
The Salmon Algorithm - A New Population Based Search Metaheuristic

John Orth

Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Masters of Science

Faculty of Computer Science, Brock University
St. Catharines, Ontario

c© December, 2011

Abstract

This thesis introduces the Salmon Algorithm, a search meta-heuristic which

can be used for a variety of combinatorial optimization problems. This al-

gorithm is loosely based on the path finding behaviour of salmon swimming

upstream to spawn. There are a number of tunable parameters in the algo-

rithm, so experiments were conducted to find the optimum parameter settings

for different search spaces.

The algorithm was tested on one instance of the Traveling Salesman Prob-

lem and found to have superior performance to an Ant Colony Algorithm and

a Genetic Algorithm. It was then tested on three coding theory problems -

optimal edit codes, optimal Hamming distance codes, and optimal covering

codes. The algorithm produced improvements on the best known values for

five of six of the test cases using edit codes. It matched the best known

results on four out of seven of the Hamming codes as well as three out of

three of the covering codes. The results suggest the Salmon Algorithm is

competitive with established guided random search techniques, and may be

superior in some search spaces.

Acknowledgements

I would first like to thank my supervisor Dr. Sheridan Houghten for her
guidance, insight, patience and good humour. I would even like to thank her
for her gentle prodding, which I needed on occasion.

Since the experiments in this thesis involved thousands of hours of CPU
time, I would like to thank Cale Fairchild for his help setting up the cluster
runs and his advice on programming problems. Without him, this thesis
would have taken much longer than it did.

To the members of my committee Dr. Brian Ross and Dr. Ke Qiu, I
express my gratitude for taking the time to read this lengthy composition
and offer your suggestions. To the external examiner Dr. Steven Corns,
thank you for traveling all the way from Missouri in February. I am sure you
would rather have been going south than north. I would also like to thank
my friends Darren Peters, Steve Bergen, Allen Poapst and the other Master’s
students for accepting me as an equal and not treating me like some strange
old guy that wandered in off the street. Finally, thanks to Dr. Dan Ashlock
and Joseph Brown for your previous collaborations and for making the trip
from Guelph to watch my defence.

All of these people have made a pleasurable experience out of something
that could easily have become a chore.

J.W.O

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 2
1.3 Organization . 2

2 Overview of Search Techniques 4
2.1 Evolutionary Strategies . 5
2.2 Genetic Algorithms . 6
2.3 Artificial Ant Algorithms . 8
2.4 Simulated Annealing . 11
2.5 Tabu Search . 12

3 Salmon algorithm 13
3.1 Salmon Algorithm Parameter Values for TSP 15
3.2 Experimental Results for the TSP 16

4 Error Correcting Codes 18
4.1 Hamming Space . 23

5 Edit Codes 25
5.1 Dynamic Programming Algorithm for Edit Distance 27

6 The Optimal Code Problem 31
6.1 Salmon Algorithm for Finding Maximum Cliques (Optimal

Codes) . 33
6.1.1 Memory Optimization 35

6.2 Conway’s Lexicode Algorithm 36
6.3 Sphere Packing Bound . 36

iii

7 Covering Codes 38
7.1 Football Pool Problem . 39

7.1.1 Salmon Algorithm for the Football Pool Problem . . . 39

8 Literature Review 42
8.1 Edit Codes . 42
8.2 Covering Codes . 43
8.3 Hamming Codes . 44

9 Experimental Results 46
9.1 Optimal Edit Codes . 46

9.1.1 Optimum Initial Water Level Multiplier (IM) 48
9.1.2 Optimum Population Size 51
9.1.3 Tuning the α, φ and σ Values 51
9.1.4 Optimum Number of Elite 53
9.1.5 Optimum Parameter Values Summary 53

9.2 Optimal Edit Code Results . 54
9.2.1 GC Content . 59

9.3 Optimal Hamming Code Results 61
9.4 Covering Code Results . 62

10 Conclusion 68
10.1 Future Work . 69

Bibliography 70

List of Tables

3.1 Salmon Algorithm Optimum Values for TSP 16
3.2 TSP Results . 17

4.1 Hamming (7,4) Code . 19

6.1 Compatibility Matrix . 32

7.1 Limits on Covering Codes with d = 1 and q = 3 39

9.1 Average clique size vs α for various IM 50
9.2 Best clique size vs α for various IM 50
9.3 α vs Population for (7,3) edit codes 51
9.4 Elite vs. No Elite . 53
9.5 Improvements to Edit Codes 59
9.6 Fixed GC Content . 60
9.7 Salmon Algorithm Binary Hamming Code Results 61
9.8 Salmon Algorithm Ternary Hamming Code Results 61

List of Figures

2.1 Search Hierarchy [42] . 5

4.1 Codeword Spheres . 22
4.2 Hamming Space Hypercube 23
4.3 Length 3 Distance 2 Code . 24
4.4 Equivalent Code from Rotation or Reflection 24

5.1 Edit space up to length 3. Dotted lines are insertions or dele-
tions. Solid lines are substitutions. λ is the null string. [6] . . 26

5.2 Dynamic Programming Array for finding Edit Distance 27
5.3 Row 0 and Column 0 Filled 28
5.4 Completed Array and Traceback 29

6.1 Codeword Graph . 32

9.1 Unimodal Curve . 47
9.2 Average Clique Size vs α for (6, 3) Codes 49
9.3 Best Clique Size vs α for (6, 3) Codes 49
9.4 σ = .5 Average Clique Size vs α 52
9.5 σ = .333 Average Clique Size vs α 52
9.6 (6,4) Average Clique Size vs α with 95% CI 54
9.7 (8,4) Average Clique Size vs α 55
9.8 Alpha .30 Results Distribution 56
9.9 Alpha .33 Results Distribution 56
9.10 Alpha .34 Results Distribution 57
9.11 Alpha .35 Results Distribution 57
9.12 Alpha .36 Results Distribution 58
9.13 Alpha .37 Results Distribution 58
9.14 Length 6 Average Cover Size vs φ with 95% CI 63

vi

9.15 Complete Covers vs φ . 64
9.16 Length 6 Average Words Covered vs φ with 95% CI 64
9.17 Length 7 Average Cover Size vs φ with 95% CI 65
9.18 Length 7 Average Words Covered vs φ with 95% CI 66

Chapter 1

Introduction

1.1 Overview

One of the most important quests in computer science today is the search
for techniques to find approximate solutions to problems for which exact
solutions cannot be obtained in a practical amount of time. One common
method for finding good solutions to these NP-hard problems is the use of
a metaheuristic such as Simulated Annealing or Genetic Algorithms. This
thesis will examine a new algorithm, the Salmon Algorithm, which combines
concepts from existing metaheuristics.

There are currently several hundred known NP-hard problems. For exam-
ple, Pierluigi Crescenzi and Viggo Kann [9] count over 200, and this number
only includes problems for which there is known research into approximate
solutions. Although there are specialized algorithms for many of these prob-
lems (see for example [28]), generalized search techniques such as Genetic
Algorithms or Artificial Ant Algorithms are often employed for approximate
solutions.

While the popularity of these methods is undeniable, there can be diffi-
culties with their implementations on some problems. Moreover, the No Free
Lunch Theorem states that if any algorithm has superior performance in one
class of problem, it will necessarily have inferior performance in another class
[41]. Thus, a wider variety of search techniques means a greater chance that
one of them may perform well in a given search space.

1

CHAPTER 1. INTRODUCTION 2

1.2 Problem Statement

The Traveling Salesman Problem (TSP) is one of the best known problems
in combinatorial optimization. Given a list of n cities, the object is to find
the shortest route that visits each city exactly once, then returns to the first
city. This problem has exponential complexity in n. The Salmon Algorithm
will be tested on one instance of the TSP.

An (n, d)q error correcting code is a set of words of length n from an
alphabet of size q where all words in the code are at a minimum distance
of d. There are a number of possible distance measures that can be used.
The two this thesis will be using are edit distance and Hamming distance,
which will be explained in greater detail in the following chapters. It is a
fundamental problem in coding theory to find the largest possible size of
an (n, d)q code for given q, n, and d. This problem has an exponential
complexity in n, hence it is a good candidate for analysis by some type of
search metaheuristic.

This thesis will be using the Salmon Algorithm to find the largest possible
code for a number of different combinations of n, q, and d. Codes using both
edit distance and Hamming distance will be constructed. The results will be
compared to the largest codes that have been created by previous researchers.

An (n, r)q covering code W is a set of words of length n from an alphabet
of size q. Each word w in W is said to ‘cover’ every word that is within a
distance r from w. If all qn words are covered by at least one word in W ,
then W is a covering code. One of the best known problems in coding theory
is the quest to find the smallest covering code using a given n, q and r. This
problem also has exponential complexity in word length. This thesis will use
the Salmon Algorithm to construct minimum covering codes.

1.3 Organization

Chapter 2 is an overview of search techniques. It will review some of the algo-
rithms that have been used by previous researchers on the maximum or min-
imum code problems - Genetic Algorithms, Simulated Annealing, and Tabu
Search. It will also detail two metaheuristics that the Salmon Algorithm
borrows ideas from - Evolutionary Strategies and Artificial Ant Algorithms.

Chapter 3 will introduce the Salmon Algorithm and demonstrate how
this algorithm can be applied to the Traveling Salesman’s problem. The

CHAPTER 1. INTRODUCTION 3

results from the Berlin52 TSP problem will be given and compared to those
achieved with a Genetic Algorithm and an Artificial Ant Algorithm.

Chapter 4 will explain noisy channels and show how this creates the need
for error correcting codes. It will be demonstrated how codes defined using
Hamming distance can be used to correct transmission errors. Hamming dis-
tance, Hamming space and the concept of equivalent codes will be explained.

Chapter 5 will introduce the concepts of edit codes, edit distance, and
edit space. A dynamic programming algorithm for calculating edit distance
will be explained in detail.

Chapter 6 will look at the problem of finding codes of the maximum possi-
ble size and show that the problem of finding such a code is the equivalent of
finding a maximum clique in a graph. This chapter will also demonstrate how
the Salmon Algorithm can be configured to find maximum cliques (codes). It
will briefly look at memory optimization, and introduce Conway’s Lexicode
Algorithm, which is a common algorithm used for finding large codes.

Chapter 7 will explain the concept of covering codes in more detail. It
will also introduce the football pool problem, which is a special case of the
covering code problem. It will show how the Salmon Algorithm can be set
up to find minimum covering codes.

Chapter 8 will give a brief review of previous research on maximum edit
codes, maximum Hamming codes, and minimum covering codes, specifically
those related to the football pool problem.

Chapter 9 will give the experimental results, beginning with the maximum
edit code problem. It will demonstrate how parameter values were optimized.
The sensitivity of some parameter values will be shown. Salmon algorithm
edit code results will be compared to previous results. The concept of GC
content will be explained and results with fixed GC content will be given.
Maximum Hamming code results for binary and ternary Hamming codes will
then be given and compared to the results from previous research. Finally,
the results for the length 5, 6, and 7 football pool problems will be given and
compared to previous results.

Chapter 10 will give the conclusions and explore possibilities for future
work.

Chapter 2

Overview of Search Techniques

Figure 2.1 shows a hierarchy of search techniques. This chart is by no means
complete. It is only intended as a guide so the reader can place the methods
that will be discussed in some logical category.

Calculus based techniques are applicable only to functions that are dif-
ferentiable, and are therefore not useful for the combinatorial optimization
problems we will be looking at. Enumerative techniques are probably not
the best choice for the problems we will be examining because the search
spaces are too large. It is possible that some type of exhaustive search using
advanced pruning techniques (such as removing solutions that are isomor-
phic) might be used, but this is not the direction this thesis will be pursuing
because we are concentrating on cases for which this is not computation-
ally feasible. The techniques that we will be exploring in more detail are
types of guided random searches: Evolutionary Strategies (often called Evo-
lution Strategies), Genetic Algorithms, Artificial Ant Algorithms, Simulated
Annealing and Tabu Search.

4

CHAPTER 2. OVERVIEW OF SEARCH TECHNIQUES 5

Figure 2.1: Search Hierarchy [42]

2.1 Evolutionary Strategies

Perhaps the simplest evolutionary algorithm is an Evolutionary Strategy
(ES). According to Rechenberg [30], Evolutionary Strategies were first devel-
oped in 1964 at the Technical University of Berlin. The algorithm is normally
used to optimize some function F () in n dimensional space. In an Evolu-
tionary Strategy, there exists a population of chromosomes, each of length
n. Each chromosome represents a point in n dimensional space. The algo-
rithm takes each chromosome (the parent) and mutates it to create a child.
F (parent) and F (child) are compared, and the point which gives the best
value is retained in the population. The mutation normally consists of tak-
ing the value of each dimension of the chromosome and selecting a new value
from a Gaussian distribution about the old one.

Evolutionary Strategies are normally used to solve engineering problems,
since the mutation produces a floating point number. They can be modified

CHAPTER 2. OVERVIEW OF SEARCH TECHNIQUES 6

for use on combinatorial optimization problems, but a different scheme for
producing mutations must be used.

To optimize some function F ()
Create random population of chromosomes

for g generations or until convergence do
for each chromosomek in k = 1..numChromosome do

child = mutate(chromosomek)
if F (child) > F (parent)

chromosomek = child
end if

end for
end for

Algorithm 1 Evolutionary Strategy

2.2 Genetic Algorithms

Like Evolutionary Strategies, Genetic Algorithms (GA) are based on natural
selection, mutation and evolution. They differ from ES in that they are
normally used for combinatorial optimization problems, so the chromosomes
are not composed of floating point values. Instead, a chromosome consists of
a string of letters from an alphabet of finite size. A binary alphabet is often
used, although other sizes are not uncommon [10].

Each chromosome represents one complete solution to the problem. Initial
chromosomes are normally generated randomly, although occasionally the
initial chromosomes are filled with known good values. This process is known
as seeding.

Unlike an Evolutionary Strategy, a GA employs a crossover operator
which simulates the real world process of mating. Crossover consists of taking
two chromosomes P1 and P2 (the parents), then forming two new chromo-
somes C1 and C2 (the children) by combining parts of P1 with parts of P2.
There are many different types of crossover operators. The simplest is the
single point crossover, which is shown below.

P1 = ACGTTCATGGC
P2 = TGCAGGCAATA

CHAPTER 2. OVERVIEW OF SEARCH TECHNIQUES 7

Suppose we randomly select the crossover point after the fifth gene.

P1 = ACGTT |CATGGC
P2 = TGCAG|GCAATA

Produce the two children by exchanging the genes after the crossover point.

C1 = ACGTT |GCAATA
C2 = TGCAG|CATGGC

Some problems, such as the Traveling Salesman Problem, require special-
ized crossover operators [10]. Using a crossover like the single point on the
TSP will probably result in a tour that contains some cities twice and others
not at all. This is an illegal tour, so the crossover operator must be designed
in such a way that only legal tours are produced.

A Genetic Algorithm must also incorporate a fitness function. The fitness
function determines the most fit members of the population for crossover.
The fitness function mimics the real world process of Darwinian selection,
where members of the population that are best adapted to a particular envi-
ronment (i.e. the most fit) have a better chance of surviving and producing
children.

The selection of parents for reproduction in a GA is usually done with
tournament selection. In tournament selection, we set the size of the tourna-
ment at some fixed size m. This means we choose m individuals randomly
from the population and evaluate each using the fitness function. The most
fit of these is retained for reproduction. This process is repeated until the
required number of children have been produced. Larger tournament sizes
tend to increase the selection pressure (i.e. they favour the most fit).

Like ES, a Genetic Algorithm also employs a mutation operator. However,
in GA’s the mutation operator is not used every time a new chromosome is
created. Instead, it is used randomly on a small proportion of the population
after the crossover operation takes place. This small proportion is typically
10% or less.

As with Evolutionary Strategies, a GA is run for a number of generations.
This number is normally determined empirically. Alternately, rather than
fixing the number of generations, the algorithm can be run until it converges.

CHAPTER 2. OVERVIEW OF SEARCH TECHNIQUES 8

Convergence means there has been no improvement in the best solution for
a significant number of generations.

Genetic Algorithms sometimes employ an elite chromosome. In this case
the most fit member of the population in any generation is saved and directly
inserted into the population for the subsequent generation.

Using fitness function Fit()
Using crossover operator Xover()
Using mutation operator Mutate()
Create random population of chromosomes

for g generations or until convergence do
childPopulation = null
for count = 1 to size of population do

parent1 = randomly select from population using Fit()
parent2 = randomly select from population using Fit()
child = Xover(parent1, parent2)
if small probability

child = Mutate(child)
end if
childPopulation = childPopulation+ child

end for
population = childPopulation

end for
return the most fit individual in population

Algorithm 2 Genetic Algorithm [31]

2.3 Artificial Ant Algorithms

Ant Algorithms were first proposed by Marco Dorigo in his PhD thesis in
1992 [11]. The first problem to be solved using this method was the Traveling
Salesman’s problem (TSP). Since then Ant Algorithms have been applied to
different combinatorial optimization problems such as vehicle routing, the
knapsack problem, and job shop scheduling.

Ant Algorithms were inspired by real world ants, which find the shortest
path by pheromone communication. Presented with a number of different
paths, none of which have been used before, ants will choose randomly. As

CHAPTER 2. OVERVIEW OF SEARCH TECHNIQUES 9

it makes its way along a path, an ant will deposit pheromone. Since the
ants on shorter paths will travel back and forth more quickly, they will make
more trips in a given period of time. Since the ants are making more trips,
these routes will have a greater amount of pheromone deposited. In general,
ants will prefer a trail with higher pheromone levels, so that over time short
paths will come to be preferred by the majority of ants. Pheromones evap-
orate slowly, which means that eventually the older, longer paths lose their
pheromones and become less likely to be selected, while the newer, shorter
paths will tend to predominate.

In 1997 Dorigo and Gambardella [12] introduced an improvement to the
Ant Algorithm they called Ant Colony System. This algorithm differed from
the basic Ant Algorithm in three ways. i) A pseudo-random-proportional rule
is used for deciding which edge to select (state transition rule). ii) Only the
best ant has a global pheromone update. iii) A local pheromone updating
rule is added. The Ant Colony Algorithm is given as Algorithm 3.

for g generations or until convergence do
Each ant is positioned on a starting node.
for count = 1 to number of ants do

Each ant builds a solution as follows
for count = 1 to number of vertices do

Apply state transition rule
Apply local pheromone update

end for
end for
Apply global pheromone update

end for
Return the shortest path

Algorithm 3 Ant Colony Algorithm [12]

The pseudo-random-proportional rule, given below, allows the program-
mer to bias the algorithm towards exploration or exploitation by adjusting
the parameter q0. An ant positioned on node r chooses the node s to move to
by using this state transition rule. Here, τ(r, s) is the amount of pheromone
on edge (r, s), d(r, s) is the length of edge (r, s), q is a random number be-
tween 0 and 1, candidates are all vertices that have not yet been visited, and
u ∈ candidates. The rule is as follows:

CHAPTER 2. OVERVIEW OF SEARCH TECHNIQUES 10

s =

{
argmax[τ(r, u)] ∗ [1/d(r, u)]β if q < q0 ,

S otherwise .

Here S is a random variable selected according to the formula given below.
The following formula gives the probability an ant on node r will move to
node s.

p(r, s) =
[τ(r, s)] ∗ [1/d(r, s)]β∑

u∈Candidates

[τ(r, u)] ∗ [1/d(r, u)]β

This formula is termed roulette selection. The probability an edge will
be selected is proportional to its fitness. (For this reason it is also sometimes
called fitness proportionate selection.)

Thus, if q < q0 the algorithm uses a greedy approach and selects the
edge with the best combination of length and pheromone. Otherwise, it uses
roulette selection to find the next edge (r, s).

As each individual ant constructs a path, it applies the local pheromone
update given below.

τ(r, s)← τ(r, s) ∗ (1− ρ) + ρ ∗ τ0
This rule tends to decrease the amount of pheromone on an edge. This

might seem counterintuitive, but there is a logical reason for this reduction.
Consider what would happen if each ant added pheromone after it had con-
structed a path. Since ants favour paths with more pheromone, the next ant
would tend to build the same solution as the first. It would then reinforce
this path with more pheromone, and so on. The reduction in pheromone
forces the ants into a wider exploration.

After all ants have constructed a solution the global pheromone update
is applied.

τ(r, s)← τ(r, s) ∗ (1− α) + α ∗∆τ(r, s)

where ∆τ(r, s) is given by

∆τ(r, s) =

{
(Lgb)

−1 if (r, s) ∈ global best tour
0 otherwise

CHAPTER 2. OVERVIEW OF SEARCH TECHNIQUES 11

Here, Lgb is the length of the global best tour and 0 < α < 1 is the
pheromone decay parameter. α simulates pheromone evaporation.

The primary problem with the basic Ant Algorithm is that it gets trapped
too easily in local optima. The Ant Colony System has better performance,
especially on TSP problems with more than 30 cities [12].

2.4 Simulated Annealing

Simulated Annealing was introduced by Kirkpatrick et al.[24] in 1983. It
is based on the process of annealing in metals in which a heated metallic
object is allowed to slowly cool. This enables the molecules to crystallize
into the lowest energy state. The Simulated Annealing algorithm is given as
Algorithm 4.

function Neighbour(C) produces a random neighbour of a solution C
function Fitness(C) returns the fitness of a solution C
Start from T = T0 and an initial solution C = C0

while stop criteria not satisfied do
C ′ = Neighbour(C)
E = Fitness(C ′)− Fitness(C)
if E > 0

C = C ′

else
C = C ′ with probability eE/T

end if
Decrease T

end while
return C

Algorithm 4 Simulated Annealing [27]

The key to understanding Simulated Annealing is to examine how the
algorithm decides whether or not to accept a successor C ′ to a solution C.
If C ′ has higher fitness than C, then it is always accepted. If C ′ has a lower
fitness than C, then it is accepted with probability eE/T . This has two effects.
First, very bad moves will have large negative values for E, and thus will be
accepted with low probability. Second, early in the algorithm, when T is high,

CHAPTER 2. OVERVIEW OF SEARCH TECHNIQUES 12

bad moves are more likely to be accepted than late in the algorithm when T
is low. This allows the algorithm to find its way out of local optima early,
then concentrate its search in the area of the global optimum (hopefully) as
the algorithm nears completion.

Note that the algorithm is normally not population based. Of course, it
would be possible to create a population of solutions, but this would essen-
tially be no different than running a number of single solution algorithms in
parallel.

2.5 Tabu Search

A Tabu Search begins with a solution C, then generates a candidates list of
all neighbours of C. The fitness of all the candidates is evaluated, and the
most fit is retained as the current solution C ′. Note that this is true even if
the fitness of C ′ is less than the fitness of C. If we were to simply repeat this
cycle, the most likely outcome is that the algorithm would return to C on the
next iteration. To prevent this from happening the algorithm maintains a list
of the n most recent solutions in a tabu list. These solutions are forbidden,
so the algorithm cannot simply go back to its previous position. Note that
the tabu list can be overridden if the resulting solution satisfies some special
aspiration condition. Tabu Search is given as Algorithm 5.

function Neighbour(C) produces S, the set of all neighbours of C
function MaxFitness(S) returns the most fit of a set of solutions S
Start from an initial solution C = C0

while stop criteria not satisfied do
S = Neighbour(C)
C = MaxFitness(S)
while C is on tabu list and C does not satisfy aspiration criteria

S = S − C
C = MaxFitness(S)

end while
update tabu list, aspiration criteria, and global best solution

end while
return global best solution

Algorithm 5 Tabu Search [15]

Chapter 3

Salmon algorithm

The Salmon Algorithm was inspired by the behaviour of salmon swimming
upstream to spawn. This thesis makes no claim that real world salmon
exhibit the same characteristics as the software salmon. The behaviour of
the simulated salmon is idealized. However, there are commonalities.

We know real salmon are attracted to flow. In fact, salmon will not begin
spawning if there is insufficient water level in the river [26]. We also know
salmon have a memory. Salmon will return to spawn in the same location
where they were born. These two facts have been used to create a search
meta-heuristic called the Salmon Algorithm. The following is a description
of the Salmon Algorithm for the Traveling Salesman’s Problem.

The algorithm begins by creating a population of salmon and a water
level manager. A water level manager is a 2D array of all edges in the graph,
where the value for each edge equals the water level on that edge. The water
levels are initialized to some positive value.

Each salmon contains two lists. The first is a tabu list, which is a list
of all vertices visited thus far on the current tour. The second is a memory
list. The memory list is a copy of the completed tabu list from the salmon’s
parent. In other words, each child remembers the path its parent took the
previous generation. To begin the algorithm a random path is generated and
placed in each salmon’s memory list.

The salmon then begins its circuit at the first vertex in its memory list.
At each vertex in its path, the salmon will tend to follow the path that its
parent used with probability φ. If it does not select the edge that its parent
used, it will select an edge from a list of candidate edges. Candidate edges
are those that connect to a vertex that is currently not in the tabu list. This

13

CHAPTER 3. SALMON ALGORITHM 14

selection is done using roulette selection on water level values. After each
selection, the candidates list is updated.

After all salmon have built a complete path, the water level manager
is updated. Each salmon[i] adds an amount of water to each edge in its
path equal to bestknown/pathlength[i]. Here, bestknown is the length of
the shortest path known to exist for this problem. This is similar to the way
an ant deposits pheromone in an Ant Algorithm. The primary difference is
that pheromones evaporate, while simulated water does not.

The most fit σ of the salmon spawn and produce offspring. For algorith-
mic simplicity, σ is a fraction 1/n, for an integer n. This allows a constant
population to be maintained if each surviving salmon produces n children.
The spawning process is essentially cloning. There is no crossover between
salmon as there would be with a Genetic Algorithm. The tabu list of the
parent salmon is copied to the memory list in the baby salmon. The most
fit of the parent salmon is saved to an elite salmon. The parents then “die”
and the cycle repeats. Pseudocode for the Salmon Algorithm is presented as
Algorithm 6.

Initialize water levels
for each salmonk do

place random solution in memoryk
end for
for g generations do

for each salmonk construct a solution as follows
construct candidates list
for each itemm in memory

select itemm with probability φ
if itemm not selected then select from candidates using roulette
update candidates list

end for
end for
update water levels
produce children
save elite

end for
return elite

Algorithm 6 Salmon Algorithm

CHAPTER 3. SALMON ALGORITHM 15

The probability pn of selecting itemn using roulette selection is given by:

pn =
(waterLeveln)α∑

x∈Candidates

(waterLevelx)
α

A high value for the roulette selection exponent α will bias the algorithm
more towards exploitation, since the formula will show a strong preference
for known good values. Low α values bias the algorithm more towards ex-
ploration, since the formula then has only a weak preference for higher water
levels.

In summary, each child inherits about φ of its path from a parent, just as
in a GA. Instead of getting the remainder from a second parent as would occur
in a GA, the algorithm builds the rest of the path using a method similar
to an Artificial Ant Algorithm. Note that there is no use of tournament
selection in the reproductive process, as is common in GA’s. The least fit of
the salmon are completely excluded from the reproductive pool.

3.1 Salmon Algorithm Parameter Values for

TSP

The values shown in Table 3.1 were found to give good results with the
Berlin52 Traveling Salesman data. This data set, which consists of 52 lo-
cations in Berlin Germany, was used because it is a well studied problem
instance. The locations are stored as a list of (x,y) coordinates which have
integer values. However, the distances between locations will generally not
be integer values because of the Pythagorean theorem.

These parameter values were obtained by experimentation. Since the
Salmon Algorithm needs to be tuned for each problem instance, not just each
problem type, these values may not work well for other Traveling Salesman
data sets.

CHAPTER 3. SALMON ALGORITHM 16

parameter optimum
σ 0.1
φ 0.5

number of salmon 400
α 3.0

Table 3.1: Salmon Algorithm Optimum Values for TSP

3.2 Experimental Results for the TSP

Table 3.2 shows how the results of the Salmon Algorithms on the Berlin52
Traveling Salesman data compare to the results from a Genetic Algorithm
and an Ant Colony Algorithm. The GA and ant algorithm results were
obtained from research that was conducted prior to this thesis. Ten runs of
each algorithm were used.

The Ant Colony Algorithm was run with the parameter values suggested
in [12]. They are α = .1, β = 2, q0 = .9, ρ = .1 and τ0 equal to (n ∗ Lnn)−1

where Lnn is the tour length produced by the nearest neighbour heuristic
and n is the number of cities. The algorithm was run for 300 iterations.

The Genetic Algorithm was run with crossover = 100%, mutation = 10%,
one elite, tournament size 2, and cycle crossover. These values were obtained
via experimentation. The algorithm was run with a population size of 4000
for 1000 generations. The population and number of generations were chosen
so that the run time of the GA would be close to the run time of the Ant
Colony Algorithm. Note that cycle crossover is a specialized crossover that
is used on problems that have ordered chromosomes, such as the TSP. For a
complete description see [10].

We say the algorithm has converged when there is no further improvement
in the best value for that run. The time to converge is the average number of
seconds the algorithm took to reach convergence. The optimal path for this
problem has a length of 7544.37 (with floating point values). The Salmon
Algorithm found either this value or 7544.66 on 4 out of 10 runs.

CHAPTER 3. SALMON ALGORITHM 17

Algorithm best average worst time to converge (seconds)
Salmon 7544.37 7635 7860 6.28

Ant 7548 7694 7830 21.7
GA 7819 8147 8560 26.1

Table 3.2: TSP Results

Chapter 4

Error Correcting Codes

Anyone who has listened to AM radio during a thunderstorm is aware that
communication channels are not perfect. Extra information in the form of
noise may be added to the transmitted signal, with the result that the re-
ceived signal differs from the original transmission.

Prior to 1948 communications was considered to be an engineering disci-
pline, not a scientific one [8]. Engineers approached the problem of noise from
a purely technical standpoint. For example, they might choose frequency
modulation over amplitude modulation or increase transmitter strength to
improve the signal to noise ratio. In that year Claude Shannon, a scientist
working at the Bell Telephone Labs, published a landmark paper titled “A
Mathematical Theory of Communication”[32]. Shannon identified a char-
acteristic of communication channels called capacity, and proved that even
noisy channels have the ability to transmit reliable information, provided this
information is sent at a rate below the channel’s capacity.

No codes were actually produced in Shannon’s proof. Shannon’s theo-
rem only guarantees that they exist [20]. The construction of usable error
correcting codes was pioneered by a contemporary of Shannon’s at the Bell
Labs, R.W. Hamming. In 1950 Hamming published a paper titled “Error De-
tecting and Error Correcting Codes” [18] which introduced the well known
Hamming(7,4) code. This code has a word length of 7 and each word con-
tains 4 bits of information. The four information bits can transmit a value
from 0 to 15 i.e. one hexadecimal digit. The Hamming (7,4) code is given in
Table 4.1.

18

CHAPTER 4. ERROR CORRECTING CODES 19

Hamming Code Word Value
0000000 0
1101001 1
0101010 2
1000011 3
1001100 4
0100101 5
1100110 6
0001111 7
1110000 8
0011001 9
1011010 10
0110011 11
0111100 12
1010101 13
0010110 14
1111111 15

Table 4.1: Hamming (7,4) Code

Hamming constructed this code by building on the concept of parity.
Parity, within the context of error detection, means that the number of 1 bits
in a word is always either even (even parity) or odd (odd parity). We will
restrict ourselves to a discussion of even parity, since this is what Hamming
used. Adding a parity bit to a binary number allows us to detect a single
error. The parity bit is set to either 0 or 1, so that the total number of 1’s
in the number is always even.

Suppose we wish to transmit the 7 bit binary number 0110001. Begin by
appending a parity bit to the end of this number. Our number, 0110001, has
three 1 bits so the parity bit will be 1, giving us 01100011. This makes the
total number of 1’s equal to four, which is even. If any single bit gets flipped
during transmission the total number of 1 bits will be odd, indicating that
an error has occurred.

Hamming used three parity bits in his (7,4) code. The parity bits are
placed where the position number is a power of 2. Thus, position numbers
1, 2, and 4 are parity bits. (Note that we are counting from 1, not from 0.)

The first parity bit checks any position number where there is a 1 as the

CHAPTER 4. ERROR CORRECTING CODES 20

last digit in its binary representation. We see that:

1 = 001
3 = 011
5 = 101
7 = 111

Thus, the first parity check uses positions 1, 3, 5, and 7. Similarly, the second
parity check uses positions where the second digit of its binary representation
is a one.

2 = 010
3 = 011
6 = 110
7 = 111

Finally, the third parity check uses positions

4 = 100
5 = 101
6 = 110
7 = 111

Let us examine how Hamming used this code to correct a transmission
error. Suppose the transmitted word is 0111100, or 12 from Table 4.1. This
corresponds to the original message (without check bits inserted) 1100. Sup-
pose also that an error has occurred in transmission which changes the fifth
bit from 1 to 0. The received word will be 0111000.

The first parity bit checks positions 1, 3, 5, and 7. It should be 1, but it
is 0. Therefore, the error is in either position 1, 3, 5, or 7.

The second parity bit checks positions 2, 3, 6, and 7. It has the correct
value. Thus the error is not in any of these positions. Combining this with
the result of the previous check, we see the error can only be in position 1 or
5.

The last parity bit checks positions 4, 5, 6, and 7. It has the incorrect
value. Thus the error is in position 4, 5, 6, or 7. Combining this with
the results of the previous two checks, we can see that the error must be
in position 5. The correct value is obtained by changing the 0 in the fifth
position to a 1.

CHAPTER 4. ERROR CORRECTING CODES 21

In his 1950 paper, Hamming also introduced a new distance metric which
has since come to be known as Hamming distance. Given two strings of
length n, S1 = x1, x2...xn and S2 = y1, y2...yn, the Hamming distance d is
defined as the number of substitutions required to change S1 into S2. Viewed
a different way, this value is the same as the number of positions in which
the two strings have different characters. All of the words in the Hamming
(7,4) code are at a minimum distance of three.

The algorithm to compute the Hamming distance is a very simple order
n algorithm that counts the number of positions in which two strings differ.

Read S1 = {x1, x2...xn} and S2 = {y1, y2...yn}
distance = 0
for i = 1 to n do

if xi 6= yi then distance = distance+ 1
end for
return distance

Algorithm 7 Hamming Distance

Let us examine how we use the concept of Hamming distance to detect
and correct an error in a transmission, using the same example that was used
above, 0111100 being transmitted and 0111000 received.

We first check all words in Table 4.1 and see that 0111000 does not appear.
This means an error has occurred. We then compute the Hamming distance
between 0111000 and all the words in the table. We find that the Hamming
distance between 0111000 and 0111100 (12) is one, while the distance to all
other words is 2 or more. Thus, the received word decodes to 12. This type
of decoding is referred to as maximum likelihood decoding. We make the
assumption that a single error will occur more often than two or more, and
we consequently choose the closest word in Hamming space.

It is possible to view Hamming space as a collection of spheres of radius
d/2 centred about each code word, as shown in Figure 4.1. Every word
contained in a sphere decodes to the code word at the centre. A code can
correct up to t = b(d−1)/2c errors. For this reason the spheres are frequently
assigned a radius of t rather than d/2.

CHAPTER 4. ERROR CORRECTING CODES 22

Figure 4.1: Codeword Spheres

It is possible in some codes that a word will be equidistant to two or more
codewords. In this case decoding is ambiguous. It is also possible that some
words will be more than distance t from every codeword. These also cannot
be corrected. If neither of these problems exists then every word is contained
uniquely in one codeword sphere and the code is said to be perfect.

If a noisy transmission results in 2 errors in a given word, then the Ham-
ming (7,4) code will decode incorrectly. Using Figure 4.1, if the transmitted
word is 0111100 and the received word is 0011000 (2 errors), then the re-
ceived word will decode to 0011001. If the transmission medium is so noisy
that 2 errors are a frequent possibility, then we should use a distance 5 code.
A distance 5 code can correct 2 errors. If we wish to correct 3 errors, then
a distance 7 code must be used. But a length 7 Hamming code with dis-
tance 7 has only 2 codewords - {0000000, 1111111} is one possibility. This
demonstrates a fundamental trade off with error correcting codes, greater
redundancy means less information. If no error correcting was required a 7
bit word could transmit 27 = 128 unique pieces of information. If we need
to correct one error then only 16 unique words can be sent. The ability to
correct three errors limits us to only two distinct words.

CHAPTER 4. ERROR CORRECTING CODES 23

4.1 Hamming Space

The Hamming space for binary strings of length n can be viewed as an n
dimensional hypercube as shown in Figure 4.2. Edges connect words that
are at a distance of one. The distance between two words w1 and w2 is the
minimum number of edges that must be traversed to move from w1 to w2.
This allows us to visualize equivalent codes as rotations or reflections. The
term equivalent codes means that the codes are isomorphic.

Equivalent codes will have the same characteristics: length, alphabet,
distance, and number of words. If a code is perfect, then any equivalent code
will also be perfect. If a code is not perfect, then any equivalent code will
share this trait. Equivalent codes have the same shape in Hamming space.

Let us look at a binary length 3 distance 2 code. We see that such a
code {000, 011, 101, 110} can be created by selecting words that are at
opposite corners of every two dimensional square. This is shown in Figure
4.3. Rotation of the cube about any axis, or reflection through any plane,
will produce the equivalent code of {111, 100, 010, 001}, shown in Figure
4.4. These are the only two binary length 3 distance 2 codes of size 4.

The above two codes are equivalent. One can be converted to the other by
a permutation of the letters. (In a binary code the only possible permutation
of letters is 0 → 1 and 1 → 0.) In the Hamming space equivalent codes are
created by permuting the letters and/or permuting the positions in the words.

Figure 4.2: Hamming Space Hypercube

CHAPTER 4. ERROR CORRECTING CODES 24

Figure 4.3: Length 3 Distance 2 Code

Figure 4.4: Equivalent Code from Rotation or Reflection

Chapter 5

Edit Codes

The edit distance between two words is defined as the minimum number
of any combination of single character insertions, deletions, or substitutions
required to change one word into the other. Edit distance is also known as
Levenshtein distance. Two words can be far apart in Hamming space but
close in edit space. For example, the words 01010101 and 10101010 are at a
distance of 8 in Hamming space but only a distance 2 in edit space (The first
word can be changed to the second by inserting a leading 1 then removing
the trailing 1.)

While Hamming codes are normally associated with error correction in
data transmission or storage, edit codes have applications in bioinformatics
because errors in DNA can occur as either substitutions, deletions or inser-
tions. For this reason, all experimental work on edit codes in this thesis will
be done using an alphabet of size 4, which is the number of letters in the
DNA alphabet.

As can be seen from Figure 5.1, the edit space is much more complex than
Hamming space. This graph can be viewed as a series of layers of Hamming
spaces joined vertically by insertions and deletions. Equivalent edit codes
can be created only by simultaneously permuting the letters in all the words
or by the reversal of all the words[6]. Thus, there are much smaller numbers
of equivalent edit codes than there are equivalent Hamming codes.

25

CHAPTER 5. EDIT CODES 26

Figure 5.1: Edit space up to length 3. Dotted lines are insertions or deletions.
Solid lines are substitutions. λ is the null string. [6]

CHAPTER 5. EDIT CODES 27

5.1 Dynamic Programming Algorithm for Edit

Distance

Calculation of edit distance is typically done with a dynamic programming
algorithm. This algorithm will now be explained by way of an example.

Begin by constructing an array L with the rows corresponding to the
letters of the source word and the columns corresponding to the letters of
the destination word as shown in Figure 5.2. λ represents the null string.

Figure 5.2: Dynamic Programming Array for finding Edit Distance

Moving to the right in the array represents an insertion. Moving down
represents a deletion. Moving diagonally represents a substitution or a copy.
A copy can only be performed in L[i, j] if source[i] = destination[j]. The
cost of a substitution, deletion or insertion is one. The cost of a copy is zero.
We will determine the edit distance from ‘algorithm’ to ‘alcoholism’.

The value at any point in the array L[i][j], will be the edit distance
between source[i] and destination[j]. Thus, the value at L[4][5] is the edit

CHAPTER 5. EDIT CODES 28

distance from ‘algo’ to ‘alcoh’. The value at L[6][7] is the edit distance
between ‘algori’ and ‘alcohol’.

The recursive formula for this algorithm is given below.

If source[i] = destination[j]

L[i][j] = Min

L[i− 1][j − 1] + 0
L[i][j − 1] + 1
L[i− 1][j] + 1

If source[i] 6= destination[j]

L[i][j] = Min

L[i− 1][j − 1] + 1
L[i][j − 1] + 1
L[i− 1][j] + 1

Figure 5.3: Row 0 and Column 0 Filled

CHAPTER 5. EDIT CODES 29

Begin by filling L[0][j] = j and L[i][0] = i as in Figure 5.3. Also place in
each array element an ‘i’ if the value was arrived at via an insert, a ‘c’ if a
copy was used, an ‘s’ for substitution, and a ‘d’ if the element was reached
via a delete. This will assist in the traceback. If only the distance is required,
and not the sequence of steps needed to convert the source to the destination,
then this step can be omitted.

Fill the remaining elements in row major order according to the recur-
sive formula. For example, L[1][1] will have a value of 0, since source[1] =
destination[1], L[1][1] is filled with a copy from L[0][0]. Figure 5.4 shows the
completed array including the traceback.

Figure 5.4: Completed Array and Traceback

Note that there may be multiple ways of filling an element. For example,
L[8][9] could have been reached by an insertion, a deletion, or a substitution.
Since all would give a value of 6, it does not matter which one is used.

The pseudo code for the edit distance dynamic programming algorithm
is given as Algorithm 8.

CHAPTER 5. EDIT CODES 30

Read S1 = {x1, x2...xn} and S2 = {y1, y2...ym}
int E[n][m]
for i = 1 to n do

E[i][0] = i
end for
for i = 1 to m do

E[0][i] = i
end for
for i = 1 to n do

for j = 1 to m do
if xi = yj

cost = 0
else

cost = 1
end if
E[i][j] = MIN(E[i-1][j]+1, E[i][j-1]+1, E[i-1][j-1] + cost)

end for
end for
return E[n][m]

Algorithm 8 Edit Distance [39]

Chapter 6

The Optimal Code Problem

An (n,M, d)q code is defined as a set of M codewords (strings) each having
a length n where the characters are taken from an alphabet of size q. In ad-
dition each word must be at a minimum distance d from every other word. If
the code is an unspecified size, then it is referred to as an (n, d)q code. Typi-
cally one of two different distance measures will be used, Hamming distance
or edit distance. The optimal Hamming code problem will be described in
detail. The analysis for the edit code problem is exactly the same, with the
obvious exception that a different distance measure is used.

The maximum possible number of Hamming codewords of length n from
an alphabet of q characters having a minimum distance d is referred to as
Aq(n, d). It is a fundamental problem in coding theory to find these maxi-
mums for given values of n, q, and d. A code with M = Aq(n, d) is called
optimal.

If we wish to use the Salmon Algorithm to find optimal codes, it is helpful
to convert the problem into a graphical representation. This is easily done,
since the problem of finding an optimal code is equivalent to the problem of
finding a maximum clique.

A graph G(V,E) is defined by a set of vertices V and a set of edges E.
A clique C is defined as a subset of V such that every pair of vertices in this
subset is connected by an edge. A maximum clique is the largest possible
clique in a graph G. Consider a binary error correcting code of length 3
with a minimum distance of two. This is a (3, 2)2 code, where the subscript
refers to the alphabet size. First, construct the compatibility matrix shown
in Table 6.1. This matrix will have the value one in any position where the
two codewords differ by two or more in Hamming space, and the value zero

31

CHAPTER 6. THE OPTIMAL CODE PROBLEM 32

if they differ by less than two.

000 001 010 011 100 101 110 111
000 0 0 0 1 0 1 1 1
001 0 0 1 0 1 0 1 1
010 0 1 0 0 1 1 0 1
011 1 0 0 0 1 1 1 0
100 0 1 1 1 0 0 0 1
101 1 0 1 1 0 0 1 0
110 1 1 0 1 0 1 0 0
111 1 1 1 0 1 0 0 0

Table 6.1: Compatibility Matrix

This codeword compatibility matrix is also the adjacency matrix for the
graph given below in Figure 6.1. Thus, we see that the problem of finding
the largest number of codewords at a distance 2 or more is the equivalent
of finding the maximum clique in the following graph. In this example, the
size of the maximum clique is 4, and the vertices in this clique are {000, 011,
101, 110} or {111, 100, 010, 001}. These same values are the codewords in
the optimal code.

Figure 6.1: Codeword Graph

CHAPTER 6. THE OPTIMAL CODE PROBLEM 33

The maximum clique problem is a known NP-complete problem. In fact,
it is one of Karp’s original 21 NP-complete problems [22]. This means that
exact solutions will be difficult for all but the smallest problem instances.
Since codeword graphs can have tens of thousands of vertices and hundreds
of millions of edges, it is best to use some type of approximation algorithm
for this problem. Previous works have used Genetic Algorithms [16]. This
thesis will now demonstrate how the Salmon Algorithm can be configured to
find large cliques.

6.1 Salmon Algorithm for Finding Maximum

Cliques (Optimal Codes)

The maximum clique problem requires some changes to the algorithm. A
solution to the Traveling Salesman’s problem is an ordered set of edges. The
algorithm adds water to edges to distinguish ‘good’ edges from ‘bad’ edges.
A solution to the maximum clique problem is a set of vertices. Thus, instead
of tracking the water level on each edge, the algorithm tracks the water level
on each vertex.

Another subtle but important difference is that the clique cannot be con-
structed one vertex at a time in a manner analogous to the way the TSP
algorithm adds each vertex in succession. Instead, we build a partial clique
from the memory vertices first. The remainder of the vertices are then added
to the clique using roulette selection on the water levels.

To understand why this is necessary, consider what would happen if we
added each vertex in succession, with probability φ that the vertex be selected
from memory and 1− φ that it be selected based on water level. Any vertex
selected on the basis of water level will probably not be connected (share an
edge) with most of the memory vertices. Thus, after selection of a vertex
based on water level, most of the vertices in memory will not be candidates
for further addition to the clique. The salmon’s memory will have been
rendered useless.

The pseudo-code for the clique-finding Salmon Algorithm is given as Al-
gorithm 9. It is based on the pseudo-code for constructing cliques using an
ant algorithm in [33].

CHAPTER 6. THE OPTIMAL CODE PROBLEM 34

Initialize water levels
for each salmonk in k = 1..numSalmon do

place random clique in memoryk
end for
do

for each salmonk in k = 1..numSalmon construct a max clique Ck
in graph G = (V,E) as follows:

for each vi in i = 1..numMemory
r = randomDouble(0, 1)
if r < φ then Ck ← Ck ∪ {vi}

end for
for each vj ∈ (V − Ck)

if (vi, vj) ∈ E ∀ vi ∈ Ck then Candidates← Candidates ∪ vj
end for
while Candidates is non-empty

Choose a vertex vi ∈ Candidates with probability p(vi)
Ck ← Ck ∪ {vi}
Candidates← Candidates ∩ {vj|(vi, vj) ∈ E}

end while
end for
update water levels
produce Children
if best salmon clique size > elite.cliquesize then update elite

until maximum number of cycles reached
return largest constructed clique found

Where p(vi) =
(waterLeveli)

α∑
vj∈Candidates

(waterLevelj)
α

Algorithm 9 Salmon Algorithm for Maximum Cliques (Codes)

CHAPTER 6. THE OPTIMAL CODE PROBLEM 35

6.1.1 Memory Optimization

Looking at Algorithm 8, we can see that every time a vertex is evaluated
for possible addition to the candidates list the algorithm must compute the
distance between the potential candidate vertex and all the vertices currently
in the clique. Because of the large number of times this must be done, and the
fact that the edit distance algorithm is O(n2), it is best to pre-compute and
store the edit distances between all possible codewords (vertices) to reduce
run times. This may not be true with Hamming distance which can be
calculated with an O(n) algorithm. In fact Hamming distance calculations
can be optimized further by the use of bitwise exclusive-or statements. (Note:
Strictly speaking the edit distance algorithm is O(mn) where m and n are the
lengths of the source and destination words. However, in the codes we will
be constructing all words have the same length i.e. the number of insertions
equals the number of deletions, so the algorithm in this case is O(n2).)

Because the distance between any two words S1 and S2 equals the distance
between S2 and S1 the adjacency matrix is symmetrical. We can use this fact
to cut our memory requirements in half. Note also that since the distance
from a word to itself is zero, we can eliminate the diagonal of the adjacency
matrix. Finally, be aware that because a byte is the smallest addressable unit
of memory, C++ only stores one boolean value per byte. If we represent the
adjacency matrix with a boolean array, only one bit of every byte will be
utilized. Memory requirements will be 8 times what a simple counting of
the number of entries in the adjacency matrix would predict. To maximize
memory utilization it is necessary to use bit masking to store information in
all 8 bits per byte and to recover individual bit information.

Even with memory optimization, for large values of n it will not be pos-
sible to store the adjacency matrix because memory requirements increase
exponentially with word length. With a binary alphabet the adjacency ma-
trix quadruples in size every time the word length increases by one character.
Using a quaternary alphabet, storage requirements increase 16 fold for each
character added. For a length 8 quaternary code the adjacency matrix with
memory optimization requires about 256 MB of storage. A length 9 code
would require 4 GB.

CHAPTER 6. THE OPTIMAL CODE PROBLEM 36

6.2 Conway’s Lexicode Algorithm

One algorithm that is often used for constructing large codes is Conway’s
Lexicode Algorithm [7]. This is a simple greedy algorithm that does not
usually produce an optimum code, but frequently produces a good code in
a relatively short time. Conway’s Lexicode Algorithm is given as Algorithm
10.

Given an alphabet of size q, minimum distance d, and word length n
dist(x, y) returns the distance between x and y.
S is the ordered set of all qn words
R = {}
for each s ∈ S in lexicographic order do

if dist(r, s) ≤ d ∀r ∈ R
R = R ∪ s

end if
end for
return R

Algorithm 10 Conway’s Lexicode Algorithm

The algorithm can also be run with a seed, which means that the set R is
not initially null, but instead contains a small, incomplete code. Since every
word in the seed blocks any other word within distance d from being included
in the code, even a small seed can have a large effect on the composition of
the code.

6.3 Sphere Packing Bound

The Sphere Packing Bound [20] is used to set an upper bound on the size of a
code, whereas the various search techniques described previously set a lower
bound. Recall from Chapter 4 that a code can correct up to t = b(d− 1)/2c
errors. For Hamming distance codes the maximum number of words in each
codeword sphere is given by

1 +

(
n

1

)
(q − 1)1 + ...+

(
n

t

)
(q − 1)t

CHAPTER 6. THE OPTIMAL CODE PROBLEM 37

where the first term is the codeword itself, the second term is the number of
possible words that can have 1 error in an alphabet of q symbols, and the
last term is the number of words than can have t errors. The total number
of words is qn. Thus, the maximum number of codewords is given by

Aq(n, d) ≤ qn

t∑
i=0

(
n

i

)
(q − 1)i

If a code is perfect, it will achieve the Sphere Packing Bound, i.e. the
number of codewords will be equal to the above upper bound.

Chapter 7

Covering Codes

Let W be the set of all qn words of length n that can be formed using an
alphabet of size q. A covering code C of radius d is a subset of W such that
for all words in W there exists at least one word in C at a Hamming distance
of d or less. Stated in mathematical terms, C ⊆ W such that ∀w ∈ W,∃c ∈ C
with dist(w, c) ≤ d.

For example, if n = 2 and q = 3 thenW = {00, 01, 02, 10, 11, 12, 20, 21, 22}.
One possible cover with d = 1 is {00, 01, 02}.

Recall from Chapter 4 that an error correcting code is said to be perfect
if every word is contained uniquely in one codeword sphere. A perfect (n, r)q
covering code has the same definition using spheres of radius r. However,
a covering code that is not perfect will differ from an error correcting code
that shares the same characteristic.

An error correcting code that is not perfect will have words that exist
outside of all codeword spheres. Thus, the number of codewords will be less
than the number in a perfect code. By definition, a covering code cannot
have any words outside of all codeword spheres. Instead, a covering code
that is not perfect will have words that appear in multiple spheres. This
code will therefore be larger than a perfect code.

Exact bounds on covering codes are known for only a few of the smaller
cases plus n = 13, which is a perfect code. Known limits for codes with q = 3
and d = 1 are shown in Table 7.1. For a more complete list see the on line
site, Tables on Bounds for Covering Codes [23].

38

CHAPTER 7. COVERING CODES 39

Length Lower Upper
1 1 1
2 3 3
3 5 5
4 9 9
5 27 27
6 71 73
7 156 186
8 402 486

Table 7.1: Limits on Covering Codes with d = 1 and q = 3

The minimum size for a cover using an alphabet of size q, word length n
and radius d is known as Kq(n, d).

7.1 Football Pool Problem

Some believe the football pool problem is one of the most famous problems in
coding theory [17]. Consider a hypothetical football (or, in North American
parlance, soccer) pool where the objective is to correctly predict the outcome
of n games as either a win, loss, or tie for the home team, with the restriction
that the winner of the pool can make at most one wrong prediction. The
football pool problem asks this question: What is the smallest number of
tickets that must be purchased to ensure that the holder of those tickets will
win the pool regardless of the outcome of the games? Since there are three
possible outcomes for each game, this makes q = 3. Since the winner can
pick at most one wrong, this makes d = 1. The football pool problem for
n games is the equivalent of finding the smallest possible covering code of
length n with d = 1 and q = 3.

7.1.1 Salmon Algorithm for the Football Pool Problem

The pseudo code for the Salmon Algorithm for the minimum covering code
problem is given as Algorithm 11.

CHAPTER 7. COVERING CODES 40

W is the set of all qn words of length n and alphabet size q.
Given S ⊆ W the function coveredBy(S) returns the set of all words covered
by S

Initialize water levels
for each salmonk in k = 1..numSalmon do

place random cover in memoryk
end for
do

for each salmonk in k = 1..numSalmon construct a min cover Ck
as follows:

Ck = {}
for each wi in i = 1..numMemory

r = randomDouble(0, 1)
if r < φ then Ck ← Ck ∪ {wi}

end for
while coveredBy(Ck) 6= W

Candidates = {}
for each wj ∈ (W − Ck)

if ∃wk ∈ (W − coveredBy(Ck) and wk ∈ coveredBy(wj)
then Candidates← Candidates ∪ wj

end for
Choose a word wi ∈ Candidates with probability pi
Ck ← Ck ∪ {wi}

end while
end for
update water levels
produce Children
if best salmon cover size < elite.cliquesize then update elite

until maximum number of cycles reached
return smallest constructed cover found

The probability pi of selecting a given word wi is given by:

pi =
(waterLeveli)

α∑
wj∈Candidates

(waterLevelj)
α

Algorithm 11 Salmon Algorithm for Minimum Covering Codes

CHAPTER 7. COVERING CODES 41

Until this point we have viewed the Salmon Algorithm as a population
of salmon swimming from vertex to vertex in a graph. This may help with
visualization of some problems, but it is not necessary for a problem to be in
graphical format for the Salmon Algorithm to be used. It is only necessary
to have discrete components on which we can deposit water. In the football
pool problem, these components are the words in W .

Since we are attempting to build the smallest possible cover, this is a
minimization problem. However, it is possible to view it as a maximization
problem. To do this we do not fix the number of words covered at qn as in
Algorithm 10. Instead, we fix the number of words in the cover at an amount
slightly greater than the best known cover size, then attempt to maximize
the number of words covered. If a cover for all qn words is found, then the
number of words in the cover is reduced by one, and the process repeated.
This was the strategy used by Van Laarhoven et al.[36]. Both versions of the
algorithm are used in this thesis.

Chapter 8

Literature Review

This chapter will give a brief review of the research that has been done on
maximum edit and Hamming codes, and minimum covering codes.

8.1 Edit Codes

The study of edit codes was pioneered by Russian scientist Vladimir Lev-
enshtein in the mid 1960’s. As indicated in Chapter 5, edit distance is
often referred to as Levenshtein distance. The dynamic programming al-
gorithm for edit distance presented in Chapter 5 is usually attributed to
Levenshtein[25], although many other researchers discovered the same algo-
rithm independently[34].

In 2002 Ashlock et al.[1] used a genetic algorithm in conjunction with
Conway’s lexicode algorithm to find optimal edit codes. Each chromosome
consisted of a small seed for the lexicode algorithm. The fitness of a chro-
mosome was determined by the size of the code that was produced when the
lexicode algorithm was run with the given seed. This process was termed
a greedy closure evolutionary algorithm, since the greedy algorithm (Con-
way’s) was used to finish or close the code. Crossover consisted of swapping
a given word in the two parents with a probability of 50%. Mutation con-
sisted of taking one of the words in the seed and replacing it with a new word.
Both crossover and mutation had the potential to create seeds that violated
the minimum distance requirement. Such an illegal chromosome was given a
fitness of zero and removed from the population by selection.

The problem with this algorithm is that it must step through all possible

42

CHAPTER 8. LITERATURE REVIEW 43

words every time the fitness of a chromosome is evaluated. Since the number
of possible words is exponential in the length of the code words, run times
also increase exponentially. In 2006 Houghten et al.[19] provided a faster
method for finding codes. In this algorithm the completed codes are stored
as chromosomes. A binary variation operator was used to produce one new
code from two parents. The two parent codes were shuffled together and one
random word was added. Conway’s algorithm was then used to turn this list
of words into a code. This method produced codes that were smaller than
those produced in [1]. However, run times were much shorter. This allowed
codes using longer codewords to be created.

In 2009 Ashlock et al.[3] improved on the work in [1] by demonstrating
that crossover was detrimental to the process of finding large codes. The rea-
son crossover was ineffective can be explained with the concept of infertility.
If two parents have a high probability of producing offspring with a fitness
good enough for them to survive, the parents are said to be fertile. If the
fitness of the children is low, meaning they will probably not survive, then
the parents are said to be infertile. The problem with the crossover operator
used in [1] is that it frequently produced children that violated the minimum
distance requirement and hence had a fitness of zero. The crossover free
algorithm used in [3] is a type of evolutionary strategy (ES).

In [3] the authors also demonstrated that the optimum seed size is roughly
three. The larger the seed size, the more likely it is that two of the words
will violate the minimum distance requirement.

All of the previous research into optimal edit codes has been restricted
to codes comprised of words of equal length, i.e. the number of insertions
equals the number of deletions. All edit codes in this thesis will be similarly
restricted.

8.2 Covering Codes

Recall that the most complete table of covering codes can be found on line
at [23].

The K3(4, 1) and K3(13, 1) codes are perfect[37]. Thus, using the Sphere
Packing Bound formula given in Chapter 6, and substituting the value 1 for
the radius, we see that K3(4, 1) = 9 and K3(13, 1) = 310. By successively
extending the K3(4, 1) result it is easily shown that K3(n, 1) ≤ 3n−2 for
5 ≤ n ≤ 12.

CHAPTER 8. LITERATURE REVIEW 44

Simulated annealing was first applied to the covering codes problem by
Wille [40] who in 1987 established a new upper bound of 74 for the K3(6, 1)
problem. The current best known upper bounds for the K3(6, 1), K3(7, 1),
and K3(8, 1) cover codes were found by Van Laarhoven et al.[36] in 1989.
These authors used simulated annealing directly to find the length 6 and 7
codes, and simulated annealing in conjunction with the Blokhuis and Lam
[4] matrix construction method for the length 8 code.

In 1997 Patric Österg̊ard [27] was able to improve the then best known
value for the K3(9, 1) problem to 1341 using a tabu search.

8.3 Hamming Codes

Andries Brouwer[5] maintains tables of best known Hamming distance codes
on line, along with references for the papers in which these bounds were
established.

The Gilbert Bound [14] uses a construction similar to the Sphere Packing
Bound to set a lower bound. The Gilbert Bound is

Aq(n, d) ≥ qn

d−1∑
i=0

(
n

i

)
(q − 1)i

Begin the proof of the Gilbert Bound by observing that the covering
radius r of a code C with Aq(n, d) codewords has r ≤ d − 1. Proof of this
observation is by contradiction. Assume the code C has a covering radius
of d or more. If this is the case, then there is a word w in qn at a distance
≥ d from every codeword. This means C ∪{w} is also a code with minimum
distance d, and this code has one more codeword than C. But this is not
possible, since we assumed C was optimal.

The minimum number of codewords is the total number of words qn

divided by the maximum possible number in each sphere, which gives us the
Gilbert Bound.

Another lower bound is the Varshamov Bound. This bound is similar
to the Gilbert Bound, in fact, asymptotically they are the same [20]. For
this reason the two bounds are sometimes treated as one, and referred to as
the Gilbert-Varshamov Bound. The only other analytical lower bound is the
Algebraic Geometry Bound [38]. The problem with both of these bounds is

CHAPTER 8. LITERATURE REVIEW 45

they are very low quality[35].
On the other hand, a number of analytical upper bounds are known.

Some are the Plotkin Bound, the Johnson Bound, the Singleton Bound, the
Elias Bound, the Linear Programming Bound, the Griesmer Bound, and the
Sphere Packing Bound, which was discussed in Chapter 6. Derivations for
all of these bounds can be found in [20].

Because only two analytical lower bounds are known to exist, and these
are poor quality, lower bounds are usually established with some type of
search. Haas and Houghten [16] used a variety of methods to search for
large Hamming codes. These authors tested beam search, hill climbers, tabu
search, simulated annealing, Conway’s lexicode, and two variations of genetic
algorithms in conjunction with the lexicode algorithm. They determined the
most successful strategy was to use a GA to produce an incomplete code,
then finish it with Conway’s lexicode algorithm.

Chapter 9

Experimental Results

This chapter gives the experimental results for optimal edit, Hamming, and
covering codes. Most of the parameter optimization was performed on edit
codes first, so the edit code section is more detailed. The initial work on
Hamming codes used the same parameter values that were found to perform
well on edit codes. Since the problems differ only in their distance metric,
it was thought the search spaces might be similar. Further optimization on
Hamming codes was only attempted if the initial results were poor.

As seen in Chapter 8, previous researchers obtained the best results for
covering codes using Simulated Annealing and Tabu Search, while good re-
sults for edit and Hamming codes were achieved with GA’s or variations of
Conway’s lexicode algorithm. Based on the fact that these problems have
demonstrated the need for completely different search strategies, we might
expect the covering code parameter values to be significantly different from
those used in the edit and Hamming code problems.

All experiments were conducted on a 30 core cluster made up of a mixture
of 4 and 6 core AMD and Pentium chips running at between 2.6 and 3.2 Ghz.
All experiments used a total of 30 runs for each test case.

9.1 Optimal Edit Codes

The following is a list of parameters that this thesis will attempt to optimize:

1. Initial Water Level Multiplier IM

46

CHAPTER 9. EXPERIMENTAL RESULTS 47

2. Population Size

3. Memory Probability φ

4. Reproduction Fraction σ

5. Roulette Selection Exponent α

6. Number of Elite

A complete examination involving only 5 distinct values for each of the 6
parameters would result in 56 = 15625 test cases. Of course, each test case
would need to be run a minimum of 30 times for statistical significance. This
process would then need to be repeated for each of the six data sets that
were examined. This is simply not feasible. In order to reduce the amount
of computing to a reasonable level we need to make some assumptions about
parameter independence and the shape of the curves.

We will assume that the curves are unimodal. If we have a clique size
vs α curve similar to Figure 9.1, then we assume that the curve does not
tend upwards again at α values less than .5 or greater than 1. Testing on
the (6, 3)4 code with α = 0 to α = 1.0 in increments of .1 revealed only one
optimum, so this assumption is fairly reasonable.

Figure 9.1: Unimodal Curve

CHAPTER 9. EXPERIMENTAL RESULTS 48

We will assume that the optimum IM value is constant for all cases. The
algorithm attempts to compensate for the fact that larger cliques deposit
larger quantities of water by setting an initial water level equal to BK ∗ IM ,
where BK is the largest clique known to exist for this problem.

We will assume that the optimum number of elite is only related to the
population size and not to any other parameters. We will select a population
size that gives good results without taking an excessive amount of time to
run. This population will be used for all the data sets. Finally, preliminary
testing showed that there was some degree of dependence between φ, α, and
σ, so we will attempt to optimize these parameters together.

Most of the parameter adjustments were made on the (6,3) code first.
This is a well studied case. An application for this code is described in [29].
Codewords were used to identify DNA sources in an expressed sequence tag
project. The codes used were length 6 and distance 3, which allowed for
single error correction. Additionally, run times for this code are significantly
shorter than the length 7 and length 8 codes. Using a population of 100 the
time to complete a run of the (6,3) code was about 1400 seconds, while the
(7,3) code required 12 000 seconds, and the (8,3) code needed 3 days.

9.1.1 Optimum Initial Water Level Multiplier (IM)

The first attempts at setting the initial water level [2] involved a method of
allocating more water to vertices with a higher degree in the codeword graph.
Vertices with the highest degree received an amount of initial water equal to
BK ∗ 2. Vertices with the lowest degree received an initial water level equal
to BK. (Recall that BK is the best known clique size for a given data set.)
Vertices between these two extremes received a water level proportional to
their degree. The intention was to bias the initial water level towards those
vertices that had a greater chance of being members of a large clique.

This strategy was found to be non-productive. The algorithm produced
superior results by simply setting the initial water level to a constant. Figures
9.2 and 9.3 show the results on the (6,3) data. Here, “complex” refers to the
biased initial water level while “simple” is an initial water level equal to BK.
As can be seen, the simple initial water level was no better than the complex
value on average clique sizes, but it more consistently found the largest (at
the time) size of 112. The other parameters used to produce these graphs
were φ = 0.7, σ = 0.5, population = 400, and number of elite = 1.

CHAPTER 9. EXPERIMENTAL RESULTS 49

Figure 9.2: Average Clique Size vs α for (6, 3) Codes

Figure 9.3: Best Clique Size vs α for (6, 3) Codes

CHAPTER 9. EXPERIMENTAL RESULTS 50

Alpha .3 .4 .5 .6
IM = 1 104.87 109.17 108.83 108.70
IM = 10 105.23 109.43 109.17 108.50
IM = 100 105.03 109.07 108.80 108.23
IM = 1000 104.30 107.70 108.63 108.47

Table 9.1: Average clique size vs α for various IM

Alpha .3 .4 .5 .6
IM = 1 111 112 112 112
IM = 10 109 112 111 111
IM = 100 109 111 111 110
IM = 1000 108 111 111 111

Table 9.2: Best clique size vs α for various IM

Notice that although the complex initial water level produced an average
clique size that was slightly higher than the simple initial level, it never found
a clique of size 112. We cannot optimize only for best average clique size,
but need to also look at the best value obtained for a given set of parameter
values. Since our final goal is to produce the largest possible code, it can be
argued that the highest value obtained is more important than the average
value.

Having decided upon using an evenly distributed initial water level, we
must now find the optimum initial value. Tables 9.1 and 9.2 show the average
and best clique sizes obtained for IM = 1 to IM = 1000 over a range of α
values for (6,3) codes. The other parameters used were φ = 0.7, σ = 0.5,
population = 400 and number of elite = 1.

The results suggest that an optimal IM value lies in the range of 1 to 10.
Running the algorithm with an IM value of 100 or higher did not produce
a single instance of a clique size of 112, the best result we obtained for this
data set early in the testing. Using an IM value of 1 or 10 produced six runs
with the optimum result. Higher IM values also cause the algorithm to take
longer to converge. We used an IM value of 5 for most of the experiments
on all data sets.

CHAPTER 9. EXPERIMENTAL RESULTS 51

Population Optimum α
100 .30
200 .33
400 .35 to .36

Table 9.3: α vs Population for (7,3) edit codes

9.1.2 Optimum Population Size

Population size was found to have only a slight effect on the quality of the
results. Using the (7,3) data, a population of 100 returned a high average of
347.6 and a best of 352. A population of 400 gave a high average of 348.6
and a best of 352. Thus, although higher populations yield slightly better
clique sizes, the gain is not worth the extra run time. Better results could
be obtained with 4 runs of population 100 over one run with population 400.
Populations of less than 100 were not tested, since all parameter sets up to
(8,3) ran within a reasonable amount of time with this population.

Optimum α values were found to be sensitive to population size. See
Table 9.3 for this result.

9.1.3 Tuning the α, φ and σ Values

The parameters φ and α both have similar effects on the algorithm. A high
α value causes the algorithm to bias its roulette selection to known good
vertices which results in fast convergence. A high φ value means each salmon
is building its clique based primarily on the vertices in its parent’s clique and
not exploring significantly for new possibilities. This also tends to cause
rapid convergence. For the algorithm to produce good results a high α value
must be offset by a low φ value. The reverse is also true. However, there are
limits beyond which it is not possible to compensate. Using the (6,3) data
we found that good results could be obtained with either φ = 0.7 or φ = 0.8
by adjusting the α value up or down accordingly. However, if φ was set too
low (φ = 0.6) or too high (φ = 0.9) then the results deteriorated regardless
of the α value selected. This characteristic is shown in Figs. 9.4 and 9.5.
Other parameter values used to produce these graphs were population = 400,
IM = 5 and number of elite = 1.

CHAPTER 9. EXPERIMENTAL RESULTS 52

Figure 9.4: σ = .5 Average Clique Size vs α

Figure 9.5: σ = .333 Average Clique Size vs α

CHAPTER 9. EXPERIMENTAL RESULTS 53

Viewing these graphs it is not immediately clear whether the σ = 0.5 or
σ = 0.333 results are superior. In both groups the φ = 0.7 and φ = 0.8
values have best averages of over 109. However, with σ = 0.333 there was
only one run that resulted in a clique of size 112, while with σ = 0.5 there
were six runs with this value. For this reason, we chose to use σ = 0.5 for
further experiments.

Although good results can be obtained by using φ values of either 0.8 or
0.7, it is clear from the σ = 0.5 graph that the results from using 0.8 are
slightly better. The same optimum value for φ was found when similar mea-
surements were performed on both the (7,3) and (6,4) codes. Note that the
Salmon Algorithm was previously demonstrated to work well when applied
to the problem of finding codes of lengths 5–8 and minimum edit distance of
3 or 4 [2]. The results from current tests suggest that φ = 0.8 will produce
good (optimal or near optimal) results for all codes within this previously
demonstrated viable range.

9.1.4 Optimum Number of Elite

The optimum number of elite was found to be zero. Results for three data
sets are given in Table 9.4. The results with an elite salmon were obtained
with a population of 400 and one elite, which produced 2 elite children. The
results with no elite were produced with a population of 100. In spite of
the smaller population, the results with no elite were consistently superior
to those achieved with an elite salmon.

Data Set 1 Elite No Elite
(6,3) 112 114
(7,3) 350 356
(8,4) 173 176

Table 9.4: Elite vs. No Elite

9.1.5 Optimum Parameter Values Summary

The final parameter values selected are population = 100, IM = 5, number of elite =
0, σ = 0.5, and φ = 0.8. The α value varies with the data set and will be
determined with further experimentation.

CHAPTER 9. EXPERIMENTAL RESULTS 54

9.2 Optimal Edit Code Results

Figure 9.6 shows average clique size versus α for the (6,4) data set. Notice
that the best average comes at an α value of -.9. Initial attempts to produce
large (6,4) codes were disappointing. The best known size for such a code
is 28, and the Salmon Algorithm at first struggled to produce a code of 25
words. It was not until the algorithm was tested with negative α values that
it was able to match the best known value for this code.

This was an unexpected and counterintuitive result. The Salmon Algo-
rithm is based on the idea that components that have been part of previous
good solutions can be combined to make better solutions. However, in the
(6,4) code, instead of showing a preference for vertices that have been part
of previous good solutions, α needs to be biased to show a preference for
vertices that have previously been part of poor solutions. There are strong
local optima at sizes 24 and 25 for this case. Perhaps the algorithm needs to
be oriented towards exploration to find its way past such situations.

Figure 9.6: (6,4) Average Clique Size vs α with 95% CI

CHAPTER 9. EXPERIMENTAL RESULTS 55

More typically, the clique size vs α results were distributed like the (8,4)
data shown in Figure 9.7. There are two curious points regarding this graph.
First, the best results (largest cliques) were not obtained where the graph
reaches its maximum value at α = .37. Instead, they came at α = .35. In
the area around the inflection point the results have a bimodal distribution,
with the lower group clustered around 153 and the upper group around 173.
The bimodal distribution is why no 95% confidence interval is shown. The
distribution of the results from α = .30 to α = .37 is shown in Figures 9.8 to
9.13.

Figure 9.7: (8,4) Average Clique Size vs α

The second point is that the algorithm is very sensitive to small changes in
the α value for this problem. The largest cliques were obtained with α = .35.
The distribution of results at this value is shown in Figure 9.12. Seven (of
30) runs found cliques of size 174, four runs resulted in 175, and 2 reached
176. For α = .36, shown in Figure 9.13, there was only one run of 174, none
of 175 and none of 176. Thus an increase of only .01 in α value resulted in a
significant deterioration in the quality of the results.

CHAPTER 9. EXPERIMENTAL RESULTS 56

Figure 9.8: Alpha .30 Results Distribution

Figure 9.9: Alpha .33 Results Distribution

CHAPTER 9. EXPERIMENTAL RESULTS 57

Figure 9.10: Alpha .34 Results Distribution

Figure 9.11: Alpha .35 Results Distribution

CHAPTER 9. EXPERIMENTAL RESULTS 58

Figure 9.12: Alpha .36 Results Distribution

Figure 9.13: Alpha .37 Results Distribution

CHAPTER 9. EXPERIMENTAL RESULTS 59

The maximum number of edit codewords of length n from an alphabet
of q characters having a minimum distance d is referred to as Eq(n, d). The
Salmon Algorithm was able to obtain improvements in the size of five of the
codes. These results are given in Table 9.5.

Code Previous Best New Best
E4(6, 3) 108 114
E4(7, 3) 329 356
E4(8, 3) 1025 1132
E4(6, 4) 28 28
E4(7, 4) 63 65
E4(8, 4) 164 176

Table 9.5: Improvements to Edit Codes

The algorithm does not scale well for this problem because both memory
and time requirements increase exponentially with word length. An increase
in word length of one character causes a 16 fold increase in the size of the
compatibility matrix, which is normally stored in memory. It was also ob-
served that run time increased by roughly a factor of 10 for each increase of
one in word length. Of course, it would be possible to compute edit distances
‘on the fly’ and eliminate the memory constraints, but this would further ex-
acerbate the run time problem. For these reasons it is unlikely the algorithm
will be useful for anything larger than the E4(9, 3). Even this code would
probably require several weeks of run time, and use most of the memory on
a standard desktop computer.

It was also found that the algorithm needs to be tuned for every different
code. Each code has a different search space and parameter values need to
be adjusted for best results. This consisted primarily of altering the α value
in the roulette selection formula.

9.2.1 GC Content

The GC content of a DNA sequence is defined as the fraction of the bases
which are either C or G. The GC content of a DNA molecule determines
its melting point, and for this reason it is frequently desirable to have all
codewords with the same, or close to the same, GC content. Moreover, it

CHAPTER 9. EXPERIMENTAL RESULTS 60

is common to have the GC content set as closely as possible to 50%. For a
more complete explanation of GC content see Frutos et al.[13].

Thus, while the codes in Table 9.5 may be interesting from a mathematical
perspective, they are of limited use for biological applications since their
GC content can range from zero to one hundred percent. One strategy for
producing codes with constant GC content would be to simply take the codes
created above and remove any words that violate the required GC content.
While this will produce a valid code, there is no guarantee that the code
created this way will be as large as possible.

A superior strategy is to remove any words without the required GC con-
tent at the very start of the Salmon Algorithm, when the codeword adjacency
matrix is created. This was the technique used to produce the results given
in Table 9.6. Here, GC refers to the number of letters in the word that are
either C or G.

Code GC Size
E4(6, 3) 2 63
E4(6, 3) 3 81
E4(6, 3) 2 or 3 or 4 102
E4(6, 4) 2 18
E4(6, 4) 3 22
E4(6, 4) 2 or 3 or 4 28
E4(7, 3) 3 220
E4(7, 3) 3 or 4 272
E4(7, 4) 3 49
E4(7, 4) 3 or 4 55
E4(8, 3) 3 585
E4(8, 3) 4 704
E4(8, 3) 3 or 4 or 5 952
E4(8, 4) 3 110
E4(8, 4) 4 132
E4(8, 4) 3 or 4 or 5 159

Table 9.6: Fixed GC Content

Words with a GC content of less than one third were not considered.
Equivalent codes were also not considered. For example E4(6, 3) GC 2 is

CHAPTER 9. EXPERIMENTAL RESULTS 61

given, but not E4(6, 3) GC 4, because these two codes are equivalent. Recall
that an equivalent edit code can be created by reversing all words or by
permuting the symbols in all words. Having found an optimal E4(6, 3) GC
2 code, there is no need to perform a separate search for an optimal E4(6, 3)
GC 4 code. The E4(6, 3) GC 4 code can be created from the GC 2 code by
interchanging A for C and G for T.

9.3 Optimal Hamming Code Results

Tables 9.7 and 9.8 show the results of the Salmon Algorithm on several dif-
ferent Hamming codes. For comparison, the results from Haas and Houghten
[16] are shown as well. Haas and Houghten obtained these results using a
Genetic Algorithm to create an incomplete code which was then finished with
Conway’s Lexicode Algorithm.

Code A2(12, 6) A2(13, 6) A2(17, 6) A2(17, 4)
Best Known 24 32 256 2720

Haas and Houghten 24 32 256 2238
Salmon 24 26 171 na

Table 9.7: Salmon Algorithm Binary Hamming Code Results

Code A3(5, 3) A3(6, 3) A3(7, 3) A3(8, 3)
Best Known 18 38 99 246

Haas and Houghten 18 36 88 219
Salmon 18 38 99 234

Table 9.8: Salmon Algorithm Ternary Hamming Code Results

Clearly, the Salmon Algorithm did not perform well on the binary Ham-
ming Codes. These codes have a regularity to their structure, and it may be
that algorithms incorporating some variation of the lexicode algorithm are
able to exploit this regularity. Note that the A2(17, 4) case was not attempted
because of time constraints. Based on the code size it was estimated a single
run for this case would take about three days. Since several such runs might

CHAPTER 9. EXPERIMENTAL RESULTS 62

be necessary to tune the parameters, it was decided that this time might be
better spent on other problems.

The Salmon Algorithm performed better on the ternary codes, matching
the best known on three out of four. Even here however, the algorithm gets
stuck in a local optimum on the A3(8, 3) code. Extensive testing of parameter
values was done on this code, but the Salmon Algorithm could not exceed a
code size of 234, while the best known value is 246.

The Hamming codes displayed the same general shape as the α versus
code size graph for edit codes shown in Figure 9.7. They also displayed the
same tendency to give the best results near the inflection point in the graph
and the same bimodal distribution at this point.

9.4 Covering Code Results

The Salmon Algorithm easily matched the known best (27) for the length
5 football pool problem. Using the maximization version of the algorithm
resulted in a complete cover (243 words covered) on 30 out of 30 runs. The
results were sometimes achieved in as little as 200 generations which took
only about 3 seconds of run time. These results were found using σ = 1/100,
φ values from .870 to .900 and α = 0. Note that these values are strikingly
different than those used for the Hamming and edit code problems.

Testing the minimization version of the Salmon Algorithm on the K3(6, 1)
covering code problem it was found that the optimum σ was 1/100, the
optimum φ was .963 ± .002, and that any α value in the range of 0 to .2
functioned well.

It should be noted that α = 0 is preferable to any other value in terms
of the speed of the algorithm. Setting α = 0 means that the algorithm is
treating all water levels the same. If this is the case, we can dispense with
the roulette selection and choose our candidate word by simply generating a
single random number. We can also eliminate the section of the algorithm
that deals with updating water levels, since with α = 0 they are irrelevant.
For this reason α = 0 was used for all experiments on covering codes. How-
ever, by treating all water levels the same the algorithm has essentially been
converted into a type of Evolutionary Strategy.

Figure 9.14 shows the results of the minimization version of the Salmon
Algorithm run on the length 6 football pool problem. The best known size
of 73 was achieved twice, one using φ = .962 and once using φ = .964.

CHAPTER 9. EXPERIMENTAL RESULTS 63

The algorithm was run for 60 000 generations. The number of generations
required was very large compared to the Hamming and edit code problems.
In spite of this the algorithm ran fairly quickly, taking about 2400 seconds
to finish. This is primarily because the φ value is quite high, which means
the algorithm is selecting all but a few of the cover words from its memory.
The selection of words from memory is much less computationally expensive
than selection from the candidates list. This is because when the algorithm
selects a word from memory, the candidates list does not need to be updated
after each selection.

Figure 9.14: Length 6 Average Cover Size vs φ with 95% CI

The maximization version of the cover codes algorithm was then run on
the length 6 data. This version was able to match the best known cover
size of 73 much more reliably. Figure 9.15 shows the number of runs out
of 30 that achieved a complete cover i.e. all 36 = 729 words covered versus
φ. Figure 9.16 shows the average number of words covered versus φ using a
cover size of 73. The algorithm was run for 60 000 generations with α = 0.

CHAPTER 9. EXPERIMENTAL RESULTS 64

Figure 9.15: Complete Covers vs φ

Figure 9.16: Length 6 Average Words Covered vs φ with 95% CI

CHAPTER 9. EXPERIMENTAL RESULTS 65

The maximization version of the algorithm was then run with a cover size
of 72 i.e. one less than the current best known. Despite extensive tuning of
parameters and over 1000 total runs the largest covers found were two words
short of a complete cover. This is the same result found by Van Laarhoven
et al.[36].

The results from the minimization version of the algorithm on the K3(7, 1)
code were disappointing. Figure 9.17 shows the average cover size obtained
versus φ for length 7. The algorithm was run with a population of 20 for
500 000 generations to find the optimum φ value. It was then run for 10 000
000 generations using this value. While this may seem like an improbably
high number of generations, it is comparable to the number of iterations of
simulated annealing used by [36]. The smallest cover obtained had a size of
210 words which compares poorly to the best known of 186.

The population was reduced because it was found that slightly better re-
sults could be obtained using a population of 20 for 500 000 generations than
using a population of 100 for 100 000 generations. Since the run times for
these two cases are nearly the same, the smaller population was used. Note
that additional improvements were not realized by reducing the population
further to a size of 10.

Figure 9.17: Length 7 Average Cover Size vs φ with 95% CI

CHAPTER 9. EXPERIMENTAL RESULTS 66

Figure 9.18 shows the average number of words covered versus φ for length
7 using the maximization version of the algorithm for 100 000 generations
with a population of 20 and a cover size of 186. After determining that the
optimum φ value was .9925, the algorithm was run for 10 000 000 generations
using this value. This resulted in two runs out of 30 that achieved a complete
cover (2187 words covered), matching the best known value. Each individual
run for this case took about 40 hours. It should be noted that although the
maximization version proved to be more effective, it is more cumbersome
and time consuming to use since the algorithm needs a separate run for each
cover size attempted.

The cover size was then reduced to 185 and the algorithm was run 90
times using φ values of .9924, 9925 and .9926. The best cover found covered
2184 words, three short of a complete cover.

Figure 9.18: Length 7 Average Words Covered vs φ with 95% CI

The K3(8, 1) case was not attempted because the existing best known
cover of 486 was not found with a direct search, but with a search using the
Blokhuis and Lam matrix construction method [4] to reduce run times. It was
estimated that a direct search for 10 000 000 generations with a population
of 20 would require about 7 days for this case. This was not feasible.

CHAPTER 9. EXPERIMENTAL RESULTS 67

Any realistic attempt at the length 8 or larger cases would require recon-
figuring the salmon algorithm to incorporate the Blokhuis and Lam method.
Indeed, most researchers have used this method on the larger codes. See for
example [27] and [4].

Chapter 10

Conclusion

The Salmon Algorithm proved to be adept at finding optimal edit codes. The
algorithm exceeded the previous best known code on five cases and matched
the best known on the sixth. It was also effective at finding covering codes up
to length 7, matching the best known for lengths 5, 6, and 7. Its performance
on Hamming codes was inconsistent. The ternary data sets functioned well,
while the binary code results were poor. It was somewhat surprising, given
the consistency of the edit code results, that simply increasing the length
of the word by one could cause the quality of the Hamming code results to
collapse. See for example the A2(12, 6) and A2(13, 6) results, or the A3(7, 3)
and A3(8, 3) results.

Of course, it is possible the problem instances that gave poor results did
so because the parameter values selected caused the algorithm to converge
to a local optimum. As stated in Chapter 9, this thesis made the assumption
that the parameter optimization curves were unimodal. In other words, if
we find a clear optimum for a particular parameter value, there is no point
in checking significantly above or below this value. This assumption was
necessary because of time constraints, but it may not be true.

We also made some assumptions about parameter independence to save
time. The parameters φ, α, and σ were optimized together as much as time
permitted, but population, IM , and number of elite were treated, for the
most part, as independent variables. This allowed them to be optimized
separately, which saved a considerable amount of time, but this may also not
be true.

The Salmon Algorithm demonstrated an extreme sensitivity to small
changes in some parameter values. On the edit and Hamming codes, changes

68

CHAPTER 10. CONCLUSION 69

to the α value as small as .01 had a noticeable impact on the results. The
cover code test cases were relatively immune to changes in α, but reacted
drastically to changes in φ. In the K3(7, 1) case, alterations to the φ value
as small as .0005 visibly affected the code size. This sensitivity means that
it takes a long time to fine tune parameter settings. This problem is exacer-
bated by the fact that σ, φ, and α have a considerable degree of dependence
on each other, and consequently should be optimized together.

10.1 Future Work

Given that much of the work in this thesis involved the tedious task of pa-
rameter optimization, it would be logical to suggest that future work might
incorporate some method of mechanizing this job.

As stated at the beginning of Chapter 9, an exhaustive search of param-
eter values is not possible, simply because of the size of the search space
and the fact that many of the parameters do not take discrete values. The
strategy that most people adopt when faced with this problem is to begin
with a particular parameter configuration based on past experience, then
alter values one at a time, accepting the change if it produces an improve-
ment in the results. These one at a time modifications are continued until
no single change produces an improvement. This describes a hill climbing
strategy. The problem with a hill climber is that it gets trapped in the first
local optimum it encounters [21].

Hutter et al.[21] describe a program they call iterative local search (ILS).
ILS is a stochastic search that builds a list of local optima by iterating
through a loop that performs the following functions - (i) perturb solutions
to escape from local optima, (ii) run subsidiary local search procedure, (iii)
evaluate and retain new solutions based on some acceptance criteria. This
strategy produces results superior to those achieved with the hill climbing
method, and takes much less time than an exhaustive search.

One other obvious area of future work would be to apply the algorithm
to other known NP-hard problems. Because augmenting water levels in the
Salmon Algorithm is similar to depositing pheromone in an ant algorithm,
it should be possible to use the Salmon Algorithm on any problem where
ant algorithms have previously been successful. Some suggestions are the
vehicle routing problem, the job shop scheduling problem, or the unbounded
knapsack problem.

Bibliography

[1] D. Ashlock, Ling Guo and Fang Qiu. Greedy Closure Evolutionary Algo-
rithms. Proceedings of the 2002 Congress on Evolutionary Computation,
pages 1296 - 1301.

[2] D.Ashlock, S.Houghten, J.A.Brown and J.Orth, On the Synthesis of DNA
Error Correcting Codes, preprint 2010.

[3] Daniel Ashlock and Sheridan Houghten. DNA Error-Correcting Codes:
No Crossover. Proceedings of the 2009 IEEE Symposium on Computa-
tional Intelligence in Bioinformatics and Computational Biology, pages
38-45.

[4] A Blokhuis, C.W.H Lam. More Coverings by Rook Domains. Journal of
Combinatorial Theory, Series A, Volume 36, Issue 2, March 1984, pages
240-244.

[5] Andries E. Brouwer. Tables of Bounds for Hamming Codes.
http://www.win.tue.nl/ aeb/, accessed February 10, 2012.

[6] Joseph Alexander Brown. Decoding Algorithms Using Side-Effect Ma-
chines. Master’s Thesis, Brock University, 2009.

[7] Richard A. Brualdi and Vera Pless. Greedy Codes. Journal of Combina-
torial Theory(A) volume 64, 1993 pages 10-30.

[8] Eugene Chiu, Jocelyn Lin, Brok Mcferron, Noshirwan Petigara, Satwiksai
Seshasai. Mathematical Theory of Claude Shannon. 6.933J / STS.420J
The Structure of Engineering Revolutions, No Date. Available on
line at http://web.mit.edu/6.933/www/Fall2001/Shannon1.pdf, accessed
November 27, 2011.

70

BIBLIOGRAPHY 71

[9] Pierluigi Crescenzi and Viggo Kann. How to Find the Best Approximation
Results − a Follow Up to Garey and Johnson. ACM SIGACT News,
volume 29, number 4, 1998, pages 90-97.

[10] S.N.Sivanandam and S.N.Deepa. Introduction to Genetic Algorithms.
Springer Publishing, 2008.

[11] M. Dorigo. Optimization, Learning and Natural Algorithms, PhD thesis.
Politecnico di Milano, Italie, 1992.

[12] Marco Dorigo and and Luca Maria Gambardella. Ant Colony System:
A Cooperative Learning Approach to the Traveling Salesman Problem.
IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, April
1997, pages 53 - 66.

[13] A. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L.
M. Smith and R. M. Corn. Demonstration of a Word Design Strategy
for DNA Computing on Surfaces. Nucleic Acids Research, vol. 25 1997,
pages 47484757.

[14] E. N. Gilbert. A Comparison of Signalling Alphabets. Bell System Tech.
J 31, 1952, pages 504-522.

[15] Fred Glover. Tabu Search: A Tutorial. Center for Applied Artificial
Intelligence, University of Colorado, 2001.

[16] Wolfgang Haas and Sheridan Houghten. Evolutionary Algorithms for
Optimal Error Correcting Codes. Brock University 2005.

[17] Hämäläinen, H., I. Honkala, S. Litsyn, P. Österg̊ard. Football pools - A
Game for Mathematicians. American Mathematical Monthly 102, 1995,
pages 579588.

[18] R. W. Hamming, Error Detecting and Error Correcting Codes. The Bell
System Technical Journal, April 1950 pages 147-160.

[19] Sheridan K. Houghten, Dan Ashlock, and Jessie Lenarz. Construction
of Optimal Edit Metric Codes. Proceedings of the 2006 IEEE Workshop
on Information Theory (ITW 20006), pages 259-263.

[20] W. Cary Huffman and Vera Pless. Fundamentals of Error Correcting
Codes. Cambridge University Press, 2003.

BIBLIOGRAPHY 72

[21] F. Hutter, H. H. Hoos, and T. Stützle.. Automatic Algorithm Config-
uration Based on Local Search. In Howe, A. and Holte, R. C. (Eds.),
Proceedings of the Twenty-second National Conference on Artificial In-
telligence (AAAI07), AAAI Press / The MIT Press, Menlo Park, CA,
USA, pages 11521157.

[22] Richard M. Karp. Reducibility Among Combinatorial Problems. Uni-
versity of California at Berkeley, 1972.

[23] Gerzson Keri. Tables on Bounds for Covering Codes.
http://www.sztaki.hu/ keri/codes/, accessed September 16, 2011.

[24] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by Sim-
ulated Annealing. Science 220, 1983, pages 671-680.

[25] Levenshtein, V. I. Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals. Soviet Physics-Doklady 10, 1966, pages 707-710.

[26] Paul C. Marriner. Atlantic Salmon A Fly Fishing Reference. Gales End
Press, Nova Scotia, Canada. No date, p 19.

[27] Patric R. J. Österg̊ard. Constructing Covering Codes by Tabu Search.
Helsinki University of Technology, 1997.

[28] Oriana Ponta, Falk Huffner, and Rolf Niedermeier. Speeding up Dy-
namic Programming for Some NP-hard Graph Recoloring Problems.
Proc. 5th TAMC, 2008.

[29] F.Qiu, T.J.Wen, D.A.Ashlock and P.S.Schnable. DNA Sequence Based
Bar-Codes for Tracking the Origins of ESTs from a Maize CDNA Library
Constructed Using Multiple MRNA Sources. Plant Physiology 133, 2003,
pages 475481.

[30] I. Rechenberg. Cybernetic Solution Path of an Experimental Problem.
Royal Aircraft Establishment, Library translation NO. 1122, Farnbor-
ough, Hants., UK, August 1965.

[31] Stuart Russell, Peter Norvig. Artificial Intelligence, a Modern Approach,
second edition. Pearson Education, 2003, page 119.

[32] C Shannon, A Mathematical Theory of Communication, Bell System
Technical Journal 27 1948, pages 379-423 and 623-656.

BIBLIOGRAPHY 73

[33] C.Solnon and S.Fenet, A Study of ACO Capabilities for Solving the
Maximum Clique Problem, 2005, manuscript available on line at http:

//liris.cnrs.fr/Documents/Liris-1847.pdf.

[34] R. William Soukoreff and I. Scott MacKenzie. Measuring Errors in Text
Entry Tasks: An Application of the Levenshtein String Distance Statistic,
Extended Abstracts of CHI 2001, pages 319-320.

[35] R.J.M. Vaessens, E.H.L. Aarts, J.H. van Lint. Genetic Algorithms in
Coding Theory. Eindhoven University of Technology, Department of
Mathematics and Computing Science, September 1991.

[36] P.J.M. Van Laarhoven, E.H.L. Aarts, and J.H. Van Lint. New Upper
Bounds for the Football Pool Problem for 6, 7 and 8 Matches, Journal of
Combinatorial Theory, Series A 1989, pages 304-312.

[37] J.H. van Lint. Recent Results on Covering Problems, Department of
Mathematics and Computing Science, Eindhoven University of Technol-
ogy, Eindhoven, Netherlands. No date.

[38] J.H. van Lint and T.A. Springer, Generalized Reed-Solomon Codes from
Algebraic Geometry, IEEE Trans. Info. Theory 33, 1987, pages 305-309.

[39] Robert A. Wagner and Michael J. Fischer. The String to String Correc-
tion Problem. J. ACM, 21(1), 1974, pages 168-173.

[40] L.T. Wille. The Football Pool Problem for 6 Matches: A New Upper
Bound Obtained by Simulated Annealing. Journal of Combinatorial The-
ory, Series A, Volume 45, Issue 2, July 1987, pages 171-177.

[41] David H. Wolpert and William G. MacReady. No Free Lunch Theo-
rems for Optimization. IEEE Transactions on Evolutionary Computation,
April 1997, pages 67-82.

[42] Assaf Zaritsky, An Introduction to Genetic Algorithms.
Ben-Gurion University, Israel. No date. Available on line at
www.cs.bgu.ac.il/ sipper/courses/ecal051/assaf-ga.ppt.

http://liris.cnrs.fr/Documents/Liris-1847.pdf
http://liris.cnrs.fr/Documents/Liris-1847.pdf

	Introduction
	Overview
	Problem Statement
	Organization

	Overview of Search Techniques
	Evolutionary Strategies
	Genetic Algorithms
	Artificial Ant Algorithms
	Simulated Annealing
	Tabu Search

	Salmon algorithm
	Salmon Algorithm Parameter Values for TSP
	Experimental Results for the TSP

	Error Correcting Codes
	Hamming Space

	Edit Codes
	Dynamic Programming Algorithm for Edit Distance

	The Optimal Code Problem
	Salmon Algorithm for Finding Maximum Cliques (Optimal Codes)
	Memory Optimization

	Conway's Lexicode Algorithm
	Sphere Packing Bound

	Covering Codes
	Football Pool Problem
	Salmon Algorithm for the Football Pool Problem

	Literature Review
	Edit Codes
	Covering Codes
	Hamming Codes

	Experimental Results
	Optimal Edit Codes
	Optimum Initial Water Level Multiplier (IM)
	Optimum Population Size
	Tuning the , and Values
	Optimum Number of Elite
	Optimum Parameter Values Summary

	Optimal Edit Code Results
	GC Content

	Optimal Hamming Code Results
	Covering Code Results

	Conclusion
	Future Work

	Bibliography

