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Abstract 

It was hypothesized that the freeze/thaw cycles endured by icewine grapes would 

change their chemical composition, resulting in unique chemical fingerprint and sensory 

properties, and would be affected by harvest date (HD) and crop level (CL). The 

objectives were: 1) to identify odour-active compounds using gas chromatographic and 

sensory analysis; 2) to determine the effect of CL and HD on these compounds; 3) to 

determine the icewine sensory profiles; 4) to correlate analytical and sensory results for 

an overall icewine profile. 

CharmAnalysis™ determined the Top 15 odour-potent compounds in Vidal and 

Riesling icewine and table wines; 24 and 23 compounds, respectively. The majority of 

the compounds had the highest concentrations in the icewines compared to table wines. 

These compounds were used as the foundation for assessing differences in icewine 

chemical profiles from different HD and CL. 

Vidal and Riesling icewine were made from grapes picked at different HD; HI: 

19 December; H2: 29 December; H3: 18 January; H4: 11 February (Vidal only). HI 

wines differed from H3 and H4 wines in both Vidal and Riesling for aroma compounds 

and sensory profiles. -

Three·CL [control (fully cropped), cluster thin at fruit set to one basal 

cluster/shoot (TFS), and cluster thin at veraison to one basal cluster/shoot (TV)] were 

evaluated for Riesling and Vidal cultivars over two seasons. Vidal icewines had the 

highest concentration of aroma compounds in the control and TV icewines in 2003 and in 

TFS icewines in 2004. In Riesling, most aroma compounds had the highest concentration 

in the TV icewines and the lowest concentration in the TFS wine for b<;>th years. The 



thinned treatments were associated with almost all of the sensory attributes in both 

cultivars, both years. 

HD and CL affected the chemical variables, aroma compounds and sensory 

properties of Vidal and Riesling icewines and freeze/thaw events changed their sensory 

profile. The most odour-potent compounds were p-damascenone, cis-rose oxide, 1-

octen-3-ol, 4-vinylguaiacol, ethyl octanoate, and ethyl hexanoate. The role of P­

damascenone as a marker compound for icewine requires further investigation. This 

research provides a strong foundation for the understanding the odour-active volatiles and 

sensory profiles important to icewine. 
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1.1 Introduction 

Chapter 1 
Introduction and Literature Review 

Icewine is a sweet late harvest dessert wine produced from grapes that have 

frozen naturally on the vine. The frozen grapes are pressed, leaving water behind as ice 

crystals, which results in a must concentrated with sugar, acids, aroma, and flavour 

compounds. Canadian icewine has become an internationally recognized wine product 

however there is very little research on this wine style. 

The goal of this study was to characterize the effect of harvest date and crop level 

on odour-active compounds in Riesling and Vidal blanc icewines from the Niagara 

Peninsula. It was hypothesized, first, that the freeze and thaw cycles through which 

icewine grapes endure would lead to changes in their chemical composition, giving them 

a unique chemical fingerprint and sensory properties and, second, that these changes in 

chemical composition would be affected by harvest date and crop level. The objective of 

this study was four-fold: 1) to identify odour-active compounds which could be used to 

characterize Niagara icewine using gas chromatographic and sensory analysis; 2) to 

determine the effect of crop level and harvest date on these odour-active compounds; 3) 

to determine the sensory profiles of the wines through sensory analysis; and 4) to 

correlate the analytical and sensory results for an overall profile of the icewines. 

To accomplish these objectives wines were made from grapes frozen naturally on 

the vine, pressed and fermented at the Cool Climate Oenology and Viticulture Institute at 

Brock University. The finished wines were subjected to basic chemical analysis to 

determine variables such as pH, titratable acidity, residual sugar, and ethanol 
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concentration. Sensory descriptive analysis was performed using a trained panel to 

determine the sensory profile of the wines and how these profiles differed due to harvest 

date and crop leveL Gas chromatography-olfactometry-mass spectrometry (GC-O-MS) 

was used to determine and quantify the most odour potent compounds in the experimental 

wines extracted using stir bar sorptive extraction (SBSE). Multivariate statistical analysis 

was used to relate the results from the sensory descriptive analysis and the analytical 

. compounds found through GC-O-MS. 

Currently, there is limited research on the chemical or sensory composition of 

icewines, and none on the effect of harvest date or crop leveL Therefore all information 

gathered from this research will be valuable and relevant to the Canadian and 

international grape and wine industry. 

1.2 Icewine 

Icewine is a sweet late harvest dessert wine produced from pressing grapes that 

have naturally frozen on the vine, leaving water behind as ice crystals. Frozen grapes are 

harvested and pressed at _7°C, EU regulations, (OIV 2003) to _8°C, Canada, (Ontario 

1999) typically between December and January. The resultant must is concentrated in 

sugar, acids, and aroma and flavour compounds, giving the wine its rich, balanced and 

intense flavour profile. 

Icewine was discovered accidentally, in 1794 in Franconia, Germany when an 

early frost froze Riesling grapes still hanging on the vine in late November. To salvage 

the grapes they were pressed frozen and the concentrated juice was fermented into wine 

to create the first eiswein (Schreiner 2001). Historically eiswein (or icewine) was made 

only in very small quantities when weather permitted and was cherishe.d with family and 
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friends. Now icewine is produced in many countries around the world at the northern 

limits of grapegrowing where winter conditions are cold enough to allow the grapes to 

freeze on the vine before harvest. Canada is the world's largest producer of icewine but 

other countries including Germany, Austria, United States, Slovenia, Luxembourg, 

Croatia, the Czech Republic and Hungary produce icewine as well (Schreiner 2001). 

Canada came onto the icewine scene in the late 1980's. With its reliably cold 

winters, icewine could be produced every year and production increased with demand. 

Now, Canada produces millions of cases of this specialty wine for local and international 

consumption every year. Icewine is made in all wine production regions of Canada 

spanning from Nova Scotia on the east coast to British Columbia on the west coast. The 

bulk of icewine production is in Ontario, principally the Niagara Peninsula, where warm 

summers and cold winters allow for optimal conditions to grow and harvest grapes for 

icewine. In 2007, 1.17 million litres of icewine were produced in Ontario (Ontario 2008). 

It is believed, anecdotally, that the freeze and thaw cycles through which grapes 

destined for icewine are subjected give the wine its unique flavour profile and cannot be 

duplicated by freezing alone. The production of icewine is a very expensive, labour 

intensive and risky undertaking. Grapes are left hanging on the vine long past commercial 

harvest, which, results in the loss of yield from dehydration, rot, wind, as well as animal 

predation. The grapes destined for icewine must be netted to protect them from predators 

and to prevent loss from clusters falling on the ground. Since the water is left behind as 

ice crystals, icewine grapes yield only 15 to 20% that of table wine requiring substantially 

more acreage for the same yield (Pickering 2006). Icewine must is typically sold by the 

litre with one litre of Vidal icewine juice selling for $15.76 CDN and one litre of Vitis 
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vinifera icewine juice selling for $24.16 CDN at 35 °Brix (Ontario 2010). There is also 

always the risk that the grapes will rot before the temperatures are cold enough for an 

icewine harvest or that a mild winter will prevent icewine all together. 

1.2.1 Icewine Regulations 

Due to the specific climatic conditions which are required for icewine production 

there are strict regulations to adhere to in order to label a wine icewine. The International 

Organization of Vine and Wine (OIV) signed an agreement with Germany, Austria and 

Canada on 23 June 2000 which established international regulations for icewine 

production. A further amendment in 2003 by the ON gave a definition of icewine and 

regulations that must be followed for its production (OIV 2003). This agreement states 

that icewine (eiswein or vin de glace) can only be made from grapes frozen in the 

vineyard at temperatures lower or equal to -7°C. The frozen grapes must be harvested 

and pressed at these same temperatures and contain a minimum of 25.3 °Brix (110° 

Oechsle). The minimum alcoholic strength of the finished wines must be 5.5% by 

volume and the maximum limit of volatile acidity is 2.1 gIL expressed as acetic acid. It 

also stipulates that all grapes for icewine come from the same region. With the exception 

of the Mosel in Germany which follows these regulations, Germany and Austria require 

the minimum °Brix ofthe must for icewines be 29.6 (125° Oechsle in Germany or 27.0 

Klosterneuburger in Austria) which is the same requirement as Beerenauslese (a sweet 

late harvest, botrytis-affected dessert wine) (OIV 2003). 

Canada has its own, even more stringent, regulations set forth by the Vintners 

Quality Alliance (VQA) Act of Ontario(Govemment of Ontario 1999) in 2005 and 

similar rules in British Columbia (Agri-Food Choice and Quality Act 2005). In the VQA 
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Act, the term icewine is trademark protected and can only be used for wines made from 

grapes naturally frozen in the vineyard in specified viticultural areas, at temperatures::;-8 

°c after the 15 November of the vintage year. The grapes must be harvested and pressed 

at these same temperatures. The minimum allowed soluble solids concentration of the 

juice must be 35 °Brix with no single pressing being less than 32 °Brix. The finished wine 

is required to have a residual sugar concentration of not less than 125 gIL (Ontario) or 

100 giL (British Columbia) and a titratable acidity of not less than 6.5gIL (expressed as 

tartaric acid). Other styles of dessert wines can be made from late harvest grapes with 

must concentrations less than 35 °Brix; late harvest, select late harvest, and special select 

late harvest have minimum soluble solids concentrations of 22, 26, 30 °Brix respectively 

(Ontario 1999). 

1.2.2 Icewine: Viticultural Considerations 

Riesling and Vidal blanc are the most common choices for icewine production in 

North America but other cultivars include Cabernet Franc, Gewiirztraminer, Ehrenfelser, 

and Kerner. The choice of cultivar for icewine production is important as it will affect the 

sensory and chemical composition of the finished wine. Characteristics of a good icewine 

cultivar are that it has thick skin, be late maturing, posses a high natural acidity and be 

winter hardy (Nurgel et al. 2004). 

First, it is important to have a thick skinned cultivar that can withstand rot, wind, 

rain and freeze-thaw events. A grape berry destined for icewine goes through a series of 

freeze and thaw cycles that impose physical and mechanical stress on its structure. 

Physical stress results ftom the perforation of the berry's cellular components, such as 

cell walls and vacuoles, by the jagged edges of ice crystals formed inside the berry when 
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subjected to freezing temperatures. It is believed that as the ambient temperature warms 

up, the ice crystals melt causing cellular components previously segregated to mix. The 

result is the integrity of the berry is compromised which can lead to enzymatic activity 

and changes in its chemical and sensory profile. Mechanical stress is exerted on the skin 

of the berry throughout and after the growing season in late harvested grapes, the result of 

water movement and expansion from heavy rains and ice formation. If the berry skin 

cannot support the expansion due to theinflux of water or freezing, it splits, releasing its 

contents, and it becomes susceptible to oxidation and infection by a host of pathogens. 

Therefore, thick skinned cultivars are essential to maintain berry integrity enabling the 

juice to be released at pressing and not before. 

Second, late maturing cultivars are advantageous as they have a shorter hang time 

from regular harvest to icewine harvest in December to January. The longer the hang time 

of grapes destined for icewine after they mature, the greater the potential for loss of yield 

due to dropped fruit, rot, desiccation, and predation. A cultivar with a long growing 

season, such as Riesling, which is typically harvested mid to late October, would in 

general hold up better and yield more juice than an early maturing cultivar such as 

Chardonnay, which is harvested mid- September. The strength of the actual cluster will 

also affect the ability of the cultivar to hang until icewine harvest. Having a strong 

peduncle and rachis will better enable the cluster to hang on the vine preventing loss of 

yield from dropped fruit during strong winds, and rain or snowstorms. 

Third, the cultivar should posses a high natural acidity to balance the residual 

sweetness in the wine. The sensory profile of icewine often describes the acid-sugar 

balance as being an important determinant of the wine's quality. Without the acid 
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backbone, icewine can be perceived as too sweet, unbalanced or flabby and not age­

worthy. As grapes mature, the sugar concentration increases and the acid concentration 

decreases; however, certain cultivars such as Riesling, Chenin blanc and Sauvignon blanc 

retain a high natural acidity at full maturity. In Canada, acidification is permitted in 

icewine up to 4.0 gIL, enabling icewine to be made from low acid cultivars like 

Gewiirztraminer. 

Fourth, the winter hardiness of the cultivar is crucial to ensure continued success. 

Due to the cold temperatures grape vines are subjected in order to make icewine, it is 

important that winter hardy cultivars are selected and planted; therefore, most icewine 

cultivars are of western European origin (Proles Occidentalis). 

Riesling and Vidal blanc possess these four criteria and therefore are excellent 

cultivars for icewine production. Vidal blanc is a white French-American hybrid 

consisting of 75% V. vinifera genetic background, from a cross between Ugni blanc and 

Rayon d'Or (Seibel 4986) (Galet 1998). A key viticultural feature is its winter hardiness. 

The cultivar has large cylindrical clusters, with medium-sized, thick-skinned berries that 

are disease resistant (Galet 1998). It is a high acid cultivar prone to overcropping, which 

enables it to produce large yields for icewine production. Cluster thinning is essential for 

table wine production. Vidal blanc is a late maturing cultivar harvested usually in mid- to 

late October in eastern North America (Chisholm et al. 1994). The propensity of Vidal 

blanc to produce well balanced, concentrated icewines has pushed it to international 

acclaim and recognition. 

Riesling is considered by many to be the best choice of cultivar for producing 

icewines of the highest quality and ageability due to its high natural acidity (Nurgel et al. 
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2004). It is the noble grape of Germany, known for producing a wide range of wine styles 

from bone dry to ultra sweet, both clean and Botrytis-affected. Riesling has all the 

characteristics of the ideal icewine grape; it is late maturing, high acid, thick skinned 

providing some disease resistant and winter hardiness (for V. vinifera). 

1.2.3 Icewine: Oenological Considerations 

The major concern during icewine fermentation is the high sugar concentration of 

the icewine must that can put commercial yeast strains under extreme hyperosmotic stress 

leading to metabolic changes that affect cell growth, fermentation ability and sensory 

profile. Hyperosmotic stress causes cell shrinkage, reduced peak cell concentration and 

biomass and elevated levels of glycerol and volatile acidity in icewines and may also lead 

to stuck or sluggish fermentations (Pitkin et al. 2002, Kontkanen et al. 2004, Nurgel et al. 

2004). It has been shown that when yeast cells are under hyperosmotic stress they 

activate the high osmolarity glycerol response (HOG) causing the cell to produce glycerol 

to balance the high external osmotic pressure. The overproduction of glycerol during an 

icewine fermentation shifts sugar metabolism away from ethanol production and towards 

acetic acid production leading to elevated concentrations of volatile acidity and lower 

than desired ethanol concentration in the finished wine (Pigeau et al. 2007). 

The initial soluble solids concentration of the icewine must will affect the 

fermentation kinetics; a must at 35 °Brix will place the yeast under less osmotic stress 

than a must at 42 °Brix, thereby resulting in less accumulation of acetic acid and glycerol 

in the former than the latter. Pigeau et al. (2007) found that increasing the soluble solids 

concentration of icewine must from 40 to 46 °Brix decreased yeast growth, sugar 

consumption rate, the total amount of sugar consumed, and the total concentration of 
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ethanol produced. Understanding the mechanism by which acetic acid is produced in 

icewine is important due to the relatively low sensory threshold of this compound and the 

legal restrictions for the maximum allowed concentrations of volatile acidity (mainly 

acetic acid) in icewines (2.1 gIL). 

The major determinant of yeast strain selection for icewine is the ability of the 

yeast to ferment in a high sugar environment. For this reason commercial yeast strains are 

most commonly used for icewine fermentation. Factors to consider when selecting a 

yeast strain are alcohol tolerance of the yeast, osmotic stress tolerance of the yeast, 

optimal fermentation temperature, hydrogen sulphide and volatile acidity production, 

assimilable nitrogen and oxygen requirements. The impact of seven yeast strains on 

fermentation rate, acetic acid and glycerol production, and sensory characteristics during 

icewine fermentation in real and synthetic icewine must was studied (Erasmuset al. 

2004). From this study, it was recommended that ST, N96 and ECll18 are the yeast 

strains most suitable for icewine fermentations. 

In Canada, the most common yeast strains for icewine fermentation are Kl­

Vlll6 followed by EC-1l18. It is for this reason that KI-VllI6 was selected as the 

yeast strain for all experimental icewine fermentations for this thesis. Lalvin ICV Kl V­

V 1116 is a S. cerevisiae yeast strain isolated in 1972 at INRA in Montpellier, France. 

This was the first competitive factor yeast to go into commercial production and has 

become one of the most popular dehydrated yeast strains. Relevant attributes for icewine 

production include its ability to start fermentation rapidly, alcohol tolerance to 18%, large 

fermentation temperature range (10 to 35°C) and ability to ferment at low temperatures, 

low production of hydrogen sulphide and volatile acidity, and low to average requirement 
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of yeast assimilable nitrogen. The yeast produces high concentration of floral esters such 

as isoamyl acetate, hexyl acetate and phenyl ethyl acetate that contribute to the aromas of 

the finished wines. It is known for its ability to ferment under difficult conditions and is 

recommended for the production of icewine. (Lallemand 2008). 

Once the yeast strain has been selected it is also important to consider the amount 

of yeast to add to the fermentation. Since it is well documented that yeast in an icewine 

fermentation have smaller cell size, less biomass and a lower peak concentration than in a 

table wine fermentation, it seems intuitive that they would require a higher initial 

concentration of inoculum. Kontkanen et al. (2004) investigated the effect of inoculum 

rate on icewine fermentations at two concentrations, 20 and 50 g dry weightlhL of K1-

V 1116 yeast and the two methods of inoculation, direct and step-wise acclimation of the 

yeast cells to the high sugar concentration, over a 30-day period. Regardless of 

inoculation method, the 20 g dry weightlhL fermentations did not achieve the desired 

10% alcohol, with only 7.8% and 8.1 % alcohol (v/v) produced for the direct and step­

wise acclimation methods, respectively. In contrast, at 50 g dry weightlhL, both 

inoculation methods finished fermentation with 12.1 % and 10.5% alcohol (v/v) for the 

stepwise and direct inoculum, respectively. It is therefore recommended to inoculate 

icewine with a dose of 50 g dry weightlhL of must using a step-wise acclimation method 

to condition the yeast cells to the high soluble solids concentration. The step wise 

acclimatization resulted in higher cell biomass and viability of the yeast cells allowing it 

to ferment the icewine must to the desired alcohol concentration. For this study the step­

wise acclimation method of Kontkanen et al. (2004) was used to re-hydrate and inoculate 

the yeast. 
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1.3 Wine Volatile Analysis 

The volatile constituents of grape and wine were first investigated by those 

working with Concord grapes (Power and Chesnut 1921, Sale and Wilson 1926). They 

determined methyl anthranilate concentrations in juice and identified it as contributing to 

Concord's "foxy" aroma. In 1957, Webb and Kepner were the first to study Muscat of 

Alexandria; they found many esters and alcohols (Webb and Kepner 1957). Over the 

next 50 years many advances and research initiatives have greatly expanded this field. 

This section will discuss the background and pertinent research pertaining to the methods 

chosen for the volatile analysis of wine which can be applied to icewine. 

1.3.1 Gas Chromatography 

Gas chromatography (GC) has been used to identify, quantify, separate and 

analyze the important volatile components as these flavour and aroma compounds are 

sensitive to compositional changes in the matrix, and can be used as an indicator to 

variation in the product (Marsili 2002). GC is a physical method of separation in which 

the components to be separated are distributed between two phases, the stationary phase 

and the mobile phase (McNair and Miller 1998). The individual components are 

separated based on the amount of time they spend in the column, retention times, which 

depend on their interactions with the stationary and mobile phases. Once eluted from the 

column, the compounds pass through a detector and a peak is generated on the 

chromatogram (McNair and Miller 1998). 

The technique of chromatography was developed at the start of the 20th century, 

when Tswett credited as the "father of chromatography" separated plant pigments by 

liquid chromatography (McNair and Miller 1998). The first work with GC was published 
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in 1952 by Martin and James. They reported the separation of fatty acids by partition 

chromatography using nitrogen as the mobile phase and stationary phase of silicone 

oil/stearic acid with a diatomaceous earth support (Bartle and Myers 2002). GC was 

quickly adopted for separation of petroleum products and within 10 years had expanded 

to many other research areas including food and flavour analysis (Bartle and Myers 

2002). 

In 1958, Bayer was the first to use GC to study aroma compounds in wines (Rapp 

and Mandery 1986). Since then> 800 volatile components have been identified in grapes 

and wine using GC (Nykanen, 1986, Schreier 1979). There are many different GC 

detectors used for the identification and quantification of grape and wine volatiles, such 

as flame ionization detectors (FID), mass spectrometry (MS), olfactometry (0), electron 

capture, or nitrogen phosphorous (Hayasaka et al. 2005). However, the two most 

important detectors coupled to the GC for odour active volatiles are gas chromatography 

- mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). 

Gas Chromatography- Mass Spectrometry 

As previously mentioned, GC is a widely used technique to separate volatile 

compounds because of its speed of analysis, high resolution of complex mixtures, and its 

ability to quantify results, but it is unable to confirm the identity of a peak (McNair and 

Miller 1998). The purpose of MS is to identify compounds based on their composition 

and molecular weight, making it an ideal detector for GC. The sample is injected into the 

GC and separated into individual compounds, by their boiling points and polarity 

producing a retention time as it leaves the end of column and enters the MS. In the MS, 

compounds are bombarded with high energy electrons producing fragmented charged 
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ions; molecular ions and their fragmentation ions. These ions are introduced to the mass 

analyzer and separated based on their mass to charge ratio (mlz). The resulting mass 

spectrum, fragmentation pattern, is a plot of the ion abundance determined by the mass to 

charge ratio. The detection limits for MS are extremely low, in the range of 1O-12g 

(picograms) making it an invaluable method for the identification and quantification of 

trace volatiles in grapes and wines (Hayasaka et al. 2005). 

The first report of GC-MS applied to grape and wine volatile analysis was by 

Stevens et al. (1966) to extract and identify 78 components from Muscat of Alexandria, 

of which 60 had been previously reported. Since then GC-MS has been used extensively 

in grape and wine analysis to expand research knowledge in areas such as; grape (Salinas 

et al. 2004), yeast (Erasmus et al. 2004), and fermentation derived volatiles (Kontkanen et 

al. 2004, Loscos et al. 2007), wine taints (Insa et al. 2005, Kotseridis et al. 2008), off­

odours (Rapp 1998), impact odorants (Tominaga et al. 2000, Aznar et al. 2001, Lopez et 

al. 2003), and ageing effects of wine volatiles (Cullere et al. 2004, Hernandez-Orte et al. 

2009). 

Gas Chromatography - Olfactometry 

Of the hundreds of volatile compounds found in wine many are not odor-active or 

are found in wine below their sensory threshold and therefore do not contribute to wine 

aroma (Guth 1997a, Ferreira et al. 2000). GC-O was developed to elucidate which of 

these numerous volatiles compounds do in fact contribute to wine aroma. 

The first publication of smelling the effluent from a GC was in 1964 by Fuller of 

Colgate-Palmolive CO. after separation of volatiles on a packed column (Fuller et al. 

1964). The technique was used in a qualitative and informal manner by flavorists and 
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perfumers to identify what contributed to the odour of a product. The major drawback of 

the technique was the instrumentation, as sniffers had the uncomfortable task of smelling 

the hot effluent over vents of non-destructive detectors (Acree 1997). Dravnieks and 

O'Donnell (1971) designed a GC-O that most resembles the current models, in it they had 

a sniff port through which humidified air passed along with the effluent as it exited the 

GC for more comfort and control during sensory evaluation. 

Since the introduction of GC-O, different methods of analysis have been 

introduced to assess the aroma from the olfactory port: dilution analysis, detection 

frequency, posterior intensity and time-intensity. For this study dilution analysis, 

specifically CHARM, was used to elucidate the odour potent aroma compounds in Vidal 

and Riesling icewines and therefore will be discussed in the most detail. 

Dilution analysis is based on the determination of threshold concentrations or 

odour potency of an aroma. The two methods of dilution analysis are CHARM (Acree et 

al. 1984) and AEDA, Aroma Extract Dilution Analysis (Ullrich and Grosch 1987). 

CharmAnalysisTM is a dilution technique where a sample is serially diluted until the 

odour is no longer detected. A computer program records when an aroma is detected, its 

perception and its duration. From this its aroma potency can be determined as well as 

which aromas contribute most to the overall smell of the product. The resultant Charm 

value is a dimensionless measure of odour intensity based on the dilution at which no 

odour is detected and the number of coincident responses at the lower dilutions (Acree et 

al. 1984). AEDA is similar to CharmAnalysisTM in that it uses dilutions to determine the 

odour activity of a compound and is based on the odor-detection threshold. The major 

difference being that AEDA does not take into account the duration of the odour event. 
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Therefore, the odour potency is recorded based on it flavor dilution (FD) that corresponds 

to the maximum dilution at which the odorant is perceived by at least one judge (Ferreira 

and Cacho 2009). 

Detection frequency looks at the number of times a panel of judges detects an 

aroma over several replications of the effluents eluting from the olfactory port at the same 

concentration. The percentage of judges able to detect an odorant is called the Nasal 

Impact Frequency (NIF) and if the duration of the sensation is also recorded then it is 

called the Surface of Nasal Impact Frequency (SNIF) (pollien et al. 1997). Forevery 

perceived odour a NIF value is assigned, one if an odor was detected and zero if it was 

not. The total NIF value for a compound is determined by the addition of all the NIF 

scores for each judge divided by the number of sniffing runs performed (Ferrari et al. 

2004). Therefore the higher the NIF score, the more odor potent the compound. 

Intensity measurement techniques include OSME and posterior intensity. OSME 

(smell in Greek) developed by McDaniel et al. (1989) which uses time-intensity to 

measure the perceived odor intensity of a compound from the GC effluent. The judge 

indicates the intensity of an eluting odor by moving a variable resistance knob as well as 

the start and end time of the aroma. The result is similar to a chromatogram where peak 

height is relative to intensity and the area under the peak to time and intensity (Miranda­

Lopez et al. 1992). The posterior intensity method is a quantitative measure of the 

odorant intensity achieved by having the judge provide, on a simple line scale, a 

measurement of the intensity an eluting aroma (Ferreira et al. 2003b). 

In the wine industry, GCO has been used extensively to determine key odorants 

and aroma profiles of many different cultivars, including Pinot noir (Moio et al. 1995, 
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Girard et al. 1997), Vidal blanc (Chisholm et al. 1994), Botrytis affected wines (Sarrazin 

et al. 2007), and icewine (Cliff et al. 2002) to name a few. Ferreira and Cacho (2009) 

have compiled an extensive summary table of papers published using GC-O to profile 

wines over the past 10 years. 

1.3.2 Extraction of Grape and Wine Volatiles 

In the past 15 years many new techniques have been introduced in the area of 

volatile analysis to increase recovery, minimize loss, reduce the time and expense of the 

extraction procedure, as well as ensure a representative sample is being analyzed. 

Solvent extraction or liquid-liquid extraction (LLX) is the most common conventional 

technique applied to the analysis of volatiles. A solvent is selected that has similar 

properties, such as polarity, to those of the analytes of interest and the volatiles will 

partition into the solvent based on their solubility with that solvent. It is a relatively easy 

technique that does not require sophisticated equipment and provides consistent and 

reproducible results. However, a major disadvantage of this technique is the cost related 

to the use and disposal of solvents, which can be harmful to the environment, toxic and 

carcinogenic and very expensive. Also many low boiling point volatiles can be lost 

during the concentration process by evaporation, which results in an inaccurate 

representation of the sample. 

Arthur and Pawliszyn (1990), of the University of Waterloo, developed solid 

phase microextraction (SPME) to provide a rapid solvent free extraction technique for the 

analysis of volatiles. The major advantage of SPME is that is combines sampling, 

extraction, concentration, and sample introduction to the GC all in one step without the 

use of solvents. SPME looks like a modified syringe that consists of a fiber holder and 
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fiber assembly and a retractable SPME fiber (Vas and Vekey 2004). The fiber is a thin 

fused-silica optical fiber, which is coated with a thin polymer film. The polymer coating 

acts like a sponge and concentrates the analytes by absorption and adsorption processes 

when exposed to the sample either by direct immersion of the fiber or headspace 

sampling of the volatiles. The major disadvantage of SPME is the small surface area for 

diffusion of the analytes, which is only about 0.6 /-ll for a 100-/-lm PDMS fiber (Hayasaka 

et al. 2003). This affects the sensitivity of the method because the recovery of volatiles 

increases with the volume ratio of the PDMS phase to sample matrix ratio (Hayasaka et 

al. 2003, Vas and Vekey 2004). 

A new technique marketed by Gerstel was developed in 1999 called stir bar 

sorptive extraction (SBSE), commercially known as Twister (Baltussen et al. 1999). This 

was the extraction method chosen for the analysis of all research icewines in the present 

study. SBSE is based on the same properties as SPME but makes up for its limited 

sampling capacity by using a stir bar, typically 10 mm in length, incorporated into a glass 

tube and coated with polydimethylsiloxane (PDMS). Coating the stir bar enables the 

volume of the PDMS phase to increase significantly to about 55 /-ll (range of 25 - 125 /-ll) 

compared to 0.6/-l1 previously mentioned for SPME. The stir bar is placed in the sample 

matrix and stirred with the liquid of interest or placed in the headspace above the sample. 

Stirring causes the analytes to partition between the matrix and the PDMS phase on the 

stir bar based on partition coefficients, this large phase volume increases the sensitivity of 

SBSE and allows for low detection and quantification limits (Hayasaka et al. 2003). This 

also improves the signal to noise and allows for superior detection on the scan mode of 

the MS. After stirring, the stir bar is transferred from the sample to a thermal desorption 
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unit mounted on a programmable temperature vaporization (PVT) injector on the GC, the 

analytes are cryo-focused and then thermally des orbed and run through the GC column 

(Hayasakaet al. 2003). 

The main advantages of SBSE over other extraction techniques are due to its 

higher phase ratio for better recovery and sample capacity. SBSE is an order of 

magnitude more sensitive than conventional methods and it has shown its application to a 

wide range of analysis which include volatile aromatics, and odor compounds (Sanchez­

Rojas et al. 2009). The major disadvantage of SBSE is the non polar nature of the PDMS 

coating making it less suitable for the extraction of very polar compounds without prior 

derivatizations (Sanchez-Rojas et al. 2009). 

However, this technique is widely used in the grape and wine industry due to its 

low detection limits and it eliminates time consuming and expensive solvent extraction 

techniques for many different applications. SBSE has successfully been applied to the 

following wine research; the trace analysis of 2,4,6-tricholoroanisole (cork taint) 

(Hoffmann et al. 2000), the determination of dicarboximide fungicides (Sandra et al. 

2001), volatile phenol analysis (Diez et al. 2004), the characterization of aroma profile of 

Madeira (Alves et al. 2005), determination of potent odorants in Chardonnay wines 

(Buettner 2004), to determine volatile compound evolution during ripening of Vitis 

vinifera (Salinas et al. 2004), and for flavour and compositional analysis (Hayasaka et al. 

2003). It has also been used in the beverage industry for the analysis of volatiles of malt 

whisky (Demyttenaere et al. 2003) and the determination of the hoppy aroma in beer 

(David et al. 2001). 
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1.4 Wine Aroma Compounds 

An aroma compound is a volatile compound that interacts with the olfactory 

epithelium to produce an odorous sensory response. The aroma and flavour of a wine is 

an important quality parameter and therefore a tremendous amount of research has 

focused in this area to understanding what aroma compounds are responsible or 

contribute to a wines aroma, how they are formed, and how they change over time. Wine 

aroma compounds come from a diverse group of chemical classes including; terpenes, 

norisoprenoids, volatile thiols, acids and phenol, esters, lactones, alcohols, aldehydes, 

ketones and methoxypyrazines. 

1.4.1 Odour Activity Values (OAVs) 

Odour activity values (OAVs) are used to determine the importance of a 

compounds aromatic contribution to the product. The OA V is calculated by dividing the 

concentration of the aroma compound by its sensory threshold concentration in a similar 

matrix to provide a unit less measure of the contribution of that odorant to the product 

(Grosch 1993). An aroma compound found above its threshold (OAV>1) is considered 

as having an odour impact. The greater OA V above threshold, the more the aroma 

compound is thought to contribute to overall aroma. OAVs are commonly utilized to 

interpret GC-O data because they are a useful way to determine the relative importance of 

an aroma compounds contribution to the product. 

Many disadvantages of OA V have been discussed in the literature. The three 

main concerns are: 1) inaccuracy of the reported sensory threshold; 2) does not take into 

account interactions with other compounds; and 3) does not follow Stevens' Power Law. 
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First, the reported sensory threshold of an aroma compound can vary due to a 

variety of factors, including; number of individuals tested, rigors of testing and the matrix 

in which it was calculated, which could be air, water, a model wine solution or a neutral 

base wine. This can lead to an inflated OAV, which will incorrectly relate an aroma 

compounds importance to the wine (Francis and Newton 2005). It is therefore important 

to ensure that the sensory threshold used to calculate the OA V was determined in matrix 

closely matching the one under investigation, or to calculate it oneself for each 

compound. 

Second, due to the nature of calculation of OA V s they do not take into 

consideration any interactions that may be occurring in the matrix and contributing to 

wine aroma. This is especially the case for OAVs below threshold (OAV<I) and those 

just above threshold. Research has shown that these aroma compounds with low OAVs 

do playa role in the overall aroma, by acting as aroma enhancers or aroma suppressors 

(Escudero et al. 2004) . 

Third, Stevens Power Law was derived to explain the relationship between 

perceived intensity and concentration of a sensory stimulus (Stevens 1971). It is a 

logarithmic relationship effective in relating aroma intensity to its concentration for both 

sensory analysis and GC-O data of pure compounds over a range of concentrations 

(Kamadia et al. 2006). Whereas, OA V s are based on a linear relationship related to 

information gained from serial dilutions and therefore do not follow Stevens Law. 

Regardless of the disadvantages, OA V s remain a popular method of expressing 

the potency of an aroma compound. The advantages are OA V s are their ease of 

calculation, especially with all published sensory threshold values found in the literature 
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and they are a useful way of providing insight into the potential contribution an aroma 

compound makes to the overall product. The limitations of OA V s can be overcome by 

pairing OAVs with results from other techniques like GC-O, reconstitution and omission 

studies. It is important to remember that OAV s and sensory thresholds need to be 

considered as rough estimations of an aroma compound's potency to a product such as 

wine. They are simply a guide, or tool, to provide insight into the complex nature of 

wine aroma. 

1.4.2 Sources of Aroma Compounds 

Wine aroma is a complex mixture of chemical compounds derived from the 

various stages of wine production. Aroma compounds end up in the wine through three 

main routes; they originate in the grapes, they are the result of fermentation, and from 

chemical reactions occurring in the finished wine during storage and ageing (Rapp and 

Mandery 1986). 

Grape derived aroma compounds. These compounds are found in the berries at 

harvest as odor active volatiles (free form) or as non-volatile, odour-less precursors which 

are released into their odour active form during processing (Rapp and Mandery 1986). 

Monoterpenes and methoxypyrazines are examples of aroma compounds present in their 

free form in the grapes at harvest, while cysteine conjugated volatile thiols, and sugar 

glycosylated terpenes and norisprenoids must first be converted through chemical 

reactions into odour active compounds before they can contribute to wine aroma (Fischer 

2007). Many of these grape derived aroma compounds are important contributors to 

varietal aroma and are considered impact odorant, a concept to be discussed later in the 

section. 
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Fermentation derived aroma compounds. Wine yeast produce a variety of 

compounds as a result of their metabolism during fermentation that contribute to the 

aroma of wine; such as esters, higher alcohols, ketones, aldehydes, fatty acids and 

acetates (Schreier 1979). The production of ethanol is a very important by-product of 

fermentation that affects the overall aroma of a wine. The concentration at which the 

sensory threshold of an aroma compound is determined will vary depending on the matrix 

of evaluation, whether it was tested in water versus an ethanol/water solution, for 

example (Fischer 2007). The presence of ethanol in the wine matrix increases the 

solubility of most aroma compounds; this in tum reduces their volatility, which results in 

an increase in the sensory threshold concentration (Ferreira et al. 2008). The sensory 

thresholds of I-hexanol and ethyl benzoate were found to be 2500 and 60 J.lglL in water, 

respectively (Buttery et al. 1988). In a model wine solution, the sensory threshold of 1-

hexanol and ethyl benzoate were found to be much higher at 8000 and 575 J.lglL, 

respectively (Ferreira et al. 2000). This large increase in the sensory thresholds 

demonstrates that the introduction of ethanol to the matrix changes the concentration at 

which an aroma compound can be perceived and is therefore an important consideration 

to wine aroma compounds. Ethanol has also been shown to mask or suppress esters 

(Escudero et al. 2007) and enhance other aroma compounds such as decanal (Ferreira et 

al. 2008). 

Few esters are present in grapes, most are formed during fermentation and are 

found in the finished wine. Esters are the reaction product between alcohols and acids 

and are important fermentation derived aroma compounds. Esters in wines have two 

main origins; enzymatic esterification during the fermentation process ,and chemical 
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esterification during long-term aging. Acetic acid esters of higher alcohols, such as 

isoamyl acetate, have intense fruit odours that contribute to the overall aroma. Isoamyl 

acetate, with its strong banana aroma, is an ester found to contribute the most to the 

aroma profile of wines (Van Der Merwe and Van Wyk 1981) and is the one of the only 

esters along with ethyl phenyl acetate, with its floral honey aroma, that have been 

identified as impact odorants (Ferreira et al. 2000, Tat et al. 2007). 

Storage derived aroma compounds. These compounds develop in the wine as 

they age due to chemical reactions occurring from storage conditions of oak and bottle 

age. Examples of storage derived aroma compounds are (E) -whiskylactone, sotolon (3-

hydroxy-4,5-dimethyl-2(5H)-furanone), and TDN (l,l,6-trimethyl-l,2-

dihydronaphthalene). Whiskylactone imparts a wood, toasty aroma to oak aged wines 

(Boidron et al. 1988). Sotolon, has a caramelized aroma and has been found to be an 

important aroma compound in botrytis affected wine (Masuda et al. 1984), Madeira 

(Camara et al. 2006), ports (Ferreira et al. 2003a) and Pedro Ximenez sherry (Martin et 

al. 1992). TDN results from the breakdown of carotenoids during bottle ageing in 

Riesling wines (Versini et al. 1996). TDN has an aroma of petroleum, kerosene and 

diesel and is associated with aged wines from warm climate viticultural areas such as 

South Africa and Australia (Marais et al. 1992). 

1.4.3 Wine Impact Odourants 

Cordonnier (1956) first identified that terpenes contribute to the characteristic 

aroma of the Muscat cultivars. Since then, many studies and review articles have focused 

on trying to determine what aroma compound contributes most to the characteristic 

aroma of a wine. This single compound, which can impart on a wine, its distinct aroma is 

23 



known as an impact odorant. Many impact odorants have since been identified; linalool 

in Muscat cultivars (Bayonove and Cordonnier, Bayonove and Cordonnier 1970), cis­

rose oxide in Gewurztraminer (Ong and Acree 1999), methoxypyrazines (Allen et al. 

1991) and volatile thiols (4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-l-01 and 

3-mercaptohexyl acetate) (Darriet et al. 1995, Tominaga et al. 1996) in Sauvignon blanc 

and Cabemet Sauvignon, isoamyl acetate in wine made from Tempranillo (Ferreira et al. 

2000) and Pinotage (Van Wyk et al. 1979), ethyl phenyl acetate in Aglianico wines (Tat et 

al. 2007), rotundone in Shiraz wine (Siebert et al. 2008), and sotolon in many dessert 

wines (Masuda et al. 1984) to name of few examples. However, not all wines have 

impact odorants but rather a combination of aroma compounds that work together to 

create the characteristic aroma of that cultivar. The y-Iactones are a group of related 

chemical compounds that works as a 'family' to impart tropical fruit and coconut aroma 

to a wines aroma (Ferreira and Cacho 2009). 

Aroma compounds can therefore be categorized by studying their overall 

contribution to its aroma. Through sensory reconstitution studies on wine aroma using 

model wine solutions, the exact role of an aroma compounds can be determined (Guth 

1997b, Ferreira et al. 2002). That is to say, does it add to the aroma, take away from the 

aroma or have no effect on the aroma of the wine if it is omitted. From these studies 

aroma compounds can be classified based on their aromatic contribution as; impact 

odorant, contributor, secondary or subtle contributor, aroma enhancer or aroma depressor 

(Ferreira and Cacho 2009). It is important to note that an aroma compound could fit into 

several of these categories depending on its concentration in the wine in relation to its 

sensory threshold. 

24 



An impact odorant is a compound that contributes its distinct aroma to the wine 

giving it a characteristic aroma that can be identified. If an impact odorant is removed 

from the wine, it will no longer be identified as the same product. 

Contributors can be individual or groups of aroma compounds with similar 

chemical characteristics that add to the overall aroma of the product. Depending on their 

concentration in the wine, contributors can vary in how they are perceived and what their 

aroma(s) contribute to the bouquet. At higher concentrations contributors can impart a 

distinct aroma nuance that can be identified, such as 'red fruit' or 'tropical'. Whereas, at 

lower concentrations they may simply add to the bouquet a more simplistic note of 

'fruity' . 

Subtle contributors are individual or groups of aroma compounds which are 

present above their sensory threshold but do not impart any specific aroma characteristics 

to the product. Their role is to add to the wines aromatic base, however if they were 

removed from the product they would have little effect on the sensory profile. 

Aroma enhancers and depressors are compounds that do not impart a distinct 

aroma to the product but work by altering the perception of the aromatic nuance that are 

present. An aroma enhancer increases the perceived aroma; if the compound is removed 

from the wine, the odour perception on which it places emphasis will be reduced. The 

reverse is true for an aroma depressor; it acts to decrease the perception of an aroma in 

the wine, which will increase if it is removed. 

It has also been shown that if a wine does not contain any impact odorants, as in 

the case of wines made from Maccabeo, then omission studies provide little insight into 
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the sensory relevance of its aromatic composition but does provide information into what 

makes up a basic wine (Escudero et al. 2004). 

1.4.4 Sensory Analysis 

Analytical chemical methods look at wine from an individualistic perspective, 

whereas sensory analysis looks at wine from a holistic approach. Sensory analysis takes 

all the components in the wine as a whole to evaluate the overall product. Sensory 

analysis is therefore a vital part of understanding the aroma profile of the wine because 

all the individual odour active compounds are evaluated together. Analytical analysis of 

wines, through methods such as GC, can provide information about the exact 

concentration of the individual compounds. However, it gives no information as to how 

the wines are perceived by people (consumers), at what concentrations differences can be 

detected, or how those differences affect the overall sensory perception of the product. A 

trained panel of people will always be required to notice and describe these differences. 

Since valuable information is gained from sensory analysis and instrumental analysis 

individually, it only seems natural to try and relate them using multivariate statistical 

analysis. 

Common techniques for the evaluation of sensory differences in wine include 

discrimination tests, analytical intensity rating tests and consumer tests (Noble and 

Lesschaeve 2006). A common type of discrimination testing is difference testing. 

Difference tests, such as triangle tests, are used when the differences in the samples may 

be too difficult to describe. In a triangle test panelists are told to make a forced choice by 

choosing the sample that is different from the three samples presented to them, where two 

are the same product and one is different (O'mahony 1986). If the saniples are found to 
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be different, the next step is often to run sensory descriptive analysis to describe and 

quantify the differences. 

Analytical intensity rating tests are implemented to describe and quantify how the 

products differentiate from one another. Descriptive sensory analysis (DA) is one such 

technique, which allows a complete sensory description of the products and helps to 

identify variation in the products that contribute to the sensory differences (Lawless and 

Heymann 1999). In DA, the panelists develop a lexicon of sensory descriptors through 

consensus which describe the differences in the products. The panelists use this lexicon 

to rate the intensity of each individual descriptor for each of the products on a line scale 

(usually 15 cm), producing quantitative data that can be analyzed statistically. The 

sensory profiles of the products are shown by plotting the mean intensity rating for each 

attribute in each product and difference determined through analysis of variance 

(ANOV A). The two main requirements of DA to produce consistent and reliable flavor 

profiles are: 1) the lexicon must contain only terms that are non redundant and describe 

differences in the products and 2) the panelist receive extensive training in order to rate 

each attribute consistently and reproducibly. The data obtained through descriptive 

analysis can be related to preference ratings and instrumental results (Noble and 

Lesschaeve 2006). 

1.5 Relating Sensory and Instrumental Data 

With all of the information obtained from both sensory and instrumental analysis, 

it seems logical to want to relate them. Therefore, one of the aims of flavor chemistry is 

to create mathematical models that establish (predict) a relationship between the chemical 

composition of a product to its sensory attributes (Aznar et al. 2003). Before relating 
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sensory and instrumental data, a fundamental understanding of what is to be gained from 

combining the individual data set must be considered: 1) an understanding of the 

mechanisms through which chemical and physical properties of the product (wine) act to 

produce a sensory sensation; 2) an understanding of how a change in any aspect of the 

processing may affect the sensory properties; and 3) establishment of a relationship 

between sensory and instrumental data to detect changes at the same time in the sensory 

response (Qannari and Schlich 2006). 

The current way of relating sensory and instrumental data is to use a succession of 

different statistical methods to provide information from different points of view, which 

gathered together depict the entire picture (Qannari and Schlich 2006). Statistical 

methods used in this approach include correlation analysis, principle component analysis 

(PCA), cluster analysis, canonical variant analysis (CVA) and partial least squares 

regression analysis (PLS). Multivariate statistical methods are required for interpreting 

the relationships between sensory and instrumental data, due to the complexity of the data 

sets (Noble and Lesschaeve 2006). It is important to note that these multivariate methods 

do not associate which aroma compound is responsible for a specific sensory attribute, 

but identify what aroma compounds may be involved and therefore provide focus for 

subsequent research (Noble and Ebeler 2002). 

PLS is a recommended multivariate analysis method to study the relationship 

between sensory and instrumental analysis of wine and food (Noble and Ebeler 2002, 

Qannari and Schlich 2006). Advantages of this method are its ability to handle data sets 

where the number of variables is greater than the number of samples (wines), where there 

is a high degree of co-linearity among response variables (sensory) and predictor 
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variables (instrumental), and where there is a significant amount of random error in the 

data (Chien and Peppard 1993). 

PLS relates sensory and analytical data through modeling of the linear 

combination of variables in one set of data (instrumental) to predict much of the variation 

in the another set of data (sensory). It indicates how well the variables in one data set can 

predict the variation in another data, but it cannot test the significance (Noble and Ebeler 

2002). Studies looking at aged Spanish red wines (Aznar et al. 2003); California 

Chardonnay wines (Lee and Noble 2006); fresh strawberries (Schulbach et al. 2004); 

wine sensory properties related to grape cultivar (Campo et al. 2005); and vinification 

effects on Pinot noir (Girard et al. 2001) have all used PLS to relate sensory and 

analytical data. 

1.6 Factors Affecting Wine Composition and Sensory Profiles 

This section will discuss the various factors known to affect wine composition 

and sensory profiles which may be relevant to icewine. Since grapes destined for icewine 

hang on the vine long past regular commercial harvests, it is thought that they undergo 

chemical reactions analogous to wine oxidation and ageing because of freeze and thaw 

events. Ripe grapes are not harvested for several months once full maturity is achieved, 

therefore understanding the effect of harvest date, grape maturity and ripening in other 

wine styles and grape cultivars may provide insight to icewine chemical composition and 

sensory profiles. The effect of crop level on chemical and sensory properties in table 

grapes.is well researched; however, we have no information on its effect in icewine. 
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1.6.1 Oxidation of grapes 

Freeze and thaw events 

Freezing and thawing of the grapes results in cellular disruption as cells are 

ruptured by ice crystals upon freezing. This allows for reactions to occur upon thawing 

that would not in an intact cell, as enzymes and substrates are no longer segregated. 

Oxidation is one such reaction; caftaric acid is the major phenol in grape must and pulp 

and is a substrate for browning reactions when exposed to polyphenoloxidases (PPO) 

(Romeyer et al. 1985). The caftaric acid is oxidized to caftaric acid o-quinones, which 

polymerize to brown pigments in must. However, in the presence of glutathione and 

oxygen, glutathione competes for the caftaric acid and is oxidized to s-glutathionyl 

caftaric acid by PPO (Cheynier et al. 1990). PPO cannot bind to s-glutathionyl caftaric 

acid becase it does not have a substrate for this enzyme therefore no further browning 

will occur (Singleton et al. 1984, Singleton et al. 1985a). PPO, caftaric acid and 

glutathione are all separately compartmentalized within the cells of healthy intact berries. 

Singleton et al. (1985b) showed that undamaged grapes allowed to dry in the dark, 

retained their levels of caftaric acid and their green colour as raisins. However, in the 

presence of sunlight caftaric acid concentrations decreased in the several days 

accompanied by the onset of browning, with no production of s-glutathionyl caftaric acid. 

Therefore, upon raisining browning is delayed until the physical barrier between the 

caftaric acid and PPO is breached (Singleton et al. 1985b), as would occur during 

freezing and thawing. This could explains why as the icewine grapes hang on the vine 

they change from green to brown, as enzymatic browning occurs when caftaric acid is 

oxidized by PPO. 
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Kilmartin et aI. (2007) looked at the polyphenol content and browning in 

Canadian icewines. They found the concentration of total hydrocinnamates and total 

caffeic acids to substantially decrease over four harvest dates in both Riesling and Vidal 

blanc icewines. Total hydrocinnamates decreased from 75 mg/L for Vidal, 32 mglL for 

Riesling at harvest 1 (22 November), to < 10 mg/L for both cultivars at harvest 4 (14 

January). Total caffeic acids decreased from 60 mg/L for Vidal, 25 mg/L for Riesling to 

< 5 mg/L for both cultivars for the same harvest dates. Climatic events and/or hang time 

of the fruit in the later harvest dates is likely the explanation for the loss of polyphenols in 

reaction similar to hyperoxidation in white wines. 

Tian et aI., (2009) compared the concentration of 11 phenolic acids and 5 flavan-

3-ols in natural and artificially frozen grapes. Naturally frozen Vidal grapes harvested in 

January, showed a 70% decrease in the concentration of phenolic acids compared to 

grapes harvested in October and frozen artificially. The authors concluded that the 

polyphenolic content of icewines, could be used as a marker to identify wines made by 

natural freezing versus wines made from freeze concentrated grapes (Tian et aI. 2009). 

Wine Ageing 

The oxidation of berries from freeze and thaw cycles is analogous to wine aging, 

which is an oxidative process (Boulton et aI. 1995). Therefore it is plausible to consider 

chemicals and their reactions associated with white wine aging to be present in grapes 

used for icewine. Riesling wines have been shown to develop from a light straw colour 

to a deep yellow with age along with changes to its sensory profile (Simpson and Miller 

1983). Studies into white wine aging have shown that over time there is a decrease in 

linalool and geraniol but an increase in linalool oxides, nerol oxides and hotrienol in 

31 



Riesling and Vidal wines (Chisholm et al. 1994, Reynolds et al. 1994). B-damascenone 

also decreases with bottle age, whereas, other compounds, such as furfural and TDN, 

increase with age. 

A study looking at the aging effects on Vidal blanc wine found that in young 

wines aromas of apple, citrus, fruity and floral were the predominant descriptors used by 

a sensory panel (Chisholm et al. 1994). In contrast aged wines were described by a loss 

of fruity character, and an increase in pungent, oxidized and vegetal aromas. GC-O on 

the same wines identified the dominant aromas in both young and aged wines to be fruity 

and floral however found a marked decrease in the concentration of these aromas in the 

aged wines. The levels of both B-damascenone and the monoterpene alcohols linalool 

and geraniol were lower in aged Vidal wines. The terpene alcohols are oxidized during 

storage to terpenes oxides which have higher sensory threshold and therefore are not 

perceived in the older wines. 

Studies looking at the effect of aging on Riesling wine have found that the 

concentration of the monoterpene alcohols decrease in quantity, with a subsequent 

increase in the monoterpene oxides which have a higher sensory threshold, thus reducing 

their sensory perception. Another characteristic of aged Riesling is the production of 

TDN over time to above its sensory threshold. This is able to change the sensory profile 

of the wine, as it is not found in significant concentrations in young wines. The highest 

concentration of TDN was found to be produced at wine and juice pH, therefore with 

bottle age TDN concentrations increase as the precursors are hydrolyzed in the wine 

(Reynolds et al. 1994). 
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1.6.2 Conseguences of Hang Time 

Grape Desiccation 

Desiccation of the icewine grapes is another consequence of extended hang time 

and should also be considered in addition to freeze and thaw events and oxidation. 

Drying of grapes results in water loss (Costantini et al. 2006), changes in aroma 

compound composition (Chkaiban et al. 2007, Genovese et al. 2007) (Moreno et al. 

2008), sugar concentration (Bellincontro et al. 2009), cellular disruption and tissue 

softening (Ramos et al. 2004). 

Bellincontro et al. (2004) found that dehydrating Trebbiano, Malvasia and 

Sangiovese grapes either through controlled dehydration or accelareated tunnel 

dehydration increased the sugar content, ethanol concentration and the concentration of 

esters and higher alcohols while decreasing the concentration of C6-compounds such as 

I-hexanol. Drying grapes in the sun of Jerez, Spain has also shown changes in the 

volatile composition of the grape must which had higher concentration of ethanol, 

phenylethanol, ethyl acetate, isoamyl alcohol and y-butyrolactone (Franco et al. 2004). 

The volatile composition of Pinot noir wines made from dehydrated grapes had higher 

concentrations of guaiacol, terpenes (citronellol, geraniol, eugenol) and norisoprenoids 

(~-damascenone, ~-ionone) compared to non-dried wines, (Moreno et al. 2008). The 

increase in concentration was greater than expected from dehydration alone and it was 

believed that dehydration of the grapes resulted in the production of important aroma 

compounds. 

While it seems reasonable to assume changes due to desiccation of icewine grapes 

volatile composition would be similar, first the effect of climate and te~perature need be 
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considered since both of the previously mentioned studies were conducted with off vine 

drying in hot climates with dehydration temperature of at least 20°C. Molecular 

differences in off-plant and on-plant withering response were identified using AFLP­

transcriptional profiling of Corvina grapes (Zamboni et al. 2008). Since icewine grape 

desiccation occurs on the vine some differences in composition would be seen. 

Temperature also affects the amount of water loss during grape drying, which is related to 

volatile compound metabolism and production of volatile acidity (Bellincontro et al. 

2009). Cesanese grapes (red V. vinifera) had different accumulation of volatile 

compounds when dried at 20°C and 10°C. At 10°C the grapes had increased formation of 

ethyl acetate and other acetate esters including isoamyl acetate, whereas at 20°C there 

was a higher concentration of C6-compounds. 

Pathogen Infection 

The species and population of wild yeasts, bacteria and moulds on the bloom of 

icewine have been investigated (Chamberlain et al. 1997, Subden et al. 2003). However, 

their effect on aroma compound concentration and sensory profiles has not been 

determined. It is know that pathogen infection of grapes may result in the development of 

aroma compounds with positive or negative effects on the sensory profile of the wine and 

final wine quality. 

Metabolic activity of Botrytis cinerea resulted in an increase in the concentrations 

of whisky lactones, l-octen-3-01, and benzaldehyde and a decrease in concentration of 

ethyl esters and acetates in late harvested Botrytis affected sweet Fiano wines compared 

to non-Botrytis affected base wines (Genovese et al. 2007). Botrytis-affected wines from 

Bordeaux, France were characterized by higher concentration of homofuraneol®, 
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furaneol®, phenyl acetaldehyde and methional than base wines and two unique odourant 

areas described as grapefruit and curry were idenfied through GC-O (Sarrazin et al. 

2007). Tokaj Aszu wines from Hungary are characterized by y-Iactones that elicit aromas 

of coconut, chocolate, and peach, which result from the oxidizing influence of B. cinera. 

Sporulation of the B.cinera was observed at 5°C on strawberry leafs (Sosa-Alvarez et al. 

1995). Therefore, the potential of Botrytis infection in icewine grapes is very likely and 

would result in changes in the chemical and sensory profiles of the wine. 

Sour rot is a grapevine disease characterized by browning, disagregation of the 

cellular structure, pedicel detachment and a strong odour of ethyl acetate (Guerzoni and 

Marchetti 1987). Sour rot infection of Riesling grapes was shown to increase sugar 

concentration, glucose to fructose ratio, titrable acidity, glycerol and gluconic acid 

concentrations and reduce berry weight compared to 'clean' fruit (Zoecklein et al. 2001). 

Non-infected fruit had higher concentrations of geraniol, nerol and linalool, whereas sour 

rot infection increased the concentration of trans-furan linalool oxide, benzyl alcohol, 2-

phenylethanol, 2-methyl-l-propanol and 3-methyl-l- butanol (Zoecklein et al. 2001). In 

the Niagara Peninsula the pathogenic organisms found and identified by PCR and gene 

sequencing to cause sour rot were Hanseniaspora uvarum, Candida zemplinina, 

Gluconobacter cerinus and Gluconobacter frateurii (Plant 2008) 

1.6.3 Harvest date as a determinant of wine composition and sensory profile 

Perhaps the most important harvest decision is choosing when to harvest the 

grapes. Icewine is one of the only wine styles for which the soluble solids concentration 

at maturity is irrelevant, because it is the harvest temperature that is critical to freezing 

the water inside the berry and concentrating all its components. Harvest temperature is 
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the most important variable that determines the °Brix value of the resultant icewine juice 

(Ziraldo and Kaiser 2007). The optimal harvest and pressing temperature range for 

icewine is -9°C to -11°C giving a soluble solids concentration in the must between 38 to 

40 °Brix, titratable acidity between 10 to 12 gIL and a pH between 3.1 and 3.3 (Ziraldo 

and Kaiser 2007). If temperatures are higher, the water is not sufficiently frozen in the 

berry, in addition to the legal issues pertaining to harvesting and pressing at _8°C or 

colder. If temperatures are considerably lower, the berry is too frozen, increasing the 

potential °Brix values and pressing time but decreasing the yield, profitability and 

difficutly for yeast to ferment. 

As "hang time" increases for late harvest wines, desiccation of the fruit causes the 

berry to shrivel concentrating the acid and sugars in the berry. As a result, colder 

temperatures are required in order to freeze the berry to achieve the desired soluble solids 

concentration in the must later in the season. Higher yields of icewine juice are usually 

obtained in December because there is less desiccation of the fruit, therefore the air 

temperature does not have to be as cold to achieve the desired °Brix value. However, it is 

believed that the freeze and thaw cycles are critical to developing the sensory profile for 

which icewines are known. Some producers will have several icewine harvests from mid­

December to late January to achieve a balance between flavour profile and yield. 

Fenoll et al. (2009) used GC-MS to monitor changes in free and bound volatile 

compound concentration in Muscat Hamburg grapes during maturation over two 

vintages. In both years, geraniol was found to be the most abundant free volatile 

compound at the initial stage of maturations, with its concentration decreasing throughout 

ripening. Whereas, the concentrations of linalool of other free form volatiles increased 
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during ripening. At grape maturity, most volatile compounds showed higher 

concentration in the bound form compared to the free form, except for linalool and 

linalool oxides where the reverse was true. The OA V s for each free form volatile were 

calculated but only linalool, cis-rose oxide, citral and geraniol were found to contribute 

the aroma of Muscat Hamburg grapes. 

Fernao-Pires grapes from northern Portugal were followed from veraison (onset 

of ripening) for five weeks and several variety- and pre-fermentation-related volatile 

compounds were screened to determine optimal harvest parameters (Coelho et al. 2007). 

All screened volatile compounds; 16 terpenes, two C13 norisoprenoids, five C6 

compounds and two aromatic alcohols, were found to increase in concentration to a 

maximum at day 20 after veraison. After day 20, the concentration of all volatiles was 

found to decrease. They concluded that while peak volatile composition occurred with 

the white grapes maturity (ratio of sugar/acidity), it was a short window before 

concentration began to drop off for varietal and pre-fermentation volatiles. 

This thesis is the first time the effect of harvest date on icewine chemical and 

sensory profiles has been studied. However, the changes in the aroma composition and 

sensory profiles of grapes and other wines styles during maturation and ripening have 

been extensively studied (Marais and van Wyk 1986, Reynolds et al. 1993, Salinas et al. 

2004, Coelho et al. 2007, Palomo et al. 2007, Oliveira et al. 2008, Fenoll et al. 2009). 

These studies provide knowledge of what may be occurring in icewines but unfortunately 

none of them track the volatile composition of grapes long past maturity as is the case 

with icewine, and how they may change. 
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1.6.4 Crop level as a determinant for wine composition and sensory profile 

Yield calculations for icewine crops are based on October estimates for regular 

harvest (Ziraldo and Kaiser 2007) because it becomes more difficult to accurately 

estimate crop late in the season as the individual berries are at different stages of 

desiccation due to climatic conditions. Yield estimations of 150 Utonne, or 

approximately 7 tonnes/acre for Vidal blanc, and 125 Utonne or 5 tonnes/acre for 

Riesling are used by one of Ontario's largest icewine producers as a guideline for 

maximum yield and quality (Ziraldo and Kaiser 2007). However, anecdotally it is not 

uncommon for growers to crop vines up to 10 tonnes/acre to increase the volume of 

icewine juice they can sell to the wineries, especially for Vidal blanc. 

Cluster thinning is a standard viticultural practice performed to keep the grapevine 

in balance, thus, preventing overcropping. The net effect of cluster thinning is to improve 

the quality of the grapes, which is achieved due to an increase in the ratio of leaf area to 

crop and maintain the health of the vine (Winkler et al. 1962). Reynolds (1989) found 

that cluster thinning changed the composition of the grapes with increases in sugar 

content and pH and a decrease in total acids. It also increased cluster weight, berries per 

cluster, and berry weight and also advanced maturation of the fruit. 

Cluster thinning has been shown to improve fruit composition in French-hybrids 

such as De Chaunac and Seyval blanc as well as V. vinifera cultivars (Reynolds 1989). 

As of 2009, no research has focused on the effect of crop level on the composition of 

dessert wines. However, in table wines several studies have established a clear 

relationship between crop level and varietal characteristics in table wines. Reynolds et 
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al.(1996) found that cluster thinning produced Pinot noir wines which were rated by 

panelist as having less grassy and vegetative characteristics and were rated higher for 

descriptors such as black pepper, cherry, and currant. PCA results showed correlations 

between typical Pinot noir descriptors and cluster thinning. 

Studies with Riesling have shown similar results; where cluster thinned grapes 

have a higher concentration of monoterpenes (McCarthy et al. 1985). The effect of 

cluster thinned vines to three different crop levels; 1, 1.5, and 2 clusters per shoot were 

studied to determine the effect of vineyard treatments on Riesling composition and 

sensory response (Reynolds et al. 1994). They found that monoterpene concentrations 

decreased with increasing number of clusters per shoot. Linalool was positively 

correlated with ripe fruit character and sweetness and negatively correlated with green­

fruit flavor and cluster thinning was found to increase the perception of ripe fruit 

character in the wines. Monoterpenes such as linalool, linalool oxides, terpineol and 

citronellol were associated with lower crop levels and low to moderate shoot densities 

and were found to increase in concentration with age (Reynolds et al. 1994). 

1.7 Conclusion 

The production of icewine is influenced by viticultural, oenological, sensory and 

chemical factors which make it a unique wine style. This study tries to elucidate how 

harvest date and crop level affect the sensory profiles and responsible aroma compounds 

of Riesling and Vidal blanc icewines through sensory and instrumental analysis, SBSE­

TDS-GC-O-MS. 
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Chapter 2 
Odour Potency of Aroma Compounds in Riesling and Vidal blanc Table 

Wine and Icewines by Gas Chromatography·Olfactometry.Mass 
Spectrometry 

Amy J. Bowen and Andrew G. Reynolds 

Abstract 

This study aimed to elucidate the odour potency of aroma compounds in Riesling and 
Vidal blanc table wines and icewines from the Niagara Peninsula using stir bar sorptive 
extraction coupled with gas chromatography olfactometry mass spectrometry. 
CharmAnalysis™ was used to determine the most odour-potent compounds in Vidal 
blanc (syn. Vidal) and Riesling icewines and table wines from a commercial producer. 
The top 15 odour potent compounds in each wine by each judge were identified and 
quantified resulting in 23 and 24 compounds for Riesling and Vidal, respectively. The 
most odour-potent compounds determined by CharmAnalysisTM for Vidal and Riesling 
wines were ~-damascenone, decanal, I-hexanol, l-octen-3-01, 4-vinylguaiacol, ethyl 
hexanoate and ethyl 3-methylbutyrate. In general, icewines had higher concentrations of 
most aroma compounds compared to table wines. Through computation of odour activity 
values, the compounds with the highest odour activity for the icewines were ~­
damascenone, l-octen-3-01, ethyl octanoate, cis-rose oxide and ethyl hexanoate. In table 
wines the highest odour activity values were found for ethyl octanoate, ~-damascenone, 
ethyl hexanoate, cis-rose oxide, ethyl3-methylbutyrate and 4-vinylguaiacol. These 
finding can be used as a foundation to determine impact odorants in icewines and the 
effects of viticultural and oenological practices on wine aroma volatile composition. 

Key words: wine aroma, volatile analysis, odour activity values, ~-damascenone, esters 

Introduction 

Wine aroma is the result of the complex interaction of hundreds of volatile 

compounds that together form a matrix to produce a sensory response. The major 

criterion of a compound to be aromatic, or odour-active, is its volatility enabling it to 

reach the olfactory epithelium and elicit a sensory perception. As a result, odour-active 

compounds are generally low molecular weight with high volatility. Understanding what 

contributes to a wine aroma has been the goal of many research initiatives since the 
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1940's and continues today. The source of wine aroma compounds can be explained by 

their source of origin; 1) from the grape berry, 2) volatiles originating from grapes as 

non-volatile precursors released through processing and storage, 3) from yeast and/or 

bacterial metabolism, 4) from oak extraction and 5) from chemical reactions occurring 

during storage and ageing (Rapp and Mandery 1986, Francis and Newton 2005). 

Wine aroma compounds can also be categorized based on their contribution to the 

overall aroma of the matrix (Ferreira et al. 2008) as: 1) an impact odorant; a compound 

that is able to impart its characteristic and identifiable aroma to the wine, such as linalool 

in Muscat wines or sotolon in certain dessert wines. 2) Impact groups or families are 

compounds with similar chemical structure and aroma that act together to contribute an 

identifiable aroma to the wine, such as 'Y-lactone and volatile phenols. 3) Subtle families 

or groups are not able to contribute an identifiable aroma but contribute nuances to the 

overall aroma, such as fruity. 4) Compounds that form the base of wine aroma are 

generally below their sensory threshold but can act on other compounds altering their 

perceived aromas as aroma enhancers and depressors. 5) Off-flavour compounds whose 

presence decreases the quality of the wine, such as trichloroanisoles responsible for cork 

taint. 

Gas chromatography-mass spectrometry (GC-MS) is the most used analytical 

instrumentation to determine the concentration of volatile compounds and is widely used 

in wine aroma analysis. However, this method gives no indication of which compounds 

in the sample contribute to its aroma, only the amount present in the sample. A common 

measure to assess the contribution of an aroma compound to a product is through the use 

of odour activity values (OAVs), which are calculated by dividing the concentration of 
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the analyte by its sensory threshold. An OAV greater than one indicates the compound is 

found above its sensory threshold and contributes to the products aroma. The larger the 

OAV, the more potent the compound is thought to be. OAVare a good indication of the 

potential potency of an aroma compound in that matrix. However, there are several 

factors to consider when using OA V to assess odour activity: threshold determination and 

matrix effects (Francis and Newton 2005, Fischer 2007). OA V are most useful when the 

sensory threshold is determined in a similar matrix, as it is well established that aroma 

compounds have different threshold concentrations is air, water and wine (Francis and 

Newton 2005). OAVs also provide no information on matrix effects and interactions 

with other compounds which can result in aroma enhancement or depression. Finally, an 

OA V greater than one does not mean the aroma compound will be perceived in the wine. 

Gas chromatography-olfactometry (GC-O) is an analytical method used to 

determine which odour-active compounds in a chromatographic run contribute to the 

wine aroma. This technique combines a traditional GC fitted with a non-destructive 

olfactory port enabling a person to smell the effluent. The odour description, when an 

odour-active compound elutes above its sensory threshold, is recorded along with its 

retention time to identify the odorant areas of the chromatogram. 

GC-O methodologies have diverged into three main categories: dilution analysis, 

intensity ratings and frequency detection. Osme (McDaniel et al. 1989), finger-span 

method (Etievant et al. 1999) and simple intensity rating (Ferreira et al. 2003) are all 

intensity rating techniques that ask the sniff judge to rate the perceived intensity of the 

eluting odorant. Frequency detection methods, such as nasal impact frequency (NIF) 

(pollien et al. 1997) use a panel of judges to smell GC effluent and cOI1lpounds are ranked 
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based on how many times they are detected. Both of these methods provide useful 

information by identifying and rating the odour-active compounds, however only dilution 

analysis provides a quantitative measure of the odour potency. CharmAnalysis TM (Acree 

et al. 1984) and aroma extract dilution analysis (AEDA) (Ullrich and Grosch 1987) are 

the two quantitative dilution techniques. In dilution analysis, the sample is serially 

diluted and sniffed by a small panel of judges until no odour is detected. The compounds 

which are present in the highest dilutions are those which contribute most to the wine 

aroma, therefore are the most odour-potent compounds. 

In CharmAnalysis TM the sniff judge uses a computer program to indicate the 

beginning and end of the odour by depressing the mouse button and describe the odour 

eluting based on developed lexicon. The charm value produced is based on the peak 

height (number of dilution detected) and length (duration of odour event) (Acree et al. 

1984). AEDA uses the same principle to produce a flavour dilution (FD) value based on 

the dilution and only the start time of the odour event. The Charm dilution analysis was 

used in this study to determine the most odour-potent compounds in Vidal blanc 

(hereinafter referred to as Vidal) and Riesling icewine and table wines. 

CharmAnalysis TM has been previously used to characterize aroma compounds in lychee 

fruit (Ong and Acree 1998), Gewurztraminer wines (Ong and Acree 1999), Vidal and 

Riesling wines from Ohio (Chisholm et al. 1994), coffee extracts from different freeze 

drying techniques (Sagara et al. 2005), and in wine extracts from different extraction 

methods to determine the best method of aroma analysis by GC (Moio et al. 1995). 

In order for the GC-O results to make sense, the extract sniffed by the judges must 

be a good representation of the original product, wine. Liquid-liquid extraction of a wine 
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sample using a solvent of similar chemical properties, such as polarity, is the traditional 

method for volatile analysis of the sample by GC and GC-O-MS. Disadvantages of this 

method include time consuming extraction procedures, costs associated with solvents and 

their safe disposal and the production of artifacts during extraction. In 1990, Pawliszyn 

came up with a solventless extraction technique known as solid phase microextraction 

(SPME) (Arthur and Pawliszyn 1990). Advantages ofthis technique are that it combines 

sampling, extraction, concentration and sampling to the GC all into one step using a 

polymer coated fiber contained in a modified syringe holder. The fiber is either directly 

immersed or suspended in the heads pace of the analyte for the volatiles to adsorb before 

being injected into the GC inlet, eliminating the need for solvents. The major 

disadvantage of this technique is the small sampling capacity of the fiber, only about 0.6 

J..lI for a 100-J..lm PDMS fiber, which effects the sensitivity of recovery (Hayasaka et al. 

2003). 

In 1999, a new technique based on the same principal as SPME but with several 

advantages was introduced known as stir bar sorptive extraction (SBSE), commercially 

sold as Twister (Baltussen et al. 1999). SBSE uses a 10 mm long glass encased magnetic 

stir bar coated with 0.5mm thick layer of polydimethylsiloxane (PDMS). Analytes are 

extracted by placing a stir bar either directly in an aqueous mixture or suspending in its 

headspace. The volatiles partition onto the PDMS coating and are then thermally 

desorbed into the GC inlet which is cryo-cooled with liquid nitrogen. The main advantage 

of SBSE over SPME is the increase sampling capacity, 25 to 125 J..lL, provided by the 

PDMS coating, enabling improved signal to noise ratios, increased sensitivity, and low 

detection and quantitation limits (Hayasaka et al. 2003). It is for these-reasons that SBSE 
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was used for the extraction of volatiles in this study. It is the first time to the authors' 

knowledge that SBSE has been used in conjunction with dilution analysis, 

CharmAnalysis TM, to determine the odour potency of aroma compounds. However, 

SBSE has been used extensively for the volatile analysis of grapes (Salinas et al. 2004), 

wine (Alves et al. 2005, Zalacain et al. 2007, Tredoux et al. 2008) and other alcoholic 

beverages such as beer (David et al. 2001) and malt whisky (Demyttenaere et al. 2003). 

Ontario is Canada's largest wine region and the Niagara Peninsula its largest 

appellation producing sparkling wines, table wines and dessert wine from mainly Vitis 

vinifera cultivars. Icewine is the wine style synonymous with the Canadian wine industry 

made from Vidal and Riesling with the bulk of its production from the Niagara Peninsula. 

In 2008 over 1 million litres of icewine were produced in Ontario, 75 and 12 percent of it 

was made from Vidal and Riesling cultivars, respectively (Ontario 2010). In 2009, 

almost 900 000 litres of icewine were produced in Ontario of that 75 and 6 percent were 

made from Vidal and Riesling, respectively (Ontario 2010). 

Icewine is a sweet late harvest dessert wine made from grapes naturally frozen on 

the vine at -8°C or colder and pressed while frozen. The resultant wine is concentrated in 

sugar, acids and aroma/flavour compounds. In Ontario, Canada the production of 

icewine is strictly regulated by the Vintner's Quality Alliance (VQA) of Ontario. In 

order for a wine to labeled icewine under VQA regulations it must be made from grapes 

harvested after 15 November, with a harvest temperature ~ _8°C, a must concentration of 

at least 35°Brix, with 125 gIL residual sugar and 6.5 giL titratable acidity in the finished 

wine. Icewines are characterized by intense aromas of honey, peach, apricot and caramel 

with the palate displaying a balance of sweetness and acidity. While icewine is 
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internationally renowned and produced in many countries, very little is known about this 

unique wine style and its volatile composition. 

A survey of icewine research in the literature shows studies that have looked at 

the sensory and chemical composition of icewine (Cliff et al. 2002, Nurgel et al. 2004); 

the impact of vintage and viticultural area on some chemical parameters (Soleas and 

Pickering 2007), the polyphenol content (Kilmartin et al. 2007, Tian et al. 2009); the 

impact of yeast strain (Subden et al. 2003, Erasmus et al. 2004), yeast inoculation method 

(Kontkanen et al. 2004) and yeast hyperosmotic stress response in icewine fermentations 

(Pigeau et al. 2007, Pigeau and Inglis 2007). However, there is limited research on the 

aroma volatiles composition of icewine, besides a preliminary study by Cliff et al. (2002) 

and qualitative profiling of icewine volatiles fractions using solid-phase microextraction­

gas chromatographic-time-of-flight mass spectrometric methods (Giraudel et al. 2007, 

Setkova et al. 2007a, Setkova et al. 2007b). 

Other regions have characterized their wines based on their aroma composition 

and the identification of impact odorants that impart to the wines a specific, unique and 

identifying aroma which is distinct to that wine style (Tominaga et al. 1996, Guth 1997a, 

Ferreira et al. 2002, Fretz et al. 2005). Our aim is to elucidate if such a compound can be 

found in Vidal and Riesling icewines using gas chromatography-olfactometry-mass 

spectrometry. The main objective of this study is to determine and quantify the most 

odour-potent compounds in Riesling and Vidal table wine and icewine from the Niagara 

Peninsula, Ontario, Canada. Much is known about the chemical composition of Vidal 

and Riesling table wines. Comparison of table wine and icewines will provide 

information as to how the odor potency changes and what compounds -may be affected. 
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The grapes for the commercial table wines and icewines in this study came from the same 

vineyard block for both the Vidal and Riesling wines. Some of the grapes in the block 

were harvested at regular commercial harvest for table wines while the rest of the grapes 

in the block remained on the vine until temperatures permitted icewine harvest. 

Therefore difference in odour-potency and odour potent compounds can only be 

attributed to wine style and harvest date since all other parameters were the same. Since 

very little is known regarding icewine, the results of this study will aid in our 

understanding and the characterization of Canadian icewine, and the aroma compounds 

important to this wine style. 

Materials and Methods 

Wines. Four commercial wines from the 2004 vintage were donated by Coyotes 

Run Winery in Niagara-on-the-lake, ON for analysis. They consisted of 2004 Riesling 

icewine, 2004 dry Riesling table wine, 2004 Vidal icewine and 2004 off-dry Vidal table 

wine. All wines of the same cultivar were from the same vineyard but harvested at 

different times to reflect the two different wine styles: table wine and icewine. 

Chemicals. Analytical standards (Table 2.1) were purchased from Aldrich 

(Oakville, ON, Canada), Sigma-Aldrich (Oakville, ON), Fluka (Oakville, ON), 

Bedoukian (CT, USA), Acros Organic (NJ, USA). ~-Damascenone was a gift from Dr. 

T. Acree, Cornell University. Chemical standards were diluted in dichoromethane 

(Caledon; Georgetown, ON) and stored at -25°C. 

Volatile extraction. Wine volatiles were extracted by stir bar sorptive extraction 

(SBSE), commercially known as Twister, using 10 mm stir bar (Gerstel, Baltimore, MD) 
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coated with polydimethylsiloxane (PDMS, 0.5 mm film thickness) in lO-mL extraction 

vials for 60 minutes at 1000 rpm. Stir bars were removed from the extraction vial, dried 

with a lint free tissue, rinsed with Milli-Q water (Millipore) and stored in a 4-mL amber 

vial at 4°C until analysis. Wines were used full strength for GC-MS quantification. For 

GC-O analysis, wines were diluted lO-fold with a model wine solution made to match the 

composition of the icewine and table wine. The icewine model wine solution contained 

11.57 gIL tartaric acid (EMD Chemical Inc., Darmstadt, Germany), 153 gIL fructose 

(Caledon; Georgetown, ON), 11 % (v/v) ethanol (Commercial Alcohols Inc.; Brampton, 

ON), with a pH of 3.61. The table wine model wine solution contained, 7.4 gIL tartaric 

acid,5 gIL fructose, 12% (v/v) ethanol, with a pH of 3.33. All wines were spiked with an 

internal standard, 100 J.lg/L n-dodecanol (Sigma; Oakville, ON) in GC-grade 

dichloromethane. 

Gas chromatography-mass spectrometry (GC-MS). Instrument: Agilent 

6890N/5975B gas chromatograph mass spectrometer equipped with a Gerstel thermal 

desorption unit (TDS2; Gerstel, Baltimore, MD) and cooled injection system (CIS4; 

Gerstel, Baltimore, MD) programmable temperature vaporization (PTV) inlet and an 

olfactometry port (DATU, Geneva, NY). Analytical column: Agilent HP-5MS, 5% 

phenyl methyl siloxane, 30m length, 0.25 mm internal diameter and 0.25 J.lm film 

thickness. Carrier gas: 1.4 mL/min 5.0 purity helium (Praxair, Mississauga, ON). Oven 

program: initial temperature 35°C held for 3 min, increased by 6°C/min to 155°C, 

increased by 30°C/min to a final temperature 240°C. Thermal desorption: initial 

temperature 30°C, increased by 60°C/sec to 250°C and held for 3 min. TDS transfer line 

temperature 275°C connected to CIS4 inlet cryo-cooled to -70°C with liquid nitrogen in 
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solvent vent mode. After desorption, CIS4 inlet temperature was increased at 12°C/sec to 

280°C and held for 5 min while analytes are released on the column. The column was 

attached toa splitter (Gerstel, Baltimore, MD), with equal proportions to the MS and the 

back inlet (olfactory port). The MS was run in scan mode, 30 to 400 Da for compound 

identification and in select ion monitoring (SIM) mode selecting for one quantitative ion 

and three qualitative ions for each compounds for quantification (Table 2.1). 

GC-olfactometry (GC-O). All instrumental parameters are the same as listed 

for the GC-MS. The olfactory port connected through the back detector was heated to 

250°C. The effluent from the column was supplemented with 45 mUmin nitrogen and 

was heated with humidified air to prevent drying and irritation while sniffing. 

Judge reproducibility. Judges were given blind, four repetitions of the same wine 

over four days, to ensure they were detecting similar odour events, identifying the 

perception and were reproducible. An odour event was characterized by its odour 

perception, retention time and if it was detected in at least 3 of the 4 repetitions. Thirty 

and 26 odour events were detected by Judge 1 and 2 respectively, and of those 21 odour 

events were the same (same retention index and perception). Judges were therefore 

deemed reproducible. 

Lexicon generation. The judges sniffed all wine at the initial concentration and 

generated a list of descriptors to describe the aroma perceptions eluting from the GC-O. 

The judges met to discuss the lexicon terms and through consensus generate the final 

lexicon. This lexicon was used for subsequent analysis (Table 2.2). 
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CharmAnalysis™. GC-O data was collected by the dilution analysis method 

CharmAnalysisTM (DATU, Geneva, NY), a computer software program which records 

the retention time, linear retention index (based a series of n-alkanes C6-C19; Sigma 

Aldrich, Oakville, ON) and odour perception. Wine was diluted, in model wine, lO-fold 

for the initial concentration; all subsequent dilutions were 3-fold until no odour events 

were detected. Each wine at each dilution was extracted using SBSE, sniffed by two 

judges experienced in aroma recognition until no aroma was detected. 

Top 15. Each wine was sorted by CHARM value for each judge, all erroneously 

identified odour events were removed. The top 15 odour events for each judge in each 

wine were retained and subsequently identified and quantified. Charm values were 

normalized into odour spectrum values (OSV) for comparison between judges and wines 

(Acree 1997; Table 2.3). 

Identification and quantification. Compounds were identified by comparison of 

retention time, odour perception and mass spectra (Wiley7Nist05 library) to pure 

standards. Three-point calibration curves were run for each analyte in model wine 

solution to ensure linearity (r2 > 0.9; Table 2.1). Standard curve concentrations and 

compound were quantified based on the ratio of the peak area of the compound relative to 

the peak area of the internal standard to determine the concentration of the analytes. 

Analysis was run in duplicate with relative standard deviation between replicates ranging 

from 0.5 and 12%. 

Statistical analysis. Two tailed t-tests (Microsoft Excel) were used to determine 

differences between table wines and icewines from each cultivar at p < 0.05. 
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Results 

GC-O. Icewines and table wines had similar odour-active compounds but 

differences in their odour potency (Table 2.3). For each of the judges, the top 15 odour-

active compounds were retained, determined by descending Charm values. The Charm 

value were then converted to odour spectrum values (OS V) which is the odour potency 

normalized to the most potent odorant detected (Acree 1997) to enable comparison 

between judges, wine and cultivars. This is the same principal as in mass spectroscopy, 

where the ions fragments are normalized, and expressed as a percentage, to the most 

abundant ion fragment produced in a spectrometer. 

In total, 32 odour events were identified by combining all compounds in each of 

the top 15 lists in Vidal and Riesling icewine and table wines (Table 2.3). Of these 32 

compounds, 24 and 23 odour events were found in Vidal and Riesling wines, 

respectively. Four compounds identified in the top 15 of Vidal wines were not found in 

Riesling; ethyl 2-methylbutyrate, isoamyl acetate, ethyl valerate, and I-heptanol. 

Similarly three odour-active volatiles; 2-phenylethyl acetate, ethyl cinnamate and p-

ionone were identified in the Riesling top 15 which were not found in Vidal. The results 

do not imply that the above mentioned compounds are not present in Vidal and Riesling 

wines, because in most cases they are, only that they were not the most odour-potent and 

therefore were not listed in the top 15 odor events in any wine by either judge for the 

other cultivar. 

Five odour events could not be identified because no compound was found by MS 

to associate with the odour peak. It is well known that the human nose is a more sensitive 
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detector than a GC-MS (Acree 1997); therefore it is not surprising or uncommon to have 

some unidentified odour events. These five unknowns, based on their linear retention 

index, were named by that number; unknown 1018, 1027, 1658, 1722 and 1761 (Table 

2.3). Unknown 1722 detected in Vidal and Riesling wines, was described as smelling of 

black pepper. However, no compound could be detected by the SCAN mode of the GC-

MS which matched the mass spectrum, odour perception and retention time. No further 

study was conducted to determine the identity of the five unknowns. 

Only two odour events were found in all wines by both judges through 

CharmAnalysis™, decanal and ~-damascenone. Both had high odour potency, listed in 

the top three odour-potent events in all cases. Decanal had the highest odour potency 

value (OSV=100) in Vidal and Riesling icewine by Judge 1 and Vidal and Riesling table 

wine by Judge 2. Decanal was described as having a petrol, vinyl/plastic, citrus, green 

aroma. ~-damascenone had the highest odour potency in Riesling icewine by Judge 1 

and table wine by Judge 2, it was described by a distinct pear aroma. 

EthyI3-methylbutyrate, I-hexanol, l-octen-3-01, ethyl hexanoate and l-octanol 

were five compounds that were odor potent in almost all cases; they were missing from 

only one wine. I-Hexanol was found to be the second most odor potent aroma in Vidal 

and Riesling icewine by Judge 1. 1-0ctanol was the most odour-potent compound in 

Vidal table wine by Judge 1. Other odour-potent compounds found in most wines were 

cis-rose oxide, phenethyl alcohol, nerol oxide, ethyl phenyl acetate and 4-vinylguaiacol 

(Table 2.3). 

The fruity, sweet smelling esters, ethyl isobutyrate, ethyl butyrate and ethyl 2-

methylbutyrate were found to have more odour potency in table wines than icewines for 
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both Vidal and Riesling. Ethyl-2-methylbutyrate was found to be the most odour-potent 

compound in Vidal table wine by Judge 1. Similarly, the clove-smelling 4-vinylguaiacol 

and floral-smelling geranyl acetone were more odour-potent in Riesling table wine than 

icewines. The reverse was found with acetophenone, which had higher odor potency in 

the icewines than table wines. 

GC-MS. The odour-potent compounds determined through GC-O analysis were 

quantified and their odour activity values (OAVs) determined based on published sensory 

thresholds (Table 2.4). 

Statistical analysis (t-test) found that Vidal icewine and table wines were different 

for 22 of 24 compounds, but ethyl isobutyrate and I-hexanol were not different. Vidal 

icewine had a higher concentration of most compounds--15 of the 22 different 

compounds--than the table wine. Ethyl butyrate, isoamyl acetate, ethyl hexanoate, 

acetophenone, ethyl octanoate, decanal, and 4-vinylguaiacol had a higher concentration in 

the table wine than the icewine. No compounds were unique to either wine-style for 

Vidal. 

Riesling icewine and table wine were different for 18 of 23 compounds 

quantified. Five compounds--ethyl isobutyrate, ethyl butyrate, ethyI3-methylbutryate, 1-

hexanol and acetophenone--were not different. Similar to Vidal, 14 of the 18 compounds 

had higher concentrations in icewine than table wine. Only ethyl hexanoate, ethyl 

octanoate, decanal, and geranyl acetone had higher concentrations in table wine. Riesling 

icewine had one unique compound, l-octanol, which was not detected in the table wine. 

Both Vidal and Riesling table wine had higher concentrations for ethyl hexanoate, 

ethyl octanoate and decanal than in icewine. The table wine concentrations were 82 and I 
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21 % higher for ethyl hexanoate, 260 and 132 % higher for ethyl octanoate, and 1300 and 

368 % higher for decanal in Vidal and Riesling, respectively. The reverse was for 1-

octen-3-ol; its concentration were over 2500 and 300% higher in Vidal and Riesling 

icewines, respectively, than table wines. 

B-Damascenone, linalool and cis-rose oxide have all been previously identified as 

odour-potent compounds in Vidal and Riesling wines (Chisholm et al. 1994). 'Y-

Nonalactone, ethyl phenyl acetate, and isoamyl acetate are important impact odorants 

identified in other wine styles and were found to be odour-potent in these commercial 

wines. With the exception of isoamyl acetate, which had 20% higher concentration in 

Vidal table wine, all these compounds had higher concentrations in the Vidal and 

Riesling icewine. 

Large concentration differences were found between Vidal and Riesling icewines 

and table wines. Vidal showed larger concentration differences between table wine and 

icewine than Riesling (Table 2.4). 

Odour activity values. The concentration of each compound was divided by its 

sensory threshold (Table 2.5) to determine its odour activity value (Table 2.4). Any OAV 

> 1 is considered above its sensory threshold and is said to contribute to the aroma of the 

product. The higher the value> 1, the more potent or dominant a compound will be. 

Vidal icewines and table wine had 15 and 14 compounds, respectively, above their 

sensory threshold (OA V> 1). Linalool and ethyl 2-methylbutyrate were above their 

sensory threshold for icewine but not table wine and decanal was only found above its 

sensory threshold in Vidal table wine. Riesling ice wine and table wine were found 

above their sensory threshold for the same 12 compounds. 
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The highest OA V s in Vidal and Riesling icewines were determined for p-

damascenone (902 and 186, respectively) and in table wine, ethyl octanoate had highest 

OAVs (533 and 205, respectively). p-damascenone had the second-highest OAV in both 

table wines (224 for Vidal; 78 for Riesling). Ethyl octanoate had the second-highest 

OA V in Riesling icewine (88) and third-highest in Vidal icewine (147). Other 

compounds with high OAVs for Vidal icewine were l-octen-3-01 and cis-rose oxide, both 

with OA V s > 100. Vidal was found to have higher OA V s than Riesling for the most odor 

potent compounds (Table 2.4). 

Some compounds with high Charm or OSV value (and therefore deemed odour-

potent through CharmAnlysisTM analysis) were not found to have OAVs > 1, and 

therefore are considered to be below their sensory thresholds. However, all compounds 

were detected as odour-active by the judges through GC-O analysis since they were 

identified by their aromas as they eluted from the column. Decanal, I-hexanol and 1-

octanol are three such compounds that were among the most odor-potent compounds 

found through GC-O but having low OA V s. Decanal was found above its sensory 

threshold (OAV = 6.8) only in Vidal table wine. I-Hexanol and l-octanol were not 

found above their sensory thresholds (OAV>I) in any wine. 

Discussion 

Comparison of GC-O to OA V results. The most potent odorants determined by 

CharmAnalysis TM were decanal, p-damascenone, and I-hexanol in Vidal and Riesling 

icewines and table wines. Calculation of OA V gave a different pattern of odour potency. 

While p-damascenone had a high OA V and was the most odour-potent compound in 
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Vidal and Riesling icewines and the second-most potent compound in table wines, 

decanal, I-hexanol and octanol all had OA V s < 1 with the exception of Vidal table wine, 

which had an OA V of 6 for decanal. Therefore based on OA V, those compounds found 

to be highly odour-potent by Charm are not considered to contribute to the aroma of the 

wine based on their calculated odour activity. Other potent odorants determined by 

CharmAnalysisTM were l-octen-3-ol, cis-rose oxide, ethyl 2- and 3-methylbutyrate, ethyl 

hexanoate, nerol oxide, ethyl phenyl acetate and 4-vinylguaicol. High OA V s in icewines 

were found for l-octen-3-ol, ethyl octanoate, cis-rose oxide and ethyl hexanoate and in 

table wines for ethyl octanoate followed by p-damascenone, ethyl hexanoate, cis-rose 

oxide, and 4-vinylguaiacol. 

Discrepancies between GC-O and OA V are not uncommon due to a variety of 

factors. Charm response will differ for the sensory response of the food because a 

compounds volatility in the GC effluent is 100% but in a food/wine matrix that could be 

quite different if the extraction was not conducted in the headspace of the wine (Acree et 

al. 1984). Dilution analysis methods such as CharmAnalysis are based on a linear 

correlation between odour intensity and concentration. It has been shown that this 

relationship is logarithmic and better explained by Stevens' Power Law (Stevens 1971) 

than dilution analysis (Kamadia et al. 2006). It is therefore considered necessary to 

compare quantitative results through conversion to OAV to determine real contribution of 

various compounds to the aroma (Sarrazin et al. 2007). OA V are thought to be more 

representative of a food (wine) matrix since they consider concentration and sensory 

threshold but this too has its shortcoming (Escudero et al. 2004, Francis and Newton 

2005). 
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Whenever possible, the sensory thresholds were taken from the literature in a 

model wine solution. However, in some case this was not possible, which may explain 

some of the discrepancies between differences in odour potency determination by Charm 

and OAV. Since OAVs were determined from published sensory threshold and not 

conducted in this study, there could be matrix effects that affect the sensory detection 

threshold of a compound either inflating or suppressing its importance. The high sugar 

concentration of the icewine may be one of these matrix effects that affects how aromas 

are perceived. This is a potential area of future research. 1-Hexanol, which was found to 

be odour-potent through Charm but due to the published sensory threshold of 8000 J..Lg/L 

in a 10% ethanol solution (Guth 1997b) was not found to have an OAV > 1. The 

concentration of I-hexanol in the experimental wines ranged from 700 to 1700 J..Lg/L, well 

below the published sensory threshold. Since the concentration of I-hexanol was not 

found to differ between table wines and icewines it was not a compound that could be 

used to characterize either wine style. 

Escudero et al. (2004) aimed to characterize the aroma of Maccabeo wine and 

found, similar to this study, that not all compounds with high flavour dilution (FD) were 

found to have OA V > 1. In fact, they found that having a high OA V is not necessary and 

does not mean that a compound will affect the aroma of a wine. The results of this study 

found the most potent odorants by GC-O AEDA and OA V were not able to elicit the 

same sensory perception in reconstitution studies nor were they found to be impact 

odorants by omission and addition studies. Two compounds with low FD and OA V 

values, 4-mercapto-4-methylpen-2-one and 2-methyl-3-furanthiol, contributed most to the 

aroma of the wine. They proposed the concept of an aroma buffer in wine comprised of 
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the mix of ethanol, esters, acids, volatile phenols, ~-damascenone and fusel alcohols 

which can only be broken by a compound with very different aroma properties adding a 

new aroma perception to the wine. The same could be true for Vidal and Riesling wines 

but since reconstitution, omission and additional studies were not conducted on these 

wines, we cannot know for sure, but this could be an area of future research. 

Decanal results from fatty acid degradation during fermentation and has not 

previously been identified as a potent odorant in either Vidal or Riesling wines. Decanal 

could have a low OA V due to bad extraction or quantification since it elutes very close to 

ethyl octanoate and therefore it odour potency is underestimated. Another explanation 

for the low OAV of decanal, even though it was found to be highly odor potent in 

experimental wine, may be due to its interaction with ethanol. Ethanol has the power to 

enhance the odour of some volatiles such as decanal (Ferreira et al. 2008). The aroma 

buffer previously mentioned could also account for these discrepancies. 

Odour-potent compounds. The Charm values and OA V s of the icewines and 

table wines differed for many attributes. In general the icewines were found to have 

higher ratings than table wines for most compounds; this is not surprising considering 

icewines are characterized by their intense aroma profiles. In addition, pressing icewine 

grapes frozen would concentrate the volatile fraction of the must and wine leaving most 

of the water behind as ice. Genovese et a1. (2007) found that sweet Fiano wines, made 

from later harvested (26 °Brix), semi-dried to 32 °Brix, 20 % Botrytis-infected grapes, 

had higher concentrations of terpenes, ~-damascenone, lactones, aldehydes and ketones 

than wine made from base Fiano wine (22°B). They attributed the higher concentrations 

in the sweet, passito-style, wines to the overripeness and drying process of the grapes 
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resulting in the concentration of the aromatic compounds in the skins and facilitated an 

easier transfer to the must during winemaking. These conditions would be analogous to 

icewine grapes hanging throughout the fall before freeze events occur. 

p-damascenone was a highly potent odorant in Vidal and Riesling icewine and 

table wine as determined by both Charm and OA V in this study. This is consistent with 

previous GC-O analysis of Vidal and Riesling table wines (Chisholm et al. 1994, 

Chisholm et al. 1995, Komes et al. 2006) however, p-damascenone was not previously 

identified in icewine (Cliff et al. 2002). The result of carotenoid breakdown, the Cl3 

norisoprenoid, p-damascenone, is released through enzymatic or acid hydrolysis during 

fermentation and wine ageing from its grape glycoconjugate precursors. It has an 

extremely low sensory threshold (0.05 J..lglL) and has been widely reported in natural 

products. Generally p-damascenone is not an impact odorant, it is found to have a high 

OA V but does not contribute a distinct character to the wine in sensory studies (Guth 

1997b, Ong and Acree 1999, Escudero et al. 2004). While p-damascenone does possess 

a distinct aroma, it requires a large change in concentration in order to perceive a 

significant change in its intensity (Escudero et al. 2004). In red wine, p-damascenone has 

been shown to enhance the fruity character while suppressing the green, vegetal notes of 

methoxypyrazines (Pineau et al. 2007). The concentration of p-damascenone in Vidal 

icewine was 300% higher than in table wine, perhaps this concentration is great enough 

to break the aroma buffer proposed by Ferreira's research group. Only future research 

will be able to answer these questions. 

Terpenes, like norisoprenoids, contribute to wine aroma as free odour-active 

compounds present in the grapes and as glycosidically-bound non-volatiles released 
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during processing and storage. Terpenes found to be odour-potent in this study are 

linalool and cis-rose oxide with high Charm values and OAV > 1. Nerol oxide was found 

in the top 15 compounds for Vidal and Riesling wines but had OA V < 0.01 due to its 

high sensory threshold reported in the literature. All three terpenes were found to have 

higher concentrations in icewine than table wines. Cis-rose oxide and linalool are both 

impact odorants in white wine cultivars Gewurztraminer (Guth 1997b, Ong and Acree 

1999) and Muscat (Bayonove and Cordonnier 1970), respectively. The terpene 

composition of grape cultivars provides them with a 'fingerprint' by which they can be 

identified regardless of grape maturity, vintage or origin (Rapp 1998a). Although 

linalool has been previously reported as odour-potent through GC-O analysis (Chisholm 

et al. 1994, Komes et al. 2006) no specific impact compound has been related to either 

Vidal or Riesling wines. 

Esters and alcohols are the main aroma compounds originating from yeast 

metabolism during fermentation. Esters, generally provide fruity and citrus aromas to the 

wine and are found to contribute to the base aroma of the wine and not as an impact 

odorant with the exception of isoamyl acetate and ethyl phenyl acetate (Ferreira and 

Cacho 2009). Ethyl octanoate and ethyl hexanoate were the two most odour-potent esters 

in the experimental wines, with higher OA V and concentrations in table wines than 

icewines for Vidal and Riesling. 

Ethyl hexanoate and 2-phenethyl alcohol were found in high levels in 

Gewurztraminer wines, likely a result of fermentation, and were found to vary among 

wine samples suggesting the differences in winemaking can affect their concentration 

(Ong and Acree 1999). These compounds were previously found to contribute to the 
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wine bouquet resulting from fermentation and therefore not suitable for the identification 

of wine origin or grape cultivar - not impact odorants (Rapp 1998b). Ethyl hexanoate, 

ethyl butyrate, ethyl octanoate, ethyl decanoate form a family of compounds produced 

from the same metabolic pathway and demonstrate similar aromas, together in a group 

our noses cannot differentiate one from another (Ferreira and Cacho 2009). As a result, it 

is not possible to determine their individual sensory impact, odour potency, in a wine 

matrix. Therefore even though ethyl octanoate was found to have the highest OA V in 

table wine by GC-O does not mean that removing it will alter the sensory perception of 

the wine since the other esters are still present in the aroma matrix of the product. 

1-0cten-3-o1 has a mushroom aroma and was found to have much higher 

concentrations and odour activity in icewine than table wine for Vidal and Riesling. 1-

Octen-3-o1 has been associated with Botrytis affected wines as an impact odorant (Rapp 

and Mandery 1986), with wines made from grapes infected with powdery mildew 

(Uncinula necator) (Darriet et al. 2002) and with fungal infections in grapes and musts 

(Pallotta et al. 1998). The concentration of 1-octen-3-o1 is unaffected by fermentation 

unlike 1-octen-3-one, therefore if present in the must it will be present in the finished 

wine (Darriet et al. 2002). Its concentrations were 27 and 4 times greater in Vidal and 

Riesling icewines, respectively, with the second highest OA V in Vidal icewine and the 

fourth highest in Riesling icewine. The higher concentration and odour potency of this 

compound in icewines is best explained by the presence of Botrytis. A similar result was 

found comparing the concentration of sweet Fiano wine to base Fiano wines in the 

Campania region of Southern Italy, were the concentration of 1-octen-3-o1 was over 5500 

% higher in the sweet, passito-style wine (Genovese et al. 2007). 
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4-Vinylguaiacol is a volatile phenol with an influence on wine flavour formed 

from thermal or enzymatic decarboxylation of cinnamic acid, p-coumaric acid, ferulic 

acid. This volatile phenol has previously been shown to be odour-potent in Croatian 

Riesling table wines, contributing a smoky/spicy note (Komes et al. 2006). 

In general, the most odour-potent compounds found through GC-O in this study, 

p-damascenone, ethyl octanoate, ethyl hexanoate, ethyl butyrate, ethyI2-methylbutyrate, 

ethyI3-methylbutyrate, phenylethyl alcohol, 4-vinylguaiacol and linalool, have been 

previously identified in Vidal and Riesling table wines (Chisholm et al. 1994, Chisholm 

et al. 1995, Komes et al. 2006). To date only one study has performed GC-O on 

icewines, which identified 34 volatiles as odor active in Vidal and Riesling icewine, they 

concluded that no single impact compound was found and that icewine aroma was a 

complex interaction of the many volatiles present in the wine (Cliff et al. 2002). While 

our findings would support that research, the list of volatiles identified in this study as 

odour-active are quite different, in fact with the exception of several esters, no 

compounds are shared. This is most likely due to different extraction methods and GC-O 

methodologies. By using dilution analysis compared to frequency detection, only the 

most odour-potent compounds were identified in this study. Many of these compounds 

had low concentrations, for example p-damascenone, linalool, cis-rose oxide, and 1-

octen-3-01 and eluted close to large acid and ester peaks which at the undiluted 

concentrations the aroma perceptions could have been combined with the larger peak on 

the mass spectra and misinterpreted during identification. 
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Conclusions 

Through ChannAnalysis TM the top 15 odour events for Vidal and Riesling 

icewine and table wines were determined. The most odour-potent compounds in both 

wine styles were B-damascenone, decanal, I-hexanol, l-octen-3-01, cis-rose oxide. Three 

compounds were odour-potent in table wine but not icewine: 4-vinylguaiacol, nerol oxide 

and geranyl acetone. 

Vidal icewine was characterized by 15 odour-active compounds with DAVs > 1, 

the most odour-active were ~-damascenone, l-octen-3-01, ethyl hexanoate, cis-rose and 

ethyl hexanoate. Vidal table wine was characterized by 14 odour-active compounds with 

OAVs> 1, the most odour-active were ethyl octanoate, B-damascenone, ethyl hexanoate, 

cis-rose oxide and 4-vinylguaiacol. 

Riesling icewine was characterized by 12 odour-active compounds with OA V > 

1; B-damascenone, ethyl octanoate, ethyl hexanoate, l-octen-3-01, and ethyl isobutyrate 

were the most odour-active. Riesling table wine was characterized by the same 12 

compounds as Riesling icewines, however, the highest odour activity values were mostly 

associated with esters; ethyl octanoate, B-damascenone, ethyl hexanoate,ethyl 

isobutyrate, ethyl-3-methylbutyrate. 

The role of decanal, I-hexanol and l-octanol should be further investigated to 

understand their contribution to the aroma of Vidal and Riesling table wines. All three 

were found to be very odour-potent through CharmAnalysis ™ but not based on the 

calculation of OA V s, where they were all determined to be below their sensory 
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thresholds. Explanations could be linked to discrepancies between GC-O and OA V, 

inaccurate sensory threshold concentrations and matrix effects. 

This study provides information regarding the volatile composition of Vidal and 

Riesling table wine and icewine, however we cannot conclude anything about impact 

odorants or odour importance only their relative potencies. Table wines had lower 

concentrations and OA V for most aroma compounds with the exception of 4-

vinylguaiacol, decanal, ethyl octanoate and ethyl hexanoate. These results can be used as 

a foundation to determine any impact odorants in icewines through reconstitution and 

omission studies and could be used as markers to identify changes in the odour-active 

composition of wines related to viticultural and oenological practices. 
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Table 2.1 Chemical standards, guantitative and gualitative ions, and calibrated intervals for Vidal and Riesling icewines and table wines. 
Quantitative Qualitative Calibrated interval ([llglL]) 

Anal~te Supplier CAS no. ion (m/z) ions (m/z) Vidal r2 value Riesling r2 value 

ethyl isobutyrate Aldrich 97-62-1 43 71,88, 116 50-150 0.977 150-600 0.923 

ethyl butyrate Aldrich 105-54-4 71 43,88,116 20-180 0.962 125-500 0.915 
ethyl 2-methylbutyrate Aldrich 7452-79-1 57 102,74,130 5-125 0.997 
ethyl 3-methylbutyrate Aldrich 108-64-5 88 41,70,130 15-135 0.993 15-135 0.973 

1-hexanol Sigma-Aldrich 111-27-3 56 43,69,84 1000-6250 0.964 300-4800 0.979 
isoamyl acetate Aldrich 123-92-2 43 70,55,87 150-600 0.935 

ethyl valerate Sigma-Aldrich 539-82-2 88 57,101,130 1.0-36 0.995 
1-heptanol Acros Organics 111-70-6 70 56,83,98 2-200 0.996 
1-octen-3-o1 Aldrich 3391-86-4 57 72,85,99 1-400 0.999 1.0-400 0.904 
ethyl hexanoate Aldrich 123-66-0 88 99,60,144 300-1200 0.999 300-1200 0.993 
acetophenone Aldrich 98-86-2 105 77,120,51 1.0-25 0.985 1.0-25 0.979 
l-octanol Sigma-Aldrich 111-87-5 56 41,69,84 10.0-20 0.918 2.0-32 0.979 
linalool Sigma-Aldrich 78-70-6 71 93, 121, 154 5-125 0.972 20-500 0.989 

cis rose oxide Fluka 16409-43-1 139 69,83,154 3-108 0.998 0.5-24.5 0.998 
phenethyl alcohol Acros Organic 60-12-8 91 122,65,51 15000-135000 0.977 15000-60000 0.942 
neroloxide Bedoukian 1786-08-9 68 83,41,152 5.0-80 0.997 20-80 0.993 
ethyl benzoate Aldrich 93-89-0 105 122, 77, 150 1.0-9 0.993 1.0-9 0.995 

ethyloctanoate Aldrich 106-32-1 88 101,127,172 400-1600 0.992 300-12000 0.975 
decanal Sigma-Aldrich 112-31-2 57 70,82,112 0.25-16 1.000 0.5-4.5 0.984 

ethyl phenylacetate Aldrich 101-97-3 91 164,65,136 2.0-50 0.984 2.0-50 0.987 

2-phenethyl acetate Aldrich 103-45-7 104 43,91,78 3.0-75 0.991 

4-vinylguaiacol Alfa Aesar 7786-61-0 150 135,107,77 20-320 0.944 25-1225 0.987 

"{ nonalactone Aldrich 104-61-0 85 41,114,156 0.5-200 0.981 10-160 0.976 

~-damascenone Gift 23726-93-4 69 105, 121, 190 2.0-8 0.994 2.0-32 0.996 

geranyl acetone Alfa Aesar 3796-70-1 43 69, 151, 194 0.15-0.60 0.991 0.15-0.60 0.990 

ethyt cinnamate Aldrich 103-36-6 131 103, 176,77 3.0-27 0.975 

~-ionone Aldrich 79-77-6 177 43,135,192 0.01-0.25 0.992 
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Table 2.2 Lexicon of terms used for GC-O to describe perception of odour events, 
developed by consensus of both 'sniff' judges. 

Terms 

banana 
black pepper 
bread/yeast 
caramel/butterscotch/ burnt sugar 
citrus (grapefruit, lime, orange) 
clove 
coconut 
coffee 
cotton candy 
dried fruit/raisin 
earthy/green 
floral 
fruity 

honey 
mushroom 
musty 
peach 
pear 
petrol 
tropical fruit 
vinegar 
vinyl/plastic 
walnut 
wood 
other 
oops 
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Table 2.3 Combined list of the top 15 aroma compounds determined through CharmAnalysis for Vidal and Riesling 
icewine (IW) and table wines (TW) sorted by linear retention index (LRl) converted to odour spectrum values (OSV) 
for comparison indicating odour perception and identification. No value indicates compound was not detected in the 
top 15 by that judge for that wine. 

VIDAL Riesling Odour 
IW IW TW TW IW IW TW TW 

NO LRI . 1 2 1 2 1 2 1 2 Perce~tion Compound 

1 745 7 3 22 fruity Ethyl isobutyrate 
2 782 9 3 6 15 fruity Ethyl butyrate 

Ethyl 2-
3 832 100 8 fruity methylbutryrate 

Ethyl 3-
4 843 21 8 2 15 7 52 22 fruity, tropical methylbutyrate 
5 852 99 39 6 71 15 68 32 bread/yeast 1-hexanol 
6 859 5 banana Isoamyl acetate 
7 905 3 coffee Ethyl valerate 
8 957 78 vinyl/plastic 1-heptanol 
9 963 67 30 11 5 4 6 35 mushroom 1-octen-3-ol 
10 981 44 29 6 1 6 49 16 tropical fruity Ethyl hexanoate 
11 1018 12 plastic, musty Unknown 1018 
12 1027 22 wood Unknown 1027 
13 1050 9 11 10 caramel Acetophenone 

mushroom, 
14 1063 2 .100 23 31 1 21 89 musty 1-octanol 
15 1090 39 6 5 fruity, floral Linalool 
16 1096 24 9 10 18 9 17 citrus, floral Cis-rose oxide 
17 1104 6 3 2 6 4 floral Phenethyl alcohol 
18 1127 43 13 2 47 12 wood Neroloxide 

I 
I 

19 1165 60 5 6 floral, yeast Ethyl benzoate i 

1 
20 1176 22 16 green, citrus Ethyl octanoate 
21 1184 100 87 78 100 100 51 98 100 petrol Decanal 
22 1228 3 15 7 4 18 caramel Ethyl phenyl acetate 

f 23 1240 2 floral 2-phenethyl acetate 

I 24 1300 21 14 33 7 37 6 clove 4-vinylguaiacol 
25 1350 8 4 7 coconut "{- nonalactone 
26 1372 85 84 58 63 59 100 100 59 pear ~-damascenone ;j 
27 1444 37 57 29 9 floral Geranyl acetone I 28 1455 5 fruity Ethyl cinnamate 

.1 29 1481 1 floral ~-ionone 

30 1658 2 floral Unknown 1658 

II 31 1722 44 1 6 black pepper Unknown 1722 
32 1761 4 floral Unknown 1761 j 

1 
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Table 2.4 Concentration and odour activity values of Vidal blanc (A) and Riesling (B) table wines and icewines, compounds in bold 
indicate found above its sensory threshold (OAV>1). 

VIDAL RIESLING 
Compound conc. (llglL) OAV conc. (llgIL) OAV 

TW IW TW IW Significance TW IW TW IW Significance 

ethyl isobutyrate 72.3 71.3 4.82 4.75 os 189 189 12.6 12.6 os 
ethyl butyrate 162 78.6 8.09 3.93 *** 137 137 6.87 6.86 os 
ethyl 2-methylbutyrate 14.2 27.4 0.79 1.52 ** 
ethyl 3-methylbutyrate 25.3 29.9 8.43 9.97 ** 24.1 23.8 8.03 7.92 os 
I-hexanol 1707 1513 0.21 0.19 os 727 773 0.09 0.10 os 
isoamyl acetate 205 173 6.83 5.77 * 
ethyl valerate 2.06 9.70 1.38 6.47 ** 
I-heptanol 7.94 28.6 2.65 9.55 ** 
l-octen-3-o1 6.97 188 6.97 188 *** 4.58 18.5 4.59 18.5 * 
ethyl hexanoate 878 480 62.7 34.3 ** 461 381 32.9 27.2 * 
acetophenone 1.84 1.50 0.03 0.02 ** 1.94 1.93 0.03 0.03 os 
l-octanol 9.34 10.6 0.09 0.10 ** Nd 4.78 0.04 *** 
linalool 12.8 46.9 0.51 1.88 ** 34.3 50.3 1.37 2.01 *** 
cis rose oxide 5.03 22.2 25.2 111 ** 0.63 2.24 3.16 11.2 ** 
phenethyl alcohol 15274 20140 1.09 1.44 ** 16102 16853 1.15 1.20 * 
nero I oxide 6.98 25.8 0.002 O.ot ** 18.3 30.9 0.01 0.01 ** 
ethyl benzoate 0.65 3.36 0.001 O.ot ** 0.95 1.19 0.002 0.002 * 
ethyl octanoate 2665 739 533 148 *** 1025 441 205 88.3 ** 
decanal 13.7 0.95 6.84 0.48 *** 1.59 0.34 0.80 0.17 ** 
ethyl phenylacetate 4.29 10.0 0.06 0.14 ** 7.14 8.69 0.10 0.12 ** 
2-phenethyl acetate 4.79 9.21 0.02 0.04 *** 
p-vinylguaicol 111 81.2 11.1 8.12 ** 79.1 82.4 7.91 8.24 ** 
y- nonalactone 2.78 8.02 0.09 0.27 *** 15.4 17.9 0.51 0.60 *** 
p-damascenone 11.3 45.1 225 902 *** 3.89 9.30 77.8 186 ** 
geranyl acetone 0.26 0.30 0.004 0.01 ** 0.33 0.23 0.01 0.004 * 
ethyl cinnamate 4.71 5.99 4.28 5.45 * 
@-ionone 0.03 0.06 0.33 0.71 * 

Significance was determined by t-test between wine styles with ns, *, **, *** indicating not significant, significance at p<0.05, 0.01, 0.001 respectively. 
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Table 2.5 Odour perception and sensory threshold (~glL) of aroma compounds used for compound 
identification and calculation of odour activity values (OA V). 

Odour Odour threshold 
Compound Perceetion !!9/L Reference 
Ethyl isobutyrate sweet 15 3 
Ethyl butyrate apple 20 4 
Ethyl 2-methylbutryrate apple 18 3 
Ethyl 3-methylbutyrate fruit 3 3 
1-hexanol green, resin 8000 4 
Isoamyl acetate banana 30 4 
Ethyl valerate fruity 1.5 7 
1-heptanol nutty, green 3 2 
1-octen-3-ol mushroom 1 1 
Ethyl hexanoate apple, fruit 14 3 
Acetophenone flower, almond 65 1 
1-octanol chemical, burnt 110 1 
Linalool floral 25 3 
Cis-rose oxide Iychee, rose 0.2 4 
Phenethyl alcohol honey, spice 14000 3 
Neroloxide oil, flower 3000 6 
Ethyl benzoate floral, fruit 575 3 
Ethyl octanoate fruity 5 3 
Decanal soap, tallow 2 2 
Ethyl phenylacetate fruit, sweet 73 8 
2-phenethyl acetate rose, honey 250 4 
4-vinylguaiacol clove, curry 10 3 
y-- nonalactone coconut,peach 30 5 
p- damascenone apple, rose 0.05 4 
Geranyl acetone magnolia, green 60 1 
Ethyl cinnamate honey, spice 1.1 3 
p-ionone floral (violet) 0.09 3 

1. Buttery et al. (1988) 
2. Fazzalari et al. (1978) 
3. Ferreira et al. (2000) 
4. Guth (1997) 
5. Nakamura et al. (1988) 
6. Rapp (1990) 
7. Takeoka et al. (1995) 
8. Tat et al. (2007) 
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Chapter 3 
The Effect of Harvest Date on Vidal blanc and Riesling Icewine from 

the Niagara Peninsula: I. Chemical Variables and Aroma Compounds 

Amy J. Bowen and Andrew G. Reynolds 

Abstract 

Icewine is a sweet dessert wine made from pressing grapes naturally frozen on the vines. 
In Ontario, the Vintners' Quality Alliance regulates icewine production and specifies that 
harvest must be after 15 November. We hypothesized that the freeze and thaw cycles 
endured by icewine grapes would change their chemical and sensory profiles due to 
climatic events. The objective of this study was to determine the influence of harvest 
date on icewine must and wine chemical variables and aroma compound profiles. 
Riesling and Vidal icewines were made from grapes picked between December 2004 and 
February 2005; Harvest 1 (HI): 19 December; Harvest 2 (H2): 29 December; Harvest 3 
(H3): 18 January; Harvest 4 (H4): 11 February (Vidal only). Must analysis found 
icewines to differ for titratable acidity in both cultivars and for pH in Vidal icewines. 
Wine analysis found all attributes to differ. All aroma compounds differed (p<0.05) in 
Vidal and Riesling wines. The highest concentrations for most aroma compounds were 
found in the latest harvest date, 16 of 24 for Vidal (H4) and 17 of 23 for Riesling (H3). 
The latest harvest date had the highest concentrations of ethyl isobutyrate, ethyl 3-
methylbutyrate, I-hexanol, l-octen-3-ol, l-octanol, cis-rose oxide, nerol oxide, ethyl 
benzoate, ethyl phenyl acetate, ,),-nonalactone and p-damascenone in both Vidal and 
Riesling. HI for both cultivars had the highest concentration for ethyl butyrate, ethyl 
hexanoate, linalool, 4-vinylguaiacol and ethyl octanoate. Odour activity values were 
calculated; the most odour-potent compounds were p-damascenone, cis-rose oxide, 1-
octen-3-ol, ethyl octanoate, ethyl hexanoate, and 4-vinylguaiacol in both cultivars across 
harvest dates. Principal component analysis found most attributes with the last harvest 
date, with the exception of 4-vinylguaicol which was associated with HI. Harvest date 
was identified as a discriminating dimension using canonical variant analysis in Vidal 
and Riesling for volatile compourids. 

Key words: gas chromatography-mass spectrometry, wine aroma, odour activity values 

Introduction 

Icewine is a sweet late harvest dessert wine produced from pressing grapes that 

have naturally frozen on the vine, leaving water behind as ice crystals. Frozen grapes are 

harvested and pressed at -8 DC or colder typically between December and January. The 

resultant must is concentrated in sugar, acids, and aroma and flavour compounds, giving 
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the wine its rich, balanced and intense flavour profile. Icewine is produced in many 

countries around the world at the northern limits of grape growing where winter 

conditions are cold enough to allow the grapes to freeze on the vine before harvest. 

Canada and Germany are the world's largest producer of icewine with other countries 

including Austria, United States, Slovenia, Luxembourg, Croatia, the Czech Republic and 

Hungary also producing icewines (Schreiner 2001). 

Icewine is made in all wine production regions of Canada from Nova Scotia on 

the east coast to British Columbia on the west coast. However, the brilk of icewine 

production is in Ontario, principally the Niagara Peninsula, where warm summers and 

cold winters allow for optimal conditions to grow and harvest grapes for icewine. In 

Ontario, Canada icewine production is strictly regulated by the Vintners' Quality 

Alliance (VQA) (Government of Ontario 1999). In the VQA Act, the term Icewine is 

trademark protected and can only be used for wines made from grapes naturally frozen in 

the vineyard in specified viticultural areas, at temperatures ~ -8°C after the 15 November 

of the vintage year. The grapes must be harvested and pressed at these same 

temperatures. The minimum allowed soluble solids concentration of the must is 35 °Brix 

with no single pressing being less than 32 °Brix. The finished wine is required to have a 

residual sugar concentration of not less than 125 gIL and a titratable acidity of not less 

than 6.5glL (expressed as tartaric acid). Other styles of dessert wines can be made from 

late harvest grapes with must concentrations less than 35 °Brix and would be labelled; 

late harvest, select late harvest, and special select late harvest wines with a minimum 

soluble solids concentrations of 22, 26, 30 °Brix respectively. 
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The main cultivars for icewine production in Ontario are Vidal blanc (syn. Vidal) 

and Riesling. Vidal is a white French-American hybrid consisting of 75% V. vinifera 

genetic background, from a cross between Ugni blanc and Rayon d'Or (Seibe14986) 

(Galet 1998). A key viticultural feature is its winter hardiness. The cultivar has large 

cylindrical clusters, with medium-sized, thick-skinned berries that are disease resistant 

(Galet 1998). It is a high acid cultivar prone to overcropping, which enables it to produce 

large yields for icewine production. However, it is Riesling that is considered by many 

to be the best choice of cultivar for producing icewines of the highest quality and 

ageability due to its high natural acidity. It is the noble grape of Germany, known for 

producing a wide range of wine styles from bone dry to ultra sweet, both clean and 

Botrytis-affected. Riesling has all the characteristics of the ideal icewine grape; it is late 

maturing, high acid, thick skinned providing some disease resistance and winter hardiness 

(for V. vinifera). 

The production of icewine is a very expensive, labor intensive and risky 

undertaking. Grapes are left hanging on the vine long past commercial harvest, which, 

results in the loss of yield from dehydration, rot, wind, as well as animal predation. The 

grapes destined for icewine must be netted to protect them from predators and to prevent 

loss from clusters falling on the ground. Since the water is left behind as ice crystals, 

icewine grapes yield only 15 to 20% that of table wine requiring substantially more 

acreage for the same yield (Pickering 2006). There is also always the risk that the grapes 

will rot before the temperatures are cold enough for an icewine harvest or that a mild 

winter will prevent icewine production all together. 
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All of the above conditions combined make the choice of when to harvest the 

grapes perhaps the most important harvest decision. The single most important variable 

that determines the ~rix value of the resultant icewine juice is harvest temperature. 

Icewine is one of the only wine styles for which the soluble solids concentration at 

maturity is irrelevant, because it is the temperature that is critical to freezing the water 

inside the berry and concentrating all its components. As "hang time" increases for late 

harvest wines, desiccation of the fruit causes the berry to shrivel concentrating the acid 

and sugars in the berry. As a result, colder temperatures are required to freeze the berry 

and achieve the desired soluble solids concentration in the must later in the season and 

thus reducing yields. 

Higher yields of icewine juice are usually obtained in December since there is less 

desiccation of the fruit, and the air temperature does not have to be as cold to achieve the 

required 35 °Brix value. It is believed anecdotally that the freeze and thaw cycles are 

critical to developing the sensory profile for which icewines are known. As a result, some 

producers in Ontario will have several icewine harvests from mid- December to late 

January in order to achieve a balance between flavour profile and yield. Currently, very 

little is known regarding what effects the sensory properties of icewines and none 

regarding the effect of harvest date on icewine chemical and sensory properties. 

The oxidation of berries from freeze and thaw cycles is analogous to wine aging, 

which is an oxidative process (Boulton et al. 1995). Therefore it is plausible to consider 

chemicals and their reactions associated with white wine aging to be present in grapes 

used for icewine. Riesling wines have been shown to develop from a light straw colour 

to a deep yellow with age along with changes to its sensory profile (Simpson and Miller 
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1983). Studies into white wine aging have shown that over time there is a decrease 

aroma compounds such as linalool and geraniol but an increase in linalool oxides, nerol 

oxides and hotrienol in Riesling and Vidal wines (Chisholm et ai. 1994, Reynolds et ai. 

1994a). ~-damascenone also decreases with bottle age, whereas, other compounds, such 

as furfural and TDN, increase with age. 

A study looking at the aging effects on Vidal table wine found that in young 

wines aromas of apple, citrus, fruity and floral were the predominant descriptors and aged 

wines were described by a loss of fruity character, and an increase in pungent, oxidized 

and vegetal aromas by a sensory panel (Chisholm et ai. 1994). In contrast GC-O on the 

same wines identified the dominant aromas in both young and aged wines to be fruity and 

floral however found a marked decrease in the concentration of these aromas in the aged 

wines. The terpene alcohols are oxidized during storage to terpenes oxides which have 

higher sensory threshold and therefore are not perceived in the older wines (Rapp et ai. 

1985). 

In other wine styles the effects of varying harvest date have been studied and have 

shown differences in aroma compound and sensory profiles. Fenoll et aI., (2009) used 

GC-MS to monitor changes in free and bound volatile compound concentration in Muscat 

Hamburg grapes during maturation over two vintages. In both years, geraniol was the 

most abundant free volatile compound at the initial stage of maturations, with its 

concentration decreasing throughout ripening. Whereas, the concentrations of linalool of 

other free form volatiles increased during ripening. At grape maturity, most volatile 

compounds showed higher concentration in the bound form compared to the free form, 

except for linalool and linalool oxides where the reverse was true. The OA V s for each 
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free form volatile were calculated but only linalool, cis-rose oxide, citral and geraniol 

were found to contribute the aroma of Muscat Hamburg grapes. 

The effect of hang time on odour-active volatile compounds in Fernao-Pires 

grapes from northern Portugal were followed from veraison (onset of ripening) for five 

weeks and several variety- and pre-fermentation-related volatile compounds were 

screened to determine optimal harvest parameters (Coelho et al. 2007). All screened 

volatile compounds--16 terpenes, two C13 norisoprenoids, five C6 compounds and two 

aromatic alcohols, increased in concentration to a maximum at day 20 after veraison. 

After day 20, the concentration of all volatiles decreased. They concluded that while 

peak volatile composition occurred with the white grapes maturity (ratio of 

sugar/acidity), it was a short window before concentration began to decrease for varietal 

and pre-fermentation volatiles. 

These studies highlight some of the potential changes icewine grapes could be 

experiencing while "hanging" on the vine until cold enough temperatures to harvest. 

This study was designed to elucidate changes in odour-active volatile compounds based 

on four distinct harvest dates throughout the commercial icewine harvest period of 

December to February. The objectives of this study were to determine how Vidal and 

Riesling icewines made from four distinct harvest dates would affect the: 1) Standard 

chemical variables and; 2) aroma compound concentrations. 

Materials and Methods 

Chemicals. Analytical standards (Table 3.1) were purchased from Aldrich 

(Oakville, ON, Canada), Sigma-Aldrich (Oakville, ON), Fluka (Oakville, ON), 
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Bedoukian (Danbury, CT, USA), Acros organic (Geel, Belgium). ~-Damascenone was a 

gift from Dr. T. Acree, Cornell University. Chemical standards were diluted in 

dichloromethane (Caledon; Georgetown, ON) and stored at -25°C. 

Wines. Riesling and Vidal icewines were made from grapes harvested from 

Garphil Farms in west St. Catharines, enough to fill 100 bins (~15 kg capacity) each over 

the four harvest dates (25 bins per harvest date). Grapes were harvested over the course 

of the icewine season. The harvests were picked as follows: Harvest 1 (HI) on 19 

December 2004 at _10°C; harvest 2 (H2) 29 December 2004 at -1°C; harvest 3 (H3) on 18 

January 2005 at -16°C; harvest 4 (H4) on 11 February 2005 at _4°C. There were only 

three harvest dates for Riesling due to bird predation following H3. 

Grapes were pressed by variety and harvest date in the large membrane press 

(660kg capactity; Enoveneta PP12, Padova, Italy) at two bars until the must measured 

approximately 37 °Brix. The exact starting °Brix was measured on each pressing (harvest 

date), the must was then divided into three 20-L carboys for triplicate fermentations. 

Fermentation. The must was inoculated with Lalvin® K1-Vll16 Saccharomyces 

cerevisiae (Lallemand) as per the yeast rehydration procedure of Kontkanen et al. (2004) 

into 20-L carboys. The fermenting must was left at room temperature overnight and was 

then placed in an 18°C fermentation chamber. Fermentation was stopped by addition of 

75 mgIL potassium metabisulphite (Sigma, Oakville, ON) when the ethanol, determined 

by GC-FID (Agilent Technologies, Mississauga, ON), was 10 % v/v, after which the 

carboys were moved to the -2°C chamber for cold stabilization. The icewines were left 

to settle for up to 2 weeks then racked into clean carboys to remove the lees. 
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Bottling. At bottling, icewines were brought to room temperature, 100 mgIL of 

potassium metabisulphite (Sigma, Oakville, ON) and 100 mgIL potassium sorbate 

(Sigma, Oakville, ON) were added to the wines. A 250-mL wine sample was taken and 

frozen at -25°C for future wine analysis. The icewine was filtered through a 1 Jl pad filter 

(Scott Laboratories, Pickering, ON) and 0.45 Jl membrane filter (Millipore, Bedford, 

MA). It was then bottled in 375-mL bottles, corked (Scott Laboratories, Pickering, ON) 

and put in the wine cellar for storage at 12°C until analysis. 

Must and wine analysis. Must samples were removed from a -25°C freezer and 

thawed overnight at 4°C, samples were then placed in an 80°C Isotemp 228 water bath 

(Fisher Scientific, Toronto, ON) for 1 hr to dissolve precipitated solids and allowed to 

cool to room temperature. A 25-mL sample was measured for titratable acidity (TA) to a 

pH endpoint with 0.1 % NaOH using the PC titrate autotitrator (Man-Tech Associates 

Ltd., Guelph, ON). A Fisher 825 MP pH meter was used to measure must pH (Fisher 

Scientific, Ottawa, ON). °Brix was measured using a temperature-corrected Abbe 

benchtop refractometer (model 10450; American Optical Corp., Buffalo, NY). 

Finished wines were measured for T A and pH using the same method described 

above for must analysis. Absorbance at 420nm was measured to determine degree of 

browning of the wines on an Ultrospec 2100 Pro UV Nisible spectrophotometer 

(Biochrom Ltd., Cambridge, England). Acetic acid (K-ACET, Megazyme, Bray, 

Ireland), glycerol (K-GCROL, Megazyme, Bray, Ireland) and glucose-fructose (K­

FRUGL, Megazyme, Bray, Ireland) concentrations were determined based on the 

manufacture directions of the Megazyme enzyme kits. Ethanol (% v/v) was determined 
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with an Agilent 6890 GC-FID according the method of Nurgel et al. (2004). All analyses 

were conducted in duplicate for each fermentation replicate. 

Volatile extraction. Wine volatiles were extracted by stir bar sorptive extraction 

(SBSE), commercially known as Twister, using lO-mm stir bar (Gerstel, Baltimore, MD) 

coated with polydimethylsiloxane (PDMS, 0.5 mm film thickness). A lO-rnL sample of 

icewine was poured into a 10 rnL extraction vial and spiked with an internal standard, 

100 JlglL n-dodecanol (Sigma; Oakville, ON) in GC-grade dichloromethane. The stir bar 

was added to the wine and extracted for 60 minutes at 1000 rpm. The stir bar was 

removed from the extraction vial, dried with a lint free tissue, rinsed with Milli-Q water 

(Millipore, Bedford, MA) and stored in a 4-rnL amber vial at 4°C until analysis later the 

same day. 

Gas chromatography-mass spectrometry (GC-MS). Instrument: Agilent 

6890N/5975B gas chromatograph mass spectrometer equipped with a Gerstel thermal 

desorption unit (TDS2), cooled injection system (CIS4) and programmable temperature 

vaporization (PTV) inlet (Gerstel, Baltimore, MD). Analytical column: Agilent HP-5MS, 

5% phenyl methyl siloxane, 30m length, 0.25 mm internal diameter and 0.25 Jlm film 

thickness. Carrier gas: 1.4 mLimin 5.0 purity helium (Praxair, Mississauga, ON). Oven 

program: initial temperature 35°C held for 3 min, increased by 4°C/min to 155°C, 

increased by 30°C/min to a final temperature 240°C. Thermal desorption: initial 

temperature 30°C, increased by 60°C/sec to 250°C and held for 3min. TDS transfer line 

temperature 275°C connected to CIS4 inlet cryo-cooled to -70°C with liquid nitrogen in 

solvent vent mode. After desorption, CIS4 inlet temperature was increased at 12°C/sec to 

280°C and held for 5 min while analytes are released on the column. The MS was run in 
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scan mode, 30 to 400 Da for compound identification and in select ion monitoring (SIM) 

mode selecting for one quantitative ion and three qualitative ions for each compounds for 

quantification (Table 2.1). 

Identification and quantification. The compounds were identified as the 'top 

15' odour-potent volatiles by GC-O CharmAnalysis TM (Bowen and Reynolds 2010c) and 

are listed in Table 3.1. The compounds were identified by comparison of retention time, 

odour perception and mass spectra (Wiley library) to pure standards. Three-point 

calibration curves were run for each analyte in model icewine solution to ensure linearity 

(r2 > 0.9) (Table 2.1). The icewine model wine solution contained 11.57 gIL tartaric acid 

(EMD Chemical Inc., Darmstadt, Germany), 153 gIL fructose (Caledon; Georgetown, 

ON), 11 % (v/v) ethanol (Commercial Alcohols Inc.; Brampton, ON), with a pH 3.61. 

Standard curve concentrations and compounds were quantified based on the ratio of the 

peak area of the compound relative to the peak area of the internal standard to determine 

the concentration of the analytes. Analysis was run in duplicate and relative standard 

deviation between replicates was determined. Odour activity values (OAV) for the 

compounds in each wine were calculated by dividing the concentration by its sensory 

threshold, a value greater than one indicated the compound contributed to the aroma of 

the wine. 

Statistical analysis. All statistical analysis was performed using XLSTAT 

(Addinsoft, Paris, France) statistical software. To determine if differences exist between 

harvest dates for must and wine chemical variables a two factor (treatment x rep) analysis 

of variance (ANOV A) was performed. Least significant difference (LSD) values were 

determined for significant attributes (p < 0.05). A three factor ANOV A (harvest date x 
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fermentation rep x GC rep) with two-way interactions was used to determine if 

differences existed between aroma compounds according to harvest date (p < 0.05). 

Mean scores and LSD were calculated for aroma compounds that differed by harvest 

date. 

The mean concentration of the aroma compounds was analyzed by principal 

components analysis (PCA) for each fermentation rep using the correlation matrices to 

determine the compounds which best describe the variation in the harvest dates. Next, 

canonical variant analysis (CVA) using a stepwise forward model (p < 0.05) was used to 

determine if icewines from different harvest dates could be differentiated based on 

difference in the aroma compounds. Only those attributes found to differ in 

concentration by harvest date were used in the PCA and CV A. 

Results 

Must chemical variables. Chemical analysis completed on the must found there 

to be significant differences (u::;0.05) between harvest dates for both Riesling and Vidal 

icewines, shown in Table 3.2. Riesling icewine musts were different in terms of TA. HI 

had a higher TA (8.45 gIL) than either H2 (7.99 gIL) or H3 (7.21 gIL). Vidal icewines 

showed a similar pattern with TA, with HI having the highest TA of 11.21 gIL and TA 

decreasing with each subsequent HD resulting in H4 having the lowest TA of 9.48 gIL. 

pH was also different for the Vidal icewines. H3 had higher pH (3.55) than either HI and 

H4 (pH values of 3.47 and 3.48, respectively) or H2 (pH = 3.44). 
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Wine chemical variables. Differences were found between harvest dates for 

both Riesling and Vidal icewines for all attributes (Table 3.3). H2 icewines had higher 

A420 values for Vidal (0.615) and Riesling (0.645) than the other harvest dates icewines. 

Glycerol concentrations increased in icewines from both cultivars throughout the season. 

In Riesling icewines, the concentration increased from 9.99 gIL (HI) to 12.45 giL (H3) 

and in Vidal icewines from 10.71 gIL (HI) to 15.20 gIL (H4). 

Aroma compounds. Analysis of variance. All aroma compounds differed with 

respect to harvest date in both Vidal and Riesling icewines (Table 3.4). In Vidal icewines 

16 of 24 aroma compounds were found to have the highest concentration in H4, while 

only six compounds had the highest concentration in HI. The compounds with the 

highest concentration in HI were predominantly esters: ethyl butyrate, ethyl 3-

methylbutyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate. Linalool and 4-

vinylguaiacol also had the highest concentration in the earliest harvest dates. H3 had the 

lowest concentrations for 14 compounds. The lowest concentration for 18 of the 

compounds was found in H2 and H3 (Table 3.4). 

A similar trend was seen in Riesling icewines where 17 of 23 aroma compounds 

had the highest concentrations in H3 and only seven compounds had the highest 

concentrations in HI (Table 3.4). The compounds in Riesling icewine with the highest 

concentration in Hl--ethyl butryrate, ethyl hexanoate, ethyl octanoate, 4-vinylguaiacol 

and ethyl cinnamate--had the lowest concentrations in H3. 

Both Vidal and Riesling HI icewines had the highest concentrations of ethyl 

butyrate, ethyl hexanoate, linalool, 4-vinylguaiacol and ethyl octanoate, and the lowest 

concentrations of l-octen-3-01, cis-rose oxide and nerol oxide. The later harvest dates 
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[H4 (Vidal) and H3 (Riesling)] had the highest concentrations of ethyl isobutyrate, ethyl 

3-methylbutyrate, I-hexanol, l-octen-3-01, l-octanol, cis-rose oxide, nerol oxide, ethyl 

benzoate, ethyl phenylacetate, y-nonalactone, and ~-damascenone. 

All concentration values were converted to odour activity values (OA V) to 

determine which the aroma compounds were the most odour-potent in Vidal and Riesling 

icewines picked at different harvest dates (Table 3.6). In Vidal icewines; H4 had the 

most odour-potent compounds (OAV > 1) with 16 aroma compounds found above 

sensory threshold concentrations, followed by HI and H2, with 14 compounds each 

above threshold, and H3 with 13 compounds above threshold. The most odour-potent 

compounds across all Vidal icewines were ~-damascenone, cis-rose oxide, l-octen-3-01, 

ethyl octanoate, ethyl hexanoate, ethyI3-methylbutyrate, isoamyl acetate and 4-

vinylguaiacol. ~-damascenone was the most potent compound in all four harvest dates. 

In Riesling icewine; 12 aroma compounds were found above the sensory 

threshold (OAV>I) in all three harvest dates. Similar to Vidal icewines, ~-damascenone 

was the most potent aroma compound in Riesling. Other highly odour-potent compounds 

in Riesling harvest date wines were ethyl octanoate, cis-rose oxide, ethyl hexanoate, ethyl 

isobutyrate and 4-vinylguaiacol. 

Vidal icewines, in general, had more odour-potent compounds (OAV > 1) and the 

OAVs were higher than Riesling icewines, especially for the most odour-potent 

compounds. The highest OAVs in Vidal and Riesling, respectively, were: ~­

damascenone [1175 (H4) and 222 (H3)]; cis-rose oxide [247 (H4) and 48 (H3)]; l-octen-

3-01 [229 (H4) and 43 (H3)]; and ethyl octanoate [246 (HI) and 221 (HI)]. 
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Principal components analysis. peA was performed first on the all aroma 

compounds since they were all different according to harvest date (p<0.05), and second 

on only those aroma compounds found above their sensory threshold (OAV>l). The 

peA of all the aroma compounds for Vidal icewines showed that the first two factors (F1 

and F2) explained 85.7% of the variation in the data and were retained; all but two 

compounds were heavily loaded on F1 and F2 (Figure 3.1). The exceptions were 

acetophenone, which was heavily loaded on F3, and decanal, which was heavily loaded 

on F4. Fifteen compounds were associated with F1, which explained 60.9% of the 

variation; with the exception of geranyl acetone, all compounds were positively loaded. 

Four compounds, isoamyl acetate, ethyl hexanoate, cis-rose oxide, and 4-vinylguaiacol, 

were associated with F2, which explained 24.8% of the variation. Three compounds 

were equally loaded on F1 and F2, ethyl butyrate, linalool and ethyl octanoate. F1 

separated HI from H4 with the other two harvest dates. 4-Vinylguaiacol, which was 

heavily loaded on F2, was associated with HI and negatively related to H4. In general 

most attributes were associated with H4 and not with H2 and H3. 

The peA of the OA V for Vidal icewines explained 87.5 % of the variation on F1 

and F2 and they were retained (Figure 3.2). In general, a similar loading pattern was 

observed with all attributes positively loaded on F1 and associated with H4. Cis-rose 

oxide, ethyl valerate, 1-octen-3-01, decanal, 1-heptanol, ethyl isobutyrate, p­

damascenone, and ethyl2-methylbutyrate were all found positively loaded on F1 and F2 

and associated with H4. Cis-rose oxide, ethyl valerate, 1-octen-3-01, decanal, 1-heptanol 

were also inversely associated with Hl. Phenethyl alcohol, ethyl 3-methylbutyrate, ethyl 

butyrate, ethyl octanoate, ethyl hexanoate and isoamyl acetate were all positively loaded 
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on F1 and negatively loaded with F2 and inversely associated with H2 and H3. 4-

Vinylguaiacol was again associated with HI, the first harvest date. 

The first two factors were retained, which described 89.3% of the variation in the 

Riesling harvest date PCA for all aroma compounds (Figure 3.3). Seventeen of the 23 

compounds were heavily loaded on F1, only ethyl butyrate and geranyl acetone were 

negatively loaded all other were positively loaded. Ethyl hexanoate, ethyl octanoate, 4-

vinyl guaiacol, and ethyl cinnamate were heavily loaded on F2. These four compounds 

were inversely associated with H3. Ethyl isobutyrate and ~-ionone were equally loaded 

on F1 and F2. ~-Damascenone and 1-octen-3-01 were associated with H3 and inversely 

related to HI and H2. In general, the positively loaded aroma compounds on F1 were not 

to be inversely associated with HI and H2, such as ~-damascenone, 1-octen-3-01, cis-rose 

oxide, y-nonalactone, ~-ionone, ethyI3-methylbutyrate, ethyl benzoate, ethyl 

phenyl acetate, nerol oxide, and acetophenone. 

The PCA showing the variation in the data based on OA V explains 90.8% of the 

variability on F1 and F2 (Figure 3.4). Factor 1 explained 54.1 % of the variation and was 

described by ethyl butyrate, ethyl 3-methylbutyrate, 1-octen-3-01, linalool, cis-rose oxide, 

phenethyl alcohol and ~-damascenone. Most of these compounds were inversely 

correlated with HI and H2. Factor 2 explained 36.7% of the variation and was described 

by ethyl hexanoate and ethyl octanoate, 4-vinylguaiacol, and ethyl cinnamate and was 

associated with HI and inversely associated with H3. 

Canonical variant analysis (CVA) was the performed on the Vidal and Riesling 

harvest date icewines to determine if the variation in the aroma compounds seen in PCA 

could be attributed to the harvest dates being different in the aroma composition. Harvest 
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date was found to differ in both cultivars (p<0.05). CV A on Vidal icewine showed HI 

and H2 to be different from each other and H3 and H4; however, H3 and H4 were not 

different from one another (Figure 3.5). In Riesling icewine, all harvest dates differed 

from one another, with clear separation between HI, H2 and H3 (Figure 3.6). The same 

attributes found associated with the various harvest dates by PCA were used to 

discriminate the wine in CV A. 

Discussion 

Must and wine chemical analysis. During the typical grape maturation periods 

T A is found to decrease with an increase in sugar concentration during ripening (Winkler 

et al. 1974). The higher initial TA of icewines is likely the result of concentration from 

pressing frozen grapes, which also concentrate sugars, aroma and flavour compounds 

(Pickering 2006). The decrease in TA from early to later harvest dates in must is likely 

due to the acids precipitating out of the juice through freeze and thaw cycles while 

hanging on the vine. Since icewine grapes and must are not warmed up prior to pressing 

and fermentation the acids are not able to go back into solution and the results in reduced 

acids in the later harvest dates grapes. 

Glycerol concentration in the finished icewine was found to increase with harvest 

date, with its highest concentration in the latest harvest date for Vidal and Riesling 

icewines. This is not a surprising results as many factors including grape ripeness and the 

microbial floral on the berry have been shown to increase glycerol concentrations (Scanes 

et al. 1998). Glycerol in wine is produced during yeast fermentation and also by infection 

from the fungus Botrytis cinerea. In dry table wines typical glycerol concentrations have 
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been reported from 4-10g/L and as high as 20g/L in late harvest botrytis affected wine 

styles (Ribereau-Gayon et al. 2000). Increased glycerol concentrations are thought to 

contribute to the viscosity or mouthfeel of a wine, however it has been shown that a 

glycerol concentration of 26 gIL is required in order to detect an increase in perceived 

viscosity (Noble and Bursick 1984). This concentration is double that found in the 

experimental and commercial icewines. Therefore it cannot be said that the glycerol 

concentration is contributing to its mouthfeel or weight, this is in agreement with other 

studies and the effect of glycerol on wine mouthfeel (Nurgel and Pickering 2005). The 

increased glycerol concentrations in icewine is due to a stress response related to the 

hyperosmostic stress put on the yeast during icewine fermentation. During icewine 

fermentations, glycerol-3-phosphate encoded by GPDl that is upregulated to produce 

higher glycerol concentrations to balance the external osmotic pressure of the cell (Pigeau 

and Inglis 2007). Increased glycerol concentration with later harvest date is likely due to 

higher infection rates by B. cinerea and concentration effect due to desiccation of the 

berries. 

Volatile analysis. 

Effect of harvest date. In general, ethyl esters had the highest concentrations in 

the earliest harvest date (HI) in Vidal and Riesling icewines (Tables 3.4 and 3.5). An 

explanation for the decrease in ethyl ester concentrations with later harvest dates is 

probably related to the decrease in concentration of acids in the icewine must with later 

harvest dates (Table 3.3). If the T A is decreasing with harvest date, it would be expected 

that all other acids would also be decreasing resulting in less acid present to form the 

ethyl esters. 
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Another explanation for the lower concentration of esters with later harvest date 

could be related to free amino acid concentrations, which through the Ehrlich pathway 

make fusel alcohols to produce esters such as isoamyl acetate. Overripe grapes have been 

shown to have higher concentration of free amino acids, thereby reducing the requirement 

of yeast to produce higher alcohols (Kliewer 1968). A study investigating the sensory 

properties of sweet Fiano wines found base wines harvested at normal maturity (22 °Brix) 

had higher concentrations of fusel alcohols, esters, acetates and fatty acids than sweet 

wines harvested at late maturity (26 °Brix) and dried to 32 °Brix; the difference in 

concentration was related to yeast metabolic activity in mature and overripe grapes 

(Genovese et al. 2007). This is consistent with the results found by Bowen and Reynolds 

(2010), whereby table wine had higher concentrations of esters than icewines. Freeze and 

thaw cycles of the icewine grapes may be simulating a more extreme over-ripeness in the 

last harvest date, as cellular components have further broken down compared to HI. 

Other compounds found to have the highest concentration in the first harvest were 

linalool and 4-vinylguaicol and decanal (Riesling only). Linalool is a monoterpene with 

a distinct floral aroma, it has been shown to increase in concentration until optimal 

maturity and then drop off (Marais and van Wyk 1986, Marais 1987). This would 

explain the higher concentration in the earlier harvest date if we think of the later harvest 

dates as being more over-ripe. Chemical reactions in the berries during freeze and thaw 

cycles on the vine may also contribute to this decrease in linalool with later harvest date, 

as it is converted to linalool oxides and alcohols. 

4-Vinylguaiacol has the dual role of being considered both a important aroma 

contributor to wine and beer and an off-flavour depending on concentration and style of 
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beverage (Vanbeneden et al. 2008). It is a volatile phenol produced from the 

decarboxylation of ferulic acid during fermentation (Shinohara et al. 2000) characterized 

by an aroma of clove and a low odour threshold of lOugIL (Ferreira et al. 2000). Ferulic 

acid is a hydrocinnamic acid, the main polyphenol found in white wines (Singleton et al. 

1985a), these are important for determining the browning potential of a wine. It has been 

shown that many commercial S. cerevisiae wine yeast, wild yeast and non-So cerevisiae 

yeast possess the ability to produced volatile phenols, known as phenolic off flavour 

(POFs), of which 4-vinylguaicol is included due expression of the PAD1 + gene 

(Shinohara et al. 2000). 

The total hydrocinnamates in Riesling and Vidal icewines were shown to decrease 

with later harvest dates, likely due to the freeze and thaw cycles causing a decline in 

concentration in the grape (Kilmartin et al. 2007). This decline in total hydrocinnamates 

with later harvest date explains why the highest concentration of 4-vinylguaiacol is found 

in HI for both Vidal and Riesling icewines (101 and 131 ugIL, respectively), with a 

subsequent decrease in concentration with each subsequent harvest date (73 ugIL Vidal 

H4, and 90 ugIL Riesling H3). The absorbance at 420 nm in the chemical analysis of the 

wines was not lower for the HI compared to the later harvest dates for browning (Table 

3.2). The best explanation for this is likely that measuring the spectral absorbance at 420 

nm accounts for all brown pigments in the wine not just the hydrocinnamates (lland et al. 

2004). 

The majority of compounds were found to have the highest concentration in the 

last harvest date, which may be due to chemical changes occurring due to freeze and thaw 

cycles and / or extended hang time or may be due to concentration effects from 
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dehydration and desiccation of the fruit (Table 3.3). The 'mushroom alcohol' l-octen-3-

01, several terpenes, cis-rose oxide and nerol oxide, and norisoprenoids, p-damascenone 

and p-ionone, all had the highest concentrations in the last harvest dates and the lowest 

concentrations in HI. 

I-Octen-3-01 is characterized by a mushroom aroma and has been shown to have 

elevated levels in wines produced from overripe grapes (Genovese et al. 2007), Botrytis 

affected wine styles such as Sauternes and Tokaji Aszu (Miklosy et al. 2004), and in 

wines made from rotten grapes (Darriet et al. 2002, La Guerche ct al. 2006). It is a 

metabolic by-product of fungal infection of the grapes by Botrytis cinerea producing 

either noble or grey rot and by other fungal infections such as powdery mildew (La 

Guerche et al. 2006). The concentration of l-octen-3-01 increased with later harvest dates 

in both Vidal and Riesling wines (Table 3.4 and 3.5), likely due to increased levels of 

fungal infection of the grapes as they hung on the vine from mid - December (HI) to the 

end of January (H3) and into the beginning of February (H4, Vidal only). The 

concentration of l-octen-3-01 was higher in sweet Fiano wine made in a passito style 

compared to dry table wines (Genovese et al. 2007), which is in agreement with 

differences in concentration of this compound in table wines compared to icewines 

(Bowen and Reynolds 201Oc). While the grapes for icewine production in general are 

made from clean fruit, there is the possibility of infection from grey rot and/or noble rot 

and powdery mildew during the growing season. 

Nerol oxide is a monoterpene ether similar to cis-rose oxide, and is produced from 

linalool. Therefore, it seems intuitive that as the concentration of linalool decreased with 

harvest date the concentration of one of it degradation compounds would increase. Nerol 
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oxide is the result of hydrolysis of diendiol I during juice storage and processing and is 

not naturally present in Muscat of Alexandria grapes during berry development (Williams 

et al. 1980). Nerol oxide was not found to have a high OA V value or concentration in 

experimental icewines and therefore is not an odour-potent compound of interest. 

Cis-rose oxide has a floral aroma with a low sensory threshold value (0.2 J..lgIL), it 

is an impact odorant important to the varietal aroma of Gewurztraminer wines (Guth 

1997, Ong and Acree 1999). Cis-rose oxide was found to increase in concentration with 

the later harvest dates in both Vidal and Riesling icewines and had one of the highest 

OAVs in both cultivars (Table 3.6). It has recently been shown that cis-rose oxide can be 

produced from the stereoselective reduction of geraniol followed by allylic hydroxylation 

and acid catalyzed cyclization (Luan et al. 2006). It is the result of geraniol derived diols 

I and II which act as the precursors for cis- and trans-rose oxide formation after yeast 

fermentation (Koslitz et al. 2008). 

Luan et al. (2005) showed the stereos elective reduction of labeled geraniol to 

citronellol to produce cis -rose oxide in in vivo feeding experiments with Scheurebe 

grape berry mesocarp. They found an increase of geraniol reductase activity toward the 

end of ripening, which can produce high levels of citronellol, a precursor to cis- rose 

oxide production. These findings are in agreement with previous conclusions that high 

concentrations of cis-rose oxide can be achieved by leaving fruit on the vine for extended 

periods (Wilson et al. 1984). The extended hang time of grape berries destined for 

icewine production are in line with these findings and explain a possible mechanism as to 

why the highest concentration of this potent odorant is found in the latest harvest dates 

for both Vidal and Riesling icewines. 
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Norisoprenoids are carotene breakdown products formed from enzymatic and 

non-enzymatic reactions either through direct degradation or glycosylated intermediates. 

There are three main steps the formation of norisoprenoids; initial cleavage, enzymatic 

transformation to the non-aromatic intermediate metabolite, and finally acid hydrolysis 

non-aromatic precursor to aroma compounds (Winterhalter et al. 1990). The formation of 

norisoprenoids has been extensively reviewed in the literature (Mendes-Pinto 2009). 

The C 13 norisoprenoid, ~-damascenone, is characterized by a stewed apple, floral 

aroma and a low sensory thresholds (2 ngIL in water). It had the highest OA V values in 

all experimental icewines and was one of the most odour-potent compounds in 

commercial icewines analyzed through GCO (Bowen and Reynolds 2010). This is in 

agreement with previous studies that also found ~-damascenone to be an important 

odorant in Riesling (Chisholm et al. 1994, Komes et al. 2006) and Vidal (Chisholm et al. 

1995) table wines. The concentration of ~-damascenone increased with later harvest 

dates in Vidal and Riesling icewines and Vidal icewines were found to have higher 

concentrations of ~-damascenone compared to Riesling at all harvest dates (Tables 3.4 

and 3.5). 

High concentrations of ~-damascenone have been reported in the literature in 

wines made from sun dried grapes (Campo et al. 2008) and over ripe grapes (Pons et al. 

2008), which are conditions that may be somewhat analogous to the extended hang time 

of icewine grapes. Generally ~-damascenone concentrations in wines range from 1 to 4 

J..lglL, while the compound has high OA V due to it low sensory threshold it is generally 

not considered an impact odorant but rather acts as an aroma enhancer to fruity esters in 
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the wine and has been shown to contribute to the aroma buffer of a wine (Escudero et al. 

·2007). 

Campo et al. (2008) found a key odour compound in Pedro Ximenez wines to be 

~-damascenone, with average concentrations of 10 J.lg/L and reaching up to 21.7 J.lg/L in 

the wines (five times greater than average table wines). They suggested ~-damascenone 

may be the compound responsible for the characteristic raisin like aroma found in these 

wines, but would need to be confirmed with reconstitution and omission tests. This is of 

particular interest to this research since icewines are often described as having a raisin 

like aroma and experimental wines were found to have very high concentrations of ~­

damascenone, ranging from 45 to 56 ug/L for Vidal (Table 3.4) and 7.8 to 11 ug/L in 

Riesling (Table 3.5). The concentration of ~-damascenone in Vidal icewines was over 

double that found in Pedro Ximenez wines and Riesling icewine concentrations were 

similar to Pedro Ximenez wines suggested that ~-damascenone is an important odorant in 

this wine style. 

Conclusions 

Chemical analysis showed differences due to harvest date on aroma compounds, 

with the majority of the aroma attributes having the highest concentration in later harvest 

dates for both Vidal and Riesling icewines. The highest concentration for most aroma 

compounds was found in the latest harvest date, 16 of 24 for Vidal (H4) and 17 of 23 for 

Riesling (H3). The latest harvest date had the highest concentrations of ethyl isobutyrate, 

ethyl 3-methylbutyrate, I-hexanol, l-octen-3-ol, l-octanol, cis-rose oxide, nerol oxide, 

ethyl benzoate, ethyl phenylacetate, y-nonalactone and ~-damascenone' in both Vidal and 
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Riesling. HI for both cultivars had the highest concentrations for ethyl butyrate, ethyl 

hexanoate, linalool, 4-vinylguaiacol, and ethyl octanoate. Odour activity values were 

calculated; the most odour-potent compounds were ~-damascenone, cis-rose oxide, 1-

octen-3-01, ethyl octanoate, ethyl hexanoate, and 4-vinylguaiacol in both cultivars across 

harvest dates. PCA found most attributes were associated with the last harvest date, with 

the exception of 4-vinylguaicol, which was associated with Hl. Harvest date was 

identified as a discriminating dimension using canonical variant analysis in Vidal and 

Riesling for both sensory and volatile compounds. The high concentrations of ~-

damascenone in icewines required further investigation into its potential role as an impact 

odorant in this wine style, as does the elevated levels of glycerol in icewines with 

increased hang time. The concentration of both ~-damascenone and glycerol could be 

used a marker compounds of icewine made from grapes naturally frozen on the vine, 

however further investigation would be required. 
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Table 3.1 Chemical standards, quantitative and qualitative ions, and calibrated intervals for Vidal and Riesling icewines and table wines. 

Quantitative Qualitative Calibrated interval ([~g/L]) 

Anal~te SUE2lier CAS no. ion (mlz) ions (mlz) Vidal r2 value Riesling r2 value 

ethyl isobutyrate Aldrich 97-62-1 43 71,88, 116 50-150 0.977 150-600 0.923 
ethyl butyrate Aldrich 105-54-4 71 43,88,116 20-180 0.962 125-500 0.915 
ethyl 2-methylbutyrate Aldrich 7452-79-1 57 102,74,130 5-125 0.997 
ethyl 3-methylbutyrate Aldrich 108-64-5 88 41,70,130 15-135 0.993 15-135 0.973 
I-hexanol Sigma-Aldrich 111-27-3 56 43,69,84 1000-6250 0.964 300-4800 0.979 
isoamyl acetate Aldrich 123-92-2 43 70,55,87 150-600 0.935 
ethyl valerate Sigma-Aldrich 539-82-2 88 57,101,130 1.0-36 0.995 
1-heptanol Acros Organics 111-70-6 70 56,83,98 2-200 0.996 
l-octen-3-o1 Aldrich 3391-86-4 57 72,85,99 1-400 0.999 1.0-400 0.904 
ethyl hexanoate Aldrich 123-66-0 88 99,60,144 300-1200 0.999 300-1200 0.993 
acetophenone Aldrich 98-86-2 105 77,120,51 1.0-25 0.985 1.0-25 0.979 
l-octanol Sigma-Aldrich 111-87-5 56 41,69,84 10.0-20 0.918 2.0-32 0.979 
linalool Sigma-Aldrich 78-70-6 71 93, 121, 154 5-125 0.972 20-500 0.989 
cis rose oxide Fluka 16409-43-1 139 69,83,154 3-108 0.998 0.5-24.5 0.998 
phenethyl alcohol Acros Organic 60-12-8 91 122,65,51 15000-135000 0.977 15000-60000 0.942 
neroloxide Bedoukian 1786-08-9 68 83,41,152 5.0-80 0.997 20-80 0.993 
ethyl benzoate Aldrich 93-89-0 105 122, 77, 150 1.0-9 0.993 1.0-9 0.995 
ethyl octanoate Aldrich 106-32-1 88 101, 127, 172 400-1600 0.992 300-12000 0.975 
decanal Sigma-Aldrich 112-31-2 57 70,82,112 0.25-16 1.000 0.5-4.5 0.984 
ethyl phenylacetate Aldrich 101-97-3 91 164,65,136 2.0-50 0.984 2.0-50 0.987 
2-phenethyl acetate Aldrich 103-45-7 104 43,91,78 3.0-75 0.991 
4-vinylguaiacol Alfa Aesar 7786-61-0 150 135,107,77 20-320 0.944 25-1225 0.987 
y-nonalactone Aldrich 104-61-0 85 41,114,156 0.5-200 0.981 10-160 0.976 
~-damascenone Gift 23726-93-4 69 105, 121, 190 2.0-8 0.994 2.0-32 0.996 
geranyl acetone Alfa Aesar 3796-70-1 43 69, 151, 194 0.15-0.60 0.991 0.15-0.60 0.990 
ethyl cinnamate Aldrich 103-36-6 131 103,176,77 3.0-27 0.975 
l3-ionone Aldrich 79-77-6 177 43, 135, 192 0.01-0.25 0.992 
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Table 3.2. Impact of harvest date (HI to H4) on Vidal and Riesling icewine must 
chemical variables, Garphil Farms, St. Catharines, ON, 2004-05. 

H1 H2 H3 H4 

Vidal Brix 37.9 ± 0.1a 37.0 ± 0.1a 37.6±0.1a 37.2 ± 0.1a 

pH 3.5 ± O.Ob 3.4 ± O.Oc 3.6 ±O.Oa 3.5 ± O.Ob 
Titratable 
acidity (giL) 11.2 ± 0.1a 10.3 ± 0.1b 9.6 ± 0.1c 9.5 ± O.Oc 

Riesling Brix 38.0 ± 0.2a 38.1 ± Oa 37.9 ± 0.2a 
pH 3.7 ± O.Oa 3.8 ± Oa 3.7 ± 0.04a 
Titratable 
acidity (giL} 8.5 ± Oa 8.0 ± O.Ob 7.2 ± 0.16c 

Significance 

ns 
* 

* 

ns 
ns 

* 

ns, *: not significant or significant at p < 0.05, respectively. Treatments with the same 
letter are not significantly different, least significant difference, p<0.05. 
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Table 3.3 Impact of harvest date (HI to H4) on Vidal and Riesling icewine wine chemical 
variables, Garphil Farms, St. Catharines, ON, 2004-05. 

H1 H2 H3 H4 Significance 

Vidal pH 3.64 ± O.Ob 3.61 ± O.Oc 3.73 ± O.Oa 3.64 ± O.Ob 
A420 0.51 ± 0.1c 0.61 ± O.Oa 0.47±0.1 d 0.53 ± O.Ob 
TA (giL) 11.1 ± 0.2a 11.2 ± 0.1a 10.6 ± 0.1b 10.7±0.1b 
Acetic acid(g/L) 0.85 ± O.Oc 0.83 ±O.Od 0.87 ± 0.01b 1.00 ± O.Oa 
Glycerol (giL) 10.7 ± 0.3a 10.9 ± 0.2a 13.6 ± 0.5b 15.2 ± 0.3c 
Ethanol (%v/v) 10.9 ± 0.6a 10.9 ± 0.3a 11.7±0.1c 11.4 ± O.Ob 
Residual Sugar 
(giL) 182 ± 4.6a 166 ± 10.6d 172 ± 1.4b 170 ± 3.4c 

Riesling pH 3.85 ± O.Oa 3.90 ± O.Oc 3.88 ± O.Ob 
A420 0.55 ± 0.1 b 0.65 ± O.Oc 0.47 ± O.Oa 
TA (giL) 9.40 ± 0.1a 9.62 ± 0.1b 9.45 ± 0.1a 
Acetic acid(g/L) 0.87 ± O.Oa 0.89 ± O.Oa 0.94 ± O.Ob 
Glycerol (giL) 9.99 ± O.4a 10.3 ± 0.2b 12.5 ± 0.3c 
Ethanol (%v/v) 12.2 ± 0.1 b 12.1 ± 0.2a 12.5 ± 0.2c 
Residual Sugar 
(giL) 178 ± 3.2c 176 ± 1.2b 160 ± 2.2a 

**, ***: significant at p < 0.01 and 0.001, respectively. Treatments with the same letter 
are not significantly different, least significant difference, p<0.05. 
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Table 3.4 Impact of harvest date on Vidal icewine aroma compound concentrations 
(/.lgIL), Garphil Farms, St. Catharines, ON, 2004-05. 

NO Compound Harvest 1 Harvest 2 Harvest 3 Harvest 4 Significance 

1 Ethyl isobutyrate 77.62 b 74.08 c 73.09d 89.46 a *** 
2 Ethyl butyrate 98.74 a 96.06 a 70.78 c 88.46 b *** 
3 Ethyl 2- 22.79 b 20.44 c 17.67 d 25.67 a *** 

methylbutyrate 

4 Ethyl 3- 30.69 a 26.34 b 24.94c 29.98 a *** 
methylbutyrate 

5 1-hexanol 1394 b 1281 d 1334 c 1607 a *** 
6 Isoamyl acetate 311.9 a 234.5 c 230.9 c 248.9b *** 
7 Ethyl valerate 4.24d 5.11 c 7.34d 12.33 a *** 
8 1-heptanol 11.57 c 11.09 c 13.84 b 30.37 a *** 
9 1-octen-3-o1 74.65 d 95.54 c 133.7 b 229.3 a *** 

10 Ethyl hexanoate 720.9 a 555.9 c 481.1 d 590.1 b *** 
11 Acetophenone 1.57 b 1.61 a 1.52 c 1.58 b ** 
12 l-octanol 10.42 b 10.02 c 10.13 c 11.85 a *** 
13 Linalool 49.68 a 27.15 b 33.09 b 37.44 b ** 
14 Cis-rose oxide 16.20 d 32.20c 40.40b 49.37 a *** 
15 Phenethyl alcohol 31989 a 20936 b 22587 b 29767 a *** 
16 Neroloxide 18.00 d 23.26 c 27.02 b 36.09 a *** 
17 Ethyl benzoate 1.09 cb 1.02 c 1.17 b 2.07 a *** 
18 Ethyl octanoate 1227 a 983 b 788 c 1022 b *** 
19 Decanal 0.98 b 1.84 a 1.32 b 2.03 a ** 
20 Ethyl phenylacetate 7.91 b 6.32c 7.64 b 9.66 a *** 
21 4-vinylguaiacol 101.6 a 83.80b 78.17c 72.66 d *** 
22 "/- nonalactone 6.49 c 4.58d 8.01 b 15.01 a *** 

23 ~-damascenone 45.90b 46.06b 34.72 c 58.77 a *** 
24 Geranyl acetone 0.28 c 0.30b 0.35 a 0.24d *** 

F-value 

772.6 

140.8 

64.7 

128.2 

94.9 

128.1 

2224.2 

3138.5 

646.4 

113.0 

23.0 

116.2 

10.0 

593.9 

48.5 

548.4 

461.7 

125.8 

18.7 

257.5 

124.0 

369.5 

188.9 

146.1 

**, ***: significant at p < 0.01 or 0.001, respectively. Treatments WIth the same letter 
are not significantly different, least significant difference, p<0.05. 
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p-value 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.009 

<0.0001 

0.00013 

<0.0001 

<0.0001 

<0.0001 

0.002 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

<0.0001 



Table 3.5 Impact of harvest date on aroma compound concentrations (/-lglL) in Riesling 
icewines, Garphil Farms, St. Catharines, ON, 2004-05. 

NO Compound Harvest 1 Harvest 2 Harvest 3 Significance F-value 

1 ethyl isobutyrate 191 b 193 a 198 a ** 24.4 
2 ethyl butyrate 147 a 1467 a 141 b ** 135 

ethyl 3-
3 methylbutytate 20.9b 21.4 b 26.2 a *** 98.1 
4 1-hexanol 798 b 795 b 867 a ** 30.2 
5 1-octen-3-o1 15.3 c 31.5 b 43.8 a *** 775 
6 ethyl hexanoate 635 a 590b 425 c ** 143 

7 acetophenone 1.90b 1.91b 2.90 a *** 102 

8 l-octanol 4.31b 4.60b 6.60 a *** 349 

9 linalool 74.5 a 64.6b 75.9 a * 15.0 

10 cis-rose oxide 2.20c 5.80b 9.60 a *** 473 
11 phenethyl alcohol 16635 b 16097 c 17377 a ** 84.6 
12 neroloxide 19.3 b 18.5 b 22.9 a ** 43.3 

13 ethyl benzoate 1.30b 1.30 b 2.40 a *** 401 
14 ethyl octanoate 1105 a 957b 669c *** 93.5 
15 decanal 1.40 a 0.50b 1.30 a ** 65.9 
16 ethyl phenylacetate 5.30b 5.21 b 6.90 a *** 176 
17 2-phenethyl acetate 7.02 b 6.41 c 7.71 a *** 107 
18 p-vinylguaicol 130 a 112 b 89.9 c *** 780 

19 y-nonalactone 16.3 c 17.5 b 21.2 a *** 4773 
20 ~-damascenone 7.81 c 8.lOb 11.1 a *** 1018 
21 geranyl acetone 0.41b 0.45 a 0.36c *** 552 

22 ethyl cinnamate 7.32a 6.30b 5.92c *** 531 
23 ~-ionone 0.01 b 0.01 b 0.04 a *** 179 

*, **, ***: significant at p < 0.05, 0.01, or 0.001, respectively. Treatments with the same 
letter are not significantly different, least significant difference, p<0.05. 
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p-value 

0.0060 

0.0020 

0.0004 

0.0040 

<0.0001 

0.0002 

0.0004 

<0.0001 

0.0140 

<0.0001 

0.0010 

0.0020 

<0.0001 

0.0004 

0.0010 
0.0012 

0.0003 

<0.0001 

<0.0001 
<0.0001 
<0.0001 

<0.0001 
0.0001 



Table 3.6. Impact of harvest date on odour activity values (OAV) of aroma compounds in 
Ontario Vidal and Riesling icewines, based on published sensory threshold values. 

VIDAL RIESLING 
Harvest Harvest Harvest Harvest Harvest Harvest Harvest 

NG Compound 1 2 3 4 1 2 3 Threshold 
GAV GAV GAV GAV GAV GAV GAV flglL 

1 ethyl isobutyrate 5.18 4.94 4.87 5.96 12.8 12.9 13.2 15 
2 ethyl butyrate 4.94 4.80 3.54 4.42 7.34 7.33 7.06 20 

3 ethyl 2-methylbutyrate 1.27 1.14 0.99 1.43 18 
4 ethyl 3-methylbutyrate 10.2 8.78 8.31 9.99 6.96 7.13 8.74 3 
5 I-hexanol 0.17 0.16 0.17 0.20 0.10 0.10 0.11 8000 
6 isoamyl acetate 10.4 7.82 7.70 8.30 30 
7 ethyl valerate 2.83 3.41 4.89 8.22 1.5 
8 1-heptanol 3.86 3.70 4.62 10.12 3 
9 l-octen-3-o1 74.7 95.5 134 229 15.3 31.5 43.8 1 

10 ethyl hexanoate 51.5 39.7 34.4 42.2 45.4 42.1 30.3 14 
11 acetophenone 0.02 0.03 0.02 0.02 0.03 0.03 0.05 65 
12 l-octanol 0.10 0.09 0.09 0.11 0.04 0.04 0.06 110 
13 linalool 1.99 1.09 1.32 1.50 2.98 2.58 3.04 25 
14 cis-rose oxide 81.0 161 202 247 10.9 29.0 48.0 0.2 
15 phenethyl alcohol 2.29 1.50 1.61 2.13 1.19 1.15 1.24 14000 
16 neroloxide 0.01 0.01 0.01 0.01 0.01 0.01 0.01 3000 
17 ethyl benzoate 0.002 0.002 0.002 0.004 0.002 0.002 0.004 575 
18 ethyloctanoate 246 197 158 205 221 191 134 5 
19 decanal 0.49 0.92 0.66 1.02 0.70 0.27 0.67 2 
20 ethyl phenylacetate 0.11 0.09 0.11 0.13 0.07 0.07 0.09 73 

21 2-phenethyl acetate 0.03 0.03 0.03 250 

22 4-vinylguaiacol 10.2 8.38 7.82 7.27 13.1 11.2 8.99 10 

23 y-nonalactone 0.22 0.15 0.27 0.50 0.54 0.58 0.71 30 

24 p-damascenone 918 921 694 1175 155 162 223 0.05 

25 geranyl acetone 0.01 0.01 0.01 0.004 0.01 0.01 0.01 60 

26 ethyl cinnamate 6.65 5.71 5.36 1.1 

27 p-ionone 0.10 0.10 0.40 0.09 
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Figure 3.1. Chemical map of Ontario Vidal icewines produced from different harvest 
dates (HI to H4) displaying variation in the products with principal component analysis. 
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Figure 3.2. Chemical map of the variation in aroma compounds above their sensory 
threshold (OAV > 1) in Ontario Vidal icewines produced from different harvest dates 
(HI to H4) through principal component analysis. 

"0 

-5 

."0 

-15 

Biplot (axes F1 and F2: 87.48 %) 

H4R1 

H2R1 
• 

HRI 
• 

HR3 

-2> p-vi~g.Bcol 
~ ~ ~ ~ ~ -5 0 5 "0 15 2> ~ ~ 

F1 (57.66 %) 

125 



Figure 3.3. Chemical map of Ontario Riesling icewines produced from different harvest 
dates (HI to H3) showing the variation in the products using principal component 
analysis. 
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Figure 3.4. Chemical map of Ontario Riesling icewines produced from different harvest 
dates (HI to H3) with aroma compounds found above their sensory threshold (OAV > 1) 
showing the variation in the attributes. 
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Figure 3.5. Canonical variant analysis of Ontario Vidal icewines produced from different 
harvest dates (HI to H4). 
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Figure 3.6. Canonical variant analysis of Ontario Riesling icewines produced from 
different harvest dates (HI to H3). 
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Chapter 4 
The Effect of Crop Level on Vidal blanc and Riesling Icewine from the 

Niagara Peninsula: I. Chemical Variables and Aroma Compounds 

Amy J. Bowen and Andrew G. Reynolds 

Abstract 
Icewine is a sweet dessert wine made from pressing grapes naturally frozen on the vine. 
Currently, many grape growers crop their grapevines designated for icewine at levels 
often double those of table wines; therefore, it was of interest to ascertain whether 
reducing crop level might impact icewine chemical and aroma compound profiles. Three 
vineyard treatments [control (fully cropped), cluster thin at fruit set to one (basal) cluster 
per shoot (TFS), and cluster thin at veraison (TV)] were evaluated in a randomized block 
design for Riesling and Vidal cultivars over two seasons, 2003-04 and 2004-05. Musts 
differed between treatments in pH and titratable acidity in both years. Wines were 
different for most standard chemical variables, however; no clear trends existed between 
years or cultivars. Vidal icewines had the highest concentration of aroma compounds in 
the control and TV wines in 2003 and in TFS wines in 2004. Almost all compounds 
differed (p < 0.05) according to crop level treatment in Vidal: 17 of 24 in 2003 and 23 of 
24 in 2004. The compounds with the highest odour activity values in Vidal were ~­
damascenone, ethyl octanoate, cis-rose oxide, l-octen-3-ol, ethyl hexanoate and isoamyl 
acetate in 2003 and ~-damascenone, l-octen-3-ol, ethyl octanoate, cis-rose oxide, and 
ethyl hexanoate in 2004. Principal components analysis (PCA) found ~-damascenone, 
ethyl 2- and 3- methylbutyrate, ethyl isobutyrate, ethyl butyrate and I-heptanol to be 
correlated and associated with the control in 2003. In 2004, the PCA found most 
attributes positively loaded on Fl and associated with treatment replicate (block) and not 
crop level. Riesling icewines differed (p < 0.05) according to crop level treatment for all 
aroma compounds in 2003 and 22 of 23 in 2004. In both years, the majority of the aroma 
compounds were had the highest concentration in TV wines and the lowest concentration 
in TFS wines. Odour activity values in Riesling icewines were highest for ~­
damascenone, ethyl octanoate and ethyl hexanoate in both 2003 and 2004; cis-rose oxide 
was also highly odour potent in 2004. The PCA from the 2003 Riesling icewines showed 
most attributes loaded on Fl and associated with TV wines. We concluded that freeze and 
thaw events in November and December were likely more important in aroma compound 
development than crop level. 

Key words: wine aroma, odour activity values, gas chromatography-mass spectrometry, 
cluster thinning 

Introduction 

Icewine is a sweet late harvest dessert wine produced from grapes that have 

frozen naturally on the vine. The frozen grapes are pressed, leaving water behind as ice 
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crystals, which results in a must concentrated with sugar, acids, aroma, and flavour 

compounds. Pressing grapes frozen for icewine production reduces the yield to 15 -20% 

that of table wine significantly increasing the amount of vine acreage required for 

production (Pickering 2006). To compensate for some of this loss in yield currently, 

many grape growers crop their grapevines designated for icewine at levels often double 

those of table wines. It was therefore of interest to ascertain whether reducing crop level 

might impact icewine chemical and aroma compound profiles. 

Riesling and Vidal blanc are excellent cultivars for icewine production. Vidal 

blanc (syn. Vidal) is a white French-American hybrid consisting of 75% V. vinifera 

genetic background, from a cross between Ugni blanc and Rayon d'Or (Seibel 4986) 

(Galet 1998). A key viticultural feature is its winter hardiness. The cultivar has large 

cylindrical clusters, with medium-sized, thick-skinned berries that are disease resistant 

(Galet 1998). It is a high acid cultivar prone to overcropping, which enables it to produce 

large yields for icewine production. Cluster thinning is essential for table wine 

production. Vidal is a late maturing cultivar harvested usually in mid- to late October in 

eastern North America (Chisholm et al. 1994). 

Riesling is considered by many to be the best choice of cultivar for producing 

icewines of the highest quality and ageability due to its high natural acidity. It is the noble 

grape of Germany, known for producing a wide range of wine styles from bone dry to 

ultra sweet, both clean and Botrytis-affected. Riesling has all the characteristics of the 

ideal icewine grape; it is late maturing, high acid, thick skinned providing some disease 

resistant and winter hardiness (for V. vinifera) (Galet 1998). 
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Yield calculations for icewine crops are based on October estimates for regular 

harvest (Ziraldo and Kaiser 2007) because it becomes more difficult to accurately 

estimate crop late in the season as the individual berries are at different stages of 

desiccation due to climatic conditions. Yield estimations of 150 Utonne, or 

approximately 7 tonnes/acre for Vidal, and 125 Utonne or 5 tonnes/acre for Riesling are 

used by one of Ontario's largest icewine producers as a guideline for maximum yield and 

quality (Ziraldo and Kaiser 2007). However, anecdotally it is not uncommon for growers 

to crop vines up to 10 tonnes/acre to increase the volume of icewine juice they can sell to 

the wineries, especially for Vidal. 

Cluster thinning is a standard viticultural practice performed to keep the grapevine 

in balance, thus, preventing overcropping. The net effect of cluster thinning is to improve 

the quality of the grapes, which is achieved due to an increase in the ratio of leaf area to 

crop and maintain the health of the vine (Winkler et al. 1974). Reynolds (1989a, 1989b) 

found that cluster thinning changes the composition of the grapes with an increase in 

sugar content and pH and a decrease in titratable acidity. It can also increase cluster 

weight, berries per cluster, and berry weight and can advance maturation of the fruit 

(Bravdo et al. 1984). 

The main goal of cluster thinning is to reduce the crop load of a vine to advance 

grape maturation and improve wine quality (Keller et al. 2005). Cluster thinning after 

bloom will reduce yield, but increase berry size, cluster weight and berries per cluster, 

and can advance harvest date (Bravdo et al. 1984). Cluster thinning early in the season 

allow the vine to compensate for the crop removed, shown as an increase in berry size, 

number of clusters formed and number of berries per cluster. These results are generally 
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not desired in wine grape production because low yields are perceived to increase aroma 

compound production and enhance the perceived wine quality (Jackson and Lombard 

1993). It is therefore common for wine grape production to cluster thin just prior to 

veraison (Reynolds et al. 2007). 

Cluster thinning was initially used to improve fruit composition in French­

American hybrids such as De Chaunac and Seyval blanc, and later on in V. vinifera 

cultivars (Reynolds 1989a). As of 2009, no research has focused on the effect of crop 

level on the composition of dessert wines. However, in table wines, several studies have 

established a clear relationship between crop level and varietal characteristics. Reynolds 

et al. (1996) found that cluster thinning produced Pinot noir wines which were rated by 

panelist as having less grassy and vegetative characteristics and were rated higher for 

descriptors such as black pepper, cherry, and currant. PCA results showed correlations 

between typical Pinot noir descriptors and cluster thinning. 

Studies with Riesling have shown similar results; where cluster thinned grapes 

have a higher concentration of monoterpenes (McCarthy et al. 1985). The effect of 

cluster thinned vines to three different crop levels; 1, 1.5, and 2 clusters per shoot were 

studied to determine the effect of vineyard treatments on Riesling composition and 

sensory response (Reynolds et al. 1994a). Monoterpene concentrations decreased with 

increasing number of clusters per shoot. Linalool was positively correlated with ripe fruit 

character and sweetness and negatively correlated with green-fruit flavor and cluster 

thinning was increased the perception of ripe fruit character in the wines. Monoterpenes 

such as linalool, linalool oxides, terpineol and citronellol were associated with lower crop 

levels and low to moderate shoot densities and increased in concentration with bottle age. 
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The objective of this study was to determine the effect of crop level; control (fully 

cropped), thin at fruit set and thin at veraison, on Vidal and Riesling chemical, and aroma 

compound profiles. Currently there is nothing in the literature pertaining to this topic so 

the results will be of interest to grape growers, winemakers and other wine professionals. 

Materials and Methods 

Chemicals. Analytical standards (Table 4.1) were purchased from Aldrich 

(Oakville, ON,), Sigma-Aldrich (Oakville, ON), Fluka (Oakville, ON), Bedoukian 

(Danbury, CT, USA), Acros organic (Geel, Belgium).~-Damascenone was a gift from 

Dr. T. Acree, Cornell University. Chemical standards were diluted in dichlorometha:i1e 

(Caledon; Georgetown, ON) and stored at -25°C. 

Treatments. Two commercial vineyard plots were chosen for the crop level 

study. Both vineyard experiments were made up of randomized block designs containing 

six blocks each with three treatments. The Vidal block was located at Garphil Farms in 

west St. Catharines, in the Creek Shores sub appellation. It consisted of six rows of grape 

vines; each one was designated as a block. Each row (block) was then divided into three 

treatments; control (fully cropped), thin to one basal cluster per shoot at fruit set, and thin 

to one basal per shoot cluster at veraison. The first vine at each end of the row was 

untouched and left as a buffer. The Riesling block was located in Niagara-on-the-Lake at 

Lambert Farms, in the Four Mile Creek sub appellation. It consisted of two rows of 

grapevines; each row was divided into three blocks. Each block was then divided in three 

treatments; control (fully cropped), thin to one basal cluster per shoot at fruit set, and thin 

to one basal cluster per shoot at veraison. The first postlength at each end of the row was 
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untouched and left as a buffer. All vines were sprayed and maintained at the discretion of 

the grower. Grapes were harvested once proper icewine conditions were met (:S -8°C) on 

7 January 2004 and 15 January 2005. 

Harvest and pressing. Treatments were kept separate at harvest by placing them 

into labeled bins indicating their block and treatment. All grapes were brought back to 

the pilot winery at Brock University and pressed in the basket press with an inflatable 

rubber bladder by treatment at 2 bar. The resultant must was collected in 20-L food grade 

pails for each treatment until it reached 35 °Brix , it was then sulphited to 75 mgIL and 

stored at 4°C until fermentation. For each treatment, a 250-mL must sample was frozen 

at -25°C for future analysis. 

Fermentation. The must was inoculated with Lalvin® KI-VI116 

Saccharomyces cerevisiae (Lallemand) as per the yeast rehydration procedure of 

Kontkanen et al. (2004) into 20 L carboys. The fermenting must was left at room 

temperature overnight and was then placed in an 18°C fermentation chamber. 

Fermentation was stopped by addition of 75 mg/L potassium metabisulphite (Sigma, 

Oakville, ON) when the ethanol, determined by GC, was 10 % vlv, after which the 

carboys were moved to the -2°C chamber for cold stabilization. The icewines were left to 

settle for up to 2 weeks then racked into clean carboys to remove the lees. 

Bottling. At bottling, icewines were brought to room temperature, 100 mg/L of 

potassium metabisulphite (Sigma, Oakville, ON) and 100 mg/L potassium sorbate 

(Sigma, Oakville, ON) were added to the wines. A 250-mL wine sample was taken and 

frozen at -25°C for future wine analysis. The icewine was filtered through a III pad filter 

(Scott Laboratories, Pickering, ON) and 0.45 Il membrane filter (Millipore, Bedford, 
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MA). It was then bottled in 375-mL bottles, corked (Scott Laboratories, Pickering, ON) 

and put in the wine cellar for storage at 12°C until analysis. 

Must and wine analysis. For a detailed description of must and wine analysis 

refer to materials and methods from Chapter 3. Titratable acidity (TA) by autotitrator 

(Man-Tech Associates Ltd., Guelph, ON) to a pH endpoint with 0.1 % NaOH, pH by pH 

meter (model 825MP, Fisher Scientific, Ottawa, ON) and soluble solids (OBrix) by 

refractometer (Abbe model 10450; American Optical Corp., Buffalo, NY) were 

determined for the icewine musts. Chemical analysis was conducted on the finished 

wines for TA, pH, absorbance at 420 nm, acetic. acid, glycerol and glucose-fructose 

concentrations, and percent ethanol. TA and pH were determined as per must above. 

Absorbance at 420 nm (A420) using a Ultrospec 2100 Pro UV/Visible spectrophotometer 

(Biochrom Ltd., Cambridge, England) at 420nm. Megazyme enzyme kits (Megazyme, 

Bray, Ireland) were used to determine acetic acid (gIL), glycerol (gIL), glucose-fructose 

(gIL) following manufacturing instructions. Ethanol (% v/v) was determined with an 

Agilent 6890 GC-FID (Agilent Technologies, Mississauga, ON), according the method of 

Nurgel et al. (2004). 

Volatile extraction. Wine volatiles were extracted by stir bar sorptive extraction 

(SBSE), commercially known as Twister, using lO-mm stir bar (Gerstel, Baltimore, MD) 

coated with polydimethylsiloxane (PDMS, 0.5 mm film thickness). A lO-ml sample of 

icewine was poured into a 10 mL extraction vial and spiked with an internal standard, 

100 I-lgiL n-dodecanol (Sigma; Oakville, ON) in GC-grade dichloromethane. The stir bar 

was added to the wine and extracted for 60 minutes at 1000 rpm. The stir bar was 
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removed from the extraction vial, dried with a lint free tissue, rinsed with Milli-Q water 

(Millipore, Bedford, MA) and stored in a 4-mL amber vial at 4°C until analysis. 

Gas chromatography-mass spectrometry (GC-MS). Instrument: Agilent 

6890N/5975B gas chromatograph mass spectrometer equipped with a Gerstel thermal 

desorption unit (TDS2; Gerstel, Baltimore, MD) and cooled injection system (CIS4) 

programmable temperature vaporization (PTV) inlet and an olfactometry port (DATU, 

Geneva, NY). Analytical column: Agilent HP-5MS, 5% phenyl methyl siloxane, 30m 

length, 0.25 mm internal diameter and 0.25 J..lm film thickness. Carrier gas: 1.4 mL/min 

5.0 purity helium (Praxair, Mississauga, ON). Oven program: initial temperature 35°C 

held for 3 min, increased by 4°C/min to 155°C, increased by 30°C/min to a final 

temperature 240°C. Thermal desorption: initial temperature 30°C, increased by 60 

DC/sec to 250°C and held for 3 min. TDS transfer line temperature 275°C connected to 

CIS4 inlet cryo-cooled to -70°C with liquid nitrogen in solvent vent mode. After 

desorption, CIS4 inlet temperature was increased at 12°C/sec to 280°C and held for 5 

min while analytes are released on the column. The MS was run in scan mode, 30 to 400 

Da for compound identification and in select ion monitoring (SIM) mode selecting for 

one quantitative ion and three qualitative ions for each compounds as shown in Table 2.1 

(Chapter 2) for quantification. 

Identification and Quantification. The compounds were identified as the 'top 

15' odour potent volatiles by GC-O CharmAnalysis (Bowen and Reynolds 201Oc) and 

are listed in Table 5.1. The compounds were identified by comparison of retention time, 

odour perception and mass spectra (Wiley library) to pure standards. Three-point 

calibration curves were run for each analyte in model wine solution to .ensure linearity (r2 
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> 0.9) (Table 2.1). The icewine model wine solution contained 11.57 gIL tartaric acid 

(EMD Chemical Inc., Darmstadt, Germany), 153 gIL fructose (Caledon; Georgetown, 

ON), 11 % (v/v) ethanol (Commercial Alcohols Inc.; Brampton, ON), with a pH 3.61. 

Standard curve concentrations and compounds were quantified based on the ratio of the 

peak area of the compound relative to the peak area of the internal standard to determine 

the concentration of the analytes. Analysis was run in duplicate with relative standard 

deviation calculated. Odour activity values (OA V) for the compounds in each wine were 

calculated by dividing the concentration by its sensory threshold, a value greater than one 

indicated the compound contributed to the aroma of the wine. 

Statistical analysis. All statistical analysis was performed using XLSTAT 

(Addinsoft, Paris, France) statistical software. To determine if differences exist between 

crop level for must and wine chemical variables a two factor (treatment x rep)·analysis of 

variance (ANOV A) was performed. Least significant difference (LSD) values were 

determined for significant attributes (p < 0.05). A three factor ANOVA (crop level x 

fermentation rep x GC rep) with two-way interactions was used to determine if 

differences existed between aroma compounds in crop level wines (p < 0.05). Mean 

scores and LSD were calculated for aroma compounds that differed by crop level 

treatments. 

The mean concentration of the aroma compounds was analyzed by principal 

components analysis (PCA) for each fermentation replicate using the correlation matrices 

to determine the compounds which best describe the variation due to crop level. Next, 

canonical variant analysis (CVA) using a stepwise forward model (p < 0.05) was used to 

determine if icewines from different crop level treatments could be differentiated based 
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on difference in the aroma compounds. Only those attributes that differed in 

concentration by crop level were included in the PCA and CV A. 

Results 

Must chemical variables. For both cultivars, control treatments had lower pH 

and higher T A than TFS or TV wines over two vintages (Table 4.1). Vidal control 

icewines had pH of 3.4 vs. 3.55 for the thinned treatments, and TA values of 8.6 gIL and 

8.3 gIL, respectively. TA values were highest in the control treatments for both cultivars 

(Vidal 8.60 giL in 2003 and 8.74 gIL in 2004; Riesling 10.25 gIL and 9.02 gIL in 2003 

and 2004, respectively) and lowest in the TV wines (Vidal 8.25 gIL in 2003 and 7.53 gIL 

in 2004; Riesling 9.23 gIL and 7.75 gIL in 2003 and 2004, respectively). 

Wine chemical variables. Differences were found between treatments in both 

Vidal and Riesling wines (Table 4.2). Similar patterns for pH and TA were found in the 

finished wines as previously described in the musts, with control treatments having lower 

pH and higher T A than TFS or TV wines for both cultivars over two vintages. However 

there were some exception; neither pH nor T A were different for the 2004 Riesling 

icewines, likely due to the desiccation of the fruit. Another exception was the 2003 Vidal 

icewines, where the TV treatment had a TA of 9.13 giL, which was higher than the 

control (TA = 8.93 gIL). Glycerol concentrations were also higher in control icewines 

from the 2003 vintage for both cultivars; however, this result was not found in the 2004 

vintage. Control wines had glycerol concentration of 14.01 gIL for Vidal and 34.17 giL 

for Riesling, while the concentration was 12.70 giL and 32.28 gIL for the TFS wines, and 

13.64 gIL and 30.99 gIL for the TV wines for Vidal and Riesling, respectively. The 
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much higher glycerol concentration found in the Riesling icewines is likely due to the 

condition of the fruit upon harvest, which was very desiccated. 

Vidal aroma compounds. Analysis of variance. Vidal crop level icewines 

differed (p<0.05) for 17 of the 24 aroma compounds identified in the top 15 in 2003 

(Table 4.3) and 23 of the 24 compounds in 2004 (Table 4.4). Compounds that did not 

differ by crop level in 2003 were ethyl valerate, ethyl hexanoate, l-octanol, phenethyl 

alcohol, nerol oxide, ethyl octanoate, and 'Y-nonalactone. In 2004 only ethyl butyrate did 

not differ by cropping level. 

Vidal icewines from 2003 had higher concentrations of aroma compounds in the 

control (fully cropped) and TV treatments and lowest concentration for TFS wines (Table 

4.3). The opposite was found in 2004 when almost all the aroma compounds had the 

highest concentration in the TFS treatment compared to the control and TV. In 2004 only 

ethyl 2-methylbutyrate, decanal, ~-damascenone and geranyl acetone did not have the 

highest concentration in the TFS treatment, all four compounds had concentrations 

between the control and TV treatments. 

The OA V were cakulated for all compounds in the three Vidal crop level 

treatments (Table 4.4). In 2003 the following compounds had the highest OA V in 

descending order; ~-damascenone, ethyl octanoate, cis-rose oxide, l-octen-3-ol, ethyl 

hexanoate and isoamyl acetate. Eight other compounds--ethyl isobutyrate, 4-

vinylguaiacol, I-heptanol, ethyl butyrate, ethyl valerate, ethyl 2-methylbutyrate, 

phenethyl alcohol and linalool--were also found above their sensory threshold (OAV> 1) 

in 2003 but their odour potency values were not consistent across treatments. In 2004, 

the five compounds with the highest 0 A V s across all treatments were .~-damascenone, 1-
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octen-3-ol, ethyl octanoate, cis-rose oxide, and ethyl hexanoate. p-Damascenone had the 

highest OA V for all treatments, followed by cis-rose oxide in the two thinned treatments 

and 1-octen-3-o1 in the fully cropped treatment. Other compounds found above their 

sensory threshold in all treatments were ethyl 3-methylbutyrate, 4-vinylguaiacol, isoamyl 

acetate, ethyl valerate, ethyl isobutyrate, 1-heptanol, ethyl butyrate, phenethyl alcohol, 

ethyl2-methylbutyrate and linalool. 

Principal components analysis. The PCA of the 2003 Vidal crop level aroma 

compounds explained 75.2 % variation on F1, 41.7%, and F2 with 33.5% (Figure 4.1). 

Geranyl acetone was inversely correlated with ethyl 2- and 3- methylbutyrate, decanal, 

and ethyl phenylacetate. The latter four compounds along with acetophenone and ethyl 

isobutyrate were associated with the fully cropped treatment. The TFS and TV replicates 

1&2 were located together on the PCA and negatively loaded on F1 and F2 and were 

inversely related to 1-octen-3-ol, 1-hexanol, ethyl benzoate and 1-heptanol. Ethyl 

butyrate and p-damascenone were positively associated with the two other TV replicates. 

The other two TFS replicates were positively associated with geranyl acetone, 4-

vinyl guaiacol, linalool and cis-rose oxide and positively loaded on F2. 

The PCA looking at the aroma compounds above sensory threshold (OA V> 1) for 

the 2003 Vidal icewines explained 82.5% of the variation on F1 and F2. F1 explained 

45.7 % of the variation and it separated the control treatments from TFS wines. 

Therefore, the control treatments were associated with attributes positively loaded on F1 

and F2 such as p-damascenone, ethyl 2- and 3- methylbutyrate, ethyl isobutyrate, ethyl 

butyrate and 1-heptanol. The TFS treatments were associated with those compounds 

loaded positively on F1 and negatively on F2 such as 1-octen-3-ol, isoamyl acetate, 
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linalool, cis rose oxide and 4-vinylguaiacol. While ethyl hexanoate and ethyl octanoate 

were found much higher than the sensory threshold, their concentrations did not differ by 

crop level treatment and they were omitted from the PCA. 

The PCA of the 2004 Vidal crop level aroma compounds explained 88.6% of the 

variation in the data (Figure 4.1). All attributes, with the exception of acetophenone, 

were loaded on Fl and F2 therefore only these two factors were retained. Factor 1 

explained 78.8% of the variation and was positively loaded with 20 of the aroma 

compounds. Factor 2 explained 9.8% of the variation, and only geranyl acetone was 

heavily loaded on this factor. Decanal was not well described by any factor. Geranyl 

acetone was inversely correlated to decanal and acetophenone was inversely correlated to 

ethyl 2- and 3- methylbutyrate. Otherwise, all aroma compounds were positively loaded 

on Fl. Most aroma compounds were either associated with TFS treatments 1&2 or 3&4 

and were loaded positively on Fl and F2, or they were associated with control and TV 

replicates 3&4 and loaded positively on Fl and negatively on F2. Isoamyl acetate, cis­

rose oxide, nerol oxide, 4-vinylguaiacol, ethyl isobutyrate, linalool and y-nonalactone 

were inversely associated with control replicates 1&2 and 5&6. Ethyl valerate, 1-

hexanol, l-octanol and phenethyl alcohol were inversely related to the TFS and TV 1&2. 

It is worthy of note that treatments did not sort based on crop level but by replicate (i.e. 

block). Replicates 1&2 and 3&4 were found to group together regardless of crop level 

and were inversely related on Fl. 

A PCA of the 2004 Vidal aroma compounds found above sensory threshold 

(OAV>I) that also differed by ANOVA was conducted and explained 93.8% of the 

variation on two factors: Fl with 86.3% and F2 with 7.4% of the variation. Fourteen 
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compounds were included, and all were heavily loaded on F1 and showed a similar 

pattern the PCA of all aroma compounds. p-Damascenone, ethyl2-and 3-

methylbutyrate, phenethyl alcohol and ethyl valerate were positively associated with 

control and TV 3&4 and negatively correlated with TFS 1&2 and TV 1&2 and 3&4 and 

loaded positively on F1 and F2. Ethyl octanoate, ethyl hexanoate, ethyl octanoate and 1-

heptanol were negatively associated with control replicates 1&2 and 5&6 and loaded 

positively on F1 and negatively on F2. 

CV A was used to separate the crop level treatments, but unfortunately with only 

three treatments the maximum number of factors that could be used was two. The CV A 

could not be run on GC replicates for each crop level treatment due to co-linearity of the 

data set; too many of the variables were highly correlated resulting in redundancy and 

overlap. This is evident by looking at the PCA correlation matrix. However based on 

two factors, the crop level treatments differed from one another in 2003 and 2004. In 

2003, fully cropped and TV wines differed from TFS but not from each other (Figure 

4.2). The TFS wines were associated with linalool, cis-rose oxide, geranyl acetone and 4-

vinylguaiacol. In 2004, all crop level treatments differed from one another, and most 

aroma attributes were associated with TFS wines (Figure 4.2). 

Riesling aroma compounds. Analysis of variance. Riesling crop level icewines 

differed (p < 0.05) for all attributes in 2003 (Table 4.6) and for 22 or 23 compounds in 

2004, (Table 4.7); only 2-phenethyl acetate was not different in 2004. 4-Vinylguaiacol 

was not detected in any of the wines in 2003 but was detected in 2004 and differed with 

crop level, having the highest concentration in TV wines and lowest concentration in the 

fully cropped treatment. In both 2003 and 2004, the majority of the ar.oma compounds 
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had the highest concentration in the TV treatments and the lowest concentration in TFS 

wines. Only geranyl acetone had the lowest concentration in TV wines in both 2003 and 

2004. 

The odour potency of the Riesling crop level icewines was determined by 

calculating their OAVs (Table 4.8). In 2003, the most odour potent compounds across all 

treatments, in descending order, were B-damascenone, ethyl octanoate and ethyl 

hexanoate. Eight other compounds were found above their sensory threshold (OAV>l) 

in all treatments ethyl isobutyrate, ethyl 3-methylbutyrate, l-octen-3-ol, cis-rose oxide, 

ethyl butyrate, ethyl cinnamate, linalool, and phenethyl alcohol. In general, the profile of 

aroma compounds found above their sensory threshold (OAV>l) in 2004 was similar to 

2003 (Table 4.7). The compounds with the highest OAV across all cropping levels in 

2004 were B-damascenone, ethyl octanoate, ethyl hexanoate and cis-rose oxide. The only 

differences between 2003 and 2004 in terms of odour potent compounds were 4-

vinylguaiacol, which was found above its sensory threshold across all treatments in 2004, 

and B-ionone, which was found above its sensory threshold (OAV>l) in 2004 in the fully 

cropped and TFS treatments, but below its sensory threshold in the 2004 TV wines and 

all crop levels in 2003. 

Principal components analysis. The PCA of the 2003 Riesling crop level 

icewines explained 83.7% of the variation on two factors, with Fl and F2 accounting for 

65.8% and 17.9% respectively (Figure 4.3). Most aroma compounds were positively 

loaded on F1, except of geranyl acetone which was negatively loaded. Four compounds 

were associated with F2, acetophenone, cis-rose oxide, ethyl cinnamate and B-ionone. 

Geranyl acetone was associated with TFS and inversely correlated to ~-damascenone, 
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ethyl hexanoate, ethyl octanoate, ethyl phenyl acetate and g-nonalactone. Most aroma 

compounds were heavily loaded on F1 and associated with TV. ~-Damascenone was 

heavily loaded on F1 and was highly correlated with 1-octen-3-ol, ethyl hexanoate, ethyl 

benzoate, ethyl octanoate, ethyl phenyl acetate, phenethyl alcohol and ,),-nonalactone. 

The PCA of the 2003 Riesling crop level aroma compounds found above their 

sensory threshold (OA V> 1) explained 86.3% of the variations on two factors, with F1 

and F2 accounting for 66.3% and 19.9% ofthe variation in the data, respectively. All but 

two of the aroma compounds found above their sensory threshold were highly correlated 

and heavily loaded on F1 in the positive direction. These compounds were separated by 

F2 with ~-damascenone highly correlated with 1-octen-3~ol, ethyl octanoate and ethyl 

hexanoate and inversely associated with TFS. Linalool was highly correlated with ethyl 

butryrate, ethy-3-methylbutyrate, isobutyrate and phenethyl alcohol and most strongly 

associated with TV wines. Two compounds were loaded on F2, cis-rose oxide and ethyl 

cinnamate, and they were inversely correlated to each other. 

Due to the limited volumes of Riesling icewines produced in 2004, only three 

non-replicated wines were ultimately available for aroma compound analysis. As a 

result, the maximum number of factors was two, which explained 100% of the variation. 

However, based on the PCA, all the compounds, with the exception of ~-ionone, were 

positively loaded on F1, which explained 85.8% ofthe variability (Figure 4.3). Ethyl 

isobutyrate and ~-ionone were equally loaded on F1 and F2, and acetophenone and 4-

vinylguaiacol were heavily loaded on F2, which explained the remaining 14.2% ofthe 

variation. Most compounds were associated with TV wines on Fl. 
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The PCA of the 2004 Riesling crop load aroma compounds found above their 

sensory threshold (OA v> 1) explained 85.8% of the variability on F1 and 14.2% on F2. 

Two compounds, ethyl isobutyrate and 4-vinylguaiacol, were equally loaded on F1 and 

F2, otherwise all compounds were heavily loaded on Fl. ~-Ionone was associated with 

the fully cropped treatment and was negatively loaded on F1 and inversely correlated to 

4-vinylguaiacol and ethyl isobutyrate. All other compounds were positively loaded on F1 

and highly correlated to each other. 

CVA could only be used to separate the 2003 treatments since there were not 

enough data points for the 2004 icewines (Figure 4.4). Crop level was a discriminating 

factor for all three treatments; most aroma compounds were associated with the TV 

treatment. 

Discussion 

Must and wine chemical variables: Control (fully cropped) treatments had 

lower pH and higher TA in must and wine samples then thinned treatments, TFS or TV, 

these finding are in agreement with several other studies (Kliewer and Weaver 1971, 

Reynolds et al. 1994b, Reynolds et al. 2007). This is likely the result of more clusters per 

vine which will delay ripening and result in berries with higher T A. 

Cluster thinning normally increases the sugar concentration of the berries because 

thinned vines have higher °Brix at harvest (Reynolds et al. 2007). However, in the case 

of icewine the soluble solids concentration was standardized at around 35 °Brix because 

the grapes were pressed frozen until they reached the desired sugar concentration. The 
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soluble solids concentration at commercial harvest for table grapes has little effect on the 

concentration of the icewine must and resultant wine. 

Effect of crop level on Vidal aroma compounds. Although concentration 

differences existed between treatments, no clear trends were seen with respect to cluster 

thinning in the 2003 Vidal icewines (Table 4.3). This suggests that crop level did not 

have an effect on the net aromatic profile of the wines, which is in agreement with studies 

by Keller et al. (2005) and Reynolds et al. (1994b) who both found that thinning had little 

effect on berry composition. In contrast, the 2004 vintage of Vidal icewines found TFS 

wines had the highest concentration for almost all aroma compounds, compared to TV 

and control (Table 4.4). This suggests that thinning can have an effect on the aroma 

profile of the wines because the TFS wines were likely more aromatic. 

An explanation for the differences in aroma compound composition due to 

vintage is best explained through temperature variation in the growing season. Bravdo 

(1984) found a difference between crop load and harvest date in all thinning treatments in 

Carignane vineyards when the clusters were thinned just after bloom, the lower the crop 

load the earlier the harvest date. While the grapes were all harvested at the same date in 

this study, the onset of cold temperatures and the first freeze event should be considered 

as the time when maturation stops in icewine grapes. 

The 2003 growing season in Niagara had an average number of growing degree 

days (GDD); June was cooler than normal but July and September were close the mean 

temperature for the region, and August was warmer than usual. The 2004 growing 

season was cooler than average in June, July and August with September being on 

slightly warmer than the mean. In the warmer 2003 vintage the effect of cluster thinning 
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in TFS vines was minimized because all treatments achieved optimal ripeness and the 

uniformity of the grapes at harvest negated the effects of cluster thinning. The 2004 

growing season was cool through the summer, which slowed the ripening of the berries. 

The reduction of crop stress in TFS vines advanced maturation and resulted in riper fruit 

with higher concentrations of aroma compounds at harvest in this treatment compared to 

full y cropped or TV. 

Since we were studying the effect of cluster thinning on icewine grapes it may be 

more important to consider temperature variations from maturation, commercial table 

wine harvest, in October to icewine harvest in December and January. The temperature 

variation during the hang time of icewine grapes will ultimately effect the composition of 

the wine. By looking at the temperature minimum and maximum from October to harvest 

(J anuary), one can provide a plausible explanation of why cluster thinning only had an 

effect in 2004. The temperature data, specifically the daily highs and lows for October, 

November and December over the two vintages, suggests that the growing season was 

cooler in 2004 and it also had more freezing events (Figure 4.5). These freeze events 

would have frozen the constituents inside the grape, and therefore less desiccation likely 

occurred; hence their composition would not have changed much due to hang time. This 

prolonged freezing would have preserved any differences due to cluster thinning and the 

state of maturity in the grapes before the onset of cold temperature in October. The 

minimum temperatures in November and December 2004 were below zero 12 and 25 

days respectively compared to only 8 and 23 days in 2003. 

The 2003 vintage was warmer throughout the growing season and the hang time 

period. From October to December, the 2003 grapes experienced greater fluctuations in 
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temperature resulting in more freeze and thaw events than 2004. The freeze and thaw 

events and overall warmer temperatures in 2003 would have led to increased desiccation 

and therefore further concentration of aroma compounds in all treatments, negating the 

effects of cluster thinning past regular commercial harvest. There were 13 freeze and 

thaw events from October 7 to Dec. 31 in 2003 versus only eight in 2004. The greater 

number and larger temperature differences (between minimum and maximum) in freeze 

and thaw events in 2003 versus 2004 likely resulting in more desiccation of the fruit and 

concentration of aroma compounds (Figure 4.5). 

From the differences in the growing season it could be suggested that the onset of 

cold and number and duration of freeze events has more of an effect on the volatile 

composition of icewine grapes than cluster thinning. It is well known that aroma 

compound volatiles increase up until maturation and then tend to drop off in 

concentration (Marais and Wyk 1986, Reynolds 1989b, Coelho et al. 2007). However, 

these studies were all on table wine grapes that do not experience the hang time or freeze 

and thaw events for several months past maturation like icewine grapes. Several more 

years of data will be required to determine the exact effect of cluster thinning on the 

aroma compound development Vidal icewine grapes and wine. 

Effect of crop level on Riesling aroma compounds. Cluster thinning at 

veraison resulted in the highest aroma compound concentration in both the 2003 and 

2004 vintages. The TV treatment had the highest concentration for most of the aroma 

compounds, with 18 of 22 compounds in 2003 (Table 4.6) (4-vinylguaiacol which was 

not detected in 2003) and 20 of the 23 compounds in 2004 (Table 4.7). This was not 

unexpected since cluster thinning later in the season, such as veraison: has been shown to 

149 



allow assimilates to be directed to the fruit, increasing soluble solids and aroma 

compounds, and not towards the roots and leaves increasing vigor (Keller et al. 2005). If 

vines are thinned too early in the season, they can compensate for the loss in fruit or may 

become too vigorous with negative effects on canopy microclimate and fruit quality 

(Jackson and Lombard 1993). The net effect in reducing the total number of cluster at the 

onset of ripening has been show to result in higher concentration of aroma compounds 

(Sinton et al. 1978, Balasubrahmanyam et al. 1979, McCarthy etal. 1985) and increased 

sugar accumulation in the fruit (Ferree et al. 2005, Reynolds et al. 2007). When cluster 

thinning was applied at different times throughout the growing season from bloom to 

veraison in Vidal and Chardonnay vines, fruit quality increased the most when cluster 

thinning was applied just prior to veraison (Ferree et al. 2005). 

The TFS treatment had the lowest concentration for almost all aroma compounds, 

with the exception of geranyl acetone having its highest concentration in both 2003 and 

2004 and ethyl cinnamate also having the highest concentration in 2003 TFS. These 

results are a contradiction from the results found in the Vidal wines, the most likely 

explanation being differences in cultivars and fruit quality. 

Keller et al (2005) investigated the effect of cluster thinning on three deficit­

irrigated cultivars and found response differences between cultivars with Riesling being 

less responsive to thinning than Chenin blanc or Cabemet Sauvignon. Since this study 

was looking at the effect of irrigation, perhaps Riesling was less responsive because it is a 

more drought tolerant cultivar (Gaudillere et al. 2002), and therefore limitation of water 

supply did not affect berry composition. While our study found Riesling icewine grapes 

to be responsive to cluster thinning, the vines were not irrigated and tlie conditions were 
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not dry. The study does highlight that response to cluster thinning could be related to 

differences in cultivar, which can affect the number of clusters per vine, cluster and berry 

size, maturation times and aroma compound development. 

Differences in the growing season and hang time period did not have the same 

effect on Riesling wines as seen in Vidal. This can be related to sub-standard fruit quality 

in the Riesling grapes in both vintages. At icewine harvest, the Riesling grapes were 

highly desiccated compared to the Vidal grapes. The higher glycerol concentration, of 

the wine was also an indication of desiccated fruit, which activated the glycerol stress 

response in the yeast during fermentation (Table 4.2). Because of the dehydration present 

in all treatments the effect of freeze and thaw cycles was less evident because further 

significant desiccation could not occur .. 

Odour activity values: Any compound found above its sensory threshold, was 

found above its sensory threshold in all treatments. This suggests that while 

concentration ranges varied, compounds were odour-potent in all treatments. ~­

Damascenone was the most odour-potent compound in all treatments; its concentration 

was highest in the control (fully cropped) treatment in both 2003 and 2004 for Vidal and 

Riesling. 

Conclusions 

Vidal icewines had the highest concentration of aroma compounds in the control 

and TV wines in 2003 and in TFS wines in 2004. Almost all compounds were found to 

differ in Vidal: 17 of 24 in 2003 and 23 of 24 in 2004. The compounds with the highest 

odour activity values in Vidal were ~-damascenone, ethyl octanoate, cis-rose oxide, 1-

octen-3-01, ethyl hexanoate and isoamyl acetate in 2003 and ~-damascenone, 1-octen-3-
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01, ethyl octanoate, cis-rose oxide, and ethyl hexanoate in 2004. PCA found~-

damascenone, ethyl 2- and 3- methylbutyrate, ethyl isobutyrate, ethyl butyrate and 1-

heptanol to be correlated and associated with the control in 2003. In 2004, PCA found 

most attributes positively loaded on Fl and associated with vineyard replicate (block) and 

not crop level treatment. Riesling icewines differed for all aroma compounds in 2003 and 

22 of 23 in 2004. In both years, the majority of the aroma compounds had the highest 

concentration in TV wines and the lowest concentration in TFS wines. Odour activity 

values in Riesling icewines showed that ~-damascenone, ethyl octanoate and ethyl 

hexanoate were the most odour potent compounds both 2003 and 2004, while cis-rose 

oxide was also highly odour potent in 2004. The PCA from the 2003 and 2004 Riesling 

icewine showed most attributes loaded on Fl and associated with TV wines. Freeze and 

thaw events in November and December are likely more important in aroma compound 

development than crop level. Further investigation into how the effect freeze and thaw 

events and berry desiccation impact aroma compound development in icewine should be 

undertaken to fully understand the impact of weather on flavor development. 
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Table 4.1. Impact of crop level treatment on Vidal and Riesling icewine must chemical 
composition, Garphil Farms, St. Catharines, ON, and Lambert Farms, Niagara-on-the­
Lake, ON, 2003-04. 

Cultivar Year Treatment Brix eH TA (giL) 

Vidal 2003 C 35.3 ± 1.2 3046 ± 0.08a 8.60 ± 0.38a 
TS 35.3 ± 0043 3.60 ± 0.13c 8.26 ±0.32b 
TV 35.3 ± 0.17 3.51 ± 0.14b 8.25 ±0.36b 

Significance ns *** *** 

2004 C 3504 ± 0.25a 3040 ± 0.07a 8.74 ± 0.50c 
TS 35.8 ± OAOb 3.56c ± 0.05 8.27 ± 0.37b 
TV 35.9c ± 0043 3.55b ± 0.08 7.53 ± 0.36a 

Significance *** *** *** 

Riesling 2003 C 35.8 ± 0.05a 3.33 ± 0.04a 10.2 ± 1.Oa 
TS 35.5 ± 0.04c 3.35 ± 0.01b 9.65 ± 0.98b 
TV 35.6 ± 0.09b 3.37 ± 0.02c 9.29 ± 0.80c 

Significance *** *** *** 

2004 C 34.9 ± 0.83b 3.52 ± 0.04a 9.02 ± 0.39c 
TS 35.5 ± 0.25c 3.56 ± 0.02b 8.92 ± 0.22b 
TV 34.5 ± 0.50a 3.60 ± 0.01c 7.75 ± 0.16a 

Significance ** *** *** 

ns, **, ***: not significant or significant at p < 0.01 and 0.001, respectively. Means with 
the same letter are not significantly different. 
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Table 4.2. Impact of crop level treatment on Vidal and Riesling icewine chemical 
composition, Garphil Farms, St. Catharines, ON, and Lambert Farms, Niagara-on-the-
Lake, ON, 2003-04. 

Thin at 
Control Thin at Set Veraison Significance 

Vidal 
2003 pH 3.69 ± 0.07a 3.83 ± 0.08c 3.72 ± 0.13b *** 

A420 0.56 ± 0.05 a 0.80 ± 0.08b 0.96 ± 0.05c *** 

TA (giL) 8.93 ± 0.24a 8.84 ± 0.10a 9.13 ± 0.22b ** 

Acetic acid (giL) 0.84 ± 0.06 0.83 ± 0.02 0.86 ± 0.03 ns 

Glycerol (giL) 14.1 ± 1.1c 12.7 ± 0.27a 13.6 ± 0.28b *** 

Ethanol (% v/v) 15.7 ± 0.60a 15.8 ± 0.21a 15.5 ± 0.37b *** 

Residual Sugar (giL) 90.7 ± 8.9a 97.4 ± 2.4b 102 ± 2.3c *** 

Vidal 
2004 pH 3.58 ± 0.01a 3.70 ± 0.06c 3.68 ± 0.05b *** 

A420 0.34 ± 0.01a 0.47 ± 0.02c 0.41 ± 0.03b *** 

TA (giL) 10.0 ± 0.24c 9.64 ± 0.20b 9.10 ± 0.17a *** 

Acetic acid (giL) 0.74 ± 0.02b 0.72 ± 0.02a 0.74 ± 0.01b ** 

Glycerol (giL) 10.8 ± 0.38b 9.85 ± 0.50a 10.8 ± 0.58b *** 

Ethanol (% v/v) 11.1 ± 0.20a 11.1 ± 0.53b 11.2 ± 0.42b * 

Residual Sugar (giL) 163 ± 6.4a 167 ± 6.3b 167 ± 7.1b ** 

Riesling 
2003 pH 3.50 ± 0.01b 3.49 ± 0.01a 3.52 ± 0.01c *** 

A420 0.39 ± 0.02a 0.43 ± 0.04b 0.48 ± 0.06c *** 

TA (giL) 11.5 ± 0.64a 10.9 ± 0.80b 10.8 ± 0.63b *** 

Acetic acid (giL) 0.80 ± 0.06a 0.79 ± 0.03a 0.75 ± 0.08b * 

Glycerol (giL) 34.2 ± 0.72c 32.3 ± 1.8b 31.0 ± 0.33a *** 

Ethanol (% v/v) 10.6 ± 0.47c 10.4 ± 0.66b 9.65 ± O.77a *** 

Residual Sugar (giL) 132 ± 14a 149 ± 11c 139 ± 23b *** 

Riesling 
2004 pH 3.66 ± 0 3.68 ± 0 3.67 ± 0 ns 

A420 0.42 ± 0 0.39 ± 0 0.38 ± 0 ns 

TA (giL) 10.7±0.14 11.0 ± 0.05 10.3 ± 0.10 ns 

Acetic acid (giL) 0.70 ± 0.01 0.80 ± 0 0.68 ± 0.01 ns 

Glycerol (giL) 23.5 ± 0.15 24.2 ± 0.19 24.9 ± 0.48 ns 

Ethanol (% v/v) 11.2 ± 0.04a 11.7 ± 0.03b 12.1 ± 0.03b * 

Residual Sugar (giL) 134 ± 1.2a 132 ± 0.47a 115 ± 0.24b * 

ns, *, **, ***: not significant or significant at p < 0.05, 0.01 and 0.001, respectively. 
Means with the same letter are not significantly different. 
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Table 4.3. Impact of crop level treatment on 2003 Vidal icewine aroma compounds 
concentrations (~glL) determined by GC-MS, Garphil Farms, St. Catharines, ON, 2003-
04. 

Thin at Thin at 
NO Compounds Control Set Veraison Significance F-value p-value 

1 ethyl isobutyrate 77.3 a 72.7b 76.0 a ** 37.0 0.003 
2 ethyl butyrate 74.2 a 70.5b 68.4 b ** 18.1 0.D1 
3 ethyl 2-methylbutyrate 30.1 a 23.0b 30.6 a *** 160 0.0002 
4 ethyl 3-methylbutyrate 31.7 a 27.6b 31.7 a *** 92.9 0.0004 
5 1-hexanol 1202 c 1229b 1242 a *** 110 0.0003 
6 isoamyl acetate 189 b 202 a 181 c *** 64.1 0.0009 
7 ethyl valerate 4.97 a 5.03 a 5.30 a ns 6.86 0.051 
8 I-heptanol 13.0b 12.4 c 14.1 a ** 45.2 0.002 
9 1-octen-3-o1 35.6b 40.0 a 41.1 a * 9.75 0.029 

10 ethyl hexanoate 453 a 465 a 468 a ns 1.30 0.368 
11 acetophenone 4.15 a 1.51b 1.57 b * 17.6 0.D1 
12 l-octanol 9.66 a 9.68 a 9.65 a ns 0.25 0.791 
13 linalool 32.0b 39.8 a 30.5b ** 42.0 0.002 
14 cis-rose oxide 8.37 b 10.3 a 8.60b *** 275 <0.0001 
15 phenethyl alcohol 19694 a 19108 a 19610 a ns 3.15 0.15 
16 neroloxide 16.9 a 16.1 a 17.4 a ns 6.53 0.055 
17 ethyl benzoate 1.12 a 0.93 b 0.88 b * 17.0 0.D11 
18 ethyloctanoate 861 a 947 a 904 a ns 5.08 0.08 
19 decanal 1.50 b 1.36 c 1.70 a *** 88.9 0.0005 
20 ethyl phenylacetate 5.78 a 5.21 b 5.74 a ** 43.2 0.002 
21 4-vinylguaicol 51.2 c 59.2 a 55.9b *** 476 <0.0001 
22 Y nonalactone 3.42 a 3.46 a 3.54 a ns 5.63 0.069 
23 P damascenone 46.7 a 39.3 b 44.7 a * 13.7 0.016 
24 geranyl acetone 0.34 b 0.42 a 0.34 b *** 214 <0.0001 

ns, *, **, ***: not significant or significant at p < 0.05, 0.01 and 0.001, respectively. 
Means with the same letter are not significantly different. 
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Table 4.4. Impact of crop level treatment on 2004 Vidal icewine aroma compound 
concentrations (J..lglL) determined by GC-MS, Garphil Farms, St. Catharines, ON, 2003-
04. 

Thin at Thin at 
NO Compounds Control Set Veraison Significance F-value p-value 

1 ethyl isobutyrate 80.4 c 86.8 a 82.6b ** 37.6 0.003 
2 ethyl butyrate 77.1 a 80.8 a 78.2 a ns 2.25 0.221 
3 ethyl 2-methylbutyrate 25.8 a 25.0b 23.1 c ** 61.1 0.001 
4 ethyl 3-methylbutyrate 29.5 a 29.6 a 27.5 b ** 52.0 0.001 
5 I-hexanol 1386 c 1462 a 1309b *** 79.1 0.0006 
6 isoamyl acetate 208 c 266 a 241 b *** 219 <0.0001 
7 ethyl valerate 8.90b 10.0 a 8.40b ** 35.6 0.003 
8 I-heptanol 14.0b 17.8 a 13.3 b ** 37.6 0.003 
9 l-octen-3-o1 208 b 279 a 198 b *** 149 0.0002 

10 ethyl hexanoate 564 b 659a 569b ** 19.6 0.009 
11 acetophenone 1.60 b 2.40 a 1.50b ** 25.3 0.005 
12 l-octanol 10.5 a 11.0 a 9.91 b * ·14.5 0.015 
13 linalool 32.3 b 43.1 a 30.8 b *** 199 <0.0001 
14 cis-rose oxide 37.2 c 67.4 a 43.5 b *** 385 <0.0001 
15 phenethyl alcohol 30253 b 32291 a 26416 c ** 39.1 0.002 
16 neroloxide 26.3 b 44.2 a 27.9b *** 334 <0.0001 
17 ethyl benzoate 1.10b 1.40 a 0.9 c *** 103 0.0004 
18 ethyl octanoate 997b 1201 a 1021 b * 8.06 0.04 
19 decanal 1.70 a 1.3b 0.62c *** 64.5 0.0009 
20 ethyl phenylacetate 9.lOa 8.9 a 7.70b ** 58.0 0.0011 
21 4-vinylguaiacol 82.5 b 95.8 a 80.0b ** 71.4 0.0007 
22 "{- nona lactone 8.40 c 10.6 a 9.24 b ** 53.3 0.0013 
23 ~- damascenone 32.0 a 29.3 b 25.7 c ** 25.0 0.005 
24 geranyl acetone 0.30c 0.35b 0.38 a *** 108 0.0003 

ns, *, **, ***: not significant or significant at p < 0.05, 0.01 and 0.001, respectively. 
Means with the same letter are not significantly different. 
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Table 4.5. Impact of crop level treatment on odour activity values (OAV) of aroma compounds in Vidal icewines and their published 
sensory threshold values, Garphil Farms, St. Catharines, ON, 2003-04. 

2003 2004 
OAV OAV 

Thin at Thin at Thin at Thin at Threshold 
NO Compound Control Set Veraison Control Set Veraison (JlgIL) 

1 ethyl isobutyrate 5.15 4.85 5.07 5.36 5.79 5.51 15 
2 ethyl butyrate 3.71 3.52 3.42 3.85 4.04 3.91 20 
3 ethyl 2-methylbutyrate 1.67 1.28 1.70 1.44 1.39 1.28 18 
4 ethyl 3-methylbutyrate 10.6 9.20 10.6 9.83 9.86 9.18 3 
5 1-hexanol 0.15 0.15 0.16 0.17 0.18 0.16 8000 
6 isoamyl acetate 6.30 6.74 6.06 6.92 8.86 8.02 30 
7 ethyl valerate 3.31 3.35 3.54 5.93 6.63 5.60 1.5 
8 1-heptanol 4.34 4.13 4.69 4.68 5.92 4.42 3 
9 1-octen-3-ol 35.6 40.0 41.1 208 279 198 1 

10 ethyl hexanoate 32.4 33.2 33.5 40.3 47.1 40.7 14 
11 acetophenone 0.06 0.02 0.02 0.02 0.04 0.02 65 
12 l-octanol 0.09 0.09 0.09 0.10 0.10 0.09 110 
13 linalool 1.28 1.59 1.22 1.29 1.72 1.23 25 
14 cis-rose oxide 41.8 51.6 43.0 186 337 218 0.2 
15 phenethyl alcohol 1.41 1.37 1.40 2.16 2.31 1.89 14000 
16 neroloxide 0.01 0.01 0.01 0.01 0.02 0.01 3000 
17 ethyl benzoate 0.002 0.002 0.002 0.002 0.002 0.002 575 
18 ethyl octanoate 172 189 180 199 240 204 5 
19 decanal 0.75 0.68 0.85 0.87 0.63 0.29 2 
20 ethyl phenylacetate 0.08 0.07 0.08 0.12 0.12 0.11 73 
21 4-vinylguaicol 5.12 5.91 5.59 8.25 9.58 7.99 10 
22 . 'Y nonalactone 0.11 0.12 0.12 0.28 0.35 0.31 30 
23 ~ damascenone 934 786 894 639 585 513 0.05 
24 geranyl acetone 0.01 0.01 0.01 0.01 0.01 0.01 60 
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Table 4.6. Impact of crop level treatment on 2003 Riesling icewine aroma compound 
concentrations (JlglL) determined by GC-MS, Lambert Farms, Niagara-on-the-Lake, ON, 
2003-04. 

Thin at 
NO Compound Control Thin at Set Veraison Significance F-value p-value 

1 ethyl isobutyrate 204 b 205 b 214 a *** 281 <0.0001 
2 ethyl butyrate 137b 136 c 141 a *** 80.7 0.0005 
3 ethyl 3-methylbutytate 32.2b 31.2b 43.3 a *** 527 <0.0001 
4 I-hexanol 490b 475 c 502 a *** 157 0.0002 
5 l-octen-3-o1 7.70 a 6.41b 7.61 a *** 186 0.0001 
6 ethyl hexanoate 295 b 246c 342 a *** 114 0.0003 
7 acetophenone 1.89 c 1.95 b 1.96 a *** 356 <0.0001 
8 l-octanol 5.00b 4.50c 5.71 a *** 322 <0.0001 
9 linalool 41.5 c 42.6b 49.0 a *** 478 <0.0001 

10 cis-rose oxide 1.50 a 1.01c 1.20b *** 2866 <0.0001 
11 phenethyl alcohol 16733 b 16584 b 17671 a *** 104 0.0004 
12 neroloxide 27.8 c 31.2b 38.5 a *** 1156 <0.0001 
13 ethyl benzoate 1.4 b 1.21c 1.51 a *** 886 <0.0001 
14 ethyloctanoate 575b 425 c 670 a *** 61.8 0.0009 
15 dec anal 1.30b 0.60c 1.90 a *** 835 <0.0001 
16 ethyl phenylacetate 5.00b 4.61 c 5.40 a *** 1088 <0.0001 
17 2-phenethyl acetate 7.31 b 7.00c 8.10 a *** 1138 <0.0001 
18 4-vinylguaiacol ND ND ND 
19 y-nonalactone 15.9b 15.7 c 16.2 a *** 190 0.0001 
20 ~-damascenone 1O.9b 8.91 c 11.8a *** 630 <0.0001 
21 geranyl acetone 0.31b 0.36 a 0.27 c *** 260 <0.0001 
22 ethy I cinnamate 4.90c 5.70a 5.50b *** 195 0.0001 
23 ~-ionone 0.02 a 0.003 c 0.01 b *** 1010 <0.0001 

***: significant at p < 0.001. Means with the same letter are not significantly different. 
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Table 4.7. Impact of crop level treatment on 2004 Riesling icewine aroma compound 
concentrations (!J,g/L) determined by GC-MS, Lambert Farms, Niagara-on-the-Lake, ON, 
2003-04. 

Thin at Thin at 
NO Comeound Control Set Veraison Significance F-value e-value 

1 ethyl isobutyrate 199b 200 a 202 a * 16.6 0.024 
2 ethyl butyrate 141 b 139 b 151 a ** 34.8 0.008 
3 ethyl 3-methylbutytate 27.5 b 26.9 b 37.1 a ** 46.6 0.006 
4 1-hexanol 535 b 517 b 599 a ** 39.1 0.007 
5 1-octen-3-ol 10.8 b 9.80 b 13.9 a ** 54.1 0.004 
6 ethyl hexanoate 461 b 399.3 c 572 a ** 55.9 0.004 
7 acetophenone 1.91 a 1.88 b 1.88 a ** 42.7 0.006 
8 1-octanol 4.50 b 4.10 c 5.81 a *** 254 0.000 
9 linalool 43.7 b 42.9b 57.6 a *** 247 0.000 

10 cis-rose oxide 3.10 b 2.80c 3.50 a * 29.3 0.011 
11 phenethyl alcohol 17593 b 17169 b 18800 a ** 32.2 0.009 
12 neroloxide 17.3 b 16.7 b 23.8 a ** 159 0.001 
13 ethyl benzoate 1.60 b 1.41 c 1.90 a ** 129 0.001 
14 ethyl octanoate 882 b 803 b 1100 a ** 51.7 0.005 
15 decanal 0.55 b 0.22 c 0.67 a *** 563 0.000 
16 ethyl phenyl acetate 6.01 a 5.40 b 6.30 a * 24.9 0.013 
17 2-phenethyl acetate 7.70 7.80 7.92 ns 0.35 0.728 
18 4-vinylguaiacol 71.6 c 74.6 b 75.8 a ** 181 0.001 
19 y-nonalactone 17.2 b 16.5 c 17.5 a ** 47.2 0.005 
20 ~-dam ascenone 10.1 a 8.90 b 10.6 a * 18.1 0.021 
21 geranyl acetone 0.36 b 0.41 a 0.32 c *** 245 0.000 
22 ethyl cinnamate 4.71 b 4.62 b 5.00 a ** 37.9 0.007 
23 ~-ionone 0.22 a 0.14 b 0.03 c *** 468 0.000 

ns, *, **, ***: not significant or significant at p < 0.05, 0.01 and 0.001, respectively. 
Means with the same letter are not significantly different. 
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Table 4.8. Impact of crop level treatment on odour activity values (OA V) of aroma 
compounds in Riesling icewines and their published sensory threshold values, Lambert 
Farms, Niagara-on-the-Lake, ON, 2003-04. 

2003 2004 
OAV OAV 

Thin at Thin at Thin at Thin at Threshold 
NO Compound Control Set Veraison Control Set Veraison {Ilg/q 

1 ethyl isobutyrate 13.6 13.6 14.2 13.2 13.4 13.4 15 

2 ethyl butyrate 6.84 6.78 7.05 7.05 6.95 7.55 20 

3 ethyl 3-methylbutytate 10.74 10.4 14.4 9.17 8.96 12.4 3 

4 1-hexanol 0.06 0.06 0.06 0.07 0.07 0.07 8000 

5 1-octen-3-ol 7.66 6.36 7.56 10.8 9.83 13.9 1 

6 ethyl hexanoate 21.1 17.6 24.5 32.9 28.5 40.8 14 

7 acetophenone 0.03 0.03 0.03 0.03 0.03 0.03 65 

8 1-octanol 0.05 0.04 0.05 0.04 0.04 0.03 110 

9 linalool 1.66 1.71 1.96 1.75 1.72 2.30 25 

10 cis-rose oxide 7.48 5.08 5.83 15.3 13.9 17.5 0.2 

11 phenethyl alcohol 1.20 1.19 1.26 1.26 1.22 1.34 14000 

12 neroloxide 0.01 0.01 0.01 0.01 0.01 0.01 3000 

13 ethyl benzoate 0.002 0.002 0.003 0.003 0.002 0.003 575 

14 ethyl octanoate 115 85.0 134 176 161 220 5 

15 decanal 0.63 0.32 0.95 0.28 0.11 0.34 2 

16 ethyl phenyl acetate 0.07 0.06 0.07 0.08 0.08 0.09 73 

17 2-phenethyl acetate 0.03 0.03 0.03 0.03 0.03 0.03 250 

18 4-vinylguaicol 7.17 7.46 7.58 10 

19 y-nonalactone 0.53 0.52 0.54 0.57 0.55 0.58 30 

20 p-damascenone 218 179 237 202 178 212 0.05 

21 geranyl acetone 0.01 0.01 0.004 0.01 0.01 0.01 60 

22 ethyl cinnamate 4.48 5.18 4.99 4.27 4.14 4.56 1.1 

23 p-ionone 0.18 0.03 0.13 2.49 1.58 0.34 0.09 
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Figure 4.1. Chemical maps of 2003 and 2004 Ontario Vidal icewines produced from 
different crop levels, displaying variation in the products with principal component 
analysis. A: 2003; B: 2004. 
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Figure 4.2. Canonical variant analysis of 2003 and 2004 Ontario Vidal icewines produced 
from different crop levels, showing the separation between treatments and associated 
aroma compounds. A: 2003; B: 2004. 
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Figure 4.3. Chemical maps of 2003 and 2004 Ontario Riesling icewines produced from 
different crop levels, displaying variation in the products with principal component 
analysis. A: 2003; B: 2004. 
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Figure 4.4. Canonical variant analysis of 2003 Ontario Riesling icewines produced from 
different crop levels, showing the separation between treatments and associated aroma 
compounds. 
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Figure 4.5. Comparison of daily maximum, minimum and mean temperature data from 
October to December in 2003 (A-C) and 2004 (D-F), St. Catharines, ON. Highlights 
difference in temperature patterns during hang time of icewine grapes between the two 
years. 
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Chapter 5 
The Effect of Harvest Date and Crop Level on Vidal blanc and Riesling 

Icewines from the Niagara Peninsula: II. Relating Sensory and 
Instrumental Analysis 

Amy J. Bowen, Andrew G. Reynolds and Isabelle Lesschaeve 

Abstract 
We hypothesize that the freeze and thaw cycles endured by icewine grapes change their 
chemical and sensory profiles due to climatic events. The objective of this study was to 
determine the influence of harvest date and crop level on icewine sensory profiles and 
their interaction with chemical parameters. Harvest date (HD): Riesling and Vidal 
icewines were made from four HD; Harvest 1: 19 December; Harvest 2: 29 December; 
Harvest 3: 18 January; Harvest 4: 11 February (Vidal only). Crop level (CL): Riesling 
and Vidal icewines from three vineyard treatments [control (fully cropped), cluster thin at 
fruit set to one (basal) cluster per shoot (TFS), and cluster thin at veraison (TV)] were 
evaluated in a randomized block design for Riesling and Vidal cultivars over two 
seasons, 2003-04 and 2004-05. Triangle tests showed significant differences between HD 
and CL for both cultivars (p<0.05). Wines were then evaluated by descriptive analysis 
using 14 trained judges. Ten and eleven aroma"and flavor attributes were significantly 
different (p<0.05) in Vidal and Riesling HD icewines, respectively. For Vidal, later HD 
had significantly higher intensity scores for aroma and flavor descriptors than HI. For 
Riesling, HI wines had higher intensity ratings for fresh fruit descriptors whereas H 3 
wines were higher for dried fruit and nutty descriptors. Partial least squares regression 
(PLS) found Vidal icewines to be described by dried fruit/raisin and honey flavors and 
viscosity, these sensory attributes were correlated several aroma compounds and were 
associated with later HD. Riesling icewines had more complex interactions between 
sensory descriptors and aroma compounds. Sensory differences were also found in the 
CL icewines, thinned treatments were found to have higher intensity ratings of fruity, 

" honey, sherry and nut aroma and flavors in both cultivars. PLS showed sherry flavor the 
most important explanatory variable in 2003 correlated with 4-vinylguaiacol and banana 
flavor in 2004. No clear relationship was determined by PLS for Riesling. Harvest date 
and crop level do affect the sensory profile and chemical composition of icewine from the 
Niagara Peninsula. 

Key words: sensory analysis, partial least squares analysis, harvest decisions, cluster 
thinning 

Introduction 

Icewine is described as a wine style with intense aroma and flavors. However, 

very little is known regarding what effects the sensory properties of thjs wine style. The 

sensory profiles of icewines have previously been studied to determine the effect of yeast 
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strain (Erasmus et al. 2004, Kontkanen et al. 2005) and region of origin (Cliff et al. 2002, 

Nurgel et al. 2004) on sensory profiles and chemical variables (Setkova et al. 2007b, 

Soleas and Pickering 2007). 

Erasmus et al. (2004) studied the effect of yeast strain on the production of acetic 

acid, glycerol and sensory attributes of icewine. They found icewines produced with the 

yeast strains N96 and EC1118 were associated with high-quality icewine, had a light 

yellow colour and low sulfur-like aromas and were recommended as the most suitable 

strains for icewine production. Kontkanen et al. (2005) found Vidal icewines produced 

by direct inoculation with K1-V1116 without micronutrients were described with raisin, 

butter and spicy aromas whereas those with micronutrient were described as sweet in 

taste with honey and orange flavors. Icewines produced by the stepwise acclimatization 

without micronutrient were described with peach and terpene aromas and with 

micronutrient were described with pineapple and alcohol aromas and alcohol and honey 

flavors. 

The sensory properties of icewines have been shown to vary due to geographic 

location and vintage. Cliff et al. (2002) compared the sensory profiles of icewines from 

Ontario, British Columbia and Germany. Ontario icewines were associated with the 

highest fruit and floral aromas and golden copper colour. British Columbia icewines were 

rated high for sweetness, body/viscosity and intensity of aftertaste. German icewines 

were associated with a nutty/oily character and had the highest acidity. Principal 

component analysis showed separation for the Canadian and German wines but not 

between Ontario and British Columbia wines. Nurgel et al. (2004) found Ontario 

icewines had higher intensity ratings for apricot, raisin, honey and oak. aromas compared 
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to British Columbia icewines and that British Columbia wines had higher intensities for 

pineapple and oxidized aromas than Ontario icewines. This study found that icewines 

from Ontario and British Columbia while different in their sensory profiles differed more 

based on chemical composition. 

These studies indicate that differences in yeast strain, region of origin and vintage 

changed the sensory profile of the resultant wine. However the effect of viticultural 

treatment, such as harvest date and crop level, on icewine sensory properties has not been 

studied. The effect of harvest date on other wines styles has been shown to affect the 

sensory profile of the wines. A study investigating the effect of grape maturity on the 

composition and quality of Vidal wines from Ohio rated wines on a seven-point hedonic 

scale from three different harvest dates; early -1 Oct, mid - 5 Oct and late - 31 Oct. 

Wines from the mid harvest date treatment were rated the highest, therefore the most 

preferred wines by the panelist for aroma and taste over two vintages and described as 

more fruity than the early or late harvest date (Gallander 1983). Reynolds and Wardle 

(1997) found that wines from six and three different cultivars for aroma and flavor, 

respectively could be differentiated through triangle tests when produced from "early" 

and "late" harvested fruit. The sensory properties of sweet Fiano wines found base wines 

harvested at normal maturity (22 °Brix) to be described by fruity (banana, apple, pear, 

and pineapple), floral (lime, rose and acacia) and vegetal notes (mint, grass and wild 

fennel) whereas sweet wines harvested at late maturity (26 °Brix) and dried to 32 ~rix 

were described using terms of citrus jam, dried apricot, dried figs, prune, honey and 

coconut (Genovese et al. 2007). 
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The effect of crop level on other wines styles has been shown to affect the sensory 

profile of the wines. Reynolds et al (1996) found that cluster thinning produced Pinot noir 

wines which were rated by panelist as having less grassy and vegetative characteristics 

and were rated higher for descriptors such as black pepper, cherry, and currant. PCA 

results showed correlations between typical Pinot noir descriptors and cluster thinning. 

In another study by Reynolds et al (1994a) the effect of vineyard treatments on Riesling 

composition and sensory response in cluster thinned vines to three different crop levels; 

1, 1.5; and 2 clusters per shoot was examined. They found that monoterpene 

concentrations decreased with increasing number of clusters per shoot. Linalool was 

positively correlated with ripe fruit character and sweetness and negatively correlated 

with green-fruit flavor and cluster thinning was found to increase the perception of ripe 

fruit character inthe wines. Monoterpenes such as linalool, linalool oxides, terpineol and 

citronellol were found to be associated with lower crop levels and low to moderate shoot 

densities and were found to increase in concentration with age (Reynolds et al. 1994a). 

Cluster thinning, yeast strain and enzyme treatment were found to affect the sensory 

properties for Chardonnay Musque wines (Reynolds et al. 2007). Wines from the cluster 

thinned treatment generally had increased colour depth, higher sweetness and herbaceous 

/ grassy aromas and lower tropical fruit aroma than fully cropped treatments. 

Wine flavor is a complex interaction of aroma, taste and tactile sensation elicited 

by hundreds of chemical compounds which are affected by viticultural and enological 

practices. There is much interest in the fields of oenology and sensory science to 

understand wine flavor, which involves not only a description of the sensory profile of a 

wine but how it is affected by the wines chemical composition and odor-active profile 

174 



(Ebeler 2001, Fischer 2007, Ferreira and Cacho 2009). Multivariate statistical analysis 

such as partial least square regression (PLS), provide the tools that enables the 

relationships between these chemical variables and sensory attributes to be visualized and 

interpreted (Noble and Ebeler 2002). PLS is considered a 'soft modeling' technique that 

uses linear combinations of one set of variables (such as aroma compounds) to predict the 

variations in another set of variables (such as sensory attributes), essentially it indicates 

how well one set of variables a can predict the variation in the other set of variables 

(Noble and Ebeler 2002). Numerous studies on table wines have used PLS to elucidate 

the relationship between chemical and sensory parameters; profiling Zinfandel (Noble 

and Shannon 1987) and California Chardonnay wines (Lee and Noble 2006), flavor 

characteristics of New Zealand Sauvignon blanc wine (Lund et al. 2009), prediction of 

wine sensory properties (Aznar et al. 2003, Campo et al. 2005) and aroma differentiation 

between Bordeaux varieties (Kotseridis et al. 2000). 

In the Vintners Quality Alliance Act of Ontario, the term icewine is trademark 

protected and can only be used for wines made from grapes naturally frozen in the 

vineyard in specified viticultural areas, at temperatures S _8°C after the 15 November of 

the vintage year (Government of Ontario 1999). Higher yields of icewine juice are 

usually obtained in December since there is less desiccation of the fruit, and the air 

temperature does not have to be as cold to achieve the required 35 °Brix value. It is 

believed anecdotally that the freeze and thaw cycles are critical to developing the sensory 

profile for which icewines are known. As a result, some producers in Ontario will have 

several icewine harvests from mid- December to late January in order to achieve a 

balance between flavor profile and yield. 
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Pressing grapes frozen for icewine production reduces the yield to 15 -20% that of 

table wine significantly increasing the amount of vine acreage required for production 

(Pickering 2006). To compensate for some of this loss in yield currently, many grape 

growers crop their grapevines designated for icewine at levels often double those of table 

wines. It was therefore of interest to ascertain whether reducing crop level might impact 

icewine chemical and aroma compound profiles. It is not know how crop level will affect 

the sensory profiles of icewines. 

In two previous studies (Bowen and Reynolds 201Oa, Bowen and Reynolds 

201 Ob), the chemical variables and aroma compounds of Vidal and Riesling icewines 

from four distinct harvest dates; December to February, and three different crop levels; 

fully cropped, thin at fruit set and thin at veraison were reported. Harvest date and crop 

level were found to affect the concentration of the aroma compounds in both cultivars. 

The objective of this study was to determine the effect of harvest date and crop level on: 

1) the sensory profiles of the icewines through descriptive analysis and; 2) to correlate 

those sensory profiles with the aroma compounds previously identified (Bowen and 

Reynolds 2010a, Bowen and Reynolds 2010b) using PLS of the Vidal and Riesling 

icewines described in the previous studies. 

Materials and Methods 

Harvest date wines. The Riesling and Vidal icewines were the same as those 

described in Bowen and Reynolds (2010b). Riesling and Vidal icewines were made from 

grapes harvested from Garphil Farms in West St Catharines, over the course of the 

icewine season. The grapes were picked as follows: HI on Dec.19, 2004; H2 Dec.29, 
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2004; H3 on Jan.18, 2005; and H4 on Feb.ll, 2005. There were only three harvest dates 

for Riesling; the grapes from the fourth harvest were lost to bird predation. 

Grapes were pressed by cultivar and harvest date in the large membrane press at 

two bars until the must measured approximately 37°Brix. The exact starting °Brix was 

measured on each pressing (harvest date), the must was then divided into three 20-L 

carboys for triplicate fermentations. 

Crop level wines. The Riesling and Vidal icewines were the same as those 

described in Bowen and Reynolds (201Oa). Two commercial vineyard plots were chosen 

for the crop level study. Both vineyard experiments were made up of randomized block 

designs containing six blocks each with three treatments. The Vidal block was located at 

Garphil Farms in west St. Catharines. It consisted of six rows of grape vines; each one 

was designated as a block. Each row (block) was then divided into three treatments; 

control (fully cropped), thin to one basal cluster per shoot at fruit set, and thin to one 

basal per shoot cluster at veraison. The Riesling block was located in Niagara-on-the­

Lake at Lambert Farms. It consisted of two rows of grapevines; each row was divided 

into three blocks. Each block was then divided in three treatments; control (fully 

cropped), thin to one basal cluster per shoot at fruit set, and thin to one basal cluster per 

shoot at veraison. All vines were sprayed and maintained at the discretion of the grower. 

Grapes were harvested once proper icewine conditions were met (:S -8°C) in on 7 January 

2004 and 15 January 2005. 

Treatments were kept separate at harvest by placing them into labeled bins 

indicating their block and treatment. Grapes were pressed in the basket press with an 

inflatable rubber bladder by treatment at 2 bar. The resultant must was collected in 20-L 
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food grade pails for each treatment until it reached 35 °Brix; it was then sulfited to 75 

mg/L and stored at 4°C until fermentation. 

Fermentation. The must was inoculated with Lalvin® KI-VI116 

Saccharomyces cerevisiae according to Kontkanen et al. (2004). Fermentations were 

stopped with the addition of 75 ppm S02 when the alcohol reached 10%. Wines were 

place at -2°C for cold stabilization. Potassium sorbate was added prior to filtration and 

bottling to prevent further fermentation in bottle. Refer to Bowen and Reynolds (201Oa) 

and Bowen and Reynolds (2010b) for a more detailed explanation of the winemaking 

protocol and the must and wine parameters. 

Difference testing. Triangle tests were performed to determine if differences 

could be detected between replicate fermentations of the same treatment and between 

treatments for each cultivar. Twenty five mL samples of icewines were presented in clear 

ISO wine glasses, labeled with three digit codes, and randomized. Twenty four judges 

were given three wines and asked to pick out the different wine based on aroma and taste. 

Testing was conducted under red light to prevent colour bias in the sensory testing 

facility (Inniskillin Hall, Brock University) equipped with Compusense software (version 

4.6, Guelph, ON). 

Descriptive analysis. The DA panel was made up of 14 judges, nine women and 

five men, all staff or students at CCOVI. Training consisted of six, one hour, sessions 

during which time panelist tasted through all wines and developed a lexicon of terms to 

describe the icewines. The lexicon contained 14 attributes assessed for aroma and flavor; 

apricot, banana, caramelized, citrus, dried fruit/raisin, floral, honey, lychee, nut, peach, 

pear/apple, sherry, tangerine and tropical fruit, and three tastes; sweet,.acid and bitter, and 
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one mouthfeel sensation; viscosity. Reference standards were generated for each lexicon 

term and were anchored the 15-cm line scales through panel consensus (Table 5.1). 

Panelists assessed each sample in duplicate on a 15-cm line scale. Each sample contained 

20 mL of icewine in a clear ISO wine glass identified with a randomized three-digit code 

to assess aroma, then flavor and taste using a complete randomized block design. Data 

collection was completed in individual booths under red light using Compusense 

Software in the sensory testing facility using a Williams Latin Square design. 

Statistical analysis. Difference testing, triangle tests, were analyzed using 

Compusense software (Guelph, ON). Three-way analysis of variance (ANOV A) [F= 

MS(wine)/MS(judge x wine)] was performed using SENPAQ version 3.7 statistical 

software (Qi Statistics 2007, England) at 95% confidence (p < 0.05) interval for the 

harvest data treatments and a 90% significance (p< 0.10) for the crop level treatment. 

Attributes that differed were analyzed by least significant difference (LSD) post-hoc tests 

to determine which wines differ for that attribute (p<0.05). Principal Components 

Analysis (PCA), Canonical Variant Analysis (CV A), and PLS were performed with 

XLSTAT statistical software (Addinsoft, Paris, France). 

Only different attributes found through ANOVA at 95% confidence level were 

used in the PCA and CV A, as they are the attributes shown to contribute to the variability 

due to harvest date or crop level. 

PLS was run on the sensory attributes described in this paper and the chemical 

compounds quantified and explained in Bowen and Reynolds (201Oa) and Bowen and 

Reynolds (2010b). The sensory attributes were X variable and the chemical compounds 
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the Y variable. The regression was performed at 95% significance. All variables were 

well described by the model; therefore, reduction of the variables was not necessary. 

Results 

Difference testing. Harvest date. Triangle tests were performed to determine if 

differences existed between triplicate fermentation of each harvest date and between 

harvest dates. No differences were found between triplicate fermentations of each 

harvest date (n:;::24, p:S0.05) for either Vidal or Riesling icewines. Differences were found 

between harvest date treatments (n=24, p:S0.05) for Vidal. In Vidal Harvest Date wines, 

triangle tests showed that HI and H2 were different from H3 and H4. Neither HI and H2 

nor H3 and H4 differed from each other. 

In Riesling Harvest Date wines, triangle tests showed no differences between 

harvest dates at 95% confidence level. However, differences existed between treatments 

at 90% confidence level (n=24, p:SO.lO) HI was different from H2 and H3. H2 and H3 

did not differ from each other. 

Crop level Triangle tests showed no differences (n=24, p<0.05) between 

replicate fermentations (with one exception: Vidal fully-cropped 2003), but differences 

between crop level treatment were found for both Vidal and Riesling icewines for the 

2003 and 2004 vintages. In Vidal; fully cropped block 1 was different from fully cropped 

block 2, TFS, and TV in 2003 and the fully cropped treatment was different from TFS in 

2004. For Riesling; TFS was different from TV in 2003 and fully cropped and TFS were 

different from TV in 2004. 
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Descriptive analysis. Vidal harvest date. Honey, peach, sherry, and tropical fruit 

aromas, caramelized, dried fruit/raisin, honey, and nut flavors, bitter taste and viscosity 

differed due to harvest date. For all significant attributes, the judge x sample interaction 

was not significant. This is important because it indicates that even though the judges 

may not have used the scale in the same way, they were consistent in how the rated the 

attributes among products. 

From the mean scores (Table 5.2), some differences can be found between the 

various harvest dates. Harvest 1 had the lowest mean score for a majority of the 

attributes; these were honey, peach, sherry and tropical fruit aromas, and caramelized, 

dried fruit/raisin flavors as well as the lowest bitterness score. Harvest 2 generally had 

intermediate scores somewhere between Harvest 1 and Harvests 3 and 4. Harvest 3 and 4 

had the highest scores for all the aroma and flavor attributes. Of the significant attributes 

(Table 5.2), Harvest 1 was found to be different from Harvest 3 for five of the significant 

attributes; honey, peach, sherry, tropical fruit aromas and bitterness and different from 

Harvest 4 for seven of the attributes; honey, peach aromas and caramelized, dried 

fruit/raisin, honey and nut flavors and bitterness. 

The peA for the 2004 Vidal icewines was three dimensional based on the results 

of the scree plot. The first three principal components explain 85.57% of the total 

variance in the wines and were retained (Figure 5.1). Honey, peach, sherry aromas and 

caramelized, dried fruit/raisin, honey, and nut flavors were highly positively loaded on 

Factor 1 and associated with wines from Harvests 3 and 4. Viscosity was heavily loaded 

on the Factor 2 and associated with wine from Harvest 1. With the exception of 
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viscosity, the wines from Harvest 3 and 4 were associated with all the sensory attributes 

located positively loaded on F1. 

Riesling harvest date. Citrus, dried fruit/raisin, lychee, and nut aromas, and 

citrus, floral, lychee, nut, sherry, tangerine, and tropical fruit flavors differed between 

harvest dates. For most attributes which differed, the judge x sample interaction was not 

significant. Only dried fruit/raisin aroma and lychee flavor had significant judge x 

sample interactions. Harvest 1 had higher mean intensity scores for citrus and lychee 

aroma and flavor, as well as floral, tangerine and tropical fruit flavors. Harvest 2 had 

intermediate intensity scores between Harvest 1 and 3 for most attributes. Harvest 3 had 

the highest intensity ratings for nut aroma and flavor, dried fruit/raisin aroma and sherry 

flavor (Table 5.3). 

PCA explained 90.91 % of the variation in the attributes on two factors which 

were retained; all attributes were heavily loaded on Fl which explained 81.36% of the 

variability (Figure 5.2). Citrus and lychee aroma and flavor, and floral, tangerine and 

tropical fruit flavors were all negatively loaded on Fl and associated with Harvest 1. 

Dried fruit/raisin aroma, nut aroma and flavor, and sherry flavor were positively loaded 

on Fl and associated with Harvest 3. Harvest 2 was found in the centre of the PCA and 

not well described by any of the sensory attributes. 

Vidal crop level. 2003. Few sensory differences in the icewines were found in 

2003. Only caramelized aroma and sherry flavor differed between treatments at a 95% 

confidence interval. The ANOVA was re-run at a 90% confidence interval and nine 

sensory attributes differed: caramelized aroma, dried fruit/raisin aroma, peach aromas; 

pear/apple aroma and flavor; sherry, tangerine, and tropical fruit flavo:(s, and bitter taste. 
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For all significant attributes, the judge x sample interaction was not significant. Mean 

intensity scores for all attributes are reported (Table 5.4). Sensory attributes with high 

intensity scores in all treatments but not different according to crop level were honey 

aroma and flavor, sherry aroma, caramelized, dried fruit/raisin and nut flavors (Table 

5.4). With the exception of bitter taste, no taste (sweet, acid) or mouthfeel (viscosity) 

attributes differed. Thinned treatments (TFS and TV) had higher intensity ratings for 

caramelized and dried fruit/raisin aromas, and pear/apple, sherry, and tangerine flavors 

compared t6 control (fully cropped) wines (Table 5.4 and Figure 5.3a). In general, fully 

cropped wines were rated lowest for all attributes. 

The sensory map of the 2003 Vidal crop level icewines explained 63.83 % of the 

variation on two factors, Fl and F2, which were retained (Figure 5.3a). Factor 1 

explained 43.7% of the variability in the data was positively correlated with the sensory 

attributes caramelized, dried fruit/raisin, sherry, and tangerine aromas, and pear/apple 

aroma and flavor. Factor 2 explained 20.1 % of the variation and was positively 

correlated with peach aroma and negatively correlated with bitter taste. Fully-cropped 

treatments were separated by F2 from the thinned treatments that were positively loaded 

on Fl and associated with most sensory attributes (Figure 5.3a). Control block 1 was 

inversely associated with bitterness and Control block 2 was inversely associated with 

peach and pear/apple aromas, and tropical fruit flavor. Both thinned treatments were 

most associated with caramelized, tangerine, and sherry aromas, and apple/pear flavor. 

Control block 1 was different from Control block 2, TFS and TV wines through CV A. 

2004. All judges were retained and six sensory attributes differed between 

treatments at a 90% confidence interval. These were: citrus, floral, and lychee aromas; 
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banana, honey, and nut flavors (Table 5.5). None of the attributes that differed had judge 

x sample interactions. Sensory attributes which had high intensity ratings in the 2004 

icewines but did not differ due to crop level were honey and tropical fruit aromas, peach 

and pear/apple aromas and flavors, and dried fruit/raisin flavor (Table 5.5). Wines from 

the thinned treatments had the highest intensity ratings for all attributes that differed 

(Table 5.5). TV wines were highest in floral and lychee aromas and honey flavors and 

TFS wines were highest in citrus aroma and banana flavor. Similar to 2003 wines, the 

fully cropped treatment had the lowest intensity ratings. 

The sensory map of the Vidal crop level icewines in 2004 showed a similar 

pattern to 2003; it explained 79.8% of the variation by two factors--56.5% on Fl and 

23.3% on F2, and both were retained (Figure 5.3b). Four attributes: citrus, floral, and 

lychee aromas, and honey flavor, were positively loaded on Fl, and were positively­

associated with TV wines. Fl was driven by an increasing perception of floral and 

lychee aromas and honey flavor which were highly correlated. Banana and nut flavors 

were loaded on both the Fl and F2, but more heavily on F2 in a positive direction. Fully 

cropped wines were negatively associated with lychee, citrus and floral aromas (Figure 

5.3b). 

Riesling crop level. 2003. Panel performance was assessed for all judges, two 

judges were removed from the data set due to their low ability to discriminate attributes, 

non-reproducibility and contributing to the interaction (error term). The ANOVA was re­

run at a 90% confidence interval (p<0.1, n=12) and six sensory attributes differed due to 

crop level: apricot and tangerine aromas, honey; nut, and tropical fruit flavors, and bitter 

taste (Table 5.6). The judge x wine interaction term was not significant for the first four 
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attributes but was significant at p < 0.10 for tropical fruit flavor and bitter taste. 

Attributes that did not differ by cropping level but had high intensity ratings in all wines 

were dried fruit/raisin, pear/apple, and sherry aromas and flavors, as well as apricot flavor 

(Table 5.6). The fully cropped Riesling icewines were rated higher for tangerine aroma, 

nut flavor, and bitter taste. TFS wines had higher intensities of apricot aroma, honey 

flavor, tropical fruit flavor than the control, and TV wines had intensities intermediate 

between TFS and control wines. 

The sensory map, peA, explained 87.1 % of the variation in the wines on the first 

two factors that were retained; 53.9 % and 33.2% were explained by F1 andF2, 

respectively (Figure 5.4a). Bitter taste and honey flavor were inversely correlated and 

loaded on FI. Bitter taste was associated with the fully cropped wines, whereas honey 

was associated with TFS wine on the positively loaded on Fl. The rest of the attributes 

that differed were equally loaded on F1 and F2 and negatively associated with the TV 

wines, indicating that they were lower in tangerine, apricot, nut and tropical fruit 

attributes. 

2004. Panel performance was assessed and all judges were retained. Only four 

attributes differed due to cropping level: dried fruit/raisin and floral aromas, citrus flavor, 

and viscosity (Table 5.7). Acidity did not differ; therefore the panel was not confusing 

acid taste and citrus flavor. None of the attributes showed significant judge x sample 

interactions. Only apricot and dried fruit/raisin flavors had high intensity scores for 

attributes that did not differ due to cropping level 

The sensory map of the 2004 icewines explained 85.3 % of the variation in the 

data on the first two factors, with 60% explained by F1 and 25.3% explained by F2 
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(Figure 5.4b). Floral aroma was negatively loaded on Fl and associated with TV wines, 

whereas, citrus flavor and viscosity were all loaded positively on Fl and associated with 

control wines. Dried fruit/raisin aroma was positively loaded on F2 and associated with 

TFS wines (Figure 5.4b). 

Correlation between sensory and analytical results. Vidal harvest date. The 

PLS of the 10 sensory attributes and 24 chemical compounds found the global goodness­

of-fit and predictive quality of the model to be fairly good with a Q2 cumulated index of 

0.553 on two components which increased to 0.659 on four components. PLS explained 

83.9% ofthe variability of the dependent; chemical compounds, and 69.8% of the 

variability of the explanatory; sensory attributes, on the first two components (Figure 

5.5). The first dimension contrasted the wines from the later harvest dates (Harvest 3 and 

Harvest 4), that had higher intensities for all aroma and flavor attributes vs. the wines 

from Harvest 1, which had more viscosity. Most of the esters, ethyl octanoate, ethyl 

hexanoate, ethyl butyrate, isoamyl acetate and ethyl3-methylbutyrate were associated 

with Harvest 1 and inversely correlated to tropical fruit, sherry, peach and honey aromas. 

4-Vinylguaiacol was also associated Harvest 1 and negatively correlated to honey aroma, 

caramelized flavor, and bitter taste, which were most associated with Harvest 3. Harvest 

4 was associated with most of the odor-active compounds, such as the terpenes and 

norisoprenoids, which were positively correlated to dried fruit/raisin, honey and nut 

flavors. Harvest 2 was not well represented by the model since it was located near the 

centre of the map (Figure 5.5); it was negatively associated with Harvest 4 and therefore 

most odor-active compounds and the dried fruit/raisin, nut and honey flavors. 
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The individual models for each of the dependent variables were assessed to 

determine what sensory attribute (explanatory variable) were most important to the model 

(Table 5.8). Dried fruit/raisin flavor was an explanatory variable for 12 of the 24 odor­

active compounds (ethyl isobutryrate, ethyI2-methylbutyrate, ethyI3-methylbutyrate, 1-

hexanol, ethyl valerate, I-heptanol, l-octanol, ethyl benzoate, ethyl phenyl acetate, g­

nonalactone, ~-damascenone and geranyl acetone). Only geranyl acetone had an inverse 

relationship, for all other compounds it had a positive relationship; therefore, as the 

concentration of these compounds increases in ice wine, so to should the dried/fruit raisin 

flavor. Viscosity was an important positive explanatory variable for 10 of the compounds 

(ethyl isobutyrate, ethyI2-methylbutyrate, ethyI3-methylbutyrate, I-hexanol, I-heptanol, 

l-octanol, phenethylalcohol). Honey was a significant positive explanatory variable for 

seven of the compounds (ethyl valerate, I-heptanol, l-octen-3-01, nerol oxide, ethyl 

benzoate, ethyl phenyl acetate, y-nonalactone). Other noteworthy sensory attributes 

included sherry aroma, which was found to be inversely related to ethyl octanoate, and 

caramelized flavor, which was positively associated with ethyl valerate but negatively 

related to 4-vinylguaiacol along with bitter taste. 

Riesling harvest date. The PLS of the 11 sensory attributes and 23 chemical 

compounds found the global goodness-of-fit and predictive quality of the model to be 

good with a Q2 cumulated index of 0.702 on two components. PLS explained 96.9% of 

the variability of the dependent; chemical compounds, and 88.5% of the variability of the 

explanatory; sensory attributes, on the first two components (Figure 5.6). The first 

dimension contrasted the wines from Harvest 1, which were associated with lychee and 

citrus aromas and tangerine, tropical fruit, citrus and floral flavors with wines from 
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Harvest 3 which were associated with dried fruit/raisin and nut aromas and nut and sherry 

flavor. The esters; ethyl butyrate, ethyl hexanoate, ethyl octanoate and ethyl cinnamate 

were associated with Harvest 1 and correlated to fresh and tropical fruit aromas and 

flavors. 4-Vinylguaiacol was also associated with Harvest 1 and positively correlated 

with citrus aroma and flavor, floral, lychee, tangerine and tropical fruit flavors, and 

negatively correlated with nut aroma and flavor and sherry flavor. Nut aroma and flavor, 

sherry flavor and dried fruit/raisin aroma were associated with Harvest 3 and correlated 

with most of the aroma compounds (~-damascenone, ~-ionone, cis-rose oxide, nerol 

oxide, y-nonalactone, l-octanol, l-octen-3-01, ethyl-3-methylbutyrate, ethyl 

phenylacetate). Harvest 2 was associated with the second dimension and negatively 

correlated with decanal and linalool. None of the sensory attributes. were associated with 

HarVest 2 or the aroma compounds decanal and linalool (Figure 5.6). 

The individual models for each of the dependent variables were assessed to 

determine which sensory attributes (explanatory variables) were most important to the 

model (Table 5.9). Nut and sherry flavor had the highest number of explanatory 

variables for 15 and eight of 23 odor-active compounds, respectively. Nut flavor was 

found to have a positive relationship with 11 of the compounds (ethyl 3- methylbutyrate, 

I-hexanol, l-octen-3-01, acetophenone, l-octanol, cis-rose oxide, ethyl benzoate, ethyl 

phenylacetate, y-nonalactone, ~-damascenone, ~-ionone) and a negative relationship with 

four compounds (ethyl butyrate, ethyl hexanoate, ethyl octanoate, 4-vinlyguaiacol). 

Sherry flavor was positively related to five compounds (l-octen-3-01, acetophenone, cis­

rose oxide, y-nonalactone, ~-ionone) and negatively correlated with three compounds 

(ethyl hexanoate, ethyl octanoate, 4-vinylguaiacol). 4-Vinylguaiacol explained nine of 
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the 11 sensory descriptors, the exceptions were lychee and dried fruit/raisin aroma, and 

was associated with Harvest 1. Cis-rose oxide, l-octen-3-01, ethyl octanoate and "{­

nonalactone were all associated with at least five sensory attributes (Table 5.9). Cis-rose 

oxide was negatively correlated with citrus aroma and flavor, floral, lychee, tangerine and 

tropical fruit flavors and positively correlated with nut and sherry flavor. 

Vidal crop level. 2003. The PLS of the nine sensory attributes and 17 chemical 

compounds found the global goodness-of-fit and predictive quality of the model to be 

fairly good with a Q2 cumulated index of 0.577 on three components. The first two 

components explained 71.2 % of the variability of the dependent; chemical compounds, 

and 64.5 % of the variability of the explanatory; sensory attributes (Figure 5.7a). The 

first dimension contrasts the TFS and TV wines that had higher intensities for all the 

aroma and flavor attributes with the control wines that were not associated with any 

sensory attributes. Sherry flavor was the most important explanatory variable, it was 

positively correlated with 4-vinylguaiacol, linalool, cis-rose oxide and geranyl acetone 

and tangerine and tropical fruit flavors and associated with TFS wines and negatively 

correlated with ~-damascenone, ethyl 2- and 3- methylbutyrate and ethyl phenylacetate 

and Control block 1 wines. 

2004. The PLS of the six sensory attributes and 23 chemical compounds found 

the global goodness-of-fit and predictive quality of the model to be fairly good with a Q2 

cumulated index of 0.659 on two components. The first two components explained 92.4 

% of the variability of the dependent; chemical compounds, and 80.4 % of the variability 

of the explanatory; sensory attributes (Figure 5. 7b). The first dimension was driven by 

banana flavor which was positively loaded on component 1 and correlated with nut flavor 
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and 18 of the 23 aroma compounds and associated with TFS wines (Figure 5.7b). Banana 

flavor was found to be the most important explanatory variable; it was significant for 20 

of the 23 aroma compounds, the exceptions were ~-damascenone, geranyl acetone, ethyl 

butyrate, and decanal. ~-damascenone was explained negatively by floral aroma and 

positively by nut flavor. 

Riesling crop level. 2003. The PLS of the six sensory attributes and 22 chemical 

compounds found the global goodness of fit and predictive quality of the model to be 

fairly good with a Q2 cumulated index of 0.848 on two components. The first two 

components explained 93.4 % of the variability of the dependent; chemical compounds, 

and 90.9 % of the variability of the explanatory; sensory attributes (Figure 5.8). The first 

dimension was driven by apricot aroma, honey flavor and tropical fruit flavor, which 

were negatively loaded on t1 and associated with TFS wines. Tangerine aroma and nut 

flavor were driving the second dimension and negatively loaded on t2 and associated with 

the control wines, while bitter taste was equally explained by t1 and t2 (Figure 5.8). Most 

of the aroma compound variables were inversely correlated with the sensory attributes. 

The aroma compounds were loaded in the positive direction on both dimensions and 

associated with TV wines. Tropical fruit flavor was positively correlated with geranyl 

acetone and ethyl cinnamate and inversely correlated with all other aroma compounds. 

Honey flavor was inversely correlated with bitter taste, l-octen-3-ol, cis-rose oxide, ~­

damascenone, and ~-ionone and was the most important explanatory variable with a 

positive association on acetophenone and ethyl cinnamate but a negative association on 

l-octen-3-ol, cis-rose oxide, and decanal concentrations. Nut flavor was a negative 
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explanatory variable for acetophenone and ethyl cinnamate. Ethyl cinnamate was also 

explained positively by the sensory attribute apricot aroma and negatively by bitter taste. 

Discussion 

Sensory profiles. Harvest date. Both difference testing and descriptive analysis 

found Vidal and Riesling icewines differed in their sensory profiles when wines were 

made from grapes picked at different harvest dates, specifically the first lID, Harvest 1 

picked 19 Dec. had a different sensory profile than Harvest 3 (Riesling), picked 18 Jan. 

and Harvest 4 (Vidal), picked 11 Feb. These results indicated for the first time to the 

author's knowledge that viticultural practices such as harvest date changed the sensory 

profile of icewines. The changes in sensory profiles of icewine due to harvest date are in 

agreement with Bowen and Reynolds (20lOb) who found odor-active volatile 

compounds concentration differed in icewine from different harvest dates. In general, 

icewine from later harvest dates had higher concentration of most odor-active volatiles in 

both Vidal and Riesling experimental wines. 

Previous studies on icewine have only studied enological effects such as yeast 

strain (Erasmus et al. 2004, Kontkanen et al. 2005), and region of origin (Cliff et al. 2002, 

Nurgel et al. 2004, Setkova et al. 2007b) on the wines sensory profiles. Vidal icewine 

had higher intensity ratings of all sensory attributes in the later harvest date treatment, 

Harvest 3 and Harvest 4 compared to the early harvest date, Harvest 1. These results 

indicated that it is the hang time, which allowed the icewines to be differentiated by their 

sensory properties. Therefore it appears that the longer hang time of Harvest 3 and 4 

results in an icewine with a perceived greater intensity of aroma and flavor attributes than 
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wines picked at the earlier harvest dates. This is supported by the chemical composition 

of the wines that were also found to have the highest concentration in later harvest dates 

(Bowen and Reynolds 20lOb) and through PLS analysis [refer to next section (Figure 5.5 

and 5.6)]. 

Vidal and Riesling icewine showed similar sensory profiles (Figures 5.1 and 2) to 

sweet Fiano wines, where the early lID were associated with fresh/tropical fruit 

characteristics and the later HD were associated with dried fruit notes (Genovese et al. 

2007). However, in Vidal icewines all sensory attributes are associated with the later 

harvest dates. Marais and van Wyck (1986) also found harvest date to affect the sensory 

properties of Riesling and Bukettraube grapes, it was found that grape maturity increased 

the terpene concentration in the wines which resulted in higher intensity scores for 

terpene-like character and overall wine quality when evaluated by sensory analysis. 

Reynolds et al (1993) also showed that harvest date affects the sensory profiles of wines 

from different V. vinifera cultivars; Gewiirztraminer, Kerner, Miiller-Thurgau and Muscat 

Ottonel, Optima, Pearl of Csaba and Siegerrebe. Aroma differences of the wines made 

from two distinct harvest dates, early and late, were found through triangle tests for all 

cultivars except Pearl of Csaba. Wines had higher intensity of Muscat-like aroma in the 

later harvest dates; these differences were attributes to higher concentration of free and 

bound terpenes in the wines. The effect of grape maturity on the quality of Vidal wines 

from Ohio was assessed, wines from three distinct harvest dates (early, mid, late 

maturity) were assessed on a seven-point hedonic scale over two vintages (Gallander 

1983). Wines from the mid-maturity treatment were the most preferred wines for aroma 

and flavor in both years; they were preferred for their fruitier and cleaner taste compared 
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to late maturity wines which were described as more mature and complex. Sensory 

evaluation alone using a panel of trained judges were able to provide consistent 

descriptions and differentiation of fruit based on their stage of maturity in Cabemet Franc 

grapes from different harvest dates (Le Moigne et al. 2008). Findings from all of these 

studies support the results of this research that harvest date impacts and changes the 

sensory profile of icewines. 

Crop level. The sensory profiles of icewines from different crop levels differed 

with the thinned treatments, TFS and TV, having higher intensity ratings for aroma and 

flavor descriptors than control wines in both vintages of Vidal icewines (Figure 5.4). 

These findings are in agreements with other studies that found cluster thinning increased 

the aroma and flavor intensity and overall quality of the table wines such as Pinot noir 

(Reynolds et al. 1996), Chardonnay Musque (Reynolds etal. 2007), Carignane (Bravdo et 

al. 1984), and Riesling (Reynolds et al. 1994a). Cluster thinning Vidal grapevines 

postbloom is recommend to improve juice soluble solid concentration and therefore wine 

quality (Ferree et al. 2005). Anecdotally, it was believed that crop level affects the 

sensory profiles of icewine, however this if the first time that crop level has been shown 

to do so. . 

In Riesling icewines, the intensity ratings of the sensory descriptors differ 

between vintages and treatments. In 2003 the TFS icewines had the highest intensity 

ratings for honey and tropical flavors and apricot aroma, all of which are commonly used 

descriptors of high quality Riesling icewines; This is in agreement with Reynolds et al. 

(1994a) that found an increase in ripe-fruit character with a decrease in number of 

clusters per shoot. The control icewines were high in tangerine aroma, nut flavor and 
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bitter taste. The higher rating of bitter taste could be related to a lower perceived 

sweetness, which while not different, due to the higher rating of honey and tropical fruit 

flavor in the TFS icewines, this was in agreement with Reynolds et al. (1994a), and 

McCarthy et al. (1985) who found a decrease in sweetness in control (fully cropped) 

treatments in Riesling table wines. While the 2004 Riesling icewines also show that 

thinned treatments had higher intensity ratings for sensory attributes of floral and dried 

fruit, very few sensory differences were found in these wines most likely due to the poor 

condition of the grapes at harvest. 

Correlation between sensory and chemical descriptors. Cliff et al (2002)) 

used peA to map the volatile concentrations and mean aroma scores of icewines in an 

attempt to determine relationships between the sensory and chemical variables of the 

wines. They concluded that icewines were differentiate by geographic location, i.e. 

Germany versus Canada, and that no single impact compound was found, instead that 

icewine aroma was complex with many volatile compounds and sensory attributes 

contributing to the end result. This current study builds on what was found by Cliff et al 

(2002) in that we can begin to identify how our regional differences in terms of cultural 

practices for icewine may contribute to the changes in the chemical and sensory profiles 

of the wines. This would help to understand what the key compounds are that 

characterized icewine. The current study has shown that harvest date and crop level 

change the sensory properties and found the chemical parameters were also affected by 

these viticultural treatments. If the majority of German icewines are harvested before 

Canadian icewines and/or contain differing crop levels this could explain why regional 
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differences were found in previous studies (Cliff et al. 2002, Nurgel et al. 2004, Setkova 

et al. 2007b) 

Harvest date. The PLS results showed similar trends to both the sensory and 

chemical results. Harvest 1 was differentiated from the Harvest 3 and 4 (Figures 5.5 and 

5.6). For Vidal icewines, dried fruit!raisin flavor, viscosity, and honey flavor were the 

best explanatory variables to predict changes in the chemical variables (Table 5.8). 

Compounds that were highly correlated with these sensory descriptors include ~­

damascenone, which was previously found to be an important aroma compound in Pedro 

Ximenez wines and may be responsible by for the dried fruit character (Campo et al. 

2008). It was also present in high concentrations in Vidal and Riesling icewines (Bowen 

and Reynolds 2010b). Sensory descriptive terms used to describe ~-damascenone are 

diverse and included honey, fruity, apple, canned peach, and pear. Since dried fruit 

flavor was also correlated with other aroma compounds such as l-octen-3-01 (mushroom 

aroma), I-heptanol (nutty aroma), ethyl butyrate (fruity aroma), cis-rose oxide (rose like 

aroma), ethyl phenyl acetate (honey aroma) and y-nonalactone (coconut! tropical aroma), 

further research is required to elucidate which compounds are really contributing to the 

icewine sensory profile. Ethyl phenyl acetate is an important odorant contributing the 

honey, sweet character to Aglianico del Vulture wines (Tat et al. 2007); this compound 

correlated with honey flavor in Vidal icewines, but almost all the same compounds highly 

correlated with dried fruit flavor were also highly correlated to honey flavor. This 

highlights the complexity of the wine matrix and the difficulty in determining what 

compounds are most important to the icewine aroma. However, they do provide direction 

of further research and insight into how harvest date changes the sensory profiles. 
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Another interesting result of note is that as dried fruit/raisin and honey flavor 

increased so did the perceived viscosity. While glycerol concentration did increase with 

later harvest (Bowen and Reynolds 20 lOb ), the concentration was not found to be above 

the sensory threshold (Noble and Bursick 1984). The difference in perceived viscosity is 

therefore linked to increasing concentration of aroma compounds that contribute to the 

dried fruit /raisin and honey flavors and give the illusion of increased viscosity in the 

wines. Previous research on model icewines has also shown that glycerol levels are 

generally not high enough to elicit a detectable sensory response (Nurgel and Pickering 

2005). 

The results of the Riesling harvest date icewine were more complicated to 

interpret because more compounds and sensory attributes were highly correlated and 

there were many more explanatory variables to predict changes in the chemical variables 

(Table 5.9). This may have to do with those attributes associated with Riesling which 

permit it to produce icewines with more complexity (Nurgel et al. 2004) and table wines 

from bone dry to very sweet. These results support Cliff et al (2002), that icewine is a 

complex interaction of aroma compounds that result in its sensory profile. It is difficult 

to narrow down which aroma compounds and sensory attributes are the most important 

for Riesling icewines from these results, further sensory studies will be required to 

determine which if any of these compounds contribute most to the sensory profile of 

Riesling icewines. In general, nut and sherry flavor were the most important sensory 

variable that positively correlated to 1-octen-3-ol (mushroom aroma), acetophenone 

(almond, floral aroma), cis-rose oxide (rose floral aroma), y-nonalactone (coconut 

aroma), B-damascenone (apple/pear, dried fruit aroma), B-ionone (violet floral aroma) 
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and Harvest 3 icewines and negatively correlated with ethyl hexanoate (fruity aroma), 

ethyl octanoate (fruity aroma), 4-vinylguaiacol (spicy, phenolic aroma) and Harvest 1 

icewines. Other important sensory descriptors were citrus aroma and flavor, and floral, 

lychee and tropical fruit flavors, which were associated with Harvest 1, 4-vinylguaiacol 

and several fermentation esters. These results make sense since most of the fermentation 

esters are characterized by "fruity" odor descriptors (Ferreira and Cacho 2009). An 

increase in the concentration of aroma compounds with non-fruity aromas, such as 1-

octen-3-o1 (mushroom aroma) or cis-rose oxide (floral rose aromas), would decrease the 

overall fruity characteristic and contribute more complex aroma likely due to synergistic 

effects between the various aroma compounds. To date, the only way to determine these 

effects are through omission and reconstitution studies, though while tedious can provide 

true information about the individual role of an aroma compounds in the wine matrix 

(Campo et al. 2005, Nicolau et al. 2006) 

Aroma compounds to investigate further in Riesling include 4-vinylguaiacol, cis­

rose oxide, l-octen-3-o1 and y-nonalactone and ~-damascenone. 4-vinylguaiacol and ~­

damascenone have previously been found to be odor potent compounds in Riesling table 

wines contributing a spicy, smoked and fruity, honey character, respectively (Komes et 

al. 2006). The volatile phenol, 4-vinylguaiacol was highly correlated to the fermentation 

esters ethyl hexanoate and octanoate and the citrus, tropical sensory attributes and was 

found to be an odor potent compound in Riesling icewine (Bowen and Reynolds 20lOb). 

It had the highest concentration in the early harvest date icewines likely due to 

precipitation of hydrocinnamates from freeze and thaw events (Bowen and Reynolds 

20 lOa). Since no single impact odorant has been identified in previous characterization 
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of Riesling table wines (Chisholm et al. 1994, Komes et al. 2006), it is not surprising to 

find the same result with icewine which is in agreement with Cliff et al (2002). 

Crop level. Vidal crop level icewines showed a similar trend to the sensory and 

chemical data (Figure 5.7), the sensory and chemical map obtained through PLS of the 

2003 Vidal icewines found all the sensory attributes were positively correlated with the 

thinned treatments. In 2003, sherry flavor was the only significant explanatory variable 

and was positively predicted changes with the terpenes, linalool and cis-rose oxide, 4-

vinylguaiacol and was associated with the thinned treatments (FigureS.7a). The high 

sherry flavor in the wines may best be described by the presence of 4-vinylguaiacol, 

described by its clove, phenolic aroma was found about its sensory threshold in all crop 

level treatment in 2003 (Bowen and Reynolds 201Oa). In 2004, the banana flavor was the 

most important explanatory variable and was positively predicted almost all aroma 

compounds and was associated with the TS treatments (Figure 5.7b). Vintage variation is 

best explained by differences in the climatic conditions between years during the hang 

time from October to harvest in January (Bowen and Reynolds 201Oa). The 2003 vintage 

had more freeze and thaw events and larger temperature differences (between minimum 

and maximum) than the 2004 vintage, which in general was colder. These conditions 

likely resulted in more desiccation of the fruit and negated the effect of cluster thinning. 

The colder fall of 2004 resulted in almost all the aroma compounds being correlated with 

each other and associated with the TFS wines. 

For the Riesling crop level icewines it is more difficult to understand the results 

of the PLS (Figure 5.8). They indicate that honey flavor is the most important 

explanatory variable to predict changes in the chemical parameters and that it is 
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associated with TFS wines. This intuitively makes sense when comparing to the sensory 

results (Figure 5.8) since honey was found to have the highest intensity ratings in TFS 

wines along with tropical fruit flavor and apricot aroma. However, this is in contrast to 

the results from the chemical analysis which found almost all of the aroma compound had 

the highest concentration in the TV icewines (Bowen and Reynolds 201Oa). These 

results together indicate that the wines with the highest concentration of aroma 

compounds have the lowest sensory intensity which seems counter intuitive. The only 

plausible explanation for this finding is that the sub-standard fruit quality of the Riesling 

grapes might be masking the true results. 

Conclusions 

Harvest date was found to differentiate icewine based on sensory profile and 

chemical composition for both Vidal and Riesling. In Vidal, later harvest dates had 

significantly higher intensity scores for aroma and flavor descriptors than Harvest 1. PCA 

of sensory attributes that differed in Vidal found all aroma and flavor attributes in Vidal 

were associated with later harvest dates (H3 and H4) and factor 2 separated early harvest 

dates (HI and H2) from late harvest dates (H3 and H4). Correlation between the sensory 

and chemical variables found PLS analysis found dried fruit!raisin and honey flavor to be 

important explanatory variable which were positively correlated with ~-damascenone, 

ethyl butyrate (fruity aroma), cis-rose oxide (rose like aroma), ethyl phenyl acetate (honey 

aroma) and y-nonalactone (coconut! tropical aroma). 4-Vinylguaiacol was always 

associated with the early harvest dates. 
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In Riesling, Harvest I wines had higher intensity ratings for fresh fruit descriptors 

whereas Harvest 3 wines were higher for dried fruit and nutty descriptors. PCA showed 

all attributes were heavily loaded on factor I with fresh fruit and tropical attributes 

associated with harvest I (HI) and dried fruit and nutty attributes associated with harvest 

3 (H3). Correlation between the sensory and chemical parameters found Harvest 3 

icewines associated with nut and sherry flavor and positively correlated to the aroma 

compounds ~-damascenone, cis-rose oxide, I-octen-3-01 and 'Y-nonalactone and 

negatively correlated to 4-vinylguaiacol, and ethylhexanoate and ethyl octanoate and 

associated with Harvest I icewines. 

Therefore, harvest date has been shown to affect the sensory profiles of Vidal 

blanc and Riesling icewines. The potential significance of these findings is that it 

provides information to winemakers about how time of harvest will affect the sensory 

profile of the resultant icewine. Therefore depending on the desired sensory profile of 

icewine, it could dictate whether grapes. are picked in December for fresh and tropical 

fruit aroma and flavors or January for more nut and dried fruit characteristics. Perhaps 

both profiles are desired in an icewine, then grapes can be picked at different times 

throughout the icewine harvest season (December to February) fermented in separate 

. tanks and blended before bottling to achieve the desired sensory profile. 

Crop level, control (non-thinned), thinned at fruit set, and thinned at veraison also 

affected the sensory profiles of Vidal and Riesling icewines. In Vidal, all sensory 

attributes that differed were found to be associated with the thinned treatments in 2003 

and 2004 experimental icewines. The thinned treatments were described as having higher 

intensity ratings for attributes such as peach, apple/pear, dried fruit and caramelized 
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aromas and tropical fruit, tangerine and apple/pear flavors. PCA found the all the sensory 

attributes were associated with the thinned treatments in both years, with the exception of 

nut flavor being associated with the control treatment in 2004. Correlation between the 

sensory and aroma compounds in 2003, found sherry flavor to be a most important 

explanatory variable which was correlated positively with to 4-vinylguaiacol, cis-rose 

oxide, and linalool and was associated with the thinned treatments. In 2004, banana 

flavor was the sensory variable that best predicted almost all of the aroma compounds. 

No clear relationships could be found using PLS on Riesling crop level wine, however 

sensory differences found the TFS to have the highest intensity rating of honey and 

tropical fruit flavor and apricot aroma while the control were had higher intensity ratings 

for tangerine aroma, nut flavor and bitter taste. Vintages differences were explained by 

number of freeze and thaw events and temperature fluctuations from October to January. 

The potential significance of these findings would be that cluster thinning icewines 

grapes intensifies the sensory profile of the resultant wines due to higher concentration of 

aroma compounds. 

Changes in the sensory profiles of icewines due to harvest date and crop level 

have been demonstrated in this study. The next step would be: 1) to elucidate what are 

the key compounds in ice wine through omission and reconstitution studies and by 

validating the PLS models and 2) to determine how consumers perceive these differences 

and what their preferences are. Understanding consumer preference would provide 

another tool to guide growers and winemaker on cultural practices such as how much 

crop to grow and when to harvest for optimal icewine quality. 
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Table 5.1: Complete list of reference standards used for descriptive analysis of Ontario 
Riesling and Vidal icewines. All standards were made in a un-oaked neutral white base 
wine. 
Reference Ingredients Position on 
Standard Line Scale 

(cm) 
Apricot 6 dried apricots chopped / 100 mL base wine, let soak overnight 10 
Banana 1 drop isoamyl acetate / 425 mL wine 15 
Caramelized 15 g crunchy sponge toffee, add 60 mL wine and boil down, add 14 

100 mL wine and let sit overnight 
Citrus 15 mL each grapefruit and lime juice, 5 mL lemon juice /100 mL 13 

wine 
Dried fruit / Raisin 25 g dried fig, prune and raisin / 100 mL wine 8 
Floral fresh freesia flowers 11.5 
Honey 15g honey / 100mL wine 11 
Lychee 6 mL puree in 100mL wine 10 
Nut toasted chopped walnuts and hazelnuts 7.5 
Peach 25 mL peach nectar / 100 mL wine 10 
Pear / Apple 10 mL each pear and apple juice / 100 mL wine 8.5 
Sherry 12.5 mL of Alvears Amontillado, Montilla Spain in 100mL wine 14 
Tangerine 3 g tangerine peel / 250 mL wine 12 
Tropical fruit 5 mL each mango, tropical fruit, passion fruit and guava / 100 mL 11 

wine 
Sweet 150 gIL sucrose in distilled water 9.5 
Acid 0.67 gIL tartaric acid in distilled water 11.5 
Bitter 0.015 gIL quinine sulfate in distilled water 11.5 
Viscosity 0.3 gIL carboxymethylcellulose in distilled water 5.5 
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Table S.2. Impact of harvest date on mean sensory attribute scores from descriptive 
analysis by ANOVA (a>O.OS) for Vidal icewines, Garphil Farms, St. Catharines, 
Ontario,2004-0S. 

Sensory Attribute Harvest 1 Harvest 2 Harvest 3 Harvest 4 Significance F-value p-value 

Apricot aroma 2.5 3.2 3.3 2.7 ns 1.38 0.2640 

Banana aroma 1.8 1.2 1.1 1.2 ns 0.86 0.4714 

Caramelized aroma 2.2 2.1 2.8 3.3 ns 1.75 0.1747 

Citrus aroma 3.2 3.3 2.4 2.3 ns 2.73 0.0582 

Dried fruit/Raisin aroma 2.5 2.8 2.6 3.2 ns 1.53 0.2234 

Floral aroma 1.7 1.6 1.7 1.7 ns 0.00 0.9998 

Honey aroma 2.9b 3.2b 4.3a 4.3a ** 4.44 0.0094 

lychee aroma 2.6 2.3 2.4 2.3 ns 0.23 0.8730 

Nut aroma 0.9 0.9 1.0 1.2 ns 0.49 0.6925 

Peach aroma 2.5b 3.4a 3.5a 3.5a ** 5.09 0.0049 

Pear / Apple aroma 2.9 2.5 3.1 2.8 ns 0.55 0.6500 

Sherry aroma 2.6b 2.7b 3.7a 3.1ab * 3.29 0.0314 

Tangerine aroma 1.7 1.9 1.5 1.4 ns 0.54 0.6593 

Tropical fruit aroma 2.8b 3.4ab 4.4a 3.4ab * 3.72 0.0199 

Apricot flavor 3.9 3.8 3.9 4.1 ns 0.22 0.8848 

Banana flavor 2.9 2.4 2.0 2.0 ns 1.68 0.1886 

Caramelized flavor 1.8b 2.4ab 2.6ab 3.1ab * 3.27 0.0321 

Citrus flavor 3.7 3.6 3.4 3.5 ns 0.28 0.8419 

Dried fruit/Raisin flavor 3.2b 3.5b 3.4b 4.5a ** 5.65 0.0028 

Floral flavor 1.1 1.1 1.0 1.0 ns 0.10 0.9606 

Honey flavor 3.9b 3.7b 4.1ab 4.7a * 2.96 0.0453 

lychee flavor 2.2 2.2 2.3 2.0 ns 0.17 0.9162 

Nut flavor 0.9b 0.9b 0.9b 1.3a * 3.99 0.0149 

Peach flavor 4.1 4.5 4.6 4.5 ns 0.72 0.5448 

Pear / Apple flavor 3.8 3.6 4.0 3.7 ns 0.33 0.8055 

Sherry flavor 1.8 2.0 2.4 2.5 ns 2.79 0.0546 

Tangerine flavor 2.7 2.9 2.8 2.4 ns 0.75 0.5300 

Tropical fruit flavor 4.6 4.1 4.8 4.2 ns 0.74 0.5359 

Sweet 6.9 6.8 6.9 7.0 ns 0.30 0.8267 

Acid 6.5 6.7 6.5 6.5 ns 0.17 0.9133 

Bitter 1.5b 2.3a 2.1a 2.5a * 3.58 0.0231 

Viscosity 6.5a 5.8b 6.2a 6.4a ** 4.51 0.0087 

ns, *, **, and *** represent not significant or significant at p::;O.OS, 0.01, and 0.001 respectively. 
Means with the same letter were not significantly different by LSD. 
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Table 5.3. The impact of harvest date on mean sensory scores determined by ANOV A 
(a>0.05) from descriptive analysis of Riesling icewines, Lambert Farms, Niagara-on-the-
Lake, Ontario, 2004-05. 

Harvest Harvest Harvest 
Sensory Attribute 1 2 3 Significance F-value p-value 

Apricot aroma 3.1 3.0 3.2 ns 0.11 0.8966 

Banana aroma 1.8 1.2 1.4 ns 2.03 0.1510 

Caramelized aroma 1.6 1.7 2.1 ns 0.48 0.6261 

Citrus aroma 4.0a 3.4a 2.6b ** 6.33 0.0057 

Dried fruit / Raisin aroma 2.0b 2.3b 3.6a ** 6.23 0.0062 

Floral aroma 3.5 2.8 2.5 ns 0.73 0.4892 

Honey aroma 3.0 3.2 3.6 ns 1.55 0.2308 

Lychee aroma 3.4a 2.9a 1.8b * 4.98 0.0147 

Nut aroma 0.7b 0.7b 1.4a ** 7.05 0.0036 

Peach aroma 3.6 3.1 2.7 ns 1.80 0.1847 

Pear / Apple aroma 3.0 2.7 2.8 ns 0.34 0.7124 

Sherry aroma 1.5 1.5 2.3 ns 2.26 0.1244 

Tangerine aroma 1.9 2.0 1.4 ns 1.26 0.3010 

Tropical fruit aroma 3.4 2.8 2.7 ns 0.82 0.4504 

Apricot flavor 3.6 3.6 3.9 ns 0.62 0.5463 

Banana flavor 2.4 1.8 1.5 ns 2.25 0.1257 

Caramelized flavor 2.7 2.3 2.8 ns 1.18 0.3235 

Citrus flavor 4.1a 3.6a 2.9b ** 6.57 0.0049 

Dried fruit / Raisin flavor 3.2 3.3 4.1 ns 2.83 0.0770 

Floral flavor 3.2a 1.9b 1.2b *** 12.52 0.0002 

Honey flavor 4.1 3.7 4.0 ns 0.64 0.5374 

Lychee flavor 3.2a 2.9a 1.8b * 4.99 0.0147 

Nut flavor 1.0b 1.lb 1.6a * 4.50 0.0210 

Peach flavor 3.5 4.0 3.7 ns 0.61 0.5527 

Pear / Apple flavor 3.6 2.8 2.9 ns 1.42 0.2589 

Sherry flavor 1.7b 1.7b 2.5a * 5.00 0.0145 

Tangerine flavor 2.6a 2.1ab 1.6b * 5.07 0.0139 

Tropical fruit flavor 3.8a 3.3ab 2.6b * 4.28 0.0247 

Sweet 7.1 7.2 7.5 ns 1.02 0.3739 

Acid 6.7 7.0 6.7 ns 0.81 0.4555 

Bitter 1.0 1.3 1.4 ns 1.29 0.2920 

Viscosity 6.4 6.4 6.4 ns 0.01 0.9907 

ns, *, **, and *** represent not significant or significant at p:S0.05, 0.01, and 0.001 
respectively. Means with the same letter were not significantly different by LSD. 
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Table 5.4. The impact of crop level on the mean sensory attributes found through 
descriptive analysis (ANOV A; a>O.lO) in 2003 Vidal icewines, Garphil Farms, St. 
Catharines, Ontario. 

Control Control Thin at Thin at 
Sensory Attribute 1 2 Set Veraison Significance F-value p-value 

Apricot aroma 3.1 3.0 3.4 3.4 ns 0.54 0.6557 

Banana aroma 1.6 1.5 1.5 1.5 ns 0.15 0.9282 

Caramelized aroma 4.8b 4.8b 5.1ab 5.7a ** 3.26 0.0325 

Citrus aroma 1.5 1.4 1.7 1.4 ns 1.15 0.3412 

Dried fruit / Raisin aroma 5.6b 6.2ab 6.1ab 6.6a * 2.84 0.0513 

Floral aroma 0.9 0.9 1.1 1.1 ns 1.04 0.3887 

Honey aroma 4.1 4.5 4.3 4.2 ns 0.86 0.4708 

Lychee aroma 1.5 1.2 1.4 1.4 ns 0.72 0.5481 

Nut aroma 3.2 3.2 3.4 3.4 ns 0.17 0.9155 

Peach aroma 2.1a 1.6b 1.7ab 2.1a * 2.35 0.0882 

Pear / Apple aroma 3.0ab 2.5b 3.0ab 3.3a * 2.62 0.0658 

Sherry aroma 6.3 7.2 7.0 7.0 ns 1.16 0.3389 

Tangerine aroma 1.2 1.3 1.3 1.7 ns 1.13 0.3511 

Tropical fruit aroma 1.7 1.4 1.5 1.3 ns 1.47 0.2396 

Apricot flavor 3.5 3.0 3.4 3.7 ns 1.21 0.3202 

Banana flavor 1.2 1.0 1.2 1.2 ns 1.00 0.4056 

Caramelized flavor 5.5 5.2 5.3 5.9 ns 1.69 0.1869 

Citrus flavor 1.8 1.6 2.2 1.6 ns 1.84 0.1581 

Dried Fruit/Raisin flavor 6.3 6.7 6.4 6.8 ns 1.07 0.3726 

Floral flavor 0.9 0.8 0.9 0.9 ns 0.14 0.9341 

Honey flavor 4.2 4.1 4.3 4.4 ns 0.23 0.8714 

Lychee flavor 1.2 1.1 1.3 1.5 ns 1.59 0.2092 

Nut flavor 3.9 3.7 4.0 4.0 ns 0.20 0.8959 

Peach flavor 2.1 1.8 1.9 2.3 ns 1.06 0.3788 

Pear / Apple flavor 2.7b 2.7b 3.1ab 3.4a * 2.64 0.0644 

Sherry flavor 6.0b 6.1b 7.2a 7.1a ** 3.02 0.0421 

Tangerine flavor 1.6b 1.5b 1.9ab 2.1a * 2.60 0.0668 

Tropical fruit flavor 1.7ab 1.3b 1.9ab 1.5ab * 2.34 0.0898 

Sweet 7.2 6.6 6.9 7.0 ns 1.69 0.1870 

Acid 6.2 5.8 6.1 5.9 ns 0.62 0.6065 

Bitter 2.6b 3.3a 3.1ab 3.4a * 2.41 0.0830 

Viscosity 6.1 6.0 6.1 5.8 ns 1.12 0.3521 

ns, *, **, ***and **** represent not significant or significant at p:S0.01, 0.05, 0.01, and 
0.001 respectively. Means with the same letter were not significantly different by LSD. 
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Table 5.5. The impact of crop level on the mean sensory attributes found through 
descriptive analysis (ANOV A; a>0.1O) in 2004 Vidal icewines, Garphil Farms, St. 
Catharines, Ontario. 

Thin at Thin at 
Sensory Attribute Control Set Veraison Significance F-value p-value 

Apricot aroma 3.2 3.2 3.4 ns 0.17 0.8433 

Banana aroma 1.6 1.9 1.6 ns 0.79 0.4651 

Caramelized aroma 3.1 2.6 2.2 ns 2.35 0.1151 

Citrus aroma 2.3b 3.1a 2.8ab ** 3.39 0.0491 

Dried fruit / Raisin aroma 3.5 3.5 3.3 ns 0.42 0.6634 

Floral aroma 1.7b 2.9a 3.3a *** 5.79 0.0083 

Honey aroma 3.6 4.0 3.7 ns 0.64 0.5342 

Lychee aroma 2.1b 3.0ab 3.2a ** 3.47 0.0460 

Nut aroma 1.1 1.1 0.8 ns 1.13 0.3363 

Peach aroma 4.1 4.0 4.3 ns 0.24 0.7829 

Pear / Apple aroma 3.9 4.2 3.6 ns 0.99 0.3856 

Sherry aroma 1.9 2.1 2.1 ns 0.21 0.8122 

Tangerine aroma 2.5 2.1 2.6 ns 1.57 0.2281 

Tropical fruit aroma 3.6 4.3 4.0 ns 1.32 0.2851 

Apricot flavor 3.8 4.3 3.9 ns 0.66 0.5248 

Banana flavor 1.3b 1.7a l.4ab * 2.61 0.0926 

Caramelized flavor 3.0 3.3 3.0 ns 0.48 0.6236 

Citrus flavor 3.2 3.0 3.2 ns 0.16 0.8547 

Dried Fruit / Raisin flavor 4.5 4.5 4.2 ns 0.85 0.4400 

Floral flavor 1.3 1.3 1.5 ns 0.18 0.8369 

Honey flavor 3.8b 4.2ab 4.5a * 2.97 0.0689 

Lychee flavor 2.4 2.8 2.5 ns 0.29 0.7899 

Nut flavor 1.2a 1.2a 0.9b ** 3.37 0.0498 

Peach flavor 4.7 4.4 5.2 ns 2.14 0.1379 

Pear / Apple flavor 4.0 4.2 4.2 ns 0.25 0.7811 

Sherry flavor 2.0 2.2 2.0 ns 0.59 0.5880 

Tangerine flavor 2.8 3.0 2.6 ns 0.51 0.6080 

Tropical fruit flavor 3.8 4.2 4.3 ns 1.06 0.3612 

Sweet 7.1 7.0 7.4 ns 1.00 0.3801 

Acid 7.3 6.5 6.7 ns 1.31 0.2867 

Bitter 1.6 1.4 1.5 ns 0.19 0.8224 

Viscosity 6.1 6.3 6.4 ns 0.39 0.6793 

ns, *, **, ***and **** represent not significant or significant at p:S0.01, 0.05, 0.01, and 
0.001 respectively. Means with the same letter were not significantly different by LSD. 
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Table 5.6. The impact of crop level on the mean sensory attributes found through 
descriptive analysis (ANOVA; a>O.lO) in 2003 Riesling icewines, Lambert Farms, 
Niagara-on-the-Lake, Ontario. 

Thin at Thin at 
Sensory Attribute Control Set Veraison Significance F-value p-value 

Apricot aroma 3.7ab 4.6a 3.2b * 3.12 0.0639 

Banana aroma 0.9 0.8 0.7 ns 0.51 0.6063 

Caramelized aroma 3.6 2.9 3.7 ns 1.18 0.3252 

Citrus aroma 2.0 1.8 2.4 ns 0.79 0.4643 

Dried fruit / Raisin aroma 5.8 5.8 5.5 ns 0.23 0.7935 

Floral aroma 1.4 1.4 0.8 ns 0.89 0.4262 

Honey aroma 3.2 3.4 3.5 ns 0.11 0.8977 

Lychee aroma 1.5 1.2 1.2 ns 0.40 0.6757 

Nut aroma 2.5 2.8 2.i ns 1.01 0.3791 

Peach aroma 2.8 2.8 2.8 ns 0.01 0.9880 

Pear / Apple aroma 4.0 3.2 3.2 ns 1.46 0.2528 

Sherry aroma 5.0 4.5 5.0 ns 0.36 0.7002 

Tangerine aroma 3.0a 2.4ab 1.9b * 2.60 0.0969 

Tropical fruit aroma 2.3 2.2 2.0 ns 0.16 0.8558 

Apricot flavor 4.7 4.8 4.6 ns 0.07 0.9331 

Banana flavor 0.5 1.0 0.8 ns 0.71 0.5029 

Caramelized flavor 3.8 3.9 3.5 ns 0.37 0.6952 

Citrus flavor 2.3 2.8 2.4 ns 0.66 0.5258 

Dried Fruit / Raisin flavor 6.6 7.1 6.8 ns 0.24 0.7867 

Floral flavor 1.1 1.1 0.7 ns 0.61 0.5527 

Honey flavor 2.8b 3.6ab 3.2b * 3.32 0.0550 

Lychee flavor 1.3 1.5 1.3 ns 0.48 0.6236 

Nut flavor 3.7a 2.9ab 2.5b * 2.89 0.0771 

Peach flavor 2.9 2.9 3.3 ns 0.31 0.7384 

Pear / Apple flavor 3.0 4.2 3.6 ns 1.74 0.1994 

Sherry flavor 4.8 4.3 4.3 ns 0.84 0.4462 

Tangerine flavor 2.6 2.5 2.3 ns 0.22 0.8041 

Tropical fruit flavor 2.3ab 3.4a 2.1b * 2.67 0.0916 

Sweet 6.7 6.7 7.0 ns 0.60 0.5550 

Acid 6.5 6.4 6.2 ns 0.25 0.7802 

Bitter 2.3ab 1.1b 1.4ab * 2.99 0.0712 

Viscosity 5.9 5.9 6.1 ns 0.21 0.8098 

ns, *, **, ***and **** represent not significant or significant at p~0.01, 0.05, 0.01, and 
0.001 respectively. Means with the same letter were not significantly different by LSD. 
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Table 5.7 The impact of crop level on the mean sensory attributes found through 
descriptive analysis (ANOVA; a>O.lO) in 2004 Riesling icewines, Lambert Farms, 
Niagara-on-the-Lake, Ontario. 

Thin at Thin at 
Sensory Attribute Control Set Veraison Significance F-value p-value 

Apricot aroma 3.1 3.3 3.5 ns 0.26 0.77303 

Banana aroma 1.0 1.1 0.9 ns 0.38 0.68565 

Caramelized aroma 2.7 2;5 2.3 ns 0.81 0.45516 

Citrus aroma 2.6 3.2 3.2 ns 1.78 0.18817 

Dried fruit I Raisin aroma 3.9ab 4.2a 3.1b * 3.11 0.06141 

Floral aroma 1.9b 1.9b 2.8a ** 3.54 0.04373 

Honey aroma 2.6 2.6 2.6 ns 0.01 0.99480 

Lychee aroma 1.7 1.7 2.1 ns 1.42 0.26025 

Nut aroma 1.6 1.5 1.0 ns 1.08 0.35581 

Peach aroma 2.7 2.5 2.5 ns 0.26 0.76978 

Pear / Apple aroma 2.3 2.6 2.4 ns 0.34 0.71595 

Sherry aroma 3.5 2.9 2.8 ns 1.94 0.16448 

Tangerine aroma 1.5 2.1 2.1 ns 1.41 0.26294 

Tropical fruit aroma 2.5 2.4 2.9 ns 1.56 0.22859 

Apricot flavor 4.1 3.8 3.8 ns 0.45 0.63944 

Banana flavor 1.1 1.4 1.0 ns 1.65 0.21197 

Caramelized flavor 2.9 2.5 2.9 ns 0.68 0.51637 

Citrus flavor 3.1ab 3.5a 3.0b * 2.59 0.09441 

Dried fruit / Raisin flavor 4.8 4.5 4.6 ns 0.30 0.74394 

Floral flavor 1.5 1.4 1.7 ns 0.35 0.71130 

Honey flavor 3.5 3.2 3.4 ns 0.73 0.49334 

Lychee flavor 1.4 1.3 1.6 ns 0.42 0.66200 

Nut flavor 1.5 1.7 1.5 ns 0.41 0.66718 

Peach flavor 3.5 3.3 3.6 ns 0.53 0.59549 

Pear / Apple flavor 3.2 3.5 3.1 ns 1.27 0.29713 

Sherry flavor 3.0 2.4 2.7 ns 0.87 0.43279 

Tangerine flavor 2.0 1.9 2.3 ns 0.75 0.48088 

Tropical fruit flavor 2.8 3.0 3.2 ns 0.36 0.70387 

Sweet 6.8 6.9 6.8 ns 0.14 0.86577 

Acid 6.8 6.8 6.4 ns 1.69 0.20498 

Bitter 2.1 2.2 2.3 ns 0.31 0.73669 

Viscosity 5.9ab 6.2a 5.8b ** 3.41 0.04832 

ns, *, **, ***and **** represent not significant or significant at p:S0.01, 0.05, 0.01, and 
0.001 respectively. Means with the same letter were not significantly different by LSD. 
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Table 5.8. Summary table of the Vidal PLS model results of the odor-active compounds 
and the sensory attributes found to be the most significant in the harvest date icewines. A 
positive association indicates as the concentration of the compound increase, so too will 
the intensity of the sensory attribute. The reverse would be found for a negative 
relationship. 

Significant sensory attributes from the standardized coefficients 
Dried fruit/raisin Honey Caramelized Sherry 

ComEounds flavor Viscosity flavor flavor aroma Bitter 

ethyl isobutyrate + + ns ns ns ns 

ethyl 2-methylbutyrate + + ns ns ns ns 

ethyl 3-methylbutyrate + + ns ns ns ns 

I-hexanol + + ns ns ns ns 

ethyl valerate + + + ns ns 

I-heptanol + + + ns ns ns 

I-octen-3-o1 ns ns + ns ns ns 

I-octanol + + ns ns ns ns 

phenylethyl alcohol ns + ns ns ns ns 

neroloxide ns ns ns ns ns 

ethyl benzoate + + + ns ns ns 

ethyl octanoate ns ns ns ns ns 

ethyl phenylacetate + + + ns ns ns 

4-vinylguaiacol ns ns ns ns 

y- nonalactone + + + ns ns ns 

p- damascenone + ns ns ns ns ns 

geranyl acetone ns ns ns ns ns 
* +, -, ns indicate whether the sensory attribute had positive association, negative association or was not 
significant respectively for each of the odor-active compounds listed. 
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Table 5.9. Summary table of the Riesling PLS model results of the odor-active 
compounds and the sensory attributes found to be the most significant in the harvest date 
icewines. A positive association indicates as the concentration of the compound increase, 
so too will the intensity of the sensory attribute. The reverse would be found for a 
negative relationship. 

Significant sensory attributes from the standardized coefficients 
Dried 

Tropical Fruit/ 
Nut Sherry Fruit Citrus Citrus Floral Lychee Tangerine Raisin Nut 

Compounds Flavor Flavor Flavor Flavor Aroma Flavor Flavor Flavor Aroma Aroma 

ethyl butyrate ns ns ns ns ns ns ns ns ns 
ethyl 3-
methylbutytate + ns ns ns ns ns ns ns ns ns 

l-hexanol + ns ns ns ns ns ns ns ns ns 

l-octen-3-o1 + + ns ns + ns 

ethyl hexanoate ns ns ns ns ns ns ns ns 

acetophenone + + ns ns ns ns ns ns ns ns 

l-octanol + ns ns ns ns ns ns ns ns ns 

cis-rose oxide + + ns ns 

ethyl benzoate + ns ns ns ns ns ns ns ns ns 

ethyl octanoate + + + ns + ns ns ns 
ethyl 
pheny lacetate + ns ns ns ns ns ns ns ns ns 

4-vinylguaiacol + + + + + ns 

'Y-nonalactone + + ns ns ns ns ns 

p-damascenone + ns ns ns ns ns ns ns ns ns 

ethyl cinnamate ns ns + ns ns + ns ns ns ns 

~-ionone + + ns ns ns ns ns ns ns ns 
* +, -, ns indicate whether the sensory attribute had positive association, negative association or was not 
significant respectively for each of the odor -active compounds listed. 
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Figure 5.1: Sensory map of the Vidal icewines from four different harvest dates (H 1 -
H4) showing the variation in the products through peA on Factors 1 and 2 (A) and 
Factors 1 and 3 (B), where Rl and R2 indication sensory rep 1 and 2, respectively. 
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Figure 5.2 Sensory map of the Riesling icewines from three different harvest dates (HI -
H3) showing the variation in the products through peA, where Rl and R2 indication 
sensory rep 1 and 2, respectively 
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Figure 5.3 Sensory map of the Ontrario Vidal icewines from three different crop levels, 
control (unthinned) (CL), thin at fruit set (TS), thin at veraison (TV) over two years: A-
2003 and B-2004 shwoing the varation in the sensory attributes using PCA. The sensory 
replicates are represented by RI and R2, respectively. 
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Figure 5.4 Sensory map of Ontario Riesling icewines from three different crop level 
treatments; control (unthinned), thin at fruit set and thin at veraison, showing the 
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Figure 5.5 The impact of harvest date on the sensory and chemical profiles of Vidal 
icewines from four harvest dates (HI-H4) determined by PLS. Rl and R2 represent rep 1 
and 2 for each harvest date, respectively. 
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Figure 5.7 The impact of crop level on the sensory and chemical profiles of Vidal 
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Figure 5.8 The impact of crop level on the sensory and chemical profiles of Riesling 
icewines from three different treaments; unthinned (eL), thin at fruit set (TS) and thin at 
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Chapter 6 
General Discussion and Conclusions 

6.1 Introduction 

Wine aroma is the result of a complex interaction of hundreds of volatile 

compounds that together form a matrix to elicit a sensory response. This sensory 

response is what makes wine such an interesting topic of research and appreciation from 

the novice wine drinker to the wine connoisseur. Icewine is no exception; picking and 

pressing the grapes frozen long after commercial harvest results in a wine concentrated in 

sugar, acids, aroma and flavour compounds with descriptors of honey, peach, caramel 

with a sweet taste balanced by its high natural acidity. However, little is know about the 

aroma compounds responsible for icewines' characteristic sensory profile or how 

viticultural practices affect its aroma and flavour profile. The objectives of this thesis 

were: 1) to identify odour-active compounds which could be used to characterize Niagara 

icewine using sensory analysis and gas chromatography; 2) to determine the effect of 

crop level and harvest date on these odour-active compounds; 3) determine the sensory 

profiles of the icewine made from different harvest dates and crop levels; and 4) to 

correlate the analytical and sensory results for an overall profile of the icewines. For all 

these objectives it was hypothesized that the freeze and thaw cycles of icewine grapes 

would result in changes in their chemical composition and sensory properties of the 

finished icewines and that the chemical composition and sensory properties would be 

affected by harvest dates and crop levels. 
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6.2 Objective 1: Identify odour-active compounds that characterize Niagara icewine. 

CharrnAnalysisTM, with two sniff judges, was used to determine the most odour 

potent compounds in Vidal and Riesling icewine and table wine. The top 15 odour potent 

compounds found through CharrnAnalysis™ were quantified and odour activity values 

(OAV) calculated to understand difference in aroma profiles between icewine and table 

wine. The most odour potent compounds in commercial Vidal and Riesling icewine and 

table wines were found to be the same. However; in general the icewines had higher 

concentrations and OA V of most aroma compounds compared to table wines. This 

finding is in agreement with other research comparing the concentration of odour-potent 

compounds in table wine and later harvested dried grape Fiano wines from Southern Italy 

(Genovese et al. 2007) and sun-dried Pedro Ximenez wines of Spain (Campo et al. 2008). 

The compound with the highest OA V in icewine was ~-damascenone and in table 

wine was ethyl octanoate. In total, 23 and 24 odour-active compounds were quantified in 

Riesling and Vidal wines, respectively using stir bar sorptive extraction (SBSE) gas 

chromatography-olfactometry-mass spectrometry (GC-O-MS). The most odour-potent 

compounds in icewine were ~-damascenone, l-octen-3-ol, ethyl octanoate, cis-rose 

oxide, and ethyl hexanoate. In table wines, the most odour potent compounds were ethyl 

octanoate, ~-damascenone, ethyl hexanoate, cis-rose oxide, ethyl3-methylbutyrate and 4-

vinylguaiacol. In general the most odour-potent compounds found through GC-O in this 

study were ~-damascenone, ethyl octanoate, ethyl hexanoate, ethyl butyrate, ethyl 2-

methylburtyrate, ethyl 3-methylbutyrate, phenylethyl alcohol, 4-vinylguaiacol, linalool 

and cis-rose oxide which have all previously been identified in Vidal and Riesling table 
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wines (Simpson and Miller 1983, Chisholm et al. 1994, Chisholm et al. 1995, Komes et 

al. 2006). 

While no unique odour-potent compounds were found in the icewine, in 

agreement with Cliff et al (2002), the qualitative differences in concentration of the 

aroma compounds in the icewines and table wines provide useful information toward 

creating a chemical signature for icewine. While most compounds had higher 

concentration in icewines, the compounds that were always higher in table wines can also 

be used to as a marker to detect genuine icewine, such as; 4-vinylguaiacol, decanal, ethyl 

octanoate and ethyl hexanoate. 

Through SBSE GC-O-MS of icewines using CharmAnalysis™, 23 and 24 odour­

potent compounds were identified in Vidal and Riesling icewines from the Niagara 

Peninsula, respectively that can be used to assess the effect of freeze and thaw events, 

harvest date and crop level of aroma compounds and sensory profiles. Future research 

will determine if odour potent compounds identified in this study such as p-damascenone, 

l-octen-3-01, and/or 4-vinylguaiacol can be used as icewine marker compounds. 

6.3 Objective 2: Effect of harvest date and crop level on odour-active compounds. 

6.3.1. Harvest date. 

Riesling and Vidal icewines were made from grapes picked between December 

2004 and February 2005; Harvest 1:19 December; Harvest 2: 29 December; Harvest 3: 18 

January; Harvest 4: 11 February (Vidal only). The role of harvest date on chemical 

variables and aroma compounds of icewine from different harvest dates was determined 

through SBSE-GC-MS on the aroma compounds identified in Objective 1. Chemical 

analysis of the icewine must found TA to decrease with later harvest date in both Vidal 
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and Riesling. In Vidal, pH was also found to decrease with later harvest date. Chemical 

analysis of the wine found difference between the harvest dates but no clear trend was 

observed with the exception of glycerol. Glycerol concentration increased with later 

harvest date, likely due to higher infection rates by B. cinerea and concentration effect 

due to desiccation of the berries through longer hang time. 

The composition of aroma compounds was affected by harvest date, the latest 

harvest date had the highest concentration of 16 of 24 (H4) and 17 of 23 (H3) aroma 

compounds in Vidal and Riesling, respectively. The latest harvest date had the highest 

concentrations for ethyl isobutyrate, ethyl 3-methylbutyrate, I-hexanol, l-octanol, cis­

rose oxide, nerol oxide, ethyl benzoate, ethyl phenyl acetate, y-nonalactone and~­

damascenone in both Vidal and Riesling. The earliest harvest date had the highest 

concentration of ethyl butyrate, ethyl hexanoate, ethyl octanoate, 4-vinylguaiacol and 

linalool. Odour activity values were calculated and the most odour-potent compounds in 

both cultivars across harvest dates were ~-damascenone, cis-rose oxide, l-octen-3-01, 

ethyl octanoate, ethyl hexanoate and 4-vinylguaicol. PCA found most attributes 

associated with the last harvest date with the exception of 4-vinylguaiacol which was 

always associated with HI for both cultivars. ~-Damascenone was the most odour potent 

compound with high concentrations in all treatments but increasing with later harvest 

date. 

The higher concentration of the ethyl esters in the earliest harvest dates (HI) for 

both Vidal and Riesling icewines may be related to the decreasing T A from freeze events 

or differences in yeast metabolic activity in overripe grapes (Kliewer 1968). Ethyl esters 

were also found to have higher concentrations in table wines compared to icewines 
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(Bowen and Reynolds 201Ob) and sweet Fiano base wines harvested at normal maturity 

had higher concentration of ethyl ester than overripe, late maturity wines (Genovese et 

al. 2007) which is agreement with the findings of this study. 

Higher concentrations of 4-vinylguaicol in HI is related to the total 

hydrocinnamate concentration in the grapes since it is formed from the decarboxylation 

of ferulic acid during fermentation (Shinohara et al. 2000). The total hydrocinnamate 

concentration decreases with later harvest dates in icewine likely due to freeze and thaw 

events that cause a decline in concentration in the grape (Kilmartin et al. 2007). This 

decline in hydrocinnamates is positively correlated with the decline in 4-vinylguaicol 

formation with later harvest date. This presence and concentration of 4-vinylguaicol has 

the potential to act as a marker compound for grapes subjected to freeze and thaw events 

or grapes frozen at normal maturity. 

The high concentrations of p-damascenone in the harvest date wine are similar to 

those reported from sun-dried grapes (Campo et al. 2008) and over ripe grapes (Pons et 

al. 2008). With the high odour potency and concentration, further research will be 

required to determine the exact role and contribution of p-damascenone to icewine 

sensory profiles. However, it is know that its concentration increases with extended hang 

time (Bowen and Reynolds 201Oa) and concentration are much higher in icewine than 

table wine (Bowen and Reynolds 20IOb). 

Harvest date was found to change the chemical variables and aroma compound 

composition of icewines. The six most odour-potent compounds found to differentiate by 

harvest date p-damascenone, 4-vinylguaiacol, I-octen-3-01, cis-rose oxide, ethyl 

hexanoate, and ethyl octanoate. 
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6.3.2 Crop level 

Three vineyard treatments [control (fully cropped), cluster thin at fruit set to one 

basal cluster per shoot (TFS), and cluster thin at veraison to one basal cluster per shoot 

(TV)] were evaluated for Riesling and Vidal cultivars over two seasons, 2003-4 and 

2004-5 to determine difference in chemical variables and aroma compounds of the 

resultant icewines. Must samples differed for both cultivars over two vintages, control 

treatments had lower pH and higher TA than TFS or TV. Similar to harvest date, 

differences were found in wine chemical variables but no clear trends were observed. 

The compounds with the highest OA V values in Vidal were ~-damascenone, ethyl 

octanoate, cis-rose oxide, l-octen-3-01, ethyl hexanoate and isoamyl acetate in 2003 and 

~-damascenone, l-octen-3-01, ethyl octanoate, cis-rose oxide and ethyl hexanoate in 

2004. Almost all aroma compounds differed due to crop level in Vidal; 17 of 24 in 2003 

and 23 of 24 in 2004. In 2003 Vidal icewine, the control and TV treatments had the 

highest concentration of aroma compounds and the lowest concentration of TFS, however 

no clear trends were seen with respect to cluster thinning. These findings are in 

agreement with Keller et al. (2005) and Reynolds et al. (1994) which both found that 

thinning had little effect on berry composition. However, the opposite was found in 

2004; almost all aroma compounds had the highest concentration in the TFS treatment. 

These finding are supported by Bravdo (1984) who found difference in crop level and 

harvest date in Carignane vines, the lower the crop level the earlier the harvest date when 

cluster thinning was completed just after bloom. Since all grapes were harvested at the 

same time, the first freeze event could be considered the end of maturation. Therefore, 

the differences between vintages are related to differences in the number and severity of 
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freeze and thaw events in November and December. The warmer fall of 2003 had more 

freeze and thaw event and greater temperature fluctuations, which resulted in desiccation 

of the fruit and concentration of the aroma compounds negating the effect of cluster 

thinning. 

Due to the difference in growing season, it is suggested that the onset of cold 

temperatures and the number and duration of the freeze and thaw events has more of an 

effect on the volatile composition of the Vidal icewine grapes than cluster thinning. 

Riesling icewines had the highest concentration of aroma compounds in TV treatment; 18 

of 22 in :J003 and 20 of 23 in 2004. Odour activity values showed that p-damascenone, 

ethyl octanoate, ethyl hexanoate were the most odour-potent in 2003 and 2004, while cis­

rose oxide was also highly odour-potent in 2004. The finding that most of the aroma 

compounds in Riesling were associated with TV is a contradiction to the results found in 

Vidal. The most likely explanations are related to difference in grape cultivar and fruit 

quality. Riesling has previously been found less responsive to cluster thinning than 

Chenin blanc or Cabemet Sauvignon (Keller et al. 2005), the same could be true for 

Vidal. 

We conclude that freeze and thaw events in November and December were likely 

more important for aroma compound development than crop level. 

6.4 Objective 3: Effect of harvest date and crop level on icewine sensory profiles. 

6.4.1 Harvest date 

Triangle tests found Vidal early harvest date wines (HI and H2) to differ from the 

later harvest date wines (H3 and H4) and in Riesling HI differed from H2 and H3. 

Descriptive analysis found 10 and 11 sensory attributes to differ in Vidal and Riesling 
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wines, respectively. Vidal icewine had higher intensity scores for all significantly 

different sensory attributes in the later harvest dates (H3 and H4); honey aroma and 

flavour, peach aroma, sherry aroma, tropical fruit aroma, caramelized flavour, dried 

fruit/raisin flavour, nut flavour, bitter taste and viscosity. For Riesling, fresh fruit and 

tropical attributes were associated with HI and dried fruit, nut attributes with H3. These 

differences were also illustrated through PCA for both cultivars. These findings are in 

agreement with the aroma compound composition of the icewines (Bowen and Reynolds 

201Oa) and previous research which has shown the harvest date affects the sensory 

profiles of different V. vinifera cultivars (Reynolds et al. 1993) and Vidal wines 

(Gallander 1983). 

6.4.2. Crop level 

Vidal icewines from both thinned treatments, TFS and TV, had higher intensity 

rating for th~ significantly different sensory attributes than the control (fully cropped) 

treatment in both 2003 and 2004. The 2003 Vidal thinned icewines were described as 

having higher intensity rating for caramelize aroma, dried fruit/raisin aroma, peach 

aroma, pear/apple aroma and flavour, sherry flavour, tangerine flavour, tropical fruit 

flavour and bitter taste., In 2004, the thinned treatments were described by higher 

intensity ratings of citrus aroma, floral aroma, lychee aroma, banana flavour, honey 

flavour and nut flavour. PCA found all attributes that differed were associated with the 

thinned treatments. 

In Riesling, control (fully cropped) wines had higher intensity ratings for 

tangerine aroma, nut flavour and bitter taste while TFS wines were rated highest for 

apricot aroma, honey flavour and tropical fruit flavour in 2003. In 200.4 wines, only four 
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attributes differed due to crop level; dried fruit/raisin aroma, floral aroma, citrus flavour 

and viscosity. 

The effect of harvest date and crop level on the sensory profiles of the icewines 

was determined through triangle test and descriptive analysis. Both Vidal and Riesling 

wines differed in their sensory profiles, however, more sensory differences were found 

due to harvest date than crop level in both cultivars. 

6.5 Objective 4: Relating icewine sensory profiles to their odour-active compounds. 

With the exception of Riesling crop level wines; there were strong correlations 

between sensory descriptors and odor-compounds using PLS analysis. Vidal and 

Riesling harvest date icewines were contrasted on the first dimension by wines from later 

harvest date with wine from early harvest dates. In Vidal, all aroma and flavour attributes 

were associated with the H3 and H4 and positively correlated with most of the aroma 

compounds such as ~-damascenone and cis-rose oxide. The esters and 4-vinylguaiacol 

were associated with HI, the esters were inversely correlated to tropical fruit, sherry, 

peach and honey aromas and 4-vinylguaiacol was inversely correlated to honey, dried 

fruit/raisin and nut flavours. In Riesling, HI was associated with lychee and citrus 

aromas and tangerine, tropical fruit, citrus and floral flavours which were positively 

correlated to many of the esters and 4-vinylguaiacol. Nut aroma and flavour, sherry 

flavour and dried fruit/raisin aroma were associated with H3 and positively correlated 

with most of the aroma compounds such as terpenes, norisoprenoids and alcohols. 

In Vidal crop level icewines, TFS and TV were associated with all the sensory 

attributes and were contrasted by the control (fully cropped) wines by PLS, in 2003. 

Sherry flavour was positively correlated with the aroma compounds 4-vinylguaiacol, 
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linalool, cis-rose oxide and geranyl acetone and the sensory attributes tangerine and 

tropical fruit flavours. In 2004, most of the sensory and aroma compounds were 

positively loaded on the first dimension which was driven by banana flavour and 

associated with the TFS treatment by PLS. An exception was ~-damascenone inversely 

correlated to floral aroma and positively correlated with nut flavour. In Riesling, most of 

the sensory attributes were inversely correlated with the aroma compounds. Honey was 

the most important explanatory variable and was inversely correlated with bitter taste, 1-

octen-3-01, cis-rose oxide, ~-damascenone and ~-ionone. 

Several compounds were identified that require further investigation to determine 

their role in the icewine flavour, the most important for future research due to 

concentration difference between early and late harvest date and OAV are ~­

damascenone, cis-rose oxide and l-octen-3-01 in later harvest dates and 4-vinylguaiacol, 

ethyl hexanoate and ethyl octanoate in early harvest date icewines. 

6.6 Overall relevance of the research and conclusions 

The information put forth supports both the hypothesis and the objectives. Aroma 

compounds were identified in icewines from the Niagara Peninsula, their concentrations 

were quantified and the effect of harvest date and crop level on aroma compounds was 

found. The sensory profiles of the wines were found to differ and were correlated with 

odour-active compounds. It can be concluded that harvest date and crop level affect the 

chemieal variables, aroma compounds and sensory properties of Vidal and Riesling 

icewines from the Niagara Peninsula and that freeze and thaw events change the sensory 

profile of the icewine. 
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The most odour-potent compounds were ~-damascenone, cis-rose oxide, l-octen-

3-01, 4-vinylguaiacol and ethyl octanoate and ethyl hexanoate. Early harvest date wines 

were characterized by higher esters, 4-vinylguaiacol and linalool whereas later harvest 

date wines were characterized by ~-damascenone, 1-octen-3-01 and cis-rose oxide. The 

role of ~-damascenone as a potential marker compound for icewine, contributing the 

dried fruit raisin, character requires further investigation. 

Since this is the first in-depth study to assess the sensory and volatile composition 

of icewine due to cultural practices such as harvest date and crop level; there are many 

avenues for future research. These include, but are not limited to, identification of 

marked compounds in icewine from the Niagara Peninsula, sensory re-constitution and 

omission studies to determine impact odorants, understanding the exact role of ~-

damascenone and 4-vinylguaiacol to icewine sensory profiles, quantification of key 

compounds from the current study in commercial icewines and try to classify by harvest 

date, determination of the exact role of freeze and thaw events on ice wine chemical 

composition, and consumer research studies to determine which sensory profile the 

consumer prefers. However, the research presented herein provides· a strong foundation 

for understanding the odour active volatiles and sensory profiles important to icewine and 

is a step in the right direction toward finding marker compounds to identify genuine 

icewine. 
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