
Automatic Evolution of Conceptual
Building Architectures

Corrado Coia

Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Masters of Science

Faculty of Computer Science, Brock University
St. Catharines, Ontario

© May 25, 2011

Abstract

This thesis describes research in which genetic programming is used to au­

tomatically evolve shape grammars that construct three dimensional models

of possible external building architectures. A completely automated fitness

function is used, which evaluates the three dimensional building models ac­

cording to different geometric properties such as surface normals, height,

building footprint, and more. In order to evaluate the buildings on the dif­

ferent criteria, a multi-objective fitness function is used. The results ob­

tained from the automated system were successful in satisfying the multi­

ple objective criteria as well as creating interesting and unique designs that

a human-aided system might not discover. In this study of evolutionary

design, the architectures created are not meant to be fully functional and

structurally sound blueprints for constructing a building, but are meant to

be inspirational ideas for possible architectural designs. The evolved mod­

els are applicable for today's architectural industries as well as in the video

game and movie industries. Many new avenues for future work have also

been discovered and highlighted.

Acknowledgements

I would like to thank the following individuals and organizations for their
tireless support:

• Brian J. Ross for over four years of excellent supervision, guidance, and
funding on all the projects accomplished.

• Beatrice Ombuki-Berman and Michael Winter for their participation
on the supervisory committee.

• Cale Fairchild and Robert Flack for their seemingly limitless knowledge
on Linux systems, networking, and all unsolvable problems solved.

• Brock University for providing me with the privilege and the facilities
for furthering my knowledge and accomplishing something great.

Thank you, and goodnight.

c.c.

Contents

1 Introduction
1.1 Evolutionary Design of Building Architecture
1.2 Goals and Measuring Success
1.3 Overview of the Thesis

2 Background
2.1 Genetic Programming

2.1.1 Tree Structure
2.1.2 The Genetic Program Algorithm
2.1.3 Reproduction Operators
2.1.4 Evaluation and Selection Methods.
2.1.5 Multi-Objective Fitness Evaluation Methods

2.2 Grammars and Design
2.3 City Engine
2.4 Shape Grammars and Evolutionary Design

3 System Details
3.1 Architecture

Grammar . 3.2
3.3
3.4

Genetic Programming Parameters
Fitness Evaluation

4 Experiments: Basic
4.1 Height Matching to a Targeted Value

4.1.1 Experiment Setup and Parameters
4.1.2 Results

4.2 Maximizing Unique Normals
4.2.1 Experiment Setup and Parameters

iii

1
1
3
5

6
6
6
7
7
9

10
11
14
17

20
20
21
23
25

26
26
26
26
31
31

4.2.2 Results................
4.3 Maximizing the Normal Distance

4.3.1 Experiment Setup and Parameters
4.3.2 Results

31
36
36
37

5 Experiments: Multi-Objective 41
5.1 Maximizing Unique Normals Using Spheres while Keeping to

a Boundary 41
5.1.1 Experiment Setup and Parameters 41
5.1.2 Results........................... 42

5.2 Maximizing Unique Normals and Height Matching: Random
Search versus Evolution 48
5.2.1 Experiment Setup and Parameters 48
5.2.2 Results.... 48

5.3 Comparing Summed Rank, Normalized Summed Rank and
Pareto Evaluation Methods 57
5.3.1 Experiment Setup and Parameters 57
5.3.2 Results................ 58

6 Experiments: Advanced Multi-Objective
6.1 Top-Down Shape Matching.

6.1.1 Experiment Setup and Parameters
6.1.2 Results

6.2 Top-Down and Front-View Shape Matching
6.2.1 Experiment Setup and Parameters .
6.2.2 Results...

6.3 Top-Down Shape Matching and Maximizing Normals while

70
70
70
71
74
74
74

Targeting Height 77
6.3.1 Experiment Setup and Parameters 77
6.3.2 Results................ 77

7 Discussion
7.1 Constraining the Grammar.
7.2 Limitations

8 Conclusion and Future Work

Bibliography

83
83
84

87

93

Appendices

A Additional Multi-Objective Scores

93

94

List of Tables

2.1 Example Fitness Vectors

3.1 Common G P Parameters .

4.1 Parameters - Height Matching to a Targeted Value
4.2 Results - Height Matching to a Targeted Value.
4.3 Grammar for tower in Figure 4.2
4.4 Parameters - Maximizing Unique Surface Normals
4.5 Results - Maximizing Unique Normals
4.6 Grammar for tower in Figure 4.6 (b)
4.7 Parameters - Maximizing the Normal Distance.
4.8 Results - Maximizing the Normal Distance
4.9 Grammar for model in Figure 4.8

5.1 Parameters - Maximizing Unique Normals Using Spheres while

12

24

26
27
31
34
34
35
36
37
40

Keeping to a Boundary 42
5.2 Results - Maximizing Unique Normals Using Spheres while

Keeping to a Boundary 47
5.3 Parameters - Maximizing Unique Normals and Height Matching 49
5.4 Results - Maximizing Unique Normals and Height Matching

U sing a Tournament Size of 3 49
5.5 Results - Maximizing Unique Normals and Height Matching

Using Random Search 52
5.6 Results - Summary and T-Test Confidence Percentages 52
5.7 Grammar for tower in Figure 5.7 (a) 56
5.8 Grammar for tower in Figure 5.9 57
5.9 Parameters - Maximizing Unique Normals, Maximizing Height,

and Constraining to a Boundary 58
5.10 Multi-objective Results Comparison: 100 Solutions Each 66

vi

5.11 Multi-Objective Results Comparison (Continued)- Duplicates
Removed. .. 66

5.12 Multi-Objective Results Comparison - Duplicates Removed. 66
5.13 Multi-Objective T-Test Confidence Percentages 67
5.14 Grammar for tower in Figure 5.11 68

6.1 Parameters - Shape Matching . . 71
6.2 Results - Vertical Projection Shape Matching 71
6.3 Results - Vertical and Horizontal Projection Shape Matching 77
6.4 Parameters - Maximizing Unique Normals, Height Matching,

and Shape Matching . 81
6.5 Results - Maximize Unique Normals, Match Height, and Ver-

tical Projection Shape Matching. . 81

A.l Normalized Summed Rank Results
A.2 Summed Rank Results
A.3 Pareto Results.

95
95
96

List of Figures

2.1 The structure and program flow of genetic programming. . .. 7
2.2 Image (a) shows the two parents which have been selected for

crossover, and their respective subtrees selected for crossover.
Image (b) shows the two parents and their resulting new trees
after the crossover has taken place. 8

2.3 A complete cityscape created entirely from within City Engine.
The cityscape is made to resemble the ancient city of Pompeii. 15

2.4 Image (a) is the model after the initial extrude. Image (b) is
the completed model after the split and rotate commands. .. 17

3.1 Program flow and architecture between the GP system and
CityEngine. .. 20

4.1 Image (a) shows the performance graph of the targeted height
experiment. This graph shows the average population gener­
ation averaged over all 10 runs. Image (b) shows the average
best of generation result though out the experiment.. 28

4.2 The model in image (a) is from the 3rd run of the height
experiment, in which the target model height was 1500 units.
This model is the highest ranked building, with a height of
exactly 1500. Contrasting the best result, image (b) shows a
different model with the worst fitness score, a height of only
295.52. 29

4.3 This model is from the 6th run of the height experiment and
has a height of 1466.9489 and displays interesting patterns.
Image (a) is the entire view of the tower, and image (b) is a
closeup detailed view. .. 30

viii

4.4 Image (a) shows the performance graph ofthe evolution ofthe
maximizing unique surface normals experiment. This graph
displays the average generation averaged over all 10 runs. Im­
age (b) shows the average best of generation result during all
10 runs of the experiment. 32

4.5 From the maximizing unique normals experiment, this model
displays the best fitness, having a unique normal count of 2412.
Image (a) is the building in its entirety, and image (b) is a
detail view. 33

4.6 Model (a) has 438 unique normals and model and is from the
fourth run (b) has 542 unique normals and is from the fifth
run. Both models show interesting aesthetic aspects. 33

4.7 Image (a) shows the performance of the average generation,
averaged over all 10 runs, from the maximizing normal dis­
tance experiment. Image (b) shows the performance graph for
the average best result of each generation. 38

4.8 This model shows a result which demonstrates how polygons
with a good normal distance can begin to take curved shapes.
This result is from the second run and has a score of 8.95127. 39

4.9 This model has the best fitness score over all ten runs, and was
found as the highest ranked result in the seventh run. This
model has a score of 8.95132. 39

5.1 Image (a) shows the average fitness score evolution of each
generation over the 10 experimental runs for the maximizing
unique normals experiment which allows for the inclusion of
low-polygonal spheres. Image (b) shows the average best re­
sult throughout the generations and all runs of the experiment.
Image (b) does not show the boundary curve as it's score is
constantly 0 for the best individual. 43

5.2 The model created from the grammar which returned the best
fitness score over all 10 experiment runs. The result shows two
different angles of the building which has 6240 unique normals. 44

5.3 This model displays interesting symmetry. This model is the
best of the second experiment run and has 1330 unique nor­
mals. Image (a) and (b) are two different views of the same
model. 45

5.4 A futuristic model which could possible represent a space­
colony or habitat. This model is the best of the sixth ex-
periment run and has 4760 unique normals. 46

5.5 Image (a) is the average fitness score evolution of each gener­
ation over the 10 experimental runs from the height matching
and maximizing normals experiment with a tournament size
of 3. Image (b) is the average best of generation. 50

5.6 Image (a) shows the average fitness score evolution of each gen­
eration over the 10 experimental runs from the height match­
ing and maximizing normals experiment with a tournament
size of 1 and no elites, simulating random search. Image (b)
shows the average best of generation. 51

5.7 These two different models display some of the best fitness
scores found throughout the ten runs of the maximizing nor-
mals, and height matching though a random search exper­
iment. Image (a) has 106 unique normals and a height of
52.589. And image (b) has 34 unique normals and a height of
95.826 units. 53

5.8 These results are all of the same model, taken from the best
result of the forth run. This model has 150 unique normals
and a height of 672.7477 units. Image (a) is the full view of
the model, where images (b) and (c) are detailed views. 54

5.9 These results are all of the same model, taken from the best
result of the ninth run, and also displayed the all-around best
combined fitness scores for the experiment. This model has
558 unique normals and is 747.48663 units tall. Image (a)
is the full view of the model, where images (b) and (c) are
detailed views.. 55

5.10 This scatter plot shows two fitness scores (height, and count
of unique normals) plotted over all 100 results generated by
each experiment, where each run of the experiment returns ten
results. This plot compares the three different experiments,
Normalized Summed Rank, Summed Rank, and Pareto eval-
uation methods. The target value for the height is 750. 59

5.11 Images (a) and (b) are both from the best individual pro­
duced at the end of the evolution in the ninth run under the
normalized summed rank experiment. Image (b) is a closeup
of the same model in image (a). This model stays within the
boundary, while having 1624 unique normals, and a height of
1475.2029. .. 60

5.12 Images (a) and (b) are both from the best individual pro­
duced at the end of the evolution in the fifth run under the
normalized summed rank experiment. Image (b) is a closeup
of the same model in image (a). This model stays within the
boundary, while having 4088 unique normals, and a height of
1497.7514., 61

5.13 Images (a) and (b) are both from the best individual produced
at the end of the evolution in the fifth run under the regular
summed rank experiment. Image (b) is a closeup of the same
model in image (a). This model stays within the boundary,
while having 3340 unique normals, and a height of 1497.5269. 62

5.14 This image is the best result from the tenth run of the summed
rank experiment. This model had a particular low fitness score
when compared to the average. It maintained the limits of the
boundary, however it only has 810 unique normals and a height
of exactly 817. .. 63

5.15 Images (a) and (b) are both from the best individual produced
at the end of the evolution in the second run under the Pareto
experiment. Image (b) is a closeup of the same model in image
(a). This model breaks the boundary by 545.07 units, has 2531
unique normals, and a height of 1492.3526., 63

5.16 Images (a) and (b) are both from the best individual produced
at the end of the evolution in the seventh run under the Pareto
experiment. Image (b) is a closeup of the same model in image
(a). This model breaks the boundary by 550.637 units, while
having 855 unique normals, and a height of 1184.786. 64

5.17 Image (a) is from the best result found in run 9 of the exper­
iment using Pareto. It manages to stay within the boundary,
have 2090 unique normals, as well as a height of exactly 1442.
Image (b) is the outlier of the results from run number 8. That
model breaks the boundary limits by 372.859 units, has 1758
normals, and is only 851 units tall. 65

6.1 Images (a) shows the performance graph of the population
over all ten runs, and image (b) shows the performance graph
of the average best population over all ten runs. 72

6.2 Images (a) is from the sixth run and has a score of 0.9048.
Image (b) is the target shape for this experiment (not to scale). 73

6.3 Images (a) is from the eighth run and has the highest score
found in the experiment with 0.9285. Image (b) is from the
ninth run and has a score of 0.9052. 73

6.4 Images (a) shows the performance graph ofthe average gener-
ation over all ten runs, and image (b) shows the performance
graph of the average best of generation over all ten runs. . .. 75

6.5 Image (a) shows the target vertical shape, and image (b) shows
the target horizontal shape. Image (c) shows the vertical view
of the model from the third run and has a score of 0.8878 (ver­
tical) and 0.8502 (horizontal). Image (d) is the same model,
showing the horizontal view. Image (e) shows the vertical view
of the model from the sixth run and has a score of 0.8662 (ver­
tical) and 0.8738 (horizontal). Image (f) is the same model,
showing the horizontal view. 76

6.6 Image (a) and (b) show the performance graphs displaying the
population averaged over all ten runs. 78

6.7 Image (a) and (b) show the performance graphs displaying the
population averaged over all ten runs. 79

6.8 Image (a) shows a top-view of the model from the first run
of the experiment. This model contains 820 unique normals,
a height of 148.652 units, and has a shape matching score of
0.8612. Image (b) is the same model however viewed from the
front. 80

6.9 Image (a) shows the model from the fifth run of the experi­
ment. This model contains 502 unique normals, a height of
68.554 units, and has a shape matching score of 0.9077. Image
(b) shows the target shape.. 80

Chapter 1

Introduction

1.1 Evolutionary Design of Building Archi­
tecture

Building design is a complex task which relies heavily on many different fields
of study [38]. Architects create concepts for building designs according to
the fundamental principles of architecture, such as beauty, symmetry, style,
function, form and more [5, 38]. Even when building design is handled by
a computer, an architect is still the key factor in the final design. The
architect must ensure that, for example, the building is able to withstand a
multitude of elements such as high winds and earthquakes, as well as ensure
the structural integrity of the building.

One method in which computers are used to create designs is through
the use of grammars. Grammars are able to procedurally encode a series
of building instructions used to create a design [34]. An advantage of using
grammars is that they hold sets of instructions which can be used multiple
times in the construction of the object. They can also be fine-tuned to give
automated variations within designs. The major disadvantage of grammars
is that they are difficult and time-consuming to create and edit. Any minor
change in the grammar can result in vastly significant changes in the final
product. In addition to being time-consuming to create, grammars can be
challenging to learn. As a result, architects are not necessarily skilled in
the field of grammar programming. Moreover, detailed grammars tend to
create more detailed designs, in which case even more time and trail-by-error
discovery is needed to use them. When someone is tasked with the job of

1

CHAPTER 1. INTRODUCTION 2

creating a grammar, it can be difficult to visualize the required grammar
structure which would be needed to create the particular building, especially
if the building has a lot of complex details to it. As such, manually coding
a grammar which will create such a complex building according to multiple
and conflicting geometric properties can be extremely difficult.

Since computers are a viable option as a design tool, many studies and
methods have been explored to speed-up this design process. One method
which has been explored is combining computer-aided design with evolution­
ary computation. This has been done using genetic algorithms as well as
genetic programming techniques. Many applications have been studied, for
example, tables[14]' artifical flowers[18]' architectural structures[4] and more.

Architects could make use of an automated program which creates build­
ing designs such that they would use the system as a design tool to give
them new ideas and inspiration. A possible use scenario could be as follows.
An architect is hired to design a high-rise office building. They could use
an automated system to generate a multitude of building ideas and concepts
which could be incorporated into their design. Additionally, if one were to
drive through a developing urban subdivision, one would find a series of sim­
ilar looking housing. These houses are made in bulk with a minimal focus on
aesthetic value. To solve this, the design system could to generate possible
new ideas for unique houses, while minimizing the effort of designing them
by hand.

In the entertainment industry, an automated building design system would
be extremely valuable. The buildings rendered in movies and video games
are artificial, and their visual appeal is a main criteria of their design. They
are often seen in the background of chase scenes, overhead city sweeps, or
just as generic houses and buildings along a street. In this case, the key
people involved in the development of these rendered buildings are three di­
mensional modelers and designers. In this situation, a designer could use
an automated building design system to create buildings according to speci­
fied shape criteria and other constraints, having the system create a suite of
buildings all similar in style. Alternatively, an automated system could be
run many times with different constraints and criteria to create a multitude
of different buildings. These buildings can also be generated each time a
player starts a new game, effectively creating a new immersive environment
for the player, and re-kindling the players interest in the game.

CHAPTER 1. INTRODUCTION 3

1.2 Goals and Measuring Success

The goal of this thesis is to propose an evolutionary design system which uses
genetic programming to evolve conceptual building architectures according
to multiple geometric criteria. The genetic program will accomplish this by:

1. Automatically creating shape grammars.

2. Using multiple objective criteria.

3. Working with an established commercial product.

The resulting application accomplishes the following goals:

1. An automated design tool, using geometric criteria.

2. Evolving three dimensional models though the use of multiple criteria,
which often conflict.

3. Automating the programming of shape grammars.

The goal of this research is to use genetic programming for the automatic cre­
ation of shape grammars which construct external three dimensional building
models. These models will satisfy multiple geometric criteria as specified by
the user. Since creating grammars is a challenging task which requires a
great deal of skill and experience to create by hand, a goal of this system is
to have a fully automated method of creating these shape grammars.

Many interactive evolutionary systems have been created which require
human interaction to guide the system's process though each generation
within the evolutionary process. Interactive systems still consume the users
time, as well as removes the creation of non-human designs which is often
seen in fully automated systems. Manually reviewing each evolved individual
is mentally taxing on the user, as the user must review and assign a score
to each of the individuals. This limits the number of individuals that can be
generated by interactive evolution.

With the approach presented in this thesis, the design exploration is
handled automatically by the evolutionary program. The resulting exter­
nal building models are not intended to be structurally sound blueprints of
a building, but a set of possible structures in which an architect or designer
could use as conceptual designs or as inspirations. The models create a basis
of what could possibly become a real design. Another benefit of this system is

CHAPTER 1. INTRODUCTION 4

that it allows a user without any knowledge of shape grammars and grammar
programming to development grammars and their respective models.

In order to measure the success of evolution, the resulting three dimen­
sional models are evaluated by multiple pre-determined fitness scores which
evaluate the models on different geometric properties. However, the true
measure of success comes from reviewing the final models. The user can
then visually identify if the models have satisfied the design criteria and
present interesting and inspirational design ideas. It should be noted that
some solutions generated by the evolutionary system, even if satisfying the
multiple criteria, may not be accepted by the user due to the users tastes
or other personal preferences. This study does not evaluate the aesthetics of
the resulting models.

The criteria used is to evaluate the resulting three dimensional mod­
els according to different geometric properties. For example, one geometric
property of a sphere is that each polygon on the sphere has a unique sur­
face normal, a unique vector representing the direction that the polygon is
facing. Therefore one fitness criteria which models that geometric property
of a sphere, would be to evaluate the building model based on the quantity
of unique surface normals present. In this case, the higher the number of
unique surface normals the building has, the closer it becomes to match­
ing that property of a sphere. Other constraints can be specified such that
the desired square footage or volume of the building is to lay withing the
footprint of the lot which the building is meant to be constructed on.

When the evolutionary program is instructed to evolve the building ac­
cording to its specified geometric criteria, the evolutionary process searches
though the solution space in its mission to find a close match. With such a
vast solution space of potential 3D models, the evolutionary program could
take a great amount of time before it is able to find acceptable matches
to the specified criteria. Search can be made more effective by introduc­
ing constraints that represent desired features. In order to limit the size of
the solution space, and therefore reduce the amount of computation needed,
specific features such as the height of the building can be encoded within
the starting grammar. This prevents the genetic program from unnecessary
search through irrelevant designs.

The spectrum of results which can be obtained by specifying different
shape criteria can be specific and well-defined, or vague and open-ended. For
example, by specifying criteria such that the resulting building surface must
contain 95% unique surface normals, as well as being exactly 500 units tall

CHAPTER 1. INTRODUCTION 5

and fill a square footprint 75 units wide, would over-specify the criteria and
limit the amount of possible results. However, it is possible to under specify
the criteria. For example, by only specifying the criteria to maximize the
amount of unique surface normals, the resulting buildings could consume
vast areas and be wildly unstructured. Therefore a good balance of criteria
is needed to create desired buildings with a healthy amount of diversity.

1.3 Overview of the Thesis

In the next section, background information on architectural design, shape
grammars, genetic programming and the City Engine program are covered. In
Chapter 3 the created system is explained in detail, explaining the function­
ality and structure of the program and how it interacts with the commercial
tool, CityEngine. Chapter 4 explains and and shows a set of basic experi­
ments and their results which ran on the system using simple shape criteria,
where Chapter 5 and 6 show a more advanced series of experiments and their
results which involve shape matching. Chapter 7 follows up with a discussion
on the results followed by the conclusion.

Chapter 2

Background

2.1 Genetic Programming

Genetic Programming (GP) is a form of evolutionary computation which
attempts to solve problems by evolving computer programs or expressions.
It does this by encoding possible solutions into tree-like structures which the
GP then executes and evaluates according to fitness criteria [20, 21, 30].

2.1.1 Tree Structure

Each possible solution is represented within the GP as a tree-structure. A
benefit to GP over other forms of evolutionary computation is that the tree
structures have a variable length as opposed to a fixed length. This means
that the GP has the freedom to evolve large individuals. However, to prevent
the individuals from growing beyond useful and reasonable proportions, a
maximum depth is often specified into the system.

Within the tree structure, there are terminal nodes and non-terminal
nodes. Since the tree structure created is a possible solution to the problem,
the GP will execute that tree as if it were a computer program in which ter­
minal nodes represent variables and non-terminal nodes represent decisions
or functions within the program. For example, if looking at a simple math
function such as 1 + 2, the addition is be a non-terminal node as it is a
function, and it would have two branches leading to terminal nodes, which
are the two values in the equation.

6

CHAPTER 2. BACKGROUND

Cr~tl;!: 1Ii)l itritlal
papulation ..

Ev~uate*h.
Il')di:vidual .

no

Figure 2.1: The structure and program flow of genetic programming.

2.1.2 The Genetic Program Algorithm

7

A genetic program operates similarly to that of genetic algorithms, as shown
in Figure 2.1. The GP creates an initial population, evaluates the individuals,
then selects and reproduces individuals to create a new generation. This
process is repeated until a termination criteria has been met. Termination
can occur after a particular amount of generations have been evaluated, or
when a target fitness value has been observed.

2.1.3 Reproduction Operators

Crossover takes two individuals and swaps portions of their tree structure
with each other. It does that by selecting a random node within each indi­
vidual, and then simply exchanging the subtrees rooted at those nodes. If
an error arises such that one of the resulting new trees exceeds a maximum
depth constraint, the GP will attempt to select new nodes and try again.
The effects of crossover is shown in Figure 2.2.

It is important to note that only compatible nodes will be considered for
swapping. This is ensured due to the strong typing of the parameters. As
such, only parameters that are labeled as accepting integers, can be replaced
by an integer type. All parameters within the grammar are strongly typed
to ensure compatibility [24J.

CHAPTER 2. BACKGROUND 8

a)

b)

Figure 2.2: Image (a) shows the two parents which have been selected for
crossover, and their respective subtrees selected for crossover. Image (b)
shows the two parents and their resulting new trees after the crossover has
taken place.

CHAPTER 2. BACKGROUND 9

Mutation involves the alteration of a single subtree within the individual's
tree structure. The GP does this by selecting a node and replacing the subtree
rooted at that node with another randomly generated subtree of a compatible
type. Similar to crossover, if the mutation operator creates an invalid tree,
the GP will attempt to try another mutation on the same individual.

Another reproduction parameter which can be introduced to a GP is
known as elitism. This reproduction operator selects k individuals which are
the most-fit of the entire population, and copies them unaltered into the next
generation.

2.1.4 Evaluation and Selection Methods

For every problem a GP is attempting to solve there needs to be a function
which specifies one or more defined goals. This function evaluates each indi­
vidual within the population and assigns them numerical values representing
how well that individual accomplished one or more of the defined goals. This
evaluation method is known as a fitness function, and the numerical values
that are returned are known as fitness scores. After each individual within
the population have been evaluated, the GP tends to select the fitter indi­
viduals for reproduction.

Many different selection methods can be used for the G P to determine
which individuals are chosen for reproduction. The fitness selection method
used in this study is tournament selection. Tournament selection selects k
random individuals within the population (where k is the size of the tourna­
ment) and compares all selected individuals to determine which one of the k
individuals has the best fitness score. The best fit individual is then selected
for reproduction.

During the run of a GP, the individuals within the generations may tend
to converge towards one common suboptimal solution. When this occurs,
evolution becomes difficult since the individuals start to become identical,
making crossover less effective. In order to help preserve a unique popula­
tion, a penalty can be added to the individuals which have identical fitness
scores. This penalty makes the identical individuals less favorable to the
fitness selection method and is known as a diversity penalty.

CHAPTER 2. BACKGROUND 10

2.1.5 Multi-Objective Fitness Evaluation Methods

When solving a problem, there can exist many different goals or objectives in
which the user wishes to consider. Many of these goals may conflict with one
another. This happens in many cases where having a high value in one fitness
would result in a lower value in another fitness. There are many different
methods of evaluating multi-objective problems [6, 9].

One method to tackle multiple objectives is to combine the scores of
each fitness criteria into one numerical value which represents the individuals
fitness. In addition to simply summing the different fitness scores, weights
are generally added to each fitness. By adding weights, the user can manually
determine which of the multiple goals are more important. The formula for
weighted sum is:

fitness = II * WI + h * W2 + ... + fn * Wn

where f represents one fitness score, and W represents a weight
value.

This recasts the problem into a single objective problem, that of optimiz­
ing fitness. The disadvantage of using this method is that the chosen weights
will have a drastic effect on the final results generated by the GP. Weights
can greatly bias the GP into favoring solutions which optimize those fitness
score while ignoring the other criteria.

Another multi-objective evaluation method is known as Pareto ranking.
Pareto ranking keeps the multiple fitness scores separate, as opposed to sum­
ming them together. It uses the notion of dominance to compare the fitness
scores between individuals within the population. One individual is said to
dominate another individual, if the first is not inferior to the second indi­
vidual in all fitness goals, and there is be at least one fitness which is better
[30].

The formula for Pareto dominance is as follows.

A dominates B =* (Vobjfobj(A) ::; fobj(B)) !\(3objfobjA < fobjB)

Where

fObj = Fitness Objective

A, B = Individuals within the population

CHAPTER 2. BACKGROUND 11

Therefore, all the undominated individuals in the population are given a
rank of 1. The rest of the population is then compared until the next optimal
is found and given a rank of 2. This process is repeated until every individual
within the population has been evaluated and compared.

Pareto ranking creates a sets of individuals which are not dominated by
any others. A disadvantage to Pareto ranking is that it ceases to be effective
when the number of fitness criteria exceed five dimensions [3].

Another multiple objective evaluation method is known as summed rank
[3]. Similar to Pareto, summed rank keeps all the fitness scores separate.
Each rank is evaluated separately on an objective basis. Summed rank ranks
an individual based on its fitness score in relation to all individuals fitness
scores of the same criteria. Once an individual has a rank for each fitness
score, the ranks are summed together to create one fitness score for the
individual.

Given fitnesses for a k-objective problem:

Each fitness fi has its rank Ti determined by

[TI' T2, ... ,Tk] (1 ::; Ti ::; N), N = populationSize,

Then the summed rank is:

k
fitness = E Ti

i=l

A variation is to normalize each rank before summation, for example
[~ , ~, ... , ft] where ~ is the maximum rank in that objective. By normal­
izing the ranks before summation, any criteria which tends to obtain higher
or lower values is equalized, creating a vector of unbiased raw fitness scores.

Table 2.1 shows a summary of how Pareto, summed rank, and normalized
summed rank, rank the individuals within a population.

2.2 Grammars and Design

There are many factors an architect needs to consider when designing a
building. This is due to the fact that every building is designed to accomplish

CHAPTER 2. BACKGROUND 12

Table 2.1: Example Fitness Vectors

Fitness Vector Pareto Rank Vector Sum Rank Norm. Sum Rank

(1,9,5,4) 1 (2,1,2,2) 7 1 1.47 1

(2,100,4,8) 1 (3,2,1,3) 9 2 2.03 2

(10,9,9,10) 2 (4,1,4,4) 13 4 2.6 5

(16,100,8,4) 2 (5,2,3,2) 12 3 2.56 4

(16,9,500,0) 1 (5,1,5,1) 12 3 2.37 3

(0,999,999,999) 1 (1,3,6,5) 15 5 3.2 6

specific goals. Many of these goals can revolve around space, function, and
form [5].

An important factor in the design of a building could be to maximize
the space allocated for the building [5]. Often a plot of land is purchased
and one of the tasks presented to an architect is to maximize the building to
the size of the lot. This can be due to the fact that the building in design
is meant to be a storage facility, where every additional square foot would
mean additional profit.

Function refers to constructing the building such that it is able to accom­
plish its task [5]. For example, if the building in design is meant to function
as a large office building where each floor is to be rented as a separate office.
The value of an office would be its allocated floorspace represented by square
feet. Therefore an office with 5000 square feet is more valuable then an office
with 500 square feet. Moreover, the more floors the building has, the more
offices can be sold.

Form is an exclusive term which has many different meanings. One par­
ticular meaning is that form can refer to the external recognizable appearance
of objects. For example, certain objects can be identified as being a chair due
to certain physical properties [5]. Certain building designs could benefit from
having a complex form. One example could be of an architect designing a
building which is meant to represent the wealth of a particular financial cor­
poration: the final design would require a high level of complexity to achieve
the correct form. Aspects that could make a design complex are things such
as offset levels, spiral and circular designs, and multi-tiered sections. In this
research, form is the main criteria with space also of consideration.

CHAPTER 2. BACKGROUND 13

Grammars can be used in various ways, and formally introduced by Stiny
[34]. They can describe the rules of spoken languages [7], model biological
development [32], encode the structure of fractal images [31], buildings [29],
household furniture [14], and more. Grammars are a method in which one
can encode and model representations of many kinds.

Shape grammars are a generative grammatical re-writing series of rules
which contain terminal symbols, non-terminal symbols, a series of production
rules containing terminal and non-terminal symbols, as well as start symbol
[27]. One definition of a simple shape grammar is the following.

• 8, a finite set of shapes

• L, a finite set of symbols or labels

• R, a finite set of shape rules having the form a ---+ j3, where a is a
labelled shape in the set (8, L)+ , and j3 is in the set (8, L)*

• I the initial, nonempty labelled shape.

One popular method of creating interesting forms of architecture and
other types of designs, is to create a grammar which describes the model of
a two or three dimensional object. This particular type of grammar is called
a shape grammar. It works by encoding a series of alterations in which an
initial shape undergoes [11, 34]. The rules within the grammar can specify
shape altering operations such as shape replacements, translations, rotations,
scaling, repeating, adding shapes and moving shapes. Once the grammar
is defined, it is executed sequentially and the actions specified within the
grammar are performed on the shape. In the case of architectural design, the
resulting three dimensional models represent buildings. Shape grammars can
be extended into three dimensions by performing shape altering operations on
three dimensional objects. When dealing with this level of shape grammars,
shape altering operations such as splitting and extruding the model can be
used along with standard three dimensional transformation operators such
as translate, scale and rotate.

The benefit of using a grammar to encode the growth of a building is
due to the fact that individual aspects of the building can be developed and
reused multiple times during its construction. For example, a set of rules can
be made which describe the structure of a floor within a building. This set

CHAPTER 2. BACKGROUND 14

of rules can be called multiple times to create multiple floors of the same or
similar design, saving the designer from having to create each floor explicitly.

One problem with using grammars for design is that they can be difficult
and time-consuming to learn, create and modify. A minor change to any
aspect of the grammar can create major differences in the resulting object.
A second problem is that grammars have the ability to produce noteworthy
results when detailed and complex. This is due to the fact that the language
available to a grammar, as well as the multitude of production rules, can all
be intertwined in a substantial amount of ways.

Some previous work exploring the use of shape grammars for design are
as follows. A visually guided shape grammar system was designed by Tapia
to let the user specify the grammar, while the system displays the results,
giving the user an interface to explore the designs from the specified lan­
guage [37]. The designer specifies an initial shape on a two dimensional grid
and at least one production rule prior to getting, exploring, and refining the
grammar. A system by Stiny creates objects from blocks based on spatial re­
lationships, using hand-coded shape grammars to extrude, split, add blocks,
remove blocks, and other basic commands [35]. In another study, Stiny uses
shape grammars to create canvas paintings through the use of commands
such as location, rotation and scale. This is done based on an informal
principle that a painting can be explained by consisting of two dimensional
shapes [36]. O'Neill used L-Systems, a specialized form of shape grammars,
to evolve logo designs [26].

2.3 CityEngine

Buildings of high visual quality and geometric detail were created using shape
grammars for the procedural modeling of CG architecture. The system,
CityEngine, uses context-sensitive shape rules which allows the user to spec­
ify interactions between the different entities of the shapes present within
the structure. Cities such as Pompeii have been virtually recreated using
this program and method [25]. An example is shown in Figure 2.3.

CityEngine is a program which generates models of cities. It is capable
of creating a city from the ground up through the use of grammars to create
a roadwork [29], and shape grammars to model buildings [25], resulting in
the creation of detailed three dimensional models. City Engine is a well­
developed and tested product. It provides a reliable method of creating

CHAPTER 2. BACKGROUND 15

Figure 2.3: A complete cityscape created entirely from within CityEngine.
The cityscape is made to resemble the ancient city of Pompeii.

CHAPTER 2. BACKGROUND 16

and exporting detailed three dimensional building models. It differs from
conventional modeling software due to the fact that it does not have manual
model editing tools that would be found in other modeling programs such
as 3D Studio Max [2] or Blender [10]. Its focus is on creating building
architecture specifically through its built-in shape grammar system.

CityEngine's shape grammar has built-in automatic error correction, graph­
ics rendering, model exporting, and texture importing [16]. CityEngine is ca­
pable of exporting the resulting three dimensional model created from a shape
grammar in various formats such as Collada [1] (XML format), Autodesk,
Renderman, and others. In addition to exporting the model, CityEngine
has a custom reporting tool which exports valuable information about the
building such as floor space, land-use, floor height, and more. An additional
aspect which makes CityEngine powerful is its python scripting interface,
which allows users to create their own custom tools and helper methods.

An example three dimensional shape grammar is as follows.

Rules: Start, RuleA

Functions: Extrude(n) , Rotate(x, y, z),

Split(axis){n: command}[*optional repeat]

Axiom: Start -+ Extrude(10) Split(z){5 : RuleA}*

PI: RuleA -+ Rotate (45,0,0)

The example works by first extruding the initial shape as seen in Figure 2.4a
(in this case the initial shape is the size of the lot), then splitting the model
along it's z-axis into objects 5 units wide. On each of those sub-objects, the
second rule is applied which rotates each sub-object 45 degrees along the
objects x-axis. The final result is seen in Figure 2.4b.

Like other modeling programs, the disadvantage of using CityEngine's
detailed shape grammar language and system is that the modeling process
can be time-consuming [16]. In order to create a grammar, it would have to
be coded and executed many times in a trail-and-error fashion, to see the
progress of the building. Moreover, as mentioned above, any little change in
the grammar has the possibility to create wild deviations in the final prod­
uct. In addition it can be difficult for a user to imagine what the grammar
would need to be in the first place. If the user has a building in mind which
they would like to create via a shape grammar, they would need to dissect

CHAPTER 2. BACKGROUND 17

Figure 2.4: Image (a) is the model after the initial extrude. Image (b) is the
completed model after the split and rotate commands.

the image into many small parts in an attempt to reverse-engineer the struc­
ture, and consider which combination of the vast amount of shape grammar
functions would be needed create the model.

Shape grammars are a tested method which one can use to model and
create various designs. Since developing detailed grammars to accomplish
a specific goal can be time-consuming and tedious, many developers have
used genetic programs to help them create their desired grammars. Due to
the nature of artificial intelligence, many different areas of the vast solution
space are explored in ways that a human might not have initially thought of,
returning results which can be intriguing and unique.

2.4 Shape Grammars and Evolutionary De-
• sIgn

There are two main forms of evolutionary design. One form are interactive
design systems which require the user to guide the system along its evolu­
tionary path. The user can make personal judgment calls and assign fitness
scores to individuals within the population. As such, the amount of individ­
uals in which the system can generate is often limited to prevent the user
from being overloaded with work. Also, the number of generations that the
evolution evolves is also often reduced. The second form of evolutionary
design systems are fully automated ones. These systems require no user in""
tervention during the evolution stages. The user must correctly identify the
goals to the evolution and rely on the evolution to return appropriate results.

CHAPTER 2. BACKGROUND 18

One advantage of fully automated systems is that the evolution can bene­
fit from having more individuals in the population, as well as having more
generations.

Previous work involving an evolutionary approach to generating gram­
mars are as follows.

Machado et al designed a graph-based evolutionary system to evolve
grammars [23]. The system uses crossover and mutation operators to au­
tomatically evolve context-free grammars which design 2D artwork.

Gero et al make use of shape grammars with an automated genetic algo­
rithm [11]. The system learns grammars which produce topologies of a beam
section. Two areas of fitness are maximizing the moment of inertia of the
beam section and minimizing the perimeter.

Gero and Sosa created an automated evolutionary system that is used for
the design of automotive instrument panels that display situational informa­
tion which adapt to traffic conditions and driving actions [12]. The fitness
function uses a heuristic for "good design" principles that evaluates aspects
such as layouts, use of text, and animations as well as evaluates the design
in use of normal driving conditions as well as in emergency situations.

Shape grammars are used with grammatical genetic programming for
application in automated evolutionary design in two dimensions from O'Neill
et al [28]. A target two dimensional shape is given to the evolutionary system
in hopes that the system can recreate the shape by creating an appropriate
shape grammar consisting of basic functions.

Soddu used evolutionary software and shape grammars to evolve scenarios
of possible medieval Italian architectural environments, using human-guided
subjective and creative interpretation to guide the system to its final result
[33]. The results created full three dimensional models of the buildings to
represent a re-creation of the medieval time period.

Jackson evolves 2D L-systems, a specialized form of grammars, through
genetic programming with a multi-objective fitness, a co-evolution fitness,
and an interactive human-guided approach to creating building architecture
[17]. In one example, two human subjects controlled the course of an evolu­
tionary run creating an L-system. Both users were presented with identical
starting L-systems containing 10 two dimensional line drawings. They were
asked to select two designs which had the most architectural configurations
after seeing each member for only five seconds. This was done for 10 gen­
erations and two drastically different architectural designs were reached. In
other experiments, fitness evaluation based on spatial configurations evolved

CHAPTER 2. BACKGROUND 19

two dimensional building architecture.
Evolutionary algorithms in this study by Buelow are used to aid designers

of architectural structures [4]. The system was designed to evolve trusses
which are structurally optimal for withstanding loads. The system allows
the designer to guide the evolution, giving the designer the ability to set
preferences to individuals within the population.

O'Neill et al presents a design tool that uses shape grammars and an
interactive evolutionary computation to construct three dimensional archi­
tectures which represent possible shelters [27]. This tool was implemented as
a plug-in for Blender modeling software and has the models evaluated based
on user preference, symmetry and weight.

Hornby creates a system which uses L-systems and automated genetic
algorithms to evolve three dimensional table designs [14]. The fitness used
in this system considers balance, height, surface area, and the amount of
material needed to create the design.

Hemberg et al created an interactive design tool known as Gem8, which
is based on concepts from artificial life and evolutionary computation in­
spired by the growth of plants [13]. Gem8 was used to develop six different
architectural projects: exploring double-curved self-intersecting surfaces, de­
signing a pneumatic strawberry bar for an event, creating fibrous surfaces,
creating surface envelopes which represent inhabitable spaces, and designing
an environment though nested cubes.

Jacob et al created a nature-inspired genetic program called Inspirica
[18, 19]. Inspirica uses interactive evolutionary breeding to create virtual
sculptures and furniture designs though implicit surface modeling. Models
such as containers have been developed using storage volume as a fitness,
and other models such as chairs have also been created when evolving a base
model. Flowers and plants have also been evolved though the same system
and the use of L-systems.

Chapter 3

System Details

3.1 Architecture

The genetic programming system that met all the requirements for this
research is RobGP. RobGP is an object-based genetic programming sys­
tem made in C++ [8]. It can adeptly handle automatically defined func­
tions (ADFs) as well as multi-object fitness evaluations, while maintaining a
highly-customizable system.

Figure 3.1 shows an overview of the system architecture created using
RobGP. The system uses GP to first create an initial population of complete
grammars in the format CityEngine requires. As the GP creates each indi­
vidual, it saves the grammar to the hard disk in the workspace folder which
contains the current CityEngine project. Once the file is created and saved,
the GP sends a command to CityEngine through a shared UDP port, notify-

City-Engine

[~ l
GP

Create
Grammar

§)

[~;·l

Solutions

Figure 3.1: Program flow and architecture between the GP system and
CityEngine.

20

CHAPTER 3. SYSTEM DETAILS 21

ing CityEngine that the grammar is ready for use. The communication and
UDP port connection is accomplished via a python script running within
CityEngine. After the ready command is sent to CityEngine, CityEngine
imports the grammar file into the current running project.

With the grammar now in CityEngine, it is executed to create the result­
ing building. Then the building model is exported back into the directory as
a Collada model file [1]. Once the model file has been exported, CityEngine
sends a command back to the GP through the UDP port, notifying the GP
that the model is ready for evaluation. At this point, the GP reads in the
model file, which is formatted in XML, and evaluates the structure of the
model based on the provided fitness criteria. After that individual has been
evaluated, the GP moves onto the next individual, repeating the same pro­
cess.

3.2 Grammar

A genetic program lends itself perfectly to the creation of shape grammars
since a shape grammar requires a language, an axiom, and a series of pro­
duction rules. In this system, the production rules needed in the grammar
are represented within the GP tree as ADFs, and the language is provided
to the GP as a set of possible commands and terminals. Desired dimensions
can be hard-corded to initialize specific values via assignment statements
within the grammar. For example, if the building in design is meant to
be a skyscraper, defining a high initial height can provide better results as
as well reduce the search space. Since the grammar execution is handled
entirely by CityEngine, the formatting of the language and assignment vari­
ables as well as their respective inputs must match the required structure set
by CityEngine.

During the grammar creation, it is possible for the GP to create erroneous
grammars or a series of commands which essentially do not accomplish any­
thing. For example, the GP can place a series of size commands in a single
rule in a sequence, in this case each new size command overrides the previ­
ous one. Another example is that an object can be created that is 100 units
long, and following that a split command can state to divide that object
into pieces 30 units long. The problem is that the object cannot be evenly
divided into units of 30. CityEngine has built-in error checking and correc­
tion made to handle these common problems. In this case, the 100 unit long

CHAPTER 3. SYSTEM DETAILS 22

object will be divided up into three sub-objects 30 units long, and one sub­
object 10 units long. CityEngine handles these and other errors gracefully
without crashing or stopping the model file from being created. Further­
more, GP can generate a grammar, filling many different production rules
with detailed commands, and then not reference any of those production
rules in the grammar. For example, the GP can create a production such
as R ---t extrude(50) split(x){5 : rotate(O, 45, On though never have another
production rule call it.

Although it is possible to program the GP to prevent these and other
types of errors from happening, it would require a significant amount of post­
computation, where the grammar file would need to be checked for a wide
multitude of possible errors and bloat, then recreated and rechecked until the
grammar file is finally error free. This would greatly increase the run time
of the program. Instead, the GP leaves the error handling to CityEngine.

The functions and commands are shown and explained below. The lan­
guage primitives shown are a subset of CityEngine's shape grammar [16].

extrude(height): Extrudes the shape via a given value. Each face polygon
of all the meshes in the geometry are taken and extruded along the face
normal. This command accepts any integer value.

split [axis]{ size: operation(s)}[*, optional repeat]: The split command works
by splitting an object along a given axis and creating sub-objects. Each
time a size value is specified, one or more operations must also be speci­
fied. Once the split command divides an object, the specified operations
run on that newly created sub-object. The operations can be any com­
mand available to the language, including production rule references
and nesting split commands. An optional asterisk can be added at
the end of the split command. This informs CityEngine to repeat the
entire split command until no additional sub-objects can be created.
This thesis allows the split command to occur on the specified axis.
The size terminal can be any integer value.

r(x, y, z): This rotate operation rotates the current shape within the con­
straints x = z = 0; 0 ~ y ::; 360 such that (x, y, z) are integer values
and represents degrees along the specified axises. This research only
allows rotations along the y-axis.

r(x, y * split.index/ split.total, z): This rotate operation differs from the stan­
dard rotation such that it splits the target object up along the y-axis

CHAPTER 3. SYSTEM DETAILS 23

when coupled with the split command. When this rotate command is
used inside of the split command, the model is split into slices, and each
slice is rotated along a central pivot point, creating something similar
to a winding staircase.

r(scopeCenter,x,y * split.index/split.total,z): This rotate is similar to the
previous rotation operator such that when coupled with a split com­
mand, the object is divided along the y-axis where each slice is rotated
along the central point of the object.

s('x,' y,' z): The size operation alters the size of the object relative to the
given value. The values given to the operation are floats (x, y, z) within
the constraints: 0 2: x, y, z ::; 2. For example, s('0.5,' 1.5,' 0) would
decrease the size in the x-axis by half, and increase the size in the
y-axis by 1.5 times.

i(object): Reads in a geometry asset (3D model, polygon mesh) from a file
and inserts it into the scope of the current shape and given a bounding
box. An inserted file can be split and extruded along the model's faces
as well as have all other operations executed on it. The input used
in this study provide the grammar with a model of a low-polygonal
sphere.

[and]: The "[" operation pushes the current shape onto the top of the
shape stack. It is matched by a succeeding "]" operation, which pops
the shape on top of the shape stack and deletes the shape.

baseH eight: This is a custom defined terminal within the language. This
terminal is an integer, encoded into the grammar, that defines the
initial starting height of the model. This terminal can also be used
within the grammar command which accepts integer values.

3.3 Genetic Programming Parameters

Table 3.1 summarizes the different parameters and their values used within
the GP. The genetic program runs for 60 generations after the initial popula­
tion is created, where each generation has a population size of 300 individuals.
The individuals are pitted against each other using a tournament selection

CHAPTER 3. SYSTEM DETAILS 24

method with a size of three. Each generation allows for approximately one in­
dividual, representing the elite of the generation, to be copied over unaltered
into the next generation.

Table 3.1: Common GP Parameters

Parameter Value

Crossover Rate 0.90

Mutation Rate 0.08

Elite Rate 0.02

ADFs 7

Generations 30 or 60

Population Size 300

Tournament Size of 3

Fitness Summed rank

Initial Tree Method Grow

Diversity Penality 20

The GP is forced to make seven automatically defined functions (ADFs)
for each individual. An ADF is an evolved portion of reusable code, which
provides the GP with components that can be used multiple times in the
evolved program tree [22]. This is similar to how production rules are refer­
enced multiple times within a grammar. In order to simulate this, each ADF
within the GP represents one production rule within the grammar. This al­
low each production rule to evolve as its own unit, yet still able to reference
other production rules.

Early program runs initially allowed for 15 ADFs, however this proved
difficult for the GP to evolve due to the high number of production rules
it was forced to work with. Too many ADFs meant that the GP did not
make use of them all, by creating many unreferenced production rules, as as
well as leaving many of the production rules un-evolved. With fewer then
seven ADFs, the GP often bloated one production rule with a very long
chain of commands. One concern with extremely long production rules is
that they tend to be mainly bloat. The advantage of grammars is the ability
to reference multiple production rules several times within the grammar [15],

CHAPTER 3. SYSTEM DETAILS 25

where just using one series of commands is more of a procedural encoding.

3.4 Fitness Evaluation

After CityEngine has exported the building in the Collada format the genetic
program reads it in to assess the output for its fitness evaluation. The fitness
evaluations require an inspection of the exported model. In this case, the
exported model is formatted in the Collada standard and can easily be read
in and evaluated due to the fact that Collada is a well-documented, open
source model file, which is formatted in XML [1].

The model file is read in and parsed using the built-in parser native to
RobGP. The XML file provides a series of lists: a list of vertices's, a list of
polygon normals, and a list of which vertices's and normals belong to which
polygon. The GP compiles the lists together and forms each polygon into a
separate polygonal object which contains the vertices's of the polygon as well
as its surface normal vector. The fitness then reads through and evaluates
the polygons depending on the provided criteria, assigning the individual
with the appropriate fitness scores.

In order to help keep the populations from grouping up and creating
multiple copies of the same building, a diversity penalty is used. When two
individuals have an identical score, one of the individuals is given a penalty
of 20 points, making it less favorable of a solution. The formula for diversity
is as follows.

fitness = rank + diversity Factor * identicalIndividuals

Chapter 4

Experiments: Basic

4.1 Height Matching to a Targeted Value

4.1.1 Experiment Setup and Parameters

The goal of this experiment is to achieve buildings which reach a target
height. Table 4.1 displays the specific parameters used in this experiment.
The model began with a unit height of 150 and the target height was 1500
units. The overall goal is to try a simple experiment with a single objective
goal. See table 3.1 for other parameters used.

Table 4.1: Parameters - Height Matching to a Targeted Value

Parameter Value

Targeted Height 1500

Initial Height 150

Generations 30

Tournament Size of 3

Elites 1

4.1.2 Results

The following table, Table 4.2 summarizes all 10 runs of the experiment with
the best result discovered by each. Figure 4.1 shows the performance graph

26

CHAPTER 4. EXPERIMENTS: BASIC 27

of the evolution, averaged over all 10 runs.

Table 4.2: Results - Height Matching to a Targeted Value

Final Best Final Pop. A vg.

Run No Height Distance Height Distance

1 1449.0133 1280.48

2 1411.9368 1220.116

3 1500 1325.07

4 1491.12219 1305.476

5 1493.16174 1224.703

6 1466.9489 1257.986

7 295.51 278.14

8 1471.2106 1084.256

9 1484.4126 1306.049

10 1422.6489 1114.046

Average 1348.5965 1139.6322

Target 1500

The target height experiment successfully grew the buildings to an aver­
age height of approximately 1350 units. The trend apparent in the results is
that the buildings are generally thin and tall, with low polygon counts. This
is due to the fact that the model does not need many polygons to create
a taller building, as the grammar accomplishes height by stretching shapes
along the y-axis, as seen in Figure 4.3. Table 4.3 shows the grammar that
created the model in Figure 4.3.

Figure 4.2 (a) is the building with the highest fitness, a score of 1500.
That model perfectly matches the target height, as requested by the fitness.
It is interesting to note that the model achieves its height through the use of a
rotation set along a fixed pivot point, as opposed to stretching a shape along
the y-axis. The model in Figure 4.2 (b) is the building with the lowest fitness
score, a height value of only 295.51. This model however does not represent
the average results, though represents an outlier among the results.

CHAPTER 4. EXPERIMENTS: BASIC 28

a)
Average Generation Average

1200
Height --

1100

1000

900

800

II) 700
II)
CD

~ 600

500

400

300

200

100
0 5 10 15 20 25 30

Generations

b)
Average Best of Generation Average

1400
Hel

1200

1000

II)

'" ,§ 800
u.

600

400

200
0 5 10 15 20 25 30

Generations

Figure 4.1: Image (a) shows the performance graph of the targeted height
experiment. This graph shows the average population generation averaged
over all 10 runs. Image (b) shows the average best of generation result though
out the experiment.

CHAPTER 4. EXPERIMENTS: BASIC 29

a) b)

Figure 4.2: The model in image (a) is from the 3rd run of the height ex­
periment, in which the target model height was 1500 units. This model is
the highest ranked building, with a height of exactly 1500. Contrasting the
best result, image (b) shows a different model with the worst fitness score, a
height of only 295.52.

CHAPTER 4. EXPERIMENTS: BASIC 30

a) , b)

Figure 4.3: This model is from the 6th run of the height experiment and
has a height of 1466.9489 and displays interesting patterns. Image (a) is the
entire view of the tower, and image (b) is a closeup detailed view.

CHAPTER 4. EXPERIMENTS: BASIC

Table 4.3: Grammar for tower in Figure 4.2

predefined variables
attr baseHeight = 150

generated grammar
Lot -->

extrude (baseHeight) [RuleC RuleE RuleC split(x){
11 : [RuleF] }*] extrude(55) s('0.352752,
'1.95444, '0.780092) [s('0.452398, '1 . 97907, '0.126987)
[RuleC] RuleC] RuleC

RuleA --> s('0.356402, '1.60921, '1.60921)

RuleB --> r(O, 190*split . index/split.total, 0)

RuleC --> s('0.00877033, '1.07162, '0.676101)

RuleD --> RuleA

RuleE --> RuleD

RuleF -->
s('0.744515, '1.8519, '0.542972) s('0.744515, '1.8519,
'0.542972) RuleC RuleE RuleE RuleB RuleE s('1.8519, '1.8519,
'0.542972) RuleB RuleE RuleE

unused rules
RuleG --> RuleE

4.2 Maximizing Unique Normals

4.2.1 Experiment Setup and Parameters

31

Every surface, or polygon, in the building has a surface vector, also known
as a surface normal. These vectors point out in a direction perpendicular to
the polygon which represent the direction that the front face of the polygon
is facing. In this experiment, evolution attempts to maximize the number
of unique surface normals found in the building model. Table 4.4 shows the
parameters used in this experiment.

4.2.2 Results

Table 4.5 shows the best results of all 10 runs, and Figure 4.4 contains the
performance graph of the evolution, averaged out over all 10 experimental
runs.

CHAPTER 4. EXPERIMENTS: BASIC

a)

b)

Average Generation Average

300.-----~----~------._----~------._----_.----~
Unique Nonnals ---

250

200

~ 150
u:

100

50

OL-____ ~ ____ ~ ______ ~ ____ ~ ______ L_ ____ _L ____ ~

o 2 4 6 8 10 12 14
Generations

Average Besl of Generalion Average

600r-----~----~------._----_.------._----_.----~
Unique Normals ---

500

400

ill
~ 300

200

100

OL-----~----~ ______ ~ ____ ~ ______ L_ ____ _L ____ ~

o 2 4 6 8 10 12 14
Generations

32

Figure 4.4: Image (a) shows the performance graph of the evolution of the
maximizing unique surface normals experiment. This graph displays the
average generation averaged over all 10 runs. Image (b) shows the average
best of generation result during aU 10 runs of the experiment.

CHAPTER 4. EXPERIMENTS: BASIC 33

a)

Figure 4.5: From the maximizing unique normals experiment, this model
displays the best fitness, having a unique normal count of 2412. Image (a) is
the building in its entirety, and image (b) is a detail view.

a) b)

Figure 4.6: Model (a) has 438 unique normals and model and is from the
fourth run (b) has 542 unique normals and is from the fifth run. Both models
show interesting aesthetic aspects.

CHAPTER 4. EXPERIMENTS: BASIC 34

Table 4.4: Parameters - Maximizing Unique Surface Normals

Parameter Value

Targeted Unique Normals Maximize

Initial Height 50

Generations 15

Tournament Size of 3

Elites 1

Table 4.5: Results - Maximizing Unique Normals

Final Best Final Pop. A vg.

Run No Unique Normals Unique Normals

1 2412 748.127

2 526 294.44

3 322 157.453

4 438 327.24

5 542 194.4

6 302 133.893

7 238 112.64

8 574 328.453

9 258 131.173

10 178 252.7499

Average 579 252.7499

The first thing to note about this experiment is that a minimal number of
generations were used. The previous experiment, height matching, allowed
for 30 generations, where this experiment only allows for 15 generations.
This is due to preliminary experiments that lead to the observation that the
higher the unique normals a model has, the greater the models polygon count.
Models with a high polygon count create a couple of problems, one problem
being increased memory consumption, and the second being greatly increased

CHAPTER 4. EXPERIMENTS: BASIC

Table 4.6: Grammar for tower in Figure 4.6 (b)

predefined variables
attr baseHeight = 50

generated grammar
Lot -->

extrude(baseHeight) RuleG r(O, 3, 0) RuleG r(O, 3, 0)
RuleG r(O, 3, 0) RuleG r(O, 3, 0) RuleG r(O, 3, 0)
RuleD RuleG r(O, 3, 0) RuleG r(O, 3, 0) RuleB RuleD

RuleA --> r(O, 147*split.index/split.total, 0)

RuleB --> r(scopeCenter, 0, 191*split.index/split . total, 0)

RuleC --> split(y){ 40 : RuleB }*

RuleD --> r(scopeCenter, 0, 330*split . index/split . total, 0)

RuleE -->
RuleA RuleC split(x){ 15 : [[r(scopeCenter, 0,
104*split.index/split.total, 0) RuleB split(y){ 48
RuleA } extrude(40) split(x){ baseHeight : [
RuleB RuleB split(y){ baseHeight : RuleB
s('O.390223, '0.872158, '1.99967) RuleC
split(y){ baseHeight : [extrude(24) r(O,
272*split.index/split.total, 0)] }* }*] }*
RuleB RuleA r(O, 114, 0) r(O, 85*split.index/split.total,
0) split(x){ baseHeight : RuleA }* RuleA] [RuleB]
s('O.527875, '0.518108, '0.578314) split(x){ 12 : r(O,
159*split.index/split .total, 0) }*] }* r(O,
132*split.index/split.total, 0)

RuleG --> [RuleE]

unused rules
RuleF --> RuleE

35

rendering times. Therefore, to keep the evolution terminating within a timely
fashion, the generations were reduced to 15.

The best result is shown in figure 4.5 and has 2412 unique normals. How­
ever, this model spans a massive area as well as contains 13,242 polygons.
This model as shown in detail in image (b) of Figure 4.5, displays little as­
cetic value as it contains many areas of densely tangled overlapping shapes.
However unappealing, it has achieved the greatest fitness score.

Taking a look at the two models in Figure 4.6, they both contain a good
number of normals yet display two different types of buildings. Image (a)
has 438 unique normals and is a taller building where image (b) has 542

CHAPTER 4. EXPERIMENTS: BASIC 36

unique normals and is a wider building. Moreover, both models display
similar circular properties. Table 4.6 shows the grammar which constructs
the building in Figure 4.6 (b).

4.3 Maximizing the Normal Distance

4.3.1 Experiment Setup and Parameters

This experiment attempts to maximize the sum of distance between nearest
surface normals. The fitness works by comparing each surface normal with
every other surface normal in the model to find the two normals which are
closest in distance. It then computes the distance between those two normals
and adds the distance score to the total. If two selected closest normals
are identical, then they are pointing in the same direction, and thus have
a distance of O. The formula to compute this is done by computing the
Euclidean distance and is as follows.

Given VI = (Xl, YI, Zl) and V2 = (X2' Y2, Z2)

Distance (VI, V2) = v'(XI - X2)2 + (YI - Y2)2 + (Xl - X2)2

The fitness is the sum of all nearest distance for all normals. The goal is to
maximize this sum. An example of a model with this property is the surface
of a sphere. Table 4.7 displays the parameters used in this experiment.

Table 4.7: Parameters - Maximizing the Normal Distance

Parameter Value

Targeted Normal Distance Maximize

Initial Height 50

Generations 30

Tournament Size of 3

Elites 1

CHAPTER 4. EXPERIMENTS: BASIC 37

4.3.2 Results

Figure 4.7 displays the average fitness for each generation, over the 10 ex­
perimental runs, showing the evolution of the measured criteria. Table 4.8
shows a summary of the top result of each run, as well as the average best of
all combined runs. Figure 4.9 shows the building model which demonstrates
the highest obtained fitness score over all 10 of the experiment runs, where
figure 4.8 shows a model, which may not have the optimal fitness score, yet is
particularly interesting to look at due to the curved structure of the model.

Table 4.8: Results - Maximizing the Normal Distance

Final Best Final Pop. avg.

Run No. Normal Distance Normal Distance

1 8.95127 8.79815

2 8.86564 8.8517

3 8.93419 8.91418

4 8.82203 8.75167

5 8.95128 8.89019

6 8.9051 8.79102

7 8.95132 8.82788

8 8.69248 8.65342

9 8.95128 8.90475

10 8.88675 8.87203

Average 8.8911 8.8254

This experiment was to maximize the distance between surface normals,
which would ideally create a curved surface such a sphere, or a spherical col­
umn, or several of them throughout. the model. However the genetic program
found it difficult to evolve as shown in figure 4.9. This might be due to the
fact that a cube provides a decent fitness score to this criteria since a cube
is essentially a simplified spherical column: in this case a cube is a column
with 6 unique high distance normals, where a spherical column would have a
high number of unique normals. Additionally, since the grammar begins by
creating a 50 unit by 50 unit cube, the genetic program had little drive to
evolve a larger structure. This may be due to the fact that any additional

CHAPTER 4. EXPERIMENTS: BASIC 38

a)
Average Generation Average

8.85
Normal Distance - -

8.8

8.75

8.7

.. 8.65
U) .,
.5 u:: 8.6

8.55

8.5

8.45

8.4
0 5 10 15 20 25 30

Generations

b)
Average Best of Generation Average

8.9
Normal Distance --

8.88

8.86

8.84

~
8.82

a
u.. 8.8

8.78

8.76

8.74

8.72
0 5 10 15 20 25 30

Generations

Figure 4.7: Image (a) shows the performance of the average generation, av­
eraged over all 10 runs, from the maximizing normal distance experiment.
Image (b) shows the performance graph for the average best result of each
generation.

CHAPTER 4. EXPERIMENTS: BASIC 39

Figure 4.8: This model shows a result which demonstrates how polygons
with a good normal distance can begin to take curved shapes. This result is
from the second run and has a score of 8.95127.

Figure 4.9: This model has the best fitness score over all ten runs, and was
found as the highest ranked result in the seventh run. This model has a score
of 8.95132.

CHAPTER 4. EXPERIMENTS: BASIC

Table 4.9: Grammar for model in Figure 4.8

predefined variables
attr baseHeight - 50

generated grammar
Lot --> extrude(baseHeight) RuleB

RuleA --> r(scopeCenter, 0, 225*split. index/split. total, 0)

RuleB -->
r(scopeCenter, 0, 52*split. index/split. total , 0)
[extrude(baseHeight) s('0.659809, '0.659809, '0.583543)
[r(O, 135, 0) RuleA split(y){ 56 : split(y){ 19 :
RuleA } }] split(x){ 17 : r(O,
4*split.index/split.total, 0) } r(scopeCenter, 0,
52*split.index/split.total, 0)]

unused rules
RuleC --> r(O, 90*split.index/split.total, 0)

RuleD -->
extrude(baseHeight) extrude(51) split(x){ 17 :
split(x){ 32 : extrude(57) } }* split(x){ baseHeight
: extrude(51) }* extrude(51) split(x){ 23 :
split(x){ 23 : r(scopeCenter, 0, 131*split.index/split.total,
0) } } split(x){ baseHeight : r(O, 104, 0) }*

RuleE --> extrude(35)

RuleF --> RuleE

RuleG --> RuleA

40

structure, unless rotated, would decrease the normal distance fitness score
since two normals facing the same direction has a distance of O. Figure 4.8
shows some aspects of having a high normal distance due to the repeating
structure offset by a rotation. The grammar which created this model is
found in Table 4.9.

Chapter 5

Experiments: Multi-Objective

5.1 Maximizing Unique Normals Using Spheres
while Keeping to a Boundary

5.1.1 Experiment Setup and Parameters

Maximizing the number of unique normals within a building model has the
possibility to create very interesting results, as shown in the previous exper­
iments. This experiment expands off of the other experiments by allowing
evolution to insert low-polygonal spheres into the model. The criteria for
this experiment is to maximize the number of unique normals in the model,
while constraining the model to a particular size as measured by the foun­
dation area of the footprint. As shown in the other experiments in Section
4.5, if there is no size constraint, the model can become a confusing massive
structure with little aesthetic value. Table 5.1 shows the parameters used
within this experiment.

In order to compute the boundary, the function takes the coordinates
of the extreme vertices's found on the model, and computes the distance
between those points. For example, if the model extends 100 units along
the positive x-axis, and 50 units along the negative x-axis, then the models
distance along the x-axis is 150 units. If the boundary limit imposed by the
fitness is 175 units along the x-axis, then the model is within the allowed
boundary by 25 units. The boundary is only computed in the x- and z­
axis, and total length that the model surpasses the boundaries are summed
together to get the final boundary score of the model. In the case of the

41

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 42

example provided, the boundary score is 0, meaning that the model is entirely
inside the boundary.

Table 5.1: Parameters - Maximizing Unique Normals Using Spheres while
Keeping to a Boundary

=============================
Parameter

Boundary Limit

Initial Height

Sphere Model

Generations

Tournament

Elites

Individual Ranking

Grammar Notes

5.1.2 Results

Value

150

50

144 polygons

60

Size of 3

1

Summed Rank

Allows for the
insert (sphere)
command

Figure 5.1 displays the average fitness for each generation, over the 10 differ­
ent experimental runs, showing the evolution of the unique normals and the
boundary. The higher the number of unique normals, the better the fitness
score, where the higher the boundary number, the more the model is out­
side of the boundary limits. Table 5.2 shows a summary of the top result of
each run, as well as the average. Figure 5.2 shows the building model which
demonstrates the highest obtained fitness score over all 10 of the experiment
runs, where figures 5.3 and 5.4 show models which demonstrate interesting
merit.

By reviewing figure 5.1, it is apparent that in order for the genetic pro­
gram to evolve structures which display a high count of unique normals, that
it needs to expand the overall size of the model. This is shown throughout
the generations as when the normal count increases, the amount of the build­
ing which remains inside of the boundaries decreases. As compared to the
other experiments which only allowed for cubes, the genetic program quickly

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE

a)

1000

900

800

700

600
., .,
Q)

500 .s
Ii:

400

300

200

100

0

b)

3500

3000

2500

2000 ., .,
CD
c:
ff:

1500

1000

500

0

0 10

0 10

20

Average Generation Average

30

Generations

40

Average Best of Generation Average

20 30

Generations

40

50

Unique Normals -­
Boundary -------

50

43

60

60

Figure 5.1: Image (a) shows the average fitness score evolution of each gen­
eration over the 10 experimental runs for the maximizing unique normals
experiment which allows for the inclusion of low-polygonal spheres. Image
(b) shows the average best result throughout the generations and all runs of
the experiment. Image (b) does not show the boundary curve as it's score is
constantly 0 for the best individual.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 44

b)

Figure 5.2: The model created from the grammar which returned the best
fitness score over all 10 experiment runs. The result shows two different
angles of the building which has 6240 unique normals.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 45

a)

b)

Figure 5.3: This model displays interesting symmetry. This model is the best
of the second experiment run and has 1330 unique normals. Image (a) and
(b) are two different views of the same model.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 46

Figure 5.4: A futuristic model which could possible represent a space-colony
or habitat. This model is the best of the sixth experiment run and has 4760
unique normals.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 47

Table 5.2: Results - Maximizing Unique Normals Using Spheres while Keep­
ing to a Boundary

I Final Best Final Pop. A vg.

Run No. Normals Boundary Normals Boundary

1 4184 0 380.367 1060.09

2 1330 0 261.693 777.927

3 2688 0 304.49 910.923

4 4485 0 400.023 418.577

5 1046 0 149.753 1208.65

6 4760 0 527.89 516.71

7 6240 0 844.297 975.31

8 3428 0 286.857 1510.82

9 3786 0 450.117 1369.99

10 950 0 199.023 270.5847

Average 3289.7 0 380.4510 270.5847

learns that spheres create the most number of unique normals, and begins
to heavily favor them instead of cubes. This appears like an simple choice
since a cube only contributes 6 normals, with only 4 of them unique, where
a sphere can contribute 144 unique normals.

Figure 5.2 shows the model with the best result out of all 10 runs of the
experiment. That model shows an excellent use of spheres as the genetic
program evolved spheres with different proportions and angles to create a
structure with a very high number of unique normals. Taking a deeper look
at the model, each of the four main sections have spheres which have been
compressed and layered on top of each other, as well as spheres compressed to
such an extent that they form column-like objects, or even elongated spikes.
Each one of the four structures have their own set of unique normals, and
when the structures are roughly duplicated at a different angles, each new
structure contributes their own set of unique normals to the overall fitness
score. The different angles of rotation is important, this is due to the fact
that if two spheres were beside each other and had an identical size, only
one of the spheres would have unique normals, as the second sphere would
have normals in the same direction as the first . However, by resizing and

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 48

compressing the sphere, it changes the normals along each polygon on the
sphere.

Another result as shown in Figure 5.3 deserves a highlighted focus due
to the symmetrical nature of the structure. This model shows an excellent
example of how encoding a model into a grammar can create aesthetically
pleasing results, due to the ability to reuse objects and components. In this
case, one object was created then duplicated 3 times along' a single pivot
point which was perched atop a cube.

A second noteworthy result is displayed in Figure 5.4, where the model
has a futuristic appeal to it. This model could represent a city encased
within a biosphere, where in each of the three main spheres hundreds of
levels could exist, each with its own network of streets and living space. The
heavily compressed outlying sphere could be used for many things such as
a landing pad, or perhaps a giant park which the futuristic inhabitants can
take leisurely strolls in, or perhaps vacation in.

5.2 Maximizing Unique Normals and Height
Matching: Random Search versus Evolu­
tion

5.2.1 Experiment Setup and Parameters

Since the results of the height matching and maximizing unique normals
experiments produced both interesting and accurate results, this experiment
was created to make use of both of those fitness criteria. This experiment
first used the summed rank method with a tournament selection of 3 with
1 elite, and then was ran a second time using a tournament selection of 1
and 0 elites, creating a random search environment. These two different
experiments are then compared. Table 5.3 shows the parameters used for
the experiment.

5.2.2 Results

Table 5.4 and Figure 5.5 show the results of the experiment using a tour­
nament size of 3. Table 5.5 and Figure 5.6 show the results with the same
fitness criteria ran using a tournament size of 1 and 0 elites to simulate

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 49

Table 5.3: Parameters - Maximizing Unique Normals and Height Matching

Parameter Value

Unique Normals Maximum

Initial Height 50

Target Height 750

Generations 60

Tournament Size of 3 and 1

Elites 1

Individual Ranking Summed Rank

random search.

Table 5.4: Results - Maximizing Unique Normals and Height Matching Using
a Tournament Size of 3

I Final Best Final Pop. A vg.

Run No Unique Height Unique Height
Normals Normals

1 218 135.893 40.4933 74.747

2 114 152.448 20.24 74.526

3 130 321.987 39.2 70.119

4 150 672.7477 38.0533 113.605

5 470 318.467 76.6133 119.587

6 247 164.464 39.1 87.837

7 510 345.109 67.93 104.782

8 150 99.172 32.0933 58.731

9 558 747.48663 42.6 151.747

10 710 168.071 69.6533 103.025

Average 325.7000 312.5845 46.5976 95.8706

As shown in the above results and tables, evolution trumps random
search. The final results of the evolution over all ten runs had an aver-

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE

a)

100

90

80

70

60
<IJ
<IJ .,

50 :2
LL

40 ------"

30

20

10

0
0

b)

350

300

250

200
<IJ
<IJ .,
:e
LL

150

100

50

0
0

" ,

10

10

20

Average Generation Average

30
Generations

40

Average Best of Generation Average

20 30
Generations

40

50

Unique Normals - ­
Height -------

r
/-----'

50

50

60

60

Figure 5.5: Image (a) is the average fitness score evolution of each generation
over the 10 experimental runs from the height matching and maximizing
normals experiment with a tournament size of 3. Image (b) is the average
best of generation.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE

a)

b)

Average Generation Average

55,-------,-------,-------,-------,-------,-------,
Unique Normals ---__ .

Heig!lt_=.--<-'--
50

45

40

35

25

20

15

10

.. ., -........ " .. ---------, ... --_ -

~----- -- --_ --_ .. -...

------ ... _--_ _-------------,,..-_ _-------

5~ ______ L_ ______ L_ ______ ~ ______ ~ ______ ~ ______ ~

o 10 20 30

Generations
40

Average Best of Generation Average

50 60

110r-------r-------r-------r-------r-------r------,

100

90

60

50

40

30

20

10L-______ L-______ L-______ L-______ L-______ L-____ ~

o 10 20 30

Generations
40 50 60

51

Figure 5.6: Image (a) shows the average fitness score evolution of each gener­
ation over the 10 experimental runs from the height matching and maximiz­
ing normals experiment with a tournament size of 1 and no elites, simulating
random search. Image (b) shows the average best of generation.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 52

Table 5.5: Results - Maximizing Unique Normals and Height Matching Using
Random Search

Final Best Final Pop. A vg.

Run No Unique Height Unique Height
Normals Normals

1 106 52.589 29.67 50.972

2 70 50 24.0133 51.179

3 54 98.826 15.5067 50.766

4 22 50 7.82667 45.411

5 26 86.011 13.3067 55.826

6 30 75.061 10.4 46.322

7 46 50 16.4667 47.257

8 10 192.945 7.45 66.201

9 34 95.826 13.76 51.023

10 10 84.648 8.46667 60.543

Average 40.8000 83.5906 14.6866 52.5500

Table 5.6: Results - Summary and T-Test Confidence Percentages

I Final Best A vg. Final Pop. Avg.

Unique Height Unique Height
Normals Normals

k=3 325.7 312.5845 46.5976 95.8706

k=l 40.8 83.5906 14.6866 52.55

Conf. 99.97 98.92 99.97 99.92

age unique normal count of 325.7 and an average height of 312.5845. When
looking at the results of the same experiment though with no evolution (ran­
dom search), the final results when averaged over all ten runs achieved a
score of 40.8 unique normals, and an average height of 83.5906.

When looking at the random search results, Figure 5.7 (a) shows the
model which has the highest count of 106 unique normals, however has a
height of only 52.589 units. When comparing that to the model from the

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 53

a) b)

Figure 5.7: These two different models display some of the best fitness scores
found throughout the ten runs of the maximizing normals, and height match­
ing though a random search experiment. Image (a) has 106 unique normals
and a height of 52.589. And image (b) has 34 unique normals and a height
of 95.826 units.

evolved results which has the highest count of unique normals, the model in
Figure 5.9 has 558 unique normals and an almost perfect height of 747.48663.

An interesting thing to note is that the random search does appear to
improve, even if only slightly. One possible reason for this is that as the
evolution progresses, the grammars naturally become larger. This is because
the fitness is to evaluate the height of the building as well as the number of
unique normals. The larger the grammar is, the larger the resulting buildings
tend to be. As such, a larger building would naturally have more unique
normals and be taller as well.

One misinterpretation of these results might lead to the conclusion that
bigger or longer grammars rules create better buildings. However this is not
the case. Table 5.7 shows the grammar for the model in Figure 5.7, and Table
5.8 shows the grammar for the model in Figure 5.9. When comparing the two
grammars, the grammar generated by the random search makes use of every
production rule, as well as has more commands present in each production
rule then the grammar generated from the evolved results. The evolved
grammar is more compact and generates a significantly better building. One
conclusion which can be made from this observation is that for a user to create
a good building from a grammar, they cannot randomly chain commands and

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 54

a)

c)

Figure 5.8: These results are all of the same model, taken from the best
result of the forth run. This model has 150 unique normals and a height of
672.7477 units. Image (a) is the full view of the model, where images (b)
and (c) are detailed views.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 55

a) b)

c)

Figure 5.9: These results are all of the same model, taken from the best
result of the ninth run, and also displayed the all-around best combined
fitness scores for the experiment. This model has 558 unique normals and is
747.48663 units tall. Image (a) is the full view of the model, where images
(b) and (c) are detailed views.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE

Table 5.7: Grammar for tower in Figure 5.7 (a)

predefined variables
attr baseHeight = 50

generated grammar
Lot -->

extrude (baseHeight) [RuleD reO, 266, 0) RuleF
[RuleC RuleF] RuleG [RuleD RuleF RuleF
RuleD RuleG RuleC RuleF r(scopeCenter, 0,
21*split.index/split.total, 0) RuleD] reO,
17*split.index/split.total, 0) r(scopeCenter, 0,
21*split.index/split.total, 0) [RuleE RuleB]]

Rule! -->
split(y){ 54 : [[split(y){ 22 : reO,
349*split.index/split.total, 0) extrude(baseHeight)
reO, 208, 0) split(y){ baseHeight : reO,
129*split.index/split.total, 0) split(x){ 54 :
extrude(baseHeight) }* extrude(baseHeight) split(y){
58 : extrude(52) }* extrude(baseHeight) reO,
137*split.index/split.total, 0) } }*]] }

RuleB -->
reO, 282*split.index/split.total, 0) split(x){
48 : Rule! }* reO, 282*split.index/split.total, 0)
[extrude(45) reO, 168, 0) Rule! reO, 145, 0)
reO, 28*split.index/split.total, 0) Rule! extrude(33)

RuleC --> s('1.04537, '1.05178, '0.821831)

RuleD --> reO, 221, 0)

RuleE -->
split(x){ 18 : split(x){ baseHeight : split(x){
baseHeight : r(scopeCenter, 0, 355*split.index/split.total,
0) } } RuleD [s('0.904042, '0.553391, '0.103944)
reO, 66, 0) reO, 182*split.index/split.total, 0)
reO, 279*split.index/split.total, 0) split(x){
44 : RuleB }] split(x){ 16 : split(x){ baseHeight
5('0.832202, '1.53894, '0.000411292) } } }*

RuleF -->
[r(scopeCenter, 0, 183*split.index/split.total, 0)
reO, 29, 0) reO, 216*split.index/split.total, 0)]

RuleG --> RuleE

56

production rules, though must know how to properly weave them together.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE

Table 5.8: Grammar for tower in Figure 5.9

predefined variables
attr baseHeight = 50

generated grammar
Lot -->

extrude(baseHeight) s('0.245968, '1 . 74324, '0 .418107)
split(x){ baseHeight : [5('0.910534, ' 1 . 69943, '0.665899)
5('1.03508, '1.69943, '0.779976) RuleG split(x){
42 : split(x){ baseHeight : [5('0.910534,
'1.69943, '0.665899) RuleA RuleG [s('0.910534,
'1.69943, '0 . 665899) s('1.69943, '1.03508, ' 1 .03551)
RuleG split(x){ 42 : reO, 15, 0) }]] } }] }

RuleA --> r(scopeCenter, 0, 268*split.index/split.total, 0)

RuleB --> reO, 13*split.index/split.total, 0)

RuleC -->
split(y){ baseHeight : reO, 304, 0) reO,
306*split . index/split.total, 0) reO, 304, 0) reO,
306*split . index/split . total, 0) [RuleB RuleA RuleB]
[RuleB 5('0.585351 , '0 . 960822, '0 .479374) RuleB]
reO, 302*split . index/split.total, 0) [split(x){
29 : RuleB }* RuleA] reO, 306, 0) [split(x){
29 : RuleB }* RuleA] r(scopeCenter, 0,
131*split . index/split.total, 0) }*

RuleG --> split(x){ 43 : RuleC }*

unused rules
RuleD --> RuleC

RuleE -->
r(scopeCenter, 0 , 63*split . index/split . total, 0)
RuleA RuleC RuleB

RuleF -->
[RuleB RuleC split(y){ baseHeight : reO,
208*split.index/split.total, 0) } reO,
346*split . index/split.total, 0) r(scopeCenter, 0,
346*split.index/split.total, 0)]

57

5.3 Comparing Summed Rank, Normalized
Summed Rank and Pareto Evaluation Meth­
ods

5.3.1 Experiment Setup and Parameters

As demonstrated in previous experiments, interesting building models can
be made when multiple fitness criteria are combined. In this experiment the

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 58

criteria is to maximize the number of unique normals, match the height of
the model to 750 units, all while attempting to constrain the model within a
particular boundary of 175x175 units. Table 5.9 shows the parameters used
for the experiment.

This set of fitness criteria is ran in three different experiments to compare
different popular evaluation methods. The three methods used are summed
rank, normalized summed rank, and Pareto.

Table 5.9: Parameters - Maximizing Unique Normals, Maximizing Height,
and Constraining to a Boundary

Parameter Value

Boundary Limit 175

Target Height 750

Unique Normals Maximize

Initial Height 50

Generations 30

Population Size . 300

Tournament Size of 3

Elites 1

Individual Ranking summed rank, normalized
summed rank, and Pareto
(varies)

5.3.2 Results

Table 5.11 summaries the three d.ifferent experiments ran, displaying the
average result of each fitness as well as the standard deviation for each fitness.

Taking a look at the scatter plot in Figure 5.10, it is shown that Pareto
evaluation creates a population which is very diverse. The positive side to
this is that there are many different and highly unique results generated.
The negative side is that many of those results are extreme cases and rank
terribly in one or more fitness areas.

An interesting set of results to note is shown in Table 5.12, which shows

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE

le+06

100000

10000

5
c: s
OJ

is 1000
E
OJ
"0;
:I:

100

+ 0 0 D
[][]

+ 0

10
+ ++ +
00

+
t-+

+

1
0 500 1000

Multi-Objective Results Comparision - All Results

++

+

+
+ +

+

+ +
eo

+ +

+

1500 2000 2500

"Normalized Summed Rank" 0
"Summed Rank" 8

"Pareto" +

+
+

+

+

+

+ +

o
o

ODD £10 .. o e

3000 3500 4000 4500

Unique Normals

59

5000

Figure 5.10: This scatter plot shows two fitness scores (height, and count of
unique normals) plotted over all 100 results generated by each experiment,
where each run of the experiment returns ten results. This plot compares
the three different experiments, Normalized Summed Rank, Summed Rank,
and Pareto evaluation methods. The target value for the height is 750.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 60

a) b)

Figure 5.11: Images (a) and (b) are both from the best individual produced
at the end of the evolution in the ninth run under the normalized summed
rank experiment. Image (b) is a closeup of the same model in image (a).
This model stays within the boundary, while having 1624 unique normals,
and a height of 1475.2029.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 61

a) b)

Figure 5.12: Images (a) and (b) are both from the best individual produced
at the end of the evolution in the fifth run under the normalized summed
rank experiment. Image (b) is a closeup of the same model in image (a).
This model stays within the boundary, while having 4088 unique normals,
and a height of 1497.7514.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 62

a) b)

Figure 5.13: Images (a) and (b) are both from the best individual produced
at the end of the evolution in the fifth run under the regular summed rank
experiment. Image (b) is a closeup of the same model in image (a). This
model stays within the boundary, while having 3340 unique normals, and a
height of 1497.5269.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 63

Figure 5.14: This image is the best result from the tenth run of the summed
rank experiment. This model had a particular low fitness score when com­
pared to the average. It maintained the limits of the boundary, however it
only has 810 unique normals and a height of exactly 817.

a)

Figure 5.15: Images (a) and (b) are both from the best individual produced
at the end of the evolution in the second run under the Pareto experiment.
Image (b) is a closeup of the same model in image (a). This model breaks
the boundary by 545.07 units, has 2531 unique normals, and a height of
1492.3526.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 64

a) b)

Figure 5.16: Images (a) and (b) are both from the best individual produced
at the end of the evolution in the seventh run under the Pareto experiment.
Image (b) is a closeup of the same model in image (a). This model breaks the
boundary by 550.637 units, while having 855 unique normals, and a height
of 1184.786.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 65

a) b)

Figure 5.17: Image (a) is from the best result found in run 9 of the experiment
using Pareto. It manages to stay within the boundary, have 2090 unique
normals, as well as a height of exactly 1442. Image (b) is the outlier of
the results from run number 8. That model breaks the boundary limits by
372.859 units, has 1758 normals, and is only 851 units tall.

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 66

Table 5.10: Multi-objective Results Comparison: 100 Solutions Each

Pareto Summed Rank Norm. Sum. Rank

AVG STD AVG STD AVG STD

Boundary 202.2204 219.2640 0.0000 0.0000 0.0000 0.0000

Normals 1137.5000 927.1608 988.1000 1037.2596 1653.3000 1447.9569

Height 368.6579 328.2944 369.1578 295.4449 562.9862 231.2281

Table 5.11: Multi-Objective Results Comparison (Continued)- Duplicates
Removed

Pareto Summed Rank Norm. Summed Rank

Height Normals Height Normals Height Normals

Average 3165.5298 1295.1667 342.7781 1332.6315 254.4790 1439.3396

StDev 15901.3017 1108.5484 272.6226 1087.8604 239.3546 1179.7872

Min 3.8414 92 2.4731 6 2.2486

Max 138215 4961 683 3340 650.049

Entries 84 Unique 38 Unique 53 Unique

Table 5.12: Multi-Objective Results Comparison - Duplicates Removed

Pareto Summed Rank Norm. Summed Rank

Boundary Boundary Boundary

Average 316.8260 0 11.2199

StDev 337.7530 0 46.3947

Min 0 0 0

Max 1715.29 0 218.289

the boundary results over all 100 results generated by each of the three eval­
uation methods, with duplicate results removed. The Pareto evaluation cre­
ated boundary scores with an average of approximately 316 and a standard
deviation of approximately 337, where the normalized summed rank gener­
ated averages of about 11 with a standard deviation of about 46. However,

90

4098

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE

Table 5.13: Multi-Objective T-Test Confidence Percentages

Boundary Normals Height

NSR v SR 91.58 34.27 88.65

P v NSR

PVSR

100

100

52.25

13.85

90.28

89.23

67

the regular summed rank results generated an average boundary score of 0,
creating all results that fit within the provided boundary limitations. This
might be due to the fact that Pareto tends to create outliers where regular
summed rank tries to please each fitness criteria.

Table 5.11 shows the averages, standard deviation, minimum, and max­
imum fitness scores for each evaluation method. This table, as well as the
scatter plot in Figure 5.10, shows that Pareto has created outliers. In a par­
ticular run, the final building height was 138215 units, when the target height
is only 1500 units. The regular summed rank and the normalized summed
rank experiments generated a maximum height of 650 and 683 respectfully.

The experiment which returned the best results is the normalized summed
rank experiment. Figure 5.11 shows an excellent building which has a height
of 1475.2 units, a unique normal count of 1624, while staying within the
boundary of 175x175 units. The grammar for Figure 5.11 is shown in Table
5.14. Figure 5.12 shows the model which is the best ranked out of the exper­
iment and has a height of 1487.8 unit, 4088 unique normals, and also stays
within the boundary. Moreover, this model displays an ascetically pleasing
building of a practical skyscraper, complete with a cylindrical tower which
tapers in three levels to a point.

In the regular summed rank experiment, the majority of the results fall
within acceptable fitness scores. However, a few outliers do exist. Figure 5.13
shows a great model which has a height of 1497.5 units, 3340 unique normals,
and stays within the boundary, as well as shows an interesting structure for a
possible skyscraper. However the result shown in Figure 5.14 shows an outlier
model which has a height of 817 units, only 810 unique normals, though stays
within the limits of the boundary. The model is not aesthetically pleasing
as it is a short, round building made from a jumbled mess of overlapping
objects.

Pareto results returned many good results as well as outliers. In order

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE

Table 5.14: Grammar for tower in Figure 5.11

predefined variables
attr baseHeight = 50

generated grammar
Lot -->

extrude (baseHeight) [s('1.72999, '1.72999, '0.742476)
r(scopeCenter, 0, 157*split.index/split.total, 0) [
split(y){ baseHeight : RuleC }*] s('0.362006,
'1.72999, '1.72999) RuleC s('0.362006, '1.72999, '0.742476)
s('0.362006, '1.72999, '1.72999) [split(y){ baseHeight
[RuleB s('0.362006, '1 . 72999, '0.742476) s('0.362006,
'1.72999, '0.742476) RuleC [RuleB RuleC s('1.72999,
'1.72999, '0.742476) RuleC RuleC]] }*] s('0.362006,
'1.72999, '1.26481) RuleC RuleC RuleC] s('0.362006,
'1.72999, '0.742476) RuleC RuleC]

RuleA --> r(scopeCenter, 0, 183*split.index/split.total, 0)

RuleB -->
[[r(scopeCenter, 0, 283*split.index/split.total, 0)
split(x){ baseHeight : r(O, 108*split.index/split.total, 0)
}* [[r(scopeCenter, 0, 283*split.index/split.total,
0) split(x){ baseHeight : r(O, 108*split.index/split . total,
0) }* split(y){ 18 : RuleA }* r(scopeCenter, 0,
279*split.index/split.total, 0) RuleA] split(x){ baseHeight
: RuleA } split(y){ 43 : [RuleA split(y){ baseHeight : RuleA }
] }*] r(scopeCenter, 0, 279*split.index/split.total, 0)
RuleA] split(x){ baseHeight : RuleA } split(y){ 43 : [
r(scopeCenter, 0, 279*split.index/split.total, 0) RuleA
split(y){ baseHeight : RuleA }] }*]

RuleC --> RuleB split(x){ 16 : RuleB }* split(x){ baseHeight RuleA}*

unused rules
RuleD --> r(scopeCenter, 0, 281*split.index/split.total, 0)

RuleE --> r(scopeCenter, 0, 252*split.index/split.total, 0)

RuleF --> s('1.13894, '0.433669, '0.554051)

RuleG --> s('0.284231, '1.81872, '0.815832)

68

to determine which result generated is "better" then the other results, a
summed rank was performed on the Pareto results to determine a ranking.
Figure 5.15 shows a building which is 1492.4 units tali, has 2531 unique
normals, though breaks the 175x175 unit boundary with a score of 545.1
units. It appears that this building achieves its unique normal count due to
the massive amount of narrow spires. The model in Figure 5.16 is the best

CHAPTER 5. EXPERIMENTS: MULTI-OBJECTIVE 69

result found in the Pareto experiment and has a height of 1184.8 units, 855
unique normals, and breaks the boundary by 550.6 units. Figure 5.17 (a)
shows a very interesting model which has a futuristic appeal to it, in which a
tower is composed of many block along a slightly winding cylindrical tower.
This building has a height of 1442 units, contains 2090 unique normals, and
manages to stay within the boundary. However the result in Figure 5.17 (b)
shows an outlier which is the opposite of the previous model. It has a height
of 851 units, contains a 1758 unique normals, though breaks the boundary
with a score of 372.9. That model, although not having a good height or
staying within the boundary, still demonstrates an interesting architectural
concept from its blocky yet cylindrical pattern.

In conclusion, Pareto shows a wide range of diversity with some good
solutions, but often with many outliers. Summed rank has less diversity
then Pareto, but has more consistent good solutions. Normalized summed
rank created results with the best overall scores, but again, has less diverse
results than Pareto.

Chapter 6

Experiments: Advanced
Multi-Objective

6.1 Top-Down Shape Matching

6.1.1 Experiment Setup and Parameters

This experiment uses a target shape as a target for the building silouette.
Previous experiments made use of a boundary limitation, which essentially
created a square area around the model and calculated any error by com­
puting the distance of the furthest points outside of the boundary. This
experiment differs such that it allows for a more detailed boundary in the
form of shape to match.

The image file that the fitness uses is a black and white image, in which
the black area defines the shape for the building to grow within, and the white
area defines the out-of-boundary areas. In order for the fitness to compare
the building's shape to that of the requested shape, the program creates a
2D vertical projection (orthographic projection) of the model, highlighting
the model in black, and the unused space as white. Fitness evaluation then
performs a pixel-by-pixel comparison of the 2D projection image and the
target shape image. A perfect score would be a score of 1, in which case
every rendered pixel from the building matches that of the target image.
This fitness evaluation attempts to maximize the building to "fill" the target
area, while minimizing the error. Table 6.1 shows the parameters used in
this experiment.

70

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTNE 71

Table 6.1: Parameters - Shape Matching

Parameter Value

Initial Height 50

Generations 60

Tournament Size of 3

Elites 1

Individual Ranking Summed Rank

6.1.2 Results

Table 6.2 shows the final fitness scores for this experiment as well as the final
generation average for each run.

Table 6.2: Results - Vertical Projection Shape Matching

Final Best Final Pop. A vg.

Run No Top Match Top Match

1 0.9132 0.9090

2 0.6993 0.6696

3 0.6993 0.6665

4 0.9000 0.8891

5 0.8884 0.8741

6 0.9048 0.8856

7 0.8742 0.8681

8 0.9285 0.9203

9 0.9052 0.9017

10 0.7685 0.7678

Average 0.8481 0.8351

The target image is shown in Figure 6.2 (b). The evolution had a bit of
a difficult time providing accurate matches during a couple runs. As shown
in Table 6.2, runs 2 and 3 have an identical fitness score of 0.6993. Their

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 72

a)
Average Generation Average

0.72
Shape Matchin Top--

0.7

0.68

0.66

2-
U> 0.64 U>
CD c
rE

0.62

0.6

0.58

0.56
0 10 20 30 40 50 60

Generations [0:60]

b)
Average Best of Generation

0.74
Shape Matching Top --

0.72

0.7

2.
U> 0.68 U>
CD
.5 u:

0.66

0.64

0.62
0 10 20 30 40 50 60

Generations [0:60]

Figure 6.1: Images (a) shows the performance graph of the population over
all ten runs, and image (b) shows the performance graph of the average best
population over all ten runs.

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 73

a) b)

Figure 6.2: Images (a) is from the sixth run and has a score of 0.9048. Image
(b) is the target shape for this experiment (not to scale).

a) b)

Figure 6.3: Images (a) is from the eighth run and has the highest score found
in the experiment with 0.9285. Image (b) is from the ninth run and has a
score of 0.9052.

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 74

scores are identical because the final building models are the original starting
model provided from the default grammar, which is a 50x50 unit cube.

A more promising result is shown in Figure 6.2 (a) in which the final
building has a score of 0.9048 and does a respectful job of resembling the
triangle target shape. Even better, the model in Figure 6.3 (a) has a score
of 0.9285 and more accurately fills the target shape. A result which deserves
a focus is shown in Figure 6.3 (b). This model has a high score of 0.9052
though also makes an interesting pattern with the shadow casted from the
building.

6.2 Top-Down and Front-View Shape Match-
• lng

6.2.1 Experiment Setup and Parameters

This experiment is similar to the previous one. The fitness attempts to match
the vertical projection of the model to the provided shape. However, it also
attempts to match the horizontal projection of the model to a different target
shape, as shown in Figure 6.5 (b). The parameters used in this experiment,
is the same as previous one, and is shown in Table 6.1.

6.2.2 Results

Table 6.3 shows the fitness scores from the best of each· run as well as the
final generation average.

Shape matching in both the vertical projection as well as the horizontal
projection, as shown in Table 6.3. It returns comparable results to the previ­
ous experiment. The previous experiment had an average vertical projection
matching score of 0.8481, where this experiment has the average score of the
vertical matching as 0.8653 and a horizontal projection matching of 0.8918.
Figure 6.5 shows the two targeted shapes used in this experiment.

Figure 6.5 shows the model from the third run of the experiment. Image
(c) shows the vertical view and image (d) of the same figure shows the hor­
izontal view. This building has a vertical projection score of 0.8878 and a
horizontal projection score of 0.8502. The model in Figure 6.5 has a vertical
score of 0.8662 and a horizontal score of 0.8738. Image (d) of the same figure
shows a decent triangular shape.

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 75

a)

b)

Average Generation Average

0.86 r------,------,------,------r----,----,

0.84

0.82

0.8

~ 0.78

j 0.76
LL.

0.74

0.72

0.68
0 10

0.88

0.86

0.84

~ 0.82
B
~
Q)

.5
0.8 u::

0.78

0.76

0.74
0 10

20

20

30
Generations [0:60]

Average Best of Generation

Sha

40 50

Shape Matching Front - ­
Shape Matching Top -------

--------::::::::==:=:~."-- --- --------

30
Generations [0:60]

40 50

60

60

Figure 6.4: Images (a) shows the performance graph of the average generation
over all ten runs, and image (b) shows the performance graph of the average
best of generation over all ten runs.

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTNE 76

a) b)

c) d)

e) f)

Figure 6.5: Image (a) shows the target vertical shape, and image (b) shows
the target horizontal shape. Image (c) shows the vertical view of the model
from the third run and has a score of 0.8878 (vertical) and 0.8502 (horizontal).
Image (d) is the same model, showing the horizontal view. Image (e) shows
the vertical view of the model from the sixth run and has a score of 0.8662
(vertical) and 0.8738 (horizontal). Image (f) is the same model, showing the
horizontal view.

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 77

Table 6.3: Results - Vertical and Horizontal Projection Shape Matching

Final Best Final Pop. A vg.

Run No Vert. Match Horiz. Match Vert. Match Horiz. Match

1 0.7717 0.7717 0.7717 0.7717

2 0.8900 0.8919 0.8866 0.8827

3 0.8878 0.8502 0.8861 0.8480

4 0.9157 0.8567 0.9115 0.8533

5 0.8824 0.8871 0.8784 0.8760

6 0.8662 0.8738 0.8559 0.8621

7 0.8832 0.8852 0.8743 0.8757

8 0.8690 0.8318 0.8593 0.8297

9 0.8283 0.8584 0.7980 0.8561

10 0.8596 0.8918 0.8499 0.8837

Average 0.8653 0.8598 0.8571 0.8538

6.3 Top-Down Shape Matching and Maximiz­
ing Normals while Targeting Height

6.3.1 Experiment Setup and Parameters

As shown in the previous experiments, two different methods of shape match­
ing can be obtained simultaneously. With this experiment three different
fitness functions are used: maximizing the number of unique normals, target
the buildings height, as well as match the shape of the vertical projection.
Table 6.4 shows the parameters used in this experiment.

6.3.2 Results

Table 6.5 shows the top-ranked results for each run in the experiment, as
well as the final generation average.

The results generated by this experiment are decent. As shown in Table
6.5, the average number of unique normals is only 281.8, and the average

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 78

a)

b)

Average Generation Average

~O.-------.-------'--------r-------.-------.-------'
Unique Normals -­

Height -------

250

200

! 150
u::

100 ~ ------~--------
--------------------------------------_ ... ---

0
0 10 20 30 40 50 60

Generations

Average Generation Average

0.88
Shape Matching Top - -

0.86

0.84

0.82

0.8

!:!
Q) 0.78 li
u::

0.76

0.74

0.72

0.7

0.68
0 10 20 ~ 40 50 60

Generations

Figure 6.6: Image (a) and (b) show the performance graphs displaying the
population averaged over all ten runs.

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTNE 79

a)

b)

Average Best of Generation Average

300,-------,-------,--------.-------,-------,-------,

250

200

~ .5 150
u::

100

50

0
0 10

0.88

0.86

0.84

0.82
U)
U) .,
~

0.8

0.78

0.76

10

Unique Normals -­
Height -------

--------------,
"---------_ __ -- ... _-----". ... --------------- --./ ,,.

20 30
Generations

40 50

Average Best of Generation Average

20 30
Generations

Shape Matching Top

40 50

60

60

Figure 6.7: Image (a) and (b) show the performance graphs displaying the
population averaged over all ten runs.

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 80

a) b)

Figure 6.8: Image (a) shows a top-view of the model from the first run of the
experiment. This model contains 820 unique normals, a height of 148.652
units, and has a shape matching score of 0.8612. Image (b) is the same model
however viewed from the front.

a) b)

Figure 6.9: Image (a) shows the model from the fifth run of the experiment.
This model contains 502 unique normals, a height of 68.554 units, and has a
shape matching score of 0.9077. Image (b) shows the target shape.

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 81

Table 6.4: Parameters - Maximizing Unique Normals, Height Matching, and
Shape Matching

=============================
Parameter Value

Unique Normals Maximize

Target Height 750

Initial Height 50

Generations 60

Tournament Size of 3

Elites 1

Individual Ranking Summed Rank

Table 6.5: Results - Maximize Unique Normals, Match Height, and Vertical
Projection Shape Matching

Final Best Final Pop. A vg.

Run No Normals Height Shape Normals Height Shape

1 820 148.652 0.8612 727.383 156.576 0.8545

2 274 96.532 0.8927 248.16 96.005 0.8865

3 230 50 0.8778 218.733 50 0.8769

4 6 97.817 0.7760 6 97.456 0.7754

5 502 68.554 0.9077 429.96 53.05 0.8810

6 290 98.514 0.9013 240.147 98.208 0.8918

7 42 94.518 0.8911 40.6133 93.906 0.8838

8 270 114.59 0.8782 239.947 113.986 0.8736

9 82 142.265 0.8786 81.1733 144.426 0.8717

10 302 110.895 0.8878 271.853 142.183 0.8808

Average 281.8000 102.2337 0.8752 250.3969 104.5796 0.8675

height is only 102.2337 units. However the average shape matching portion
has a good score of 0.8675.

The model in Figure 6.8 is an interesting building which displays the high-

CHAPTER 6. EXPERIMENTS: ADVANCED MULTI-OBJECTIVE 82

est count of unique normals achieved in this experiment. This model has 820
unique normals, has a height of 148.652 units, and a vertical shape matching
score of 0.8612. Image (a) shows the top down view of the model and image
(b) shows the horizontal view. This model has an interesting arrangement of
"arms" and a significant amount of intertwining internal squares to account
for its high unique normal count.

Figure 6.9 shows the model with the best shape matching score found
in this experiment. The vertical projection score is 0.9077, and the model
also has a decent 520 unique normals, however has a very low height of only
68.554 units.

An observation based on the previous set of experiments, is that it can be
suggested that using a normalized summed rank might provide better results
then the regular summed rank method used. With normalized summed rank,
the results might improve over all fitness criteria. With the regular summed
rank, it appears that the primary focus of the evolution appears to be on the
vertical shape matching.

Chapter 7

Discussion

7.1 Constraining the Grammar

CityEngine has a large grammar set. Only a small number of the available
commands were used in this study. Initial experimental runs of the evolution
system allowed for a much larger grammar set, in which some of the com­
mands included taper, translate, and component splitting. However, these
grammar commands, although useful, provided unnecessary complications in
the grammar, and cause difficulty in evolving accurate models.

For example, the translate command created many portions of the build­
ings which were not connected to the main modeL The taper command
helped create a surplus of unique normals in the models, however was used
too often and created non-aesthetically pleasing models. Although the com­
ponent split is a powerful command, the evolution often used it incorrectly
and created holes within the model, or random surfaces which had a thick­
ness of 1 unit. Restricting the available commands also helps minimize the
search space and focus the evolution.

In order to evolve accurate results, the grammar had to be tailored. For
example, when height is one of the goals of the experiment, the grammar was
changed in such a way to allow the evolution to create height easier. One
way in which this was done, was to increase the base size of the initial modeL
The base model normally is a cube of 50x50 units. However, in the height
experiment, the base height of the model was increased to 150 units and 50
units wide. This helps the grammar create and find higher models due to
the nature of the size command present in the grammar. The size command

83

CHAPTER 7. DISCUSSION 84

re-sizes the model based on the current size of the model.
If the interest is to evolve different styles of skyscrapers, then it would be

advantageous to constrain the shape grammar to generate just skyscrapers.
Then the GP will search the solution space which constrains only skyscrapers.
Otherwise the GP may have to look for skyscrapers in a much larger space of
general shapes. The main reason to tailor the grammar is to reduce the size
of the search space. By using all the grammar commands at their default
settings, it creates a massive search space in which the vast majority of the
results are not acceptable to the fitness. However once the grammar is refined,
the possible results are also limited, therefore limiting the search space and
allowing the evolution to find better results faster.

Another way in which the grammar was tailored was the addition of one
variable, known as the baseH eight. This variable is an integer number that
defines the initial height of the model, as well as is available to be used within
the grammar as an integer parameter. This tailors the grammar in such a
way that if the base height is tall, the grammar will have a larger number to
use within the commands.

If a grammar was to be used in its entirety, without any tailoring, it
is capable of creating a multitude of objects, not just buildings. The same
commands which were used in this study, could also be used in another study
which attempts to create model cars, for example. It is the tailoring of the
grammar, combined with fitness scores which focuses the evolution to create
the desired object: in this case, buildings.

7.2 Limitations

One of the main limitations of the system is the time it takes to execute
one run of the GP. Since the evolutionary system uses an external program
to handle the three dimensional model creation and exportation, City Engine
becomes a choke-point. It takes approximately one second for City Engine to
create and export a basic low-polygon model. As the GP runs and provides
CityEngine with more detailed grammar files, it has been observed to take
up to five seconds to create and export high polygon models. Therefore
one run of the GP which consists of 60 generations each of 300 individuals,
creates a total of 18000 individuals, all which need to be processed through
City Engine. Taking a look at the average case scenario: 18000 individuals,
each being processed at 2 seconds, consumes 10 hours of processing time.

CHAPTER 7. DISCUSSION 85

However there are other factors which also lead to more time consumption.
CityEngine unfortunately has a recognized memory leak. Each time a

model is created and exported, a proportionate size of system memory is
consumed based on the size of the model. It was observed that when a low
polygon model was created and exported, that approximately half to one
megabyte of memory is used. Where larger polygon models could take up
to five megabytes. The City Engine version used is 2009.2 for Linux 32-bit,
released on September 18 2009. The 32-bit version has a memory cap on
it such that CityEngine allows up to two gigabytes of memory, and at the
time no 64-bit versions for Linux were available. This memory leak caused
a major issue in the program run time due to the fact as the individuals
were processed and the available memory dwindled away. The time it would
take CityEngine to process a model drastically increased to an upwards of
15 to 30 seconds as the available memory disappeared. Once the memory
was entirely consumed, the program would grind to a halt. For normal
every-day applications of CityEngine this issue would not surface, however
for this system one run of the genetic program would require CityEngine to
process 18000 models. Taking a look at the average case scenario: 18000
individuals, each consuming an average of 2 megabytes of memory, consumes
approximately 36 gigabytes · of memory over the run time. Considering the
fact that CityEngine only holds two gigabytes of system memory, once 600
individuals, or two generations, have been processed, the majority of the
available memory has already been consumed and the program would have
already began to lag.

In order to solve this issue, a script was created which would kill the sys­
tem process running CityEngine, therefore freeing up the consumed memory,
after which the script would then restart CityEngine. Due to the fact that the
time it takes to close, re-open the program, and connect to the UDP port for
communication varies, generous time delays were needed in the script. The
total time this fix takes is approximately one minute. In order for this fix
to be effective and minimize any slow downs in the processing of the model
files, this script would run every 300 individuals, or at the end of each gen­
eration. This proved to minimize the negative effects of the memory leak, at
the expense of increasing the overall run time of the system. This fix added
one minute per generation, adding a total of one hour to the run time of the
system, bringing the approximate time of one run to 11 hours.

Moreover, it is not feasible to review the results of one run and make a
conclusion on the success of the experiment, so multiple runs needed to be

CHAPTER 7. DISCUSSION 86

completed. In order to preform proper statistical analysis on the success of
an experiment, a minimum of 30 runs would need to be executed. However,
due to the time limitations the system presented, 30 runs would take approx­
imately 330 hours or 14 days to complete, which did not fit in the available
time line, considering the number of different experiments performed and
that only one computer with a City Engine license was used.

Chapter 8

Conclusion and Future Work

In this study we were able to successfully evolve building models that fit
their respectful fitness requirements. Three dimensional building models
were evolved that satisfied constraints such as targeting a specific height,
maximizing the number of unique normals present in the model, maximizing
the distance between surface normals, matching the building to resemble tar­
geted shapes in both vertical projections as well as horizontal projections, as
well as using multiple fitness criteria in combination. The system is capable
of exporting those building models to an open-source 3D model file. This
model file is ready for use as-in or for use in future development in many dif­
ferent fields of study. The models can be used in fields such as architectural
design, video game design, or even for use in animated films.

These models were created though the evolution of their defining shape
grammars. Shape grammars, as discussed earlier, are time-consuming and
heavily knowledge-based. They can be complex and challenging to develop­
ment according to specific architectural ideas in which the programmer or
designer has in mind. This study successfully evolved those shape grammars
that defines building models according to specific architectural ideas though
the use of fitness functions and grammar tailoring.

Another accomplishment of this study is the creation of an interesting and
innovated design and exploration tool that aids an architect or designer in
discovering unique and new architectural ideas and concepts. The program
developed explores many possible architectural designs that might not have
been conceptualized by a human. This is due to the nature of the program
in that is it not a human-guided evolution, but a fully automated one. This
allows the evolution to run unbiased and return a wide variety of results.

87

CHAPTER 8. CONCLUSION AND FUTURE WORK 88

One way in which the results could be improved is to add additional
grammar tailoring and constraints. For example, as mentioned earlier, the
component split command was removed from the grammar due to the evo­
lution using that command incorrectly. However, with enough tailoring and
restrictions, that command might become a valuable asset to the grammar.
Many other commands can also be added to the grammar language in a
similar fashion.

There are many grammar enhancements which can be made as well. Since
CityEngine allows for custom models to be imported, as shown in the ex­
periment with the low-polygon spheres, models such as columns, pyramids,
gargoyles, busts of Abraham Lincoln, or any other models can be used. They
can be used to help the genetic program evolve faster, or can be used to give
an added flare to the building models, or to even create buildings represen­
tative of a specific time period. If one of the target criteria of the genetic
program is to create column-like structures, it could be beneficial to provide
the genetic program with a column model. This way the genetic program can
use the column model instead of wasting generations and processing time in
an attempt to evolve them.

The main handicap encountered was the time required to complete one
run of the program, as discussed in the previous chapter. Future work can
improve on this time issue by using a custom modeling or rendering program,
instead of CityEngine. Although CityEngine is a powerful and useful design
tool, it was not created for a mass automated production of models as per­
formed in this study. As such, runs were limited to a single computer, on a
single-use license of CityEngine. If multiple computers were used, each with
a copy of CityEngine on it, the number of runs possible would increase. Due
to the time constraints, only 10 runs of each experiment were possible.

There are many new opportunities to explore by adding new fitness cri­
teria. An example of new fitness functions could be evaluating the models
based on the standard deviation of the vertices's along a particular axis, such
as the y-axis. There are many geometric properties which can be analyzed.
The fitness could be to maximize the standard deviation, which might create
models with different levels of roofs. Similar criteria could also be done on
the other two axes, or could be done to minimize the deviation instead of
maximize. There are other areas which can afford statistical analysis as a
fitness criteria, such as evaluating the deviation of the area and volume.

Furthermore, another level of evolution can be done on the final building
model to enhance it. After the model has been evolved, a separate phase of

CHAPTER 8. CONCLUSION AND FUTURE WORK 89

evolution can development the exterior design of the model. Such as adding
windows, facades, doors, and even textures to the model. The CityEngine
environment allows for custom textures which can be implemented directly in
the grammar. As such, custom textures can be used in the genetic program
as a pure aesthetic addition, or as something new in which to evolve. This can
further develop this system by creating models using textures of a specific
time period or of a fantasy environment, which can allow the program to
evolve even more-specific buildings to match the creative needs of the user.

By adding new and unique fitness criteria and new grammar constraints,
buildings of immense uniqueness can be created, discovering wild and unfore­
seen architectural ideas and possibilities: the experiments completed above
merely scratch the surface of the realm of possibilities.

Bibliography

[1] R. Arnaud and M. Barnes. COLLADA: Sailing the Gulf of 3D Digital
Content Creation. A K Peters, Ltd., 2006.

[2] Autodesk. 3ds max - 3d modeling, animation, and rendering software.
http://usa.autodesk.com/3ds-max/, Mar. 2011.

[3] P. J. Bently and J. P. Wakefield. Finding acceptable solutions in the
pareto-optimal range using multiobjective genetic algorithms. In Soft
Computing in Engineering Design and Manufacturing. Spinger Verlag,
1997.

[4] P. Buelow. Creative Evolutionary Systems, chapter Using Evolution­
ary Algorithms to Aid Designers of Architectural Structures. Academic
Press, Inc., 2002.

[5] F. D. K. Ching. Architecture - Form, Space, and Order, chapter Intro­
duction. Wiley, 2007.

[6] Coello, C. A. Coello, Lamont, G. B., and Veldhuizen. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer, 2 edition,
2007.

[7] B. David. A grammar of speech. Oxford University Press, 1995.

[8] R. Flack. Robgp - robust object based genetic programming system.
http://robgp.sourceforge.net/about.php, Nov. 2010.

[9] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algo­
rithms in multiobjective optimization. In Evolutionary Computation,
pages 3(1):1-16,1996.

[10] Blender Foundation. Blender. http://www.blender.org/, Mar. 2011.

90

BIBLIOGRAPHY 91

[11] J. S. Gero, S. J. Louis, and S. Kundu. Evolutionary learning of novel
grammars for design improvement. AIEDAM, 8:83- 94, 1994.

[12] J. S Gero and R. Sosa. Complexity measures as a basis for mass cus­
tomization of novel designs. Technical Report 1, Dept. of Computer
Science, Stanford University, January 2008.

[13] M. Hemberg, U. O'Reilly, A. Menges, K. Jones, M. Goncalves, and S. R.
Fuchs. Genr8: Architects' experience with an emergent design tool. In
The Art of Artificial Evolution, chapter Genr8: Architects' Experience
with an Emergent Design Tool. Springer, 2008.

[14] G. S. Hornby. Functional scalability through generative representations:
the evolution of table designs. Environment and Planning B: Planning
and Design, 31(4):569-587, Jan. 2005.

[15] G. S. Hornby and J. B. Pollack. The advantages of generative gram­
matical encodings for physical design. In In Congress on Evolutionary
Computation, pages 600-607. IEEE Press, 200l.

[16] Procedural Inc. Cityengine. http://www.procedural.com/. MaL 201l.

[17] H. Jackson. Creative Evolutionary Systems, chapter Toward a Symbiotic
Coevolutionary Approach to Architecture. Academic Press, Inc., 2002.

[18] C. Jacob. Genetic I-system programming: Breeding and evolving arti­
ficial flowers with mathematica. In In Proceedings of the First Interna­
tional Mathematica Symposium, volume 33976, pages 215- 222, 1995.

[19] C. Jacob and G. Hushlak. The Art of Artificial Evolution, chapter Evo­
lutionary and Swam Design in Science, Art, and Music. Springer, 2008.

[20] J. R. Koza. Hierarchical genetic algorithms operating on populations
of computer programs. In N. S. Sridharan, editor, Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence
IJCAI-89, volume 1, pages 768- 774, Detroit, MI, USA, 20-25 1989. Mor­
gan Kaufmann.

[21] J. R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

BIBLIOGRAPHY 92

[22] J. R. Koza. Genetic Programming II: Automatic Discovery or Reusable
Programs. MIT Press, 1994.

[23] P. Machado, H. Nunes, and J. Romero. Graph-based evolution of visual
languages. In Proc. EvoMusArl, volume 2, pages 271-280. Springer,
2010.

[24] D. J. Montana. Strongly Typed Genetic Programming. Evolutionary
Computation, 3(2):199-230, 1995.

[25] P. Muller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool. Procedural
modeling of buildings. In SIGGRAPH '06: ACM SIGGRAPH 2006
Papers, pages 614-623, New York, NY, USA, 2006. ACM.

[26] M. O'Neill and A. Brabazon. Evolving a logo design using lindenmayer
systems. In Evolutionary Computation, pages 3788 - 3794, June 2008.

[27] M. O'Neill, J. McDermott, J. M. Swafford, J. Byrne, E. Hemberg, and
A. Brabazon. Evolutionary design using grammatical evolution and
shape grammars: designing a shelter. In International Journal of Design
Engineering, volume 3, pages 4-24, 2010.

[28] M. O'Neill, J. M. Swafford, J. McDermott, J. Byrne, A. Brabazon,
E. Shotton, C. McNally, and M. Hemberg. Shape grammars and gram­
matical evolution for evolutionary design. GECCO '09: Proceedings of
the 11th Annual conference on Genetic and evolutionary computation,
pages 1035-1042, 2009.

[29] Y. I. H. Parish and P. Muller. Procedural modeling of cities. In SIG­
GRAPH '01: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 301-308, New York, NY, USA,
2001. ACM.

[30] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published via http://lulu . com and freely available at
http://www.gp-field-guide.org.uk. 2008.

[31] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of
Plants. Springer, 1990.

BIBLIOGRAPHY 93

[32] G. Rozenberg and A. Salomaa. Lindenmayer Systems: Impacts on The­
oretical Computer Science, Computer Graphics, and Developmental Bi­
ology. Springer, 1 edition, August 1992.

[33] C. Soddu. Creative Evolutionary Systems, chapter Recognizability of
the Idea: The Evolutionary Process of Argenia. Academic Press, Inc.,
2002.

[34] G. Stiny. Introduction to shape and shape grammars. Environment and
Planning B: Planning and Design, 7(3):343-351, May 1980.

[35] G. Stiny. Kindergarten grammars: designing with froebel's building
gifts. Environment and Planning B: Planning and Design; 7(4):409-
462, July 1980.

[36] G. Stiny and J. Gips. Shape grammars and the generative specifica­
tion of painting and sculpture. In C. V. Friedman, editor, Information
Processing '71, pages 1460- 1465, Amsterdam, 1972.

[37] M. Tapia. A visual implementation of a shape grammar system. Envi­
ronment and Planning B: Planning and Design, 26:59-73, 1999.

[38] Vitruvius. Ten Books on Architecture. BiblioLife, 2009.

Appendix A

Additional Multi-Objective
Scores

The following tables display the best result of each of the 10 runs for the
three different evaluation methods. Table A.l shows the results from the
normalized summed rank experiment, Table A.2 shows the results from the
regular summed rank experiment, and Table A.3 shows the results from the
Pareto experiment.

94

APPENDIX A. ADDITIONAL MULTI-OBJECTIVE SCORES 95

Table A.l: Normalized Summed Rank Results

Run No. Boundary Unique Norms Height Distance

1 0 94 1293.797

2 0 2946 1404.975

3 0 3806 1359

4 0 727 1489.361

5 0 4088 1497.7514

6 0 780 849.951

7 0 370 1462.9896

8 0 1370 939.107

9 0 1624 1475.2029

10 0 728 1357.727

Average 0.0000 1653.3000 1312.9861

Table A.2: Summed Rank Results

Run No. Boundary Unique Norms Height Distance

1 0 342.00 844.667

2 0 659.00 1464.2408

3 0 6.00 847.409

4 0 159.00 1367.077

5 0 3340.00 1497.5269

6 0 2286.00 894.4

7 0 868.00 1457.0161

8 0 501.00 1121.241

9 0 910.00 881

10 0 810.00 817

Average 0.0000 988.1000 1119.1578

APPENDIX A. ADDITIONAL MULTI-OBJECTIVE SCORES 96

Table A.3: Pareto Results

Run No. Boundary Unique Norms Height Distance

1 178.854 462 1020.852

2 545.07 2531 1492.3526

3 181.277 126 1456.9598

4 0 222 848.936

5 0 2228 535.18

6 193.507 890 1407.1536

7 550.637 855 1184.786

8 372.859 1758 851

9 0 2090 1442

10 0 213 947.359

Average 202.2204 1137.5000 1118.6579

