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Abstract 

This work consists of a theoretical part and an experimental one. The first part 

provides a simple treatment of the celebrated von Neumann minimax theorem as 

formulated by Nikaido and Sion. It also discusses its relationships with fundamental 

theorems of convex analysis. 

The second part is about externality in sponsored search auctions. It shows that in 

these auctions, advertisers have externality effects on each other which influence their 

bidding behavior. It proposes Hal RVarian model and shows howadding externality 

to this model will affect its properties. In order to have a better understanding of 

the interaction among advertisers in on-line auctions, it studies the structure of the 

Google advertisements network and shows that it is a small-world scale-free network. 
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Chapter 1 

Introduction 

The first part of this work, which is theoretical in nature, is covered in Chapter 2 and 

presents an elementary treatment of the celebrated von Neumann minimax theorem 

for quasiconcave/convex and lower/upper semicontinuous functions as formulated by 

Nikaido and Sion [35, 39]. It also discusses its relationships with fixed point and 

coincidence theorems for set-valued maps (see e.g., [6, 9, 15, 16]), the Knaster­

Kuratowski-Mazurkiewicz principle (KKM) principle [29], and system of nonlinear 

inequalities. All are fundamental results in convex analysis. 

The motivation of our approach is to provide a siinple and direct proof of the 

Nikaido and Sion formulation of the minimax theorem that is readily accessible to 

readers without extensive background in functional analysis and topology and to shed 

some light on its relationships with landmark results of convex analysis. Following 

Ben-EI-Mechaiekh and Dimand [10], we base our argument for the elementary proof 

on a result of Victor Klee [28] and Claude Berge [13] on convex covers of closed 

convex subsets of Euclidean spaces. The proof of the Berge-Klee result is itself based 

on the simplest version of the theorem on the separation of convex sets in Euclidean 

spaces, which is accessible to students in a first course on continuous optimization. 

The literature on the von Neumann minimax theorem is quite extensive and in­

cludes a number of different proofs. Those based on the KKM lemma or the Brouwer 
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2 CHAPTER 1. INTRODUCTION 

fixed point theorem are short (see e.g., [9, 12, 15, 16, 27]) but they need preparatory 

work beyond the courses of a typical undergraduate program in mathematics (e.g. 

such as Sperner's lemma on the existence of a complete labeling for a Euclidean sim­

plex, or the non retraction theorem of the unit ball onto its boundary in a Euclidean 

space, or homology and homotopy theories, ... ) . Also, a number of elementary proofs 

were provided for the minimax theorem. It is worth mentioning the proof given by 

I. Joe [25] based on a result of F. Riesz on the nonempty intersection of a family 

of compact sets having the finite intersection property. Another elementary but not 

simple proof is due to J. Kindler and is based on the I-dimensional KKM theorem, 

the I-dimensional Helly theorem (i .e., any family of pairwise intersecting compact 

intervals in R has nonempty intersection) , and Zorn's lemma [26] . 

We truly believe that the proof presented here is the simplest in the literature. 

We were also interested in the relationships between fundamental results in con­

vex functional analysis as illustrated by the chart in Figure 1.1, with a particular 

attention to the problem: does the Berge-Klee intersection theorem (or any Helly 

type intersection theorem) imply the KKM principle or one of its relatives (Sperner 

lemma, Matching Theorem of Ky Fan, etc .)? 

One can see that many of the results in this chart are equivalent. We shall include 

the proofs of the solid arrows but not those of dashed ones, simply referring to the 

articles where they have appeared. The implications 1-4 and the circular tour in the 

lower loop of the flow-chart are much in the spirit of [11, 10] . Implication 11 extends 

the" elementary KKM principle" of [23] to arbitrary topological vector spaces. 

It is worth mentioning that it is still an open question as to whether or not the 

Berge-Klee intersection theorem implies the KKM principle (or even its ancestor, the 

finite dimensional Sperner's lemma). A positive answer would yield a truly elementary 

proof of the KKM principle. It is however known [24] that a "topological Klee" is 

equivalent to the KKM Principle. But the proof of the topological Klee involves the 

KKM principle. In other words, the jury is still out on an elementary proof of the 
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KKM principle. The bold arrow 13 in Figure l.1 is thus still an open question . 

The tour proposed here affords the reader the opportunity to start a discussion 

on the minimax theorem from any of the cells of the diagram. 

In game theory, a two player zero-sum game is a game in which a participant's 

gain or loss is exactly balanced by the losses or gains of the other participant. In 

other words, the sum of the gain of one participant and the loss of the other one is 

zero. A two player zero-sum game can be viewed mathematically as triple (X, Y, f) 

where X is the set of strategies of player 1, Y is the set of strategies of player 2, and 

f : X x Y -+ IR is a mapping, called the pay-off function. For each x E X and each 

y E Y, f( x, y) is what player 1 gains and what player 2 looses when they choose 

strategies x and y, respectively. Both players know the payoffs associated to secretly 

chosen strategies, but each player is unaware of the other player's choice. Then, the 

choices are revealed and each player's points total is affected according to the payoffs 

for those choices. 

Consider two player zero-sum games with arbitrary numbers of finite strate­

gies. Each player aims at choosing so-called security strategies, which for player 1 

are of maxmin type: the number a := maxx miny f( x, y) represents his guar­

anteed minimal gain ; while for player 2, they are of minmax type: the number 

{3 := miny maxx f(x, y) being his guaranteed maximal loss. It is easily seen that 

always, a :::; {3 . When equality holds, the common value a = {3 is known as the 

value of the game. 

Emile Borel was the first to raise the problem as to whether or not such a zero­

sum games always have a value (see [12]) . In 1928, John von Neumann theorem 

answered Borel's question in the affirmative (without providing the proof) for arbi­

trary finite strategy sets [41] with what was to become the celebrated von Neumann 

minimax theorem . This result is the basis of game theory as a distinct mathematical 

discipline . The theorem soon was generalized to games with n players, non-constant 

sums of payoffs, infinitely many players, etc .. . (see [12, 13, 18] for detailed historical 
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accounts). 

Von Neumann published the first proof in Mathematical Annalen later in 1928 [43]. 

He proposed in 1932 a second proof based on Brouwer's fixed point theorem ·at the 

Menger's Colloquium in Vienna [42] . Although von Neumann's originally formulated 

the minimax theorem for linear forms, he quickly became well aware that convexity of 

level sets of the functionals involved was sufficient for the proof to hold true. It was 

not until 1954 that H. Nikaido [35] and later in 1958 M. Sion [39] formulated the min­

imax theorem for quasiconvex/concave and lower/upper semicontinuous functions. 

11 

Separatie:D of Cmvex Sels 
in Finite Dimension, 

13 .. 

ILC_.O_D_Vex_, _KKr_" .'1\_1 _Prin_'_C1_·p_Ie_rr-li2--lL_B_er_g_e_~K_-I-,eerTh_' _e_or_em_-1~_ ~ ______ ~ _ ~,--_T_' O_PO_l_OgL,.'C_al_-_Kl_ee_" _-,I 
12 ! 2 

10 

I 

I 

A First Alternativefor 
Systems of Nonlinear 

Inequalities 

InfSup Theorem 

VOD, Neumann Minimax Theorem 

: , 
J 

'------,----1.
1 

KKMPrilicipleofKyFan I 
r-~----------------' 

8 

7 

, , , , , 
~ - - - - - - - - - - - '~ - - ~ -~ A Coincidence Principle 

5 

A Second .<lJternative for 
Systems of Nonlinear 
- Inequalities 

, 
~~~~~~ __ ~ _ ~ __ M . ~ ~ 

6 

Figure 1.1: relationship between fundamental results in convex analysis. 



5 

In the first section of chapter 2, we propose some definitions, examples, and 

preliminary results culminating with the theorem on the separation of disjoint closed 

convex subsets of Euclidean spaces together with a most elementary proof. The core 

of this chapter is presented in section 2 where we prove the various implications in 

Figure 1.1, including the simple and elementary proof, due to Ben-EI-Mechaiekh and 

Dimand [10] , of Nikaid6-Sion formulation of the minimax theorem. 

The second part of the thesis, described in Chapters 3 and 4, is experimental. 

The existence of Nash equilibria for games, which is known to be equivalent to the 

von Neumann minimax theorem, is at the heart of the solvability of online auction 

models studied in this second part. Chapter 3 is about sponsored search , a service 

provided by search engines. Sponsored search is the delivery of web addresses with 

advertisements relevant to the user's inquiry as part of the search experience. Search 

engines, such as Google, Yahoo! and MSN use sponsored search to earn money by 

displaying advertisements alongside the result page of a user inquiry. 

Sponsored search satisfies users' desire for relevant search results and advertisers 

need for making traffic to their web sites. It is now considered to be among the 

most effective marketing tools available. Sponsored search has become a big busi­

ness among different kinds of advertising methods. For example, Google generated 

roughly $22 billion in revenue in 2009 which is almost 97% of its revenue. 

Search engines allocate certain spaces in the result page of an inquiry to show 

advertisements. These spaces which are usually located at the top or the side bar of 

thepage, are called slots. Sponsored search deals with the way these advertisements 

are shown in the result page of an inquiry. Each time a keyword is searched by a 

user, the search engine req~ires to decide which advertisements to show among the 

different advertisers interested in that keyword . It also needs to determine the order 

and the location in which advertisements are shown. For this purpose , the search 

engine runs an online auction each time an inquiry takes place. 

Each advertiser provides the search engine a bid, a list of relevant keywords and 
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a maximum budget for a certain period of time. Using these data , the search engine 

conducts an online auction among advertisers interested in the searched keyword. 

It ranks the advertisers based on their bid and other parameters, and show them 

accordingly in the result page of the inquiry. Advertisers pay the search engines only 

when a user clicks on their advertisements. This payment scheme is called the" pay 

per click" auction. 

The method used mainly in today's sponsored search 2uctions is the Generalized 

Second Price (GSP) auction. In this method, the search engine assigns each advertiser 

a weight based on her quality. The advertisers are scored by multiplying their weight 

and bid and are ranked based on their scores. The payment of each advertiser is the 

bid of the one who is right after her. 

In GSP auctions, a Click Through Rate (CTR) is assigned to each advertiser which 

is the probability that a user clicks on a slot when it is occupied by the advertiser. 

Each advertiser has also a value which is defined as the expected profit for her if her 

advertisement is clicked on by a user. The utility of an advertiser is calculated as the 

subtraction of the value by the payment, multiplied by her CTR. 

The assumption that an advertiser's CTR depends only on her slot and her quality 

is not realistic. Indeed , CTR also depends on the quality and position of the other ad­

vertisers who are displayed in the result page. Therefore, advertisers have externality 

effects on each other which influence their CTR and consequently affect their bidding 

behavior. Studying on these externality effects is the main focus of Chapter 3. In 

this chapter, first we review the studies on this topic and then we present the only 

experimental work on the externality effects by R. Gomes and N. Immorlica. They 

analyzed the clicking records associated to queries on some keywords in Microsoft's 

Live Search and showed the externality effects that advertisers have on each other. 

Later, we add a basic externality parameter to the basic model of sponsored search 

in particular and show its effects on the properties of the model. 

Gathering search click data is extremely difficult due to the privacy issues of 
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search engines. So in order to have a better understanding of the interaction among 

advertisers, we study the structure of the network of on-line advertisers in Chapter 4. 

At the beginning of this chapter, we discuss large-scale networks. One of the concepts 

that has been mostly studied in large-scale networks is the small-world property. 

A small-world network is a network which has a small average distance and high 

clustering coefficient. Of the three kinds of small-world networks, we focus on the 

ones that are scale-free. A scale-free network is a network whose degree distribution 

has power-law. 

We present some examples of small-world scale-free networks such as the. science 

collaboration network, the world wide web, the web of human sexual contacts and 

On-line Social Networks (OSNs). We discuss some of the earlier studies which show 

that they have a small-world scale-free structure. We also present Barabasi-Albert 

model for scale-free networks which is a natural random process that makes a network 

with a power law degree distribution. 

The main focus of this chapter is to analyze the structure of Google advertisement 

network which is a large-scale network. We chose Google because of its high revenue 

through online advertisement which is the number one among the different search 

engines. Google shows up to three advertisements on top of the result page and up 

to eight advertisements on the right side bar of the page. We show that this network 

is a small-world scale-free network. We model this network by a directed graph whose 

vertices are advertisers. On this graph an edge between two vertices is built if two 

advertisers have been shown on the same result page of an inquiry. If we number 

slots such that the three top slots are numbered top-down 1 to 3 and the eight right 

side slots are numbered 4 to 11, the direction of an edge in the graph is from the 

higher number vertex to the lower one. 

The Google advertisement network has 81791 vertices and about 2 million edges. 

In this chapter, we describe how we collected the list of vertices and edges of this graph 

by using Python and C++ programming languages and the way we analyzed this 
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graph using Pajek software (Pajek is a software for analyzing large-scale networks). 

Our results show that the Google advertisement network has the average distance 

of 2.88431 among reachable pairs, a high~ clustering coefficient of 0.5457577 and a 

power law degree distribution with degree exponent of close to 1.5. At the end of this 

chapter, we study the various cases of the Google advertisement network by applying 

some changes to the graph of the network. 

1.1 Statement of Originality 

The first part provides an alternative way to prove the Nikaido-Sion version of the von 

Neumann minimax theorem based on elementary arguments. This approach, outlined 

by Ben-EI-Mechaiekh and Dimand [10], could easily be adopted in a first course on 

Game Theory. We show in this thesis that the Klee-Berge intersection theorem, a key 

step in the elementary proof of the von Neumann theorem is equivalent to a "convex 

KKM Principle", thus extending to arbitrary topological vector spaces a result of 

Granas-Lassonde [23] shown to hold in super-reflexive Banach spaces. 

The second part starts by extending a basic model for on-line auctions by adding 

a simple externality request. It shows that the extended model may not even have 

the basic properties of an ordinary auction. It also analyzes the structure of the 

underlying graph of Google advertisements network, and shows that it has a small 

average distance of 2.88431 and a high clustering coefficient of 0.5457577. It also 

shows that this network has Power-law degree distribution, and so it isa scale-free 

network. 



Chapter 2 

An elementary treatment of the 

Von Neumann minimax theorem 

and related results 

2.1 Preliminaries 

In this section we propose some preliminaries, definitions, examples and theorems 

needed for the sequel. A simple example of a two player zero-sum game with pure 

strategies is described by the pay-off matrix in Table 2.1. 

A B C 
1 -3 -2 2 
2 -1 0 4 
3 -4 -3 1 

Table 2.1: Pay-off matrix for player 1. 

The payoff matrix for player 2 is the matrix above with the signs reversed. Here 

the strategy sets for both players are X = {I, 2, 3} and Y = {A, B, C}; respectively. 

If player 1 chooses strategy 2 and player 2 chooses strategy C, when the payoff is 

allocated, player 1 gains 4 points and player 2 loses 4 points. If player 1 chooses 

9 
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strategy 1 or 3, she could gain at least -3 or -4 points respectively. While if she 

chooses strategy 2, she could gain at least -1 point. Therefore the secure strategy for 

player 1 is strategy 2. By choosing strategy 2 she can insure herself a minimal gain 

of -1 points, so a := maxx miny f( x , y) = -1. Similarly, player 2 secures herself a 

gain of 1 point by choosing strategy A. Therefore f3 := miny maxx f(x, y) = -l. 

Thus, the value of this game is -1. 

Another example of such games with Mixed strategies is given in Table 2.2. In 

this example the minimax choice for player 1 is strategy 2 since the worst possible 

result is then having to pay 1, while the simple minimax choice for player 2 is strategy 

B since the worst possible result is then no payment. Therefore this game does not 

have value with pure strategies. 

A B C 
1 3 -2 2 
2 -1 0 4 
3 -4 -3 1 

Table 2.2: Pay-off matrix for player 1. 

In this example some choices are dominated by others and can be eliminated . For 

instance player 1 will not choose strategy 3 since either strategy 1 or 2 will produce 

a better result, no matter what player 2 chooses; player 2 will not choose strategy C 

since strategy A or B will produce a better result, no matter what player 1 chooses. 

Player 1 can avoid having to make an expected payment of more than 1/3 by 

choosing strategy 1 with probability 1/6 and strategy 2 with probability 5/ 6, no 

matter what player 2 chooses. On the other side player 2 can ensure an expected gain 

of at least 1/3 by using a randomized strategy of choosing strategy A with probability 

1/ 3 and strategy B with probability 2/ 3, no matter what player 1 chooses. Indeed 

by these mixed strategies this game has value of -1/3. 

The starting point of our discussion is the simplest version of the theorem on 

the separation of convex sets in finite dimensions. We follow here the treatment by 

Magill and Quinzii [31] . We start with a preparatory lemma on · the separation of a 
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point and a convex set (which is in fact enough for our purposes!). 

Lemma 2.1.1. (Separation of disjoint point and convex set) 

Let C be a nonempty closed convex subset of lRn and let x tf. C, y denoting the 

projection of x onto C. The hyperplane H~ orthogonal to u = x - y which passes 

through y strictly separates x and C, namely (see Figure 2.1), 

U· Z ::; U • Y < u . x, Vz E C. 

x 

o 

Figure 2.1: The hyperplane H orthogonal to u which passes through y, separates 
x from the convex set C. 

Proof. Since C is closed and convex, the projection y of x onto C is unique (see 

e.g. [31]). Define, for a given z E C, ¢z : [0,1] -7 lR by: 

¢z(t) = Ilx - (tz + (1- t)y)112, 

The square of the distance between x and points on the line segment [y, z] c C. 

Az y is closest to x, ¢z attains its minimum on [0, 1] at t = ° so that ¢~(o) ~ 0, Vz E 

C. Since 

¢z = II(x - y) + t(y - z)112 = Ilx - Yl12 + 2t(x - y) . (y - z) + t211Y - z112, 

we have: 

¢~(t) = 2tly - zl2 + 2(x - y) . (y - z), 
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and ¢~ (0) = 2 (x - y) . (y - z). Thus u· (y - z) 2: 0 for all z E C, that is u . z ~ u· y. 

Since u· (x - y) = Ilx - y112, u· (x - y) > 0, that is u· Y < U· x, and the proof is 

complete. D 

This result extends to disjoint convex sets. 

Theorem 2.1.1. (Separation of disjoint convex sets) 

(i) If K and C are non-empty convex subsets of]Rn with K n C = 0, then there 

exists u E ]Rn, U :f. 0, such that 

sup U.x ~ inf u.x' (2.1) 
xEC x'EK 

(ii) If in addition K is compact and C is closed, then 

sup u.x < inf u.x'. (2.2) 
xEC x'EK 

Proof. (i) Put 0 = C - K = {y E ]Rn I y = x - x',x E C,X' E K}. Since K 

and C are non-empty, 0 is non-empty and convex as well. 0 tJ- 0 as K n C = 0. 

There are two cases to consider. 

(a) 0 tJ- O. By Lemma 2.1.1, there exists u E ]Rn,u =f 0 such that u.z < u.O = 

0, '<Iz E 6. If we restrict ourself to the members of 6 then, u.x < u.x', '<Ix E C 

and '<Ix' E K, which establishes (2.2). 

(b) 0 E 6. Let {e1, .•. , em} be a maximal collection of linearly independent 

vectors in 6. Then for all x E 6, {x, e1 , ... , em} are linearly dependent so that 

x = 2:::1 Aiei. We show that for all 0: > 0, -0: 2:::1 ei tJ- 6. 

Suppose there exists 0: > 0 such that -0: 2:::1 ei E 6 c Then there exists a 

sequence {XV = 2:::1 Aiei } E 6 such that XV -t -0: 2:::1 ei . since {e1 , ••. , em} 

are linearly independent, Ai -t -0:, i = 1, ... , m, so that for sufficiently large 

II, Ai < 0, i = 1, ... , m. Then we have 1-2:~i' N' E [0,1], and by the convexity of 
~=l 'l 

6: 
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which is: 

contradicting 01-.6. Thus for all kEN, -i 2::'1 ei 1- 6. By Lemma 2.1.1, there 

exists Uk E lRn , which can be chosen with Ilukll = 1, such that: 

Choosing a subsequence such that Uk --+ U and restricting the inequality to 

elements of 6 gives: 

U.z:S 0, \:Iz E 6 {:} U.X :S u.x', \:Ix E C, \:Ix' E K, 

which proves (2.1) . 

(ii) If in addition K is compact and C is closed, then 6 is closed (the sum of 

a closed set and a compact set is clotled). Thus 0 1- 6 = 6, and the first case of 

the proof of (i) also holds. D 

We draw the reader's attention that part (ii) is what is needed in the proof 

of Implication 1 in Figure 1.1. The proof of (ii) is an immediate consequence of 

Lemma 2.1.1. 

Throughout this chapter, we work in the framework of general real topological 

vector spaces. 

Definition 2.1.1. [3S} Given a vector space Lover lR and a topology T on lR the 

pair (L, T) is called a Topological Vector Space over lR if these two conditions are 

satisfied: 

(x, y) --+ x + y is continuous on lR x lR into lR. 

(A, x) --+ AX is continuous on lR x lR into lR. 

Throughout this chapter, topological vector spaces are supposed to be Hausdorff 

(i.e. distinct points can be separated by disjoint open neighborhoods) . We shall 

also consider numerical functions that may be short of being fully continuous or 
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convex. Indeed, while von Neumann's original formulation of the minimax theorem 

considered linear forms, he became quickly aware that the convexity of sub-level sets 

of the objective functions was the key geometric consideration for the existence of a 

saddle point. He thus alluded to the concept of quasi-convexity as described below. 

Definition 2.1.2. A real function f : X -+ R. defined on a subset X of a topo-

logical vector space is: 

(i) quasiconvex if V>" E R., the level set {x EX: f(x) < >..} is a convex subset of 

X. 

(ii) upper semicontinuous (u.s.c.) if V>" E R., the level set {x EX: f(x) < >..} is 

an open subset of X. 

A function f is quasiconcave if - f is quasiconvex; it is lower semicontinuous 

(I.s.c.) if - f is u.s.c. Note that f is quasiconvex on X if and only if: 

Convex functions are clearly quasiconvex (see Crouzeix [27] for a comparative study 

of quasiconvexity). 

Example 2.1.1. The function f : R.+ -+ R. with f(x) = lnx or the function 

shown in Figure 2.2 are quasiconvex functions which are not convex. 

Example 2.1.2. Let f be defined on X = [0,1] E R. by: 

{

I, for 0 :::; x :::; 1/3 
f(x) = . 

0, for 1/3 < x :::; 1 

Then f is upper semicontinuous on X and is clearly not continuous. 

Remark 2.1.1. (i) The extreme value theorem does not require full continuity 

of the objective function. Indeed, lower semicontinuous functions on compact 
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F(x) 

x 

Figure 2.2: Example of quasiconvex function. 

domains achieve their minimum, namely: If f(x) is a l.s.c. function defined on 

a compact set X, then it achieves its minimum: 

3XEX, f(x) = minf(x) 
xEX 

(ii) The upper envelope of l.s.c. function is also l.s.c., more precisely: if {JihEl 

is a family of l.s.c. functions, the sUPiEI fi is also an l.s.c. function. 

Remark 2.1.2. Given two sets X and Y, a set-valued map is a transformation 

F that assigns to each element x EX, a subset F( x) of Y. 

In 1929 Knaster-Kuratowski-Mazurkiewicz using Sperner's lemma as a tool, es-

tablished the following result on the non-empty intersection of a family of closed 

subsets of a Euclidean space [29]: 

Theorem 2.1.2. (KKM lemma) 

Suppose that a simplex sm is covered by the closed sets Ci for i E I = {I, ... , m} 

and that for all h c I the face of S that is spanned by ei, for i E Ik, is covered 

by Ci . Then all the Ci have a common intersection point. 

In 1978 Dugundji-Granas [16] introduced the following class of set-valued maps: 
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Definition 2.1.3. Given an arbitrary subset X of a real vector space L , a set­

valued map r : X -+ 2E is said to be a KKM map if for every finite subset 

A: {X1," "Xn } ~ X: 
n 

Conv(A) c U f(Xi). 
i=l 

Ky Fan in 1961 [17] extended the KKM lemma to topological vector spaces of 

any dimension . Ky Fan's extension, with this terminology, asserts that, given a 

KKM closed valued map f defined on a subset X of a topological vector space, 

the family f(x) : x E X has the finite intersection property. An additional suitable 

compactness condition, implies the non-emptiness of the intersection for the entire 

family (see Theorem 2.2.6). This principle is the basic i'ngredient in the proofs 

of " intersection" theorems and related fixed point theorems of topological nature 

(including the famous Brouwer fixed point theorem). There have subsequently been 

numerous extensions of the KKM principle with the aims of replacing linear convexity 

by topological substitutes (see e.g., [24]) or by abstract convex structures. 

The KKM principle has a "dual" formulation as a fixed point theorem for a set­

valued map. Indeed, as we will see, a KKM map gives rise to a so-called Ky Fan 

mapping (see e.g. [9] and references there). Those maps are extended to: 

Definition 2.1.4. [9J A set-valued map A : X -+ 2Y is a cp-map (written 

A E cp(X, Y)) if and only if: 

(i) A-1(y) is convex in X for all y E Y; 

(ii) A has a set-valued selection with open values and nonempty fibers , i.e., 

A(x) :2 A(x) open in Y for all x E X, and A-1(y) =F 0 for all y E Y. 

A map B : X -+ 2Y is a cp*-map if and only if its inverse B-1 : Y -+ 2x is a 

cp-map. 

Definition 2.1.5. A family {f(X)}xEX of sets defined on an arbitrary set X is 

said to have the finite intersection property if and only if for every finite subset 
n 

{Xl, ... , Xn} eX, n r(Xi) =F 0. 
i=l 
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It is well-known that a topological vector space Y is compact if and only if for 

every collection {f(X)}xEX of closed sets having the finite intersection property, 

n f(x) =10. 
xEX 

We end this section by recalling the basic concept of a partition of unity subor-

dinated to a cover. 

Definition 2.1.6. (4) A partition of unity on a set X is a family {fihEI of 

functions from X into [O,lJ such that at each x E X, only finitely many functions 

in the family are nonzero and 

L Ji(x) = 1, 
iEI 

where, by convention, the sum of an arbitrary collection of zero is zero. 

A partition of unity is subordinated to a cover U of X if each function van­

ishes outside some member of U. For a topological space, a partition of unity is 

called continuous if each function is continuous. Every open cover of a paracom-

pact (respectively, compact) topological space has a locally finite (finite, respectively) 

subordinated partition of unity. 

2.2 The Von Neumann's Minimax Principles and Related 

Results from Convex Analysis 

We shall proceed in two steps to show the solid line implications in Figure 1.1. We 

start first with the implications 1 to 4 and will follow with the remaining implications: 

2.2.1 The Elementary Proof 

We are now ready to detail the passage from the separation theorem to the Nikaido-

Sion version of the minimax theorem. The first step is the intersection theorem of 

Berge-Klee. 
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Theorem 2.2.1. [13, 28j (Berge-Klee Theorem) 

Let C and Cl, ... , Cn be closed convex sets in a Euclidean space satisfying: 
n 

(i) C n n Ci ¥- 0 for j = 1,2, ... , n; 
i=l,i#j . 

n 
(ii) C n n Ci = 0. 

i=1 
n 

Then C i U Ci· 
i=1 

Proof. We follow Victor Klee's proof. We may assume that C and Ci's are com­

pact (otherwise, we replace C by the convex finite polytope C' := Conv{Yj : 
n 

j = 1, .. , n}, where Yj E C n n Ci, and Ci by c: := Ci n C'). To prove this 
i=1,i#j 

theorem we use induction on n. 

Step 1: If n = 1, by (i) Cis nonempty, and by (ii), C and C1 are disjoint. Thus 

clearly C i Cl. 

Step 2: We suppose that the theorem holds for n = k - 1. 

Step 3: Assume n = k i.e. {C, C l , . . . , Cd is a collection of compact convex sets, 
k k 

with C n n Ci ¥- 0 for any j = 1,2, ... , k, and C n n Ci = 0. We want to 
i=l,i#j i=l 

k 
show that C i U Ci · 

i=l 
k-l k k-l 

We have (C n Ck) n n Ci = C n n Ci = 0. As C n Ck and n Ci are 
~l ~l ~l 

nonempty convex subset of a Euclidean space, by Theorem 2.1.1 they can be 
k-l 

strictly separated by a hyperplane H. Thus H n n Ci = 0, and hence (H n C) n 
i=l 

k-l k-l ( n CinH) = 0. Putting C' := HnC and C: := HnCi , we have C'n( n CD = 0. 
i=l i=l 

k k 
From Cn n Ci ¥- 0 for j = 1,2, ... ,k, we have 3yo E Cn n Ci ¥- 0 

i=l,i#j i=1 ,i#j 
k-l 

for j = 1, 2, ... , k - 1 which means Yo E C n Ck and 3Yk E C n n Ci ¥- 0, that is 
i=l 

k-l 
Yk E n Ci· Therefore Yo and Yk are separated by H. Let z = [Yo, Yk] n H. Then 

i=l 
k-1 k-l 

Z E C n H = c' and z E ( n C i ) n H = n C: for any j = 1,2, ... , k - 1. 
i=l#j i=1#j 

k-l 
Therefore C' n n C: ¥- 0 for any j = 1,2, ... , k - 1. 

i=l#j 
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k-l 
Using step 2 of the induction, we have C f ct. U c: which means C n H ct. 

i=l 
k-l k 
U (Ci n H). As (H n C) n Ck = 0, we have C n H ct. U (Ci n H), which gives 
i=l i=l 

D 

We now show that the Berge-Klee theorem yields a nonlinear alternative for 

systems of inequalities, the key ingredient in the proof of the minimax theorem. 

Theorem 2.2.2. [10} (A First Alternative for Systems of Nonlinear In­

equalities) 

Let X and Y be two convex subsets of topological vector spaces, with Y com-

pact,and let h, 12, 13, f4 : X x Y ---7 JR be four functions satisfying: 

(i) h(x, y) :::; 12 (x, y) :::; 13 (x, y) :::; f4(x, y) for all (x, y) E Xx Y; 

(ii) y f-t h (x, y) is lower semicontinuous and quasiconvex on Y for each fixed 

x E X; 

(iii) x f-t 12 (x, y) is quasiconcave on X for each fixed y E Y; 

(iv) Y f-t h(x, y) is quasi convex on Y for each fixed x EX; 

(v) X f-t f4(x,y) is upper semicontinuous and quasiconcave on X for each fixed 

y E Y; 

Then for any A E JR, the following alternative holds: 

(A) there exists x E X such that f4(x,y) 2:: A, for all y E Y; or 

(B) there exists y E Y such that h(x, 'f}) :::; A, for all x E X 

Proof. Suppose that the nonlinear alternative does not hold, i.e. both (A) and 

(B) fail. If (A) fails then \:Ix ::Iy s.t f(x, 'f}) < A which implies that the collection 

of open level sets {Uy := {x EX: f4(x, y) < A} : y E Y} is a cover of X 

(each Uy is open because f4(x, y) is u.s.c). Similarly, if (B) fails, the collection 

{Vx := {y E Y: h(x,y) > A}: x E X} is an open cover of Y. 

Since Y is compact, {Vx : x E X} admits a finite subcover {VXk : k = 1, ... , m}. 

Let C := Conv{xk : k = 1, ... m}. As C is compact and in X, it can be covered 
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by a finite sub collection {UYi : i = 1, ... , n}. We consider a minimal cover {UyJ, 
n n 

in the sense that G ~ U UYi but G cJ;. U UYi for j = 1, .. . , n. 
i=l i=l,iij 

For i = 1, ... , n, let Gi := {x EX: f4(x, Yi) ~ A}. Since f4 is u.s.c and 

quasiconcave, Gi's are closed convex subsets of X. The fact that G is covered 
n 

by {UyJ implies the emptiness of the intersection G n n Gi . The minimality of 
i=l 

n n 
{UyJ causes G n n Gi #- 0 for j = 1, .. . , n. By Theorem 2.2.1, G cJ;. U Gi, 

. i=l,i#j i=l 
n 

which implies the existence of Xo E G with Xo tj. U Gi, that is Xo tj. Gi thus 
i=l 

f4(xo, Yi) < A, hence h(xo, Yi) < A for i = 1, ... , n. The quasiconvexity of 13 (xo, .) 

implies that 

::lxo E G such that h(xo, y) < A, \ly E D := Gonv{Yi : i = 1, .. . , n}, 

similarly 

::lyO E D such that 12 (x, YO) > A, \Ix E G, 

this yields 

A < 12 (xo, YO) ::::; h(xo, YO) < A, 

a contradiction. D 

This nonlinear alternative yields: 

Theorem 2.2.3. (In/Sup Theorem) 

Let X and Y be two convex subsets of topological vector spaces, with Y com-

pact,and let h, 12, 13, f4 : X x Y --+ lR. be four functions satisfying: 

(i) h(x,y)::::; h(x,y)::::; h(x,y)::::; f4(x,y) for all (x,y) E X x Y; 

(ii) Y f-t h (x, y) is lower semicontinuous and quasiconvex on Y for each fixed 

x E X; 

(iii) x f-t 12 (x, y) is quasi concave on X for each fixed y E Y; 

(iv) y f-t 13 (x, y) is quasiconvex on Y for each fixed x E X; 

(v) X f-t f4(x,y) is upper semicontinuous and quasiconcave on X for each fixed 
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yEY. 

Then: 

a = supinf f4(X, y) ~ min sup h(x, y) = (3. 
x y y x 

Proof. Assume a < (3, then :3A E JR, a < A < (3. By Theorem 2.2.2 (A) or (B) 

should hold. 

If (A) holds, there exists x E X such that f4(X, y) ~ A, for all y E Y, hence 

i~f f4(X, y) ~ A. Then a = s~pi~f f4(X, y) ~ A which is a contradiction. 

If (B) holds, there exists y E Y such that h (x? y) ::; A, for all x EX, 

hence suph(x,y) ::; A. Then (by Remark 2.1.1 the minimum exists) (3 = 
x 

min sup h (x, y) ::; A which is a contradiction. 
y x 

Hence neither (A) nor (B) of Theorem 2.2.2 can hold. This is absurd, so 

D 

Putting h = 12 = h = f4 = f in Theorem 2.2.3, we obtain the Nikaido-Sion 

(see [35, 39]) version of the minimax theorem of von Neumann. 

Theorem 2.2.4. (Nikaido-Sion formulation of the minimax theorem of 

Von Neumann) 

Let X and Y be convex subsets of topological vector spaces, with Y compact, and 

let f be a real function on X x Y such that: 

(i) y f-+ f(x, y) is lower semicontinuous and quasiconvex on Y for each fixed 

x E X; 

(ii) x f-+ f(x, y) is upper semicontinuous and quasi concave on X for each fixed 

y E Y; 

Then 

sup min f(x, y) = min sup f(x, y). x y y x 

Proof. Since supminf(x,y) ::; minsupf(x,y) is always true and Theorem 2.2.3 
x y y x 

implies that sup min f(x, y) ~ min sup f(x, y), we have x y y x 
supminf(x,y) = minsupf(x,y). D 
x y y x 
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It is crucial to point out, here, that this first alternative for systems of nonlinear 

inequalities is less general than the one presented first in [9] and used below. But it is 

more than adequate for deriving the minimax theorem. The central difference between 

the two alternatives resides in the additional convexity assumptions in hypotheses (ii) 

and (v). These very quasiconvexity /concavity assumptions on it and f4 are what 

give the first alternative its" elementary" character. We do not see, at this moment, 

if it is possible to derive the second alternative from the first. Doing this, as the 

remainder will show, would amount to providing the elementary proof of the KKM 

Principle, and hence of the Brouwer fixed point theorem. 

We now continue with the treatment of the lower loop and the lateral arrows in 

Figure 1.1. 

2.2.2 Intersection Theorems, Fixed Point, and Coincidence 

The starting point is the following version of the KKM principle due to Ky Fan: 

Theorem 2.2.5. (17} (KKM Principle of Ky Fan) 

Let r : X ~ 2Y be a set-valued map and X and Y be subsets of real topological 

vector space E, with r a KKM map and r(x) closed in Y for all x E X. Then 

{r(X)}xEX has the finite intersection property. 

Assume that anyone of the following four conditions holds: 

(a) Y compact; 

(b) each r( x) compact; 

(c) there exists Xo E X with r(xo) compact; 
n 

(d) there exists Xl, ... ,xn in X with n r(Xi) compact. 
i=l 

Then n r(x) =f 0. 
xEX 

Remark 2.2.1. Note that the compactness conditions above are increasing in 

generality, i.e. (a) =? (b) =? (c) =? (d). Ky Fan considered a yet more general 

compactness condition in (19} which is sufficient to reduce the problem to finite 

dimension, namely: there exists Xo in X · such that Xo C C which C is a convex 
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compact set in X and n f(x) = K with K compact in Y. A dual formulation 
xEXo 

of this condition was used in [9} in the context of fixed points for set-valued maps 

to relax the compactness of the domains by a control outside of a compact subset. 

The KKM Principle of Ky Fan can be generalized to involve two mappings: 

Theorem 2.2.6. [16} (Dugundji-Granas KKM Theorem) 

Let f, I' : X --+ 2E be two set-valued maps defined on an arbitrary subset X of a 

real topological vector space E, satisfying: 

(i) f is a selection off (i.e, f(x) ~ f(x) for all x E X; 

(ii) f is a KKM-map; 

(iii) all values of I' are closed; 

(iv) n f(x) i- 0 =? n f(x) i- 0. 
xEX xEX 

Then {f(X)}XEX has the finite intersection property. 

If anyone of following four conditions holds: 

(a) Y compact; 

(b) each f(x) compact; 

(c) there exists Xo E X with I' (xo) compact; 
n 

(d) there exists xl, ... ,Xn in X with n f(Xi) compact. 
i=l 

Then n f(x) i- 0. 
xEX 

This version of the KKM Principle can be phrased in analytical terms as another 

alternative for systems of nonlinear inequalities (see e.g., [9]) . 

Theorem 2.2.7. (A Second Alternative for Systems of Nonlinear In­

equalities) 

Let X and Y be two convex subsets of topological vector spaces, with Y com-

pact,and let h, 12, 13, f4 : X x Y --+ IR be four functions satisfying: 

(i) h(x,y):::; h(x,y):::; h(x,y):::; f4(X,y) for all (x,y) E X x Y; 

(ii) Y H h (x, y) is lower semicontinuous on Y for each fixed x EX; 

(iii) x H 12 (x, y) is quasiconcave on X for each fixed y E Y; 
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(iv) Y H h(x, y) is quasiconvex on Y for each fixed x EX; 

(v) X H f4 (x, y) is upper semicontinuous on X for each fixed y E Y; 

Then for any A E lR, the following alternative holds: 

(A) there exists x E X such that f4(x,y) ~ A, for all y E Y; or 

(B) there exists y E Y such that !1 (x, y) :::; A, for all x E X 

Proof. First step. we show that if this theorem holds with X,Y both convex 

compact, then it, holds with X,Y both convex but only Y compact. Assume that 

alternative (B) fails, then Vy E Y,3x E X with !1(x, y) > A. So {{y E Y : 

!1(x,y) > A}}xEX is an open cover of Y. Since Y is compact, it has a finite 

sub cover {y E Y: !1(Xi,y) > A}r=l. Put C = Conv{xl, ... ,Xn } C X. Since both 

C and Yare convex compact, we will have at least one of the following: (a) there 

exists x E C such that f4(x, y) ~ A, for all yE Y, or (b) there exists y E Y such 

that !1(x,y):::; A, for all x E C. 

We show that (b) fails: Assume (b) holds, then !1(x, y) :::; A for all i = 1, ... n, 
n 

which contradict with the fact that Y = U {y E Y : !1 (Xi, y) > A}. Therefore 
i=l 

(a) holds, hence alternative (A) holds. 

We showed that if alternative (B) fails then (A) holds. Similarly we have the 

converse. 

Second step. We prove this theorem by assuming both X and Y are convex 

compact. Define set-valued maps F, F : X -t 2Y with: 

F(x) = {y E Y: h(x,y) > A}, 

and 

F(x) = {y E Y : !1(x, y) > A}. 

Also define set-valued maps G, G : Y -t 2x with: 

G(y) = {x EX: h(x,y) < A}, 

and 

G(y) = {x EX: f4(x, y) < A}. 
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Clearly F(x) ~ F(x) for all x E X, and G(y) ~ G(y) for all y E Y. If F is 

not surjective then (B) holds, similarly if G is not surjective then (A) holds. 

We complete the proof by showing that F and G can not be both surjective: 

Assume F and G are both surjective, and define r, f : X x Y --+ 2XxY by 

r(x, y) = X x Y \ (G(y) x F(x)), 

and 

f(x, y) = X x Y \ (G(y) x F(x)). 

Bing F and G both surjective implies that F and G are surjective. Observe 

that n r(x,y) = 0. Therefore the conclusion of the Theorem 2.2.6 does 
(x,Y)EXxY 

not hold for rand f. Clearly r(x, y) ~ f(x, y) for all (x, y) E X x Y. Also 

f(x, y) is closed due to the lower semicontinuity of j and upper semicontinuity 

of g. As F and G are surjective n f(x, y) = 0. 
(x,Y)EXXY 

Hypothesis (i),(iii) and (iv) of Theorem 2.2.6 holds, but not the conclusion. 

This implies that r is not a KKM map. It means there exists a convex comb ina-
n 

tion (xo, Yo) = L Ai(Xi, Yi) with 
i=l 

n n 
(xo, Yo) ~ U r(Xi' Yi) {:} (xo, Yo) E n (G(Yi) x F(Xi)) {:} (Yi, Xi) E G- 1(xo) x 

~1 ~l 

F-1(yo) for all i E {l, ... ,n}. 

Since G-1(xo) x F-1(yo) is a convex subset of Y x X, it follows that (Yo, xo) E 

G-1(xo) xF- 1(yo) that is h(xo, Yo) < A < h(xo, yo). This contradicts h(xo, Yo) ::::: 

D 

Note that this second alternative is more general than the first one (Theorem 

2.2.2) as the convexity assumptions on the first and last functions are removed. 

Such alternatives can be expressed in geometric terms as coincidence theorems for 

set-valued maps. 

Theorem 2.2.8. [9J (A Coincidence Principle) 

Let A E <I> (X, Y) and BE <I> * (X, Y) where X and Yare nonempty convex subsets 
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of topological vector spaces. If Y is compact, then there exists (xo, YO) E X x Y 

such that 

Yo E A(xo) n B(xo). 

Proof. Assume A E <f?(X, Y) , B E <f?*(X, Y), and X, Yare nonempty convex 

subsets of topological vector spaces. We define j, f, g, g : X x Y -+ JR as: 

{o, if y Et A(x) {o, if yEt A(x) 
j(x,y) = f(x,y) = 

1, ifYEA(x) 1, ify E A(x) 

{o, if y E B(x) {o, ifYEB(x) 
g(x, y) = g(x, y) = 

1, if y Et B(x) 1, if yEt B(x) 

For each fixed x E X and each A E JR, S = {ylj(x,y) > A} is an open set in 

Y. If A ~ 1 then S = 0 which is open, if 0::; A < 1 then S = A(x) which is open 

in Y, and finally if A < 0, S = Y which is open. Therefore j is l.s.c. on Y for 

each fixed x E X. With the same argument f is quasiconcave on X for each fixed 

y E Y, g is quasiconvex on Y for each fixed x E X, and g is u.s.c. on X for each 

fixed y E Y. Hence, the conditions (ii) to (v) of the second alternative theorem 

are satisfied. Since B(x) =1= 0 for all x E X, and A-l(y) =1= 0 for all y E Y, both 

(A) and (B) of Theorem 2.2.7 fail. All the conditions except the first one of the 

second alternative theorem hold, but its conclusion does not hold. Therefore the 

first condition is not satisfied. 

Then, since clearly j(x,y) < f(x,y) and g(x,y) ::; g(x,y), it follows that 

f(x, y) ::; g(x, y) fails, That is: 

0= g(xo, Yo) < f(xo, Yo) = 1 for some (xo, Yo) E X x Y, 

which is equivalent to Yo E A(xo) n B(xo). D 

The coincidence theorem has many applications in the theory of games and other 

areas such as minimax inequality, fixed point theory, existence of minimizable qua-

siconvex functions, etc ... (see e.g., [15, 16, 9] for related results). It is known 
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that it implies the existence of Nash equilibria for generalized games with n-players 

involving objective functions verifying adequate quasiconvexity /concavity and conti­

nuity assumptions (see e.g. [16]). This coincidence theorem is in fact a by-product 

of the Browder-Fan fixed point theorem. We chose here to provide the proof of the 

converse, namely implication (7) in Figure 1.1. We require a preliminary result saying 

that every continuous function f on a compact set admits a ~*-majorant that is 

within an €-tubular neighborhood of the graph of f. More precisely, 

Lemma 2.2.1. [12} Given a continuous function f : C ---+ Y from a compact 

metric space C into a convex subset Y of a normed space, for any € > 0, there 

exists a ~*-map <P, : C -+ 2Y such that: 

f(x) E <p,(x) c B,(f(B,(x))) , \:Ix E C, 

where, for a given set Z, B,(Z) denotes the €-open ball around Z. 

Proof. By continuity, \:Ix E C,30 < 8x < € with f(B8x (X) n C) c B,(f(x)) n Y. 

Let B := {B8" (Xi) n C : i = 1, ... ,p} 'be a finite cover of the compact set C, and 
• 

for each x E C, let I(x) := {i E {I, ... , p} : x E B8" (Xi)} be the set of essential . 
indices of x w.r.t. the open cover B. Define the map <P, by setting: 

<p,(x):= n (B,(f(Xi)) n Y), \:Ix E C. 
iEI{x) 

Clearly, the values of <P, are convex non-empty and its graph is open (indeed, 

for each x E C, the open set niEI(x) (B8"i (Xi) n C) x <p,(x) is a neighborhood 

of {x} x <p,(x)), thus <P, has open fibers, thus <P, E ~*(C, Y). By definition, 

f(x) E <p,(x) c B,(f(B,(x))), \:Ix E C. o 

Now we are ready to prove a generalization of The Browder-Ky Fan Fixed Point 

Theorem due to Ben-EI-Mechaiekh et al. [9]. 

Theorem 2.2.9. (The Browder-Ky Fan Fixed Point Theorem) 

If A E ~*(X) (equivalently A E ~(X)) where X is compact convex, in a topolog­

ical vector space, then A has a fixed point Xo E A(xo). 
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Proof. First, we reduce the Browder-Ky Fan fixed point theorem to finite dimen­

sions by using a standard selection argument (see [9]). 

Indeed, given a map A E <I>*(X), where X is compact convex, in a topological 

vector space, the fact that A(x) -I=- 0 for all x E X, implies that the collection 

o := {A -1 (x) : x E X} of open subsets of X forms a cover of X. By compactness, 

X can be covered by a finite subcollection Of := {A-l(Xi) : i = 1, ... ,n}. Let 

{Ai: X -7 [O, l]}f=l be a continuous partition of unity, subordinated to the finite 

cover Of and define a continuous single-valued mapping s : X -7 X by: 

n 

sex) := L Ai(x)xi, a convex combination, 'ix E X. 
i=l 

Since, for any given x E X, Ai(x) -I=- 0 ~ x E A-l(Xi) ~ Xi E A(x) ~ sex) E 

A(x) because A(x) is convex. The mapping s is finite dimensional, because 

seX) ~ C = Conv{Xl, ... xn } a convex finite dimensional polytope ~ X. Now, 

the restriction/compression map Af := Alc n C : C -7 2c defined by: 

Af(X) = A(x) n C, 'ix E C, 

is certainly a <I>*-map ('ix E C, A/l(x) is open in X, thus open in C, moreover 

sex) E Af(x) -I=- 0 and Af(x) is convex). It is clear that a fixed point for Af is 

also a fixed point for A. The Browder-Ky Fan fixed point theorem has thus been 

reduced to finite dimensional polytopes. 

Second, Let f = I dc and 9 : C -7 C be a continuous selection of the map A f . 

For a fixed but arbitrary E > 0, let <I>€, w€ : C -7 2c be the two <I>* enlargements 

of f and 9 provided by Lemma 2.2.1, i.e. 

(2.3) 

(2.4) 

By Theorem 2.2.8, for <I>€, W;l there exists (x€, yo) E C x C with: 
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By compactness, as E --+ 0, a subset of (x€, y€) converges to some (xo, Yo) 

in C x C. Since f and 9 are continuous, inclusions 2.3 and 2.4 imply that 

Xo = g(yo) E Af (yo) and Yo = f(xo) = Xo, so Xo E Af(xO). o 

We proceed now to close the lower loop of Figure 1.1 by showing that that 

Theorem 2.2.9 implies the KKM principle of Ky Fan (implication (8)). 

Assume n r(x) = 0, i.e Y = U (Y \ r(x)). Define.J, A: Y --+ 2Y by: 
xEX xEX 

.J(y) = X \ r-1(y), 

and 

A(y) = Conv(X \ r-1(y)). 

Clearly .J ~ A. Note Vy E Y,:Jx E X such that y E Y \ r(x) {:} y ~ r(x) {:} 

x ~ r-1(y) {:} x E X \ r-1(y) i.e 

.J(y) -=I- 0 for all y E Y. 

For each z E Y we have: 

if z E X then .J-lz = y\rz which is open. If z E Y\X then .J-lz = 0 which 

is open too. So .J-l(y) is an open set in Y. This implies that A E ~·(Y). By 

Theorem 2.2.9, there exists Yo such that Yo E A(yo) i.e 

Yo E conv{X \ r-1(yo)}. 

We have Yo E Conv{xiH, {Xi}r c X and Xi ~ r-1(yo) for all i = 1, ... , n which 

means Yo ~ r(Xi) for all i. So: 

n 

Conv{xl, ... ,xn } ct. U r(Xi), 
i=l 

which contradicts the hypothesis that r is a KKM map. 

The von Neumann equilibria which are saddle points for payoff functions, are a 

particular case of Nash equilibria. The theorem on the existence of Nash equilibria is 
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one of the fundamental results in game theory. A simple proof of the Nash theorem 

was provided by Ky-Fan based on the KKM theorem. It uses the result on nonempty 

intersection of family of sets with convex sections. Following the exposition of Granas 

[22]: 

Given a certain product X = TI~=l Xi of topological spaces, Jet xj = TIih Xi 

and let Pi : X -+ X i,pi : X -+ Xi denote their projections; write Pi(X) = Xi and 

pi(x) = xi . Given x, y E X we let 

Theorem 2.2.10. (Geometrical result of Ky Fan) 

Let Xl, X2, ... , X n be nonempty compact convex sets in linear topological spaces 

and let Al,A2, ... ,An be n subsets of X such that 

(i)jor each x E X and each i = 1,2, ... , n, 

is convex and nonempty; 

(ii) for each y E X and each i = 1,2, ... , n 

n 
is open. Then n Ai =F 0 

i=l 

n 
Proof. Define G : X -+ 2x by y -+ X\ n Ai(y); one verifies that G is not a KKM­

i=l 
n 

map and if a convex combination w = E AiXi tJ- U G(Xi ), then WEn Ai. 0 
i=l 

As an immediate corollary: 

Theorem 2.2.11. (The Nash Equilibrium Theorem) 

Let X 1 ,X2 , ... ,Xn be nonempty compact convex sets each in a topological vector 

space. Let it, 12, ... , fn be n real-valued continuous functions defined on X = 

TI~=l Xi such that fo r each y E X and each i = 1, 2, ... , n the function Xi -+ 
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fi(Xi, yi) is quasiconcave on Xi' Then there is a point Yo E X such that fi(YO) = 

maxXi fi(Xi, yb)· 

Proof. Given E > 0, define for each i = 1,2, ... , n 

Following from the quasiconcavity hypotheses on fi(Xi, yi), Ai is convex; and 

from their continuity, Ai is open. Since, by Theorem 2.2.10 there exists, for each 
n 

i and each E a point y€ E n Ai, and since X is compact, the net Y€(E > 0) has a 
i=l 

n 
subnet converging to some point Yo belonging to n n Ai for some EO. This 

O<€<€Q i=l 

point Yo satisfies the assertion of the theorem. o 

With two agents with payoff functions 12 = - h we are in the situation of a 

zero-sum game and the Nash theorem reduces to the von Neumann theorem . Nash 

Theorem constitutes the theoretical basis for the second part of the thesis. 

Deriving the KKM principle from the Berge-Klee theorem is not known yet. Hor­

vath and Lassonde [24] used a topological version of the theorem of Berge-Klee to for­

mulate a topological KKM principle where convexity is replaced by n-connectedness. 

Definition 2.2.1. If for a given positive integer n, tln denotes the standard n­

simplex whose vertices {eo, ... , en} form a canonical basis for lRn+1 and Btl n is 

the boundary of tln, a space X is n-connected if and only if every continuous 

function f : Btln ~ X, extends continuously to a function j: tln ~ X. 

The "topological Berge-Klee" reads as follow: 

Theorem 2.2.12. (Topological Klee) 

A family of n closed convex sets in a topological vector space has a nonempty 

intersection if and only if the union of the n sets is (n - 2}-connected and the 

intersection of every n - 1 of them is nonempty. 
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It was shown in [24] that this result yields the equivalent fo~mulation of the 

Brouwer fixed point theorem: the n-sphere sn is not n-connected. Indeed, the n­

dimensional faces of the n+1-simplex .6.n +1 form a family of n+ 2 closed convex sets 

in ]Rn+2. Moreover, every intersection of n + 1 of them is nonempty, but the whole 

intersec;tion is empty. Hence, their union, which is 8.6.n +1 is not n-connected. Since 

8.6.n+1 is homomorphism to sn, sn is not n-connected either. 

which is equivalent to KKM principle. Note that since every convex set in a topo­

logical vector space is contractible, hence n-connected, the topological klee theorem 

implies the Berge-Klee theorem. 

We show that the Berge-Klee intersection theorem is equivalent to a weaker 

version of the KKM principle, namely a convex KKM principle. This was pointed at by 

Granas and Lassonde [23] in the context of super-reflexive Banach space (they called 

this weaker KKM principle "elementary"). Their proof is based on a result on the 

minimization of quasiconvex, coercive, and I.s.c. functionals on closed convex subsets 

of super-reflexive spaces. We formulate below this result for arbitrary topological 

vector spaces using an extension of Berge-Klee's result to arbitrary topological vector 

space due to Ghouila-Houri [20]. 

Theorem 2.2.13. (Convex KKM principle) 

Let f : X ---+2E be a set-valued map defined on an arbitrary subset X of a real 

topological vector space E, with f be a KKM map and f(x) closed convex for all 

x E X. Then {f(X)}XEX has finite intersection property. 

We show first that this weaker version of the KKM principle implies the Berge­

Klee theorem following an argument of S. Park [37]. 

Assume C and C1, ... , Cn are closed convex sets in a Euclidean space satisfying, 
n n 

Cn n Ci =f. 0 (for j = 1,2, ... ,n), and C ~ U Ci· 
i=l,i"tj i=l 

n n 
As C n n Ci =f. 0 there exists Xj E [C n n Cil for j = 1,2, ... , n. Put 

i=l,i"tj i=l,i#J 
D = {Xj}j=l' DeC and as C is convex, Conv{Xj}j=l C C. Also for all j =f. i, 
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Xj E Ci, which implies Conv{Xj}j=I,#i C Ci . Put Ai = Conv{Xj}j=I,#i for 

i = 1,2, "', n. Define f : D --+ 2c with f(Xi) = Ci n C for i = 1,2, "', n. 
n n 

f(Xi) is closed in C for all Xi E D. Also Conv(D) C C c U Cinc = U f(Xi)' 
i=l i=l 

More over for each {XiI' "', Xik} cD we have Conv{xill"" Xik} C Aij c Cij nC = 
n 

f(Xij) for some j i= l..,k. Hence ConV{Xil' ""Xik} C U f(Xi), which shows that 
i=l 

f is a KKM map, 
n n 

By Theorem 2,2,6, n f(Xi) i= 0, which implies that n Ci i= 0, Which is the 
~l ~l 

conclusion of the Berge-Klee theorem. 

We end by showing that, conversely, the Berge-Klee theorem implies the convex 

KKM principle (implication 11 in Figure 1.1), Let us mention first that the Berge-Klee 

theorem holds in arbitrary topological vector spaces, More precisely, we have: 

Theorem 2.2.14. (Ghouila-Houri [20]) 

Let C1, "', Cn be closed convex sets in a topological vector space satisfying: 

(i) each k of them 1 :::; k < n have a common point; 
n 

(ii) U Ci is convex; 
i=l 

n 
Then n Ci i= 0, 

i=l 

The proof is quite straightforward: let Xi E n C j and apply the theorem of 
#i 

Berge-Klee to the finite dimensional sets C = Conv{xi}, Ci = C n Ci , 

Now, using Theorem 2.2.14 we derive the convex KKM principle, Assume f : 

X --+ 2E is a KKM-map with f(x) closed convex, We show by induction on n that 
n 

Conv{ Xl, .. " Xn} n n f(Xi) i= 0. 
i=l 

Step 1: Xl = ConV{XI} c f(XI) since f is a KKM-map, 

Step 2: Assume the conclusion holds for any set of n = k elements, 

Step 3: Let n = k+1. Put c= Conv{xl, "', xn} and Ci = f(Xi)nC for i = 1, "', n . 
n n n 

Since f is a KKM-map C C U f(Xi) ::::} C = U (C n f(Xi)) = U Ci . C is 
~l ~l ~l 

n 
convex so U Ci is convex, and by step 2 of induction we have Conv{ Xl, "', 'h Xn} n 

i=l 
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n n n r(Xj) -=I- 0. By Theorem 2.2.14, n (C n r(Xi)) -=I- 0 which implies that 
j=l,j#i i=l 

n n r(Xi) -=I- 0. 
i=l 



Chapter 3 

Sponsored Search 

3.1 Introduction to sponsored search 

Web search is a significant technology for navigating the Internet. It has become 

a fundamental part of the online experience of Internet users which is provided for 

free. There were 10.27 billion web searches conducted in January 2010 in the U.S. 

Sponsored search is the delivery of relevance with advertisements as part of the search 

experience. Sponsored search is conducted through search engines, such as Google, 

Yahoo! and MSN. In Figure 3.1 you can see a layout of Google result after searching 

for keyword "safety gloves". In the main part of the result page, there are a list of 

links to the web pages which are relevant to the keyword "safety gloves". There are 

also three links on top of the page, and six links on right side of the page, which 

are the advertisements. Search engines earn money by displaying advertisements 

alongside the result page of a user inquiry. 

Sponsored search satisfies users' desire for relevant search results and advertisers' 

need for increasing traffic to their web sites, and it is now considered to be among 

the most effective marketing tools available. Sponsored search has become a big 

business among different kinds of advertising. Google generated roughly $22 billion 

in revenue in 2009 that is almost 97% of its revenue. 

35 
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Figure 3.1: Sample example of Google result page for query "safety gloves" 

Search engines provide spaces for advertisements. For example Google provides 

advertisers up to three spaces above the result page, and up to eight spaces besides 

the result page. We call each of these spaces a slot. Advertisements consist of a 

title, a text description, and a hyperlink to the advertiser's web page. Advertisers 

like users to click on their link and visit their web page. In this case they have a 

chance to introduce their products to users, and hopefully convince them to make 

a purchase. Usually advertisements get more attentions and more clicks when they 

appear in higher slots. As a result, advertisers generally prefer to be shown in higher 

slots rather than lower ones. 

Every day hundreds ofthousands of advertisers compete for slots alongside several 

million of search queries. The number of advertisers is usually more than the number 

of slots available. Search engines need to pick some of the advertisements to display 

them on the result page, so they conduct an auction among advertisers to allocate 

slots. Each advertiser specifies: (i) a list of keywords she is interested to advertise 

for them; (ii) a bid, which is the maximum money she is willing to pay to the search 

engine for each advertisement; (iii) a total maximum daily or weekly budget. Every 

time a user searches for a keyword, an auction takes place among the advertisers who 

are interested in that keyword and have not exhausted their budgets. A search engine 

scores advertisers based on their private scoring scheme, and then allocates slots in 
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decreasing order of scores, so that the advertiser with the highest score is shown in 

the first slot, and so on. 

There are different kinds of charging schemes. In the most popular one, adver­

tisers pay the search engine only when a user clicks on their advertisement, and do 

not pay if their advertisement is displayed but not clicked on. We c:all this pay per 

click auction. In other auctions, advertisers pay per impression or per purchase (by 

impression we mean placement on the screen). 

3.2 Generalized Second Price (GSP) auctions 

As we mentioned in the previous section, every time a user searches for a keyword, 

an auction takes place among the advertisers who are interested in that keyword. 

Let A be the number of advertisers and S be the number of available slots. Assume 

that xs,a is the probability that a user clicks on the 8'th slot when it is occupied by 

advertiser a. We call xs,a the click through rate (CTR) for advertiser a in slot 8. As 

we explained, advertisers prefer to be shown in the first slot rather than second slot 

and so on. Therefore, we have xs,a ;:::: x s+1,a for 8 = 1, ... , S - 1. Notice that this 

inequality holds on the CTRs of the same advertiser. According to the quality of an 

advertiser, the search engine assigns a weight Wa to each advertiser a. This weight 

is based on the probability of an advertiser being clicked on by users. If ba is the bid 

of advertiser a, then search engine allocates a score J.La = waba to advertiser a and 

orders all advertisers according to their scores in decreasing way. Then the advertiser 

with the highest score is ranked one, and the advertiser with second highest score is 

ranked two and so on. For simplicity, we renumber advertisers so that advertiser 8 

obtains slot 8. The payment of advertiser 8 denoted by Ps is equal to the bid of 

advertiser 8 + 1 i.e we have Ps = bs+1. 

We call this mechanism generalized second price (GSP). If Wa = 1 for every a, 

then the auction is called rank by bid, and if Wa = Xl,a, the auction is called rank by 

revenue [36] . 
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3.3 Externality in sponsored search auctions 

In GSP auctions we assign a CTR to each advertiser. This CTR depends on the quality 

of the advertiser and the qual ity of the slot she occupies. Although this assumption 

is used by most studies on sponsored search auctions, it is not realistic. Indeed, the 

CTR depends on the identity and position of the other advertisers who are displayed 

on the result page as well. In fact, advertisers have externality effects on each other, 

which influence their CTRs and consequently affect their bidding behavior. 

To study the externality effects, we look at these auctions from the perspective of 

the users. Generally users do not click on all the advertisements that appear on the 

result page. They click on the advertisements that look good enough to satisfy the 

reason of their inquiry. When a user clicks on an advertisement, she gathers some 

information toward her search. This information may compensate the user's needs, 

and thus cause her not to continue looking at other advertisements. Also the user 

may get tired of the search, if the advertisements she has read appear to be poorly 

related to the search term. That would lead the user not to look at the rest of the 

advertisements. 

These externality effects were shown in the experimental work of R. Gomes and N. 

Immorlica [21] on on-line auctions. They gathered the data consisting of impression 

and clicking records associated to queries on the keywords "iPods", "diet pills" and 

"Avg antivirus" in Microsoft's Live Search. These data are related to the inquiries 

that happened between August 1st and November 1st of 2007 (Table 3.1). 

As you can see in Table 3.2, these three advertisers appear in almost all three 

slots available for advertising. 

In Table 3.3, FA = FA( {0}) is the probability that a user clicks on the link of 

advertiser A, when she did not click on any other advertisements before; FA({B}) 

is the probability that a user clicks on the link of advertiser A, when she has already 

clicked on advertiser B's link. FA ({ B, C}) is the probability that a user clicks on the 

link of advertiser A, when she has already clicked on the links of advertisers Band C. 
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keyword advertisers # of observations 

(A):store.apple.com 
iPod (B):cellphoneshop.net 8,398 

(C) :nextag.com 
(A) :pricesexposed.net 

diet pill (B):dietpillvalueguide.com 4,652 
(C) :certiphene.com 

(A):Avg-Hq.com 
Avg antivirus (B):avg-for-free.com 1,336 

(C):free-avg-download.com 

Table 3.1: Keywords and advertisers. For the keyword iPod, there are three 
advertisers competing together. (A):Apple Store (www.store.apple.com); (B):the 
online retailer of electronics Cell Phone Shop (www.cellphoneshop.net); (C) the 
price research website Nextag (www.nextag.com). In this sample, there were 
8398 observations for keyword iPod. 

slot iPod diet pill antivirus 

(A): 6,460 (76.92%) (A): 1,912 (41.10%) (A): 1,233 (92.29%) 
first (B): 1,864 (22.20%) (B): 908 (19.52%) (B): 71 (5.31%) 

(C): 74 (0.88%) (C): 1,832 (39.38%) (C): 32 (2.40%) 
(A): 1,438 (17.12%) (A): 1,848 (39.72%) (A): 88 (6.59%) 

second (B): 5,826 (69.37%) (B): 1,988 (42.73%) (B): 674 (50.45%) 
(C): 1,134 (13.50%) (C): 816 (17.54%) (C): 574 (42.96%) 

(A): 26 (0.31%) (A): 472 (10.15%) (A): 9 (0.67%) 
third (B): 22 (0.26%) (B): 692 (14.88%) (B): 21 (1.57%) 

(other): 7,400 (88.12%) (other): 2,820 (60.62%) (other): 951 (71.18%) 

Table 3.2: Distribution of Advertisers per slot. 

We notice that FB = 0.08> 0.04 = FB({A}) and Fe = 0.10> 0.04 = Fc({A}). 

It shows that a random user is less willing to click on Cell phone shop or Nextag 

links when she has already clicked on Apple store. This implies that the information 

provided by Apple store for users, reduce their appeal to click on other advertisements. 

3.4 Accommodating externality requests 

We saw that in reality the CTRs depend on the identity and position of the other 

advertisers who are displayed on the result page. It makes sense that advertisers like 
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keyword iPod diet pill antivirus 

FA 0.210 0.210 0.151 
FA({B}) 0.250 0.232 0.00 
FA({C}) 0.317 

FA({B, C}) 0.664 
FB 0.087 0.150 0.206 

FB({A}) 0.030 0.146 0.364 
FB({C}) 0.663 

FB({A, C}) 0.334 
Fe 0.104 0.051 0.215 

Fe( {A}) 0.040 0.052 0.242 
Fe({B}) 0.095 0.088 0.121 

Fe({A,B}) 0.327 0.664 0.125 

Table 3.3: Estimate of the ordered search model. 

to bid based on other advertisements on the result page. However no search engine 

accommodates such requests. Below we see why adding externality to one of the 

most basic models would cause extreme complication to the mechanism. 

First we present a model that was introduced by Hal R.Varian [40]' in which 

Wa = 1 for all a E A, and CTRs only depend on the location of the slots (and not 

on the advertisers). Let Xs denotes the CTR assigned to slot s which is independent 

of the advertiser who is displayed in this slot. 

Recall that A and S denote the number of advertisers and slots, respectively. As 

we said before, generally a slot with higher position has a higher CTR. So assume 

that, Xl > X2 > ... > xs, and Xs = 0 for all s > S. Each advertiser is assigned a 

value Va > 0 for a = 1, ... , A which is the expected profit for advertiser a if it has 

been clicked on by a user. Therefore the expected profit for advertiser a when it is 

displayed in slot s is U as = VaXs . 

Recall that ba is the bid of advertiser a, and as Wa = 1 the score of advertiser 

a is J.La = ba . So the first slot will be given to the advertiser with highest bid and 

the second slot to the advertiser with second highest bid, and so on. Like before we 

renumber advertisers to have a = s, for all a = 1, ... , S. The payment of advertiser 

s is ps = bs+l . Therefore, the utility of advertiser s is (vs - Ps)xs. 
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Now we define the Nash equilibrium and symmetric Nash equilibrium concepts 

for this model. We say that there is a Nash equilibrium for a game when none of 

the players can improve their payoff by changing their strategy when other players 

stick to their past strategies. We will present the following formal definitions of Nash 

equilibrium and symmetric Nash equilibrium for this model. Notice that in this model, 

the set of prices determines the bidding strategies of advertisers. 

Definition 3.4.1. A Nash equilibrium set of prices (NE) satisfies 

where Pt = bt+1 

(Vs - Ps)xs 2 (vs - Pt)Xt for t > s 

(vs - Ps)xs 2 (vs - Pt-l)Xt for t < s 

(3.1a) 

(3.1b) 

Inequality (3.1a) shows that none of the advertisers can improve their utility by 

moving their advertisements to a lower position and aiming for a lower cost. Inequal­

ity (3.1 b) shows that they cannot improve their utility by moving their advertisements 

to a higher position and aiming for a higher CTR. 

Definition 3.4.2. A symmetric Nash equilibrium set of prices (SNE) satisfies 

for all t and s (3.2) 

Table 3.4 shows an example of an auction with a SNE. In this example we have 6 

advertisers and 4 slots. None of the advertisers can increase their utility by changing 

their bid. For instance if we put s = 2 and t = 1 in Inequality 3.2, then 40 = 

(15 - 7)5 = (V2 - P2)X2 2 (V2 - Pl)Xl = (15 - 14)12 = 12. Hence if she increases 

her bid in order to move up to the first slot then her utility will drop 28 units. If 

she decides to move her advertisements down to a lower slot, let's say third slot, her 

utility will be (15 - 3)3 = 36 which is less than 40. 

The definition of SNE derives some properties for this model: 

Property of non-negative surplus: In an SNE, VS 2 Ps. 
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slot CTR value bid payment 

1 12 20 16 14 
2 5 15 14 7 
3 3 10 7 3 
4 2 5 3 1 
5 0 1 1 0 
6 0 0.5 0.25 0 

Table 3.4: Example of an auction with SNE. 

Proof. In inequality 3.2, put t = S + 1. Then we have (vs - Ps)xs > (vs -

PS+1)XS+1. As XS+1 = 0, thus Vs - Ps ?: 0, which implies Vs ?: Ps· D 

Property of monotone values: In an SNE, Vs-l ?: Vs. 

Proof. By the definition of SNE for sand t we have (vs - Ps)xs ?: (vs - pt}Xt, 

which is equivalent to vs(xs - Xt) ?: PsXs - PtXt. By rewriting this inequality for 

t and s we will have Vt(Xt - xs) ?: PtXt - PSXS. Adding these two inequalities 

gives us (Vt - vs)(Xt - xs) ?: 0, which shows that Vt and Xt should be in the same 

order. D 

Property of monotone prices: In an SNE,ifvs > Ps then Ps-l > Ps· 

Proof. We know that Ps-l ?: Ps, . We want to show that this inequality is 

strict when we have Vs > Ps. In inequality 3.2, put t = s - 1, then Ps-IXs-l ?: 

PsXs + Vs(Xs-l - xs). Since by non-negative surplus property Vs > Ps, hence 

Ps-IXs-l > PsXs + Ps(Xs-l - xs) = PsXs-l· By crossing Xs-l from both sides of 

this inequality we have Ps-l > Ps. D 

Property of inclusion: SNE C NE. 

Proof. The first inequality of NE is the same as SNE so we just need to show 

that we have the second inequality as well. According to SNE for all sand t 

we have (vs - Ps)xs ?: (vs - Pt)Xt. Since Pt-l ?: Pt we will have (vs - Ps)xs ?: 

D 
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Property of one step solution: If a set of prices satisfies the SNE inequalities 

for s - 1 and s, then it satisfies these inequalities for s - 1 and s + 1. 

Proof. Put sand s + 1 in inequality 3.2, then vs(xs - Xs+1) 2:: Psxs - Ps+1Xs+l. 

Since Vs-l 2:: VS, then Vs-l (xs - Xs+1) 2:: Psxs - Ps+1Xs+1. Adding this inequality 

to Vs-l(Xs-l - xs) 2:: Ps-1Xs-l - Psxs (it comes from putting s - 1 and s in 

inequality 3.2), we get Vs-l(Xs-l - Xs+1) 2:: Ps-1Xs-l - Ps+1Xs+l. This shows 

that we have SNE for s - 1 and s + 1. D 

Now we extend Hal R. Varian model by adding a parameter to this model. This 

in a sense, is the most basic accommodation of externality request by users. We will 

define the new model and then we will study the properties of this model. 

Consider the auction model we presented before. Assume that among all ad­

vertisers there is one advertiser a which is in competition with agent a. Advertiser 

a does not want to be shown after her competitor a on the result page, i.e. if it 

happens that a falls after a she prefers not to be shown in the page. Now we present 

the modified definition of NE and SNE for this extended model. 

Definition 3.4.3. A Nash equilibrium set of prices (NE) satisfies 

(Vs -Ps)Xs 2::(Vs -Pt)Xt for t>s exceptwhens=a<a:::;Sanda:::;t:::;S 

(3.3) 

(3.4) 

where Pt = bt+ 1 

Definition 3.4.4. A symmetric Nash equilibrium set of prices (SNE) satisfies 

(vs-Ps)xs 2:: (vs -Pt)Xt for all t and s except when s = a < a :::; S and a:::; t :::; S 

The SNE of this modified model difFers from the SNE of Hal R. Varian model 

only when s = a < a :::; S and a < t :::; S. In this case, advertiser a may improve her 

utility by moving to a slot below a, but she does not move because of her preference ~ 
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not to be shown after her competitor. Here we discuss the properties of this new 

model according to Definition 3.4.4: 

Property of non-negative surplus holds. Since when t > S the SNE of this 

modified model is the same as the SNE of Hal R. Varian model, by putting t = S + 1, 

like before we can show that this model satisfies this property. 

Property of monotone prices holds. Since when t < s the SNE of this modified 

mod~1 js the same as the SNE of Hal R. Varian model, by putting t = s -1, the same 

as before we can show that this model satisfies this property. Clearly, SNE c NE for 

this model, so the property of inclusion is satisfied by this model too. 

Other two properties do not hold any more. To see this, we present an example 

in Table 3.5. In this example we have 6 advertisers and 4 slots, and a is the second 

advertiser and a is the third one. As you can see none of the advertisers can improve 

their utilities by changing their bid, except for the case that advertiser a wants to 

move down to slot 3 or 4. Therefore we have SNE for this model. In this example 

V2 < V3, so we do not have monotone value property. 

slot CTR value bid payment 

1 27 20 17 16 
2 13 16 16 14 
3 10 19 14 10 
4 5 10 10 5 
5 0 5 5 0 
6 0 4 4 0 

Table 3.5: Example of an auction with SNE. 

The one step property does not hold, consider the case in which s - 1 = a and 

S ~ s + 1 = a. 



Chapter 4 

Network of on-line advertisers 

As we showed in Section 3.4, accommodating externality seems to add complexities 

to the model. Moreover, search click data due to the privacy issues is extremely 

difficult to collect and search engines are reluctant to disclose such statistical data. 

So in order to have a better understanding of the interaction among advertisers, we 

study the underlying graph structure of the Google advertisements network. This 

graph is dynamic and consists of thousands of vertices. Thus, to study its structure, 

we apply the existing models to large-scale networks. 

4.1 Large-scale networks 

The study of large-scale networks falls in the field of graph theory. We represent a 

network by a graph. In this chapter we use the definitions and notations from [45]. A 

graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a relation 

that associates with each edge two vertices, called its endpoints (see Figure 4.1 for 

an example). A graph G is a directed graph if there is a function assigning each edge 

an ordered pair of vertices. The first vertex of the ordered pair is the tail of the edge, 

and the second is the head; together, they are the endpoints. We say that an edge 

is an edge from its tail to its head. 

45 
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vi 

e3 el 

v4 e2 v2 

v3 

Figure 4.1: A graph with 4 nodes and 4 edges, V = {VI, ... ,V4}, E = {el, ... ,e4}. 
The assignment of endpoints to edges can be read from the picture. 

Examples of studied large-scale networks are: 

• Science collaboration network whose vertices are scientists and an edge exists 

between two scientists if they have written an article together. 

• World Wide Web whose vertices are web pages and the edges represent the 

hyperlinks (URLs) that point from one web page to anotheother. 

• The web of human sexual contacts is a network of people who are connected 

to each other if they had a sexual relationship. 

• On-line Social Networks (OSNs) such as Facebook, whose vertices are users of 

this service and there is an edge between two users if they are friends. 

Gathering information about large-scale networks used to require a vast type 

of resources. Recently, some developments have caused dramatic improvements in 

studying large-scale networks. The computerization of data gathering enables us to 

analyze enormous database of these networks, and also the improvement of com-

putational power provides researchers with the ability to investigate on large-scale 

networks. 
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Following these developments, studying the structural properties of a variety of 

real-world networks became possible. Many new concepts and measures have been 

proposed and studied on such large-scale networks. Among these concepts small-

world has been the main focus of most studies. 

Before we define the small-world networks, we present some preliminary defini-

tions. In a graph G(V, E): 

• When u and v are the endpoints of an edge, they are adjacent and are neighbors. 

For example in Figure 4.1, Vl and V2 are the neighbors of vertex V3. 

• The degree of vertex v, is the number of edges for which v is an endpoint. The 

degree of vertex v is denoted by dv . For example in Figure 4.1, dV1 = 3. In 

directed graphs we define in-degree and out-degree for each vertex v as well. 

The in-degree of a vertex v is the number of edges for which v is the head 

and is denoted by dinv . The out-degree of vertex v is the number of edges for 

which v is the tail and is denoted by doutv . 

• If Vo and Vk are two vertices, then a path between them is a list vo, el, Vl, ... , 

Vk-l, ek, Vk of vertices and edges suc~ that, for 1 ~ i ~ k, the edge ei has 

endpoints Vi-l and Vi. The length of a path is the number of edges it contains. 

For example in Figure 4.1, V4, e3, Vl, el, V2, e4, V3 is a path between vertices V4 

and V3 of length 3. In a directed graph Vo, el, Vl, ... , Vk-l, ek, Vk is a path 

between Vo and Vk if and only if Vi-l and Vi are head and tail of edge ei, 

respectively, for all 1 ~ i ~ k. 

• The distance between two vertices is the length of the shortest path between 

these two vertices. For example in Figure 4.1, the distance between V4 and V3 

is 2. 

• A clique in a graph is a set of pairwise adjacent vertices. A clique with n 

vertices has (~) = n(n - 1)/2 edges. In directed graphs, a clique with n 
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vertices has 2 (~) = n( n - 1) edges . 

• In undirected graphs, the clustering coefficient of vertex v with degree dv is 

defined as: 

and for directed graphs as: 

where Ev is the number of edges that exist among neighbors of vertex v, and 

dv is the degree of v. The clustering coefficient of a graph is the average of the 

clustering coefficients of all its vertices. For example in Figure 4.1, CV1 = 0.33 

and CV2 = 1. 

Definition 4.1.1. [5} A small-world network is a network with the following 

properties: (i) its average distance increases logarithmically with the number of 

vertices; and (ii) it has high clustering coefficients. 

The first property describes that, despite the large size of the small-world net-

works, there is a short path between most pairs of vertices. In simple terms, the 

average distance of these networks is small. This property was first studied by the 

social psychologist Stanley Milgram (1967). He described the six degrees of separa-

tion concept, which says that there is a path of length of at most six between most 

pairs of people in the United States [32]. 

The second property of small-world networks is a measure of cliquishness of 

neighborhoods in these networks. It shows that these networks contain sub-networks 

which have connections between most pairs of vertices. This property was first 

uncovereq by Wassermann and Faust (1994) under the name fraction of transitive 

triples [44]. When we say the clustering coefficient in these networks is high, we 

mean that the clustering coefficient is larger than the clustering coefficient of a 

random graph with the same number of vertices and edges. 
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There are three classes of small-world networks: (a) scale-free networks; (b) broad­

scale networks; and (c) single-scale networks. We focus on small-world networks 

which are scale-free. Scale-free networks are networks whose degree distribution has 

the power-law. 

The degree distribution P(k) of a graph is the distribution of its degrees over the 

whole graph. We say that a graph G has power-law degree distribution if for every 

k: 

P(k) <X L(k)k-"f 

where 'Y > 1 and is called the exponent of the power-law. Also L(k) is a slowly 

varying function, which is any function that satisfies limk-tCXl L(tk)/ L(k) = 1 with 

t constant, usually L(k) is considered to be a constant. This property of L(k) follows 

directly from the requirement that P(k) be asymptotically scale invariant; thus, the 

form of L(k) only controls the shape and finite extent of the lower tail. For instance, 

if L(k) is the constant function, then we have a power-law that holds for all values 

of k (see Figures 4.2,4.3). 
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Figure 4.2: Sample of power-law degree distribution. X-axis is the degree and 
Y-axis is the number of vertices with that degree. 

A highlight for scale-free networks is that they can be produced by a preferential 

attachment process (it is not the only process who produces scale-free networks [14]). 

A preferential attachment process is a process in which a new vertex is connected 

preferentially to the vertices with higher degrees. When we study the graph of scale-
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Figure 4.3: When power-law is plotted as a log-log curve then this gives a straight 
line. Such log-log plot is a standard way of testing whether any kind of behavior 
has a power-law distribution. X-axis is the degree and Y-axis is the LogLog 
number of vertices with that degree. 

free networks, we observe few vertices with a high degree, with many vertices of 

small degrees connected to these high-degree vertices which we call hubs. If we 

randomly remove a vertex from the graph, as the number of small degree vertices are 

much higher than hubs, the probability that this vertex has a small degree is high. 

Therefore removing a random vertex will not change the shape of the graph. The 

phrase "scale-free" comes from this fact (see Figure 4.4). 

Figure 4.4: Example of a scale-free network. 

Now we review some examples of large-scale networks which we introduced ear-

lier. We will verify that they satisfy the property of small-world scale-free networks. 
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• Science collaboration graph 

In the collaboration network, vertices are the scientists and an edge represents 

the existence of an article which has been written by two scientists together. 

It was Newman [34, 33] who studied physics articles between 1995 and 1999. 

He showed that this network is a small-world network. It has a small average 

distance of 4.0 and a very high clustering coefficient of 0.726. This network 

also falls in the sC11e-free class of small-world networks as it has power-law 

degree distribution with degree exponent of 1.2 (see Figure 4.5) . A scientist 

who wants to write his/her first article in collaboration with other scientists, 

more likely will do it with more senior scientists who have written more articles 

in collaboration with others. This implies the preferential attachment property 

of this scale-free network. 

Barabasi et al [8] did the same work of Newman on the mathematicians and 

neuroscientists articles between 1991 and 1998. They have average distance of 

9.5 and 6, and clustering coefficients of 0.59 and 0.76, respectively. The degree 

distributions of both have power-law; the degree exponent of mathematicians 

is 2.1, and the degree exponent of neuroscientists is 2.5 (see Figure 4.5) . 
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Figure 4.5: (A) Science collaboration network of physicists (B) Science collabo­
ration network of neuroscientists. X-axis is the degree and Y-axis is the number 
of vertices with that degree. 
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• World Wide Web 

In the network of World Wide Web, vertices are web pages and the edges 

represent the hyperlinks that point from one web page to another. At the 

end of 1999, this network contained close to one billion vertices. This network 

is one of the most studied examples of small-world networks. Albert, Jeong 

and Barabasi [3] showed that the average distance in a sample subgraph that 

consists of 325,729 verti::es is 11.2. Since the edges of this network are directed, 

the network is characterized by both out-degree and in-degree distributions. In 

this sample, both degree distributions has power-law. The degree exponent of 

the out-degree distribution is 2.45, and the degree exponent of the in-degree 

distribution is 2.1. It was Adamic [1] who studied the clustering coefficient 

of this network. She made the graph of this network undirected by making 

each edge bidirectional. Her sample consisted of 153,127 vertices and had a 

clustering coefficient of 0.1078. 

• The web of human sexual contacts 

Many sexually transmitted diseases, including AIDS, spread on a network of 

sexual relationships. Liljeros et al [30], focused on studying the network of 

sexual relations of 2,810 individuals, based on an extensive survey conducted in 

Sweden in 1996. In this network vertices are 2,810 Swedish that are connected 

to each other if they had a sexual relationship. Since the relationships does 

not last long, they analyzed the distribution of partners over a single year, 

obtaining for both females and males a power-law degree distribution with a 

degree exponent of 3.5 for female and 3.3 for males. 

• On-line Social networks (OSNs) 

Facebook, Twitter, Orkut, MySpace and Cyword are examples of OSNs. The 

number of users of OSNs is almost half of all Internet's users [2]. The growth 

rate of these networks is considerably high. People use these networks to do 
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social activities such as: finding friends with common interests; sharing pictures; 

discussing about their favorite subjects and so on. 

Knowing about the structure of OSNs is interesting for sociologists and the 

owner of these services. A basic question is if the relations and the way that 

people grow their communities in these networks is similar to those in real world 

or not. The owner of these services earn money by letting companies advertise 

on their pages, and/or by offering their users to become a premium member 

through periodic payments (being a premium member lets the user to have 

access to more information about others). Therefore it is important for them 

to know how to improve their model, and how to design new applications in 

order to attract more users and consequently making more revenue. OSNs are 

another example of small-world networks. 

Y. Ahn Studied the network of Cyworld [2]. Cyworld is a South Korean social 

network service. This OSN started its operation in September 2001, and had 

12 million users by November 2005 (compare with population of South Korea 

which was 48 million at that time). Similar to other OSNs, Cyworld offers a 

space to its users to make a friend (called ilchon) online. 

He reported that the average distance in Cyworld is 5.8 and the clustering 

coefficient is 0.16. The degree distribution of Cyworld has power-law as shown 

in Figure 4.6. This degree distribution consists of two parts, a rapid decaying 

'Y '" 5 region and a heavy tailed 'Y '" 2 region (the division takes place between 

k = 100 and k = 1000). 

4.1.1 A model for scale-free networks 

The results discussed above demonstrate that many large-scale networks are scale­

free. Here we are going to present a natural random process that makes a graph 

whose degree distribution has power-law. 
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Figure 4.6: Degree distribution of Cyworld network. X-axis is the degree and 
Y-axis is the number of vertices with that degree. 

There are different types of models that generate random graphs. One of these 

models is the model introduced by Barabasi and Albert in 1999 [7]. There are two 

major differences between Barabasi-Albert's model and the earlier models. First of 

all, earlier models do not change the number of vertices over time: they start making 

a random graph by randomly connecting a fixed number of vertices. In contrast, 

Barabasi-Albert's model assumes that the number of vertices is not fixed. It starts 

making the random graph from a small number of vertices and then grows the graph 

by adding new vertices continuously. For example, Facebook grows exponentially in 

time by adding new users, and the science collaboration network constantly grows by 

the appearance of new researchers. 

Secondly, earlier models assume that the probability that two vertices are con­

nected to each other is independent of the degree of them. But as we mentioned 

before, scale-free networks exhibit preferential attachment. Barabasi-Albert's model 

considers this fact by taking into account that connecting a new vertex to an exis­

tence vertex depends on the degree of that vertex. For example, a new web page is 

more likely to have hyperlinks to well-known web pages rather than less-known pages. 

By taking the two facts of growth and preferential attachment into consideration, 

Barabasi and Albert introduced their model, which led for the first tirl1e to a network 
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with a power-law degree distribution. 

The Barabasi-Albert model 

The process in Barabasi-Albert model is as follows . 

• Growth: Start with a small graph Go with no isolated vertices (mo is the 

number of vertices of Go). At every time step, we add a new vertex with m 

« mol edges that link this new vertex to m different vertices already present 

in the system . 

• Preferential attachment: The probability II(i) that a new vertex will be con­

nected to an existing vertex i depends on the degree of node i, 

d· 
II(i) = L.jZd

j
. 

After t time steps, this procedure results in a network with N = t + mo vertices 

and mt edges. The degree distribution of this network has power-law with degree 

exponent of 'Y rv 3 (see Figure 4.7). The degree exponent is independent of m the 

only parameter in the model. 

4.2 A small-world network 

As we said before, search engines such as Google, Yahoo!, Microsoft and AOL, earn 

money by selling advertising spaces in the result page of a user's inquiry. As you 

can see in Table 4.1, Google generated almost 70% of all revenue made by online 

advertising in 2009. So in order to study the network of sponsored search, yve use 

the network induced by Google. 

"Google advertisements network" is an example of a large-scale networks. The 

aim of this section is to analyze the structure of this network to show that it is a 

scale-free small-world network. 
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Figure 4.7: Degree distribution of the Barabasi-Albert model, with N = mo + 
t = 300,000 and 0, mo = m = 1; 0, mo = m = 3; <>,mo = m = 5; and 6, 
mo = m = 7. The slope of the dashed line is 'Y = 2.9, providing the best fit to the 
data. X-axis is the degree and Y-axis is the number of vertices with that degree. 

Google $22,889 
Yahoo $5,673 

Microsoft $2,131 
AOL $1,749 

Total $32,442 

Table 4.1: Online Advertising Revenues for 2009 (in millions) 
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We model this network by a directed graph. Google considers up to three slots 

above the result page (called top-of-page slots), and up to eight slots besides the 

result page (called sidebar slots) for advertisements. As you can see in Figure 3.1 

each advertisement contains a URL address which is in green color. For example the 

first top-of-page advertisement is for ULiNE (a shipping company) and it contains 

.. www.ULlNE.ca .. which is the URL address of ULiNE company. The vertices of this 

graph are these URLs displayed on the result page of inquiries. The advertisers are 

known by theirURL addresses. Sometimes the URL address which is shown in the 

advertisement is the URL address of a specific department ofthe company. For exam­

ple, look at the second top-of-page advertisement in Figure 3.l. This advertisement 

belongs to the AcklandsGrainger company which sales safety products. The URL ad­

dress is shown in this advertisement is "AcklandsGrainger.com/Gloves" which is for 

gloves department ofthis company. In these cases, consider "AcklandsGrainger.com" 

as the name of the vertex, not "AcklandsGrainger.com/Gloves". The reason is that 

AcklandsGrainger company may advertise for both "safety gloves" and "safety boots" 

(or even more keywords), and the URL address that appears in each case is related 

to the relevant department. This consideration avoids duplicating advertisers. 

There is an edge between two advertisers if they have been displayed on the result 

page of an inquiry together. We number slots such that the top slots are numbered 

top-down 1 to 3 and the 8 right-side slots are numbered 4 to 11. The edges are from 

advertisers in the slots with higher numbers to advertisers in the slots with lower 

numbers. For example in Figure 3.1 there are edges from .. www.globalindustrial.com .. 

to .. www.ULlNE.ca .. and .. AcklandsGrainger.com ... 

The list of vertices can be found by searching every possible keyword in Google. 

Google ADWords has a complete list of keywords that companies are interested to 

advertise for. In the Google ADWords data base there are 17 categories (such as 

apparel, beauty, computer,etc) of keywords and they all together contain 561,846 

keywords. 
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We wrote a code in Python programming language. This code gets the list of the 

keywords as input (see Figure 4.8) and search each of them in Google. The output 

of this code is a list which contains the keywords followed by the URL addresses 

of the companies who advertised for these keywords (see Figure 4.9). After each 

keyword, there is a list of the URL addresses. These URLs are ordered according 

to their appearance in the result page of inquiry for that keyword. First the URLs 

of top-of-page advertisements and then the URLs of sidebar advertisements (both in 
- -

top-down order). Because of the reasons that we mentioned before, we wrote this 

code in a way that it returns the URL addresses of the companies not the company's 

departments. Refer to Appendix (A) for the source code in Python. 

$50 laptop 

Figure 4.8: Sample input for Python code. It is a list of keywords that companies 
are interested to advertise for in Google. 

In order to -set up the vertex and edge sets, we wrote a C++ code (refer to 

Appendix (B) for the source code in C++) . The input of this code is the output of 

the Python code. It implements the following algorithm. 

For each keyword in the list: 
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$50 laptop 
http://www.sonyslyl·e.ca 
http://,",ww.besthlly.ca 
http://na .. link.decdna.net 
http://mdg.ca ...... 
http://ad.doubleclick.net·''''" ....... _____________________ -, 
http://www.computersnow.com 
http://www.gifts.com 

: a gauge earrings 
http://wickedbodyjewelz.com 
http://www.kingsbodyjewel.y.com 
httpJlwww.kolopiercing.com 
httpJ!www.thinkfashion.com 
http://www.bGdycandy.cGm 
http://rover.ebay.com 
http://www.thechaingang.com 

Ogauge plugs 
https:llplugyourholes.com 
http://wickedbodyjewelz.com 
http://www.hodycandy.com 

: http://'''''''Yinfinitebodyca 
. http-llswissinstnlments.com 
http://www.kolopiercing.com 

. http://,,,, .... kingsbodyjewelry.com 
http://,over.ebay.com 

: http://bodyjewelryfactory.com 

i 00 gauge earring 
!http:{fwww.kolopiercing.com 
http://www·bodycandy .. com 

, http://rover.ebay.com 
http://www.kingsbodyjewelry:com 

, http://wickedbodyjewelz.com 

$50 laptop 
http://www.~onystyle.ca 
http://www.bestbuy.ca 
http://na.link.decdna~net 
http://mdg.ca 
http://ad.doubleclick.net 
http://www.computersnow.com· 
http://WWW·gifts.com 
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Figure 4.9: Sample output for Python code. After each keyword there is a list of 
the VRL addresses, these VRL are ordered according to their appearance in the 
result page of inquiry for that keyword. 

• Gets the URL addresses that appeared after this keyword, and rank them top-

down; 

• Makes a vertex for each of these URLs if no vertex has already been created 

for this URL; 

• Connect these vertices according to their ranks. Connects a vertex with rank i 

to all the vertices of ranks smaller than i, if they were not connected to each 

other before. 

This code has two outputs, one a list of vertices and one a list of edges. Each line 

of the list of vertices contains a number and a URL address. For example, the first 
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line of Figure 4.10 shows that the name of vertex 1 is ''http://sonystyle.ca'' . Each 

line of the list of edges contains two numbers. The first number is the "tail" of the 

edge, and the second number is the "head" of that edge. For example, the first line of 

the Figure 4.11 shows the existence of an edge from vertex 2 ( ''http://bestbuY.ca'' ) 

to vertex 1 ( ''http://sonystyle.ca'' ). The reason that we made the outputs of C++ 

code in this format is that we will be using Pajek to analyze our graph and the input 

format of this program is as shown in Figure 4.12. 

~L"".IIII[I[lJtliU 

1 "htt :!!son. sl le.ca" 
2 ''http://bestbuy .. ca'' 

jlUE 

J ·'·h .. t .. I .• p:lfna.link.decdna .. net" · . . 
4''http://mdg.ca'' 1''http://sonystyle. can 

... 5 '~http://ad.doubleclick.net'' 
6 ''http://l::omputersnow.com'' 
.7 .... http://gifts ~com'' 
"S .. http://w.ickedbodyje\yelz.com .. 
9 "!lttp:llkingsbodyjeweJry.com" 
10''http://~rilopierdng. com'' 
11 ''http://thinkfashion .. com'' 
12.''http://bodycandy.com'' 
13 ''http://roveLebay.com'' 
14 "htfp:l/thechaingang.com" 

. 15 "h~tps:llplugyourh{)les"com" 
! 16''.http://infinitebodyca'' 

Figure 4.10: A sample of vertex output of C++ code. Each line consists of the 
number and name of a vertex. 

Pajek is a software for analyzing large-scale networks. Google advertisements net-

work contains 81,791 vertices and 2,112,204 edges (all the data are for August 2010). 

You can see some pictures of this graph for category "Finance" in Figures 4.13 

and 4.14. Because of the high number of vertices in the graph for all keywords, we 

are not able to draw it with Pajek. 

To verify that this network is a small-world network, we need to find the average 

distance of the graph among reachable pairs of vertices, and the clustering coefficient 

of the graph . As we said before a small-world network has a small average distance 

and a high clustering coefficient. 
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Figure 4.11: A sample of edge output of C++ code. The first line shows the 
existence of an edge "from" vertex number 2 "to" vertex number 1. 

Figure 4.12: A sample input of Pajek program. It shows a directed graph with 4 
vertices a, b,c,d and 4 edges. 
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category #of #of #of average maximum 
keywords vertices edges distance distance 

1 Apparel 48,011 14,255 259,945 2.81201 9 
2 Beauty 35,003 9,346 158,964 2.89468 10 
3 Computer 50,564 16,705 305,824 3.11624 10 
4 Consumer 31,638 7,894 115,783 3.06786 10 
5 Family 3,867 1,961 28,905 2.61010 7 
6 Finance 37,838 7,965 128,593 3.04893 9 
7 Food 38,989 8,352 115,849 2.88312 8 
8 Gift 22,203 4,707 80,312 2.74873 8 
9 Health 1)3,995 14,511 245,836 3.03537 9 
10 Hobbies 33,775 12,697 173,184 2.86149 10 
11 Home 67,921 20,459 455,767 2.78072 10 
12 Law 4,189 1,710 15,933 3.02826 8 
13 Media 9,069 6,843 59,053 3.30023 12 
14 Real state 18,260 7,546 106,076 3.03802 10 
15 sport 38,022 10,150 142,747 2.92600 9 
16 Travel 22,187 11,000 179,283 2.95928 12 
17 Vehicle 36,315 10,129 160,609 2.83656 10 

all 561,846 81,791 2,112,204 2.88431 11 
categories 

Table 4.2: Average distance of Google advertisements network for all categories 
of keywords. 

In the Google advertisements network, %18.2 of the pairs of the vertices are 

unreachable. The average distance among reachable pairs is 2.88431. The maximum 

distant among vertices is 11. There are three pairs of vertices of distance 11. One 

of the pairs consists of vertices ''http://GoHomePro.com'' (a home inspection) and 

''http://starschoice.ca'' (a limousine service company). We observe that this network 

has a small average distance. The distance distribution of this graph is shown in 

Figure 4.15. You can also see the average distance for each category of keywords (17 

categories) in Table 4.2. 

This network has clustering coefficient of 0.5457577, which is relatively very 

high. The clustering coefficient distribution is shown in Figure 4.16. The clustering 

coefficients for each category are shown in Table 4.3. 

According to these results, Google advertisements network is a small-world net­

work.- Now we look at the degree distribution of this network (we consider the 
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category name clustering coefficient 
1 Apparel 0.5561137 
2 Beauty 0.5513774 
3 Computer 0.4926550 
4 Consumer 0.5394617 
5 Family 0.5940629 
6 Finance 0.5222928 
7 Food 0.5353787 
8 Gift 0.5662280 
9 Health 0.5142095 
10 Hol:lbies 0.5545975 
11 Home 0.5675226 
12 Law 0.4857277 
13 Media 0.5005706 
14 Real state 0.5225719 
15 sport 0.5598814 
16 Travel 0.5808564 
17 Vehicle 0.5630946 

all categories 0.5457577 

Table 4.3: Clustering coefficient of Google advertisements network for all cate­
gories of keywords 

in-degree distribution). In-degree distribution of this network has power-law with 

degree exponent of'Y rv 1.5, therefore it is a scale-free network (Figure 4.17 plots 

the in-degree distribution of this network). The maximum degree in this network 

is 22,574 which belongs to ''http://rover.ebay.com'' (see Table 4.4). 

vertex name degree 
1 http://rover.ebay.com 22,574 
2 http:/ /go.sp-ask.com 17,042 
3 http:/ /pronto.com 11,961 
4 http:/ /nextag.com 11,140 
5 http:/ / na.link.decdna.net 10,609 
6 http:/ /info.com 9,972 
7 http:/ /best-price.com 9,503 
8 http://sears.ca 8,122 
9 http://clickserve.dartsearch.net 6,665 
10 http://clk.atdmt.com 6,319 

Table 4.4: Top 10 vertices with highest degrees in Google advertisements network. 
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4.2.1 Further characteristics 

In the previous section, we formed the Google advertisements graph by considering 

both top-of-page and sidebar advertisements. Here we make the Goog/e sidebar 

advertisements network by just considering the advertisements who appear on the 

sidebar of the result page of inquiries. The process of making this graph is the same 

as before, except that we number the first slot in the sidebar 1, and the second 

one 2, etc. Clearly, we will have less vl!rtices than before. This graph contains 74,530 

vertices and 1,532,130 edges. 

The percentage of unreachable pairs is 22.29, and the average distance among 

reachable pairs is 2.99396 (see Figure 4.19 for distance distribution). We can see 

an increase in the average of distance. This is because "hubs" are mostly those 

advertisers who appear on the top-of-page slots. One of the most distant pairs 

of vertices are ''http://moljewelry.com'' and ''http://view-box.com'' with distance 

of 10 (there are 27 pairs of vertices of distance 10). The clustering coefficient 

is 0.5105731 (see Figure 4.20 for clustering coefficient distribution). The highest 

degree is 14,246 which belongs to ''http://rover.ebay.com'' again (see Table 4.5). 

In-degree distribution of this network has the power-law with degree exponent of 

'Y rv 1.6 (see Figure 4.21). 

vertex name degree 
1 http://rover.ebay.com 14,246 
2 http:/ / go.sp-ask.com 13,980 
3 http:/ /pronto.com 9,682 
4 http:/ /nextag.com 9,024 
5 http:/ / na.link.decdna.net 8,958 
6 http://info.com 7,409 
7 http://best-price.com 6,519 
8 http:/ / altfarm.mediaplex.com 5,144 
9 http:/ /clickserve.dartsearch.net 4,800 
10 http:/ /canadiantire.ca 4,675 

Table 4.5: Top 10 vertices with highest degrees in Google sidebar advertisements 
network. 

If we consider only top-of-page advertisements, we will have the Goog/e top-of-
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page advertisements network. This network shows the following properties: There 

are 42,888 vertices and 197,552 edges. You can see the number of vertices dropped 

even more than Google sidebar advertisements graph as Google shows more advertis-

ers in sidebar of the page rather than top of the page. The percentage of unreachable 

pairs is 57.09, and the average distance among reachable pairs is 3.97289 (see Fig­

ure 4.22) . the maximum distance is 14 and there are 14 such pairs of vertices such as 

''http://hoopskills.com'' and ''http://faro.com'' . There are 14 pairs of distance 14. 

The clustering coefficient is 0.3629503 (see Figure 4.23). A list of 10 vertices of 

highest degree is listed in Table 4.6. The maximum degree is 3,868 and belongs 

to ''http://rover.ebay.com'' as in our other graphs. In-degree distribution has the 

power-law with degree exponent of'Y "-' 1.9 (see Figure 4.24). 

vertex name degree 
1 http://rover.ebay.com 3,868 
2 http:/ /clickserve.dartsearch.net 2,141 
3 http:/ /na.link.decdna.net 2,105 
4 http:/ /sears.ca 1,246 
5 http://pronto.com 1,121 
6 http://clk.atdmt.com 1,102 
7 http:/ /homedepot.ca 1,056 
8 http://tracking.searchmarketing.com 758 
9 http://track.searchignite.com 741 
10 http://go.sp-ask.com 700 

Table 4.6: Top 10 vertices with highest degrees in Google top-of-page advertise­
ments network. 

We can make the undirected graph of the Google top-of-page advertisements net­

;ork by making each edge bidirection. The number of vertices is the same as directed 

graph for this network and the number of edges is 171,863. The percentage of the 

unreachable pairs is 24.6, and the average distance is 3.58906 (see Figures 4.25). The 

most distant vertices are ''http://fontlab.com''and''http://thelittleappfactory.com'' 

with distance of 14., The clustering coefficient is 0.5334944 (see Figure 4.26) . The 

highest degree is 7,382. The degree distribution does not have a "typical" power-law 

property (see Figure 4.27). 
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Recall that in the third step of the algorithm in making the graph of Google 

advertisements network, we connect a vertex with rank i to all the vertices of ranks 

smaller than i, if they were not connected to each other before. If we modify this 

by adding an edge regardless of existence of an edge, we form a graph with multiple 

edges. By allowing multiple edges, in the undirected graph of Google top-of-page 

advertisements network, we obtain a structurally different graph with the following 

properties. Clearly the number of vertices and the distance of vertices do not change. 

The number of edges increases to 499,894. The highest degree is 40,262 and as one 

can see in Figure 4.28, the degree distribution does not have the power-law. The 

clustering coefficient is not defined for graphs with multiple edges. 
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Figure 4.13: Graph of Google advertisements network for "Finance" category. It 
consists of a giant component and lots of vertices of degree at most 2 which are 
not connected to this component. 
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Figure 4.14: Graph of giant component of Google advertisements network for 
"Finance" category. 
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Figure 4.15: Distance distribution of Google advertisements network. X-axis is 
the distance between two vertices and Y-axis is the number of the pairs with that 
distance. 
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Figure 4.16: Distribution of clustering coefficient of Google advertisements net­
work. X-axis is the clustering coefficient and Y-axis is the number of vertices 
with that clustering coefficient. 
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Figure 4.17: In-degree distribution of Google advertisements network. X-axis is 
the degree and Y-axis is the number of vertices with that degree. 
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Figure 4.18: LogLog In-degree distribution of Google advertisements network. 
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Figure 4.19: Distance distribution of Google sidebar advertisements network. X­
axis is the distance between two vertices and Y-axis is the number of the pairs 
with that distance. 
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Figure 4.20: Distribution of clustering coefficient of Google sidebar advertise­
ments network. X-axis is the clustering coefficient and Y-axis is the number of 
vertices with that clustering coefficient. 
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Figure 4.21: In-degree distribution of Google sidebar advertisements network. 
X-axis is the degree and Y-axis is the number of vertices with that degree. 
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Figure 4.22: Distance distribution of Google top-of-page advertisements network. 
X-axis is the distance between two vertices and Y-axis is the number of the pairs 
with that distance. 
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Figure 4.23: Distribution of clustering coefficient of Google top-of-page adver­
tisements network. X-axis is the clustering coefficient and Y-axis is the number 
of vertices with that clustering coefficient. 
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Figure 4.24: In-degree distribution of Google top-of-page advertisements network. 
X-axis is the degree and Y-axis is the number of vertices with that degree. 
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Figure 4.25: Distance distribution of undirected graph of Google top-of-page 
advertisements network. X-axis is the distance between two vertices and Y-axis 
is the number of the pairs with that distance. 
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Figure 4.26: Distribution of clustering coefficient of the undirected graph of 
Google top-of-page advertisements network. X-axis is the clustering coefficient 
and Y-axis is the number of vertices with that clustering coefficient. 
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Figure 4.27: Degree distribution of undirected graph of Google top-of-page ad­
vertisements network. X-axis is the degree and Y-axis is the number of vertices 
with that degree. 
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Figure 4.28: Degree distribution of Google advertisements network. Multiple 
edge undirected graph for up advertisements. X-axis is the degree and Y-axis is 
the number of vertices with that degree. 



Chapter 5 

Conclusion 

In the theoretical part of this thesis we presented an elementary proof of the cel­

ebrated von Neumann minimax theorem for quasiconcave/convex and lower/upper 

semicontinuous functions, based on the separation of disjoint point and convex set in 

Euclidean spaces. The minimax theorem being historically connected to fundamen­

tal theorems in nonlinear analysis such as the KKM principle, Brouwer fixed point 

theorem, fixed point and coincidence for set-valued maps, and systems of nonlinear 

inequality, we undertook a study of implications between these results . Some of these 

implications are less well-known than others. 

We were hoping to provide an elementary proof of the KKM principle. It turns out 

that such a proof is yet to be written, but our investigations led us to clarify certain 

aspects of the relationship between intersection theorems of Klee type and KKM 

type. It turns out that, while the equivalence of the Berge-Klee theorem and the 

KKM principle is yet to be established , we can say that it is equivalent to a particular 

version of the KKM principle. This version which we call the convex KKM Principle, 

holds in arbitrary topological vector spaces thus improving a theorem of Granas and 

Lassonde. What is known at this moment, is that the equivalence between KKM and 

Berge-Klee holds if one adopts an approach based on deeper topological tools (with 

connectedness instead convexity) as in Horvath-Lassonde. 
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In the experimental part, we determine that considering a basic externality in a 

model of on-line auctions affects the property ofthe model. Other kinds of externality 

can be considered in a future study, for instance: 

• Location-dependent externality; such as assuming that a random user only 

looks at the advertisements in the top X slots, where X is a random variable 

with a given distribution . 

• Long-term externality; if a user finds the advertisements displayed on the result 

page of her inquiry helpful, she is more likely to click on advertisements in the 

future. Conversely if the advertisements are found to be not relevant, the user 

will pay less attention to advertisements in future. This externality sometimes 

referred to as "the rotten-apple theory of advertising" . 

We believe that the choice of the externality is a major issue in the study of a 

sponsored search. So far, this issue has not received enough attention from the 

research community. 

We have also analyzed the network of Google advertisements in terms of average 

distance, clustering coefficient and degree distribution. We reported that, when this 

network is modeled as a directed graph, it is small-world scale-free. We showed 

that the degree distribution of the undirected graph of this network does not have a 

"typical" power-law property. It would be interesting to find a natural random process 

that generates a graph with the degree distribution observed in the undirected case. 

We made this network several times, based on the data that we gathered in 

different time intervals. Our results were very similar in all the cases. It is interesting 

to study the dynamics of the graph, or in other words, how the graph changes over the 

course of the time. Also further research could compare the Google advertisements 

graph with other graphs modeling product competition among providers (if they 

exist), and verifying if the online behavior of advertisers are any different than that 

of their traditional marketings. 
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Appendix A 

Python code 

def myfunc(): 

import os 

imp 0 rt http lib 

ff=open ( 'C: \ \ Use rs \ \sama \ \ Deskto p \ \ L istOfK eywo rd s . txt' , ' r ' ) 

conn=httplib. HTTPConnection( .. www.google.com .. ) 

w 0 r d s= ff . rea d lin e s () 

for g in words: 

print g 

con n . re que s t (" GET" ," / se arc h ? q=" +g. s t rip () . rep I ace ( , ~ , , '%20' )) 

ss=conn . get response () 

kk=ss. read () 

gg=o pen ( 'C: \ \ Use r s \ \ sa m a \ \ Des k top \ \ P y tho n Res u It. txt ' , ' a ' ) 

gg . w r i t e (g) 

#Beginning of the sponsored link 

po s! =k k . fin d ( , a ~ i d =p a ' ) 

if pos! <0 : 

print "There~is~no~sponsored~links" 
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#Here in the textfile we need to print the keyword and 

#go to 2nd next line for the next keyword 

gg . w r i t e ( '\ n ' ) 

else: 

myFlag = 0 

while myFlag = 0: 

httpPos1=kk. find (' http' ,pos1) 

httpPos2=kk. fi n d ( '/ ' , httpPos1+1) 

httpPos3=kk. fi nd ( '/' ,httpPos2+1) 

htt p Pos4=kk. fi n d ( , / ' , httpPos3+1) 

httpPos5=kk. find ("", httpPos3+1) 

httpPos6=kk. find ('%' , httpPos3+1) 

if httpPos6 != -1 and httpPos6 < httpPos5: 

httpPos5=httpPos6 

if httpPos5 < httpPos4: 

httpPos4=httpPos5 

myStr=kk [httpPos1: httpPos4j 

gg . write(myStr + '\n') 

pos1=kk. find (' a~id=pa' ,httpPos4) 

if pos1 <0: 

myFlag = 1 

gg . w r i t e ( , \ n ' ) 

gg. close () 



Appendix B 

c++ code 

#i n cI u de" s t d a f x . h" 

#include <i ostrea m > 

#include <fstrea m > 

#i n cI u d e < s t r i n g > 

using namespace std; 

class Vertex; 

class Edge; 

int countnode=O; II number of total vertices of the graph 

int nodenumber=l; I I number of each vertex 

class Vertex { 

public: 

Vertex (st ri ng, int, Vertex *); 

-Vertex(); 

string getData(); 

int getNumber(); 

Vertex *getNext (); 

89 



90 

Edge *getFirstEdge (); 

void connectTo (Vertex *); 

boo I HaveEdgeTo(Vertex*); 

APPENDIX B. C++ CODE 

private: 

}; 

string data ;llstores name of the advertisers 

int Number; I I stores number of the vertex 

Edge *edges ;llpointer to the list of out coming edges of the vertex 

Vertex * next; I I pointer to the next vertex in the graph 

class Edge{ 

public: 

Edge(Vertex *. Edge *); 

-Edge(); 

Vertex *getEnd (); 

Edge * get Next () ; 

private: 

}; 

Vertex *end; II pointer to the vertex related to this edge 

Edge *next; II pointer to the next edge in the list of edges 

I I associated with the vertex 

class Graph { 

public: 

Graph(); 

- Graph (); 

Vertex *AddVertex(string); 

bool HavingEdge (Vertex *. Vertex *); 

void AddEdge( Vertex *. Vertex *); 

int countingnodes (); 



Vertex dindVertex(string); 

int printVertexNumber (); 

string printvertices (); 

private: 
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Vertex *first; II a pointer to the first vertex of the graph 

}; 

II ************** methods of class Vertex ********************** 

I I Constructor 

Vertex::Vertex(string theData, int theNumber, Vertex *nextVertex){ 

data = the Data ; 

Number = theNumber; 

next = nextVertex; 

edges = NULL; 

} 

I I Destructor 

Vertex:: -VertexO { 

} 

delete next; 

delete edges; 

II retu rns the data of the vertex 

string Vertex:: getData 0 { 

return data; 

} 

II return the number of the vertex 

int Vertex:: getNumberO { 

return Number; 
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} 

II returns the pointer to the next vertex In the graph 

Vertex *Vertex:: getNext 0 { 

return next; 

} 

II returns the pointer to the first out coming edge of the vertex 

Edge *Vertex::getFirstEdgeO { 

return edges; 

} 

Iladds an edge to connect the vertex to the vertex pointed to by A 

void Vertex:: connectTo (Vertex *A) { 

} 

II allocate memory for a new Edge, set its Vertex pointer to point 

II to A, and its Edge pointer to point to the rest of edges 

Edge *newEdge = new Edge(A, edges); 

edges = newEdge; I I make the new edge the fi rst edge of the vertex 

Ilchecks if there is an edge between vertex and vertex pointed by Q 

bool Vertex:: HaveEdgeTo (Vertex *Q){ 

} 

Edge *W=edges; 

while (W!= NULL) { 

} 

if (W->getEndO->getData 0 = Q->getData 0) 

return true; 

W = W ->getNext (); 

return false; 

11********************** methods of class Edge*********************** 
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II Constructor: sets the two fields to the two given values 

Edge : : Edge (Vertex * Vert, Edge * next Edge ) { 

end = Vert; 

next = nextEdge; 

} 

II Destructor: calls the destructor for the next edge on the list 

Edge: : - Edge () { 

delete next; 

} 

I I returns the pointer to the end vertex of the edge 

Vertex * Edge: : getEnd () { 

return end; 

} 

II returns the pointer to the next edge on the list 

Edge * Edge: : get Next 0 { 

return next; 

} 

11********************** methods of class graph****************** 

I I Constructor 

Graph::GraphO { 

first = NULL; 

} 

I I Destructor 

Graph:: - Graph () { 

delete first; 

} 

I I returns the pointer to the vertex with data theData if such 
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I I vertex occurs in the graph, otherwise returns NULL 

Vertex * Graph : :findVertex(string theData) { 

} 

Vertex *A = fi rst ; 

while (A != NULL) { 

if (A-> getData() 

return A ; 

theData) 

A = A - > getNext(); I I go to the next vertex 

} 

return NULL ; 

I I if there is an edge between vertices A and B returns true , 

I I otherwise false 

bool Graph : : HavingEdge (Vertex *A, Vertex *BH 

bool C = A->HaveEdgeTo (B); 

return C; 

} 

II add a new vertex to the graph with data theData and returns 

II the pointer to this new vertex 

Vertex * Graph::AddVertex(string theData) { 

} 

I I aI/ocate memory for new vertex with data theData , 

Ilmake if point to the previous first vertex 

Vertex * newVertex = new Vertex(theData, nodenumbe r , fi rst) ; 

II make the new vertex the first one in the list of vertexes 

first = newVertex; 

nodenumber++;11 increase the number of vertices of the graph 

return newVertex ; I I return the pointer to the new vertex 

II creates an edge from vertex A to vertex B 



void Graph :: AddEdge(Vertex *A, Vertex *B) { 

A -> con nectTo (B); / / connect A to B 

} 

/ / count the number of vertices of the graph 

int Graph :: countingnodes () { 
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Vertex *A=first ; // makes A point to the first vertex of the graph 

while (A != NULL){// while it is not the end of the vertex list de 

couhtnode++;j / increase the number of vertices by 1 

A = A-> getNext(); // go to the next vertex 

} 

return countnode; 

} 

/ / returns the number of each vertex 

int Graph :: pr intVertexN urn ber () { 

} 

int out = fi rst - > getNumber (); 

return ou t ; 

/ / return the name of the advertisers 

string Graph :: printvertices(){ 

} 

st r i n g out=fi rst ->getData (); 

fi rst=fi rst ->getNext () ; 

return out; 

//************************************************************ *** 

int main () { 

int i = 0; 

i nt node=O ; 
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boo I yx; 

Vertex *X,*y; 

string str="wvwv"; 

string line = ""; 

string temp[30]; 

Graph myGraph; 

APPENDIX B. C++ CODE 

Ilopens the list of keywords and the name of 

II advertisers for each of them 

ifstream myfile (" input. txt"); 

Ilopens a new file to put the list of Vertices in Pajek format on it 

ofstream Ve rtexfi I e (" Vertex ~output . txt" ); 

Ilopens a new file to put the list of edges in Pajek format on it 

of stream Edgefile (" Edges~output . txt"); 

if (myfile. is_open O){ 
if (Edgefile. iLopen ()){ 

II write *Arcs at the beginning of the Edgefile 

Edgefile « "*Arcs~" « end l ; 

while (! myfi Ie. eof 0 ){ 

getline (myfile, line); 

getline (myfile, line); 

while (! line .empty()){ 

II deleting www. from the name of the advertisers 

if (line.find(str)==7) 

temp[i]=line.erase (7,4); 

else 

temp[i]=line;11 save up to 3 advertisers for each keyword 

std::cout« temp[i]« std::endl; 

II if this advertiser doesn't exist in the list of vertices 



I I add it as a new vertex 

x = myGraph.findVertex(temp[i]); 

if (x = NULL) 

myGraph . AddVertex (temp [ i ]); 

i++; 

getline (myfile, line ) ;. 

}llend while (/ line. empty(}) 
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II connect lower advertisers to upper one for each keyword 

for (int j=O; j<=i-2;j++){ 

x = myGraph. findVertex(temp[j ]); 

for (int k=j +1; k<=i -1;k++){ 

y = myGraph . findVertex(temp[k]) ; 

yx = myGraph. HavingEdge (y , x) ; 

if (yx!= true){ 

myGraph . Add Edge (y, x) ; 

I I write edges on Edgefile readable for Pajek 

Edgefile « y-> getNumber() « "~" « x-> getNumber() « endl ; 

}llend if 

}llend for 

}llend for 

i =0 ; 

}II end while (/ myfile. eof() ) 

}II end if (Edgefile.iLopen()) 

else cout « "Unable~to~open~output "; 

}II end if (myfile.is_open()) 

else cout « " Unable~to~open~input" ; 

node=myGraph . countingnodes () ; 
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if (Vertexfile. is_open ()){//creating vertex file readable for Pajek 

Vertexfile « "*Vertices~" « node « endl; 

for (int j=l ; j<=node; j++){ 

cout « j « endl; 

Vertexfile « myGraph.printVertexNumber() «"~\""; 

Vertexfile « myGraph. printvertices () « "\"" « endl; 

}// end for 

}// end if 

else cout « "Unable~to~open~Vertexoutput"; 

int t; 

cin»t; 

return 0; 

}// end main 
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