climate of eastern 

Washington State, Ts rates were estimated around 30 L day-1 per vine, or::::: 1.0 to 1.4 L day-1 m-2 

leaf area (Tarara et al. 2002; unpublished data cited by Dragoni et al. 2006). One study conducted 

in a cool region from Australia on 10 grape cultivars grown on soil with a constant moisture 

reported that Chardonnay grapes had the highest Ts rate along with other three cultivars (Semillon, 

Pinot noir and Sultana) of 4.3 mmol H20 m-2 S-1 (Rogiers et al. 2009). 

Direct comparison among studies is difficult because of the differences in cultivars, 

training systems, agricultural practice, level of plant stress, and environmental conditions (Williams 

et al. 2003). Although, many scientists consider that stomatal conductance reflects better the water 

status in the vine than transpiration rate, Rogiers et al. (2009) indicated that a high degree of 

correlation exists between the Ts and stomatal conductance. 

Ts is determined by the availability of latent heat of evaporation, by vapor pressure 

gradient and by the resistances to water movement in the plant system. Stomatal movement is a 

result of interactions between the physiological factors and environmental conditions 

(Hetherington and Woodward 2003). Stomatal guard cells integrate environmental signals from 

both the aerial environment and soil in order to control the stomatal aperture, which optimizes the 

water loss and CO2 gained. In general, dry air has a greater drying capacity than moist one. Plants 

are generally sensitive to vapor pressure deftcit. Consequently, grapevines tend to shut their 

stomata as air gets drier (Loveys 1984). Ts values fluctuated widely during the present study, but 

were very close to those found previously in seasons with similar rainfall patterns (Reynolds et al. 

2007). The highest Ts values were recorded in 2006. The maximum Ts values coincided also with 

high air temperature and solar radiation (data not shown). These values might be explained due to 

a luxuriant canopy which received a high percent of the solar radiation, and which caused an 

increased of the temperature leaf. The vine regulates leaf temperature by losing more water. 

Presumably, the chemical signal that controls stomata is very weak under high water status, thus 

the vine is trying to control the overheating process rather than to avoid losing water 

Air humidity, temperature and light intensity were similar for all the irrigation treatments. 

Since the Ts rate followed almost the same trend as that one of the soil moisture, Ts rate might be 

an easy tool to assess the vine and soil water status. However, stomata respond to a number of 

environmental variables such as: temperature, photosynthetic photon flux density, vapor pressure 

deftcit, CO2 concentration, and water stress, (Kaufmann 1982). Studies on stomatal response to 
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temperature have often reported contradictory results. Stomatal closure occurs with increasing 

temperature (Heath and Meidner 1957, Heath and Orchard 1957), while others found that stomata 

opened with increasing temperature (Rogers et al. 1981). Grapevine is generally considered a 

"drought-avoiding" species, with efficient stomatal control over Ts (Chaves et al. 1987, Schultz 

2003). However, some genotypes have shown a better control of stomata than others in response to 

water deficits, and accordingly have been classified as isohydric (drought avoiders or 

"pessimistic"); others, showing less control over stomatal aperture under water stress, were 

considered anisohydric, with an "optimistic" response (Schultz 2003, Soar et al. 2006). 

Leaf water potential (Fig. 4.6A to D). Leaf '" followed almost the same trend as soil 

moisture in 2005 (Fig. 4.6A). Leaf '" of control decreased gradually, and reached a minimum on 16 

August. All other treatments followed the same trend as the control until each treatment was 

imposed. In the middle of August, all treatments except the control had values around -1.0 MPa. A 

clear separation between all treatments and the control was observed on August 16. The difference 

between well irrigated and non-irrigated was almost 0.5 MPa, with a minimum of -1.3 MPa and 

maximum of -0.7 MPa. In 2006, all treatments had values> -1.0 MPa (Fig. 4.6B). At beginning of 

August, the control followed a decreasing trend, and reached a minimum of -1.2 MPa. However, 

the control did not reach a value that would have been considered a high water stress event. Even 

in a year considered wet and cooler than usual, a separation between irrigated and non-irrigated 

treatments was observed. In 2007, except for the control, all treatments followed the same trend 

(Fig. 4.6C). All treatments reached a maximum at the end of July, and then decreased slowly until 

the end of August. Control had values < -1.0 MPa almost the entire season, while all other 

treatments had lower values than this threshold by the end of August. The leaf '" trend was almost 

the same as that one for Ts rate. The leaf '" values reached a minimum for all treatments at the end 

of August, which ranged between -1.1 to -1.3 MPa. In 2008, leaf '" followed almost the same trend 

as soil moisture (Fig. 4.6D). The lowest values were recorded at the beginning of July (-0.8 to -0.9 

MPa). This coincided with a short period of lack of rain and slightly increased air temperature. The 

values never dropped below - 0.9 MPa, and did not show any sign of water stress during the 

season. 

RDI treatments caused yield reductions and decreased photosynthetic rates (Stevens et al. 

2008). Soil water deficit has been associated with declining values of leaf '" (Smart and Coombe 

1983, Williams and Matthews 1990). However, no differences were reported among deficit 

irrigation treatments in one study (Stevens et aL 2008). The yield losses associated with water 

stress are avoided when irrigations are scheduled in way which keep leaf '" higher than -1.0 MPa 
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would avoid (Williams 2001). In grapevines two patterns of response to water stress have been 

distinguished: isohydric and anisohydric (Schultz 2003). A study, conducted on Syrah and 

Grenache, showed that the latter cultivar had isohydric behavior which is characterized by a lack 

of response in leaf 'I' and decline in stomatal conductance (Schultz 2003). Contradictory findings 

have been reported regarding Chardonnay behavior under water deficit. Chardonnay had the same 

isohydric behavior as Grenache (Stevens et al. 2008). However, according to other studies, 

Chardonnay is an "optimistic" cultivar, consistent with an anisohydric behavior (Vandeleur et al. 

2009). 

In Chardonnay, reduction in root conductance under water stress seems to be correlated 

with an increase in the expression of VvPIP 1 (the gene controlling the content of the aquaporins

which are the proteins involved in water transportation). This caused a switch in water transport 

pathway, resulting in an increased contribution of the cell-to-cell pathway to the radial transport of 

water during the day (Vandeleur et al. 2009). Chardonnay appears to be an "optimistic" cultivar, 

reducing only root conductivity in the middle ofthe day by 2- to 3-fold (Vandeleur et al. 2009). 

The smaller reduction in root hydraulic conductance is also important in maintaining a small 'I' 

gradient between the xylem and the soil, and which could be associated with the lower 

vulnerability of Chardonnay to embolisms compared to Grenache (Alsina et al. 2007). 

Shoot growth (Fig. 4.7). Shoot growth rate had an increasing trend for all treatments until 

the end of July, followed by a slowly decreasing trend. The highest values were in the early

imposed treatments. In the middle of July 2006, there was almost 40 cm difference in shoot 

growth rate between early-irrigated treatments and the others (Fig. 4.7A). Early irrigated 

treatments irrigated at 25% ETc were not substantially different to the late applied treatments or the 

control. In 2007, the trend was different, whereby except for the early-imposed treatments, all 

others had decreasing trends until the irrigation was imposed (Fig. 4.7B). Immediately thereafter, 

the growth rate increased. 

Both shoot growth and early berry development are very sensitive to water stress, whereas 

the drought is detrimental because of decreased vegetative growth (Reynolds and Naylor 1994, 

Schultz and Matthews 1988, Smart 1974). In a comparative study between Chardonnay and 

Cabernet Sauvignon examining their responses to both water stress and salinity it was reported 

similar results as those in the present study (Vincent et al. 2007). Chardonnay shoot elongation was 

slowed down by water deficits, and not by salinity, whereas Cabernet Sauvignon shoot length was 

significantly reduced by both salinity and water deficit, as compared to control. Leaves that were 

developed before the treatment onset (leaves 1 to 3) coped better with water stress than the younger 
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ones, indicating that cell production and elongation were affected in the young leaves (Vincent et 

al.2007). 

Drought causes the reduction of CO2 assimilation and the enhancement of O2 uptake, due to 

stomatal closure, along with a decrease in the activity of various enzymes of the Calvin cycle 

(Flexas et al. 1999, Maroco et al. 2002). Grapevine shoot organogenesis was shown to be under the 

influence of soil water deficit, and not related to competition for assimilates among various other 

sinks (Lebon et al. 2006). However, the highly developed shoots take advantage of their higher 

sink strength, and absorb more nutrients (Miller et al. 1996, Williams and Grimes 1987). Trophic 

competition also depends on the number of clusters per shoot. The shoots with strong fruiting 

development display a low level of vegetative development (Edson et al. 1993). A1leweldt and 

Rtihl (1982) pointed out that there is not a linear correlation between dry matter accumulation and 

photosynthesis. The same authors observed a reduction of 51 to 61 % in dry matter production due 

to water stress, while the photosynthesis was 33 to 48 % lower in water-stressed grapevines, which 

might be explained through the effect of water stress on shoot growth and canopy size. The results 

from the present study are in agreement with those of Stevens et al. (1995) who found in one 

irrigation experiment on Colombard grafted on Ramsey rootstock that declining of vegetative 

growth was linearly correlated with increasing in water stress level. In one study from Spain on V. 

vinifera L. Airen and Chardonnay grapevine, it was reported that water stress reduced the leaf 

number by 45% and the leaf area by 33%, with Chardonnay being more sensitive to water stress 

than Airen (Gomez del Campo et al. 2(02). This finding was explained by a modification in the 

relationship between growth inhibitors and stimulants (Meriaux et al. 1974). The downward 

orientation of the shoots induces accumulation of auxins in the apex, which in turn affects the 

density and the size of the xylem vessels, causing a reduction of hydraulic conductivity, and 

therefore slowing down shoot growth (Lovisoloet al. 2002). 

Yield components and berry composition (Tables 4.2. and 4.3). During the 2004-2005 

winter, the low temperatures severely damaged the Chardonnay vines. For this reason, no yield or 

berry composition data were collected from this variety in 2005. 

Vine size. Data collected did not show consistent trends throughout the period studied with 

respect to vine size, perhaps due to variation in climatic conditions from one vintage to the other 

(Table 4.2.). However, vine size had overall the highest values in 2008, followed by 2006 and 

2007. These values reflected the weather conditions for these years, especially the rainfall. There 

were differences among the irrigated treatments in each year of the experimental period. In 2006, 
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the highest value for vine size was found in 100% ETc initiated at fruit while in 2007 and 2008 the 

highest values were found in 100% ETc initiated at veraison. 

One interesting observation, which could explain the results, is that Chardonnay has an 

unique pattern in terms of dry matter accumulation. Under water stress conditions, Chardonnay 

accumulated all its dry matter between fruit set and veraison while under non-stressed conditions it 

accumulated 74% of its dry matter between veraison to harvest period (Gomes del Campo 2(02). 

This might be a plausible explanation for the variation found in vine vigor not only between 

treatments but also from vintage to vintage. 

Cane vigor is an important factor in bud fertility. In a multi-year survey of Pinot noir 

grown in the Willamette Valley, Oregon, an average can weight of 45 g at pruning maximized the 

number of flowers per node (number of inflorescences per node multiplied by the number of 

flowers per inflorescence) the following season (Vasconcelos 2009). A similar relationship was 

found in Sauvignon blanc, where inflorescence number per shoot decreased as cane diameter 

decreased under ~1O mm (M. Trought, unpublished data, 2006 cited by Vasconcelos et al. 2009). 

Excess vigor has been associated with poor bud fertility (Carbonneau and Casteran 1979). 

In almost all the treatments, the highest yields were recorded in 2008 and the lowest in 

2006 (Table 4.2). Contrary to the expectations, the yield was slightly lower in the wet 2006 season 

than in 2007, considered the driest year of the period studied. In 2008, despite few irrigation 

events, 25% ETc and 50% ETc treatments imposed at fruit set showed differences compared to the 

control for almost all yield components. This could be explained by a carryover effect from the 

driest year (2007). However, the full water replacement initiated either at fruit set or veraison 

showed higher values than the control over the entire period studied. 

The response of Chardonnay vines to deficit irrigation treatment is modified by the 

rootstock genotype (Stevens et al. 2008). Reducing irrigation by 35% decreased the yield by 9% 

from 29.3 to 26.7 kg/vine. The same authors, found that the deficit irrigation treatment had an 

effect only on berry weight, which decreased from 1.04 (well irrigated) to 0.98 glberry while 

reducing irrigation had no effect on the percentage of dry matter of pruning wood, number of 

shoots and inflorescences per vine. 

The number of clusters per vine showed slightly differences in 2006 and 2007 while in 

2008 more differences among treatments were recorded (Table 4.2). In 2007, no difference 

between the control and 100% ETc early-imposed treatment was found in terms of number of 

clusters per vine. In 2008, the highest number of clusters was recorded in 50 and 25% ETc. The 
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effect of water stress in 2007 was better reflected in 2008 values when almost all the irrigated 

treatments had a higher number of clusters per vine. The present data is very well explained by 

previous studies on ecological factors which affect inflorescence and flower differentiation. As it 

was expected, since inflorescence differentiation occurred in the previous season, the number of 

clusters in 2008 clearly showed the effect of water stress from 2007 season. Many studies have 

shown that light is also involved in determining bud fruitfulness (Buttrose 1969, Dry 2000, Petrie 

and Clingeleffer 2005, Sommer et al. 2000). Studies on different irrigation regimes, in order to 

change canopy permeability to light (Carbonneau and Casteran 1979, Greven et al. 2005, Loveys 

et al. 2000) or canopy management (Reynolds et al. 1995, 1996, Shaulis and Smart 1974) often 

reported parallel changes in fruit yield. Inflorescence induction is very sensitive to water stress, 

which is affected indirectly by changing the plant hormonal balance (Srinivasan and Mullins 1978, 

1979,1980). Mainly, two hormones are affected by water stress: from roots (Livne and Vaadia 

1972) and abscisic acid level in leaves and stems (Diiring and Alleweldt 1973, Loveys and 

Kriedemann 1973). The environmental factors such as short-term exposure to high temperature, 

high light intensity, and optimum levels of soil moisture and macronutrients promote not only 

flowering in grapes but also cytokinin biosynthesis in plants (Jako 1976, Menary and Staden 

1976). Conversely, factors that depress flower formation, such as low light intensity, low 

temperature, and water stress, have an inhibitory effect on endogenous cytokinin production (ltai 

and Vaadia 1965, Livne and Vaadia 1972). All these factors which are strongly affected by the 

canopy size might explain the variation among the irrigated treatments in the present study. 

The most noteworthy treatment effect was on cluster weight and the number of berries per 

cluster (Table 4.2). These two yield components are affected mostly by the irrigation treatments 

applied during the season, and not by treatments applied in the previous season. In 2006, berry 

weight showed no differences among treatments and this was probably due to the high frequency 

of rainfall during the season which interferes with the irrigation treatments (Table 4.2). Early and 

late treatments generated the same effect in each year studied. However, berry weight values were 

much higher in 100% ETc initiated at fruit set than in the full replacement initiated at veraison. 

This might suggest that full water replacement initiated at fruit set influenced not only cell size but 

also cell division in the berry. In 2007, which was a drier year than 2006, there was a greater 

magnitude of difference among treatments. 

Some studies showed that reducing the irrigation volumes had a negative effect on yield, 

mostly due to lowering the cluster number and berry weight (Girona et al. 2006, Van ZyI1984). In 

one broad study where various medium- and long-term yield data sets for a wide range of cultivars 
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grown in a diverse range of climates (from cool to hot) were analyzed, it has been shown that the 

number of clusters per vine explained consistently 60 to 70% of the seasonal variation in vine yield 

(Clingeleffer et al. 2001). The same authors showed that yield fluctuations were explained only;:::: 

30% by the variation in the number of berries per cluster and just 10% by berry size In some 

studies, irrigation substantially increased not only the photosynthetic rate, but also the grape yield 

by 1.5 to 4- fold, depending on the irrigation timing, the amount of water applied, the cultivar, the 

environmental conditions and other cultural practices (Bravdo et al. 1985, Escalona et al. 2003, 

Hepner et al. 1985, Matthews et al. 1987, Schultz 1996, Williams 1996). 

In one study, it was indicated that the cultivars Sultana, Muscat of Alexandria, Riesling, 

Shiraz and Ohanez performed well in a controlled environment with high temperature and high 

light intensity, but only a few cultivars (e.g. Riesling) performed satisfactorily under low 

temperatures and low light intensities (Buttrose 1970). However, in another study it was reported 

large differences in terms of light sensitivity between different grapevine cultivars, with Sultana 

and Cabemet Sauvignon reaching maximum fruitfulness at just one-third of full sunlight, while in 

Flame Seedless and Chardonnay fruitfulness increased with increasing available light (Sanchez 

and Dokoozlian 2005).The variation in yield data between irrigated treatments could be explain 

partially by this fact, since the irrigation treatments especially 100% ETc showed the highest shoot 

growth, which possibly generated excessive shading, and affected the fruitfulness in the 

subsequent years. 

Temperature is considered the dominant factor for inflorescence primordia formation, with 

the critical period for susceptibility to the high temperature response being three weeks before the 

formation of anlagen (Buttrose 1969, 1970, 1974a). In one study conducted on Chardonnay vines 

over 8 year period, it was indicated a strong linear relationship between temperature at initiation 

and the number of clusters per shoot in the following season. The cluster number increased by 0.22 

clusters per shoot per degree centigrade over an average initiation temperature range of 13.8 to 

17.5 °C (MacGregor 2000). Temperature at budburst might also influence the flower size, and 

subsequently berry weight. The high variation in weather conditions during the experimental 

period could explain part of the yield components variation in present data. However, other studies 

showed that the effects of deficit irrigation on berry and wine quality are dependent on the climatic 

characteristics during the growing season, soil type, grapevine variety and timing of application 

(Dry and Loveys 1998, Santos etal. 2003, 2005) . . 

Irrigation led to differences in berry composition for almost all variables compare to the 

control. °Brix was consistently lower in all treatments in 2008 comparing to 2007 and 2006 (Table 
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4.3). Except for 25% ETc treatments imposed at both fruit set and veraison, all other treatments had 

lower values in 2007 than 2006, but higher than in 2008. Little differences among the irrigated 

treatments were found even in 2008 considered the coolest and wettest year of the period studied. 

However, in one study it was not found any difference in OSrix between fully irrigated and six 

deficit irrigation treatments (Stevens et al. 2(08), while in another study it was reported that 25% 

RDI increased the °Brix in Colombard grapevine (Van ZyI1984). RDI treatments increased °Brix 

and decreased the berry weight by 25% in another study on Pinot noir (Girona et al. 2006). 

In several grapevine cultivars, photosynthesis was not affected in the same way by water 

stress under different experimental conditions such as greenhouse and field (Chaves et al. 2009, 

Flexas et al. 2002, Souza et al. 2003, 2005a). Photosynthetic rates generally decline at lower pre

dawn leaf 'I' than stomatal conductance when grapevines are subjected to moderate water deficits. 

This is reflected in higher water use efficiency by the crop, which is an important aim of deficit 

irrigation strategies in vineyards (Chaves et al. 2007, Gaudillere et al. 2002, Souza et al. 2005b). 

Increases in berry sugar concentration under water deficits were observed in Cabernet Sauvignon 

but not in Chardonnay (Deluc et al. 2009). This might be explained either by differences in vigor, 

and therefore source/sink equilibrium between cultivars, or by different mechanisms underlying the 

response of grape berry development to water limitation according to the timing and intensity of 

water stress imposition. On the other hand, it seems that, up to a certain amount of added water, no 

effects are observed on grape and wine quality, even when the grape yield is increased (Bravdo et 

al. 1985, Hepneret al. 1985, Medrano et al. 2003). 

Irrigation treatments produced little variation in TA in all years (Table 4.3). Contrary to the 

expectations, the highest TA was found in the control and 50% ETc applied at veraison in 2008. 

Juice acidity showed little variation among the treatments on each season but it varied highly from 

one season to the other. The minimum value was found in 2007 on the late irrigated treatment, and 

the maximum in 2008 at the control and 50% ETc late imposed treatment. In many irrigation 

studies, no TA changes have been observed in the must from moderately water-stressed vines 

(Esteban et al. 1999, Matthews and Anderson 1989). However, some studies reported a reduction 

of TA due to deficit irrigation as compared with full irrigation (Santos et al. 2007). In an irrigation 

study on Chardonnay grapevine, °Brix and pH were not affected by reduced irrigation, but it 

lowered the juice TA from 8.3 to 8.1 gIL (Stevens et al. 2008). No effect of RDI on pH juice was 

in agreement with findings from another study (Girona et al. 2006). Overall, the irrigation 

treatments had no effects on juice pH when compared with the control. 
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Must composition (Table 4.4). Overall, musts had higher °Brix in 2007 compare to those 

from 2006. Contrary to the expectations the control did not have the highest °Brix in either of the 

years studied. In 2006, the highest °Brix value was found in 25 % ETc initiated at veraison, while 

in 2007 the 25 % ETc initiated at fruit set had the highest value. However, the full water 

replacement treatments had the lowest ~rix values, perhaps due to a dilution effect. Titratable 

acidity was lower in all musts when comparing with those from 2007. In terms of acidity the 

magnitude of difference among musts was low in both years 2006 and 2007. The 100 % ETc 

initiated either at fruit set or veraison had lower acidity values than the other treatments in both 

years. Irrigation also affected the must pH in both years studied. However, a consistent pattern was 

not found in the irrigation treatments from year to year, except for the 25 and 50 % deficit 

irrigation applied at fruit set which were higher than the control in both seasons (Table 4.4.). This 

suggests that under particular weather conditions the irrigation initiation time can affect positively 

or negatively the must pH. This aspect is very important from a winemaking point of view since 

juice pH affects the fermentation rates (Ough et al. 1968). pH levels> 3.6 are detrimental to wine 

quality because above this level there is an increased likelihood of microbial spoilage, the 

production of hydrogen sulfide (H2S), and lower color intensity in the wine (Jackson and Lombard 

1993). 

Water stress, on the other hand, is contradictory in its effects on wine quality and is 

influenced by the time at which water stress occurs within a season and by the degree of severity. 

For example, no relationship was found between water stress and the onset of veraison or the 

timing of ripening and harvest (Matthew and Anderson 1989). However, yield, berry composition, 

pH, organic acids and total soluble solids were affected by water stress in other studies (Bindon et 

al. 2008, Jackson and Lombard 1993, Robyet al. 2004, Van Leeuwen et al. 2004). It has been 

stated that when water stress becomes too severe, sugar accumulation is depressed as 

photosynthesis is reduced, and thus carbon assimilation by the plant becomes limited (Van 

Leeuwen et al. 2004). However, time when water deficit occurs is important, early and severe 

water deficits being more detrimental to wine quality than post veraison deficits (Jackson and 

Lombard 1993). 

Wine composition (Table 4.5). In both years 2006 and 2007, wines from irrigation 

treatments initiated at veraison had pH values slightly higher than those found in must. In 2006, 

the pH values of wines from treatments initiated at fruit set were almost similar 'with those found in 

must, while in 2007 the wine pH had slightly lower values than those found in must. In both years 

50 and 100 % ETc treatments applied either at fruit set or veraison had higher TA values than the 
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control. In both vintages 25 % ETc treatments applied either at fruit set or veraison were slightly 

lower than the control. The control did not have the highest ethanol concentration in any of the 

vintages studied. In 2006 vintage, except for 25% ETc applied at veraison, all other treatments had 

values slightly lower than the control. The wines made from irrigated treatments had lower ethanol 

than the control. In 2007, the pattern was almost similar to that one from 2006 except that the 

highest value of ethanol was found in 100 % ETc applied at veraison. However, contrary to the 

expectation, the magnitude of the difference was low not only among treatments but also from one 

vintage to the other. This suggests that the irrigation treatments do not have a great and consistent 

effect on the wine basic chemistry. 

Relationships among field variables. Because of the particular weather conditions in 

2005 which generated abnormal growth and lack of yield, relationships among soil moisture and 

physiological variables were not established. However, it is worth re-iterating that despite minimal 

yields, differences occurred between treatments in terms of soil and plant water status on some 

sampling dates. 

In 2006, PCA was performed on different data sets. There was a high degree of correlation 

between soil and plant water status (Fig. 4.8A). Leaf temperature was negatively correlated with 

soil moisture at 20, 30, and 40 cm depths, and positively correlated with Ts. The first two factors 

explained 92.15% of the variability in the data, while F1 accounted for 50.51 % of the variation in 

the data set and F2 for 41.65% (Fig. 4.8A). The distribution of the treatments on the plot shows 

that leaf temperature was highly associated with the control late-imposed treatments (veraison). Ts 

and leaf 'If were highly associated with the irrigation treatments applied at fruit set, being also 

highly correlated with soil moisture at 10, 30 and 40 cm depths. 

Jarvis and McNaughton (1986) pointed out that narrowing of the stomatal aperture due to 

low soil moisture reduces water loss but this could lead to an increase in the leaf temperature. 

Since the highest degree of correlation among physiological variables and soil moisture was found 

at 10, 30 and 40 em, this suggests that the active root system is located in this zone of the soil 

profile. This is explained by the highest water depletion rate due to its absorption trough the roots. 

However, soil moisture depletion at 10 cm depth might be affected mostly by evaporation due to 

the solar radiation. 

Another PCA was run on 2006 soil water status data and yield components (Fig. 4.8B). 

The ftrst two factors explained 75.16% of the variability in the data set, where F1 accounted for 

40.64% of the variation in the data, and F2 just for 34.52 %. Cluster weight and yield was 
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positively loaded on Fl, while °Brix was positively and berry weight negatively loaded on F2 (Fig. 

4.8B). The PCA graph showed that vigor was mostly associated with soil moisture at 40 cm depth, 

which validates the results from Fig. 4.8A. A possible high root density at this depth could be a 

plausible explanation for why vigor showed the highest correlation with soil moisture at 40 cm 

depth. The number of berries per cluster and cluster weight were positively correlated while yield 

was negatively correlated with the number of clusters per vine. Berry weight was highly associated 

with the control treatment, while yield was mostly associated with 100% ETc applied at veraison. 

The number of clusters per vine was highly associated with the deficit irrigation treatments. Yield 

in 100 % ETc treatment initiated at veraison was best explained by the clusters weight and the 

number of berry per cluster (Fig. 4.8B). This suggests that the yield was not affected by the 

climatic conditions from the previous year.lnflorescence differentiation occurs in the previous 

season while flower differentiation occurs before or at budburst (Vasconcelos et al. 2009). 

Variation of climatic conditions at budburst highly affects the number of flower per inflorescence 

(cluster). Due to the dry conditions and low canopy size in 2005, it was expected that in 2006 the 

yield to be better explained by the number of the clusters per vine. However, the results from 2006 

could not be explained by the flowering physiology. Yield components in 2006 were highly 

dependent on soil moisture from the current year and less explained by the climatic conditions 

from the previous year. 

The PCA was performed in 2007, on soil water status and physiological data (Fig. 4.9A). 

The PCA biplot diagram shows that the first two factors explained 69.14% of the total variability 

in the data set; 50.67% by Fl and 18.47% by F2. Soil water status at 20 and 60 cm depth was 

highly negatively correlated with leaf 'I',and highly associated with 100% ETc applied at fruit set 

and veraison (Fig. 4.9A). An interesting observation was that leaf 'I' was not correlated with soil 

moisture from other depths other than 20 and 60 cm depth. Contrary to 2006 pattern, leaf 'I' was 

not correlated with the transpiration rate in 2007 season. The lack of relationship between these 

two variables suggests that the signal causing partial stomatal closure is chemical rather than 

hydraulic. This is in agreement with the results found in other studies (Dry and Loveys 1999,2000, 

Vandeleur 2007). Ts and leaf temperature were positively correlated with soil moisture at 10, 30, 

40 and 100 cm depths (Fig 4.9A). This relationship is opposite than that one found in from 2006, 

and indicates that in very dry and hot years, although there is enough moisture in the soil, the 

transpiration rate cannot sustain the thermoregulatory process, and as a consequence it leads to 

overheating the leaf. The same diagram showed a better separation of the irrigated treatments 
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based on the amount of water applied (Fig. 4.9A). The full-irrigated treatments were located on the 

right lower plot while the control and the RDI treatments were located on the left side of the plot. 

Another PCA was performed on 2007 field and berry composition data (Fig. 4.9B). The 

PCA plot on yield components and soil water status showed that the first two components 

explained 77 .57% of the variability in the data set. Berry pH was positively correlated with °Brix 

but negatively with the number of clusters and TA. This indicates that the climatic conditions in 

2006 were favorable for a good differentiation of the inflorescence primordia in treatments with 

high water status. In these treatments low ~rix might be explained by a delay in fruit maturation 

due to a low ratio source: sink of the carbohydrates. However, soil moisture at 10, 20 and 60 cm 

depths was negatively correlated with °Brix, and highly positively correlated with yield and berry 

weight. °Brix was positively associated with 25% ETc and negatively associated with the number 

of clusters per vine. As it was expected berry weight and vigor were highly correlated and 

associated with high water status. Cluster weight was highly correlated with the number of berries 

per cluster rather than berry weight. This indicates that in hot years berry weight is highly 

negatively affected by water stress. Overwinter precipitation recharges the crop root zone to field 

capacity and along with warm weather at budburstcould increase the flower differentiation on 

inflorescence. The PCA plot of 2007 data (Fig. 4.9B) showed that the irrigation treatments were 

mostly grouped according to the amount of water applied through irrigation rather than the 

imposition time. 

Sensory analysis (Tables 4.7 to 4.10; Figs. 4.10 to 4.15). In 2005, high percentage of bud 

damage occurred due to very low temperatures from previous winter. Therefore, no wine was 

made in the first year of the experimental period. In 2006, wines were assessed for seven aroma 

and flavor descriptors (Table 4.7). Musty was a descriptor found with less or more intensity in all 

treatments from 2006 vintage (Fig 4.IOA, B). Since its intensity varied among the irrigation 

treatments it is assumed that this occurred in the experimental wines somehow due to the particular 

weather condition of 2006 vintage. Citrus is one descriptor often found to describe the Chardonnay 

sensory profile and mostly is associated with linalool and a-Terpineol (Arrhenius et al. 1996). 

Apple and pear aroma were found at the highest intensity in the control wines. Nutty, butterscotch 

and banana aroma descriptors had the highest intensity in 100 ETc treatments (Fig. 4.IOA,B). They 

have been previously reported in the sensory profiles of Chardonnay wines (Smith 2005). 

However, these descriptors in Chardonnay are frequently associated with particular winemaking 

techniques or weather conditions (Iland and Gago 1997). Studies on effect of irrigation and terroir 

factor on sensory profile of Chardonnay from Niagara Peninsula were conducted before (Reynolds 
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et al. 2007, Schlosser et al. 2005). Reynolds et al. (2007) studied the effect on fruit quality of 

different cessation times of irrigation and found that the irrigation treatments produced wines with 

more fruity aromas and less earthy notes than the non irrigated ones. They also suggested that the 

wines from non-irrigated treatments have less intensity due to a lower ability to produce aromatic 

compounds. Their results are in agreement with the present results (Fig. 4.12 and 4.13). The PCA 

plots showed that the sensory attributes had overall a higher intensity in wines from the deficit 

irrigation treatments than the control (Fig. 4.12A,B). This suggests that the sensory profile could 

be associated with the soil moisture level during the vegetation season. However, wines from the 

deficit irrigation treatments showed more complexity than the control ones which had the highest 

intensity just for a couple of attributes. In terms of the mouthfeel, acidity was the only one 

attribute, which made the difference among the experimental wines in both vintages. The panelists 

were able to make the difference among the wines even if it was not found a very high magnitude 

among different treatments from a chemical point of view. 

The PCA of the 2006 sensory data showed that 68.24% of the variability in the data was 

explained by the first two dimensions (Fig. 4.12A). Fl accounted for 44.94% ofthe variability 

being heavily loaded in positive direction with fruit tree and raisin flavor and aroma, and 

negatively loaded with musty, acidity and nutty aroma attributes. F2 explained 23.3% of the 

variation of the data set, and was positively loaded with citrus flavor. The PCA graph illustrated 

that the 25% ETc applied at fruit set and veraison were located on the right lower part of the plot 

while fully irrigated treatments were grouped together on the left side of the plot. The control and 

25% ETc were mostly associated with fruit tree and raisin while the 100% ETc water treatments 

were associated with musty, nutty and high acidity attributes. There was a clear separation of 

treatments based on the amount of water applied rather than the time of treatment imposition, 

although 50 and 100% ETc treatments initiated at fruit set and veraison were not clustered too 

close to each other. 

The wines from 2007 vintage showed a different sensory profile thanin2006 (Table4.8, 

Fig. 4.11.). All the panelists were able to pick more attributes because the sensory profile showed 

overall much more complexity in wines from 2007 compare to 2006. Rhubarb, fresh grass, honey 

and stony fruits were the new descriptors found in the 2007 wines. The irrigation treatments 

showed a higher intensity in some of the sensory attributes characteristic for Chardonnay cultivar. 

The PCA of 2007 sensory data showed that the two factors explained 61.44% of the variability 

(Fig. 4.12B). Fl explained 33.06% ofthe variability in the data set while F2 only 28.38%. The first 

component was heavily negatively loaded with banana aroma and raisin flavor attributes. The 
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second factor was positively loaded with fresh grass aroma and flavor attributes. Stony fruit and 

fruit tree were positively correlated with each other but negatively correlated with rhubarb, raisin, 

honey and butterscotch aroma. Citrus aroma and flavor, honey, rhubarb, nutty aroma and acidity 

were positively correlated with each other and negatively correlated with fruit tree aroma. 

Contrary to 2006, the distribution of 2007 wines on the PCA plot indicated a better 

discrimination among treatments based on the time of the irrigation imposition. Wines made from 

the treatments imposed at fruit set were located on the upper left plot while those imposed at 

veraison were located in the lower left plot. The wines from treatments applied at fruit set were 

associated with citrus aroma and flavor, rhubarb, honey, and acidity while the control wines were 

located in the upper right plot being mostly positively associated with fruit tree, stony fruit aroma 

and flavor attributes and negatively associated with honey, raisin and rhubarb. The 50% and 25% 

ETc treatments applied at veraison were highly associated with raisin, rhubarb, honey and 

butterscotch attributes. This suggests that the sensory profile is affected not only by the amount of 

water in soil but also by the general weather conditions in one particular year. As a conclusion the 

weather conditions affect the complexity (varietal typicity) in the wine while the soil moisture 

level affects the intensity of one or the other attribute. 

Chardonnay is an international variety grown in most of the viticultural areas. Its sensory 

profile showed a huge variation which most of the time is associated with the terroir aspect. 

Chardonnay wines have been linked to fruity, apple, or citric aromas (Ferreira et al. 1999, Sefton et 

al. 1993) and have been shown to be favored by prolonged harvest dates and cooler longer ripening 

periods (Callo et al. 1991, Reynolds et al. 1995). In one study in Australia, the primary fruit 

characters of a young Chardonnay wine included grapefruit, lemon, melon, stone fruit, and tropical 

fruit, whereas more developed wines exhibited characteristics such as toast, honey, fig and nuts 

(Smith 2005). However, the same study mentioned more descriptors with different impact on 

Chardonnay wine profile like passion fruit, herbaceous, sweaty, spicy, estery, stewed apple/pear, 

floral or lychee. 

Wine aroma profiles are complex and influenced by many variables (Lee and Noble 2003). 

Although, many studies on sensory profile of Chardonnay wine had been published, most of them 

focused on commercial wines which often were manipulated by the winemakers. Just a few studies 

showed the effect of cultural practices including irrigation on the sensory profile of Chardonnay 

wines (Reynolds et al. 2007). The complexity of the aroma profile in Chardonnay along with the 

fact that many of the volatiles involved in it are produced during fermentation, allowed most of the 
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time just to speculate on influence of different environmental factors on the final sensory profile of 

wines. 

The most important white wine aroma volatiles produced during fermentation belong to 

three chemical classes such as: ethyl esters of medium chain fatty acids (ethyl butyrate, hexanoate, 

octanoate, decanoate and dodecanoate) which are fruity and wine-like; acetate esters that are 

responsible for tropical fruit and banana-like aromas, and a third group of higher alcohols such as 

isobutanol, isoamyl alcohol and hexanol, which are harsh and unpleasant (Simpson 1979). Ethyl 

esters of fatty acids, based upon their concentration in the wine and subsequent flavor thresholds, 

are important contributors to Chardonnay aroma (Simpson and Miller 1984). Ammonia levels, 

yeast strain, and level of non-soluble solids are directly related to the formation of esters important 

in the wine aroma (Bertrand 1983). This could explain part of the sensory results since it is well 

known the effect of water deficit on nitrogen accumulation (Keller 2(05). Among the 45 aroma 

compounds measured in the Chardonnay wines, -16 were always above the threshold (Smith 2005). 

Water deficits have an effect on the transcript abundance of enzymes and as consequence 

they affect the composition aromas and their concentrations (Cramer et al. 2007). Deluc et al. 

(2009) studied the effect of water stress on Chardonnay and Cabemet Sauvignon cultivars at 

molecular level. Transcriptomic analysis of genes encoding enzymes involved in the biosynthesis 

of volatile compounds revealed an increase in the transcript abundance of one terpenoid synthase, 

one carotenoid cleavage dioxygenase and severallipoxygenases under conditions of water deficits 

(Deluc et al. 2009). Water deficits also increased the transcript abundance of a carotenoid cleavage 

dioxygenase in another study on Chardonnay grapes (Mathieu et al. 2005). In Chardonnay, the 

specific effects of water deficit on the carotenoid pathway are probably related to volatile 

production and photoprotection (Terrier et al 2005). 

Grape-derived C l3 norisoprenoids are very importantto the aroma of both white and red 

wines (Sefton et al. 1989). C13 norisoprenoids arise from carotenoid degradation and are present in 

grapes in the free or glycoside form. Although the glycoside precursors cannot be hydrolyzed by 

grape and yeastglycosidases, they are hydrolyzed under acidic conditions, directly incorporated or 

converted into other more powerful aroma-active compounds, and contribute to the wine aroma 

(Skouroumounis and Winterhalter 1994). C l3 norisoprenoids contribute to complex aromas, 

including berry, honey, and fruity in many wines. ~-Damascenone has a complex smell of flowers, 

tropical fruit and stewed apple, and a very low olfactory perception threshold of 0.05 J.l.g/L in 

ethanol. In one irrigation study, it was found that wines from 35% ETc treatments had substantially 
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higher concentrations of ~-damascenone in all vintages compared to wines from 100% ETc (Qian 

et al. 2009). 

The transcript abundance of several different lipoxygenases was also increased 

significantly by water deficit in Chardonnay grapes (Deluc et al. 2009). These lipoxygenases 

convert the fatty acid and linolenic acid to hydroperoxides, which through several other enzymatic 

steps lead to the formation of volatile esters in wines (Feussner and Wasternack 2002). In the next 

step of this pathway, the hydroperoxides are converted to grassy-flavored volatile aldehydes like 

hexenal and hexenal-3-al by hydroperoxide lyase (Duan et al. 2005). Hexenal can be converted to 

hexanol, another grassy aroma, by alcohol dehydrogenases (Tesniere et al. 2006). Three-fold 

increases were detected in a fruity aroma compound (hexyl acetate) in water deficit Chardonnay 

wines (Deluc et al. 2009). 

Under drought conditions, vines could experience both poor shoot growth and fruit 

composition development. Irrigation is necessary to improve the water status of the vine. Irrigation 

resulted in wines with greater intensities of apple, citrus, and floral aromas and reduced earthy 

aroma in Chardonnay wines (Reynolds et al. 2007). Deficit irrigation induces an increased level of 

synthesis of volatile and volatile precursors in the grapes. Limited water availability also reduces 

vine vigor, and thus increases berry sun exposure and berry temperature, which accelerates 

degradation of carotenoids, and enhances the formation of some volatile compounds (Qian et al. 

2009). In addition, deficit irrigation might affect grape maturity, resulting in difference in volatile 

concentration. 

The sensory profiles of the wines depicted by radar diagrams showed that many variables 

were strongly affected by both the amount of water in the soil and the initiation time (Figs. 4.11 

and 4.12). However, the sensory profile varied from vintage to vintage. Temperature and light 

intensity showed high variation in both years studied (data not shown). It was speculated that along 

with soil moisture, these two factors have also a great effect on the wine sensory profile. In 

agreement with the present results, other two studies suggested that deficit irrigation alters several 

sensory attributes of the wine as well as the concentration of carotenoids and their derivatives in 

berries, as compared to standard irrigation grapevines (Bindon et al. 2007, Chapman et al. 2005). 

Water deficits led to wine with more fruity and less vegetal aromas than those from vines withhigh 

water status (Chapman et al. 2005). According to these authors, water deficits led to a greater flux 

of carbon through alternative biosynthetic pathways leading to an increase in amino acids 

(precursors of esters in wines) and in carotenoids, and resulting in a more fruity aromas. Deficit 

irrigation leads also to an increase in the concentration of hydrolytically released Cn-
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norisoprenoids (B-damascenone, B-ionone and 1,l,6-trimethyl-1,2-dihydronaphthalene) in Vitis 

vinifera grapes (Bindon et al. 2007). 

Relationships among soil and plant water status, yield components, berry 

composition, and sensory data. The PLS regression petfonned on the full data set of 2006 

illustrates the relationship established among data sets collected (Fig. 4.13). Vine size was 

negatively correlated with fruittree and raisin, and positively correlated with banana. This suggests 

that these aroma descriptors are related to high water status in the vine. Cluster weights, acidity, 

butterscotch, nutty and musty were very well correlated with soil moisture. At moderate intensity, 

these attributes could bring complexity into the wine while at high intensity they are associated 

with some degree of oxidation and subsequently having a negative effect on the quality. 

Citrus character showed moderate correlation with the number of clusters per vine and 

berry weight, and no correlation with the number of berries per cluster. This suggests that the 

weather conditions from the previous season might accentuate the negative effect of high water 

status through the high number of clusters per vine. Shading due to high canopy in well irrigated 

treatments or competition for carbohydrates might have a negative effect on grape qUality. The 

same negative effect could occur due to low canopy and high exposure to solar radiation, which 

increases catabolic pathway of the aroma compounds in water deficits treatments. Banana, 

butterscotch and nutty were highly correlated with acidity and moisture at 10 and 60 em depth. 

In order to have a bigger picture of the relationships among different variables, a PLS 

regression was perfonned on the completely 2007 data set (Fig. 4.14). The PLS plot illustrated that 

in wine the ethanol concentration and stony fruit aroma were positively correlated with each other 

but negatively correlated with banana, nutty, fresh grass, raisin and wine pH. Fruit tree was 

positively correlated with leaf temperature and °Brix, and negatively correlated with the number of 

clusters per vine, honey and banana attributes. Physiological variables like Ts and leaf 'I' were 

positively associated with soil water status. However, butterscotch, rhubarb and raisin aroma were 

negatively correlated with water status level suggesting that under particular climatic conditions 

perhaps more volatile precursors are produced and released into the wine during the fermentation 

(Fig. 4.14) 

Field and yield component data were also analyzed by PLS regression analysis in 2008 

(Fig. 4.15). The PLS plot illustrated that vine size was positive associated with soil moisture at 20, 

30 and 40 em, and negatively correlated with leaf '1'. Berry weight was positively correlated with 

onrix, and negatively correlated with the number of clusters per vine and yield. This suggests that 
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general climatic conditions can have a great effect on vine performance. Contrary to the results 

from 2006 and 2007, data from 2008 indicated overall no dilution effect due to high moisture in 

the soil (Fig. 4.15). This suggested that a balance was established between vegetative and fruit 

growth. However, vigor cannot be considered a strong predictor for grape quality for this particular 

year (2008). 

The PLS data showed different relationships among leaf '!', Ts rate and soil moisture on the 

soil profile over the period studied. In 2006, it was found the highest correlation between Ts and 

leaf,!" the latter being highly associated with soil moisture at 20 and 40 cm depth (Fig. 4.13). In 

2007, Ts and leaf '!' were less correlated, being associated with soil moisture at 30 and 100 cm 

(Fig. 4.14). However, in 2008 the two physiological variables measured were not correlated (Fig. 

4.15). These different relationship patterns found over the period studied indicate that the 

Chardonnay's anisohydric behavior is relative and might be affected by other factors rather than 

soil moisture. 

Conclusions 

All the vine physiological variables (e.g. leaf,!" Ts rate) responded to the % ETc treatments 

and irrigation timings. In dry and hot years like 2007, irrigation treatments, especially the 50% and 

25% ETc treatments applied at veraison, particularly improved the general vine physiology and 

wine sensory profiles (varietal typicity). Even in years considered wet but warm with erratic 

rainfall distribution, wine sensory profiles could be manipulated by deficit irrigation. The 100% 

ETc cannot be recommended either at fruit set or at veraison, because of its direct or indirect 

negative effect on wine quality. Therefore, full irrigation applied either at fruit set or veraison is 

not recommended. Deficit irrigation treatments, on the other hand, showed overall positive effects 

not only on general vine physiology but also on yield and wine sensory profiles, especially in very 

hot and dry years such as 2007. These results supported findings of others who found that 

irrigation affects red winegrapes more than white cultivars suffering from water stress. However, 

this should not be generalized for all years and cultivars. 

Another outcome from this research, which is partially confmned, is that the root 

distribution can be manipulated by drip irrigation. Although root distribution was not measured, 

soil moisture was measured at several depths in the soil profile. These data suggested that the root 

system might be stimulated to develop in the upper portion of the soil profile (20 to 40 cm). It 

therefore appears reasonable that grape growers could control the active root zone by using deficit 
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irrigation, and by closely monitoring and controlling soil moisture at different soil depths, they can 

control vine vigor as well. However, future research should be undertaken to find the relationship 

among soil water status, root system development and rootstock. 

More research should be done to add greater precision to the calculation method for the 

vine water needs in cool regions. However, due to the high variability in climatic conditions in 

Niagara Peninsula it is suggested that long-term studies are needed to improve the understanding 

of the effect of different irrigation regimes, scheduling times on various cultivars and under 

various climatic conditions in order to validate different trends. Also, more research should be 

focused on understanding which aroma volatiles are mostly affected by vine water status, and how 

and when their metabolic pathways are affected by the soil water deficits. Although large 

differences in vine physiological activity were observed in response to irrigation, they were not 

necessarily translated into changes in yield, berry composition and wine sensory profiles. Water 

status effects varied with respect to vintage and might vary according to cultivar as well. A better 

understanding of how drought affects vine physiology and the ripening process at the molecular 

level will lead to approaching techniques of vine manipulation that minimize the negative effects 

of weather variation. 

The adoption of appropriate irrigation scheduling practices could lead to increased yields 

and greater profit for grape growers, significant water savings, reduced environmental impact of 

irrigation, and improved sustainability of irrigated agriculture. Since the level of vine water status 

determines multiple and complex reactions that are dependable on the interactions among soil, 

vine and climate conditions, irrigation experiments should be conducted for a longer period of time 

in order to validate the beneficial effects of the irrigation strategies used in the present research. 
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Table 4.1 The weeldy amount of irrigation water applied in a Chardonnay block using ETo calculated with Penman-Monteith 
. Lambert Farm. Niae:ara-on-the Lake. ON. between 2005- 2007 

2005 
1
2006 

1
2007 

Week 100% ETc 50% ETc 25% ETc 100% ETc 50% ETc 25% ETc 100% ETc 

mmIW LNIW LNIW LNIW mmIW LNIW LNIW LNIW mmIW LNIW 

1 34.1 122.6 61.3 30.6 8.5 30.6 15.3 7.7 39.9 143.5 

2 18.7 67.4 33.7 16.8 4.7 16.8 8.4 4.2 42.3 152.2 

3 33.3 119.8 59.9 30.0 8.3 30.0 15.0 7.5 24.8 89.3 

4 13.0 46.5 23.4 11.7 3.3 11.8 5.9 2.9 28.0 100.8 

5 34.5 124.2 62.1 31.1 8.6 31.0 15.5 7.8 22.0 79.3 

6 29.1 104.9 52.4 26.3 7.3 26.2 13.1 6.6 22.8 82.0 

7 32.3 116.1 58.0 29.0 8.1 29.0 14.5 7.3 36.6 131.8 

8 26.4 95.0 47.5 23.7 6.6 23.8 11.9 5.9 41.9 150.8 

9 27.5 98.9 49.4 24.7 6.9 24.8 12.4 6.2 42.0 151.2 

10 27.9 100.3 50.2 25.1 6.9 25.0 12.5 6.3 35.5 127.9 

*25,50, 100 represent percentage of the water replaced in the soil; ETc- crop evapotranspiration; LNIW -liters/vine/week; 

mrn/w - total amount of water applied in millimeters/week for full water replacement. 

50% ETc 25% ETc 

LNIW LNIW 

71.8 35.9 

76.1 38.1 

44.6 22.3 

50.4 25.3 

39.6 19.8 

41.0 20.5 

65.9 32.9 

75.4 37.7 

75.6 37.8 

64.0 32.0 
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Table 4.2. Impact of irrigation treatments on yield components and vine size of Chardonnay grapevines, Lambert Vineyards, Niagara-on-
the-Lake, ON, 2006-2008. 

Vine size (kg/vine) Yield (kg/vine) Clusters/vine Cluster wt. (g) Berries/cluster Berry wt.(g) 

Treat. 
2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008 2006 2007 2008 

Control 
1.02 c 0.72 b 1.29 b 5.63 c 6.65 be 6.86 b 40 c 55 a 48c 140b 122c 142b 94b 89b 84b 1.51 1.38 b 1.71 b 

25 Set 
1.06 b 0.79 a 1.35 a 7.08 a 7.59a 7.81 ab 42 bc 55 a 54b 172 a 141 a 144 ab 118 a 90b 87 ab 1.47 1.58 a 1.97 a 

50 Set 
0.98 c 0.77 a 1.28 b 5.36 c 7.09 b 8.56 a 41 c 53 a 60a 137 b 138 ab 140 b 91 b 87b 83 b 1.51 1.60 a 1.69 bc 

100 Set 
1.09 b 0.71 b 1.26 c 5.86 c 6.33 bc 8.44 a 43 b 45b 55b 134 b 144 a 154 a 91 b 104a 92a 1.49 1.41 b 1.67 bc 

25 Ver. 
1.13 a 0.69 b 1.31 b 6.65 ab 7.14 b 7.30 b 41 c 56 a 49 c 165 a 129 b 148 a 109 ab 92 b 85 b 1.52 1.42 b 1.75 b 

50 Ver. 
1.05 b 0.64 c 1.29 b 6.14 b 6.55 bc 6.79 b 46a 55 a 48 c 135 b 123 be 140 b 91b 89b 81 bc 1.50 1.41 b 1.75 b 

100 Ver. 
0.94 c 0.61 c 1.28 b 7.08 a 5.86 c 7.62 ab 43 b 50 ab 52 bc 142 b 118 c 145 ab 94b 83c 76c 1.51 1.41 b 1.66 c 

* * * * ** ** * * *** * *** * * ** *** ns *** *** 
Signific. 

*C-control (non-irrigated); Set- irrigation treatments applied at fruit set (100,50 and 25% of ETc); Vet. - irrigation treatments applied at veraison (100,50 
and 25% of ETc); *, **, ***, ****, ns: Significant at p ~ 0.05, 0.01, 0.001, 0.0001, or not significant, respectively. Letters within columns represent means 
separated at p ~ 0.05, Duncan's multiple range test. Boldfaced data indicate those values significantly greater than the control using Dunnett's t-test; 
boldfaced and underlined data are significantly less than the control 
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Table 4.3. Impact of irri~ation treatments on berry comEosition of Chardonna~, Lambert Vineyards, Nia~ara-on-the-Lak:e, ON, 2006-2008. 

Soluble solids (Brix) Titratable acidity (gIL) pH 

Treatment 
2006 2007 2008 2006 2007 2008 2006 2007 2008 

Control 21.7 b 21.3c 20.7 a 10.0 ab 7.2a 10.8 a 3.62 a 3.68 ab 3.52 ab 

25 Set 22.1 a 21.2c 20.1 b 10.3 a 7.2a 9.7b 3.57b 3.68 ab 3.53 a 

50 Set 21.8b 21.1c 20.1 b 10.3 a 6.5 ab 9.7b 3.63 a 3.66 ab 3.52 ab 

100 Set 22.2 a 22.6 a 20.0b 9.9ab 6.5 ab 9.9b 3.61 a 3.69 ab 3.51 ab 

25 Ver. 
21.7 b 21.3c 20.3 ab 10.1 ab 6.2 b 9.S b 3.59 ab 3.67 ab 3.39b 

50 Ver. 22.0 a 21.2c 19.9b 10.0 ab 6.6ab 10.8 a 3.63 a 3.64 b 3.51 ab 

100 Ver. 21.4c 21.9b 20.5 ab 9.3 b 6.7 ab 9.S b 3.62 a 3.72 a 3.50 ab 

Significance * * * * *** * *** * * 

*C-control (non-irrigated); Set- irrigation treatments applied at fruit set (100, 50 and 25% of ETc); Ver. - irrigation treatments applied at veraison (100, 
50 and 25% of ETc); *,**,***,****, ns: Significant at P.:5 0.05,0.01,0.001,0.0001, or not significant, respectively. Letters within columns represent 
means separated at P.:5 0.05, Duncan's multiple range test. Boldfaced data indicate those values significantly greater than the control using Dunnett's t-
test; boldfaced and underlined data are significantly less than the control 
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Table 4.4. Impact of irrigation treatments on must composition of Chardonnay, Lambert Vineyards, Niagara-on-the-Lake, ON, 2006-
2007. 

Soluble solids (Brix) Titratable acidity (gIL) pH 
Treatment 

2006 2007 2006 2007 2006 2007 

Control 
20.4 b 21.2 6.5 ab 7.2ab 3.43 ab 

3.43b 

25 Set 
19.3c 21.2 6.2ab 7.9 a 3.47 a 

3.43b 

50 Set 
19.5 c 20.8 6.8 a 7.8 a 3.45 a 

3.50 a 

100 Set 
20.1 bc 21.3 6.1 b 7.0ab 3.45 a 

3.50 a 

25 Ver. 
19.5 c 20.8 6.8 a 7.4ab 3.39b 

3.43b 

50 Ver. 
20.4 b 21.2 6.7 ab 6.5 b 3.41 ab 

3.42b 

100 Ver. 
20.9 a 21.2 6.8 a 7.8 a 3.43 ab 

3.42b 

Significance * ns * * * ns 

*C-control (non-irrigated); Set- irrigation treatments applied at fruit set (100,50 and 25% of ETc); Ver. - irrigation treatments applied at veraison (100, 
50 and 25% ofETc);*,**,***,****, ns: Significant at p::; 0.05, 0.01, 0.001, 0.0001, or not significant, respectively. Letters within columns represent means separated 
at p::; 0.05, Duncan's multiple range test. Boldfaced data indicate those values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data 
are significantly less than the control 
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Table 4.5. Impact of irrigation treatments on wine composition of Chardonnay, Lambert Vineyards, Niagara-on-the-Lake, ON, 
2006-2007. 

Treatment pH Titratable acidity (g L-1) Ethanol (% v/v) 

2006 2007 2006 2007 2006 2007 

Control 
3.44 a 3.46b 5.2 b 5.2 b 11.21 a 11.64 a 

25 Set 
3.47 a 3.44b 5.6 a 6.2 a 10.61 b 11.59 a 

50 Set 
3.43 a 3.56 a 5.3 ab 5.8 ab 10.73 b 11.28 b 

100 Set 
3.45 a 3.52 a 5.1 b 5.1 b 11.05 ab 11.61 a 

25 Ver. 
3.35b 3.46b 5.8 a 6.0 a 10.67 b 11.66 a 

50Ver. 
3.38 ab 3.40b 5.4 ab 5.4 b 11.17 ab 11.59 a 

100 Ver. 
3.41 ab 3.41b 5.5 ab 5.3 b 11.38 a 11.57 a 

Significance 
* * * * * * 

*C-control (non-irrigated); Set- irrigation treatments applied at fruit set (100, 50 and 25% of ETc); Ver. - irrigation treatments applied at veraison (100, 
50 and 25% of ETc);. *, ** ,***, ****, ns: Significant at p .:s; 0.05, 0.01, 0.001, 0.0001, or not significant, respectively. Letters within columns represent means separated 
at p.:s; 0.05, Duncan's multiple range test. Boldfaced data indicate those values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data 
are significantly less than the control 
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Table 4.6. Attributes and their standard references used for sensory evaluation of 
Chardonnay wines, Lambert Vineyards, Niagara-on-the-Lake, ON. 

Sensory attribute Reference standard (prepared in 100 mL base wine-Kressmann -France) 

Fresh grass 

Banana 

Butterscotch 

Citrus 

Pome fruit (pear + 
apple) 

Honey 

Rhubarb 

Stone fruit 

Raisin 

Nutty 

Acidity 

10 g of fresh cut and ground grass macerated 24 h 

10 g of fresh banana 

One crushed butterscotch candy (No name) 

Two pieces of fresh lemon and grapefruit (::::: 15g) 

10 g mix of pear (Bartlett cv.) and apple (Empire cv.) 

1 mL of raw honey (Bulk store) 

109 of fresh pureed Rhubarb petiole 

10 mL (apricot and peach canned) - No Name 

5 g of dry raisin 

5 g (walnut) and 5 g cashew 

1.5g tartaric acid IL water 
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Table 4.7. Comparison of mean sensory scores among the irrigation treatments of Chardonnay wines, Lambert Vineyards, 
Niagara-on-the-Lake, ON, 2006. 

Variable C T1 T2 T3 T4 T5 T6 Pr>F 

Aroma 

Citrus 2.1 b 1.9 b 1.9b 2.4 ab 2.4 ab 2.8 a 2.4ab 0.019 
Tree fruit 

3.1 a 1.2 e 1.6b 1.9b 1.8b 1.7 b 3.1 a 0.029 (pear + apple) 
Butterscotch 2.3 b 2.6ab 2.8ab 1.9b 2.9 a 1.5 c 1.9b 0.007 

Banana 2.8 ab 3.1 ab 1.9 b 2.2 b 2.9ab 3.2 a 2.7 ab 0.036 

Raisin 3.5 a 1.9b 2.1 b 1.7 c 1.6 c 3.1 ab 2.8 ab 0.0001 

Nutty 1.9b 3.4 a 2.8ab 1.6b 3.4 a 3.1 ab 2.9ab 0.005 

Musty 2.1 b 3.9ab 3.5 ab 2.3 b 4.1 a 3.5 ab 1.9b 0.0001 

Flavor 

CITRUS 4.1a 3.6ab 2.9b 2.8b 3.1 b 2.3 e 2.8b 0.019 
TREE FRUIT 

3.8 a 1.9bc 2.3 bc 2.8 b 1.1c 2.6 b 3.1 ab 0.0001 (PEAR + APPLE) 
BUTTERSCOTCH 2.3 ab 3.1 a 1.8b 1.1c 2.1 b 0.9 c 2.7 ab 0.007 

BANANA 1.5 ab 2.1 a 0.9 c 1.3 ab LIb 0.8 c 0.7 c 0.044 

RAISIN 2.5 ab 0.9 e 1.3 be 1.7 bc 0.6e 2.1 b 2.6a 0.031 

NUTTY 0.8 c 1.4 b 1.9 ab 0.6e 1.4 b 2.1 a 1.9 ab 0.029 

MUSTY LIb 2.9a 1.5 b 1.3b 2.1 ab 1.5 b 1.3b 0.048 

ACIDITY 2.1 c 4.3 a 3.1 b 2.5 c 3.1 c 3.3 b 2.2c 0.006 

*C-control (no-irrigated); T1-T3 - irrigation treatments applied at fruit set (100,50 and 25% of ETc); T4-T6 irrigation treatments applied at veraison (100, 

50 and 25% of ETc). Means within rows with different letters are significantly different, Duncan's multiple range test. 
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Table 4.8. Comparison of mean sensory scores among the irrigation treatments of Chardonnay wines, Lambert Vineyards, Niagara-on-
the-Lake, ON, 2007. 

Variable C T1 T2 T3 T4 T5 T6 Pr>F 

Aroma 
Fresh grass 2.1 b 3.5 ab 4.1 a 1.4 c 1.9b 1.3c 1.2c 0.001 

Citrus 2.1 c 4.6 a 3.2 b 1.9 c 2.9b 2.6b 1.4 d 0.001 

Honey 1.0c 2.6ab 2.8 ab 1.9 b 2.1 b 3.1 a 0.9c 0.002 

Rhubarb 0.3 c 2.1 bc 1.4 bc 4.1 a 3.2 b 2.6bc 3.1 b 0.007 

Tree fruit (pear + apple) 2.6a 1.9b 1.1c 2.2b 1.1c 0.8 c 0.9c 0.036 

Stone fruit 2.8 a 1.2c 1.8b 1.9b 2.2 b 1.1c 0.9 c 0.041 

Butterscotch 2.3 c 3.2 b 3.0b 4.1 a 3.6ab 3.2 b 3.7 ab 0.005 

Banana 2.6c 3.7 a 4.1 a 3.4 b 2.9b 2.8b 3.9ab 0.008 

Raisin 1.8c 2.6b 2.3 bc 3.1 a 1.9c 2.9ab 2.7 ab 0.032 

Nutty 1.5 c 2.6 a 2.4 ab 1.9b 1.2c 1.8b 1.9 b 0.008 

Flavor (mouthfeel) 
FRESH GRASS 2.8b 2.6b 4.3 a 2.1 c 1.9c 1.3 d 1.9 c 0.009 

CITRUS 1.6 c 4.6 a 3.2ab 1.9b 3.2ab 2.6ab l.4c 0.001 

HONEY 1.2c 3.2ab 1.9b 2.6b 3.9 a 2.6b 3.1 ab 0.034 

RHUBARB 2.1 c 4.2 a 3.8 ab 2.9b 3.2 b 3.1 b 0.9 d 0.042 

TREE FRUIT (PEAR + 3.1 a 1.8b 1.9b 2.2b 1.1c 2.1 b 2.8 ab 0.049 
APPLE) 
STONY FRUIT 2.8 a 1.2 c 1.8b 1.6b 2.2 b 1.1c 1.3c 0.008 

BUTTERSCOTCH 2.3 b 3.2ab 3.0ab 4.1 a 3.6ab 3.2ab 3.7 a 0.041 

BANANA 1.2 c 3.1 ab 1.7b 1.3 be 3.6a 0.9c 0.8 c 0.002 

RAISIN 1.8c 3.2 a 2.8 b 2.5b 1.6c 2.9ab 3.1 ab 0.003 

NUTTY 1.5 c 2.6 a 2.4 ab 1.9b 1.2 c 1.8b 1.9b 0.046 

ACIDITY 2.1 b 4.2 a 3.2 b 2.9b 2.6b 1.4 c 1.3c 0.041 

*C-control (non-irrigated); TI-T3 - irrigation treatments applied at fruit set (100,50 and 25% of ETc); T4-T6 irrigation treatments applied at veraison (100,50 
and 25% of ETc). Means within rows with different letters are significantly different, Duncan's multiple range test. 
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Figure 4.1. Impact of irrigation treatments on soil moisture (% volumetric content) of Chardonnay grapevines measured by TDR, Lambert Vineyards, Niagara-on-the-Lake, ON, 
2005-2008. A: 2005; B: 2006; C: 2007; D: 2008. 100,50,25 represent the percentage of ETc at two irrigation initiation times: fruit set (Set) and veraison (Ver.). *,**,***,****, 
ns: Significant at p < 0.05, 0.01, 0.001, 0.0001, or not significant, respectively. Letters represent means separated at p < 0.05, Duncan's multiple range test. 
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Figure 4.2. Impact of irrigation treatments on soil moisture (% volumetric content) of Chardonnay grapevines 
measured using a Profile Probe type PR2TM 10 cm (A), 20 cm (B), 30 em (C), 40 cm (D), 60cm (E), and 100 cm 
(F) depths, Lambert Vineyards, Niagara-on-the-Lake, ON, 2006. 100, 50, 25 represent the percentages of soil 
water replacement ETc at two irrigation initiation times: fruit set (Set) and veraison (Ver.). *, **, ***, ****, ns: 
Significant at p 5. 0.05,0.01,0.001,0.0001, or ns-not significant, respectively. Letters represent means separated 
at p 5. 0.05, Duncan's multiple range test. 
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Figure 4.3. Impact of irrigation treatments on soil moisture (% volumetric content) of Chardonnay grapevines 
measured using a Profile Probe type PR2TM 10 cm (A), 20 cm (B), 30 cm (C), 40 cm (D), 60 cm (E), and 100 cm 
(F) depths, Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. 100, 50, 25 represent the percentages of soil 
water replacement ETc at two irrigation initiation times: fruit set (Set) and veraison (Ver.). *, **, ***, ****, ns: 
Significant at p S 0.05,0.01,0.001,0.0001, or ns-not significant, respectively. Letters represent means separated 
at p S 0.05, Duncan's multiple range test. 
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Figure 4.4. Impact of irrigation treatments on soil moisture (% volumetric content) of Chardonnay grapevines 
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Chapter 5 

Effect of Different Irrigation Strategies on Vine Physiology, Yield, 
Grape Composition and Sensory Profile of Sauvignon blanc (Vitis 

vinifera L.) in a Cool Climate Area 

Abstract. Irrigation experiments testing the efficacy of partial root zone drying (PRO) and 
regulated deficit irrigation (ROI) were conducted in a commercial vineyard block of Sauvignon 
blanc, Lambert Vineyards, Niagara-on-the-Lake, Ontario, Canada, between 2006-2008. The 
experimental design had four treatments: non-irrigated control, PRO, full irrigation [100% 
water replacement of crop evapotranspiration (ETc)] and one level of ROI (25% ETc). The 
irrigation treatments started immediately after fruit set and continued until the beginning of 
September. The amount of water needed was calculated based on reference 
evapotranspiration (ET 0), using the Penman-Monteith equation. Soil moisture and vine 
physiology (leaf water potential and transpiration rate) in the PRO treatments were generally 
less than 100% ETc vines but higher than non-irrigated treatments and 25% ETc vines. Almost 
all treatments were different than non-irrigated vines in terms of fruit composition and wine 
sensory attributes. ROI strategies were more consistent than the PRO treatments in terms of 
their effect on general physiology, grape composition and sensory profile. Overall, use of ROI 
or PRO in cool climates during dry and warm years can improve grape quality. Oue to high 
climatic variation over the period studied no consistency pattern was found in terms of 
irrigation effects, which indicates that plant water status is not the only factor which control 
fruit and wine quality. 

Key words: Soil moisture, leaf water potential, regulated deficit irrigation, partial root zone 
drying, sensory profIle 

Introduction 

Vine development and fruit composition are highly dependant on environmental 

conditions, and particularly on vine water and nitrogen status (Jackson and Lombard 1993). Until 

recently vineyards were irrigated mostly in the "New World" while in the "Old World" irrigation 

was prohibited by law. In areas where irrigation was not allowed or not needed, drip irrigation has 

been steadily increasing. In the last decade more wine regions including some from cool climate 

area have faced some degree of water stress during the vegetation period (Reynolds et al. 2009, 

Van Leeuwen and Seguin 2006, Zs6fi et al. 2009). Niagara Peninsula, the most important grape 

growing region in Canada became one of these regions (Reynolds 2008). 

Many studies showed that plant water status is the main factor by which the terroir affects 

wine style and quality (Conradie et al. 2002, Seguin 1983). In wine production neither deficit nor 

excess of water status is desired for an optimum balance of yield and wine quality (Seguin 1983). 
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According to Lakso and Pool (2000, 2001), excessive water stress inhibits many late season flavor 

development processes, and leads to dull, less complex wines with little fruit characteristics. 

Some of the physiological responses of grapevines to prolonged water deficits include 

reduced cell division and expansion, closing of leaf stomata, reduced photosynthesis and, 

eventually, cell desiccation and death (Goodwin 2002). Mild water deficit is known to have 

positive effects on reducing cell size if applied at frqit set, and thus can enhance the concentration 

of aroma extracts in berry as long as other metabolic processes are not negatively affected (Smart 

1974). This moderate water deficit also reduces shoot vigor, resulting in more favorable 

partitioning of carbohydrates to the clusters (Keller 2005). Some studies focused on the influence 

of water deficits on vine development and yield (Dry et al. 1996, Hardie and Considine 1976) and 

on fruit composition (Dry et al. 2001, Matthews and Anderson 1988). However, most of these 

studies were carried out on red grape cultivars, and just few of them focused on the effect of water 

status on both vine performance and wine qUality. 

Grapevine sensitivity to seasonal water deficits and the consequences for vegetative and 

reproductive growth, must and wine quality are well known (McCarthy 1997, Ojeda et al. 2002, 

Williams and Matthews 1990). Very few data has been published on the influence of 

environmental conditions on quality potential in white grapes, especially in regions with cool 

climate. In one study on Sauvignon blanc from Pessac-Uognan and Graves appellations, it was 

found that grape aroma potential was highest in vines under mild water deficit and moderate 

nitrogen supply (Peyrot des Gachons et al. 2005). The same authors showed that severe water 

deficit stress limited aroma potential, as did nitrogen deficiency. 

Sauvignon blanc is a popular white cultivar in the Niagara Peninsula, being on third place 

after Chardonnay and Riesling (http://www.grapegrowersofontario.com). with a yield of 1256 t in 

2009. Despite the controversial debate on the necessity of using irrigation in order to obtain 

premium wines, and due to increasing the frequency of the dry periods during the vegetation 

period, growers have reconsidered using irrigation in their vineyards. The effects of applying 

irrigation are related to the level of vine water status, which in turn is a result of interactions 

among soil, vine and climate conditions. 

One major way in which the wine industry is attempting to improve water use efficiency is 

through application of deficit irrigation. If managed properly, deficit irrigation can have minimal 

impact on carbon assimilation or stomatal conductance, despite lowering the total amount of water 

applied than in full irrigation (De Souza et al. 2003). The irrigation strategy known as regulated 
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deficit irrigation (RDI), which has been widely evaluated around the world, is a viable practice in 

vineyards for controlling excess vigor, reducing pest populations and disease pressure, and 

improving wine quality (Dry et al. 1996, Smart and Coombe 1983, Van Zy11984, Williams and 

Matthews 1990). Deficit irrigation applied by partial root zone drying (PRD) involves application 

of a reduced amount of irrigation to alternate sides of the vine (Dry and Loveys 1998, Dry et al. 

2000 a, b, 2001). ill PRD, the root zone is simultaneously wetted and dried, maintaining a 

relatively high leaf water potential ('I') close to values obtained in full irrigation treatments. 

However, the water use efficiency is improved through increases in xylem abscisic acid (ABA) 

concentration, and concomitant effects on stomatal conductance (Stoll et al. 2000a). 

PRD strategy was developed from observations that an increase in ABA concentration 

produced in the drying roots reduced stomatal conductance and vegetative growth (Dry and 

Loveys 1999, Dry et al. 2000 a, b, Loveys 1984 a, b, Stoll et al. 2000 b, Zhang et al. 1987). Less 

data is available from field studies (Dry and Loveys 1998, Dry et al. 2000 a, b, 2001), and recent 

results suggest some discrepancies between container and field experiments (Pudney and 

McCarthy 2004). 

However, there is still debate on PRD strategy and its effects on grape quality. ill most of 

the studies the amount of water used in the PRD treatment was a fraction of the full irrigation 

treatment, and confusion persists on this strategy. Does the PRD treatment affect the grapes 

through the alternating dry and wet root zones or through the deficit water status deliberately 

created in the wet zone? The objectives of this research was to study the effect of different levels 

of water status imposed by various RDI and PRD irrigation strategies on vine physiology, yield 

components, grape composition, and wine sensory profile of Sauvignon blanc in a cool climate 

area. 

Material and Methods 

Site description and experimental design. The experiments were carried out over three 

seasons (2006 to 2008) in a commercial vineyard (Lambert Vineyards Ltd.) in the Niagara 

Peninsula Appellation of Ontario (43°13' N, 79°08' W, elevation 98 m), Canada. The trials were 

set up in one Sauvignon blanc block (23 rows in total), grafted on S04. Vines were spaced at 1.2 

m X 2.7 m (density = 3086 vines ha-1), trained to a double Guyot system, and vertically-shoot 

positioned. Row orientation was north-to-south. Soil management consisted of fertilization 

annually with 25 t· ha-1 fresh dairy manure, with floor management of alternate rows of annual 
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ryegrass and clean cultivation. Pest control was in accordance with local recommendations from 

Ontario Ministry of Agriculture, Food & Rural Affairs (OMAFRA, 2007). The soil type was 

Chinguacousy clay loam with generalized characteristics as follows: a gleyedbrunisolic gray 

brown luvisol with imperfect drainage (7 to 9 L/h); wilting point of the Ap horizon (0 to 27 cm) 

was 13.3% moisture; field capacity was 27.3 % moisture; bulk density increased from 1.25 glcm3 

in horizon A to 1.69 glcm3 in horizon C (Kingston and Presant 1989). The whole block had a tile 

drainage system, with tiles placed at a 60 cm depth in the middle of each inter-row space (2.4 m). 

The experimental design was a randomized complete block arrangement, with four 

irrigation treatments and four replicates, with two rows on each side of the plot as a buffer. The 

irrigation was initiated in each year of the experiment immediately after fruit set. Treatments were: 

non-irrigated control, PRD (100% ETc), full irrigation (100% ETc) and one RDI (25% ETc). 

Within each row treatment replicate, 10 equally-spaced vines were chosen for data collection. 

Irrigation was provided trough a trickle system using RAM® drip-tubing (Netafim, Fresno, CA) 

with 1.70 LIh emitters spaced 0.6 m apart in all irrigation treatments except PRD. Each row drip 

line was suspended at 40 cm and had its own valve that allowed switching off the irrigation 

individually for each treatment based on the calculated water needs. The PRD treatment consisted 

of two irrigation lines placed in parallel in the same row, each of which had its own valve at the 

end of the rows. Drippers (1.5 Llhour) were installed alternatively on each irrigation line at 1.2 m 

in 2006. In order to distribute the same amount of water as in 100% ETc treatment, but in a shorter 

period than in 2006, a second emitter was installed at 10 cm distance from the first one, in 2007. 

The volume of water used was calculated based on the reference evapotranspiration (ET 0), using 

the Penman-Monteith equation (Allen et al. 1998). Weather Innovations Inc. (WIN) supplied daily 

weather information such as: temperature (maximum, minimum, and average), relative humidity 

(both maximum and minimum), net radiation, precipitation, and wind speed required for 

calculation of ET 0 (http://www.weatherinnovations.coml). Irrigation was scheduled one day per 

week. To calculate the amount of water required weekly by the vine from the value ET 0, the 

methodology of VanDer Gulik (1987) was used and described in detail therein and elsewhere 

(Reynolds 2008). Throughout the season, the crop coefficients were calculated based on the 

procedure of Williams and Ayars (2005). The drip lines of the PRD treatments were switched 

alternatively biweekly in order to have just half of the root system irrigated. 

Vine and soil water status. Over the growing season, biweekly observations were 

conducted in order to monitor vine and soil water status. Data was collected in 1-2 days before the 

irrigation treatments were applied. A LI-1600 steady-state porometer (LICOR, Lincoln, NE) was 
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used each season to measure leaf transpiration rate (Ts; Ilg H20 cm-2
/ S-l) and leaf temperature. 

Photosynthetic photon flux density (PPFD) readings were also collected by the Li-190S-1 quantum 

sensor. Measurements were taken between 1l00h and 1400h, on three recently-expanded exposed 

leaves (one from three different shoots) from three vines per treatment replicate of ten previously 

marked. Midday leaf water potential ('I') was measured between 1100h and 1400h throughout the 

season, using a Scholander-type pressure chamber (Soil Moisture Corp., Santa Barbara, CA). Data 

was recorded on three exposed leaves from the same vines used to measure the transpiration rate. 

Soil water content was measured with FieldScout® (TDR) 300 time domain reflectometer 

(Spectrum Technologies, IL). Using 200 mm long rods, the instrument was used to measure the 

volumetric water content. Soil moisture was measured for each treatment replicate from all ten 

recorded vines. Soil moisture was also collected in the PRD treatment replicates by Profile Probe 

PR2 (Delta-T Devices Ltd Cambridge, UK). Two access tubes were inserted in the ground at 30 

cm from the trunk in the middle of each treatment replicate row, one tube on each side of the 

recorded vines. Soil moisture was collected from 6 depths (10, 20, 2040,60 and 100 cm). Data 

was stored on the soil moisture meter HH2 and uploaded on computer for analysis. 

Yield and vine vigor components. The experimental vines were harvested 1 to 2 days 

before of the commercial harvest date (the second or third week of September). The protocol for 

data collection was similar to that described in detail in Chapter 3a. 

Winemaking. The winemaking protocol was similar to that described for Chardonnay 

grapes in Chapter 4, except the fermentation stage where different yeast was used. All must were 

inoculated with ZymafIore VL3 (Saccharomyces cerevisiae) yeast (Lallemand Inc., Montreal, 

QB). 

Fruit and wine composition. Berry, must and wine samples were analyzed using similar 

protocols as those used for Baco noir cultivar. The aforementioned methods were described in 

Chapter 3b and in Balint and Reynolds (2010). 

Sensory analysis. Wines from 2007 vintage were subjected to sensory analysis. Due to an 

off flavor found in most of the 2006 vintage wines, all the experimental wines were excluded from 

the sensory work. A total of 11 judges with ages ranging from 23 to 58 were involved in the 

sensory work on 2007 wines over the three months period. The group was composed of Brock 

University faculty, staff, and students from the viticulture and oenology program. They were 

selected based on their availability and motivation. All of them were volunteers and had previously 

sensory training. 
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Discrimination test. A modified alternative forced choice test (5-AFC) was used to 

compare a control wine (non-irrigated) to each irrigation treatment to find differences between 

control and all others (O'Mahoney 1986). This was intended as a preliminary exercise to determine 

whether differences existed between treatments, what the basis for those differences might be, and 

whether the panelists were dependable. With few changes, the protocol was similar as that 

described in detail in Chapter 3b. The test ran over three weeks, testing three field replicates. In 

each week was was tested just one field replicate. Each flight had five wines. Two control (field) 

wine samples were included in each flight replicate. 

Descriptive analysis. The training protocol, scale and descriptive analysis methodology 

used were similar with those described in Chapter 3b. Six training sessions were run over a period 

of three weeks. During the first two sessions, the panelists tasted all the samples from one field 

replicate in order to become familiar with the wines. Reference standards were created to help the 

panelist understand how to define and rate each attribute. The references were also adjusted during 

the training session until everyone agreed that the reference was representative for that particular 

attribute (Table 5.7). On each session the control wine was assessed for each sensory attribute 

identified. In each session, they tasted four wines (field treatments). A blind control was included 

in each training session. Data collection followed the same protocol as that presented in Chapter 

3b. 

Data analysis. Field data ('P, Ts, soil moisture), fruit and wine chemical data were 

analyzed using SAS statistical package (SAS Institute; Cary, NC, USA). Using GLM, analysis of 

variance was performed on physiological and chemical data. Duncan's multiple range test was 

used for means separation for all data sets (field, chemical and sensory), and Dunnett's t-test was 

used to determine those treatment means that were statistically different from the control at a 

significance level of a:::;0.05. Sensory data were analyzed using XLSTAT (Addinsoft, Paris, 

France). Principal components analysis (PCA) was performed on the means of field data, chemical 

data, and sensory scores of aroma and flavor descriptors for each year of the experiment. Partial 

least squares regression (PLS) was performed on the field, chemical and sensory data in order to 

find the relationship among these data. 

Results and Discussion 

General meteorology. Meteorological data was described in detail in Chapter 3. The 2006 

and 2008 years were wet seasons with a total rainfall of 220 and 345 mm, respectively, from June 
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to August. The 2007 season was the driest with a total rainfall of only 56 mm, which was 

approximately 25% of the same period in 2006. In 2007, particularly in May and July, 

temperatures were considerably higher than average. 

Soil moisture (Tables 5.1. and 5.2; Figs. 5.1. A to C.). Soil moisture measured by TDR at 

20 cm depth had a different trend each year during the period studied. A clear separation among 

the treatments was observed at beginning of July and August 2006. PRD and fully irrigated (100% 

ETc) were the most effective in increasing soil water content (Fig 5.lA). However, on 2 August, 

soil moisture in the PRD treatment showed a higher value compare to that found in the other 

treatments. The minimum soil moisture value was below the wilting point (13.3%) likewise found 

on 2 August in all treatments except the PRD (Fig. 5.lA). This period (end of July) was 

characterized by a lack of precipitation, high temperatures and high solar radiation (Chapter 3a; 

Fig. 3a-l and 2). Trends were similar in 2007 for PRD and 100% ETc (fully irrigated), having 

slightly higher values at the end of July (Fig. 5.lB). Soil moisture in non-irrigated and RDI 

treatments was consistently lower than the PRD and fully irrigated treatments. However, soil 

moisture in PRD treatment was lower than the fully irrigated treatment and higher than the non

irrigated and RDI vines. This finding can be explained better in this particular dry and hot season. 

ABA produced in the drying roots has an impact on root growth (Dry et al. 2000). The same 

authors indicated that vines subjected to PRD irrigation increased root development in deeper soil 

layers when compare to a fully irrigated controL In 2007, soil moisture was different among 

treatments throughout the season (Fig. 5.lB). In 2008, soil moisture followed the same trend as 

precipitation, with a maximum at the end of July corresponding to the maximum amount of 

precipitation (Fig. 5.lC). Soil moisture pattern was different than in the previous two seasons. Soil 

moisture did not drop below wilting point in 2008 (13.3% v/v -Kingston and Pres ant 1989) at any 

sampling date (Fig. 5.lC). 

Soil moisture measured by the Profile Probe in the PRD treatment clearly showed the 

difference between dry and wet sides in 2006 and 2007 (Tables 5.1 and 5.2). Due to consistently 

high soil moisture throughout the season in 2008, data was not shown. The soil moisture showed a 

maximum difference of 20% between wet and dry sides in 2006 (Table 5.1), while in 2007 the 

difference between wet and dry was almost 50% (Table 5.2). Soil moisture varied in both years in 

PRD treatments not only between wet and dry zones but also with depth. In 2006, the difference 

between wet and dry zone at the first sampling date was low at all depths. The soil moisture at the 

same depth did not show high fluctuation over the season in either wet or dry zones. This might be 

explained by the fact that these vines had a well established root system by the time the experiment 
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was initiated, and consequently it did not allowed the development of the root zones necessary to 

accurately implement and demonstrate effects of these irrigation strategies. At the 30 cm depth, 

soil moisture was much lower in the dry zone compared to the other depths (Table 5.1). One could 

speculate that the water depletion rate was higher due to higher root density at that depth. Overall, 

in 2007, soil moisture had lower values in both zones compare to those found in 2006 (Table 5.2). 

The lowest difference between dry and wet zone was recorded at 100 cm depth. Moreover, the soil 

moisture at the same depth was consistently higher than that found at the other depths (Table 5.2). 

However, the first and last seasons were wetter than normal, and the excess rainfall made it 

difficult to achieve a clear separation among treatments. 

Soil water depletion patterns were similar and more stable in 2006 and 2007 than in 2008, 

when excess rainfall and cool temperatures during the growing season occurred. High amplitude in 

soil water depletion levels between treatments during dry and hot years is explained by oscillatory 

transpiration during the day (Rose and Rose 1994) and high soil evaporation. This might be a 

consequence of low canopy developed under low water status and less soil shading. 

Soil moisture can be a reasonable measure of the plant stress. However, although 

determination of soil moisture is commonly performed and relatively easy to do, there are several 

drawbacks that limit its use in water management decisions in viticulture. First, the same level of 

plant water status can occur at very different soil water availabilities and second, there are still 

uncertainties where the actual zone of active water uptake is located (Davenport et al. 2008). There 

is evidence that the type of irrigation applied affects the lateral (horizontal) spread of roots through 

the soil moisture pattern. A study in South Africa showed that drip irrigation reduced the lateral 

spread of root systems, and resulted in higher root densities within the drip zone as compared to 

microsprinkler irrigation (Van ZyI1988). 

Transpiration (Figures S.2A to C). In 2006, all treatments followed a decreasing trend in 

Ts between the beginning of July and late August (Fig. 5.2A). Despite the fact that the same 

amount of water was applied in the PRD treatment as in the fully irrigated treatment, Ts values 

were close to control in the PRD treatment. This reduction in Ts in PRD treatment might have 

been due to ABA produced in both the roots and leaves. As expected, the Ts rate was lower in 

PRD than in fully irrigated treatment. However, PRD closely followed the non-irrigated and RDI 

treatments in August. This was due to the fact that vine water status is not only one factor that 

controls the stomatal opening. Other factors such as temperature, solar radiation and vapor 

pressure deficit affect stomatal opening and consequently Ts rate (Hetherington and Woodward 

2003). The results from this study are in agreement with others who showed that PRD treatment 
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reduced Ts rate per unit of leaf area, relative to full irrigation (Dry and Loveys 1999, Sto1l2000a). 

In 2007, Ts was much lower than in 2006, and responded better to irrigation treatments (Fig. 

5.2B). The trend in Ts rate was downward until the beginning of July. Afterwards, the Ts values 

showed a steady trend throughout the season. However, the highest magnitude of difference was 

between full irrigation treatment and the other treatments. In 2008, contrary to expectations, the Ts 

trend was very different from previous years (Fig. 5.2C). Despite high soil moisture throughout the 

season, Ts showed a steady downward trend in all treatments, having almost similar values like 

those from 2007 (Fig. 5.2B). The lowest values were recorded in the ftrst week of July. Small 

differences between treatments appeared at the end of July, even though no irrigation treatments 

had been applied up to that point. Due to the high amount of precipitation in 2008, irrigation 

treatments were applied only in the last three weeks of August, coinciding with veraison. The 

average values for Ts in 2008 were less than the values of 2006 and 2007 despite higher soil 

moisture, which can be explained by lower temperature and solar intensity, two major factors that 

drive vine transpiration. Effects of PRD on both potted and fteld-grown grapevines include a 

reduction in stomatal conductance and Ts rate (Dry and Loveys 1999, Dry et al. 2000 a, b). 

Chemical signals such as ABA produced in the dry roots reduce stomatal conductance and 

vegetative growth while the fully hydrated roots maintain a favorable water status in the aerial 

parts of the plant (Dry and Loveys 1999, Zhang et al. 1987). However, most of the irrigation 

studies conducted on effect of PRD strategy, calculated the amount of water needed in PRD 

treatments as a percentage of crop evapotranspiration. The results from this work cannot be 

compared with those found in most of the studies where PRD strategy was used since in the 

present trials full water replacement was applied. Moreover, this data showed that PRD treatment 

affected the transpiration process even in a region which is considered cool and humid. 

Leaf water potential (Figures. S.3A to C) • . Leaf '" had a different pattern in each year of 

the study. In 2006, leaf", showed a different trend than that one found in transpiration (Fig 5.3.A). 

PRD and full irrigation treatments had the highest leaf", (less negative) while non-irrigated and 

RDI treatments had much lower values (more negative). The highest magnitude of difference 

among treatments was recorded at beginning of August, during which the leaf", varied from -0.78 

MPa in fully irrigated treatment to -1.14 MPa in the non-irrigated treatment (Fig. 5.3A). However, 

in some studies, leaf '" in non-irrigated vines was reported as high as -1.6 MPa (Dundon and Smart 

1984, During and Loveys 1982). 

The greatest separation of treatments based on leaf '" occurred in 2007 (Fig. 5.3B). Leaf", 

reached the minimum value (-1.4 MPa) in the non-irrigated treatment, at the end of August (Fig. 
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5.3B). The PRD treatment displayed lower water status than the full irrigation treatment on all 

sampling dates but much higher than the control and 25% ETc RDI. The leaf '" values were> -1.0 

MPa in PRD and full irrigation treatments throughout the season (Fig. 5.3B). This suggests that 

vines under these two treatments did not undergo any water stress period, since -1.0 MPa is 

considered as the threshold point from which vines can suffer from different levels of water stress. 

Leaf 'I' values between -1.4 MPa in well-irrigated post-veraison treatments (3.5 mmdaily) 

and -1.9 MPa in low irrigated treatments (1 mm daily) were reported for Sauvignon blanc in Israel 

(Naor et al. 1993). Their values were much lower, even in the well irrigated treatment, than those 

in the present trial. Since their experiment was in a semi-arid region (Golan Heights), it is difficult 

to compare responses to treatments, even though they used the same cultivar. Moreover, they 

stated that the low leaf '" was attributed to the relatively high vapor pressure deficit, wind speed 

and solar radiation. In general, variations in leaf 'I' are not a result of changes in soil water 

availability but rather due to temporal variations in meteorological conditions (Naor etal. 1993). 

In 2008, leaf '" had the lowest values in the fIrst week of July, when all treatments fell to < 

- 1.0 MPa (Fig. 5.3C). The high amount of precipitation thereafter alleviated the water stress 

during the season, and the leaf 'I' values were between -0.8 and -0.9 MPa. These data suggest that 

Sauvignon blanc is an anisohydric cultivar, showing high variation due to soil moisture content, 

especially in 2007. Generally, as a soil dries out a decrease in stomatal conductance is associated 

with a reduction in leaf '1'. In brief, isohydric plants tend to maintain a more constant water status 

by controlling stomatal conductance from an interaction between hydraulic and chemical signals, 

whereas anisohydric species tend to have less rigid stomatal control, which allows a greater 

fluctuation in leaf", with decreasing soil '" (Lambers et al. 1998, Tardieu and Simonneau 1998) or 

increasing evaporative demand (Soar et al. 2006). 

Shoot growth and vine size (Figs. 5.4A, B; Table 5.3). In 2006, vine size was highest in 

fully irrigated and RDI treatments (Table 5.3). Contrary to the expectation, PRD treatments, that 

received 100% ETc, had a lower vine size than 25% ETc. This might be explained by the higher 

production of ABA in the PRD treatment, which affects the shoot growth rate. In 2006, the shoot 

growth rate showed an increasing trend for 100% ETc treatment with a maximum in the first week 

of July (Fig. 5.4A). The maximum magnitude of difference among treatments was found at 

beginning of July with values between 5 and 43 cm. Even in a wet year such as 2006, shoot growth 

rate showed a steadily decreasing trend, reaching a minimum at the end of July. The 100% ETc 

treatment had the highest shoot growth rate in both years studied. The vegetation in 2006 was more 

advanced at the time that data collection began compared to 2007. In 2007, vine size was highest 
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in 100% ETc, while the vine size in the PRD treatment did not differ from non-irrigated vines. The 

maximum growth rate reached a peak in 2007 almost one week later compare to 2006 (Fig. 5.4B). 

This can be explained by the higher amount of precipitation that accelerated shoot growth in 

irrigation treatments. The PRD treatment had an intermediate shoot growth rate between the 

control and full irrigation treatments. In the 2008 season, vine size was not different among 

treatments, which is not surprising in view of the consistently high soil moisture throughout the 

season (Table 5.3). In 2008, shoot growth data were collected just once, and because of the high 

amounts of precipitation, no treatment differences occurred (data not shown). 

Winter pruning weights provided an assessment of vine size. One interesting observation 

was that not in all treatments the vine size was correlated with shoot growth rate. The results do 

not totally agree with previous studies where reduction in shoot and fruit growth was found in 

vines under water stress (Bravdo et al. 1985, Evans et al. 1993, McCarthy and Coombe 1984). 

However, many studies showed conflicting results in the PRD experiments, probably because 

many studies used a combination of PRD and deficit water strategy. A study comparing PRD and 

conventional irrigation methods, using two different water regimes, showed that most of the effects 

were due to the volume of water applied and not due to the method used (Gu et al. 2004). This data 

showed that both the method and the water regime can affect vine performance. However, the 

pattern is also affected by the climatic conditions from one particular year. A moderate stress can 

reduce vegetative growth without affecting photosynthetic activity, which favors the partitioning 

of the carbohydrates (Carbonneau and Deloire 2001). However, deficit irrigation treatments of 20 

and 40% of ETc led to no differences in vegetative growth (Centeno et al. 2005). Findings from 

present study are similar to results of RDI trials on Sauvignon blanc in Marlborough, New Zealand 

which indicated that RDI strategy decreases vine size (Greven et al. 2005). 

Yield components (Table 5.3). Very few yield variables were affected by irrigation in 

2006. No differences were recorded in terms of yield between non-irrigated and the other 

treatments,although RDI and PRD had yields slightly lower than the control. PRD and fully 

irrigated treatments had lower numbers of clusters per vine. This variation is not well explained by 

the treatments since it is well known that cluster differentiation occurred in the previous year when 

no treatments were applied. However, the full irrigation treatment was different than the control in 

terms of cluster weight and berry weight. Surprisingly, although PRD got 100% ETc replacement, 

it was different only in terms of berry weight (Table 5.3). In 2007, yield components responded 

better to irrigation treatments. Yield had the highest value in 100% ETc and was different from 

non-irrigated, while PRD and RDI were slightly higher than the non-irrigated vines. Contrary to 
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the 2006 season, in 2007, the highest number of clusters per vine was found in RDI treatment, 

while PRD and full irrigation treatments showed intermediary values. This situation occcured due 

to the irrigation treatments, which were initiated in 2006, or due to the climatic conditions during 

the previous season. However, the cluster and berry weights had the highest values in 100% ETc. 

The number of clusters from the PRD treatment were not significantly different compare to 

control, although they were 10 % heavier (Table 5.3). In 2008, the PRD treatment had the lowest 

yield, mainly due to the lowest number of clusters per vine. This might be explained by some 

changes in hormonal balance in the previous season during the cluster initiation (perhaps due to 

carryover effects of the sunny and dry 2007 season). However, no differences were observed 

among treatments in terms of cluster weight and berries per cluster (Table 5.3.). In 2008, yield 

components had the highest values in all four treatments compared with 2006 and 2007. 

Evaluation of PRD and RDI strategies on Sauvignon blanc in California found that Ts rate, 

pruning weights, number of lateral shoots and fruit TA were affected only by irrigation volume 

and not by method of irrigation used (Gu et al. 2004). Vines from PRD treatments compensate for 

the loss of available water on the dry side by a relative increase in root development in moist soil 

layers, and in the deeper part of the dry side (Dry et al. 2000c). In one study on water use by 

Sauvignon blanc vines in Marlborough, New Zealand, reducing water by 40% did not lead to 

differences in yield or quality variables (Greven et al. 2005). In an area like Marlborough where 

irrigation is normally supplemental rather than essential and which is similar to the climatic 

conditions during the growing season, seasonal differences are likely to be greater than irrigation 

treatment differences (Greven et al. 2005). In this study the results do not clarify the beneficial 

effect of PRD versus RDI, even if some variables were affected by them. This might be also 

explained by the climatic variation throughout the period studied over which were not under 

control. One study conducted on Thompson Seedless indicated that a 50% reduction in irrigation 

volume resulted in only a 26% yield loss while a 70% reduction in irrigation volume resulted in 

only a 35% yield loss (Grimes and Williams 1990). Lack of yield reductions in RDI treatments 

was explained by the fact that the vines did not reach the critical leaf area to fruit weight ratio (Gu 

et al. 2004). 

Berry composition (Table 5.4). All measured constituents were affected by the irrigation 

treatments. In 2006, full irrigation and RDI treatments had higher °Brix than PRD and non

irrigated treatments contrary to the expectations, while TA was higher in all irrigated treatments .. 

compare to the control. Berry pH was higher than non-irrigated only in PRD and full irrigation 

treatments. The most noteworthy observation was that °Brix values were much lower in 2007 
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compare to 2006 and 2008 seasons (Table 5.4). However, the full irrigation treatment had the 

lowest °Brix while PRD had the highest one. Berry TA was the lowest in the control. Contrary to 

the expectations, TA had higher values in RDI than PRD, although more water was applied in the 

latter treatment. All irrigated treatments displayed small increases in berry TA, but only the 100% 

ETc displayed other differences relative to the control (lower °Brix, higher pH). In 2008, °Brix did 

not show differences among treatments but they had overall slightly higher values than in 2007. 

However, in 2008 TA had higher values in PRD and full irrigation, while pH was higher in non

irrigated and PRD treatments. 

In terms of berry composition, there was no consistent pattern among irrigation treatments 

from year to year, which suggests that other climatic factors might affect the berry chemistry. 

Some studies showed that irrigation increased the total °Brix per berry. However, total soluble 

solids levels were reduced either due to a dilution effect (Bravdo et al. 1985) or competitive 

vegetative sinks (Bravdo and Hepner 1987). Because of high climatic variation over the period 

studied, both explanations are plausible to justify the variation in ~rix data. In Bordeaux, a TA of 

7.5 gIL is considered optimum for the production of well-balanced white wines (Ribereau-Gayon 

et al. 1998). In this study, a TA of7.5 gIL was only found in the 100% ETc in 2007. However, 

contrary to the expectations, the TA values were the highest in 2006 despite more rainfall in 2008, 

as well as lower temperatures and lower solar radiation intensity. The results are not totally in 

agreement with other studies conducted in Israel, where moderate reduction in TA was observed 

under water deficits (Bravdo et al. 1985). In contrast, an Australian study reported no effect of 

water stress on berry TA (McCarthy et al. 2000). However, most studies have shown that TA 

increased and °Brix decreased under excessive irrigation, resulting in delayed fruit maturation 

(Freeman et al1980, Hepner et al. 1985). An irrigation study on Tempranillo grapevine suggested 

that higher yields in irrigated vines did not have any adverse effect on grape must composition and 

hence on grape juice quality, because the whole synthesis and accumulation processes were able to 

offset any dilution effects (Esteban et al. 1999). Severe water deficit stress determined low berry 

sugar concentration, low TA and high pH, because oflow malic acid concentration (Goodwin 

2002). The berry composition affected by deficit or excess water is not favorable for producing 

high-quality white wines (Peyrot des Gachons et al. 2005). 

In general, the response of berry pH to soil moisture varies. Berry pH increased with 

irrigation for Carignane (Freeman and Kliewer 1983), but not for Cabernet franc (Matthews and 

Anderson 1988), or Cabernet Sauvignon (Bravdo et al. 1985, Neja et al. 1977). In another study on 

Shiraz, no berry pH response to irrigation was reported (McCarthy et al. 2000). However, a 
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reduction in pH was noted in PRD irrigated fruit compared to control vines, and this was due to the 

reduced canopy density (Dry et al. 2000c). 

In Bordeaux, berry composition of Sauvignon blanc at harvest was more influenced by 

vine water status rather than by vine nitrogen status (Peyrot des Gachons et al. 2005). The grape 

juice from water deficit-stressed vines contained more nitrogen, contrary to many other studies that 

showed that water deficit decreased the nitrogen level in berries (Peyrot des Gachons et al. 2005). 

It is likely that high nitrogen status increases the susceptibility of vines to water stress. The same 

authors explained that high nitrogen uptake promotes shoot growth early in the season and 

consequently results in high leaf area. High leaf area increases vine water use and favors depletion 

of soil water reserves (Peyrot des Gachons et al. 2005). 

PRD is associated overall with an increase in berry quality, due to increased control over 

vegetative growth leading to increased light penetration into the fruiting zone (De Souza et al. 

2005). The same authors found that PRD maintained yield, but berry quality was not improved 

compared to fully irrigated vines (De Souza et al. 2005). In this study PRD treatment did not show 

a consistent effect on yield components and berry composition over the period studied. This might 

be explained by the climatic variation from year to year or through the amount of water used. 

Since in most of the experiments, PRD treatment replaced just a fraction of ETc, it is possible that 

the real effect of PRD treatment to be determined by water deficit and not by the irrigation strategy 

used (Gu et al. 2004). 

Must and wine composition (Table 5.5 and 5.6). In 2006, the highest must °Brix was 

found in the PRD treatment and the lowest one in the full irrigation (Table 5.5). This pattern was 

different than that one found in berry composition. A possible higher ABA production in the PRD 

treatment could explain this finding. ABA could control the stomatal opening which in tum it 

controls the hydraulic conductivity in the xylem vessels. Less water accumulated in the berries due 

to controlling the water flux could maximize soluble solids accumulation in the berry without a 

dilution effect. Must TA was lowest in the control but slightly higher in the irrigated treatments. 

Must pH was highest in the fully irrigated treatment and lowest in the RDI treatment (Table 5.5). 

One interesting observation was that must from PRD and RDI treatments had the same TA but 

different pH values. The pH was much lower in the RDI. This is partially explained by treatment 

effect on potassium uptake (Boulton 1980). 

In 2007, contrary to the expectation, must °Brix was much lower in all treatments than in 

2006 (Table 5.5). The lowest °Brix was found in the fully irrigated treatment. Moreover, pH values 
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were much lower in all treatments compared to 2006. This indicates that metabolism of the main 

acids in the vine and also potassium uptake could be disturbed in hot and dry years. This is in 

agreement with one study which showed a strong relationship between potassium, acids and pH 

(Boulton 1980). 

In 2006, the alcohol concentration in the wines followed the same pattern as °Brix in the 

corresponding must. Wine TA decreased in all treatments following the same pattern as in the 

musts. Wine pH showed a slightly decreasing trend in all wines (Table 5.6). In 2007, all the wines 

had lower alcohol concentration compare to those from 2006. The difference among treatments 

was slightly lower in 2007 than in 2006. The pH in 2007 was not different in any wine from that 

found in the corresponding must. An irrigation experiment in South Africa showed that the wine 

quality of Colombar was insensitive to irrigation (Van ZyI1984). Other irrigation studies on white 

cultivars such as Chenin blanc (Marais et al. 2005) and Sauvignon blanc (Myburgh 2006) suggest 

that smaller berries as a result of reduced irrigation would not dramatically increase the quality of 

white wine. 

Sensory analysis (Table 5.8; Fig. 5.7, 5.8). The 2006 vintage was rejected from the 

sensory analysis due to an off flavor found in most of the experimental wines after a preliminary 

bench tasting. The 2007 vintage was assessed for seven aroma descriptors and eight flavors and 

mouthfeel descriptors. As expected, substantial differences occurred between the control and the 

irrigated treatments. The PRD wines despite having higher intensity of some aroma and flavor 

descriptors when compared with the control, they were not different from those from the full or 25 

% ETc irrigation treatments. Despite applying the same amount of water alternately in the PRD or 

on both sides in the fully irrigated treatment, there were differences between them for most of the 

aroma descriptors. The 25% ETc treatment showed the greatest difference from the control for all 

descriptors except honey and melon flavor (Table 5.8). Honey and melon aroma showed the 

highest score in PRD wines. The control showed the highest intensity of the honey descriptor, 

although the intensity score for stone fruit was very close to that one found in wines fromPRD. 

The PRD wines had the highest score for melon and stone fruit. Lemon grass and acidity were 

higher in irrigated treatments compare to the control. Overall, the 25 % ETc showed higher 

intensities for most of the typical descriptors for this cultivar (Table 5.8). However, boxwood and 

hay are common descriptors for Sauvignon blanc wines from cool regions. These two descriptors, 

which generally describe the "green" character of Sauvignon blanc, had higher scores in irrigated 

treatments compare to the control (Table 5.8). 
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Different studies (Darriet et al. 1995) showed that the thioI4-mercapto-4-methylpentan-2-

one is responsible for the box tree and hay aromas in Sauvignon blanc wines, while 4-mercapto-4-

methylpentan-2-01 smells of citrus zest, and 3-mercaptohexan-l-01 (3MH) correspond to grapefruit 

and passion fruit flavor (Tominaga et al. 1998). The concentration of volatile thiols responsible for 

most of the flavor and aroma in Sauvignon blanc wine is directly related to the concentration of 

their precursors, but only a small percentage of the precursors are effectively transformed into 

aroma during vinification (Peyrot des Gachons et al. 2000). Moreover, thiols had a higher degree 

of correlation with the sensory attributes when comparing them to methoxypyrazines (Lund et al. 

2009). The latter chemical compounds are responsible for green- capsicum characteristics (Allen 

and Lacey 1999). This sensory data did not show an increase in intensity of any attribute related to 

the fresh green vegetable characteristics even in wines from the full irrigated treatments. This 

might be explained by the relative high temperature and solar radiation during the 2007 growing 

season (Chapter 3a), which can affect the metabolism of methoxypyrazines in berries. The typical 

Sauvignon blanc aroma profile is affected by origin/climate where the grapevines are grown (Allen 

and Lacey 1993). Methoxypyrazines are also light sensitive and easily degradable to other 

components (Heymann et al. 1986). This might be a reasonable explanation of the results in 2007, 

when besides a higher solar intensity during the season, high temperatures might enhance the 

catabolism ofmethoxypyrazine (Marais 1994). Moreover, "herbaceous-vegetative" aroma of 

Sauvignon blanc is known to decrease progressively as grape maturity increases (Augustyn et al. 

1982). According to previous findings, it has been expected to see more vegetal character in the 

full irrigation treatment where the canopy size was larger and more clusters shade possible 

occurred. 

Overall, few research on the relationship among vine and soil water status, irrigation 

strategies and the sensory profile of Sauvignon blanc has been done. Dry (2004) reported that PRD 

has the potential to improve wine quality by increasing secondary metabolites such as phenolics 

and isoprenoids, including carotenoids and C norisoprenoids that could also affect wine quality 
13 

(color, astringency, mouth feel, aroma/flavor). This data also showed an increase in intensity of 

some of the aroma descriptors, which might be reasonably explained by changing the enzymatic 

activity under different water status level in the vine. The role of light in mechanisms of flavor 

biosynthesis appears to be of particular importance. Water status might have an indirect effect on 

flavor accumulation through its effect on the canopy size. Changes in flavor compounds as a result 

of leaf and cluster shading was more related to the effect of light rather than the temperature 

(Morrison and Noble 1990). Although, the sensory data was not accompanied by chemical aroma 
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and flavor compounds analysis, the Sauvignon blanc wine sensory profile had many of the 

distinctive characteristics for this cultivar, both fruity (citrus, tropical, gooseberry, passion fruit) 

and green (grassy, leafy, capsicum, asparagus) characteristics (Cooper 2002). However, their 

intensity seems to be affected by different irrigation strategies used (Table 5.8). 

The PCA on 2007 sensory data showed that the first two factors explained 78.63% of 

variability (Fig. 5.7). PCI explained 44.88% while PC2 explained 33.75% ofthe variability in the 

data set. PCI was positively loaded with lemon grass, tropical fruit, boxwood aroma and acidity, 

and negatively loaded with honey aroma. PC2 was positively loaded with melon aroma and flavor. 

The distribution of 2007 wines on the PCA plot showed a good discrimination among the 

treatments. Contrary to the expectations PRD (100% ETc) located in the upper right plane, and the 

fully irrigated treatment located in the lower right plane were not associated with the same aroma 

and flavor descriptors. The PRD and RDI treatments were located in the same plane, being 

associated with stone fruit, tropical fruit, honey, melon, and honey descriptors. · By plotting the 

mean sensory scores on radar diagrams for each treatment, data clearly showed that not only the 

water status affected the wine sensory profile but also the strategy used (Fig. 5.8). Unfortunately, 

having wines just from one season did not allow to draw conclusions of the vintage effect on the 

wine sensory profile. In the present study data is nonetheless in agreement with Peyrot des 

Gachons et al. (2005) who found that in dry vintages, the highest aroma potential was achieved on 

the plots with the greatest water reserves while in wet vintages, the highest aroma potential was 

achieved on the plots with the lowest water reserves. Moreover, the same authors found that water 

deficit stress reduced berry size but it was not observed any relationship between berry size and 

berry aroma precursor concentration in Sauvignon blanc, which is consistent with data from 2007 

(Tables 5.3 and 5.8). 

Relationships among soil and plant water status, yield components and chemical data. 

2006. PLS regression was performed on field, yield components and berry composition 

data from 2006 (Fig. 5.5). The diagram illustrated a high degree of correlation between Ts rate, 

leaf \jI and juice pH. This suggests that Ts rate might be a good predictor for juice pH. However, 

this is not the case all the time since it is well known that under particular climatic condition both 

Ts rate and leaf \jI could be affected by other factors than soil moisture. However,since pH in berry 

was not correlated with TA, it suggested that the pH variation was due to potassium uptake rather 

than the acid metabolism. All these variables were negatively correlated with leaf temperature. 

Leaf temperature is often above the air temperature mainly due to solar radiation. Leaf temperature 

decreases when the transpiration rate is high. However, a high Ts rate could not be possible 

217 



without consistently high soil moisture. Vine size was highly positively correlated with ~rix and 

TA in berry and wine and negatively correlated with alcohol concentration. Overall, these 

relationships indicate that irrigation treatments that control the canopy size did not have a negative 

effect on ~rix accumulation. Although soil moisture might increase the vine canopy, a good ratio 

between total leaf area and crop load would not affect negatively the sugar accumulation in berries. 

Yield was highly positively correlated with berries per cluster, and negatively correlated with the 

pH in wine. This relationship could not be explained very well by the treatments since flower 

differentiation occurs at budburst or immediately after. 

2007. The peA plot of field data indicated that FI and F2 explained for 99.97% of the 

total variability in the data set (Fig. 5.6). This suggests that in very hot and dry seasons, in areas 

normally considered cool, soil and plant water status variables react differently to the strategy and 

volume of water applied through irrigation. Soil moisture was highly positively correlated with 

leaf'll, and negatively correlated with leaf temperature. Despite the fact that leaf'll is affected more 

by the vapor pressure deficit and less by the soil moisture, in this study data indicated a good 

correlation between'll and soil moisture. Vine size did not explain the variability on the frrst two 

components. All four irrigation treatments were well separated by their effects on physiological 

variables. The fully irrigated treatment was located in the upper right plane, PRD in the lower right 

plane, and the control and RDI treatment was located in the upper left plane. This indicates that the 

control and RDI treatment have almost the same effect on the field data. This data corroborate 

findings showing that vines are more responsive to volume of water applied through irrigation and 

less to the strategy used to deliver it (Gu et al. 2004). 

In 2007, PLS analysis was performed on whole data set including sensory ones (Fig. 5.9). 

The PLS diagram illustrated a strong negative correlation among leaf temperature and Ts rate, leaf 

'1', soil moisture, yield, clusters per vine and boxwood aroma. This indicates that leaf temperature 

could be a good predictor for soil water status and yield components. Due to the fact that 2007 

season was characterized by high temperature and low precipitation, the vines conserved water by 

stomatal closure. This could have led to overheating the leaves and inhabiting the enzymatic 

activity. Lemon grass was strong negatively correlated with honey and tropical fruit aroma 

descriptors. Soluble solids concentration was highly positively correlated with the alcohol 

concentration, stone fruit flavor and melon aroma, and negatively correlated with tropical fruit 

aroma and boxwood flavor. In other studies, tropical fruit and boxwood (green) aroma were 

associated with cool-wet region style of Sauvignon blanc, while stone fruits and melon were 

associated with warm-dry climates (Myburgh 2006, Peyrot des Gachons et al2005). 

218 



In 2008, PLS analysis performed on field, yield components and berry composition data 

showed different relationships among the variables (Fig. 5.10). Leaf temperature was highly 

negatively correlated with leaf,!" berry TA, berry weight and soil moisture. Low leaf temperature 

indicates that soil had enough water reserves, and minimal water lost though transpiration. 

Therefore, high canopy size develops, which in turn extends the ripening process and delays the 

harvest time. This aspect was seen in low berry °Brix and high TA. Vine size was highly positively 

correlated with cluster weight, while juice pH was highly negatively correlated with yield, Ts, and 

clusters per vine. This indicates that high water status, negatively affects the fruit quality, 

particularly if the other two climatic factors (temperature and solar radiation) are low throughout 

the season. Soil moisture, soluble solids and the number of berries per cluster showed no 

relationship with any other variable studied. 

PRD irrigation strategy applied at deficit rates, have generated various responses in vines 

in different experiments. Some studies showed that vines are more affected by irrigation volume 

rather than method of application (Chalmers et al. 2004, Pudney and McCarthy 2004). Other 

studies concluded that PRD applied at different levels of ETc had no effect on physiology in 

peaches (Goldhamer et al. 2002) and grapes (Gu et al. 2004). The response of plants to PRD might 

be strongly influenced by environmental and management factors such as soil type, cultivar, vapor 

pressure deficit, irrigation frequency and level of deficit applied (Chalmers et al. 2004, De Souza 

et al. 2003). In the present trials, PRD effect might be altered especially in 2006 and 2007 by 

natural rainfall, and also by substantial horizontal movement of water through the soil profile due 

to the relatively high clay content. PRD irrigation strategy used in vineyards generates a unique 

physiological response distinct from conventional irrigation. By controlling water loss under high 

and low vapor pressure deficit, PRD improves water use efficiency (Collins et al. 2008). Data from 

the present study partially agrees with this finding. PRD grapes had higher °Brix than grapes from 

full irrigation in one of three years studied. 

Conclusions 

Using RDI or PRD in dry and warm years improved grape composition in the Niagara 

Region. Water status altered canopy characteristics, affecting vine physiology, which was not 

necessary translated into changes in grape composition. Irrigation did not have consistent effects 

on yield components and berry composition. This lack of consistency might be because soil 

moisture was relatively high during the growing season, since the irrigation treatments were 

initiated at fruit set. This is supported by results from previous studies on Baco noir (Chapters 3a 
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and 3b) and Chardonnay (Chapter 4), showing that high moisture during the entire growing season 

did not have a positive effect on grape composition. 

In very dry and hot seasons, like that of 2007, irrigation improved grape composition and 

wine aroma typicity. The balance between vegetative and fruity character of the Sauvignon blanc 

sensory profile was manipulated by soil moisture level. RDI strategy was more consistent in its 

effect on growth and yield compared to PRD, fully irrigated and non-irrigated treatments. RDI 

enhanced fruity aroma attributes, which suggests that this could be a viable strategy to improve 

grape and wine quality in cool areas. These findings are in agreement with others (Peyrot des 

Gachons et al. 2006) who suggested maintaining a mild water deficit to improve grape quality, not 

only in Sauvignon blanc but also for a number of other white Vitis vinifera grape cultivars such as 

GewUrztraminer, Petit Manseng, Gros Manseng, and Semillon. 

Despite improving the general vine physiology and fruit quality in dry years, more research 

should be conducted on PRD before a strong recommendation can be made. The results of this 

study clearly showed that both ends of plant water status spectrum had a negative effect on vine 

performance, while moderate water stress, 25 % RDI in this case, had a positive effect on fruit 

qUality. This contradicts a common belief among winemakers that irrigation affects fruit and wine 

quality negatively every time when it is used. More work is also required to find out whether the 

quality improvement found in red grapes might also be achieved in white grapes in different 

seasons and different regions. PRD offers significant advantages over RDI in achieving these 

quality improvements. Certainly, the sensory profile for Sauvignon blanc could be manipulated 

through irrigation. More research should nonetheless be done regarding the relationship of soil and 

vine water status, and their effects on the chemical compounds responsible for the sensory profile 

of this cultivar. 
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Table 5.1. Impact ofPRD irrigation treatments on soil moisture (% volumetric content) 
of Sauvignon blanc measured using a Profile Probe type PR2™ at five depths, Lambert 

Vineyards, Niagara-on-the-Lake, ON, 2006. 

Depth Side 21-Jun 04-Jul 18-Jul Ol-Aug 15-Aug 30-Aug 
Wet 15.1 20.6 18.6 19.8 17.2 18.9 

Wcm Dry 16.2 12.3 17.5 11.3 12.5 11.6 
Wet 19.6 20.6 21.4 21.5 22.3 18.9 

20cm Dry 16.2 15.2 17.3 15.8 16.2 14.8 
Wet 13.6 21.3 18.9 19.1 18.9 17.5 

30cm Dry 12.8 13.8 13.1 13.4 12.9 11.1 
Wet 21.2 20.6 18.6 19.8 17.2 18.9 

40cm 
Dry 21.5 18.1 16.9 14.3 15.1 14.9 -
Wet 16.2 17.3 16.8 17.9 18.1 17.6 

60cm Dry 14.9 12.1 11.4 11.5 10.9 12.6 
Wet 21.5 21.9 18.9 18.1 18.9 17.6 

WOcm 
Dry 19.5 17.2 16.1 13.2 13.8 14.2 

*Each value is a mean of the four PRO replicates reading. 
*Wet and Dry are the half sides in the row from one vine of the PRO treatment. 
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Table 5.2. Impact of PRD irrigation treatments on soil moisture (% volumetric content) of 
Sauvignon blanc measured using a Profile Probe type PR2™ at five depths, Lambert 

Vineyards, Niagara-on-the-Lake, ON, 2007. 
DeEth Side 27-Jun. 11-Jul 25-Jul 08-Aug 21-Aug 

Wet 18.1 19.6 21.1 19.6 19.1 
lOcm 

Dry 15.1 9.2 10.1 11.5 10.6 

Wet 15.2 19.1 20.1 19.1 18.3 
20cm 

Dry 14.6 11.1 12.3 13.1 12.9 

Wet 13.8 21.9 19.2 18.6 17.9 
30cm 

Dry 15.2 13.2 12.9 11.3 12.5 

Wet 17.5 19.2 19.5 18.9 17.6 
40cm 

Dry 16.2 12.9 11.8 12.3 11.6 
-

Wet 18.2 19.1 17.6 17.2 18.3 
60cm 

Dry 13.6 14.2 13.9 12.8 13.4 

Wet 19.9 20.6 19.2 19.8 18.3 
100cm 

Dry 17.9 16.8 17.9 16.5 12.1 

*Each value is a mean of the four PRD replicates reading. 
*Wet and Dry are the half sides in the row from one vine of the PRD treatment. 
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Table 5.3. Impact of irrigation treatments on yield components and vine size of Sauvignon blanc, Lambert Vineyards, Niagara-
on-the-Lake, ON, 2006-2008. 

Treatment Vine size (kg/vine) Yield (kg/vine) Clusters/vine Cluster wt. (g) Berries/cluster Berry wt. (g) 

2006 

C 0.71 b 7.95 ab 65 a 121.0 b 89 ab 1.38 b 

PRD 0.69b 7.44b 59b 121.6 b 84 b 1.46 a 

Full 0.86 a 8.16 a 59b 136.3 a 93 a 1.49 a 

RDI 0.84 a 7.88 ab 62ab 126.7 ab 85b 1.47 a 

Significance * * * * * ** 

2007 

C 0.60b 6.45 b 53 b 123.2 b 88 1.41b 

PRD 0.61 b 7.97 ab 60ab 136.3 ab 91 1.47 b 

Full 0.76 a 8.61 a 59 ab 152.6 a 92 1.67 a 

RDI 0.65 ab 8.12 ab 65a 127.4 b 90 1.41b 

Significance ** ** * *** ns *** 

2008 

C 0.86 10.03 b 61 b 164.4 85 1.93 b 

PRD 0.87 9.40c 56c 167.8 83 1.99 a 

Full 0.91 11.78 a 70a 168.2 86 1.98 a 

RDI 0.87 11.36 ab 67 ab 169.5 84 1.94 b 

Significance ns * * ns ns * 

C-control (non-irrigated); PRD-Partial root zone drying (100% ETc), Full (100% ETc), RDI-Regulated deficit irrigation (25% ETc); *,**,***,****, ns: 
Significant at P.:5 0.05,0.01,0.001,0.0001, or not significant, respectively. Letters within columns represent means separated at P.:5 0.05, Duncan's 
multiple range test. Boldfaced data indicate those values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data are 
significantly less than the control 
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Table 5.4. Impact of irrigation treatments on berry composition of Sauvignon blanc, 
Lambert Vineyards, Niagara-on-the-Lake, ON, 2006-2008. 

Treatment °Brix Titratable acidity (gIL) pH 

2006 

C 19.5 b 9.1 c 3.49b 

PRD 19.6b 9.4 b 3.56 a 

Full 20.2 a 9.6 a 3.57 a 

RDI 20.3 a 9.3 b 3.53 ab 

Significance * *** * 

2007 

C 18.3 ab 6.8 b 3.54 b 

PRD 18.9 a 7.2ab 3.58 ab 

Full 17.6 c 7.5 a 3.63 a 

RDI 18.1 b 7.4 a 3.57 ab 

Significance * *** *** 

2008 

C 19.7 7.8b 3.65 a 

PRD 19.6 8.2 a 3.66 a 

Full 19.6 8.3 a 3.60b 

RDI 19.9 7.9b 3.59 b 

Significance ns * * 

*C-control (non-irrigated); PRD-Partial root zone drying (100% ETc), Full (100% ETc), RDI
Regulated deficit irrigation (25% ETc). 100 and 25 % represent percentage of water replaced through 
irrigation. ETc - crop evapotranspiration. *,**,***,****, ns: Significant at P.$ 0.05,0.01,0.001,0.0001, 
or not significant, respectively. Letters within columns represent means separated at P.$ 0.05, Duncan's 
multiple range test. Boldfaced data indicate those values significantly greater than the control using 
Dunnett's t-test; boldfaced and underlined data are significantly less than the control 
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Table 5.5. Impact of irrigation treatments on must composition of Sauvignon blanc, 
Lambert Vineyards, Niagara-on-the-Lake, ON, 2006-2007. 

Treatment °Brix Titratable acidity (gIL) pH 

2006 

C 18.2 b 8.3 b 3..46b 

PRD 19.2 a 9.0ab 3.56 ab 

Full 17.6 c 9.3 a 3.60 a 

RDI 18.9 ab 9.0ab 3.36 c 

Significance * *** ** 

2007 

C 17.6 ab 7.9b 3.23 b 

PRD 17.8 a 7.6c 3.26 ab 

Full 16.8 c 8.5 a 3.25 ab 

RDI 17.1 b 8.0b 3.29 a 

Significance * *** *** 

*C-control (non-irrigated); PRD-Partial root zone drying (100% ETc), Full (100% ETc), RDI
Regulated deficit irrigation (25% ETc). 100 and 25 % represent percentage of water replaced through 
irrigation. ETc - crop evapotranspiration. *,**, ***,****, ns: Significant at p ~ 0.05,0.01,0.001,0.0001, 
or not significant, respectively. Letters within columns represent means separated at p ~ 0.05, Duncan's 
multiple range test. Boldfaced data indicate those values significantly greater than the control using 
Dunnett's t-test; boldfaced and underlined data are significantly less than the control 
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Table 5.6. Impact of irrigation treatments on wine composition of Sauvignon blanc, 
Lambert Vineyards, Niagara-on-the-Lake, ON, 2006-2007. 

Treatment Ethanol (% (v/v) Titratable acidity (gIL) pH 

2006 
C 10.12 ab 5.6 b 3.51 b 

PRD 10.45 a 6.0ab 3.53 ab 

Full 9.63 b 6.2 a 3.59 a 
RDI 9.88 ab 5.8 ab 3.38 c 
Significance * *** ** 

2007 

C 9.65b 5.0c 3.26 b 

PRD 9.78 a 5.2 c 3.26 b 

Full 9.17 c 5.8 a 3.25 b 
RDI 9.50bc 5.5 b 3.29 a 
Significance * **** *** 

*C-control (non-irrigated); PRD-Partial root zone drying (100% ETc), Full (100% ETc), RDI
Regulated deficit irrigation (25% ETc). 100 and 25 % represent percentage of water replaced through 
irrigation. ETc - crop evapotranspiration. 

*, **, ***, ****, ns: Significant at p ~ 0.05,0.01,0.001,0.0001, or not significant, respectively. Letters 
within columns represent means separated at p ~ 0.05, Duncan's multiple range test. Boldfaced data 
indicate those values significantly greater than the control using Dunnett's t-test; boldfaced and 
underlined data are significantly less than the control. 
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Table 5.7. Attributes and their standard references used for sensory evaluation of 
Sauvignon blanc wines 2007 

Sensory attribute 

Honey 

Tropical fruit 

Boxwood 

Melon 

Hay 

Stone fruit 

Lemon grass 

Acidity 

Reference standard (prepared in 100 mL base white wine 
Kressmann -France) 

1 mL of buckwheat honey (Bulk store) 

Two pieces of fresh passion fruit and grapefruit (approx. 15g) 

Ten crushed leaves of boxwood 

Honeydew melon (20-25 g) 

5 g of hay 

10 mL (apricot and peach canned) - No Name brand (No Frills) 

5 g of lemon grass leaves 

1.5g tartaric acid IL water 
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Table 5.8. Comparison of mean sensory scores among the irrigation treatments of Sauvignon blanc 
wines, Lambert Vineyards, Niagara-on-the-Lake, ON, 2007 

Variablerrreatment C PRD Full RDI Pr>F 

Aroma 

honey 2.3 c 4.1 a 2.6 c 3.3 b <0.001 

tropical fruit 1.8c 2.1 c 2.9b 3.5 a 0.028 

boxwood 2.1 c 2.7 ab 2.9 a 2.5 b 0.009 

melon 3.2 b 3.7 a 2.9 b 3.6 ab 0.016 

hay 1.8c 2.3 b 1.7 c 2.9 a 0.006 

stone fruit 2.1 c 2.8 ab 2.6 b . 3.6a 0.009 

lemon grass 1.4 c 2.3 b 2.9ab 3.2 a 0.005 

Flavor/mouthfeel 

HONEY 3.1 a 2.1 b 2.3 b 2.9ab 0.008 -
TROPICAL FRUIT 2.1 b 1.8b 1.8b 3.1 a 0.021 

BOXWOOD 2.3 bc 2.1 c 3.1 a 2.8 b 0.034 

MELON 2.9b 3.6a 2.8 b 3.2ab 0.038 

HAY 1.5 c 2.5 b 3.8 a 2.9b 0.007 

STONE FRUIT 2.9ab 3.1 a 1.1c 2.6 b <0.001 

LEMON GRASS 2.1 c 3.4 b 3.1 b 3.8 a 0.006 

ACIDITY 1.5c 3.1 ab 3.6 a 2.7 b 0.001 

* C-control (non-irrigated); PRD-Partial root zone drying (100% ETc), Full (100% ETc), RDI-
Regulated deficit irrigation (25% ETc). 100 and 25 % represent percentage of water replaced through 
irrigation. ETc - crop evapotranspiration. Means within rows with different letters are significantly 
different, Duncan' s multiple range test. 
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Figure 5.6. Principal component analysis (Fl&F2) of soil water status and physiological from four irrigation 
treatments of Sauvignon blanc from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. C-control (non
irrigated); PRD-Partial root zone drying (100% ETc), Full (100% ETc), RDI-Regulated deficit irrigation (25% 
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Figure 5.8. Radar diagram of the mean intensity ratings of four Sauvignon blanc wines made from different 
irrigation treatments Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Aroma and flavor attributes are 
specified by lower and higher case letters respectively. C-control (non-irrigated); PRD-Partial root zone drying 
(100% ETc), Full (100% ETc), RDI-Regulated deficit irrigation (25% ETc). 100 and 25 % represent percentage 
of water replaced through irrigation. ETc-crop evapotranspiration. 

245 



1 

0.75 

0.5 

0.25 

!;j 0 

-0.25 

-0.75 

-1 

-1 

Correlations with t on axes tl and t2 

-0.75 -0.5 -0.25 o 
t1 

0.25 0.5 0.75 1 

Figure 5.9. PLS regression analysis of soil and plant water status, yield components, berry and wine composition 
and sensory data from four irrigation treatments of Sauvignon blanc from Lambert Vineyards, Niagara-on-the
Lake, ON, 2007. Abbreviations: SM-soil moisture; Leaf T -leaf temperature; L WP-Ieaf water potential; Ts
transpiration; V-vine size; CN-number of clusters per vine; C.W.-cluster weight, B/C-number of berries per 
cluster; B.W.-berry weight; TA-W- titratable acidity in wine, TA-G- titratable acidity in juice berries; ETOH
volumetric alcoholic content. 
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Figure 5.10. PLS regression analysis of soil and plant water status, yield components and berry composition from 
four irrigation treatments of Sauvignon blanc from Lambert Vineyards, Niagara-on-the-Lake, ON, 2008. 
Abbreviations: SM-soil moisture; Leaf T -leaf temperature; LWP-Ieaf water potential; Ts-transpiration; V-vine 
size; CN-number of clusters per vine; C.W.-cluster weight, BlC-number of berries per cluster;B.W.-berry 
weight; TA-W- titratable acidity in wine, TA-G- titratable acidity in juice berries; ETOH-volumetric alcoholic 
content. 
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Chapter 6 

Effect of Different Irrigation Strategies on Vine Physiology, Yield, 
Grape Composition and Sensory Profiles of Vitis vinifera L. 

Cabernet Sauvignon in a Cool Climate Area 

ABSTRACT 

Irrigation experiments testing the efficacy of partial root zone drying (PRO) and 
regulated deficit irrigation (ROI) were conducted in a commercial vineyard block of Cabernet 
Sauvignon at Lambert Vineyards, Niagara-on-the-Lake, ON from 2006 to 2008. The 
experiment had five treatments: non-irrigated control (C), PRO, Full irrigation [100% crop 
evapotranspiration (ETc)] and two levels of ROI (50 and 25% ETc). Irrigation treatments 
started at fruit set and continued until post veraison. Water needs were calculated based on 
reference evapotranspiration (ET 0), using the Penman-Monteith equation. In the PRO 
treatments, soil moisture and vine physiology (leaf water potential and transpiration rate) were 
generally less than 1 00% ETc vines but higher than non-irrigated and ROI treatments. The 
general vine physiology was controlled not only by the amount of water but also the by 
irrigation strategy used. Almost all treatments were different than non-irrigated vines in terms 
of fruit composition and wine sensory attributes. ROlstrategies were more consistent than the 
PRO treatments in terms of their effect on general physiology, grape composition and sensory 
profile. Inconsistent patterns from season to seasons in some variables, indicated that 
besides water status level of soil and plant, there are some other climatic factors which affect 
vine physiology, yield components and berry composition. Sensory profile was highly 
changed by the amount of water applied through irrigation in 2007. ROI treatments improved 
the wine quality when compared with full or either non-irrigated treatments. Overall, use of 
ROI irrigation or PRO during dry and warm years can improve grape composition in cool 
climates. 

Key words: Soil moisture, leaf water potential, regulated deficit irrigation, partial root zone drying, 
sensory profile, Cabernet Sauvignon. 

Introduction 

Irrigated vineyards are located mostly in "The New World", in area where there is low 

rainfall during the growing season, and the moisture in the soil profile is not enough to provide 

healthy vine growth (McCarthy et al. 2002). California, Australia and Chile are using irrigation in 

the vineyard in order to supply the necessary water requirements for healthy vines. Despite using 

irrigation, "The New World" consistently produces very high quality wine, which would not be 

possible under natural conditions. 

Drought is not normally an issue in the Northeastem of North America. However, in the 

last decade, the frequency of water shortages during the vegetation period has increased. Exposure 

of vines to some degree of water stress during vegetation period has been reported in cool wine 
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regions (Reynolds et al. 2009, Van Leeuwen and Seguin 2006, Zs6fi et al. 2009). In wine 

production, both drought and excess water should be avoided due to their negative effect on wine 

quality (Lakso and Pool 2000, Seguin 1983). 

Vilis vinifera L. is considered a species adapted to drought stress. However, when water 

deficit is combined with other climatic factors such as high light intensity, temperature and vapor 

pressure deficit, it could become a major constraint for leaf photosynthesis (Flexas et al. 1998). It 

has been demonstrated that water stress determines changes in leaf physiology including a 

reduction in stomatal conductance, photosynthesis and transpiration (Ginestar et al. 1998, 

Matthews and Anderson 1989, Naor et al. 1993, Smart 1974). Vegetative growth is the first 

process affected by water restriction (Hardie and Martin 2000, Matthews et al. 1987, Smart and 

Coombe 1983, Stevens et al. 1995). Water deficit in vine reduces shoot growth, yield, fruit size, 

and as a consequence of all of these physiological changes, fruit composition and wine sensory 

attributes are altered too (Roby and Matthews 2004). Few studies conducted in California revealed 

that different levels of water deficits generated significant differences in appearance, flavor, taste, 

and aroma among Cabernet Sauvignon wines (Chapman et al. 2004, Matthews et al. 1990). Water 

restriction favors the polymerization of tannins, and subsequently decreases astringency and bitter 

flavors related to tannin monomers (Ojeda et al. 2002). 

Drought stress might be an issue in the vineyard that leads to economic losses if it is 

extended to a longer period of time. Severe water stress applied to container-grown vines of 

Cabernet franc decreased yield by 94% due to reducing the number of berries per cluster and berry 

weight (Hardie and Considine 1976). Matthews and Anderson (1989) found yield losses in their 

water deficit trials on Cabernet Sauvignon, and they suggested that the large differences in yield 

occurred due to alterations in berry growth pattern. Bowever, yield losses as a result of prolonged 

water deficit depended on the berry stage when drought occurred (Hardie and Considine 1976). 

For red wine grapes , some degree of water deficit during the growing season is beneficial for 

quality (Bravdo et al. 1985, Williams and Matthews 1990). However, there are contradictory 

studies suggesting that fruit composition andwine quality of Cabernet Sauvignon are more related 

to variations in the yield (Bravdo et al. 1985, Keller and Hrazdina 1998, Keller et al. 1998,2005, 

Ough and N agaoka 1984), and this response could depend on how and when the yield variation is 

established (Chapman et aL 2004). In general, irrigation determines an increase in vine size and 

yields (Bartolome 1993). In berries, sugar concentration was affected by irrigation, which in some 

cases it increased (Bartolome 1993), or it was reduced (Williams and Matthews 1990). Irrigation 
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indirectly affects berry composition due to higher photosynthesis rates (Lopez et al. 1999) and 

higher stomatal conductance (Yuste 1995). 

Cabernet Sauvignon is on the third place behind Cabernet franc and Merlot in terms of red 

wine grape production in Ontario, with a total yield of 3527 tonnes in 2007 

(http://www.grapegrowersofontario.com). Although, Niagara lies on the 43rd parallel and shares 

the same latitude with Bordeaux (France), there is still debate concerning the potential for 

consistent wine quality of Cabernet Sauvignon, mostly due to high variation of weather from 

vintage to vintage. In Ontario, the wine industry might improve water use efficiency, and keep 

consistency in wine quality through application of deficit irrigation strategies. If it is managed 

properly, deficit irrigation might have a minimal impact on carbon assimilation compare to full 

irrigation (De Souza et al. 2003). The irrigation strategy known as regulated deficit irrigation 

(RDI) has been proven to be a viable practice in the vineyard for controlling excess vigor, reducing 

pest and disease pressure, and improving wine quality (McCarthy et al. 2002). 

Partial root zone drying (PRD) is another irrigation strategy successfully used in some 

wine regions, and which involves application of a reduced amount of irrigation to alternate sides of 

the vine root system (Dry and Loveys 1998, Dry et al. 2000 a, b). PRD strategy was developed 

based on observations that abscisic acid (ABA) originated in the drying roots reduces stomatal 

conductance, photosynthesis, and vegetative growth (Dry and Loveys 1999, Loveys 1984 a,b, 

Zhang et al. 1987). Coombe (1976) found that changes in ABA content triggered the final steps in 

the ripening process. Later on, it was demonstrated that ABA regulates the biosynthesis of the 

primary and secondary metabolites during the grape berry ripening (Antolfn et al. 2003, Davies et 

al. 1997). Increases in ABA levels during the berry maturation have been correlated with increases 

in soluble solids and anthocyanins (Palejwala et al. 1985). ABA also controls the expression of 

genes involved in anthocyanins biosynthesis, invertase activity, and proteins involved in sugar 

metabolism and ripening (Ban et al. 2003, C;akir et aI. 2003, Gagne et aI. 2006, Pan et al. 2(05). 

Some studies reported no significant differences between PRD and RDI in terms of grapevine 

performance (Bravdo et al. 2004, Gu et aI. 2004, Pudney and McCarthy 2004). 

Most of the studies related to the effect of water stress and irrigation strategies on fruit 

composition and wine quality have been conducted in areas located in hot and dry regions. 

However, just few studies focused on the effect of water deficit on grape cultivars grown in cool 

climates. Therefore, there is a need for a better understanding of how irrigation affects the grape 

quality in a cool area. The objective of this research was to study the effect of different levels of 

water status on vine physiology, yield components, grape composition, and the wine sensory 
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profile of Cabernet Sauvignon imposed through various RDI and PRD irrigation strategies in a 

cool area. 

Material and Methods 

Site description and experimental design. The trials were carried out in a commercial 

vineyard (Lambert Vineyards Ltd.) in the Niagara Peninsula of Ontario (43°13' N, 79°08' W, 

elevation 98 m), Canada, from 2006 to 2009. The experiment was set up in one Cabernet 

Sauvignon block, grafted to S04 (V. berlandieri x V. riparia) rootstock. Vines were spaced at 1.2 

m (between vines) by 2.7 m (between rows), and trained to a double Guyot system, and vertically

shoot positioned. Row orientation was north-to-south. Soil management consisted of fertilization 

annually with 25 t· ha-1 fresh dairy manure, with floor management of alternate rows of annual 

ryegrass and cl~an cultivation. Pest control was in accordance with local recommendations 

[Ontario Ministry of Agriculture, Food & Rural Mfairs (OMAFRA) 2007]. 

Soil type was a combination of different phases of Chinguacousy clay loam soil series, and 

a gleyed bruni solie gray brown luvisol (Kingston and Presant 1989). Soil generalized 

characteristics were described in detail in previous Chapters (3a, 4, 5). The experimental design 

was a randomized complete block arrangement, with five irrigation treatments and four replicates, 

with two rows on each side as a buffer. The irrigation was initiated at fruit set. The treatments were 

represented by non-irrigated-control (C), PRD (100% ETc), full irrigation (100% ETc) and two 

RDI (50 and 25% ETc). Within each row treatment replicate, 10 equally-spaced vines were chosen 

for data collection. 

Irrigation was provided through a trickle system using RAM® drip-tubing (Netafnn, 

Fresno, CA) with 1.70 LIh emitters spaced 0.6 m apart. The irrigation system's characteristics 

were similar to those described in detail in Chapter 5. The volume of water used was calculated 

based on the reference evapotranspiration (ETo), using the Penman-Monteith equation (Allen et al. 

1998), and adjusted to ETc using a crop coefficient (Ke). The methodology used to calculate the 

amount of water needed at each physiological stage was similar to that one described in Chapter 5. 

Soil water status. Soil moisture was assessed over a period of 3 years between 2006 and 

2008. Data was collected from 10 vines per each treatment replicate starting with one week before 

first irrigation treatment was imposed and biweekly thereafter. Data collection protocol and the 

equipment used were described in detail in Chapter 5 as well as in a study of Balint and Reynolds 
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(2010). Soil moisture from all treatment replicates was collected only by Fieldscout 300- TDR at 

20 cm depth. 

Vine water status. Biweekly observations were recorded over the growing season in order 

to monitor vine water status. Midday leaf water potential ('I') data was collected from mature 

leaves fully exposed to the sun between 1100h and 1400h. The sampling and collecting data 

protocols were described in detail in Chapter 3a, and in a study of Balint and Reynolds (2010); 

Yield and vigor components. The experimental vines were harvested 1 to 2 days before 

the the commercial harvest date (the second or third week of September). The protocol for data 

collection was similar to that one described in detail in Chapter 3a. 

Winemaking. In 2006, due to accidentally harvesting of the experimental block by the 

grower, no grapes were available to process into wine. In 2008 (wet and cool year), due to high 

vegetal character in the grapes from all treatments, no experimental wines were made. Grapes were 

processed into the wines only in the warm 2007 vintage. After harvest, 30 kg of grapes from each 

treatment replicate were processed into wine following the internal winemaking protocol described 

elsewhere (Reynolds et al. 2007). Grapes from each treatment replicate were de-stemmed, crushed 

and treated with S02 solution at 20 mgIL. Each treatment replicate was fermented in duplicate in 

food grade 20 L plastic pails. They were inoculated with Lalvin Selection ICV 254 

(Saccharomyces cerevisiae) yeast (Lallemand Inc., Montreal, QB). During the fermentation, all 

pails were kept in a controlled temperature room where temperature was set up to 24°C. 

Fermentation lasted between 4 to 7 days. The caps were punched down manually three times daily 

(morning, noon and evening). After the caps fell, each fermentation treatment replicate was 

pressed off individually in a basket bladder press (Enoagricola Rossi s.r.1, Calzolaro, PG, Italy) at a 

maximum of 2 bars pressure, and then transferred to a 20-L carboy. After 10 days, when 

fermentation was completed in all the carboys, the wines were racked and inoculated immediately 

with malolactic bacteria Oenococcus oeni (Lalvin VP41, S1. Simon, France). The wines underwent 

malo-lactic fermentation at 23°C under a carbon dioxide atmosphere, and completion was 

conftrmed by paper chromatography. Replicate wine samples of 250 mL were taken for wine 

composition analyses (ethanol, TA, pH, color, anthocyanins, and total phenolics). Upon 

completion of malo-lactic fermentation, all wines were racked second time, and kept for 10 days at 

- 2 °C for cold stabilization. At bottling, the wines were sulftted at 30 mgIL and fIltered using 

0.45-~ pad and 0.2-~ cartridge filters. In January, the experimental wines were bottled under cork, 

and then stored at 12°C in the wine cellar until sensory analysis. 
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Berry, must, and wine composition. Berry, must and wine samples were analyzed using 

similar protocols as those used for Baco noir cultivar. The aforementioned methods were described 

in Chapter 3b and in a study of Balint and Reynolds (2010) 

Sensory analysis. Wines from 2007 vintage were subjected to sensory analysis. A total of 

10 judges with ages ranging from 23 to 58 were involved in the sensory work over a 3-month 

period. The group was composed of Brock University faculty, staff, and students from the 

viticulture and oenology program. They were selected based on their availability and motivation. 

All of them were volunteers and underwent sensory training before. 

Discrimination test. A modified alternative forced choice test (5-AFC) was used to 

compare a control wine (non-irrigated) to each irrigation treatment to find differences between 

control and all others (O'Mahoney 1986). This was intended as a preliminary exercise to determine 

whether differences existed between treatments, what the basis for those differences might be, and 

whether the panelists were reliable. The test ran over a period of 2 weeks, with two sessions per 

day and two days per week. The protocol used in this test was similar with that described in detail 

in Chapter 3b. Data were thereafter digitized and subjected to analysis of variance. 

Descriptive analysis. In each session, they tasted five wine samples (non-irrigated, PRD 

(100%, ETc), Full (100%, ETc) and two RDI (50% and 25% ETc). Six training sessions were run 

over a period of three weeks. For sensory training, the panelists tasted wines from all irrigation 

treatments. Samples used for training purpose came only from two field replicates. The list with 

the descriptors was adjusted until all panelists agreed with definitions (Table 6.1). The protocol 

used for training and data collection was similar with that presented in Chapter 3b. Following 

discussions with the panelists on the scale that should be used for data collection, along with 

technical advice from Compusense Inc. (Guelph, ON), the software provider for the sensory 

laboratory), it was decided that a two-way unstructured scale with verbal descriptions at the end 

points would be most appropriate (Ledahudec and Pokorny 1994) .. 

Data analysis. Field ('I', Ts, soil moisture), fruit and wine chemical data were analyzed 

using SAS statistical package (SAS Institute; Cary, NC). Using generalized linear model, analysis 

of variance was performed on physiological and chemical data. Duncan's multiple range test was 

used for means separation for all data sets (field, chemical and sensory). Dunnett's t-test was used 

to determine those treatment means that were statistically different from the control at a 

significance level of a~0.05. Sensory data were analyzed using XLSTAT (Addinsoft, Paris, 

France). Three ways ANOVA (irrigation treatment, judge, and replicate) were also performed on 
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sensory attributes to find out the main effects as well as interactions. Principal components 

analysis (PCA) was performed on the means of field data, yield components, chemical data, and 

sensory scores of aroma and flavor descriptors for each year of the experiment. Partial least 

squares regression (PLS) was performed on the field, chemical and sensory data in order to find 

out the relationships among these data. 

Results and Discussion 

General meteorology. Meteorological data was described in detail in Chapter 3. The 2006 

and 2008 seasons were wet years with a total rainfall of 220 and 345 respectively, from June to 

August. Compare to the other years of the experimental period, 2007 was the driest one with a total 

rainfall of 56 mm for the growing period studied, which was approximately fourfold less than the 

same period in 2006. In 2007, particularly in May and July, temperatures were considerably higher 

than average. Analyzing rainfall data for the three-year period (between 2006 and 2008) helped for 

a better understanding of the necessity of this project. In the Niagara Region for the last decade, at 

least 6 years were under water shortages during the growing season (Reynolds 2008). 

Soil moisture (Figs. 6.1 A to C). Soil moisture had a different trend in each year of the 

period studied. In 2006, although rainfall was close to a normal year, a distinct separation was 

observed among the irrigation treatments. The PRD and full irrigation treatments had higher soil 

moisture values compared to control throughout the season, except for inexplicably very low 

values in the full irrigation treatment, on 12 July (Fig. 6.1A). However, soil moisture had lower 

values in PRD than fully irrigated treatment at the last two sampling dates. Overall, the PRD 

treatment had values very close to the fully-irrigated treatment. In the 50% RDI treatment, soil 

moisture had higher values than both control and 25% RDI, only at two sampling dates. The 25% 

RDI treatment closely followed the same trend as the control. The soil moisture did not drop below 

wilting point at any sampling date. The lowest value (13.6%) was found in control at the last 

sampling date, and the highest one in PRD treatment (22.3%) at the second-sampling date in July. 

In 2007, there was a better separation between treatments. PRD and fully-irrigated 

treatments followed the same trend having higher values than control and RDI treatments 

throughout the season (Fig. 6.1B). The control and 25% RDI had values close to wilting point most 

of the growing season. They had a downward trend throughout the season; reaching a minimum on 

the last sampling date (12.2%). The 50% RDI treatment had almost no fluctuation, and its soil 

moisture value was around 18% throughout the season. Although 2007 was a hot and dry year, soil 
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moisture in PRD and full irrigation treatments had a steady trend, which indicated that the 

theoretical calculation for water needs was accurate, and the water applied weekly through 

irrigation was almost all lost through transpiration and evaporation. The soil moisture in 25% RDI 

indicated that the amount of water supplied was not enough to keep consistent high moisture in the 

soil. Since the water demand was much higher at the end of the season because of both the 

ripening process and high vapor pressure deficit, 25% RDI had almost no effect on soil moisture 

(Fig. 6.1B). 

In 2008, differences between treatments occurred on the last sampling date because 

irrigation treatments were not applied until veraison due to sufficient water reserve in the soil prior 

to that point (Fig. 6.1C). Soil moisture followed the same trend as in Sauvignon blanc (Chapter 5), 

with a minimum in the first week of July and at the end of August (Fig. 6.1C). However, during 

most of the 2008 season, soil moisture values were close to field capacity (27.3% soil moisture, 33 

KPa; Kingston and Presant 1989), and did not drop below the wilting point at any sampling date. 

In 2008, soil moisture followed the rainfall distribution with little variation among treatments. It 

was expected much more differences among the treatments even in such a wet year. However, it 

was possible that more variation in soil moisture to occur at higher depths due to previous 

irrigation history. It was assumed that the irrigation treatments made a difference on root system 

development in the previous seasons. Therefore, it was expected the soil moisture to be depleted at 

different rates because of the effect of soil moisture on the root distribution and density from the 

previous year. However, none of the expectations on soil moisture trend was observed in 2008. 

Perhaps, an obvious effect of the irrigation treatments might be seen in a long time trial. Also, 

consistent moisture on the whole soil profile in all treatments accompanied with low transpiration 

rate did not have a distinct effect on the canopy development, and as a consequence no effect on 

water moisture depletion rate between treatments was observed in 2008. 

Veihmeyer and Hendrickson (1950) stated that is more important to know the occurrence 

or absence of periods with dry soil during the growing season when the soil moisture data is 

interpreted rather than the tabulation of the amount of water applied. Since irrigation was applied 

and the measurements were taken biweekly, the daily water depletion rate could not be assessed. 

Also, information about how long the vines were under water stress was not available, especially 

in RDI treatments, during one week period. 

Another interesting observation was that in PRD treatment soil moisture had slightly lower 

values than in full irrigation treatment in 2006 and 2007, although in both treatments it was applied 

water at 100% ETc replacement. This might be explained by the fact that the vines compensate for 
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the loss of available water on the drying side by a relative increase in root development in moist 

soil layers, not only in the wet side but also in the deeper part of the drying side (Dry et al. 2000 b). 

Pellegrino et al. (2005) stated that indicators of vine water status based on soil water measurements 

(soil water potential or soil water content) are not only time consuming but also they have 

questionable value in those vineyards with considerable spatial variation in depth and lateral 

spread of roots. This was not the case in the present research since the irrigation treatments 

affected the soil water status in all years studied except 2008, the wettest year of the experimental 

period. However, the best discrimination between treatments was observed in very dry and hot 

seasons. 

Soar and Loveys (2007) showed that conversion of one vineyard from sprinkler to drip 

irrigation resulted in a significant increase in total root mass (volume) under the drip line, 

particularly at 25-50 cm below the surface. The same authors indicated that root distribution is not 

influenced only by soil texture but also by irrigation history according to root diameter class. The 

largest increase in root-length density under drip irrigation occurred at roots with diameter between 

1 and 4 mm. Grapevines under sprinklers, and later converted to drip irrigation, had significantly 

larger root systems compare to the vines maintained only under sprinklers. Soar and Loveys (2007) 

concluded that vines established under sprinkler irrigation and then converted to drip system cope 

better with drought due to these additional roots. Although, root distribution or density was not 

measured, Soar and Loveys' fmdings support the soil moisture data, especially from PRD 

treatment, which did not show significant difference than classic full irrigation treatment. 

Transpiration (Figs 6.2A to C). In 2006, Ts was highest in full irrigated and PRD 

treatments (Fig. 6.2A). This pattern was consistent throughout the season. Ts rates reached a 

maximum in the first week of August, with a peak of 13.6 Jlg H20 cm-2s-1 found in the full 

irrigated treatment. The pattern showed a decreasing trend until the end of August for all 

treatments. In 2007, all the treatments followed the same trend, with the lowest values occurring in 

the control and the 25% ETc (Fig. 6.2B). Since little rain occurred, data showed little variation in 

this trend at sampling dates during the growing season. In 2008, Ts showed the same trend as soil 

moisture (Fig. 6.2C). The minimum Ts value was recorded at the end of August. Even with so 

much moisture in the soil, Ts was lower in 2008 than in 2006 in all treatments, possibly due to low 

temperature and solar radiation (data not shown). In the present study Ts values were almost 

similar with those of Reynolds.et al. (2005, 2007) who found high Ts variation among the irrigated 

treatments in the same cool area. The same authors found that Ts responded different not only due 

to the irrigation strategy but also due to the cultivar used. Ts values varied between 0.73 to 5.07 Jlg 
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H20 cm-2s-1 in Niagara grapevines and reached a maximum (around 13 flg H20 cm-2s-1
) in fully 

irrigated vines of Chardonnay (Reynolds et al. 2005, 2007). However, following a testing of the 

effect of PRD and RDI treatments on Sauvignon blanc grapevines, in one experiment conducted in 

California, ,it was found Ts values ranging from 3 to 25 Jlg H20 cm-2s-1 (Gu et al. 2004). 

PRD irrigation strategy used in vineyards generates a unique physiological response 

distinct from conventional irrigation by controlling water loss under high and low · vapor pressure 

deficit, and thus, improving water use efficiency (Collins et al. 2008). Although, in 2006 and 2007 

vines from PRD treatment had lower transpiration rates than those from full irrigated treatment, the 

treatments were significantly different just at few sampling dates. This might be explained by 

differences in the ABA concentration of sap xylem due to a hormonal dilution effect or inhibition 

of its biosynthesis. In these circumstances, PRD could have been interrupted by natural rainfall and 

any substantial horizontal movement of water through the soil profile due to the relatively high 

clay content. Consequently, RDI treatments generally produced a higher magnitude of response in 

terms of vine water status. 

Drip irrigation and PRD particularly, applied at deficit rates, have generated various 

responses in vines from different experiments. Pudney and McCarthy (2004) showed that vines 

were more affected by irrigation volume rather than the method of application. Other studies 

concluded that PRD applied at different water levels had no effect on physiology and vine growth 

(Goldhamer et al. 2002, Gu et al. 2004). These apparent contradictions might be related to 

differences in the intensity of the chemical signaling under PRD irrigation. This seems to be 

dictated by the type of soil, the prevalent rainfall and evaporative demand in the region, as well as 

the frequency of switching irrigation from one side of the root zone to the other (Chalmers et al. 

2004, Chaves et al. 2007, Dry et al. 2001) which supports the data variability from the present 

research. 

The role of the plant hormone ABA in regulating stomatal aperture and consequently water 

loss has been studied widely in grapevines, both in pot and field experiments (Correia et al. 1995, 

Loveys 1984 a, Stoll et al. 2000). Some studies showed that the environmental factors along with 

leaf water status and xylem signals (e.g. cytokinins, ABA) actdirectiy or indirectly on stomatal 

aperture, and thus, a particular stomatal aperture is a result of combination of these factors (Bacon 

2004, Webb and Hetherington 1997). Jones (1992) showed that maximum stomata aperture 

occurred under irradiances larger than 400 flIDol m -2 S-l (PAR). In general, maximum transpiration 

rate is achieved at 20° -35°C and is restricted by temperatures <5 C or >45 °C. The effects of 

temperature on stomatal behavior are closely related not only to metabolism, enzymatic activity 
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and hormones but also to external plant factors such as air vapor pressure (Jarvis 1976). Part of the 

transpiration results might be explained by this complex interaction, especially in the 2007 and 

2008 seasons. 

Leaf water potential (Figs. 6.3A to C). Leaf 'I' followed a different trend in each year of 

the period studied. In 2006, the control decreased from -1.0 to -1.2 MPa through the season, while 

the irrigated treatments fluctuated between -0.8 and -1.0 MPa, with the highest values found in the 

full and PRD treatments (Fig. 6.3A). In 2007, the control decreased from ca. -0.9 to -1.3 MPa 

throughout the season, with the lowest value reached at the end of August (Fig. 6.3B). The RDI 

treatments had lower values than PRD and full irrigated treatments, and higher than control. 

Except control, all other treatments showed a steadily trend throughout the season but different 

than each other (Fig. 6.3B). This indicates that the vine hydraulic conductivity responds not only at 

vapor pressure deficit (data not shown) but also to the soil water status. 

In 2008, full and PRD treatments had values> -1.0 MPa, with little fluctuation during the 

season (Fig. 6.3C). All treatments had an upward trend throughout the season, except for the last 

sampling date when leaf 'I' decreased in all of them. However, all treatments had higher values 

than -0.8 MPa on the last sampling date. The highest value was observed at pre-veraison in 50% 

RDI (-0.5 MPa) while the lowest leaf 'I' was found in 25 % RDI on the second sampling date. 

Surprisingly, in 2008 although only three irrigation treatments had been applied post-veraison, it 

was found significant difference among treatments for leaf 'I' which indicates some carryover 

effect from the previous season. 

Williams and Matthews (1990) found that leaf 'I' decreased throughout the season even for 

vines that were well watered which supports the present results (Figs. 6.3A to C). Some studies 

indicated that leaf 'I' of well-watered grapevines is a linear function of both ambient temperature 

and vapor pressure deficit, which means that leaf 'I' decreases as both environmental variables 

increase (Williams and Baeza 2007, Williams and Trout 2005). Williams and Araujo (2002) 

reported that all methods of estimating grapevine water status (predawn '1', stem '1', and leaf '1') in 

Chardonnay and Cabernet Sauvignon were satisfactory, since they correlated well with the amount 

of applied water and leaf gas exchange parameters, which is in agreement with the present results 

(Figs 6.2, 6.3A to C). Hsiao (1973) defined mild plant water stress for leaf 'I' values between -1.0 

to -1.5 MPa, and severe water stress for leaf 'I' values below >-1.5 MPa. According to his 

classification the experimental vines were not under severe water stress, even in 2007 when 

precipitation was very low. This finding might be partially explained by the type of soil that had a 

moderate to high holding water capacity. 
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Species and cultivars with isohydric behavior are able to maintain a tight control on leaf 'I' 

over a range of environmental conditions, while leaf 'I' in anisohydric plants oscillates in response 

to environmental changes (Tardieu and Simonneau 1998). Anisohydric plants typically exhibit less 

stomatal control over evaporative demand and soil moisture, allowing large fluctuations in leaf 

water potential (Franks et al. 2007). Despite having a behavior as anisohydric plants (Rogiers et aI. 

2009), Cabernet Sauvignon grapevines did not show a strong anisohydric behavior under 

experimental conditions in any of the years studied. Some studies indicated that stomata regulate 

transpiration in order to gain sufficient carbon while leaf '" is prevented from becoming too 

negative and breaking-down the hydraulic system of plants (Jones and Sutherland 1991, Schultz 

and Matthews 1997, Tyree and Sperry 1989). This indicates that under particular climatic 

conditions and soil moisture, leaf '" would not give an accurate measure of the soil water status. 

Shoot growth and vine size (Figs. 6.4A and B, Table 6.2). In 2006, the shoot growth 

rate decreased in RDI and control treatments (Fig. 6AA). The fully-irrigated treatment showed an 

upward trend until the end of July and steadily decreased thereafter, as it was found in all 

treatments. The growth rate in PRD treatment decreased between first and second sampling date, 

followed by a steadily flat rate between the second and third reading, and ending with a downward 

trend (Fig. 6AA). This indicates that PRD treatment had enough soil moisture to sustain shoot 

growing compared to RDI treatments which had a downward trend throughout the season. Despite 

showing higher growth rate than the control, the RDI treatments followed the same downward 

trend as the control. Although the same amount of water was applied in both treatments, a lower 

growth rate in PRD than in fully irrigated treatment was recorded, results that could be supported 

by the hormonal theory behind the PRD irrigation strategy (Dry and Loveys 1998). 

In 2007, the growth pattern was different compare to 2006. The PRD treatment had lower 

or the same growth rate as the RDI treatments (Fig. 6AB). The RDI treatments had a steadily 

downward trend. In control and PRD treatments, the growth rate decreased in the middle of July, 

then the trend went up to the end of July followed by a downward trend. The highest growth rate 

was found in fully irrigated treatment. The highest magnitude among treatments was found at the 

end of July and beginning of August. On the last sampling date, the fully irrigated treatment still 

had a high growth rate when compared to the other treatments (Fig. 6AB) which might suggest 

that high water status has a negative impact on the canopy size even in dry years. 

In 2008, the shoot growth rate showed a different pattern than in 2006 and 2007, which 

reflected the very wet weather conditions for this particular year (Fig.6AC). Treatments were not 

significantly different at any of the three sampling dates. An interesting observation in 2008 was 
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that the shoot growth rate was lower in fully irrigated treatment compare to 2007. This indicates 

that soil moisture is not the only one factor that affects the vine vigor. Lower temperature and solar 

radiation could affect the carbon assimilation process and carbohydrates distribution in vine. 

Growth is extremely sensitive to water stress. Schultz and Matthews (1988) reported that 

growth of Riesling shoots ceased at midday", 5-1.2 MPa. In the present study, the lowest leaf", 

value was found in control in 2007 season (-1.4 MPa), which might have put leaf", well below 

the "stop-growth" threshold (Chone et al. 2001, Williams and Araujo 2002). However, this was not 

the case in the present study, which suggests that different grapevine cultivars have different 

capacity to cope with drought. 

Various authors have suggested that controlling of shoot growth by soil water status 

involves transfer of chemical information from roots to shoots via xylem (Davies et al. 1994, 

Davies and Zhang 1991, Gowing et al. 1993). This type of control of both shoot growth rate and 

gas exchange has been termed 'non-hydraulic' or 'chemical' signalling to distinguish it from 

'hydraulic' signalling, which represents the transmission of reduced soil water availability via 

changes in xylem sap tension (Dodd et al. 1996). Some studies on woody species showed that 

drying half of the root system typically resulted in reductions of shoot growth in range of 10%-

25%, relative to control plants (with both containers watered) following several weeks of treatment 

(Poni et al. 1992, Turner et al. 1996). These findings could also support the present data from PRD 

treatment. 

Overall, data from this research showed that PRD treatment consistently had higher growth 

rate than the RDI treatments during the most active growing period, and lower rate than the full

irrigated treatment. This suggests that the abscisic acid (ABA) produced in the dry roots of vines 

from PRD treatment had a lower effect on the shoot growth rate due to a dilution effect or perhaps 

due to other hormonal interactions or factors which controls the activity of the apical tissue. This is 

in contradiction with what most of the studies on PRD treatment reported. This could be explained 

by the amount of water supplied in the PRD treatments used in the present study. However, data 

from the present study is partially supported by findings of Gu et al. (2004), who concluded that 

the effect of PRD treatment was determine by the water deficit applied and not by the irrigation 

strategy used. 

Vine size determined by pruning weights (Table 6.2) is not very well correlated with the 

shoot growth rate, which might be explained by different partitioning of the dry matter under 

different water deficit levels (Williams and Biscay 1991, Williams and Grimes 1987), presumably 
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due to disequilibrium among different classes of hormones. For instance, cytokinins are known to 

alter assimilates distribution in plants to either promoting or inhibiting flowering (Ogawa and King 

1979).Results of this research are in contradiction with those found by Williams et al. (201Oa) who 

showed in one irrigation experiment on Thompson Seedless, that pruning weights were a linear 

function of applied water amounts. The lack of correlation between shoot growth and pruning 

weights might also be explained by the fact that radial shoot growth is less affected by water 

deficits than apical growth (Matthews et al. 1987, Williams and Matthews 1990). Moreover, this 

lack of relationship is explained by the competition between the reproductive and vegetative 

apparatus, since the data showed that irrigation treatments affected both crop load and yield. 

Yield components (Table 6.2). The Cabemet Sauvignon plots were harvested in 2006 

prior to any yield data collection. In 2007, yield was different compare to control in all treatments. 

The highest yield was observed in the fully irrigated treatment (6.2 kg/vine). However, PRD 

treatment had values between those found in RDI and fully irrigated treatments. The highest 

number of clusters per vine was observed in PRD treatment, perhaps due to a balance reached 

between vegetative and reproductive apparatus in the previous year. As it was expected, both 

control and fully irrigated treatments had lower number of clusters than PRD and RDI treatments. 

Since cluster initiation occurred in the previous season, it was possible that the differentiation 

process to be affected either by the canopy size in fully irrigated treatments or competition for 

carbohydrates in the control. Overall, all treatments had heavier clusters than control. The fully 

irrigated treatments had the highest yield because of both high numbers of berries per cluster and 

berry weight. Berry weight increased in irrigated treatments compared to the control treatments 

(Table 6.2). In 2008, yield in control was different only when compared to fully irrigated 

treatment, which had the highest number of clusters, results that could be explained by weather 

conditions from previous year. Since 2007 season was the driest and hottest from the period 

studied, it seems that replacing 100% ETc had a positive effect on cluster differentiation. However, 

the cluster weight and the number of berries per cluster are not very well explained by the 

irrigation treatments in 2008 (Table 6.2). 

In many studies, water deficits decreased yield through their effect not only on cluster 

initiation and differentiation, but also on berry set and growth (Becker and Zimmermann 1984, De 

la Hera et al. 2007, Hardie and Considine 1976, Matthews and Anderson 1988, 1989, Ojeda et al. 

2001). These [mdings are in agreement with the results of the present study only for 2007. Some 

reports showed that PRD caused a smaller reduction in berry weight and yield, within a range 

lower than that reported in the current study (Dos Santos et al. 2003, Dry et al. 2000 a, b, 
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Kriedemann and Goodwin 2003). However, previous studies on using water deficit strategies in 

field-grown experimental grapevines (Du Toit et al. 2003, Stoll 2000), potted vines (Antolin et al. 

2006) and commercial trials (Dry et al. 2000 a, b) showed no change in berry size or yield as a 

result of PRD strategy. Overall, in 2007, the number of clusters was higher in vines under some 

level of water deficit compare to full irrigated vines, with an opposite pattern in 2008. Srinivasan 

and Mullin (1980) suggested that the branching of the anlagen is more sensitive to vine water 

status prior to veraison and less throughout the season, which partially explains the results from the 

present study. Irrigation affects the weight of berries both directly and indirectly (Esteban et al. 

1999, Freeman and Kliewer 1983, Matthews and Anderson 1988). The direct effect is materialized 

in a large number of cells (when there is no water restrictions during stage I of fruit growth) or by 

a larger cell size (when there is no water restriction during stage III). 

Berry composition (Table 6.3). In 2006, all irrigated treatments reduced '13rix when 

compared to control. However, 25% RDI was just slightly lower than control. TA increased 

slightly in all treatments, and only fully irrigated vines had higher values than control (Table 6.3). 

Berry pH increased slightly in fully irrigated and 50% RDI, and not in PRD. The absorbance at 

520 nm, which is a measure of the red pigment, increased more in fully irrigated and 25% RDI 

than in the other treatments. Anthocyanins were found in the lowest amount in grapes from fully 

irrigated treatments, and the highest in 25 % RDI. However, all irrigated treatments had higher 

anthocyanins content than control, except for fully irrigated treatment. RDI treatments had higher 

amount of phenolics than control, while PRD and fully irrigated treatments showed lower 

phenolics than control. 

In 2007, PRD reduced slightly °Brix while 25% RDI increased it when compared to 

control. The lowest °Brix value was found in fully irrigated treatment. Except for the PRD and 

fully irrigated treatments, which increased slightly the TA, all other treatments had lower TA 

values (Table 6.3). Additionally, all treatments except for PRD increased in pH when compared to 

control. Overall,A520 increased in all treatments when compared to 2006 season. However, in 

2007, A520 increased only in RDI treatments, and decreased in others when compared to control. 

The RDI treatments increased in anthocyanins compare to control, while PRD and fully irrigated 

treatments had lower values. Total phenolics were higher in PRD and 25% RDI, and lower in fully 

irrigated and 50% RDI when compared to control. 

In 2008, the control and 50% RDI tended to have higher °Brix than the other treatments. 

However, no significant differences were found between treatments. TA was higher in 2008 

vintage compare to the other years of the trial. This might be an effect of the maturation delay due 
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to low temperatures and solar radiation. The TA values were slightly lower in PRD and 50% RDI. 

Fully irrigated treatment reduced both anthocyanins and total phenolics in 2008 (Table 6.3). 

Vintage had a significant effect on fruit composition. Anthocyanins and phenols varied between 

100 to 130% from vintage to vintage and just 5 to 40% due to the irrigation treatment. 

Esteban et al. (2002) observed that pH increased linearly with berry ripening while 

titratable acidity decreased exponentially. The increase of must TA is a common response to 

irrigation (Williams and Matthews 1990), and it is considered beneficial for wines produced in hot 

areas, as they usually present a low acidity. Interestingly, increased juice pH and decreased juice 

T A were observed in response to the PRD treatment in 2008 and not in 2007. This observation 

most likely indicates a water-deficit-induced decrease in total acidity, which is known to result 

primarily from an accelerated decrease in malic acid during berry ripening under these conditions 

(Esteban et al. 1999). However, contradictory results regarding the effect of water deficit on pH 

and TA of berry grapes were found in previous studies (Antolin et al. 2006, Bindon et al. 2007, Du 

Toit et al. 2003). 

The primary mechanism by which water deficits increased the concentrations of skin 

tannin and anthocyanins is probably the differential growth responses of skin and inner mesocarp 

tissue to water deficits (Roby and Matthews 2004), although it could be a direct stimulation of 

their biosynthesis by water deficit (Roby et al. 2004). Their assumption was supported later on by 

molecular studies that showed that water deficit enhances accumulation of anthocyanins by 

stimulating the expression of genes encoding their biosynthesis enzymes (Castellarin et al. 2007). 

However, solar heating of grape berries increases cellular respiration and water loss, and both heat 

and light affect the accumulation of anthocyanins and other phenolic compounds (Haselgrove et al. 

2000, Kliewer and Lider 1968, Mori et al. 2007, Smart et al. 1988). 

Hardie and Considine (1976) reported a decreased color with water deficits, and in most 

cases the fruit with low color was harvested at lower °Brix than the control. Furthermore, one study 

indicated that the effect of vine water status on anthocyanins concentration for each berry size was 

higher than the effect of fruit size (Roby et aI2004). However, Spayd et al. (2002) found that 

higher temperature and incident light values measured during ripening increased anthocyanins and 

total phenols in PRD treatment compared to fully irrigated or deficit irrigation. In contrast, Keller 

and Hrazdina (1998) showed that for Cabemet Sauvignon, the anthocyaninsconcentration in 

berries was similar at 20 % and 100 % sunlight interception, which suggests that canopy size due 

to irrigation treatments might not have any effect on anthocyanins accumulation. 
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Downey et al. (2004) showed that vine vigor and light exposure have the most significant 

impact on tannin accumulation. Some studies have reported higher concentrations of tannin at 

harvest in the skin of fruit from low vigor vines (Cortell et al. 2005, Ristic et al. 2007). 

Mori et al. (2007) showed that the response of different anthocyanins types was variable, 

with malvidin-glucosides being more resistant to degradation under elevated temperature than non

malvidin derivatives of which degradation was enhanced. Moreover, some studies showed that 

PRD treatment caused an increase in delphinidin-based anthocyanins, indicating a possible shift in 

the regulation of the anthocyanins pathway (Boss et al. 1996). The authors argued that the shift in 

the anthocyanins profile towards non-malvidin anthocyanins is due to methyltransferase enzyme 

resulting in a relative decrease in the proportion of methoxylated anthocyanins. In this study the 

visual observations did not indicate an obvious change in the hue color, which could suggest no 

shift among different anthocyanins due to irrigation treatments. However, this possibility cannot be 

excluded since small changes between different anthocyanins are not necessary reflected in 

changes in hue color. In the present trials, anthocyanins and total phenolics varied significantly 

from season to season. It was not found a linear relationship between anthocyanins and total 

phenolics, or either a consistent pattern from year to year, which suggests that besides soil water 

status other factors might affect the phenolics biosynthesis. However, RDIand PRD treatments 

showed a positive effect under particular weather conditions. 

Must and wine composition (Tables 6.4 and 6.5). Must and wine composition data was 

collected and analyzed only for 2007 vintage. Data showed that in a dry and hot year the non

irrigated vines did not accumulate more °Brix than treatments under water deficit. The 25% RDI 

treatment had higher °Brix compare to other treatments. PRD had slightly lower OSrix than the 

control. Alternating the wet zone on each half of the root system but still replace in full the water 

lost through evapotranspiration did not seem to improve the must and wine quality. One 

explanation could be that berry composition is diluted by the high amount of water used through 

irrigation. The must TA was lowest in control, while the irrigated treatments had higher values but 

close to each other. Must pH showed the highest magnitude difference among the treatments. The 

25% RDI had the lowest pH value in the must while the fully irrigated the highest (Table 6.4). In 

2007, the wine composition of the irrigated treatments had almost the same pattern as that from the 

must composition (Table 6.5). The control had the highest alcohol concentration while wine from 

fully irrigated vines the lowest. Wine pH had the lowest values in the PRD wines, while in the 

other treatments the pH was higher but close to each other. TA was the highest in the wines from 

fully irrigated treatment. Total anthocyanins concentration was highly affected by irrigation 
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treatments. The fully irrigated treatment had the lowest amount of anthocyanins and phenolics 

(Table 6.5). 

A pH level above 3.60 is not a positive characteristic in must and wines since it increases 

the activity of spoilage microorganisms, lowers the color intensity of red wines, binds more S02 

and reduces free S02, and adversely affects the ability of wine to age (De La Hera-arts et al. 

2005). Trials investigating the effects of PRD on Cabernet Sauvignon showed significantly higher 

wine color density and red pigment coloration in PRD wines after 6 months of ageing (Bindon et 

al. 2008). They suggested that the increase in red pigments of the PRD wines was caused by an 

increase in co-pigmented or polymeric forms of the anthocyanins, rather than a change in 

anthocyanins concentration alone. This is consistent with other work suggesting that increases in 

red wine color could be caused by a change in chemical properties of the anthocyanins to 

polymeric forms during the winemaking or ageing process (Levengood 1996, Levengood and 

Boulton 2004). Since the aged wine composition was not measured, it is not excluded the 

possibility that deficit irrigation could have a beneficial effect on color stability during the ageing 

process. 

Relationships among soil and plant water status, yield components and berry and 

wine chemical data. 2006. The PCA of field data indicated that factor 1 and factor 2 explained 

94.94% of the variability in the data set (Fig. 6.5). Soil moisture was highly positively correlated 

with transpiration rate and leaf water potential, and negatively correlated with leaf temperature. 

Vine size showed less correlation with soil moisture at 20 cm depth. The irrigated treatments were 

well separated, the highest variation in terms of soil and vine water status being among control, 

fully irrigated and PRD treatments. The PLS regression performed on field and berry composition 

data illustrated a strong positive relationship between 0 Brix and leaf temperature, and negative 

correlation with leaf water potential, transpiration and soil moisture (Fig. 6.6). Vine size showed a 

strong positive correlation with juice pH, and negative correlation with the anthocyanins 

concentration. This suggests that the negative effect of high canopy onanthocyanins is due to poor 

microclimate created in the fruit zone. 

2007. The PCA plot of field data indicated that PC 1 and PC2 explained 93.13 % of the 

variability in the data set (Fig. 6.7). First component explained 83.86% of the variability, while the 

second one just 9.26%. The first component was positively loaded with leaf '1', and negatively 

loaded with leaf temperature. The second component was positively loaded with vigor. The PCA 

pattern was different than in 2006 showing different relationship among field variables, which 

could be explained mostly by different weather pattern. The PCA plot showed a better 
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discrimination among treatments in 2007 compare to 2006. PRD treatment showed to be highly 

associated with transpiration and soil moisture. Control and 25 % RDI were located on the left side 

of the plot being highly associated with the leaf temperature. All other irrigated treatments were 

located on the right side of the plot. Soil and plant water status showed a better relationship in the 

PRD and RDI than in fully irrigated treatments. 

In 2007, PCA was also performed on physiological, yield components and berry 

composition data. The PCA diagram indicated that the first two components explained 83.96% of 

the variability (Fig. 6.8). First component explained 60.03% while the second factor only 20.96 % 

of the variability in the data set. First component was heavy loaded with leaf'l', yield and cluster 

weight, and negatively loaded with leaf temperature and °Brix. The second component was 

positively loaded with TA and clusters number, and negatively with juice pH. Total phenols and 

anthocyanins were negatively correlated with vine size while the number of clusters per vine was 

negatively correlated with berry weight and juice pH. °Brix was negative correlated with berries 

per cluster, soil moisture, cluster weight and yield. The control and RDI treatments were located 

on the left side of the plot being highly associated with higher °Brix, phenolics and anthocyanins. 

2008. The PCA plot of soil and plant water status data indicated that PCI and PC2 

explained 82.03 % of the variability in the data set (Fig. 6.9). Vine size, leaf'l' and soil moisture 

was positively loaded on factor I while Ts was positively loaded on factor 2. Leaf temperature data 

did not explain very well the variability on the first two components. Control and RDI (25%) were 

grouped on the left upper plan of the plot, full irrigated in the upper right plan while PRD and RDI 

(50%) on the lower left plane. 

The PLS regression was performed on field, yield components and berry composition data 

in 2008 (Fig. 6.10). The PLS diagram illustrated a strong positive correlation between vine size 

and juice pH, and a negative correlation with total phenolics, anthocyanins and berries per clusters. 

Transpiration was negatively correlated with yield, the number of berries per cluster and °Brix. 

Soil moisture was highly positive correlated with berry weight, and negatively with leaf 

temperature and TA. No strong relationship was observed between soil moisture at 20 em and the 

variables studied. 

Sensory analysis (Table 6.6; Fig. 6.11 to 6.13). From the entire period studied only 

wines from 2007 were subjected to sensory evaluation. This season was charact~rized as the 

hottest and driest from the period studied. The 2007 vintage was assessed for seven aroma 

descriptors and nine flavor and mouthfeel descriptors. Data showed significant differences in the 
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sensory profile of wine made from vines under different levels of water status (Table 6.6, Fig. 

6.11). In the present study data showed that the control had the highest scores for tobacco aroma, 

chocolate and cooked vegetable while for a few attributes it had lower or the same intensity as the 

25% RDI. The control did not have highest scores for the fruity attributes. Fully irrigated treatment 

had highest scores for vegetal aroma, sour cherry, acidity (sourness), astringency, and tobacco 

flavor. PRD treatment had a higher score than the other treatments only for red fruit aroma and 

chocolate flavor while most of the attributes were lower than other treatments. Deficit treatments, 

especially 25% RDI, showed consistently high scores for most of the positive sensory 

characteristics in Cabernet wines. Despite applying the same amount of water in full and PRD 

treatments, the sensory profile varied between these treatments. The PRD treatments did not show 

the negative attributes as extreme acidity and vegetal characters, but had better scores than control 

and fully irrigated treatments for some typical descriptors for Cabernet sauvignon wines. The 

highest magnitude among treatments was found for red fruit, chocolate, tobacco, astringency and 

acidity attributes. 

The PCA on the 2007 sensory data showed that the first two factors explained 78.63% of 

the variability (Fig. 6.12). First component explain 50.05% while the second one just 28.55%. The 

first component was positively loaded with dark fruit aroma and chocolate flavor, and negatively 

loaded with tobacco and cooked vegetal flavor, cooked vegetal and chocolate aroma. The second 

factor is positively loaded with sour cherry flavor. The distribution of 2007 wines on the PCA plot 

showed a good separation between treatments. The fully irrigated treatment is located on the upper 

left plane being associated mostly with acidity and cooked vegetal flavor descriptors while the 

control is located on the left lower plane being associated with chocolate and cooked vegetal 

aroma. PRD and RDltreatments are located on the right side being associated with the most 

descriptors desired for a typical sensory profile of Cabernet Sauvignon wines. Despite having just 

one vintage for sensory evaluation, data clearly showed that in dry and hot years, neither full water 

replacement in the soil nor control treatment had a positive effect on the wine sensory profile. 

A PLS regression was performed on the full data set in 2007 (Fig. 6.13). The diagram 

illustrated a high degree of correlation among soil moisture, vigor, Ts rate, yield and total 

phenolics, anthocyanins, and ethanol. Dark fruit, chocolate and the number of clusters per vine 

were positive correlated to each other and negatively correlated with cooked vegetal, tobacco and 

acidity. Red and dark fruit aromas were negatively correlated with leaf temperature, which 

suggests that leaf temperature might control different enzymatic reactions related to aroma 

precursor synthesis. 
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Vegetative aromas such as bell pepper or asparagus contribute to the distinctive varietal 

aromas of Cabemet Sauvignon, Merlot and Sauvignon blanc wines. However, at high level, these 

vegetal notes could be considered undesirable. The bell pepper aroma in Cabernet Sauvignon 

wines has been correlated with the concentration of 3-isobutyl-2-methoxypyrazine (IBMP) 

(Chapman et al. 2004). Several studies showed that mMP concentrations and bell pepper aroma 

decreased when light exposure (Morrison and Noble 1990, Noble et al. 1995) or temperature 

increased (Boubee et al. 2000). Some studies showed that the term "vegetal" can also be applied to 

some other aroma notes likes asparagus and cooked vegetable which are produces by another 

group of volatiles which contain sulfur (Darriet et al. 1993, Preston et al. 2008, Swiegers et al. 

2005, Tominaga et al. 1998). This explains easily why the panelists were not able to make a clear 

distinction between green pepper and asparagus aroma, and preferred to use cooked vegetal 

attribute in describing Cabemet Sauvignon wines made from grapes grown under different water 

status. Since in 2007 the low precipitation was accompanied by high temperature and solar 

radiation, this could be a reasonable explanation for the present findings that showed less vegetal 

and more fruity characters in the RDI treatments. 

Some studies showed that light and temperature control the norisoprenoid concentrations 

which are directly correlated with the high concentration of carotenoids found in grapes under 

moderate water stress (Gerdes et al. 2002, Lee et al. 2007, Marais et al. 1992 a, b, Oliveira et al. 

2003). Carotenoids function as light-harvesters and quenchers of excess light in order to protect the 

photosynthetic system (Vanden Berg et al. 2000). Some studies comparing sun-exposed and 

shaded grape bunches showed that variation in the level of light incident on a grape cluster had an 

effect on berry carotenoids (Bindon 2007, Oliveira et al. 2004, Razungles et al. 1998). Numerous 

studies showed that in grapevines with dense canopies light and temperature conditions of the 

bunch zone were altered. In grapevines, water stress indirectly affects the light environment of 

developing fruit, through a reduction in shoot growth rate and vine leaf area (Dry and Loveys 

1998). As a consequence, carotenoid synthesis and its breakdown could be affected, and thus 

precursors of the C13- norisoprenoids are affected as well. However, some studies have shown that 

water deficit in grapevines can elevate the level of carotenoids in grapes (Bindon et al. 2007, 

Oliveira et al. 2004). 

Oliviera et al. (2003) reported that the berry-derived carotenoids lutein, a-carotene, 

neoxanthin, violaxanthin, and luteoxanthin increased up to 60% in a non-irrigated treatment 

compare to an irrigated treatment only when the soil had a low water-holding capacity. Moreover, 

Bindon et al. (2007) showed in one irrigation trial on Cabemet Sauvignon that PRD treatment 
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increased the carotenoids concentration and C13 - norisoprenoids ~-damascenone, ~-ionone and 

1,1 ,6-trimethyl-1 ,2-dihydronaphtalene relative to the control (both sides of the root system 

irrigated). The same authors found that this increase was not related to the berry size or the altered 

surface area to volume ratio. This suggests that water status could have a great impact on the wine 

sensory profile through the concentration of the aroma volatiles. 

The present data is partially supported by another study on effect of water status on 

Cabernet Sauvignon sensory profile. Chapman et al. (2004) found in a standard irrigation treatment 

(32 Uvine/week) the highest ratings in vegetal aroma, bell pepper aroma, astringency, and 

bitterness while in a minimum irrigation treatment «-1.6 MPa) and double irrigation treatment (64 

Uv/w) astringency was much lower than in standard treatments. The same authors showed that 

minimum irrigation (water deficit treatment) led to the fruitiest wines, which is in agreement with 

the present research (Table 6.6). Fresh cherry, redlblack berry, jam/cooked berry, and dried 

fruit/raisin aromas, as well as acidic and fruity by mouth were rated highest in the minimum 

irrigated treatments. This is in contradiction with most of the irrigation studies where irrigation 

showed to decrease acidity. However, double irrigated treatments had highest ratings for fresh 

cherry which it is in agreement with the findings in full irrigated treatments. 

Conclusions 

This study showed that water deficits controlled most of the physiological and metabolic 

processes in the grapes. Increasing '13rix in non-irrigated vines did not necessary lead to an 

improvement in wine quality because this process is due mostly to the desiccation process rather 

than improving water use efficiency. A moderate water status might increase the overall yield 

°Brix and improve the sensory varietal typicity of the wine. Certainly, in dry and hot years the 

sensory profile of Cabernet Sauvignon wines could be manipulated in the vineyard by the 

winemaker in a positive way through water deficit strategies. However, if the basic wine 

composition can be adjusted in the winery, the wine sensory profile cannot be manipulated too 

much because this depends on the volatiles of which precursors are made in the vineyard. 

Regulated deficit irrigation strategies were more consistent, and had a greater magnitude of 

effect than PRD treatments in terms of general vine physiology, yield components, and fruit 

composition; Water depletion patterns in the soil showed that there was a high magnitude of 

difference between irrigation strategies in terms of physiological responses (Ts, leaf 'If), soil 

moisture, yield components, and fruit composition in warm vs. cool years. Despite improving vine 

performance, and in some cases the grape quality, PRD treatment is not recommended yet in this 
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area due to high cost involved, and less beneficial effect than RDI treatments. However, more 

research should be conducted on PRD strategy in order to validate the biochemical process behind 

of this strategy. Perhaps, by tuning up this strategy and lowering down the price for installing it in 

the vineyard this might be a good irrigation strategy in the future in cool regions. Perhaps the 

results from PRD treatment did not show an obvious improvement on any variables due to fact that 

100% of the water was replaced and not just a fraction of the water lost through 

evapotranspiration. 

There is no doubt about the positive effect of using deficit irrigation strategy in the 

vineyard, especially in very hot and dry years. However, it is essential to carry out vineyard 

experiments on irrigation strategies in combination with other cultural practices if the ultimate 

objective is to manipulate wine sensory attributes through vineyard management. Moreover, if 

irrigation experiments are carried out in one vineyard well established, the trials should be 

extended over a longer period of time in order to have a better control on the root system. To 

accurately interpret the irrigation effect, one should focus more on the relationships among scion, 

rootstock and root system architecture. By using RDI strategies, one could keep the root zone near 

the top of the soil profile, and in this way vine vigor might be more easily controlled. 

Even if irrigation is not recommended every year due to high weather variability, in hot 

and dry years, RDI strategies using drip irrigation are highly recommended in order to improve 

grape composition. However, more research should be done regarding the relationship between 

soil and vine water status, and their effect on the chemical compounds responsible for the sensory 

profile of this cultivar. Grape and wine quality can nonetheless be improved by using regulated 

deficit irrigation or PRD in warm and dry years in the Niagara Region. Contrary to what many 

winemakers believe, by using RDI strategies the quality of Cabernet Sauvignon wines could be 

improved. Overall, improving the vine performance helps to keep consistency not only in yield 

(fruitfulness) but also in berry composition and wine sensory profile. 
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Table 6.1. Attributes and their standard references used for sensory evaluation of 
Cabemet Sauvignon wines. 

Sensory Attribute 

Dark fruit 

Red fruit 

Sour cherry 

Prune 

Chocolate 

Cooked vegetable 

Tobacco 

Acidity 

Astringency 

Reference standard (prepared in 100 mL base red wine 
Kressmann -France) 

10 mL black currant concentrate (Ribena), 20 g of ED Smith 
wild fruit jam -blueberry and blackberry) 

20 g mixture of fresh strawberry and raspberry (California) 

109 of pulp sour cherries (canned) 

20 g of fresh prune puree (Mexico) 

No name (No Frills) - 5 g of cooking chocolate 

Mixture of fresh green pepper (4g) and asparagus (5g) Del 
Monte- cooked for 30s in microwave and left 24h in 
100mL of base wine 

1 g of processed tobacco leaves (24 h maceration in 100 mL 
base wine) 

1.5 g tartaric acid IL water 

0.3 g aluminum sulfate (Sigma) IL water 
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Table 6.2. bnpact of irrigation treatments on yield components and vine size of Cabemet 
Sauvignon grapevines, Lambert Vineyards, Niagara-on-the-Lake, ON, 2007-2008. 

Treatment 
Vine size Yield Clusters/ Cluster wt. Berries/ Berrywt. 
(kg/vine) (kg/vine) vine (g) cluster (g) 

2007 

Control 0.37 e 4.91 ab 48a 102.9 ab 105 ab 1.26b 

PRD 0.48 a 6.32 a 39b 162.9 a 116 a 1.33 a 

Full 0.44 b 4.29 b 43 ab 99.7 ab 89c 1.28 ab 

50RDI 0.35c 4.40b 45 ab 97.7 ab 98b 1.29 ab 

25RDI O.35c 4.40b 45 ab 97.7 ab 98b 1.29 ab 

Significance ** **** *** **** * * 

2008 

Control 0.49 5.61 b 42b 133.5 e 93 e 1.36 b 

PRD 0.51 6.5 ab 44b 147.7 ab l09b 1.41ab 

Full 0.53 6.60 a 49a 134.6c 116 a 1.43 a 

50RDI 0.50 6.38 ab 46ab 138.7 b 110b 1.41 ab 

25RDI 0.49 6.25 ab 42b 148.8 a 100 be 1.39 ab 

Significance ns * * * * * 

Legend: Control (non-irrigated); PRD -partial root zone drying (100% ETc); Full-conventional drip irrigation 
(100% ETc); RDI- regulated deficit irrigation (25 and 50 % ETc); 25, 50,100 % are the percentages of water 
replaced in the soil. 

*,**,***,****, ns: Significant at p ~ 0.05,0.01, 0.001, 0.0001, or not significant, respectively. Letters within 
columns represent means separated at p ~ 0.05, Duncan's multiple range test. Boldfaced data indicate those 
values significantly greater than the control using Dunnett's t-test; boldfaced and underlined data are significantly 
less than the control 
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Table 6.3. Impact of irrigation treatments on berry composition of Cabemet Sauvignon 
grapevines, Lambert Vineyards, Niagara-on-the-Lake, ON, 2006-2008. 

Total 
A520 Anthocyanins 

Treatment °Brix TA (gIL) pH Phenols 
(AU) (mgIL) 

(mg/L) 

2006 

Control 21.7 a 6.8 b 3.82 b 6.60c 413.4b 2300.4 b 

PRD 21.3 ab 7.5 ab 3.81 b 6.61 c 439.4 ab 2145.5 e 

Full 21.1 b 7.8 a 3.85 a 7.67 ab 401.6 e 2234.4 bc 

50RDI 20.9b 7.0b 3.84ab 7.11 b 435.2 ab 2486.0 a 

25RDI 21.6 ab 7.0b 3.82b 7.90 a 449.0 a 2454.2 ab 

Significance **** **** **** *** ** **** -

2007 

Control 23.2 a 7.1 b 3.63 b 8.20b 839b 2300.6 b 

PRD 22.6b 7.4 ab 3.4ge 7.60 ab 820bc 2401.5 ab 

Full 21.8e 7.8 a 3.73 a 7.11 e 65ge 1760.6 e 

50RDI 23.0 a 7.0b 3.69 ab 8.56 a 860ab 1980.6 be 

25RDI 23.3 a 6.9b 3.67 ab 8.46 a 871 a 2456.4 a 

Significance **** **** *** **** ** **** 

2008 

Control 20.0 10.34 a 3.66b 6.39 a 438 a 1560 a 

PRD 19.9 9.70 ab 3.69 a 5.99 ab 421 ab 1523 ab 

Full 19.7 10.15 ab 3.68 ab 5.81 b 396b 1321 b 

50RDI 20.0 9.19 b 3.65b 6.31 ab 415 ab 1489 ab 

25RDI 19.9 10.25 ab 3.66b 6.21 ab 426ab 1509 ab 

Significance ns * * * * * 

*Legend: Control (non-irrigated); PRD -partial rootzone drying (100% ETc); Full-conventional 
drip irrigation (100% ETc); RDI- regulated deficit irrigation (25 and 50 % ETc); 25, 50, 100 % 
are the percentages of water replaced in the soil. TA-titratable acidity; 

*, **, ***, ****, ns: Significant at p ~ 0.05,0.01,0.001 , 0.0001, or not significant, respectively. Letters 
represent means separated at p ~ 0.05, Duncan's multiple range test. Boldfaced data indicate those 
values significantly greater than the control, Dunnett's t-test; boldfaced and underlined data are 
significantly less than the control. 
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Table 6.4. Impact of irrigation treatments on must composition Cabemet 
Sauvignon grapevines, Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. 

Treatment Brix TA (gIL) pH 

Control 22.2b 8.3 b 3.46b 

PRD 21.4c 9.1 ab 3.56 ab 

Full 21.1 c 9.3 a 3.60 a 

50RDI 22.1 b 9.1 ab 3.49b 

25RDI 22.4 a 9.0ab 3.36c 

Significance * *** ** 

*Legend: Control (non-irrigated); PRD -partial rootzone drying (100% ETc); Full--conventional 
drip irrigation (100% ETc); RDI- regulated deficit irrigation (25 and 50 % ETc); 25, 50, 100 % 
are the percentages of water replaced in the soil. TA-titratable acidity; 

*,**,***,****, ns: Significant at P.$ 0.05,0.01,0.001,0.0001, or not significant, respectively. 
Letters represent means separated at P.$ 0.05, Duncan's mUltiple range test. Boldfaced data 
indicate those values significantly greater than the control, Dunnett's t-test; boldfaced and 
underlined data are significantly less than the control. 
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Table 6.5. Impact of irrigation treatments on Cabernet Sauvignon wines, Lambert Vineyards, 
Niagara-on-the-Lake, ON, 2007. 

EtOH% Hue Anthocyanins Phenolics 
Treatment pH TA(gIL) 

(v/v) (OD42010D520) (mgIL) (mgIL) 

2007 

Control 12.31 a 3.59b 5.1 b 0.68 a 759 a 2210.6 a 

PRD 11.72 b 3.46e 5.6ab O.64ab 711 b 1951.5 b 

Full 11.65 b 3.67 a 5.8 a 0.60b 546e 1630.6 e 

50RDI 11.96 ab 3.65 a 5.5 ab 0.63 ab 638 be 1860.4 be 

25RDI 12.16 ab 3.64 a 5.3 b 0.65 ab 727b 2076.1 b 

Significance * * * * ** *** 

*Legend: Control (non-irrigated); PRD -partial rootzone drying (100% ETc); Full-conventional drip 
irrigation (100% ETc); RDI- regulated deficit irrigation (25 and 50 % ETc); 25, 50,100 % are the 
percentages of water replaced in the soil. EtOH (%)-ethanol (% by volume); TA-titratable acidity. 

*, **, ***, ****, ns: Significant at p ~ 0.05,0.01, 0.001, 0.0001, or not significant, respectively. 
Letters represent means separated at p ~ 0.05, Duncan's multiple range test. Boldfaced data indicate 
those values significantly greater than the control, Dunnett's t-test; boldfaced and underlined data 
are significantly less than the control. 
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Table 6.6. Comparison of mean sensory scores among the irrigation treatments Cabemet 
SauviBnon wines 2007. 

Treatment Control PRD Full 50RDI 25RDI Pr>F 

Aroma 

Red fruit 2.5 c 4.2 a 3.1 b 3.7 ab 3.8 ab 0.0001 

Dark fruit 3.1 b 3.5 ab 2.5 c 3.3 b 4.1 a 0.008 

Sour cherry 3.5 ab 3.1 b 3.2 b 3.4 ab 3.6a 0.042 

Tobacco aroma 3.6 a 3.1 b 2.1 c 3.2 b 3.4 ab 0.053 

Chocolate 2.5 a 2.1 b 2.3 ab 2.5 a 1.4 c 0.009 
Cooked vegetable 2.1 b 1.5c 2.7 a 1.5 c 1.6c 0.006 

Flavor 

RED FRUIT 3.6 c 4.2 ab 4.3 ab 4.1 b 5.2 a 0.0001 
DARK FRUIT 2.6 b 3.7 ab 3.8 ab 3.9ab 4.1 a 0.002 -
SOUR CHERRY 2.8 c 3.8 ab 3.9 a 3.2 b 3.8 ab 0.021 
TOBACCO 1.6 bc 2.6ab 2.8 a . 1.9 b 1.1c 0.005 
CHOCOLATE 2.1 ab 2.3 a 1.9 ab 1.2 b 1.3b 0.041 
COOKED 

1.8 a 0.9b 0.7 b 0.5 b 0.6 b 0.018 
VEGETABLE 
ASTRINGENCY 2.9b 3.2 b 3.9 a 3.1 b 2.8 b 0.004 
ACIDITY 2.8 b 2.9 b 3.9 a 1.9 c 2.1 c 0.0001 

*Legend: Control (non-irrigated); PRD -partial rootzone drying (100% ETc); Full-
conventional drip irrigation (100% ETc); RDI- regulated deficit irrigation (25 and 50 % ETc); 
25, 50, 100 % are the percentages of water replaced in the soil. 

Means in the rows with different letters represent means separated at p ~ 0.05, Duncan's 
multiple range test. 
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Figure 6.1. Impact of irrigation treatments on soil moisture (%) of Cabemet Sauvignon grapevines, Lambert 
Vineyards, Niagara-on-the-Lake, ON, 2006 (A), 2007 (B) and 2008 (C). Legend: C-control (non-irrigated); PRD
partial rootzone drying (100% ETc); Full-conventional drip irrigation (100% ETc); RDI- regulated deficit 
irrigation (25 and 50 % ETc); 25, 50, 100 % are the percentages of water replaced in the soiL 
*,**,***,****, ns: Significant at p $ 0.05,0.01,0.001,0.0001, or not significant, respectively. Letters represent 
means separated at p $ 0.05, Duncan's multiple range test. 
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Figure 6.2. Impact of irrigation treatments on transpiration rate of Cabemet Sauvignon grapevines, Lambert 
Vineyards, Niagara-on-the-Lake, ON, 2006 (A), 2007 (B) and 2008 (C). Legend: C-control (non-irrigated); PRD
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Figure 6.3. Impact of irrigation treatments on leaf water potential of Cabemet Sauvignon grapevines, Lambert 
Vineyards, Niagara-on-the-Lake, ON, 2006 (A), 2007 (B) and 2008 (C). Legend: C-control (non-irrigated); PRD
partial rootzone drying (100% ETc); Full-conventional drip irrigation (100% ETc); RDI- regulated deficit 
irrigation (25 and 50 % ETc); 25, 50,100 % are the percentages of water replaced in the soil. *,**,***,****, ns: 
Significant at p S 0.05,0.01,0.001, 0.0001, or not significant, respectively. Letters represent means separated at p 
S 0.05, Duncan's multiple range test. 
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Figure 6.4. Impact of irrigation treatments on shoot growth rate of Cabernet Sauvignon grapevines, Lambert 
Vineyards, Niagara-on-the-Lake, ON, 2006 (A), 2007 (B) and 2008 (C). Legend: C-control (non-irrigated); PRD 
-partial rootzone drying (100% ETc); Full--conventional drip irrigation (100% ETc); RDI- regulated deficit 
irrigation (25 and 50 % ETc); 25,50,100 % are the percentages of water replaced in the soil. *,**,***,****, ns: 
Significant at p ~ 0.05,0.01,0.001,0.0001, or not significant, respectively. Letters represent means separated at p 
~ 0.05, Duncan's multiple range test. 
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Figure 6.5. Principal component analysis (F1&F2) of soil water status and physiological data means (10 vines x 
three shoots x three leaves x four replicates) from five irrigation treatments of Cabemet Sauvignon grapevines 
from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006. Legend: C-control (non-irrigated); PRD -partial 
rootzone drying (100% ETc); Full-conventional drip irrigation (100% ETc); RDI- regulated deficit irrigation (25 
and 50 % ETc); 25, 50, 100 % are the percentages of water replaced in the soil. Tleaf-Ieaf temperature; SM2O-soil 
moisture at 20 cm depth, ",,-leaf water potential; Ts-transpiration. 
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Figure 6.6. PLS regression analysis of soil and plant water status and berry composition data from five irrigation 
treatments of Cabemet Sauvignon grapevines from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006. Legend: 
Tleaf-Ieaftemperature; SM20-soil moisture at 20 cm depth, 'I'rleaf water potential; Ts-transpiration; TA-titratable 
acidity; A520-absorbance at 520 nm ; V - vine size; Anth.- anthocyanin content; T.Ph-total phenolics. 
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Figure 6.7. Principal component analysis (Fl&F2) of soil water status and physiological data means (10 vines x 
three shoots x three leaves x four replicates) from five irrigation treatments of Cabemet Sauvignon grapevine 
from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Legend: C-control (non-irrigated); PRD -partial 
rootzone drying (100% ETc); Full-conventional drip irrigation (100% ETc); RDI- regulated deficit irrigation (25 
and 50 % ETc); 25, 50,100 % are the percentages of water replaced in the soil. V-vine size; Tleaf-Ieaf 
temperature; SM20-soil moisture at 20 cm depth, ",-leaf water potential; Ts-transpiration. 
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Figure 6.8. Principal component analysis (Fl&F2) of soil water status, physiological data, yield components and 
berry composition means (10 vines x three shoots x three leaves x four replicates) from five irrigation treatments 
ofCabemet Sauvignon grapevines from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Legend: C-control 
(non-irrigated); PRD -partial rootzone drying (100% ETc); Full-conventional drip irrigation (100% ETc); RDI
regulated deficit irrigation (25 and 50 % ETc); 25, 50,100 % are the percentages of water replaced in the soil. V
vine size, V-yield; CN- number of clusters per vine; C.W.-cluster weight; B/C-number of berries per cluster; 
B.W.- berry weight; neaf-Ieaf temperature; SM20-soil moisture at 20 cm depth; 'l'l-leaf water potential; Ts
transpiration; TA-titratable acidity; A520-absorbance at 520 nm; Anth.- anthocyanin content; T.Ph-total 
phenolics. 
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Figure 6.9. Principal component analysis (Fl&F2) of soil and vine water status from five irrigation treatments of 
Cabemet Sauvignon from Lambert Vineyards, Niagara-on-the-Lake, ON, 2008. Legend: C-control (non
irrigated); PRD -partial rootzone drying (100% ETc); Full-conventional drip irrigation (100% ETc); RDI
regulated deficit irrigation (25 and 50 % ETc); 25, 50, 100 % are the percentages of water replaced in the soil. 
Tleaf-Ieaf temperature; SM20-soil moisture at 20 cm depth, 'l'1-leaf water potential; Ts-transpiration. 
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Figure 6.10. PLS regression analysis of soil and vine water status, yield components and berry composition data 
from five irrigation treatments of Cabemet Sauvignon grapevine from Lambert Vineyards, Niagara-on-the-Lake, 
ON, 2008. V- vine size, Y-yield; CN- number of clusters per vine; C.wt.-cluster weight; B/C-number of berries 
per cluster; B.wt.- berry weight, Tleaf-Ieaftemperature; SM20-soil moisture at 20 cm depth, 'IIJ-Ieafwater 
potential; Ts-transpiration, TA-titratable acidity; A520-absorbance at 520 nm ;Anthoc.- anthocyanin content; 
T.Ph-total phenolics. 
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Figure 6.11. Radar diagram the mean intensity ratings of five Cabernet Sauvignon wines made from different 
irrigation treatments Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Aroma and flavor attributes are 
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Figure 6.12. Principal component analysis (F1&F2) of sensory data means from five irrigation treatments of 
Cabernet Sauvignon grapevine from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Legend: C-control 
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Figure 6.13. PLS regression analysis of soil and plant water status, yield components, berry and wine composition 
and sensory data from five irrigation treatments of Cabemet Sauvignon grapevine from Lambert Vineyards, 
Niagara-on-the-Lake, ON, 2007. V- vine size, V-yield; CN- number of clusters per vine; C.wt.-cluster weight; 
B/C-number of berries per cluster; B.wt.- berry weight; Tleaf-Ieaftemperature; SM20-soil moisture at 20 cm 
depth, 'l'l-leaf water potential; Ts-transpiration, V-vine size; EtOH- ethanol; TA-titratable acidity; A520-
absorbance at 520 nm; Anthoc.- anthocyanin content; T. Ph-total phenolics. 
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Chapter 7 

Impact of Water Status Level on Abscisic Acid and its Catabolites 
Profiles in Leaves and Berries from Two Grape Cultivars 
Abstract. To understand the relationship among soil and plant water status, plant 

physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its 
catabolites [phaseic acid (PA), dihydrophaseic acid (OPA), 7-hydroxy-ABA (TOH-ABA), 8'
hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in 
leaves and berries from two different grapevine cultivars (Baco noir and Chardonnay) during 
the growing seasons 2006 to 2007 using liquid chromatography with ion trap combined with 
electrospray ionization-mass spectrometry. An irrigation trial was set up in one commercial 
vineyard, located in Niagara-on-the-Lake, ON, Canada. Baco noirtrial consisted of 10 
treatments: control (non-irrigated), plus three water levels (100,50 and 25% replacement of 
crop evapotranspiration), factorially combined with three timings of irrigation imposition (fruit 
set, lag phase and veraison). Chardonnay field trial consisted in seven treatments: control 
(non-irrigated), plus three water levels (100,50 and 25% of crop evapotranspiration) 
combined with two timings of irrigation imposition (fruit set and veraison). ABA, ABA-GE, OPA 
and 7-0H-ABA were found in amounts enough to be detectable at all sampling dates, while 
phaseic acid (PA) was found in small amounts only at some sampling dates. The hormonal -
profile indicated a direct relationship between ABA and climatic factors. The hormonal profiles 
were different under the same climatic conditions for the two cultivars. The ABA varied 
between 582 to 4026 ng/g dry matter (OM), OPA between 417 to 562 ng/g, and ABA-GE 
between 337 to 2764 ng/g OM. PA at many sampling times was undetectable in the leaves, 
and its highest concentration (260 ng/g OM) was found at beginning of July in 2007. In 
Chardonnay, the hormonal profile showed less temporal variation in 2006 than in 2007. The 
trend for ABA and its catabolites in Chardonnay was almost the same as Baco noir in both 
years, but the magnitude among the treatments was different. ABA followed different 
catabolic pathways depending on the plant water status. ABA was likely catabolized by 
conjugation to form ABA-GE in treatments under higher levels of water deficit, while in 
treatments with high water status, the oxidation pathway leading to OPA or PA was likely 
preferred. The ABA and ABA-GE concentrations in the berries at harvest showed high 
correlation with soil and plant water status. 

Introduction 

When soil water availability falls below a certain level, both the root water potential and 

turgor reach very low values, stimulating the synthesis of several plant growth regulators including 

abscisic acid (ABA) (Wright 1977). Many plants regulate stomatal aperture and leaf growth rates 

independently of hydraulic signals (Comstock 2002), this being the result of some chemical 

regulators generated by the interactions between the root (or the leaves) and the drying soil (or air) 

(Zhang and Davies 1989). Other theories state that the production of ABA occurs in leaves and 

another signal than ABA transmits the drought stress response from roots to leaves. This unknown 

"root-to-Ieaf' long distance signal in turn causes the production of ABA in leaves (Christmann et 

al. 2005). However, almost all cells can synthesize ABA and transport it through the plant via both 

xylem and phloem (Cutler and Krochko 1999). ABA must accumulate to a high concentration in 
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order to act on its target cells to close stomata or to reduce the leaf growth (Dodd and Davies 1996, 

Loveys 1984). However, the strength of ABA signal perceived at its final site of action does not 

always reflect the coarser measurements of ABA concentration (Zhang and Outlaw 2001). 

Approximately 0.1 ~M ABA occurs in the xylem sap of a well watered plant (Trejo et al. 1993). 

Moreover, the same author indicated that if this entire amount reaches the guard cells, the stomata 

would be permanently closed and the plant would not survive. 

Computer simulation predicts that even well watered plants contain enough ABA to 

accumulate at the guard cells to a concentration high enough to close the stomata (Slovik and 

Hartung 1992). This prediction is supported by the physico-chemical properties of ABA. ABA is a 

weak acid with a pKa of 4.8, and it exists in two forms (lipophilic free acid and the lipophobic 

anion) depending on the proton concentration. While the free acid permeates biomembranes easily, 

ABA is almost completely non-permeant (Heilmann et al. 1980, Kaiser and Hartung 1981). This 

leads to an intracellular ABA distribution according to the anion trap concept (Wilkinson and 

Davies 2002). Consequently, alterations of pH gradients cause changes in the intracellular 

distribution of ABA, as follow: ABA concentrations increases in alkaline compartments, e.g. the 

cytosol and the stroma of chloroplasts, while ABA depletes in compartments of low pH such as the 

vacuole and apoplastic compartments (Hartung et al. 1982). The accumulation of ABA to 

physiologically active concentrations in the leaf apoplast (adjacent to the guard cells) is directly 

related to the pH of apoplast (Hartung et al. 1998). 

ABA plays primary regulatory roles in the initiation and maintenance of seed and bud 

dormancy, and in the plant response to stress (Koussa et al. 1994). In water stressed plants, ABA 

not only maintains root growth rates (Munns and Sharp 1993), but it also increases the root 

hydraulic conductivity by modifying the root membrane properties (Glinka and Reinhold 1971). 

ABA also affects leaf morphology. The stomata of the plants grown under water stress (that have 

high ABA concentrations) are smaller than those of well-watered plants (Xia 1994). ABA also 

induces reductions in leaf and stem growth rates, reduces the leaf surface area, and preserves the 

water by closing stomata (Zhang and Davies 1990). ABA also accelerates senescence of leaves, 

while ethylene induces their abscission (Zacarias and Reid 1990). ABA operates at molecular level 

by regulating gene transcription, protein synthesis, signaling pathways, ion and organic molecules 

transport, and the production of metabolites important in drought stress tolerance such as: sucrose, 

trehalose, sorbitol, mannitol, proline, glycine, betaine, and polyamines (DeLuc et al. 2009, Sauter 

et al. 2001). These metabolites accumulate under drought stress, and function as osmolytes, 

antioxidants or scavengers that help plants to avoid and/or tolerate stresses (Bartels and Sunkar 
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2005). The changes in these metabolites at cellular level are thought to be associated with 

protecting the cellular function or with maintaining structure of cellular components (Seki et al. 

2007, Yang et al. 2006). 

ABA is a key component of the signal transduction pathway for the stomatal closure 

(Leung and Giraudat 1998). The concentration of the active forms of ABA in plant tissue is a 

complex process, and depends not only on the relative rates of biosynthesis, catabolism, transport 

and redistribution of ABA within leaves, but also on the synthesis and transport from the roots 

(Zhang and Outlaw 2001). Measurements of extracted ABA usually reflect only a 'snapshot' of the 

effect of these processes, and provide little information about flux, cellular or subcellular 

distribution and/or the potential for rapid change (Cutler and Krochko 1999). By perturbing either 

ABA synthesis or its degradation, it has been possible to gain some sense of the relative 

contribution of each of these processes in maintaining ABA concentrations, and consequently in 

the downstream physiological processes in plant tissues (Cutler and Krochko 1999). 

Many studies showed that ABA is rapidly turned over in plants (Feurtado et al. 2004, 

Huang et al. 2008). Therefore'measurement of ABA concentration alone is not enough, giving 

limited information on the total amount of ABA produced over time, and on the potentially active 

products resulting from ABA catabolism, especially under stress conditions (Owen et al. 2009). 

There are several metabolic pathways by which ABA can either be removed or degraded in 

plant tissues (Cutler and Krochko 1999). ABA is rapidly turned over by plant enzymes (Huang et 

al. 2008), either by oxidation or by conjugation to abscisic acid glucose ester (ABA-GE) that 

represents an inactive pool of ABA (Dietz et al. 2000, Nambara and Marion-Poll 2005). The 

principal catabolic pathway of ABA is by oxidation of the 8'-carbon atom leading to an unstable 

intermediate 8' -hydroxy ABA (8'OH ABA), which is reversibly cyclized to phaseic acid (PA) or 

farther reduced to dihydrophaseic acid (DP A) (Zeevaart and Creelman 1988). Either PA or DPA 

are the main metabolites of ABA which accumulate in different plant cells and tissues (Walton and 

Li 1995). The early oxidation products [8'OH ABA, (-)-PA and (+)-7'OH ABA] retain and exert 

significant ABA-like activity (Zou et al. 1995). However, in contrast with the activities of these 

initial ABA-metabolites, DPA does not exhibit ABA-like activity in any of the standard protocols, 

and DPA seems to be the fully inactivated form of ABA (Walton and Li 1995). Oxidation at 

different ring methyl groups of the ABA molecule led to more ABA catabolites: TOH ABA and 

9'OH ABA. The latter can cyclize reversibly to neophaseic acid (neoPA) (Zaharia et al. 2005). For 

a long time, the conjugation pathway was not considered an important catabolic pathway of ABA. 

ABA-GEcould act as a reservoir of ABA in grape berries (Kondo and Kawai 1998). Unlike free 
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ABA, ABA-GE is lipophobic and unable to cross the lipid cell membranes between the xylem and 

its surrounding tissues. The cleavage of glucose-conjugated ABA by an ABA-specific J3-
glucosidase, AtBGl, is a new way to produce bioactive ABA in response to dehydration stress. 

Thus, ABA-GE could represent an inactive storage form of ABA in plants (Lee et al. 2006). Since 

under certain circumstances the ABA-GE from xylem could be the major method of translocation 

of the ABA signal, simple measurements of ABA from xylem do not always reflect the amount of 

the antitranspirant potentially present in the xylem stream. 

Evidence exists for the presence of a root-sourced chemical signal other than ABA, which 

is responsive to soil water potential (Munns and King 1988). Synthesis of the ethylene precursor 1-

aminocyclopropane-l-carboxylic acid (ACC) increases in roots in response to stress (Gomez

Cadenas et al. 1996), and it is transported to shoots where the ethylene released from ACC can 

induce the ABA synthesis (Grossmann and Hansen 2001). 

Different experimental conditions, species and cultivars used in ABA studies led to 

contradictory results in some cases (Coombe and Hale 1973, Davies et al. 1997, Inaba et al. 1976, 

Scienza et al. 1978, Wheeleret al. 2009). The techniques used to measure ABA in plant tissues 

have been improved greatly over the years. Earlier methods employed ethanol extraction followed 

by thin layer chromatography (Coombe and Hale 1973) and ethyl-acetate-methanol extraction 

followed by gas-liquid chromatography (GLC) (Downton and Loveys 1978), GC-mass 

spectrometry (MS) or LC/MS-MS techniques (Owen et. al. 2009, Soar et al. 2006). 

This study, which profiled ABA and catabolites in leaves and berries under different water 

status levels, over the vegetation period, was undertaken to understand the relationship between 

vine water status and ABA metabolism. In this study, the response of Baco noir and Chardonnay 

grapevines to water deficit was evaluated. Since they have different genetic background, tolerances 

to water deficits, and short vegetation periods, it was expected that there would be distinct 

differences in their metabolic responses to water status as well. It was hypothesized that the ABA 

and its catabolites profiles would vary in leaves and berries during the vegetation period, and could 

accurately reflect the water status level. 

Materials and Methods 

Experimental design and plant material. The field trials were conducted at Lambert 

Vineyards, Niagara-on-the-Lake, ON, Canada(43°13'N, 79°08'W). The experimental design and 

the irrigation protocols used were described in detail for both cultivars in Chapters 3a and 4. 
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Vine water status. To monitor vine water status, biweekly observations were conducted 

over the growing season. Midday leaf water potential ('P), transpiration (Ts), and leaf temperature 

data were collected from mature leaves that were fully exposed to the sun between 1030h and 

1400h. The instruments and protocols used to collect vine water status were described in detail in 

Chapters 3a and 4. 

Soil water status. Soil moisture data was collected over a period of two years 2006 and 

2007, respectively. The instruments and protocol used for data collection were described in detail 

in Chapters 3a and 4. 

Fruit composition and yield components. Yield components were recorded from each 

experimental vine for both cultivars studied. The protocol used was described in detail in Chapters 

3a and 4. Fruit composition was determined using methods described in the previous chapters. 

ABA and catabolites analyses. Sample preparation. Leaf samples for ABA analysis 

were collected during 2006 and 2007 seasons. A total of nine leaves from each treatment replicate 

were collected from three vines. The leaves were collected biweekly before irrigation treatments 

were initiated, from the same vines from which vine water status data were collected. In 2006, leaf 

sampling was performed on the following dates: 6 July, 20 July, 3 August, 17 August and 31 

August, while in 2007 sampling occurred on 5 July, 19 July, 2 August, 16 August and 30 August. 

In both seasons, the fIrst sampling date was two weeks after the irrigation treatments were initiated 

(fruit set). The leaves were immediately introduced into cryogenic vials (pre-weighed), kept in 

liquid nitrogen, and transported tothe Brock University, Viticulture Laboratory, where they were 

prepared for future analysis. The contents of each vial were weighed, grounded under liquid 

nitrogen into powder, and lyophilized. The dry material was kept in sealed vials, in the dark and at 

-30°C. 

Berry samples for hormone analyses were collected in both years at veraison and at 

harvest. A total of 25 berries were collected randomly from each treatment replicate. Berry 

samples collected for ABA and catabolites analysis were weighed and peeled, while frozen, and 

separated into skin and pulp plus seed fraction. All sample fractions were grounded using a mortar 

and pestle under liquid nitrogen. The powdered samples were lyophilized and then kept at -30°C 

and dark, until extraction was performed. 

A mixture of deuterium-labeled internal standards (IS) was added to approximately 0.1 g of 

each dried fraction, together with 3 mL of extraction solvent (isopropanol: water: acetic acid; 

80:19:1). The solution was vortexed and allowed to extract for 24 hr while shaken at 380 rpm on an 
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orbital shaker placed in a 4 °C refrigerator. After extraction, the samples were vortexed again, 

centrifuged, and then the supernatant was transferred to a 15-mL glass tube. Thls extract was dried 

on a BUchi MultivapoiM (BUchi, Flawil, Switzerland) at 30°C and 280 rpm, and under vacuum 

reduced from 900 to 25 mbar over 1 hr, after which it was held at 25 mbar until dry. The dried 

extract was subjected to clean-up by mixed-mode cation exchange solid-phase extraction using two 

different type of cartridges Oasis MCX and lll..B (Waters Corporation Canada, Mississauga, ON). 

The dried extracts were re-dissolved in 100 J.1L methanol (MeOH): acetic acid (AcOH) (99:1) and 

made up to 1 mL in H20: AcOH (99: 1). The cartridges were fIrst prepared by washing and 

equilibrating with 1 mL MeOH: AcOH (99:1) and 1 mL H20: AcOH (99:1), respectively, before 

loading the sample. The drip rate was kept to approximately one drop every 1 to 2 seconds. The 

sample was washed with 1 mL H20: AcOH (99:1) and eluted into a second microcentrifuge tube 

using 1 mL H20: Acetonitrile (CAN): AcOH (69:30:1). This fInal extract was dried down in a 

BUchi MultivaporTM (BUchl, Flawil, Switzerland) at 25°C and 280 rpm, and redissolved in 100 of 

the reconstitution solvent before high performance liquid chromatography-mass spectrometry 

(HPLC-MS) analysis was performed. The analyte was moved into 200-IlL glass insertion placed in 

chromatographic vials. 

Sample analysis. To process and analyze the ABA hormone and its catabolites in the berry 

and leaf samples, an existing HPLC-MSIMS method was used for analyzing ABA and its 

metabolites in Brassica, Arabidopsis and conifer seeds (Feurtado et al. 2004, Ross et al. 2004, 

Zhou et al. 2003), and adapted for use with grape berries (Owen and Abrams 2009). 

All samples were analyzed using an Agilent 1100 series LC system, diode array detector 

coupled with LC-MS HCT (High Capacity Trap) Ultra (Bruker Daltonics, Bremen, Germany) 

equipped with a Z-spray electro spray (ES) ion-source. The MS was controlled by Compass 

QuantAnalysis v.2.0 software (Bruker Daltonics, Bremen, Germany). HPLC conditions included a 

Genesis C18 analytical column (2.1 x 100mm, 4 11m; Chromatographic Specialties, Brockville, 

ON) with an Opti-Guard C18 guard column (1 mm, Optimize Technologies, Oregon City, OR), a 

column temperature of 25°C, an injection volume of 5 ilL, and solvents acetonitrile/ milli-Q water/ 

0.1 % aqueous formic acid in order to create a gradient as shown (Table 7.1). For equipment 

optimization a full scan MS run on the mix of deuterated standards. Mass spectrometry was carried 

out using negative electrospray ionization (ESI) and multiple reactions monitoring (MRM). For 

calibration purposes deuterated standards were used (Plant Biotechnology Institute, Saskatoon, 

SK). Injections of 5 and 10111 were performed in order to check linearity and component 

sensitivity. The ion trap mass spectrometer was operated in negative ion mode with MRM 
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scanning from125 to 440 Daltons. The ESI (negative) parameters were as follows: capillary 

+4000V; end plate offset -500V; nebulizer: 40.0 psi; dry gas 10.0 Llmin.; dry temp: 350 C; 

nebulizer and drying gas: dry nitrogen; collision gas: Helium; trap drive - 44.9; skimmer: -40.0V; 

cap exit: -109.8V, MRM transitions and time retention as shown (Table 7.2). 

Data analysis. Chemical data were analyzed using SAS statistical package (SAS Institute; 

Cary, NC, USA). Using GLM, analysis of variance was performed on physiological and chemical 

data. Principal components analysis (PCA) was performed on the means of field data and chemical 

data, using XLSTAT 2008 (paris, France). Duncan's multiple range test was used for means 

separation for all data sets (field and chemical), and Dunnett's t-test was used to determine those 

treatment means that were statistically different from the control at a significance level of (1::;0.05. 

Results 

ABA and catabolites prof"des. Baco noir leaves. 2006 (Figs. 7.1A1 to A3: 7.2A4. AS). 

On the first sampling date, there was a clear separation between treatments initiated at fruit set and 

the other treatments based on the ABA concentration (Fig. 7.1A1). The ABA was almost double in 

the non-irrigated treatments than 50 and 100% ETc initiated at fruit set. However, in 25% ETc, 

ABA concentration was not different than non-irrigated treatments (Fig. 7 .lA1). PA was higher in 

100% ETc initiated at fruit set compared with the non-irrigated and the other irrigation treatments 

initiated at fruit set. The ABA catabolites did not show a constant pattern among the treatments at 

first sampling date. However, 7'OH-ABA was the lowest in all treatments compared to the other 

catabolites. PA, DPA and ABA-GE showed little variation among treatments, being found almost 

in the same range across the treatments. DPA and PA were found in higher amounts than ABA-GE 

across the treatments with some exceptions. On the second sampling date, ABA followed almost 

the same pattern as that in the first sampling date; however the amount of ABA increased 

significantly compared to that found at first sampling date (Fig. 7.1A2). The ABA concentration 

increased slightly in all treatments. ABA-GE increased in all treatments except those where water 

was applied. Except for 100% ETc started at fruit set, DPA and PA showed a switch in all other 

treatments, being found at lower concentrations than ABA-GE. 7'OH-ABA showed little variation 

between treatments. 

On the third sampling date, the accumulation pattern of ABA and its catabolites was very 

different from previous sampling time, the amount of ABA dropped below of that found at the fITst 

sampling date (Fig. 7.1A3). This apparent change coincided with high rainfall from the previous 

week. The magnitude of difference between treatments in terms of ABA concentration decreased, 
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while DP A and P A concentration increased substantially in some irrigated treatments, being 

almost double than the ABA-GE (Fig. 7.1A3). TOH-ABA also increased, and reached in some 

cases the ABA-GE concentration level. 

On the fourth and fifth sampling dates, there was a clear separation of the irrigated 

treatments based on the ABA and its catabolites profile (Figs. 7.2A4 and AS). The ABA 

concentration decreased in 100% ETc treatments compare to the control. However, 2S% ETc 

treatments had almost the same content of ABA as the control. ABA-GE decreased slightly in the 

irrigated treatments compared to control. At the last two sampling dates the lowest concentration 

of ABA-GE was recorded in 100% ETc treatments. An interesting observation was found at the 

last two sampling dates in 100% ETc treatment applied at veraison, where ABA, PA and DP A 

were found almost at the same concentration. DPA and PA increased in the 100% ETc treatments, 

their concentration almost doubled than the ABA-GE (Figs. 7.1A4, AS) 

2007 (Figs. 7.1Bl to B3; 7.2B4, BS). The 2007 season was the hottest and driest year in 

the experiment, and subsequently the pattern of ABA and its catabolites did not show much 

variation throughout the growing season compared to 2006 season. At the first sampling date the 

ABA concentration in the control was almost 4.S-fold higher than in the similar treatment at the 

same sampling date in 2006, which was considered a wet year (Fig. 7.1Al, Bl). Slightly higher or 

lower variation was observed in the other treatments, except for those initiated at fruit set (Fig. 

7.1Bl). Compared to 2006 at the same sampling date, the difference between ABA concentration 

and the other catabolites was far more impressive. The DPA and TOH-ABA concentration was 

almost 7.5-fold lower than the ABA concentration and consistent in all the treatments (Fig. 7.1Bl). 

From all the catabolites analyzed, ABA-GE was present in the highest amount and close to the 

ABA concentration. Contrary to the results found in 2006, P A was not found in the leaves at a 

detectable level, at the first sampling date (Fig. 7.1Bl). On the fust sampling date the profile of 

ABA and its catabolites in the irrigation treatments imposed at fruit set was different than control 

and all other treatments. The ABA concentration in 100% ETc and SO% ETc initiated at fruit set 

was approximately fivefold lower than that one found in the control in 2007, and very close to that 

one found in the control in 2006 at the same sampling date. An interesting observation was that all 

catabolites were low in the irrigated treatments, which suggests that translocation rather than 

different catabolic pathway was predominant. On the second sampling date, the profile was almost 

identical with that one found at the first sampling date (Fig. 7.1B2). However, ABA-GE had a 

slightly decreasing trend in all treatments. ABA and ABA-GE continued to be predominant in the 

profile, with slight variation across the treatments. On the third sampling date, the ABA profile 

pattern was similar to the previous sampling dates (Fig. 7.1B3). However, both ABA and ABA-GE 
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concentrations decreased by almost 30% in all treatments. In contrast with the previous sampling 

date, there was a slight increase in DPA and TOH-ABA. PA was found for the first time at a 

detectable level and higher even than DP A concentrations in 2007. 

On the fourth sampling date, there was a good separation of all irrigation treatments based 

on the hormone profile, not only between the treatments with different regimes of water applied 

but also between times of initiation (Fig. 7.2B4). ABA and ABA-GE concentrations showed 

slightly higher values at 25% ETc compare to both 50 and 100% ETc in all treatments. In the 100% 

ETc treatment initiated at fruit set there was a higher DPA concentration than ABA. However, 

DPA was overall higher than TOH-ABA and PA across the treatments. On the fifth sampling date, 

which coincided with the highest water deficit in the soil, the ABA and ABA-GE showed higher 

values in all treatments than those found at previous dates (Fig. 7.2B5). The highest magnitude 

difference in the hormonal profile was observed between 100% ETc initiated at fruit set and the 

control. At this stage, P A and neoPA were non-detectable. 

Baeo noir berries (Figs. 7.3 to 7.6.). The ABA and its metabolites profile were determined 

in skin and pulp at veraison and harvest time in both years of the experiment. In 2006, all the ABA 

catabolites found in leaves were detected in both berry fractions. At veraison, the highest 

concentration of ABA was found in the skin, in the non-irrigated berries (Fig. 7.3A). However, 25 

and 50% ETc treatments had consistently higher ABA concentration than 100% ETc, with the 

highest values on treatments initiated at veraison. The lowest concentration was that of TOH

ABA, which was consistent across the treatments. ABA-GE had almost the same pattern as ABA 

across the treatments. The 100% ETc treatment had lower concentration at all irrigation initiation 

times compared to the control, 50 and 25 % ETc treatments. Unlike the hormonal profile in leaves, 

PA and DPA were found at higher concentrations and consistent across the treatments. In 2006, at 

harvest the ABA concentration decreased significantly in the berry skin (Fig. 7.3B). In non

irrigated berries, the ABA amount was 3-fold less than that one found at veraison. However, ABA 

showed little variation in skin among treatments at harvest, with one exception in 25% ETc 

treatment initiated at veraison when its concentration was abnormally low (Fig. 7.3B). At harvest, 

the ABA pattern in the skin was not similar to that one at veraison. In contrast with the skin profile 

at veraison, there were high concentrations ofPA, and DPA in all treatments at harvest; DPA 

concentration was much higher than PA, and in some treatments almost double than ABA-GE 

(Fig.7.3B). 

At veraison, the ABA profile in the pulp showed almost the same profile as in the skin, but 

the concentration was much lower (Fig. 7.4A). ABA was consistently higher across the treatments 

than the other catabolites, except 100% ETc initiated at lag and veraison. DPA was constantly 
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higher than ABA-GE in most of the irrigated treatments, except for control and 2S% ETc 

treatments. At harvest, ABA decreased in pulp almost 3-fold relative to veraison time sampling 

(Fig. 7.4B). At this stage, the DPA increased consistently, having the highest values in the 100% 

ETc treatments. ABA-GE was consistent in the pulp across the treatments but lower than ABA and 

DP A. Although, ABA was much lower in the pulp across the treatments at veraison, the control 

and all the deficit irrigation treatments still had higher concentrations than 100% ETc (Fig. 7.4B). 

In 2007, the ABA concentration in the skin at veraison was the highest in the control and 

2S% ETc initiated at veraison (Fig. 7.SA). However, 100% ETc treatments had the lowest ABA 

concentration across the treatments. ABA concentration did not show much variation among the 

treatments. The ABA-GE was found at the highest concentration in the control treatment while in 

the other treatments the concentration was much lower. A distinct pattern was seen between the 

treatments, with ABA-GE increased slightly from 100% ETc to 2S% ETc, while DPA decreased in 

the same order. No PA or neo PA was found in the skin. At harvest, ABA and ABA-GE had 

almost the same pattern (Fig. 7.SB). However, ABA-GE had lower concentrations than ABA. An 

interesting observation was that DP A increased in the skin at harvest time in almost all treatments 

when compared to the other catabolites studied. In some treatments, DP A concentration was .much 

higher than ABA. ABA showed a steadily increasing trend from 100% ETc treatment initiated at 

fruit set to 2S% ETc treatment initiated at veraison. ABA-GE had the same pattern as the veraison 

treatments but the concentrations were slightly lower (Fig. 7.SB). 

In the pulp, all catabolites were found at lower concentrations than in the skin (Fig. 7.6A). 

The pattern found in the pulp in 2007 was different than that one found in 2006 (Fig. 7.6A, B). 

ABA concentration in non-irrigated berries at veraison was almost 2.2-fold higher than in non

irrigated berries at harvest time. The ABA and its catabolites profiles in the pulp had a different 

pattern than that one found in the skin. Characteristic for this fraction was the high concentration 

of ABA-GE in almost all the treatments at both stages veraison and harvest, and in some 

treatments more even than ABA (Figs. 7.6A, B). However, ABA-GE pattern was not consistent 

based on the irrigation initiation time. DPA was much lower than ABA and ABA-GE across the 

treatments and at both sampling times. Another interesting observation was the highest variation 

among pulp samples for ABA and ABA-GE, observation that was not found previously. 

Chardonnay leaves. 2006 (Figs. 7.7Al to A3: 7.8A4. AS). As a general pattern, ABA and 

its catabolites were found at lower concentrations than in Baco noir leaves at similar sampling 

dates. At the first sampling date ABA was highest in the control and lowest in the 100% ETc 

initiated at veraison, and increased slightly in the SO and 2S% ETc (Fig. 7.7Al). This was contrary 

to the expectations, since no irrigation was applied at first sampling date in treatments scheduled to 
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be applied at veraison. Unlike of the profiles in Baco noir, DPA and PA were found at higher 

concentrations than ABA-GE in almost all the treatments. ABA-GE was consistent across the 

treatments. 

On the second sampling date, ABA increased slightly (Fig. 7.7A2). The same pattern as at 

fIrst sampling date was observed for all other catabolites. DPA and PA concentrations were lower 

than ABA in 25 and 50% ETc while in 100 % ETc PA and DPA were consistently higher than 

ABA and ABA-GE. On the third sampling date the pattern showed little variation than at the 

previous sampling date. The most changes occurred in treatments initiated at veraison. ABA 

concentration decreased in all treatments initiated at veraison (Fig. 7.7A3). 

On the fourth sampling date, the hormonal profile was different than those from previous 

sampling dates (Fig. 7.8A4). The ABA concentration was the highest in the control followed by 

treatments where deficit irrigation was applied, with one exception in 25 % ETc applied at fruit set 

where ABA concentration was abnormally low. ABA-GE concentration had the same pattern in 

treatments initiated at fruit set and veraison, with an upward trend from 100% ETc to 25% ETc. 

DPA was consistently higher than ABA across the treatments with few exceptions. The trend was 

steadily increasing in treatments where defIcit irrigation was applied, and it was almost in the same 

range as that one found in the control. On the fifth sampling date, ABA was still found at high 

concentrations in the control and 25% ETc (Fig. 7.8A5). The pattern found was more consistent 

across the treatments. Except for 25% ETc initiated at veraison, where ABA-GE was still higher 

than both the DPA and PA, the ratio among these catabolites switched in all other treatments. 

Interestingly, DPA concentration was found in 100% ETc treatments much higher than ABA and 

the other compounds studied at both initiation times. 

2007 (Figs. 7.7BI to B3: 7.8B4. B5). In 2007, the hormonal profile in Chardonnay leaves 

looked different than that one from 2006. At fIrst sampling date, ABA concentration was lower 

compare to that one found in Baco noir leaves at the same sampling date. The highest ABA 

concentration was found in non-irrigated leaves, almost 2.5-fold higher than that one found in the 

same treatment in 2006 (Fig. 7.7BI). The hormonal profile pattern was almost similar in 

treatments initiated at fruit set and veraison. Interestingly, ABA and ABA-GE were predominantly 

in the profile across the treatments; PA, DPA and TOH-ABA had consistently low concentrations 

across the treatments. However, the ABA profile showed the same trend, lowest in 100% ETc and 

slightly higher in 50% ETc and 25% ETc (Fig. 7.7B1). On the second sampling date PA increased 

in almost all treatments. However, it was found at a lower concentration than ABA-GE, except in 

100 % ETc treatments (Fig. 7.7B2). The ABA concentration in the 25% ETc was slightly higher 

than the control. DPA and TOH-ABA showed just a little variation among treatments. On the third 
312 



sampling date ABA showed a downward trend in all treatments except 25% ETc initiated at 

veraison (Fig. 7.7B3). ABA-GE showed little variation than at previous sampling date. However, 

the pattern was similar to that one found in Baco noir, showing a distinct separation between 100% 

ETc imposed at both fruit set and veraison, and the control. 

On the fourth sampling date ABA and ABA-GE increased considerably, both of them 

being found at the highest concentration in 2007 season (Fig. 7.8B4). PA was not detectable in any 

treatment while DPA was found slightly higher in the irrigated treatments initiated at veraison. 

However, the hormonal profile pattern was not consistent across the treatments. On the last two 

sampling dates, ABA concentration followed the same trend as that one found on the other 

sampling dates, being highest in the control and 25% ETc, and much lower in 100% ETc (Fig. 

7.8B5). 

Chardonnay berries. 2006 (Figs. 7.9. to 7.12A and B). The hormonal profile found in the 

skin was different at veraison than that one found at the harvest time (Fig. 7.9A, B). The highest 

magnitude of difference in terms of ABA concentration was found between the control and 100% 

ETc initiated at fruit set. Irrigated treatments initiated at veraison had a consistent ABA pattern. 

ABA-GE was almost 2-fold less than ABA across the treatments with few exceptions (Fig.7.9A). 

DPA concentration was close to that of ABA-GE in almost all the treatments, except for the non

irrigated and 25% ETc treatments. PA and 7'OH-ABA were found in small amounts, and were 

consistent across all treatments. At harvest, the ABA concentration in the skin decreased compare 

to that one at veraison (Fig. 7.9B). The amount of ABA found in the non-irrigated berries was 3-

fold lower than at veraison. The same trend was also found in the ABA-GE which was almost 5-

fold less in non-irrigated compare to the same treatment at veraison. An important observation was 

the impressive amount ofPA found in the skin at harvest. However, DPA also increased but in a 

smaller percentage than P A. 

In 2006, the ABA concentration found in the pulp at veraison was much lower than that 

one found in the skin (Fig. 7.IOA). The amount of ABA did not show important variation among 

the treatments, except in 100% ETc initiated at veraison. DPA and P A were found in most of the 

treatments at a higher concentration than the ABA-GE. The other two compounds studied were 

found in small amount, and a constant concentration throughout the experimental treatments. · At 

harvest, the hormonal profile was different in the pulp compare to that one found in the skin at the 

same stage (Fig. 7.IOB). ABA concentration was still the highest compared to the other catabolites 

in all treatments except for the 100% ETc. ABA-GE increased in the treatments initiated at 

veraison, but the pattern was not consistent across the treatments. PA and DP A were lower than 

ABA and the other catabolites in all treatments, except 100 % ETc (Fig. 7. lOB). 
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2007. In tenns of ABA concentration, the pattern in the skin was very close to that one 

found in 2006 (Fig. 7 .IIA, B). However, there was a better discrimination of the treatments based 

on this compound. Overall, at veraison ABA concentration was higher than in previous season in 

all treatments. The 25% ETc treatment at veraison had the highest ABA concentration and very 

close to the control (Fig. 7 .IIA). PA was not found at a detectable concentration. DPA showed 

little variation, being found at higher concentrations in the irrigated treatments but less than ABA

GE. At harvest, the amount of ABA in the skin decreased but less significant than in 2006 (Fig. 

7.11B). DPA did not show the same trend as in 2006, being found in higher concentrations in 

100% ETc treatments. Overall, all the catabolites decreased in the skin at veraison. DPA was 

higher than ABA-GE in all treatments except 50% ETc applied at veraison (Fig. 7.11B). 

In 2007, ABA concentration was much higher in the pulp at veraison than that one found in 

2006 at the same sampling date (Fig. 7.12A). A lower concentration was found in the 100% ETc 

treatments compared to non-irrigated berries or with the deficit irrigated treatments. PA was not 

found in the pulp at any sampling date. DPA showed a slightly increased trend in the deficit 

treatments being detected in a smaller amount than ABA-GE across the treatments. At harvest, 

ABA decreased in pulp in all treatments compare to the previous sampling date (Fig. 7.12B). The 

same trend was observed for ABA-GE. However, it was not observed a consistent pattern across 

the treatments. DPA showed an upward trend in all treatments. However, only in 100% ETc the 

concentration was 2- to 3-fold higher than the ABA-GE (Fig. 7.12B). 

Relationships among ABA and its catabolites, soil and plant water status, yield 

components and berry composition. Baco noir. 2006 (Fig 7.13). PCA was performed on field 

and chemical data. There were noteworthy correlations among the different variables. The first two 

factors explained 60.53% of the variability in the data set, whereas factor 1 accounted for 43.09% 

of the variability and factor 2 only for 17.44%. There was a good separation of the treatments 

based on the amount of water applied. The 100% ETc treatments were grouped on the right side of 

the plane while the control and 25% ETc treatments were grouped on the left side of the plane. RDI 

treatments with low water status were positively associated with ABA in the leaves and skin at 

veraison while PA and DPA were mostly associated with treatments with high water status (100 % 

ETc). ABA-GE in leaf and berry skin were positively correlated with each other, and negatively 

correlated with soil moisture at 60 cm depth. ABA concentration in the leaves was negatively 

correlated with soil moisture at 20, 40 and 100 cm depths (Fig. 7.13). 

2007 (Figs. 7.14 and 7.15). The PCA offield and honnone data from Baco noir showed 

that the first two factors explained 63.28% of the variability in the data set. The first component 

explained 44.40% and the second one only 18.88% (Fig. 7.14). There was a clear separation of the 
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treatments based on the water status level. Separation between the times of imposition was 

obviously for 100% ETc, and not for the other deficit irrigation treatments. However, 100% ETc 

initiated at fruit set was located on the left upper quadrant while the other two full replacement 

treatments were in the lower left quadrant. This indicated that the later treatments were under some 

degree of water stress during the growing season. DPA in leaves and skin berries were highly 

associated with high water status. They were highly negatively loaded on the first component, 

along with Ts and leaf 'V. ABA and most of its catabolites in leaves and berry skin were highly 

positively loaded on the first component, being negatively correlated with Ts and leaf 'V. This 

might support the hypothesis that ABA is one of the main compounds involved in stomatal 

regulation. However, ABA and its catabolites in berry pulp did not show a strong relationship with 

the water status level, and some of them were not explained by the first two components. The ABA 

concentration in skin at harvest was negatively correlated not only with soil moisture at 20 and 100 

em depth but also with TOH-ABA in the skin. The ABA concentration in leaves was negatively 

correlated with soil moisture at 40 and 60 em depth, and positively correlated with ABA 

catabolites in berries. 

Another PCA was performed on soil and plant water status, berry chemical composition 

and berry skin hormone composition (Fig. 7.15). The first two factors explained 62.31 % of the 

variability in the data set. The first component explained 43.77% and the second one 18.54% (Fig. 

7.15). Color intensity, anthocyanins and OSrix were positively correlated with ABA and ABA-GE 

concentration in the skin at veraison. All these variables were negatively loaded on the PC1, and 

highly associated with water deficit treatments. However, it was not a clear distribution of the 

treatments based on the amount of water used or initiation time. 

Chardonnay. 2006 (Fig. 7.16): PCA was performed on field and lab data. The diagram 

showed a high degree of correlation among variables. The first two factors explained 67.41 % of 

the variability in the data set, whereas factor 1 accounted for 44.90 % of the variability and factor 2 

for 22.51 % (Fig. 7.16). ABA concentration in berries at veraison and harvest was positively 

correlated with that one found in the leaves. ABA was also positively correlated with °Brix, and 

negatively correlated with soil moisture at 60 em, DPA concentration, and the number of clusters 

per vine. No strong correlations were found between soil water status and the hormonal profile in 

2006. However, there was a clear separation of treatments based on both water status and irrigation 

time initiation. The 100% ETc treatments were located on the left side of the plane while the 

control and 25% ETc treatments were located on the right side of the plane, being associated with 

both the ABA and ABA-GE concentrations. 
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2007 (Figure 7.17). The PCA was performed in 2007 on the same variables as in 2006. The 

PCA plot indicated that factors 1 and 2 explained 63.72% ofthe variability in the data set. There 

was a better separation of the irrigated treatments in 2007 than in 2006. The treatments initiated at 

fruit set are located in the upper plane while those initiated at veraison are located in the lower 

plane. There was also a separation based on the amount of water used. The 100% ETc treatments 

were grouped on the right side of the plane while the deficit irrigation treatments were located on 

the left side of the plane. ABA concentration in leaf was highly correlated with transpiration, berry 

weight, and negatively with leaf'll, °Brix and soil moisture at 60 and 40 cm depth. ABA in the 

berries was positively correlated with ABA-GE both at veraison and harvesting time. Moreover, 

they were negatively correlated with yield, vigor, number of berries per cluster, DPA and PA 

concentration. On the other hand, ABA concentration in the berries and leaves at veraison were 

positive correlated with berry weight,and negatively correlated with soil moisture at 40 and 60 em, 

°Brix and TOH ABA. 

Discussion 

Field experiments are affected by climatic factors such as temperature and rainfall or soil 

variation, that cannot be controlled (Alleweldt and DUring 1972). Moreover, their effects on 

grapevines are a result of their interaction, which makes the process more complex. The factors 

affecting ABA accumulation are obviously complex, and a better understanding of both ABA 

synthesis and degradation/sequestration is required to better define and predict these interactions in 

grapevine. 

Increases of ABA concentration in V. vinifera (cv. Sultanina) leaves from vines under 

water deficit conditions have previously reported (Loveys and Kriedemann 1974). These authors 

found massive accumulations of ABA and high stomatal resistance at leaf'll of -1.3 MPa, 

following a drying period of several days. These findings are in agreement with results from the 

present study which showed high accumulations of ABA in leaves under water deficit. Strong 

correlations between ABA concentration in leaves, leaf'll and the Ts rate were found in both 

cultivars in this study. These relationships confirm findings from other studies where ABA 

fluctuated according with plant water status (Tardieau and Davies 1992). However, the two 

cultivars studied in the present irrigation trials showed different relationships in 2006 and 2007, 

which suggests that more factors or a complex interaction among them affect these relationships. 

The same trend in ABA concentration was observed in Concord leaves under water stress with 

values between 0.33 to 1 mg kg-1 of fresh leaf (Liu et al. 1978). These authors indicated that the 
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increasing amount of ABA was far less in stressed vines (three fold) in V. labruscana than in V. 

vinifera, where the ABA concentration in water stressed vines increased 40 fold (40 mg kg-l dry 

weight) compared to that one found in well-hydrated vines (Loveysand Kriedemann 1973). 

However, this was not the case in the present study, where variation in ABA concentration 

between two to ten times among the treatments was found. In this study, Baco noir, which is an 

interspecific hybrid, produced more ABA than Chardonnay (V. vinifera) under the same water 

status. PA was also detected in Concord leaves (Liu. et al. 1978) but the concentration found was 

very low (0.02 to 0.04 mg kg-l) compared to that one found in V. vinifera, which exceeded even the 

ABA concentrations (Kriedemann et al. 1975). In this study the findings were different compare to 

their results, perhaps because they used potted vines in their trials, different cultivars, and different 

extraction and analysis methods. However, Diiring and Scienza (1975) reported ABA 

concentrations in field-grown Riesling leaves (Germany) about a tenth of those found by Coombe 

and Monk (1979) in Riesling leaves field grown from Australia (478 to 513 ng g-l fresh weight). 

The difference in water status might be a possible explanation for the same cultivar. The results 

from Chardonnay trials are in agreement with those found in another water stress study conducted 

on culticar Chardonnay (Okamoto et al. 2004). 

Based on experiments with tall and dwarf sunflower, it was concluded that stomatal 

opening is regulated by the ABA produced in leaves (Hoad 1975). The same conclusion was 

reached regarding the regulation of leaf gas exchange in grapevine (Loveys and DUring 1984). 

However, Zhang and Davies (1989) concluded that stomatal regulation is under control of ABA 

produced on roots. There are important changes in the ABA concentration of grapevine roots in 

contact with drying soil, but these changes do not necessarily translate to equivalent changes in the 

amount of ABA from leaves (Loveys et al. 2004). Bulk ABA from grapevine leaves is not sourced 

purely from the roots, as the sap concentration increases along shoots away from the root source 

(Soar et al. 2004). These authors suggested that additional ABA is produced in the canopy. 

In this irrigation trial, the failure of leaves to accumulate high concentrations of ABA and 

its catabolites in well-irrigated treatments might be explained through the biosynthesis and 

translocation process rather than the catabolic process. ABA inactivation through oxidation or 

glycosylation might affect its concentration. However, ABA inactivation did not appear to be as 

significant as biosynthesis on controlling its concentration (DeLuc et al. 2009). This observation is 

not totally in agreement with the results. This conclusion is supported by the hormone proftle 

found at different sampling dates, where decreasing ABA concentration was not accompanied 

every time by an increase at the same rate of one or the other ABA catabolite. Metabolic steps 

upstream of 9-cis-epoxycarotenoid dioxygenase (NCED) and ABA catabolism downstream also 
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affected ABA concentrations in some tissues and organs (Nambara and Poll 2005). However, the 

failure of the leaves to accumulate ABA is due to rapid transport out of the leaf (Liang et al. 1996). 

This explanation is also supported partially by the present study since ABA decreased in well

watered treatments without a similar increase in the other catabolites. ABA is normally 

translocated out of the leaf as shown by experiments where obstruction of phloem transport leads 

to an increase in foliar ABA (Setter et al. 1981). 

In both cultivars studied, low ABA concentration was correlated with high water status in 

the vine. Besides translocation and degradation, ABA seems to be stored in the leaves at a 

concentration that cannot have any physiological effect, possible due to the "ion trap" concept 

(Dagenhardt et al. 2000). However, some studies showed that translocation through the phloem is a 

very important way to control ABA concentration in the plant (Hoad and Gaskin 1980, Loveys and 

DUring 1984, Setter et al. 1981). 

Data from the present study clearly showed that ABA-GE concentration in the leaves is 

affected by the water status. Although, ABA-GE is considered a product of the ABA metabolism, 

no strong relationship was found between these two compounds. ABA-GE followed the same 

trend most of the time as that of ABA which suggests a possible translocation into or out of the 

leaves besides of its production in the leaves. Sauter et al. (2001) suggested that the bound forms 

of ABA are utilized as a long-distance transport form, which can be converted to free ABA by 

apoplastic hydrolases before being imported into the cell. It was speculated that the reason of ABA 

conversion from free to bound form is to remove the active free ABA from circulation either 

through sequestration or inactivation. Once conjugated ABA is localized into a vacuole, it is 

trapped by hydrophilic properties, and therefore, withdrawn from further metabolism (Bray and 

Zeevaart 1986). Conjugation is the process of converting ABA to ABA-glucosyl ester (-GE) or 

ABA-glucosyl ether (-GS). The physiological significance of ABA glycosylation in plants remains 

unclear. A gene catalyzing the conversion of racemic ABA to ABA-GE has been identified in 

Adzuki bean seedlings (Cutler and Krochko 1999). Another possible explanation of increasing the 

ABA-GE simultaneously with the ABA, is that of inactivation of the ABA surplus produced under 

water deficit conditions and which might negatively affect the photosynthesis process by closing 

the stomata completely, and triggering the senescence process. 

ABA-GE does not have biological activity, so under stress conditions ABA-GE might 

serve as a pool for easy release of ABA (Cutler and Krochko 1999). This explanation could be a 

plausible one since stomatal closure is one of the first plant reactions in order to keep water 

balance. However, the ABA translocation process from the roots to the leaves is not excluded but 
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it could not be explained totally by the rapid increase of ABA in the leaves under water deficits. In 

the present study data indicates a large increase in ABA"GE under water stress conditions. ABA

GE synthesis might be controlled by factors others than water status, since its concentration in 

leaves from high water status treatments at some sampling dates in 2007 was almost double than 

that one found in the similar treatments in 2006. 

Data from the present study indicates a strong relationship among ABA and its 

metabolites, soil and vine water status. Low concentrations of DPA in leaves under water deficits 

could be explained by its lack of biological activity. However, DPA and PAwere found in higher 

concentrations even higher than ABA-GE in leaves under high water status. These results 

indicated a switch between the catabolic pathways under different water status conditions in both 

leaves and berries. One explanation might be that the vine has an auto-regulatory complex 

mechanism which diverts the catabolism pathway based on the needs, up-regulating or down

regulating the genes which control the enzymes involved in this process. TOH-ABA does not 

seem to play an important role in ABA metabolism. It was found in small concentrations and did 

not vary in concentration throughout different water status conditions. Also, a major observation 

was that the ABA metabolism is under genetic control, and being cultivar dependant. Under the 

same water status level, Chardonnay and Baco noir produced different amounts of ABA and 

metabolites, which might reflect their different strategies to cope with water stress. 

The ABA and its metabolites profiles were determined in skin and pulp at both veraison 

and harvest time, in both years of the experiment. Data indicated that the profiles varied not only 

from season to season but also in the berry fraction. Most studies showed that free ABA 

concentrations increase in berries at about the time of veraison, although the reported timing of 

increase in relation to veraison somewhat varies (Cawthon and Morris 1982, Coombe and Hale 

1973, Gagne et al. 2006, Kondo and Kawai 1998, Okamoto et al. 2004, Scienza et al. 1978). At 

veraison, ABA increased by 6-fold in the skin and by about 8-fold in the flesh fraction (Coombe 

1976). The timing of increase in ABA concentrations at veraison correlates closely with the 

increase in sugar concentration and anthocyanins. Although, the ABA variation in berries was not 

studied over the entire growing period, the data showed a decreasing trend in concentration of 

ABA from veraison to harvest. 

Phloem sap contains ABA, and its concentration increases substantially in stressed plant 

(Zeevaart 1977). This might be a plausible explanation of increasing ABA concentration in berries 

around veraison time, since in many studies increases in ABA concentration in berries was 

observed at veraison (Owen et al. 2009). This occurred in the present trials, at beginning of 
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August, the time when water deficit usually start to build up in Niagara Peninsula. However, ABA 

accumulates in fruits of plants growing in drying soils, often because these are relatively alkaline 

compartments (Sauter et al. 2001). This explanation might probably be valid in other species but 

not in Vitis spp. However, the data indicated higher ABA concentration in the skin than in the 

pulp, which could be explained though the gradient pH. The data from the present study is in 

agreement with previous studies which reported that ABA and partially its catabolites were found 

in berries at higher concentration at veraison rather than at harvest (Owen et al. 2009). This sugests 

that ABA could have an important role in triggering the ripening process. 

There is a marked accumulation of ABA in leaves following a period of soil drying, but no 

ABA accumulation is evident in fruits because of limited water flux between the developing fruit 

and the vegetative part of the plant (Davies et al. 2000). These findings are in contradiction with 

those from the present study, which showed a positive relationship between increasing vine water 

stress and ABA concentration in berries at veraison but not at harvest. This indicates that phloem 

transport of foliar ABA increased as berries developed. 

The decrease in ABA that occurred later in the berry development (harvest time) could be 

due to a combination of its degradation and synthesis. At veraison, the majority of ABA is 

transported from leaves to berries where it accumulates first in the seeds and then in the pericarp 

(Koussa et al. 1994). The increase in ABA concentrations around the time of veraison is consistent 

with its role in controlling of berry ripening. Some studies show that ABA application enhanced 

both sugar and anthocyanins accumulation (Dilling et al. 1978, Matsushima et al. 1989). 

Moreover, recent reports showed that ABA application to grape berries resulted mainly in an 

increase in color rather than an advancement of sugar accumulation (Mori et al. 2005, Peppi et al. 

2007, Peppi and Fidelibus 2008). 

At veraison, the majority of ABA is transported from leaves to berries where it 

accumulates. The source of pericarp ABA might be the leaves and the pericarp itself, and less the 

seeds (Cawthon and Morris 1982, Koussa et al. 1993). In the pericarp, the higher ABA 

concentration occurred when maximum size of berries was reached some days after the end of 

veraison (Antolin et al. 2003). This explains why the ripening occurs earlier in the grapes under 

water deficits. The changes of berry color that occurred at veraison are also related to increased 

ABA concentration in all organs (seeds, pericarpand leaves) (Koussa et al. 1993). Evidence that 

support this process is thatthewater supply to the berry after veraison occurs mainly through the 

phloem. Thus, any changes in phloem loading affect berry stress and ABA accumulation (Bondada 

et al. 2005). ABA stimulates phloem unloading by increasing passive efflux or by inhibiting 

reloading (Vreugdenhil 1983). This finding agrees with reports describing the correlation between 
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the concentration of endogenous ABA and the import of sugars into developing seeds and fruits 

(During and Alleweldt 1980, Quebedeaux et aI. 1976). Although, in the present study data 

indicated an increase of the ABA amount at veraison, it is not possible to conclude that this is due 

to ABA leaf translocation. 

Owen et aI. (2009) described the ABA and its catabolites profile in Merlot berries over the 

growing season. The data from trials with berries are partially in agreement with their data. A 

possible explanation of this, could be that they used irrigation throughout the season, and aIso a 

different cultivar. Nowadays, it is well known that different cultivars are more or less sensitive to 

water stress due to their different capacities to control ABA metabolism. The effect of water 

deficits on ABA concentrations in grape berries have been described in a previous study (Okamoto 

et aI. 2004). The ABA content in berries from Chardonnay cultivar is in the range of that found by 

Okamoto et aI. (2004). However, Data showed that ABA at harvesting time was higher in the 

control than in 100% ETc initiated at fruit set even if overall the amount dropped considerably by 

harvesting time. Water deficits increased ABA concentrations in Cabemet Sauvignon berries, but 

not in Chardonnay berries (DeLuc et aI. 2009). The same authors showed that in Chardonnay 

berries water deficit did not increase ABA concentration above that of well watered berries. These 

findings are in contradiction with data from the present research. Even if the amount of ABA was 

far less in the Chardonnay controls compared to Baco noir, there was still a different profile at both 

veraison and harvesting time in well and non-irrigated treatments. Moreover, water deficit 

increased the transcript abundance of genes (lipoxygenase and hydroperoxide lyase) involved in 

fatty metabolism, a pathway known to affect berry and wine aromas. In Chardonnay, water deficit 

activated parts of the phenylpropanoid pathway, carotenoid and isoprenoid metabolic pathways 

that contributed to increased concentrations of antheraxanthin and flavonols (DeLuc et aI. 2009). 

In the present experiments, ABA profile showed a preference for different catabolic 

pathways in the skin and the pulp at both veraison and harvesting time. ABA can be metabolized 

into ABA-GE and phaseic acid, which is then reduced to dihydrophaseic acid. ABA-GE 

concentrations have been observed to be relatively constant before veraison, but with a trend 

towards increasing its concentrations after veraison (DeLuc et aI. 2009). Water deficit increased 

ABA-GE concentrations in Chardonnay berries but not in Cabemet Sauvignon (DeLuc et aI. 

2009). This data are partially in agreement with those findings. In the present triaIs, there was a 

higher amount of ABA-GE at veraison and much lower at harvesting time. This can be explained 

by high demand of ABA at beginning of the ripening process, ABA-GE being proved to be an easy 

release pool of ABA. Also, it is well known that ABA is involved in controlling of many metabolic 

pathways in the berry at this time. At harvesting sampling time significant amounts of P A and 
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DPA were found. This might be explained by the fact that vine divert the metabolic pathway to 

producing inactive catabolites since no longer need of ABA is required. 

Water deficit slightly increased the concentration of DP A in both Cabernet Sauvignon and 

Chardonnay berries at maturity in one experiment (DeLuc et al. 2009). The same authors showed 

that water deficit had no effect on the concentrations of PA for either cultivar. They also showed 

that the transcript abundance of ABAHASE (the enzyme involved in phaseic metabolic pathway) 

was greater in Chardonnay than in Cabernet Sauvignon, and it increased by water deficit for both 

cultivars. 

Besides of the relationship found in some studies between water status and ABA 

concentration, control of ABA could be more complex, its concentrations being also affected by 

ethylene (Hansen and Grossmann 2000) and phytochrome (Sawada et al 2008). High temperatures 

(30°C) inhibited anthocyanins accumulation through a reduction of endogenous ABA 

concentration (Tomana et al. 1979). However, spraying ABA to the clusters restored the level of 

anthocyanin accumulation in high-temperature treated grapes (Kataoka et al. 1984). The role of 

hormones in the control of grape berry ripening is quite complex. There is evidence that two other 

growth hormones playa role in triggering berry ripening. Both ethylene (Szyjewicz et al. 1984) 

and brassinosteroids (Symons et al. 2006) have been shown to have a positive influence on grape 

berry ripening. 

The distribution of free ABA in different berry tissues throughout their development 

generally followed the same pattern (DeLuc. et al. 2009) which is in agreement with the results 

from the present study. ABA concentrations were found somewhat higher in seeds than in either 

skin or flesh at most time points.Seeds might be the source of at least some of the ABA found in 

the flesh and skin, although evidence is currently lacking for this (DeLuc et al. 2009). ABA is 

produced in the leaves and transported to the berries along with sucrose after veraison (Antolin et 

al. 2003). However, berryABA concentrations vary independently of leaf concentrations during 

ripening (Okamoto et al. 2004). Although stressing vines could elevate ABA concentrations 

throughout the plant, it is still unclear if ABA is produced within the berry as a response to altered 

water status . or it is imported from the rest of the plant. 

Concentrations of the ABA catabolic products such as PA, DPA and epi-DPA in sweet 

cherries were noticeably different between the flesh and seed samples (Setha and Kondo 2005). 

The same authors reported a DP A concentration in the seeds almost 30 fold higher compared to the 

flesh at 43 days after full bloom. They suggested that the amount of DPA might have an active role 

in the regulation of ABA concentration in the seeds (Setha and Kondo 2005). However, some 

studies showed that DPA has no biological activity (Walton and Li 1995). 
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Increased ABA concentration results in closure of the stomata thus limiting the water loss 

from the plant through transpiration (Zeevaart and Creelman 1988). ABA has been shown to cause 

rapid alterations in the anionic and K+ ionic channels of the guard cell plasma membranes 

(Assmann 1993). Data from this study is in agreement with this theory. However, the relationship 

between the amount of ABA and transpiration was not very strong under high water status. 

ABA uptake from the xylem could cause partial stomatal closure during the afternoon. 

However, the diurnal variation in stomatal aperture is not related to xylem ABA concentration in a 

simple way (Correia et al. 1995). This could be due to influence of other chemical signals, such as 

cytokinins (Stoll et al. 2000b), changes in the sensitivity of stomata to ABA (Tardieu and Davies 

1992), differences in ABA catabolism during day (Trejo et al. 1993) andlor changes in the pH of 

xylem sap (Stoll et al. 2000a). This might explaine why the relationship between ABA 

concentration in leaves and transpiration was different in Chardonnay block, in 2007 season. 

Water deficit increases ABA concentrations in the xylem sap and leaves of grapevine while 

changes in stomatal conductance are well correlated with ABA concentrations of the xylem sap 

(Okamoto et al. 2004, Soar et al. 2004). ABA also influences hydraulic conductance (Hose et al. 

2000), aquaporin gene expression (Kaldenhoff et al. 2008, Tyerman et al. 2002), and embolism 

repair in grapevines (Lovisolo et al. 2008). 

The accumulation of ABA in berries plays an important role in the triggering of veraison 

(Antolin et al. 2003, Dapeng et al. 1997), and the accumulation of anthocyanins (Matsushima et al. 

1989). It was reported recently that anthocyanin synthesis was enhanced by ABA treatment due to 

its effect on the genes responsible for the biosynthesis of the anthocyanins enzymes (Ban et al. 

2003, Jeong et al. 2004). The transcription of genes and activity of proteins involved in sugar 

accumulation and metabolism during ripening are also influenced by ABA (<;akir et al. 2003, Pan 

et al. 2005, Yu et al. 2006). The relationships found through the PCA were not consistent from 

vintage to vintage. However, ABA concentration at veraison in Baco noir was positively correlated 

with °Brix and anthocyanin concentration, which could support the theory of its involvement in the 

ripening process. 

In Chardonnay vines it is not clear if ABA has a positive effect on grape composition. It is 

possible that ABA acts in white cultivars at the cellular level, controlling synthesis of various 

secondary metabolites other than those with direct impact on fruit composition. These metabolites 

accumulate under drought stress and function as osmolytes, antioxidants or scavengers that help 

plants to avoid andlor tolerate stresses (Bartels and Sunkar 2005). 
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Conclusions 

ABA and its catabolite profiles were affected in both cultivars studied not only by level of 

water status but also by the time of irrigation initiation. A consistent positive relationship between 

ABA concentration at veraison, '13rix and anthocyanins in Baco noir might support the theory that 

ABA is involved in the ripening process. Moreover, ABA and its catabolites profile seemed to be 

under genetic control, and it was more obvious in red cultivars. Chardonnay grapevines produced 

less ABA in both leaves and berries compared to Baco noir, which might be translated in its 

different capacity to react at different level of water status. There is not strong evidence from the 

present study that higher concentrations of ABA in berries under water deficits could control any 

specific metabolic pathways in Chardonnay, although, it is well documented that moderate water 

stress positively affects the aromatic compounds. 

Besides genetic control, ABA and some of its catabolites were strongly affected by water 

status level. Even with a low magnitude of difference in water status level, changes were 

detectable in ABA and itscatabolites profile. From all possible catabolites of ABA studied, only 

ABA-GE, DPA, PA and 7'OH-ABA were found at detectable levels in both seasons. In vines with 

high water status ABA is not completely turned over as is suggested to happen in other plant 

species. Moreover, variation in ABA concentration over the entire growing season was not 

followed by changes in the same proportion in its catabolites, which indicates that translocation 

might be an important process along with the three catabolism pathways of ABA. There is an 

apparent control of one or the others catabolic pathway for ABA, depending on Jhe water status 

level in the vine. ABA-GE was the main catabolite in treatments with high water deficits, while 

P A and DP A were higher in treatments with high water status, suggesting that the vine produced 

more ABA-GE under water deficits in order to have a pool of ABA which could be used quickly to 

control stomatal opening. 

ABA and part of its catabolites can accurately describe grapevine water status. However, 

they are highly affected by other climatic factors. Future research should be focused on finding the 

ABA threshold in the berries responsible to trigger the ripening process, and how this can be 

controlled in cool climates. 
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Table 7.1 Mobile phase solvent composition and gradient protocol 

Percent Percent 
Time (min) Solvent Solvent 

A B 

0.00 95.0 5.0 

5.00 65.0 35.0 

7.10 60.0 40.0 

7.50 40.0 60.0 

9.00 40.0 60.0 

13.00 0.0 100.0 

18.00 0.0 100.0 

20.00 95.0 5.0 

Post Time 5.0 

A: H2 0+0.1 % formic acid B: acetonitrile + 0.1 % formic acid; Flow: 
350uUmin 

-
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Table 7.2. Multiple reaction monitoring transitions and retention time used for ion 
trap mass spectrometry conditions for ABA and its metabolites. 

Analyte Precursor rnIz Productrnlz Retention time 

d3-DPA 284.1 174.1 6.5 

ABA-GE 425.1 263.1 7.6 

d5-ABA-GE 430.1 268.1 7.4 

PA 279.1 139.1 8.0 

d3-PA 282.1 142.1 8.1 
-

neoPA 279 205 8.6 

d3 neoPA 282 208 8.4 

7-0H ABA 279 151 8.2 

d47'OHABA 283 154 8.1 

ABA 263.1 153.1 9.2 

d4-ABA 267.1 156.1 9.1 
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from 10 irrigation treatments. Error bars indicate the standard error of the mean of three 
biological replicates. A1- 6 July, A2-2OJuly, A3- 3 August; B1- 5 July, B2- 19 July, B3- 2 
August); *Set, Lag, Ver. are irrigation initiation times fruit set, lag phase and veraison, 
respectively. 

Figure 7.2. ABA and catabolite profiles of Baco noir leaves sampled from ten irrigation treatments 
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time) from ten irrigation treatments. Error bars indicate the standard error of the mean of three 
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100 are percentage of water replaced based on ETc. 
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on-the-Lake, ON, 2006: A) at veraison and B) at harvest, from ten irrigation treatments. Error 
bars indicate the standard error of the mean of three biological replicates. * Set, Lag, Ver. are 
irrigation initiation times: fruit set, lag phase and veraison, respectively; * 25, 50, 100 are 
percentage of water replaced based on ETc. 
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treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006: A) at veraison and B) at 
harvest) from ten irrigation treatments. Error bars indicate the standard error of the mean of 
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Figure 7.5. ABA and catabolite profiles of Baco noir berry skin sampled from ten irrigation 
treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007: A) at veraison and B) at 
harvest from ten irrigation treatments. Error bars indicate the standard error of the mean of three 
biological replicates. Set, Lag, Ver. are irrigation initiation times: fruit set, lag phase and 
veraison, respectively; * 25, 50, 100 are percentage of water replaced based on ETc. 

Figure 7.6. ABA and catabolite profiles of Baco noir berry pulp sampled from ten irrigation 
treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007: A) at veraison and B) at 
harvest from ten irrigation treatments. Error bars indicate the standard error of the mean of three 
biological replicates. Set, Lag, Ver. are irrigation initiation times: fruit set, lag phase and 
veraison, respectively; * 25, 50, 100 are percentage of water replaced based on ETc. 

Figure 7.7. ABA and catabolite profiles of Chardonnay leaves over the growing season sampled 
from seven irrigation treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006 (AI 
to A3: means first to third sampling time) and 2007 (B1 to B3: means first to third sampling 
time). Error bars indicate the standard error of the mean of three biological replicates. (A1- 6 
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water replaced based on ETc 

Figure 7.8. ABA and catabolite profiles of Chardonnay leaves over the growing season sampled 
from seven irrigation treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006 (A4 
and A5: means fourth and fifth sampling time) and 2007 (B4 to B5: means fourth and fifth 
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sampling time) Error bars indicate the standard error of the mean of three biological replicates. 
(A4- 17 August, A5- 30 August, B4- 16 August, B5- 29 August); *Set and Ver. are irrigation 
initiation times, fruit set and veraison, respectively; * 25, 50, 100 are percentage of water 
replaced based on ETc. 

Figure 7.9. ABA and catabolite profiles of Chardonnay berry skin sampled from seven irrigation 
treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006: A) at veraison and B) at 
harvest). Error bars indicate the standard error of the mean of three biological replicates. *Set 
and Ver. are irrigation initiation times: fruit set and veraison, respectively; * 25,50, 100 are 
percentage of water replaced based on ETc. 

Figure 7.10. ABA and catabolite profiles of Chardonnay berry pulp sampled from seven irrigation 
treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006: A) at veraison and B) at 
harvest. Error bars indicate the standard error of the mean of three biological replicates. *Set 
and Ver. are irrigation initiation times: fruit set and veraison, respectively; * 25, 50, 100 are 
percentage of water replaced based on ETc. 

Figure 7.11. ABA and catabolite profiles of Chardonnay berry skin sampled from seven irrigation 
treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007: A) at veraison and B) at 
harvest). Error bars indicate the standard error of the mean of three biological replicates. *Set 
and Ver. are irrigation initiation times: fruit set and veraison, respectively; * 25, 50, 100 are 
percentage of water replaced based on ETc. 

Figure 7.12. ABA and catabolite profiles of Chardonnay berry pulp sampled from seven irrigation 
treatments from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007: A) at veraison and B) at 
harvest). Error bars indicate the standard error of the mean of three biological replicates. *Set 
and Ver. are irrigation initiation times: fruit set and veraison, respectively; * 25, 50, 100 are 
percentage of water replaced based on ETc. 

Figure 7.13. Principal component analysis biplot (F1&F2) of soil and vine water status and water 
stress hormone composition from 10 irrigation treatments of Baco noir from Lambert 
Vineyards, Niagara-on-the-Lake, ON, 2006. Set, Lag and Veraison are the time for irrigation 
imposition and 100,50 and 25 represent percentage of the water replaced in the soil through 
irrigation. 

Figure 7.14. Principal component analysis biplot (F1&F2) of soil and vine water status, and water 
stress hormone composition from 10 irrigation treatments of Baco noir from Lambert 
Vineyards, Niagara-on-the-Lake, ON, 2007. Set, Lag and Veraison are the time for irrigation 
imposition and 100,50 and 25 represent percentage of the water replaced in the soil through 
irrigation. 

Figure 7.15. Principal component analysis biplot (F1&F2) of soil and vine water status, berry 
composition, and water stress hormone composition (skin-veraison) from ten irrigation 
treatments of Baco noir from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Set, Lag and 
Veraison are the time for irrigation imposition and 100, 50 and 25 represent percentage of the 
water replaced in the soil through irrigation. 

Figure 7.16. Principal component analysis biplot (Fl&F2) of soil and vine water status, yield 
components and berry composition, and water stress hormone composition from seven 
irrigation treatments of Chardonnay vines, from Lambert Vineyards, Niagara-on-the-Lake, ON, 
2006. Set and Ver. are the time for irrigation imposition and 100,50 and 25 represent 
percentage of the water replaced in the soil through irrigation. 
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Figure 7.17. Principal component analysis biplot (Fl &F2) of soil and vine water status, yield 
components, berry composition, and water stress hormone composition from seven irrigation 
treatments of Chardonnay vines from Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Set 
and Veraison are the time for irrigation imposition and 100, 50 and 25 represent percentage of 
the water replaced in the soil through irrigation. 
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phase and veraison, respectively; * 25, 50,100 are percentage of water replaced based on ETc. 
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and veraison, respectively; * 25, 50, 100 are percentage of water replaced based on ETc 

348 



25Ner 

- 50Ner 
c 
Q) 

E 100Ner -ro 
Q) ..... -c 25/Set ts 70H- ABA 
0 

... DPA ~ 
ro 
0> -;:: 50/Set .ABAGE 
..... 

. ABA 

100/Set 

Control 

0 500 1000 1500 

Concentration (ng/g dry mass) 
A 

25Ner 

- 50Ner 
c 
Q) 

E 100Ner -ro 
Q) ..... -c 25/Set §! 70H- ABA 
0 

:::i DPA ~ 
ro 
0> 50/Set .ABAGE -;:: ..... 

. ABA 

100/Set 

Control 

0 500 1000 1500 

Concentration (ng/g dry mass) 
B 
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2007. Set, Lag and Veraison are the time for irrigation imposition and 100, 50 and 25 represent percentage of the 
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Figure 7.15. Principal component (Fl&F2) of soil and vine water status, berry composition, and water stress 
hormone composition (skin-veraison) from ten irrigation treatments of Baco noir from Lambert Vineyards, 
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Figure 7.16. Principal component analysis biplot (Fl&F2) of soil and vine water status, yield components and 
berry composition, and water stress hormone composition from seven irrigation treatments of Chardonnay vines 
from Lambert Vineyards, Niagara-on-the-Lake, ON, 2006. Set and Ver. are the time for irrigation imposition and 
100, 50 and 25 represent percentage of the water replaced in the soil through irrigation. Abbreviations used: SM 
(10 to 100) - soil moisture at 10 to 100 depth, 'II-leaf water potential; Ts-transpiration rate; S. Ver.(skin veraison); 
S. Har. (skin harvest), B/C-berries no. per cluster; C/V-clusters per vine; BW-berry weight; CW-cluster weight; 
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353 



Biplot (axes Fl and F2: 63.72 %) 
15 

70H- ABA-leaf 
PA-Ver. 

2S/Set + OH- ABAVer 
ABAGE-Ver ABAG SM40 - 5 ABA- IOO/Set 'cR. ABAGE-Ieaf + o::;t pH - ""'-,..... 6 < 

a 2S/Ver. + N SO(Ver. + -N Contro + u.. -5 ABAi er 
B.w. II~BA-Ieaf 

Ts 

+100/Ver. 
-15 

-30 -20 -10 0 10 20 30 

Fl (42.98 %) 

Figure 7.17. Principal component analysis biplot (Fl&F2) of soil and vine water status, yield components, berry 
composition, and water stress hormone composition from seven irrigation treatments of Chardonnay vines from 
Lambert Vineyards, Niagara-on-the-Lake, ON, 2007. Set and Veraison are the time for irrigation imposition and 
100, 50 and 25 represent percentage of the water replaced in the soil through irrigation. Abbreviations used: SM 
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Chapter 8 

Exogenous ABA and its Impact on Vine Physiology and Grape 
Composition of Vitis vinifera L. cv. Cabernet Sauvignon in a Cool 

Climate Area 
The Niagara Peninsula has to deal with high climate variability. In cool years, veraison 

time occurs later and grape ripening problems can be seen in the cultivars which have 
genetically long ripening period. In order to test the hypothesis that by using exogenous ABA 
one can hasten the veraison and improve grape composition in cool and wet years, two 
experiments were conducted in one commercial Vitis vinifera L. cv. Cabernet Sauvignon 
block, located on Niagara-on-the-Lake, Ontario, Canada, over a period of two years (2008-
2009). Both experimental years were characterized by higher amount of rainfall and lower 
temperature than average. The first experiment had four treatments consisting of full canopy, 
only clusters, and only leaves sprayed plus an untreated control. All treatments were sprayed 
three times, at two weeks period between applications. All treatments were initiated one week 
before veraison. The second experiment had three treatments represented by rates of 150 
and 300 mg/L and untreated control. Three replicates were assigned per treatment for each 
experiment. In 2008, after two weeks from experiment initiation, clusters from control still had 
- 15-20% green berries, while in 2009 the same percentage was found after 4 weeks. The 
way through the exogenous ABA reach the fruit is very important in regards of its effects on 
the ripening process and the fruit composition, berries showed a lower ABA uptake rate than 
the leaves. In both experimental years the highest effect on fruit composition were observed 
in vines where whole canopy or only leaves were sprayed. No signs of leaf senescence were 
observed in any of the ABA treatments. Both treatment concentrations, 150 mg/L and 300 
mg/L ABA, hastened the onset of veraison. Transpiration rate was affected mostly in 
treatments where only leaves and whole canopy was sprayed but no strong effect was 
observed on leaf water potential. The berry weight was lower in the ABA treatments than the 
control. At harvest berries from all treatments were uniformly colored, but the berries from 
clusters treated with the highest ABA concentration showed a higher red-blue color intensity 
and slightly higher in soluble solids. The treated vines showed not only variation in the total 
amount of the anthocyanins but also a change in the ratio among them. The highest variation 
among the treatments was observed in terms of cyanidin, petunidin and malvidin. Overall, 
using external ABA showed to be effective in hastening the veraison and improve the grape 
composition of Cabernet Sauvignon. 

Introduction 

Abscisic acid (ABA) is a plant hormone which plays a major role in plant adaptation to 

abiotic environmental stresses (drought, cold and salinity), growth control, seed development, and 

germination. ABA is involved in the signaling chain of water stress in plants (Christmann et al. 

2007, Jiang and Hartung 2008). When ABA concentrations increase during water stress, the 

stomata close and affect both the transpiration and plant hydraulic conductivity (Stoll et al. 2000). 

ABA plays a role in the ripening process in grapes (Antolin et al. 2003, Genyet al. 2005, 

Okamoto et al. 2004). This hormone was associated with the main molecular processes during 

grape berry ripening (Jeong et al. 2004). Transcripts and proteins linked to ABA biosynthesis have 
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been found in berries during the ripening process (Caste11arin et al. 2007, Deluc et al. 2007, 

Giribaldi et al. 2007). Moreover, ABA has been described as the mediator of the expression of 

genes involved in the anthocyanin biosynthesis pathway (Hiratsuka et al. 2001). ABA, at certain 

concentrations, expresses genes encoding invertase or controlling phenol and anthocyanin 

biosynthesis (Ban et al. 2003, <;akir et al. 2003, Gagne et al. 2006, Pan et al. 2005, Peppi and 

Fidelibus 2008). ABA treatments at veraison enhanced several processes involved in berry 

ripening, such as the accumulation of soluble solids, the decrease in the concentration of organic 

acids, and anthocyanin accumulation (Coombe and Hale 1973, Palejwala et al. 1985, Pirie and 

Mullins 1976, Wheeler et al. 2009). ABA is also synthesized in the leaves, and transported to the 

clusters via the phloem vessels (Shiozaki et al. 1999, Wheeler et al. 2009). 

In grapes, anthocyanin accumulation begins at veraison, and appears to be regulated by 

ABA (Antolin et al. 2003, Ban et al. 2003, Kataoka et al. 1982). ABA concentrations in berry 

increase just before veraison (Antolin et al. 2003, Coombe and Hale 1973, Davies et al. 1997, 

Scienza et al. 1978). Besides of its genetic control, ABA concentration and its effects in plant are 

affected by the environmental conditions such as temperature (Koshita et al. 2007, Mori et al. 

2005), light (Jeong et al. 2004),. and water stress (Antolin et al. 2006, 2007, De1uc et al. 2009, Stoll 

et al. 2000). 

Increased concentrations of ABA during the growing season is associated with growth 

restriction by water stress, which is postulated to be an adaptation mechanism to the adverse 

condition imposed by water stress (Christmann et al. 2007, Dry et al. 2000, Jiang and Hartung 

2008). In Vitis vinifera, periods of moderate water deficit (predawn water potential of;::; -0.8 MPa) 

during ripening enhanced the polyphenol and anthocyanin concentrations in the berries (Freeman 

and Kliewer 1983, Hardie and Considine 1976, Matthews and Anderson 1988, Ojeda et. al. 2002). 

These compounds are important for human health due to their antioxidant capacity (Burns et al. 

2000). 

Exogenous applications of ABA increased the anthocyanins concentration in skins of table 

grape cultivars Flame Seedless and Red Globe (Peppi et al. 2006, 2007). However, they also 

showed that no linear relationship was found between grape color variables and the amount of 

anthocyanins, although, grapes having high skin anthocyanin concentration appeared darker and 

more red-colored than grapes having low anthocyanin concentration (Peppi et al. 2006, 2007). 

Anthocyanin concentrations ranged from 6.2 to 26 mg ki1 of berry in pigmented cultivars (Mattivi 

et al. 2006). From the winemaking point of view, anthocyanin composition affects the color 

stability. Cyanidin, delphinidin and petunidin have ortho-diphenolic groups which enhance 
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susceptibility to oxidation (Sroka 2005). Methoxylated anthocyanins, such as peonidin and 

malvidin, are more stable. The relative number of hydroxyl and methoxyl groups also affects 

polarity and solubility of the corresponding anthocyanins in aqueous and hydro-alcoholic solutions 

such as must and wine (Castellarin and Di Gaspero 2007). 

Weather is the main factor that makes a certain vintage great, thus its high variability in 

Niagara Region (long, hot and dry seasons alternating with short, cool and wet seasons) leads to 

some inconsistency in wine quality from vintage to vintage. Cabernet Sauvignon, which is widely 

grown in this region along with Merlot and Cabernet franc, has a long ripening period being highly 

affected by the weather conditions. In cool climates as this from the Niagara Peninsula, Cabernet 

Sauvignon shows high variation from vintage to vintage not only in quantity but also in fruit 

composition. The poor quality of Cabernet Sauvignon wines is mostly associated with cool and 

wet years while high quality was recorded in dry and hot years. Even using the best cultural 

practices in the vineyard, the quality of Cabernet Sauvignon grape is not improved in cool and wet 

years. 

This study was initiated as a consequence of other research done in the Niagara Region, 

regarding the relationship of vine water status, ABA and its catabolites profiles (Chapter 7). There 

are a limited number of studies on the effect of exogenous ABA application on wine grapes, 

perhaps because for a long period this product has had a prohibitive price. Historically, the cost to 

produce ABA was too high to justify its use as an agrochemical product, but recently, ABA 

production methods have improved sufficiently to reconsider its potential use in viticulture. There 

are just few reports of the effects of ABA on grape yield and composition in field experiments 

located in cool areas, and some of them have had contradictory results. 

In this study, it was tested the hypothesis that by applying exogenous ABA onto vines in 

cool and wet years, one could mimic the positive effects of moderate water stress, and thereby 

hasten veraison, and improve grape composition of Cabernet Sauvignon. This study tested the 

effects of exogenous ABA when different vegetal organs were targeted, since most of the previous 

studies used only berries for ABA application. This research might be useful to grape growers 

from cool areas, or when abnormal weather conditions occur, in order to meet objectives with 

respect to fruit composition of red cultivars. -
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Materials and Methods 

Experimental design. The experiments were conducted over two growing seasons (2008 

and 2009) in a commercial vineyard (Lambert Vineyards Ltd.) in the Niagara Peninsula 

Appellation of Ontario (43°13' N,79°08' W, elevation 98 m), Canada. The trials were set up in 

one Cabernet Sauvignon block (25 rows in total), grafted on S04. Vines were spaced at 1.2 m x 

2.7 m, trained to a double Guyot system, and vertically-shoot positioned. Row orientation was 

north-to-south. Soil management consisted of fertilization annually with 25 t· ha-1 fresh dairy 

manure, with floor management of alternate rows of annual ryegrass and clean cultivation. Pest 

control was in accordance with local recommendations (OMAFRA 2007). Three single - row 

blocks (replicates) for each experiment were assigned. In the ftrst experiment four treatments were 

assigned, each treatment having different organs treated with a 300 mg/L ABA solution 

(unsprayed control; and sprayed full canopy, clusters, or leaves). For the second experiment, only 

clusters were sprayed in all three treatments assigned: control (unsprayed), and two ABA 

concentrations of 150 mgIL and 300 mgIL, respectively. In each row replicate, the treatments (one 

panel of six vines each) were randomly assigned and equally distributed. The product used for 

spraying was supplied by Valent Biosciences Corporation (Libertyville, IL, USA), and is known as 

VBC-30051 (20% ABA). The hormone was applied between 800h and l000h until run off using a 

lO-L Solo backpack sprayer. All treatments were imposed one week before veraison, and they 

were repeated subsequently every 2 weeks for a total of three applications. 

Vine water status. Biweekly observations were conducted between veraison and harvest 

time to monitor vine water status. Midday leaf water potential ('1'), transpiration rate (Ts), leaf 

temperature (T1) and photosynthetic photon flux density (PPFD) data were collected from mature 

leaves and fully exposed to the sun between ll00h and 1300h. Three leaf samples from three 

different shoots located close to the trunk and the two extremities were chosen from three vines per 

each treatment replication. The methodology and instruments used for data collection were 

described in detail in Chapter 3a. 

Soil water status. Soil moisture was assessed over a period of 2 years in 2008 to 2009. 

Data was collected from all experimental vines (six per each treatment replicate) starting with one 

week before first ABA application, and biweekly thereafter. The protocol for data collection and 

instrument used were described in detail in Chapter 3a. 

Fruit composition and yield components. Each year at harvest maturity, a ISO-berry 

sample was collected randomly from each recorded vine and stored at -30°C for future analysis of 
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soluble solids, titratable acidity (TA), pH, total anthocyanins and total phenols. These samples 

were used to determine the other yield components such as the number of berries per cluster, and 

cluster weight. The protocol and instruments used in measuring variables mentioned above were 

described in detail in Chapters 3a and 3b. 

Extraction, preparation and analysis of anthocyanins from berry skin. In 2009 at 

harvest, 25 berry samples were collected from each recorded vine and quickly frozen in liquid 

nitrogen. They were transported to Brock University and stored at -25°C for further analysis. All 

berries were peeled while they were still frozen. They were weighed and then lyophilized for 24h. 

To approximately 1.5 g of the dry skins it was added cold acidified methanol (containing 2% 

formic acid), and anthocyanins were extracted in a Wareing blender (5 min.). The extraction 

solution was centrifuged at 7000 rpm for 10 minutes. The precipitate obtained was then extracted 

once more in the same manner. The extract solution was fIltered through a membrane filter (0.45 

11m) before loading into the high performance liquid chromatograph (HPLC). 

An Agilent 1100 Series HPLC (Agilent Technologies, Palo Alto, CA) equipped with a 

micro vacuum degasser, binary pump, thermostatted micro autos ampler, thermostatted column 

compartment, UV Nis diode array detector (DAD) and HP Chemstation 3D software was used for 

ABA identification and quantification. Separation was carried out using an Agilent Zorbax 

Stablebond SB-C18 reverse-phase column (50 rom x 4.6 rom, 3.5 Jlffi) with a Phenomenex 

SecurityGuard™ C-18 4 rom guard cartridge. The binary mobile phase consisted of 0.2% 

trifluoroacetic acid (TFA) (solvent A), and HPLC-grade acetonitrile and 0.2% TFA (solvent B), as 

per Them-Gomez et al. (2002). Flow rate was 1.0 mUmin. The gradient was as follows: 5% B (0 

min), 35% B (15 min), 100% B (16-25 min), 5% B (26 min). Post-run time was 10 minutes for a 

total run time of 36 minutes. Samples and column temperatures were maintained at 30°C. Sample 

injection volume was 5 J.1L. The detector was set to wavelengths of 525 nm (bandwidth 20 nm) for 

anthocyanins. 

Anthocyanin standards were obtained from Extrasynthese SA (Genay, France). Standards 

analyzed were delphinidin-3-0-glucoside, cyanidin-3-0-glucoside, petunidin-3-0-glucoside, 

peonidin-3-0-glucoside, and malvidin-3-0-glucoside. Identification of compounds was carried out 

by comparing their retention times with the standards. Quantification of anthocyanins was done by 

generation of a standard calibration curve of the various anthocyanin standards using built-in 

calibration functionality of the HP ChemStation software. Acetylated anthocyanins were identified 

by comparing the peak retention times with those in the literature. These anthocyanins were 

quantified using concentrations of the equivalent non-acylated anthocyanins. 
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ABA and catabolites analyses. Leaf samples for ABA analysis were collected during 

2008 and 2009 only from vines where the whole canopy was sprayed. A total of nine leaves from 

each treatment replicate were collected from three recorded vines. The leaves were collected from 

the same vines from where vine water status data was collected at 2, 4 and 6 h following ABA 

application. The leaves were immediately introduces in cryogenic vials, kept in liquid nitrogen and 

transported to the Brock University Viticulture Lab where they were prepared for future analysis. 

Twenty-five berries were collected randomly from each treatment replicate following the same 

protocol as that one used for leaf sampling. Both berries and leaves underwent the same 

preparation and extraction protocol. 

Berry samples were weighed, washed in 25-mL acidified isopropanol for 1 minute, peeled 

while frozen, and separated into skin and pulp fraction. Both sample fractions were grounded 

under liquid nitrogen using a mortar and pestle. The powdered samples were lyophilized and then 

kept at -25°C in sealed 25-mL plastic vials under dark until extraction was performed. The 

extraction and analysis protocol along with the equipment used were described in detail in Chapter 

7. 

Data analysis. Yield components and berry composition data were analyzed using the 

SAS statistical package (SAS Institute; Cary, NC). Using GLM, analysis of variance was 

performed on physiological and chemical data. Duncan's multiple range test was used for mean 

separation for all data sets (field and chemical), and Dunnett's t-test was used to determine those 

treatment means that were statistically different from the control at a significance level of ~0.05. 

Principal components analysis (PCA) was performed on the means of field data, yield components, 

and hormone profile data. 

Results and Discussion 

Weather summary (Table 8.1). Analyzing rainfall and temperature data over the 

growing season for the period studied (2008 to 2009) from Virgil Station, Niagara-on-the-Lake, 

ON, helped for a better understanding of the seasons. In 2008, the monthly mean temperature was 

lower than the 25-year average only in August while in 2009 the temperature was lower over the 

entire growing season compared to the average. Moreover, the lower temperature was 

accompanied by high precipitation in both years of the study, with almost double the average 

amount in July 2008 and August 2009 (Table 8.1). Due to weather conditions, veraison occurred in 
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2009 one week later than 2008, and thus, the first ABA application in 2009 was later too. In 2009, 

an early frost on 30 October resulted in a loss of the foliage. 

Field observations. Observations from the first experiment indicated that the vegetal 

organs targeted by the exogenous ABA are very important in regards to its effects on the ripening 

process and the fruit composition (Fig. 8.1). In 2008, after 2 weeks from the experiment's 

initiation, the clusters from the control showed little sign of coloration, while the ·vines treated with 

ABA had clusters with different levels of pigmentation (Fig. 8.1). Clusters from vines where the 

whole canopy was treated with ABA showed the highest percentage of coloration, followed by 

treatments where leaves and clusters were sprayed (Fig. 8.1). 

In the second experiment, both ABA concentrations used (150 mgIL and 300 mgIL) 

hastened the onset of veraison in 2008. After 4 weeks from experiment initiation, clusters in the 

control still had approximate 15 % green berries (Fig. 8.2). At harvest, berries from both 

concentration treatments were uniformly colored, but the berries from clusters treated with the 

highest ABA concentration showed higher color intensity. The same visual perception was 

observed in 2009. At harvesting, the berries from all treatments were uniform colored. However, 

the berries from clusters treated with the highest ABA concentration showed higher blue color 

intensity. 

Observations from this research are in agreement with those of Giribaldi et al. (2009) 

which showed that ABA was most effective in enhancing ripening when it was supplied before 

veraison (green stage) and not at later stages (50% or more berry coloration), probably due to the 

fact that at these later stages the endogenous ABA concentration increased naturally (Owen et al. 

2009). 

Ripening is linked to tissue softening in most fruits, and the grape berry does not make an 

exception. At each sampling date berries from the vines treated with ABA showed a higher degree 

of softness. This phenomenon was not accompanied by any premature berry abscission. ABAwas 

more effective than ethephon at improving the color of Crimson Seedless table grapes, although, 

sometimes this treatment induced berry softening, an undesirable condition for table grapes but not 

in wine grapes, especially for areas suitable for mechanical harvesting (Crisosto and Mitchell 

2000). Moreover, Crimson Seedless table grapes treated with 300 ilL L-1 ABA had the harvest date 

hastened between 10 to 30 days compared with the non-treated vines (Cantin et al. 2007). 

Yield components and berry composition (Tables 8.2 and 8.3). Experiment 1 (Table 

8.2). In both years studied, cluster weights from control and the treatment in which clusters were 
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only sprayed showed constantly higher values than treatments where only leaves or the whole 

canopy were sprayed. However, in 2009 the difference among the treatments was 10% higher than 

that recorded in 2008 for berry and cluster weight and skin mass. The number of berries per cluster 

did not show a large difference between treatments. In 2009, the number of berries per cluster was 

lower than 2008 when similar treatments were compared, possible due to the 2008 weather effect. 

However, differences in cluster weight were determined more by berry weight rather than by the 

number of berries per cluster. The skin fresh mass was higher in both years in the control treatment 

compared to the treated ones by 10 to 20%, while the skin dry mass was lower in the control and 

higher in the treated vines (Table 8.2). The effect of ABA on °Brix was not very high at the harvest 

time, although a difference was found between the control and the whole canopy treatments. The 

difference between the control and treated vines was from 2 to 5% in 2008 and higher in 2009 (5 to 

9% ). The ABA treatments slightly affected the TA in both years. pH was affected only in 2008, 

with the highest pH value being found in the treatment where only leaves were sprayed. However, 

no consistent patterns were found among the treatments for TA or pH. 

Experiment 2 (Table 8.3). The cluster weights in the treatments where different 

concentrations were used showed the same trend as in the ftrst experiment. However, the 

magnitude of difference between treatments was lower than in the fust experiment for most of the 

variables measured, especially in 2008. The number of berries per cluster showed different pattern 

in each year studied. In 2008, the number of berries per cluster was low in the control and higher in 

the treated vines and vice versa in 2009 (Table 8.3). Berry weight showed the same trend in both 

years as in the first experiment but the magnitude of difference between treatments was much 

lower compare to that one found among treatments in the ftrst experiment. Skin fresh mass was 

slightly higher in control than in treated one, the same pattern being found in 2009 (Table 8.3). 

Slight variation was found in terms of berry composition, and a consistent pattern was found in 

terms of °Brix, but not for T A and pH. 

These data are in agreement with some studies where the enhancement of ripening by ABA 

in grapevine was observed at the composition level (Coombe and Hale 1973, Pirie and Mullins 

1976, Wheeler et al. 2009). However, no changes were found in berry size or juice composition of 

Merlot treated with exogenous ABA (Owen et al. 2009). The lack of variation in berry 

composition might be explained not only by the cultivar used but also by the time of application 

and the number of treatments.Applied ABA not only increased berry set and prevented premature 

berry abortion, but also enhanced the sink capacity for carbohydrates of berries from ABA-treated 

plants (Brenner 1987). Contrary to the expectation in the present study, a significant increase in 
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cluster weight and yield per vine was found in ABA-treated vines of Cabernet Sauvignon (Quiroga 

et al. 2009). These different results could be explained by different weather conditions in Mendoza 

than those from the present experiments (data not shown), and also by the time and number of 

ABA applications. The same authors started ABA application immediately after bud-burst and 

continued weekly until harvest. They concluded that yield increased due to the applied ABA that 

"somehow" increased berry set or reduced early berry abortion. The low berry weight in the ABA 

treated vines could be explained by the fact that the ABA controls the water uptake into the berry 

through the hydraulic conductivity in the plant. In Arabidopsis, several aquaporins were down

regulated by water stress and by ABA (Jeong et al. 2004). Among the great number of aquaporins 

which exist, not all of them are upregulated or downregulated in the same time due to external 

stress factors (Jang et al. 2004) 

Anthocyanins and phenols (Table 8.4). In the first experiment in 200S, anthocyanin 

concentration was almost double in the treatments where only leaves and whole canopies were 

sprayed compare to the control, while in 2009 the total anthocyanins concentration was almost 

three fold higher in the same treatments than the control (Table S.4). Findings from this experiment 

are supported by the data discussed in Chapter 7, and are in agreement with findings of Roby et al. 

(2004) who indicated that both phenolics and anthocyanins showed a greater concentration in the 

skin of berries from grapevines that experienced water deficit, and presumably had more ABA. 

The lowest effect on anthocyanin accumulation in berries was from treatment where only 

clusters were sprayed. This finding is somehow in contradiction with the Valent Biosciences 

company recommendation, which suggested spraying only the clusters, in order to obtain the best 

results. The variation of grapes composition among treatments is also explained by the ABA 

biological activity, which is reduced by longer exposure to direct light and oxygen (Abrams 1999, 

Flores and Dorflling 1990). This might .also be explained by the fact that the highest uptake rate 

occurred at the leaf level (Fig. S.3, S.4A and B). In the second experiment, the ABA concentration 

increased the total anthocyanins and phenolics in both years studied. However, the magnitude of 

difference between treated vines and control was much lower than that one found in the first 

experiment. 

The exogenous ABA also affected the total phenols concentration.· The magnitude of 

difference between treatments was higher in 200S and lower in 2009. In the first experiment, all 

ABA treated vines had higher total phenols than the control in 200S.1t was not the case in 2009, 

when just one treatment (only leaves) was higher than the control. In the second experiment, 
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treated vines had consistent higher phenol concentration. However, no consistent pattern was 

observed from season to season. 

The findings from the present research are in agreement with other studies where 

anthocyanins formation in berry was accelerated by ABA treatmentafier veraison (Matsushima et 

al. 1989, Taiara et al. 1988). Temperature is known to influence the accumulation of anthocyanins 

in berry skins (Spayd et al. 2002). Temperature-control experiments have also shown that exposing 

whole vines or clusters to high temperature (30°C) inhibited anthocyanins accumulation (Kataoka 

et al. 1984, Kliewer 1970, Mori et al. 2004). Low temperature facilitates the biosynthesis of ABA 

or reduces its degradation which leads to a higher concentration of anthocyanins in the berries 

(Tomana et al1979, Yamane et al. 2006). However, in the present experiments in both growing 

seasons low temperature was associated with high soil moisture level, which might have the same 

negative effect on ABA concentration as too high temperature. The data showed that the control 

had the lowest ABA amount atboth sampling dates but was highly correlated with the 

anthocyanins concentration (Figs. 8.4, 8.5). These findings are partially in agreement with other 

studies (Ban et al. 2003, Gagne et al. 2006, Jeong et al. 2004, Pirie and Mullins 1976) where 

anthocyanins and phenols were affected in an opposite pattern as response to ABA accumulation, 

which was not the case in present experiments (Table 8.4). The concentration of anthocyanins also 

increased in Cabernet Sauvignon berries in one experiment where external ABA was used (Gagne 

et al. 2006). However, other authors found just a small increase in anthocyanins concentration 

when ABA was applied on clusters of Merlot (Owen et al. 2009). They suggested that this could be 

an effect of either ABA or DP A. 

Berry ABA concentrations increase just before veraison (the beginning of color change) 

(Antolin et al. 2003, Coombe and Hale 1973, Davies et al. 1997). Transcripts and proteins linked 

to ABA biosynthesis have been found in ripening berries (Deluc et al. 2007, Giribaldi et al. 2007), 

although, some evidence exists that ABA might also be synthesized in the leaves, and transported 

to the clusters via the phloem vessels (Shiozaki et al. 1999, Wheeler 2006). The hypothesis that 

ABA could trigger ripening in the grape berry has been demonstrated in different studies by using 

exogenous ABA. By spraying this hormone at veraison several processes involved in berry 

ripening, such as the accumulation of soluble solids, the decrease in the concentration of organic 

acids, and anthocyanin accumulation were enhanced (Coombe and Hale 1973, Palejwala et al. 

1985, Pirie and Mullins 1976, Wheeler et al. 2009). However, in most of the studies exogenous 

ABA activated only few metabolic pathways related to the ripening process, so its full 

physiological role in the vine is still unknown. 
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In this research data shows that exogenous ABA can successfully mimic water deficits 

even in vines with high water status, thus having a positive effect on anthocyanins accumulation. 

Berries from treatments where exogenous ABA was applied, increased the dry skin mass in both 

years. This suggests that increasing anthocyanins concentration is not necessary due to reducing 

the ratio berry volume:area surface but also due to more cell layers in the skin. These findings are 

in agreement with another study where deficit irrigation increased skins mass, this being the 

predominant tissue of flavonoid biosynthesis (Robyet al. 2004). In Chapter 7 was found a high 

correlation between vine water status and ABA level in leaves and berries. Effects of water deficit 

on gene expression and anthocyanins accumulation were maintained far after vines were released 

from water deficit (Castellarin et al. 2007). This might be due to high ABA accumulation during 

the water deficit. Also, it was found high ABA concentration in berries from treated vines 

compared to control even after four weeks from first application (Figs. 8.4, 8.5). 

Individual anthocyanins (Table 8.5). Data on anthocyanins composition showed that 

ABA affects not only the total concentration of anthocyanins but also the ratio among different 

types of anthocyanins which support the visual observations regarding the color and berry hue 

(Table 8.5). Significant differences were observed in both groups of anthocyanins studied. The 

acetyl glycosides were found much less compared to non acetylated glycosides. Due to obvious 

visual differences in color intensity and hue among berries from different treatments in 2009, an 

analysis of anthocyanin composition was performed. 

In the first experiment, with few exceptions concentration of both non-acylated 

anthocyanins and acetylglucosides increased in berries from ABA treatments (Table 8.5). 

However, treatments in which whole canopy or only leaves were treated had much higher 

concentrations in almost all anthocyanins analyzed compared to control. The 3-acetyl glucosides 

showed the same pattern as non-acylated glucosides. However, their concentration was much less 

than their non-acylated counterparts in both seasons and experiments. The visual observations in 

color intensity and hue were confirmed through chemical analyses (Table 8.5). Thus, the 

anthocyanins increased differently in ABA treatments, and therefore, changed the ratio between 

them. Therefore, color intensity and hue were affected. In most of the treatments, based on their 

concentration, anthocyanins were ranked as follows: malvidin> delphinidin > peonidin > 

petunidin >cyanidin. The highest magnitude of difference between control and treated berries was 

found in malvidin and delphinidin (Table 8.5). Although, acetylglucosides increased in ABA 

treatments, they did not increased linearly. The ratio between different acetylglucosides 

components was different than that one found among non-acylated components (Table 8.5) 
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In the second experiment, berries treated with 300 mgIL had much more malvidin, 

delphinidin, and petunidin than the control. Cyanidin and petunidin were less in the ISO mgIL 

treatment than the control, which was different from what was expected (Table 8.S). 

Quantity and composition of anthocyanins influence skin color in black and red cultivars 

(Mazza and Miniati 1993, Shiraishi and Watanabe 1994). Color of pure anthocyanins shifts 

progressively from red to blue as the number of substituted groups on the B-ring increases, and as 

methoxyl groups replace hydroxyl groups (Holton and Cornish 1995). The ratio of blue tri

hydroxylated to red di-hydroxylated anthocyanins is under transcriptional control of flavonoid 

3'(S')-hydroxylase genes (F3'H and F3'S'H), and it correlates well with the evolution of color hue 

throughout the ripening period in the cultivar Merlot (Castellarin et al. 2007a, b). Cyanidin-based 

anthocyanins exhibit a reddish color whereas delphinidin-based anthocyanins are purple to blue. 

They jointly determine the tonality of red berry grape cultivars and their corresponding wines. The 

relative proportion of the five anthocyanins is largely under genetic control and unique to each 

cultivar (Albach et al.19S9, Roggero et alI986). 

Some studies showed that anthocyanin accumulation is under plant hormone control, ABA 

concentration in the skin being highly correlated to the accumulation of anthocyanins (Kataoka et 

al. 1982, 1984; Pirie and Mullins 1976). Kyoho grapes treated with ABA at veraison enhanced the 

accumulation of anthocyanin and the expressions of PAL, CHS, CHI, DFR, LDOX, and UFGT 

genes in the berry skins (Ban et al. 2003). ABA treatment ofCabemet Sauvignon grapes enhanced 

the expression of VvmybAl, which coincided with the enhanced expression of enzymes involved in 

anthocyanins biosynthesis pathway (Jeong et al. 2004). 

Early deficit irrigation in the experiments hastened the onset of veraison by almost 7 days 

compared to control (full season irrigation). Berries also synthesized a higher percentage of tri

hydroxylated anthocyanins (Castellarin et al. 2007a). Assuming that this happened due to high 

ABA concentration, data from this research is in agreement with their findings. In treatments 

where ABA was applied, a higher percentage oftri-hydroxylated anthocyanins were found 

compared to the control (Table 8.S). The increase in 3'4'S' -hydroxylated anthocyanins constitutes 

an enrichment of purplelblue pigments, hence modifying grape and must color (Castellarin et al. 

2006). 

ABA infiltration/degradation rate (Figure 8.3, 8.4A and B). For a better understanding 

of the effect of exogenous ABA, the ABA amount left on the berry and leaf surfaces after 2, 4 and 

6 hours from the application time at three different sampling times was measured. In 2008, 
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exogenous ABA from berry surface was found in a quantity much lower at first sampling date 

(Aug 19) compared to the other two late sampling dates (Fig. 8.3A). ABA decreased steadily when 

comparing the sampling times, the lowest amount being found after 6h at first sampling date. The 

difference among sampling times showed the same pattern at all sampling dates (Fig. 8.3A). ABA 

found on the leaf surface decrease steadily at each of the sampling time (Fig. 8.3B). The pattern 

was almost the same at each sampling time with little variation among sampling dates (Figs. 8.3B). 

In 2009, overall the ABA pattern was similar on both leaf and berry surface (Fig. 8.4A and 

B). However, ABA concentration was lower at first sampling date, for all sampling times (2, 4, 6 

H) compared to the same sampling dates from 2008 season. Moreover, the amount of ABA found 

at the last two sampling dates (September 11 and 25) was much higher than that one found at the 

second and third sampling date in 2008. In 2009, the amount of ABA on the leaves was higher at 

the first sampling date compared to 2008. However, the decreasing rate was higher between 

sampling times. At the last two sampling dates (September 11 and 25) the amount of ABA found 

was lower after two hours and higher after four and six hours from the application time. 

In the present study data showed a similar trend of ABA as that of Owen et al. (2009) who 

found a very high level of ABA in and on skin/pulp after 1 day of applying exogenous ABA on 

Merlot grapes. The same authors found that ABA declined to normal level after 14 days while 

DPA after 7 days post treatment. They also found high amount of DPA early in the berries 

development, and this was explained by the high amount of ABA which was catabolized because 

of lack of need by the plant. This can be supported by data of previous study (Chapter 7) which 

indicated that vines under high water status tend to catabolize ABA into DPA while under low 

water status ABA is catabolized into ABA-GE in a higher proportion. The preference for the 

conjugation pathway could be argue that the plant is trying to have a pool of easy released ABA 

when the water status drops below a certain limit. 

Just a small part of the ABA sprayed on berries was taken up and metabolized, most of it 

being inactivated to its trans-ABA form (Owen et al. 2009). ABA is photosensitive and isomerizes 

to one-to-one mixture of trans-ABA and natural cis-ABA (Zaharia et al. 2005). The commercial 

product from Valent Bioscience had no restriction on being used under natural light. The formula 

of the product had 20% ABA and 80% other ingredients that protect it against inactivation. Using 

exogenous ABA (the racemic form) might lead to anincrease of ABA concentration in the berry 

10 days application (Deytieux-Belleau et al. 2007). 
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The discrepancy among different studies using exogenous ABA is explained by the fact 

that a little ABA is probably absorbed into the berry (Wheeler 2006). The same author indicated 

that ABA seems to be stable for a considerable period on the berry surface, and it is not broken 

down quickly by light exposure. 

Wheeler (2006) suggested that absorption is a limiting factor affecting efficiency, and this 

depends on the cuticle which covers the leaf and fruit surface. Cuticular waxes constitute the main 
\ 

barrier that controls transpiration (SchOnherr 1982), foliar uptake of xenobiotics (Schonherr and 

Riederer 1986), and resistance against fungi (Commenil et alI997). Riederer and Schreiber (1995) 

argued that both the chemistry and the structure of cuticular waxes are responsible for these 

differences. Casado and Heredia (2001) demonstrated the molecular structure of the cuticular wax 

of grape berry cuticles represents a perfect barrier against water loss and fungus infection. The 

structural and compositional variability of wax affects the cuticular permeability to water 

(Schreiber 2005). The epicuticular waxes in the berry skin increase during berry growth. The wax 

concentration on the grape berry was about 13 to 14 times greater than that on the main leaves 

(Pallioti and Cartechini 2001). This could be a reasonable explanation why many researchers did 

not find significant effect on the ripening process when exogenous ABA was used to spray the 

berries. Moreover, discrepancies found in different studies might also be due to time and frequency 

of ABA application. In many studies ABA was applied once and most of the time at veraison 

(Peppi and Fidelibus 2008, Peppi et al. 2006), when the cuticular wax is probably thick enough to 

delay ABA absorption into the berry. 

ABA and its catabolites profile in berries from treatments sprayed onto different 

organs with ABA (Figures 8.5 and 8.6). In 2008, on the first sampling date the hormone profile 

showed that ABA was in the highest amount in all treatments compare to the other catabolites (Fig. 

8.5). However, the control had the lowest ABA concentration, followed upward by the berries 

treatment, whole canopy and leaves sprayed treatments. The ABA amount found in the leaves 

treatment was almost 3.5-fold higher than that one found in the control (Fig. 8.5). At the first 

sampling date except for the control, ABA was followed by ABA-GE, DPA and PA in terms of 

their abundance in the berry. At the last sampling date the amount of ABA found in the treated 

berries was much lower than that one found at the first sampling date. ABA-GE was lower in all 

treatments compare to the first sampling date (Fig. 8.5). 

In 2009, the profile pattern was almost the same as in 2008. In 2009, the first ABA 

treatment was applied one week later than in 2008. This occurred due to weather conditions which 

caused a general delay in the vine vegetation. The amount of ABA found was lower than that one 

368 



found in 2008 (Fig. 8.6). The pattern was not similar as that one found in 2008 for the other 

catabolites. The data indicated that exogenous ABA affected directly the amount of ABA in the 

berry. The target organ for spraying had a great impact on the final hormonal profile in the berry. 

This might be explained not only by cuticle permeability of different organs but also by the area 

exposed to ABA, which likely increased the amount of exogenous ABA. The results regarding the 

ABA concentration are very similar to those of Owen et al. (2009). 

In both seasons, ABA concentration in berries was higher at the first sampling date than 

the second one (Figs. 8.5 and 8.6). ABA concentration was higher in treatments when leaves or 

whole canopy were treated (Fig. 8.5, 8.6). These results are in agreement with Owen et al. (2009) 

findings where ABA increased significantly close to veraison and decreased thereafter. The 

findings from the present research confirm the general theory that ABA is associated with onset of 

veraison. Moreover, ABA seems to accumulate more in berries from treatments where exogenous 

ABA was applied (Figs. 8.5, 8.6). ABA concentration in berries decreased in all treatments after 

four weeks from the first application. However, at the second sampling date ABA concentration in 

berries from treated vines was still higher than the control. This indicates that ABA is strictly 

involved only in the first part of the ripening process, being metabolized into other compounds or 

translocated into the seeds or out from the berries. ABA-GE was found at much lower 

concentration in all treatments compared to that of ABA. However, in treated vines ABA-GE 

concentration was higher compare to the other ABA catabolites. Higher ABA concentration 

mimics water stress in the plants which causes the plant to store ABA as ABA-GE. 

Relationship between hormone, physiological data, yield components and berry 

composition (Figs. 8.7 and 8.8). In 2008, soil water status was high allover the season, the soil 

moisture being close to field capacity on most of the sampling dates (data not shown). 

The PCA of physiological data, yield components, berry composition and ABA catabolites 

indicated that PC1 and PC2 explained 94.05% of the variability in the data set (Fig. 8.7). PC1 

explained 58.88 % of the variability in the data set while PC2 explained 35.18%. Ts was positively 

correlated with cluster weight, skin fresh mass, P A and DP A concentration and negatively 

correlated with °Brix, total phenols, anthocyanins, ABA and ABA-GE. Berry weight was highly 

negatively correlated with TAwhile pH was negatively correlated with the number of berries per 

cluster and leaf",. PC1 was positively heavily loaded with ABA, ABA-GE and anthocyanin 

concentration, and negatively loaded with P A. The ABA treatments were well separated based on 

the target organ. Leaves and whole canopy sprayed treatments were located on the right side of the 

plot very close to each other being highly associated with ABA concentration in the berry. Only 
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berries sprayed treatment was located on the left upper plot while the control was located on the 

lower left plane. Leaf and whole canopy sprayed treatments were mostly associated with the 

anthocyanins, ABA and ABA-GE concentration while the control was associated mostly with DPA 

concentration and skin fresh mass. 

The exogenous ABA can control Ts (stomatal opening) even if the soil water status is high 

(Fig. 8.7). Leaf 'I' was not very strongly correlated with Ts, which indicates that these two 

physiological processes are not under hydraulic control but also hormonal control, which is in 

agreement with other studies (Lovisolo et al. 2002, Schultz 2003). However, low or no correlation 

was found between exogenous ABA and Ts, when only clusters were sprayed. The lowest Ts rate 

was found when the whole canopy was sprayed (Fig. 8.7). These data clearly indicates the positive 

effect of ABA treatments on the berry composition. The exogenous ABA increased skin dry mass 

and decreased berry weight. These two variables are highly correlated with color parameters at red 

cultivars, since skin is the place where anthocyanins are stored. 

2009. The PCA plot of field and laboratory data indicated that PCl and PC2 explained 

84.08% of the variability in the data set (Fig. 8.8). PCl explained 63.91 % of the variability, while 

PC2 explained 20.16%. PCl was positively loaded with skin fresh mass, Ts, cluster weight, TA, 

and berry weight, and negatively loaded with anthocyanins, total phenols and ABA concentration. 

PC2 was positively loaded with the number of berries per cluster and 70H-ABA. Leaf '1', pH, 

ABA-GE and PA, were not very well explained by the first two components. The PCA pattern was 

different than 2008, showing a higher degree of correlation among different variables studied. This 

might indicate that the positive effect of ABA on fruit composition is better expressed in extreme 

weather conditions. Perhaps, ABA could control cell wall permeability in both directions. Berry 

weight varied between treated vines and the control, which suggests that ABA controls water 

uptake into the berry. In 2009, the PCA plot showed a better discrimination between treatments, 

even between leaf and whole canopy sprayed treatments compare to 2008. 

Conclusions 

Visual observation showed that ABA was effective in hastening veraison and improving 

the composition of Cabernet Sauvignon berries. Ability of ABA to control the timing of grape 

berry maturation depends not only on solution concentration used but also on the target organ 

sprayed, since different organs have different uptake rates due to cuticle permeability. The cooler 

and wetter the growing season the greater the effect of the exogenous ABA on fruit composition. 
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ABA affected not only fruit composition but also yield components. ABA treated berries were 

lower in berry weight and higher in skin dry mass, which from a winemaking point these aspects 

are desirable for wine grapes. ABA affected Ts rates of the vines from treatments where only 

leaves or whole canopy were treated. This might have a positive effect on water uptake in wet 

years. By closing stomata, hydraulic conductivity decreases which causes less water uptake into 

the plant and berries. ABA did not have any abscission effect on leaves or berries at the 

concentration used in these experiments. Exogenous ABA could provide considerable benefits to 

the wine industry in terms of grape composition, wine style and for winery scheduling, particularly 

in wet and cool years. It would be necessary to understand and assess the long term effects of using 

exogenous ABA not only on general vine metabolism and physiology, but also on wine 

organoleptic characteristics. Although, some studies on effect of ABA at molecular level have 

been published during the course of this research, it is still not clear if ABA acts alone or in 

combination with other hormones on different processes during ripening period. However, ABA 

could be successfully introduced as an alternative cultural practice, particularly in cool years, and 

also in regions and growing seasons when there is a high chance of early frost to occur, and a 

concomitant potential of prematurely losing the foliage. The temporal advancement of ripening 

through hormonal control might be an asset for viticulturists because earlier fruit maturation is a 

distinct advantage in cooler areas or areas with a high risk of early frost occurrence, and where an 

early end of the growing season might prevent adequate fruit maturation. 
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Table 8.1. Monthly mean temperature and rainfall during 2008-2009 growing season, 
Virgil weather station, Niagara-on-the-Lake, ON. 

Temperature eC) Rainfall (mm) 
Month 

Average 2008 2009 Average 2008 2009 

June 18.8 20.7 18.3 82.6 112 93 

July 21.8 21.9 19.1 73.6 159 87 

August 20.8 19.9 20.4 72.9 74 120 

* Average value for each month is the mean temperature for the 25 years 
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Table 8.2. Impact of exogenous ABA on yield components and berry composition of Cabemet Sauvignon when different target 
or~ans were sEra~ed, Lambert Vine~ards, Nia~ara-on-the-Lak:e, ON. (2008 - 2009). 

Skin dry Titratable 
Target organ Cluster Berries/ Berry Skin fresh mass 

mass °Brix acidity pH 
weight (g) cluster weight (g) (mglberry) 

(mglberry) (gIL) 

2008 

Control 140 a 96b 1.45 a 109 a 49c 18.9 c 9.2 b 3.58 ab 

Berries 141 a 112 a 1.26 c 97b 56ab 19.3 b 9.8 a 3.49b 

Leaves 129b 101 ab 1.28 c 89c 53b 19.3b 9.4 ab 3.59 a 

Whole 
128b 94 b 1.38 b 94 be 57a 19.6 a 9.4 ab 3.58 ab 

canopy 

Significance * * * * * * * * 

2009 

Control 143 a 91 b 1.41 a 111 a 46c 18.3 b 10.2 a 3.54 

Berries 137b 96ab 1.32 b 105b 53b 18.9 ab 9.9ab 3.56 

Leaves 118c 98 a 1.25 c 93b 52b 19.1 ab 9.1 b 3.51 

Whole 
116c 88b 1.29 b 89b 56a 19.2 a 9.6ab 3.53 

canopy 

Significance ** * ** ** * * * ns 

*,**,***,****, ns: Significant at p < 0.05,0.01,0.001, 0.0001, or not significant, respectively. Letters represent means separated atp < 0.05, 
Duncan's multiple range test. Boldfaced data indicate those values significantly greater than the control, Dunnett's t-test; boldfaced and 
underlined data are significantly less than the control. 

379 

.' 



Table 8.3. Impact of exogenous ABA concentration on yield components and berry composition of Cabemet Sauvignon, 
Lambert Vine~ards, Niagara-on-the-Lake, ON (2008 - 2009) 

Skin fresh Skin dry Titratable 
Cluster weight Berries/ Berry weight 

Treatment mass mass °Brix acidity pH 
(g) cluster (g) 

(mglberry) (mglberry) (gIL) 

2008 

Control 138 b 104 b 1.35 a 109 a 49b 18.8 b 8.9b 3.60 

150mgIL 139b 108 a 1.24 c 97b 56a 19.3 a 8.8 b 3.61 

300mgIL 142 a 110 a 1.29 b 89b 53 b 19.4 a 9.6 a 3.65 

Significance * * * * * * * ns 

2009 

Control 141 a 99a 1.42 a 112 a 48b 18.3 b 9.7 a 3.51b 

150 mgIL 127b 94 b 1.34 b 101 b 51 ab 19.0 a 8.9 b 3.59 a 

300mgIL 118c 93b 1.26c 103 b 56a 19.1 a 7.9 c 3.57 ab 

Significance ** * * * ** * * * 

*, **, ***, ****, ns: Significant at p < 0.05, 0.01, 0.001, 0.0001, or not significant, respectively. Letters represent means separated at p < 0.05, 
Duncan's mUltiple range test. Boldfaced data indicate those values significantly greater than the control, Dunnett's t-test; boldfaced and underlined 
data are significantly less than the controL 
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Table 8.4. Impact of exogenous ABA concentration and target organ, on total anthocyanins and phenols in berries of Cabernet 
Sauvignon, Lambert Vineyards, Niagara-on-the-Lake, ON (2008 - 2009). 

Anthocyanins (mg/L) Total phenols (mg/L) 

Treatment 2008 2009 2008 2009 

Control 426c 248c 1521c 1778 b 

Berries 548b 421 b 1783 b 1726 b 

Leaves 721 ab 621 a 1842 a 1856 a 

Whole canopy . 764 a 658 a 1896 a 1796 b 

Significance * * * ** 

Control 412 c 287 c 1651 b 1751 c 

150mg/L 478b 399b 1682 b 1891 a 

300mg/L 532 a 436 a 1765 a 1765b 

Significance * * * ** 

,**,***,****, ns: Significant at p < 0.05, 0.01, 0.001, 0.0001, or not significant, respectively. Letters represent means separated at p < 0.05, 
Duncan's multiple range test. Boldfaced data indicate those values significantly greater than the control, Dunnett's t-test; boldfaced and underlined 
data are significantly less than the control 
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Table 8.5 Impact of exogenous ABA concentration and target organ, on anthocyanin composition in berry skin of Cabemet Sauvignon 
from Lambert Vineyards, Niagara-on-the-Lake, ON (2009). 

3-Glucosides 3-Acetyl glucosides 

Treatments 
DeL Cya. Pet. Peo. Mal DeL Cya. Pet. Peo. Mal 

Control 221.7 c 90.4 b 112.6 b 155.3 b 324.3 c 47.7 c 23.2 ab 37.7 c 41.2b 117.5 c 

Berries 262.5 b 57.3 c 127.4 ab 113.5 c 358.7 c 62.3bb 17.7 b 41.6 be 28.7 c 143.4 b 

Leaves 322.1 ab 123.0 a 164.4 a 207.6 a 418.2 b 68.3 ab 26.7 a 44.3 b 44.3 a 147.8 b 

Whole 
360.4 a 100.4 ab 165.7 a 218.2 ab 440.6 a 77.5 a 24.1 ab 47.9 a 40.1 b 154.3 a 

canopy 

Significance * ** * ** * * * * * * 

Control 193.5 c 79.5b 109.1 c 145.8 b 303.0 c 45.9 c 20.2 b 30.7 c 35.3 b 109.0b 

150mg/L 249.3 b 67.0b 120.6 b 127.2 c 354.3 b 63.5 b 20.6b 41.1 b 33.4 b 146.0 a 

300mg/L 303.9 a 124.3 a 152.8 a 208.4 a 390.1 a 71.8 a 31.4 a 45.7 a 48.4 a 138.3 a 

Significance ** ** ** * ** * * * * ** 

*,**,***,****, ns: Significant at p < 0.05, 0.01, 0.001, 0.0001, or not significant, respectively. Letters represent means separated at p < 0.05, 
Duncan's multiple range test. Boldfaced data indicate those values significantly greater than the control, Dunnett's t-test; boldfaced and underlined 
data are significantly less than the controL 
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Figure 8.1. Cabemet Sauvignon clusters after two weeks from fIrst ABA application: A) Control 
(non-treated), B) Only clusters sprayed, C) Only leaves sprayed, D) Whole canopy sprayed. 
Lambert Vineyards, Niagara-on-the-Lake, ON, 2008. 

Figure 8.2. Cabemet Sauvignon clusters after four weeks from fIrst ABA application: left to right, 
unsprayed, 150 and 300 mgIL ABA. Lambert Vineyards, Niagara-on-the-Lake, ON, 2008. 

Figure. 8.3. Infiltration rate of exogenous ABA in Cabemet Sauvignon vines Lambert Vineyards, 
Niagara-on-the-Lake, ON, 2008, after 2,4, and 6 H from treatment application. A) Berries B) 
Leaves. Berry and leaf samples are from vines where whole canopy was treated with 300 mgIL 
ABA solution. August 19, September 5 and September 19 are the sampling dates. 

Figure 8.4. InfIltration rate of exogenous ABA in Cabemet Sauvignon vines Lambert Vineyards, 
Niagara-on-the-Lake, ON, 2009, after 2, 4, and 6 H from treatment application. A) Berries B) 
Leaves. Berry and leaf samples are from vines where whole canopy was treated with 300 mgIL 
ABA solution. August 25, September 11 and September 25 are the sampling dates. 

Figure 8.5. Hormone profIle of ABA and its metabolites in Cabemet Sauvignon berries after 2 
weeks from ABA application (wI) and harvest time (w3) Lambert Vineyards, Niagara-on-the
Lake, ON,(2008). 

Figure 8.6. Hormone profIle of ABA and its metabolites in Cabemet Sauvignon berries after 2 
weeks from ABA application (wI) and harvest time (w3) Lambert Vineyards, Niagara-on-the
Lake, ON, (2009) 

Figure. 8.7. Principal component analysis (F1 &F2) of physiological data, yield components and 
berry composition and hormones concentration means from four ABA treatments of Cabemet 
Sauvignon grape vines from Lambert Vineyards, Niagara-on-the-Lake, ON, 2008. 

Figure. 8.8. Principal component analysis (F1&F2) of physiological data, yield components and 
berry composition and hormones concentration means, from four ABA treatments of Cabemet 
Sauvignon from Lambert Vineyards, Niagara-on-the-Lake, ON, 2009. 
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Figure 8.1. Clusters of Vitis vinifera L. cv. Cabemet Sauvignon after two weeks following first ABA application: 
A) Control (non-treated), B) Only clusters sprayed, C) Only leaves sprayed, D) Whole canopy sprayed. Lambert 
Vineyards, Niagara-on-the-Lake, ON, 2008 

384 



Figure 8.2. Clusters of Vitis vinifera L. cv. Cabemet Sauvignon after four weeks following first ABA application: left to right, unsprayed, 150 and 300 mgIL ABA. Lambert 
Vineyards, Niagara-on-the-Lake, ON, 2008 
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Figure 8.3. Infiltration rate of exogenous ABA in Cabemet Sauvignon vines after 2, 4, and 6 hours following 
treatment application. A) Berries B) Leaves. Lambert Vineyards, Niagara-on-the-Lake, ON, 2008. Berry and leaf 
samples are from vines where whole canopy was treated with 300 mgIL ABA solution. August 19, September 5 
and September 19 are the sampling dates. 
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Figure 8.4. Infiltration rate of exogenous ABA in Cabemet Sauvignon vines after 2, 4, and 6 hours following 
treatment application. A) Berries B) Leaves. Lambert Vineyards, Niagara-on-the-Lake, ON, 2009. Berry and leaf 
samples are from vines where whole canopy was treated with 300 mgIL ABA solution. August 25, September 11 
and September 25 are the sampling dates. 
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Figure 8.6. Hormone profile of ABA and its metabolites in Cabernet Sauvignon berries after 2 weeks following 
ABA application (wI) and harvest time (w3). Lambert Vineyards, Niagara-on-the-Lake, ON, 2009. 

389 



15 

10 

- 5 

'* 00 
M 

0 IJ') 
m -N 
u.. -5 • 

ontrol 

-10 

-15 

-15 

Biplot (axes Fl and F2: 94.05 %) 

DPA 

B.w 

-10 -5 o 5 

Fl (58.88 %) 

S.D.M 
Total Ph. 
Brix 

ABAGE 
n ocyanlns 

• Lea~~~· 
Wholecanop 

10 15 
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and hormones concentration means from four ABA treatments of Cabernet Sauvignon grape vines from Lambert 
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Chapter 9 

General Discussion and Conclusions 

Despite the controversy on the necessity of using irrigation in order to obtain premium 

wines due to the increasing frequency of dry periods during the vegetation period, grape growers 

are reconsidering using irrigation in the Niagara Peninsula. Since most of the research on vineyard 

irrigation has been done in arid regions, there is little information available to assist growers in 

determining optimum levels of water status during the growing season in areas considered cool and 

humid. Moreover, there is little scientific proof to support that applying water in a vineyard has a 

negative effect on grape or wine quality for any cultivar or any amount of water used. The effect of 

applying irrigation depends almost exclusively on the level of vine water status, a specific function 

as a result of interactions among soil, vine and climate conditions. Thus, the main aim of this 

project was to study the effect of different irrigation strategies on soil and vine water status, and 

how they are reflected in fruit composition and wine qUality. 

One of the hypotheses driving this project was that by controlling the vine water status 

at various vegetative stages, one could manipulate general vine metabolism, increase yield and 

minimize the possible dilution effects of irrigation on grape composition. The rationale 

underlying this was that one could optimize the fruit composition by keeping grapevine vigor 

in balance with potential production. Along with this, it was also hypothesized that grape 

cultivars would have different water needs at different times during the growing period. 

Moreover, irrigation might have different effects on general vine physiology and grape 

composition, depending on cultivar. 

Soil moisture was affected in all irrigation treatments and for all cultivars studied, but 

not at all sampling dates. In experiments where irrigation initiation time was tested, the 

treatments started at veraison closely followed the control throughout the growing season. The 

best separation among irrigation treatments was observed in 2007 season, which was the driest 

and hottest year during the experimental period. Irrigation treatments affected soil moisture on 

the soil profile, even at the 100 cm depth. However, the highest variation occurred between 20 

to 60 cm depths, which was dependant on the percentage of water replaced and season. This 

was likely due to the delivery method used (drip irrigation) which allowed a special water 

distribution pattern ("onion bulb"). 
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Although, root density or root system architecture were not studied, pits dug in one block 

in 2008 along with soil moisture depletion data (various depths), suggested that different water 

regimes could change the depth where maximum root density is concentrated. These observations 

are supported by Steven and Douglas (1994) who indicated that under drip irrigation the root 

density increased. By using a drip irrigation systemto partially replace the water lost through 

evapotranspiration, the root system can be stimulated to develop in the upper portion of the soil 

profile (20 to 40 cm). This aspect has many positive consequences that might be exploited by the 

grape growers. By using drip irrigation and different water regimes, one might control the depth of 

the active root system and increase the root surface area in a relatively small volume of soil. In 

areas with high climate variability, like the Niagara Peninsula, one can manipulate vine vigor and 

make the vines less affected by soil heterogeneity. As many researchers pointed out, roots under 

low water status are stimulated to extend until a constant source of water is found, or otherwise 

explore more soil volume to sustain canopy development (Richards 1983, Sharp and Davies 1985). 

Thus, well-watered vines tend to have high vigor, which translates into poor grape composition if 

no other cultural practices are applied. Usually, poor grape composition is caused by lack of 

balance between vegetative and reproductive parts of the vine. 

Another aspect explored in these studies and related to vineyard irrigation was how 

accurate soil moisture data might reflect vine needs, and how this could be used in the 

vineyard management. Most of the irrigation studies used different criteria to calculate 

irrigation initiation time and water needs. Moreover, many irrigation experiments were 

conducted in pots under controlled conditions or in arid climate. This limited the pool of data 

that might be used to compare against results from the present experiments. Applying water 

based just on soil moisture values is not the best choice. Instead, these data showed that 

different cultivars had different water needs that were-best expressed by leaf'll and/or Ts rates, 

and their overall performance might be affected negatively by certain levels of moisture in the 

soil. This might be explained through their different capacities to cope with water deficits. 

Mainly, these differences are due to stomatal sensitivity to water stress, which is directly 

related to differences in ABA concentrations (DUring and Broquedis 1980). This theory is 

supported by other studies (Vincent et al. 2007). 

In this study, shoot growth rate was highly affected by the vine water status. In all 

cultivars, the trend was similar in all iirigated treatments, with a maximum in July followed by 

a steadily decreasing trend. The most accurate picture of effect of the irrigation treatments was 
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found in 2007. None of the extremely low or high water status treatments had a positive effect 

on fruit composition and wine qUality. Both situations (drought or excessive moisture) 

appeared to have a negative effect on canopy size, which could initiate a "domino effect" on 

the main metabolic pathways involved in grape maturation. 

Ts rate and leaf'll were two physiological parameters that varied due to irrigation 

treatments. The pattern of inconsistency from season to season could be explained for both 

variables due to other climatic factors rather than water status. Ts data indicated that the leaves 

never completely experienced stomatal closure, even in 2007, the driest year of the 

experimental period. However, the values decreased drastically at the end of August, which 

often coincided with high temperatures, high solar radiation, and low precipitation. Leaf 

temperature was highly positively correlated with vine water status level and Ts rate. This 

variable was a good indicator of vine water status. High leaf temperature is correlated to low 

Ts rate, which impairs the thermoregulatory process. High leaf temperature has a negative 

effect not only on photosynthesis but also on other metabolic pathways that can be reflected in 

grape composition and wine qUality. 

Soil moisture affects not only vine physiology but also yield components and berry 

composition. Most differences among irrigated treatments were found in terms of cluster 

weight and berry weight. However, differences were also found in terms of clusters per vine in 

some seasons and grape cultivars. Vine vigor increased as a consequence of excessive water 

status. This might have a negative effect on primordial differentiation, since it is well known 

that this occurs in the previous year in the same period at bloom (Buttrose 1974). Therefore, 

low exposure to light due to high canopy density in vines with high vigor might affect yield in 

the following year. Another important observation was that vines reacted to soil moisture even 

in seasons considered wet but with erratic distribution of precipitation, as in 2006. This 

suggests that heavy showers did not necessarily supply the water needs at key physiological 

stages. It is likely that following high-volume precipitation events, most of the water was lost 

due to percolation, and thus, become unavailable to the plant. Heavy rains could also leach 

nutrients from the rooting zone. 

Multivariate analysis displayed a good separation of treatments, which suggested that 

the method used to calculate water needs was accurate and could be used in the vineyard. 
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However, no consistency of response and treatment distribution was found for all the cultivars, 

which suggests that this method might over- or under-estimate vine water needs. 

As expected, berry composition was not consistent from vintage to vintage in terms of 

°Brix accumulation. However, the berry development stage when irrigation was initiated had a 

large effect on grape composition in general. Most of irrigation regimes starting with fruit set 

had a negative effect on fruit composition. This could be due to a disruptive effect on balance 

between vegetative and reproductive parts of the vine, in favor of the first component. Under 

excessive soil moisture conditions, changes in translocation of the carbohydrates might lead to 

a delay in fruit maturation (less °Brix and high T A) along with a possible dilution effect on 

aroma components. In 2007, low soil moisture, high temperatures, and high solar radiation had 

the same negative effect as the excessive soil moisture. Pallioti and coworkers (2000) indicated 

that these conditions increased the respiration rate in both leaves and berries, which have a 

negative impact on '13rix and TA accumulation in the berries. There was not a consistent 

pattern in terms of T A and pH, although variation due the irrigation treatments was observed 

in some seasons, and in all cultivars. Inconsistency has been found in other studies in ariq 

regions (Ginestar et al. 1998, Hardie and Considine 1976). 

In tenns of fruit composition, the most noteworthy difference among irrigation treatments 

was observed in red cultivars (Baco noir and Cabemet Sauvignon) with respect to concentration of 

anthocyanins and phenols. Despite the belief that hot and dry years improve the berry composition, 

these data suggested the contrary. In 2007, 25% and 50% water replacement treatments had a 

positive effect not only on berry color but also on general berry composition. Moreover, the 

difference between irrigated vines and the control was much higher since the berry composition 

variables were expressed in tenns of concentration. Most components increased in the non

irrigated vines due to a desiccation effect and not necessarily due to an increase in the metabolic 

process of the chemical compounds. These results supported findings of other authors who have 

stated that restricted irrigation gives better results in red wine grapes than in white grapes suffering 

from water stress (Dry et al. 2001). However, this should not be generalized for all years and 

cultivars. In dry years as 2007, the irrigation treatments, especially the 50% and 25% ETc 

replacement treatments, improved the general sensory profIles of all the wines. Moreover, even in 

years considered wet but warm with erratic rainfall distribution, wine sensory profiles could be 

manipUlated by applying different deficit irrigation strategies. 

395 



Inconsistency of some variables in these experiments might be explained through the 

age of the vines. Since their root system was already developed by the initiation of the 

experiment, it could take longer to the plant to adjust the root system to the new level of 

moisture and volume of soil targeted. In order to validate these results and draw strong 

conclusions, irrigation experiments should be extended for a longer period (at least 5-10 years) 

or initiated immediately after the vines are planted. 

The RDI strategy has been widely evaluated around the world and it was demonstrated 

to be a viable practice in vineyards for controlling excess vigor, reducing pest populations, 

disease pressure, and improving wine quality (Jackson and Lombard 1993). This study showed 

that it is possible to optimize production and composition of grapes by controlling irrigation at 

various phenological stages. However, this should still be combined with other conventional 

cultural practices. Contrary to results of Baeza et al. (2004) and Collins et al. (2008) who 

concluded that yield and vine physiology responded to the amount of water used rather than 

irrigation management method, the results from the present research suggested that the vine 

responds not only to the amount of water used but also to the physiological stage at which 

irrigation is applied. 

Multivariate analysis indicated that water is a very important factor in establishing an 

optimal fruit composition and it is also dependant on other climatological factors. Having seasons 

with totally different meteorological conditions (hot and dry vs. cool and wet) during the 

experimental period allowed a very complete picture of how soil and vine water status affect grape 

composition and wine quality. Neither control (non-irrigated) nor 100% ETc imposed at fruit set 

(especially in very dry and hot years) improved the general plant physiology or fruit composition. 

Overall, RDI (50% ETc and 25% ETc replacement) treatments applied at lag phase or veraison 

made the difference in terms of fruit composition when they were compared to the control or RDI 

treatments initiated at fruit set. This study suggests that full irrigation, initiated either at fruit set or 

veraison, is not recommended. Deficit irrigation treatments showed the most positive effects on 

fruit composition, especially in very hot and dry years. 

RDI treatments had beneficial effect on fruit composition, reflected throughout the sensory 

profile of wines. Despite the many rain events in 2006 the irrigation treatment showed important 

changes at the physiological level and sensory profile of the wines. However, more research 

should be done to understand which aroma volatiles are affected mostly by the vine water status 

and how and when their metabolic pathway is affected by the soil water deficit. 
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This study revealed that even in regions considered cool, vines undergo periods of water 

stress which could affect the fruit composition. Since the main goal of any winemaker is to have 

consistency in their wine style and high grape quality every year, they should understand that too 

much drought is as bad as too much moisture in the soil. The increased respiration rate and photo 

inhibition in leaves due to high temperatures and light intensity in vines which are under some 

degree of water stress could lead to an extended ripening period. This would not be a negative 

aspect as long as the first frost does not occur too early in the fall. The results of this study 

advocate using water in the vineyard rationally. 

Despite requiring an initial high investment drip irrigation might be a very profitable 

management tool in the vineyard. These results showed that even in seasons with high 

precipitation distributed erratically, drip irrigation might have a beneficial effect on general vine 

physiology and fruit composition. General recommendations in terms of amount of water needed 

during the growing season cannot be made. Growers should understand that irrigation rates may 

change at other sites with different soil characteristics and weather conditions. In practice, rates 

should be modified according to the stage of development of grapevines and their seasonal water 

requirements. Drip irrigation treatments are savings in cost of labor and materials associated with 

vineyard management practices such as irrigation, pesticide application, shoot and leaf removal, 

hedging, and pruning, due to a better control of the soil moisture and root system. 

The second hypothesis driving these trials was that using different irrigation strategies like 

RDI and PRD one could improve the grape and wine quality in Sauvignon blanc and Cabernet 

Sauvignon cultivars. RDI strategies were more consistent and had a greater magnitude of effect 

than PRD treatments in terms of general vine physiology, yield components, and fruit composition. 

Water depletion patterns in the soil showed that there was a greater magnitude of difference 

between irrigation strategies in terms of physiological responses (Ts, leaf'll), soil moisture, yield 

components, and fruit composition in warm years vs. cool years. Mild water deficit could possibly 

have a positive effect on aroma potential in Sauvignon blanc grapes. In dry years, Sauvignon blanc 

should be watered only enough to achieve and maintain a mild deficit level. These findings are in 

agreement with those who suggested to maintain a mild deficit level not only in Sauvignon blanc, 

but also for other white grape cultivars such as Gewfuztraminer, Petit Manseng, Gros Manseng 

and Semillon, since volatile thiols in these cultivars are greatly affected by water status (Peyrot des 

Gachons et al. 2005). However, more research should be done regarding the relationship of soil 

and vine water status and their effects on the chemical compounds responsible for the sensory 

profiles of these cultivars. 
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The PRD treatment requires high initial input and maintenance costs. Despite improving 

vine performance and in some cases grape composition, PRD is not recommended in this area due 

to the high costs involved and lower benefits than RDI treatments. However, more research should 

be done on using PRD strategy in order to validate the biochemical processes behind of this 

strategy. Perhaps, by improving this strategy and lowering the installation price, it could be 

recommended for use in the future. The PRD treatments had less effect on vine physiology and 

fruit composition than was reported in other studies in arid regions. This might be explained by 

different percentage of water replaced through irrigation. In most of the studies where PRD was 

used, just a portion of the water lost though evapotranspiration was replaced. As it was stated in 

another study (Gu. et al. 2004) the positive effect of PRD on grape composition could be due to the 

water deficit applied and not due to strategy used (alternating wet and dry zone on the root 

system). 

Contrary to what many winemakers believe, using RDI strategies can improve wine 

quality. Improving vine performance helps to keep consistency not only in yield (fruitfulness) but 

also in °Brix and flavor. These data support most of the research done on water deficit that showed 

that water controls most of the physiological and metabolic processes in the grapes. Increasing 

OSrix in non-irrigated vines does not guarantee that the wine quality is improved, because this 

process is due mostly to the desiccation process rather than improving water use efficiency. A 

moderate water status can increase the overall yield and OSrix along with improving the sensory 

profile of the wine. Certainly, the winemaker could manipulate the sensory profile of wine in the 

vineyard before attempting to do it in the winery where it is more difficult. 

The third hypothesis was that monitoring the levels of ABA and its catabolites in grapevine 

leaves might give us an accurate indication of vine water status level. There is no doubt concerning 

ABA biosynthesis but there are still questions as to the factors triggering the ABA catabolic 

pathways. It is well known that ABA follows either oxidation or conjugation catabolic pathways. 

Most of the previous research focused on the relationship between ABA and water deficit levels by 

measuring the ABA amount in the xylem sap. The assumption was that ABA alone cannot fully 

explain vine water status. Most of the research on ABA in grapevines focused mostly on its 

variation in berry grapes and in few cultivars only. This is the first report on the effects of different 

irrigation strategies on ABA and its catabolites profile in leaves and berries from different 

grapevine cultivars grown in cool area. 
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ABA and its catabolites profiles seem to be under genetic control. Chardonnay vines 

produced less ABA in leaves and berries than Baco noir, which could be translated into their 

different capacities to react at different levels of water status. Besides genetic control, ABA and 

part of its catabolites are strongly affected by vine water status level. Even at low magnitudes of 

differences in vine water status level, there were detectable changes in ABA and its catabolites 

profiles. Therefore, even at high water status, ABA is not completely turned over as is mentioned 

by some researchers to happen in some plant species. Moreover, variation in ABA concentration 

over the entire growing season is not translated into the same proportional changes in its 

catabolites. Perhaps, translocation might be an important process along with the two other 

catabolism pathways of ABA. As it has been mentioned in different studies, ABA could be stored 

in shoots and roots according to "anion trap" theory. However, data from the present study 

indicated that there is a switch for one or the other catabolic pathway of ABA depending on the 

water status level in the vine. ABA and part of its catabolites can accurately describe the water 

status in the plant. The best accuracy, however, is obtained in hot and dry years. 

The ABA trend in berries seems to be similar in all cultivars. In other cultivars ABA 

increased close to veraison and decreased immediately thereafter (Owen et al. 2009, Wheeler 

2006). In this study the results cannot be compared with most of the old studies on ABA, mainly 

due to techniques with low degree of accuracy used. 

During this work more research was published on the ABA on grapes. Its role has been 

associated with the ftrst steps of the ripening process (Gagne et al. 2006, Peppi et al. 2008). Some 

studies indicated that ABA triggers numerous genes that control different metabolic pathways in 

the berries (DeLuc at al. 2009). ABA increased in berries at veraison in all irrigation treatments in 

this study. However, a higher ABA concentration was found in berries under water stress 

compared to well-irrigated grapevines. It is less likely that ABA accumulates in high 

concentrations based on the ABA produced in roots, although hydraulic conductivity decreased 

under high water deftcit. One could speculate that more of the free ABA found in berries at 

veraison is translocated from leaves or it is produced from ABA-GE, which is stored in leaves, 

shoots or berries. 

Based on the data from these experiments, it is not entirely possible to c~mclude that higher 

concentration of ABA in berries under water deftcits improves the basic grape composition 

variables eBrix, TA, pH) in white winegrapes. However, the wine sensory profIle improved in 
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treatments under moderate water stress. Although volatile compounds in these wines were not 

measured, controlling vine water status enhanced the wine varietal typicity. These findings are 

supported by research of Valent Bioscience Inc., which claimed two patents for using exogenous 

ABA to change sensory profile in Chardonnay and Semillon wines in 2008 

(www.freshpatents.com). 

The last hypothesis was that using exogenous ABA might have a positive effect on fruit 

composition and hasten the ripening process in late ripening cultivars as Cabernet Sauvignon. 

From a practical point of view, the temporal advancement of ripening through hormonal control 

could be an asset to viticulturists, which means that fruit may mature earlier, a distinct advantage 

in cooler areas or areas with a high risk of early frost occurrence where an-early end to the growing 

season may prevent adequate fruit maturation. Two wet and cool seasons (2008 and 2009) allowed 

us successfully to test the last hypothesis. 

The ability of ABA to control the timing of grape berry maturation depends not only on 

solution concentration used but also on organ targeted to spray, since different organs have 

different uptake rates. ABA affected not only fruit composition but also general vine physiology in 

treatments where only leaves or whole canopy was sprayed. Contrary to many assumptions made 

by other studies, exogenous ABA did not have any senescence or abscission effect on leaves or 

berries at the concentration used in these experiments. Exogenous ABA might also provide 

considerable benefits to the wine industry in terms of grape composition, wine style and for winery 

scheduling, particularly in wet and cool years. Besides its genetic control, the data clearly 

demonstrated that ABA profile in berries might be manipulated through application of exogenous 

ABA. Since it is speculated that this hormone is involved in controlling directly or indirecly many 

physiological and metabolic processes in the plant, more research should be done at molecular 

level in order to elucidate its full role in vine physiology and grape ripening. A full understanding. 

of its role in the ripening process could recommend ABA as a powerful tool in vineyards, 

especially under extreme weather conditions. This hormone can be successfully introduced as an 

alternative cultural practice, particularly in cool years, and in regions and growing seasons when 

there is a high chance of early frost and a concomitant potential of prematurely losing the foliage. 

Without doubt, ABA is involved in many metabolic pathways triggering various genes 

responsible for the ripening process. Most recent studies on the ripening process indicated that 

more plant hormones such as ethylene and the brassinosteroid castasterone are involved in berry 

ripening (Chervin et aI. 2004, Symons et al. 2006,). It is likely that besides ABA other factors are 
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involved in the ripening process. Further research on irrigation trials should be conducted at 

molecular level in order to manipulate and use these chemical compounds under different climatic 

condition in order to improve grape and wine composition. More research is also needed to clarify 

if other hormones act synergistically or independently, and what exactly is the role of ABA in this 

cycle. 

Based upon physiological variables values measured, irrigation was definitely needed in 

Niagara Peninsula in 2005 and 2007, as it was in previous dry seasons such as 1998, 1999,2001, 

2002, (Reynolds et al. 2005, 2007). This work is the first comprehensive study on the effects of 

different irrigation strategies and water regimes used in cool humid climates. This research 

indicated that different irrigation strategies applied through drip irrigation might improve some 

quantitative variables of grapes and sensory profiles of wines, even in regions considered cool but 

with various dry periods during the growing season. Moreover, this study emphasized the need to 

apply irrigation according to cultivar and vegetative stage. 

The present studies indicate that ABA and its catabolites profile could be a good indicator 

of water stress during the growing season, and may play an important role in the fruit ripening 

process. Future research should be focused on finding some methods to manipulate ABA flux in 

the vine in order to improve grape and wine quality under extreme weather conditions. 
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Appendices 
Appendix A 

The following scale was used in the discrimination test. On the far left side of the scale was 

anchored the control (non-irrigated treatment). The instructions given to the panelist are indicated 

below. 

Control 
(No difference) 

Very 
different 

Instructions: 

1. You have in front of you five wine samples. The first sample is the control wine. , 

2. Take 2-3 short sniffs from the control. 

3. Take a sip from the control, keep it in the mouth for 15-20 seconds and then expel it. 

4. Clean your palate with water after each wine sample 

5.Take 15 seconds brake and do the same steps with the first wine sample. 

6.Compare overall intensity (orthonasal and retronasal) between control and each wine 

sample. 

7. After each comparison, take a 2 min. brake. 

8. Anchor on the scale provided the the three-digit code of each wine sample as follow: far 

left if no difference is perceived or far right if they are very different from the control. 

9. If one sample is different from the control, write down any descriptor in which you 

consider the two wine samples are different. 
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AppendixB 

The following screen print from Compusense software project shows the type of scale used 

in sensory data collection (aroma evaluation) and indications provided to the panelist. 

Please, click on button "display instmctions" before you start -

ed Fruit ......... . ...... . .. . . . . . . . . . . ......... . 

Red FrUit 

Lower 
Dark Fruit 

Control 

I 

879 

Higher 

I 

Question 1 of 4 
Sample 1 of5 

1. Take two-three short sniffs from the control, and focus on the attribute specified on the 
scale. 

2. Take two-three short sniffs from the wine samples and focus on the attribute specified on 
the scale. 

3. Compare the intensity of the descriptor between control and the wine sample. 

4. Move the cursor to the left if the aroma intensity is lower than control or to the right if it is 
higher. If no difference is found, move the cursor on the same spot with that one of the control. 
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879 
Red Fruit .... ... . . . . . . . . . . • .......... . ... . . . . . .. 1 _J 

Red FrUit 

Lower 

I 

Display I 
Instructions 

Dark Fruit 
Control 

I 
Higher 

I 

Question 1 of 4 
Sample 1 of5 

1. Take two-three short sniffs from the control, and focus on the attribute specified on the 
scale. 

2. Take two-three short sniffs from the wine samples and focus on the attribute specified on 
the scale. 
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