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Abstract 

Icewine is a sweet dessert wine fermented from the juice of grapes naturally 

frozen on the vine. The production of Icewine faces many challenges such as 

sluggish fermentation, which often yields wines with low ethanol, and an 

accumulation of high concentration of volatile acidity, mainly in the form of acetic 

acid. This project investigated three new yeast strains as novel starter cultures for 

Icewine fermentation with particular emphasis on reducing acetic acid production: a 

naturally occurring strain of S. bayanus/S. pastorianus isolated from Icewine grapes, 

and two hybrids between S. cerevisiae and S. bayanus, AWRI 1571 and AWRI 1572. 

These strains were evaluated for sugar consumption patterns and metabolic 

production of ethanol, glycerol and acetic acid, and were compared to the 

performance ofa standard commercial wine yeast KI-VI116. The ITS rONA region 

of the two A WRI crosses was also analyzed during fermentations to assess their 

genomic stability. Icewine fermentations were performed in sterile filtered juice, in 

the absence of indigenous microflora, and also in unfiltered juice in order to mirror 

commercial wine making practices. 

The hybrid A WRI 1572 was found to be a promising candidate as a novel starter 

culture for Icewine production. It produced 10.3 % v/v of ethanol in sterile Riesling 

Icewine fermentations and 11.2 % v/v in the unfiltered ones within a reasonable 

fermentation time (39 days). Its acetic acid production per gram sugar consumed was 

approximately 30% lower in comparison with commercial wine yeast K I-V 1116 

under both sterile filtered and unfiltered fermentations. The natural isolate S. 



bayanus/S. pastorianus and AWRI 1571 did not appear to be suitable for commercial 

Icewine production. They reached the target ethanol concentration of approximately 

10 % v/v in 39 day fermentations and also produced less acetic acid as a function of 

both time and sugar consumed in sterile fermentations compared to KI-V1116. 

However, in unfiltered fermentations, both of them failed to produce the target 

concentration of ethanol and accumulated high concentration of acetic acid. Both 

A WRI crosses displayed higher loss of or reduced copies in ITS rDNA region from 

the S. bayanus parent compared to the S. cerevisiae parent; however, these genomic 

losses could not be related to the metabolic profile. 
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Chapter 1. Introduction and literature review 

1.1. Introduction 

1.1.1. Introduction of the problem 

The production of Icewine is often associated with prolonged fermentation time 

and high concentration of volatile acidity (mainly in the form of acetic acid) due to 

the high concentration of sugar in Icewine juice which places yeast cells under 

extremely hyperosmotic stress (Kontkanen et al. 2004). In Canada, the maximum 

allowed acetic acid concentration in Icewine is 2.1 g rl according to the Vintners 

Quality Alliance (VQA 1999). The average acetic acid concentration in Canadian 

commercial Icewine was found to be 1.30 g rl with a range from 0.49 to 2.29 g rl 

(Nurgel et al. 2004). Interestingly this is lower than the sensory threshold of acetic 

acid in Icewine, which was found to be 3.185 g rl (Cliff and Pickering 2006). 

However, during fermentation, acetic acid can esterify with ethanol to produce ethyl 

acetate, which gives the wine a characteristic solvent or nail polish remover smell 

(Cliff and Pickering 2006). Nurgel et al. (2004) found that the average concentration 

of ethyl acetate in commercial Canadian Icewine was 0.240 g rl with a range from 

0.086 to 0.369 g rl. The sensory threshold of ethyl acetate in Icewine is 0.198 g rl . 

(Cliff and Pickering 2006), which falls into the range of ethyl acetate concentrations 

in commercial Icewine on the market. Therefore, the generation of acetic acid during 

Icewine fermentation has been a concern for Icewine producers. 



The acetic acid generated during Icewine fermentation may be a by-product of 

retaining redox balance in yeast. Under hyperosmotic stress, Saccharomyces 

cerevisiae produce glycerol as an intracellular osmolyte to counteract with the high 

osmolarity (Blomberg and Adler 1989). The oxidized cofactor NAD+ is produced 

during glycerol formation and this leads to a potential redox imbalance for the 

NAD+ INADH cofactor system. Under hyperosmotic stress, acetic acid was 

suggested to be generated to correct this redox imbalance by NAD+ -dependent 

aldehyde dehydrogenases through acetaldehyde oxidation and concomitantly reduce 

NAD+ back to NADH (Blomberg and Adler 1989; Miralles and Serrano, 1995; 

Navarro-Avino et al. 1999). 

Since acetic acid detracts from Icewine quality in various ways, it is critical to 

understand the generation of acetic acid in yeasts' adapted response during Icewine 

fermentations and to develop methods which could decrease the acetic acid 

concentration in industrial Icewine production. Selecting new yeast strains which 

produce less acetic acid compared to commercially available wine yeasts during 

Icewine fermentation as novel starter cultures for Icewine production appears as a 

good approach to decrease acetic acid concentration in the fmal wine. 

1.1.2. Thesis objective 

The objective of this study is to evaluate new yeast strains to be used as novel 

starter cultures for Icewine production. The first hypothesis was that the following 

new yeast strains, the natural isolate S. bayanus/S. pastorianus ami two hybrids, 
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AWRI 1571 and AWRI 1572, will produce less acetic acid compared to a 

commercially available wine yeast KI-VI116 during Icewine fermentation with 

target ethanol production of approximately 10 % v/v. The second hypothesis was that 

the two hybrids will have a stable genome during the Icewine fermentations and will 

thus produce consistently metabolites during fermentations. 

1.1.3. Experimental design 

All yeast strains were inoculated to sterile filtered Riesling lCewine juice to 

evaluate their true metabolic contribution during fermentations; they were also 

inoculated to unfiltered Riesling Icewine juice to determine their potential in 

commercial winery environments. Yeast growth, sugar consumption, metabolites 

production (acetic acid, glycerol, ethanol and ethyl acetate) and genomic stability of 

hybrids were monitored during fermentations. The potential of yeast strains to be 

used as novel starter cultures for Icewine production was assessed based on their 

ethanol production, acetic acid reduction and genomic stability. 

1.2. Literature review 

1.2.1. Introduction of Icewine 

Icewine is a sweet dessert wine of great significance to the Canadian wine 

industry since Canada is the largest producer by volume of Icewine, with a reported 

production of 1.053 million litres in Ontario in 2009 (VQAO 2009). Icewine is 

fermented from the juice of grapes which have been naturally froze.n on the vine. 
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Because of the low temperature of harvesting and pressing, _7°C (EU regulations) 

and _8°C (Canada), the water crystals in grape berries are separated from the highly 

concentrated juice (Bowen 2010). This leads to an extremely high concentration of 

soluble solids in Icewine juice, including sugar, acids and nitrogen compounds. 

The minimum concentration of soluble solids in Icewine juice for fermentation 

must reach the minimum value of 35 °Brix (VQA 1999), but commonly the juice 

with a soluble solids concentration of 38 to 42 °Brix is used for Icewine production 

(Ziraldo and Kaiser 2007). This high concentration of sugar in the juice places yeast 

cells under extreme hyperosmotic stress, coupled with the high acidic concentration 

causes problems during Icewine fermentation. On one hand, the stressed yeast cells 

require a longer period to adapt to the fermentative environments and consequently 

result in sluggish fermentations. On the other hand, yeast cells produce high 

concentration of volatile acidity, mainly in the form of acetic acid, while combating 

the high osmolarity (Kontkanen et al. 2004). 

1.2.2. Hyperosmotic stress response of yeasts and the correlation to acetic acid 

When exposed to high osmolarity, yeast cells rapidly lose intracellular water, 

leading to the loss of membrane turgor and shrinkage of cells (Hohmann 2002). In 

order to decrease efflux of water, yeast cells immediately activate several pathways 

that can protect cells against the high osmotic stress. One of these actions is the arrest 

of cell growth and the immediate closure of Fpslp, the membrane channel which 

controls the export of glycerol, to allow cells to accumulate glycer:ol internally to 
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balance the intracellular and extracellular osmolarity (Sutherland et al. 1997). In this 

way, glycerol acts as an internal osmolyte to prevent further water loss and help 

restore cellular function. Another aspect of the immediate rescue system when yeast 

cells are placed under hyperosmotic stress is the rapid activation of the high 

osmolarity glycerol (HOG) pathway, which is responsible for the production of 

glycerol as an intracellular osmolyte to balance the pressure on cells. 

1.2.2.1. Introduction ofthe HOG pathway of S. cerevisiae 

The HOG pathway is a typical mitogen-activated protein kinase (MAPK) pathway. 

MAPK pathway is a signal transduction pathway activated and regulated by protein 

phosphorylation and dephosphorylation. It exists in all eukaryotic cells (Waskiewicz 

and Cooper 1995) and regulates specific biological responses through an extensive 

range of extracellular stimuli (Winter-Vann and Johnson 2007). Each organism has 

multiple distinct MAPK cascades that can transduce different signals in order to 

protect cells from different extracellular stresses. 

MAPK cascades are modular signaling units composed of three protein kinases: 

MAPKKK (MAPK kinase kinase), MAPKK (MAPK kinase) and MAPK (Marshall 

1994). The transmembrane sensing proteins transduce signal to MAPKKK when they 

sense extracellular stimuli. Then a MAPKKK activates a cognate MAPKK by 

phosphorylation; the MAPKK in turn phosphorylates the MAPK, which initiates the 

transfer of MAPK from the cytosol to the nucleus. The translocated MAPK 

phosphorylates its target proteins which function as transcriptiol1al factors that 
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upstream regulate gene expression beneficial for cells to counteract corresponding 

stress (reviewed in Hohmann 2002). This is the basic scheme for the HOG MAPK 

phosphore lay cascade that helps yeast cells to combat the hyperosmotic stress. 

1.2.2.1.1 Sensing and signaling 

The HOG pathway consists of two transmembrane proteins playing the role as 

osmosensors, the Sholp and the Slnlp. which can sense the change in membrane 

turgor (Ostrander and Gorman 1999; Reiser et al. 2000). After these two proteins 

sense the change of membrane turgor, they relay the signal of hyperosmotic stress 

respectively by activating HOG MAPK pathway (Fig. 1.1). 

Cell melTbrane 

Cytoplasm 

Nucleus / 

~­~... j 
r G-3-p - DHAP 
I ~ 
I ? 
i 

clear expression 
of glycerol 

metabolism ganes 

& 

Stress genes 

(~ 
~ O$Olosensol"$ 

(Y~ j ~~ 
I 

~~~MAPKKKs . 1 
MAPKKs 

~Ks 

Figure 1.1: Scheme of HOG pathway in S. cerevisiae under hyperosmotic stress. Black 

!;Olic;l ~rrow!; indi~te pho!;phOryl~tion event!;; green !;olic;l ~rrOW$ inc;lic;:~te ~!;$oc;:i~tion of 

expression events; blue arrows indicate association of metabolic events; dashed arrows 

indicate translocation. Adapted from Hohmann (2002). 

The Sln1p upstream branches in the HOG pathway (Fig. 1.1) are activated by 

Sln1p-Ypd1p-Ssk1p phosphate transfer (Posas et al. 1996). Sln1p and Ypdlp function 
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as negative regulators of the HOG pathway, as the study of Maeda et al. (1994) 

showed that the deletion of SLN1 and YPD1 would cause lethality of S. cerevisiae 

because of the overactivation of the HOG pathway. Under low osmolarity, Sln1p 

constantly autophosphorylates itself (Posas et al. 1996). The phosphate group is then 

transferred to Ypd1p and subsequently to Ssk1p (reviewed in Posas et al. 1996). 

When Ssk1p is phosphorylated, it 'turns off the HOG pathway, whereas the 

dephosphorylation of Ssk1 p under high osmotic stress activates its kinase activity and 

makes it capable of phosphorylating the MAPKKKs Ssk2p and Ssk22p (Maeda et al. 

1995; 1994), which 'turns on' the downstream regulation of the HOG pathway. The 

Ssk2p subsequently phosphorylates and activates MAPKK Pbs2p by the 

phosphorylation on Ser514 and Thr518 (Posas and Saito 1997). 

It is questioned why the phosphore lay system led by Sln1p functions as a negative 

regulator of the HOG pathway. Hohmann (2002) proposed a reasonable explanation 

that the HOG pathway was activated until the cell which suffers from low turgor or 

cell shrinking starts to regain turgor and swells again. Once the cell starts to regain 

turgor, Sln1p begins to autophosphorylate itself; as such, the Sln1p branch of the 

HOG pathway was 'turned off. In this case, the phosphorelay could function as an 

effective feedback system by itself for the HOG pathway (Hohmann 2002). 

Activation of the Sho 1 p branch of the HOG pathway needs the rapid and 

transient formation of a protein complex at the cell surface, specifically at places of 

bud necks (Raitt et al. 2000; Reiser et al. 2000). This complex consists of at least two 

components, Sho1p and Pbs2p (Maeda et al. 1995; Posas and Saito 1997). In addition, 
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the complex also contains, although not necessarily at the same time, the 

p21-activated protein kinase (PAK) Ste20p (or the homolog Cla4p in an ste20 mutant) 

(Raitt et al. 2000), the rho-like G-protein Cdc42p (Raitt et al. 2000), and the 

MAPKKK Stellp (O'Rourke and Herskowitz 1998; Posas and Saito 1997), as well as 

Ste50p, which is required for Stellp function (O'Rourke and Herskowitz 1998). 

The initial signaling event of Slnlp branch in the HOG pathway (Fig. 1.1) may be 

the activation of Sho 1 p SH3 domain by an osmotic shock, although the mechanism is 

not clear (Raitt et al. 2000). The Sholp then binds to Pbs2p, thereby recruiting it to 

the cell surface, which may mark the generation of the signaling-competent complex 

(Maeda et al. 1995). This complex subsequently recruits Cdc42p with the interacting 

PAK Ste20p and the MAPKKK Stellp (Johnson 1999). Cdc42p is known as the 

monitor of protein complex formation in different contexts, and the assembly of the 

appropriate signaling complex then leads to activation of the PAK Ste20p (Johnson 

1999), which then phosphorylates the MAPKKK Stellp (Orogen et al. 2000). Ste50p 

might be a cofactor for Stellp because they form a complex through interaction of 

their SAM domain during the phosphorylation of Stellp (Posas et al. 1998). The 

activated Ste 11 p subsequently phosphorylates the MAPKK Pbs2p on Ser514 and 

Thr518 (Posas and Saito 1997). Because Pbs2p interacts with multiple proteins, 

including Sho 1 p, Ste 11 p and Hog 1 p, it has been proposed to act as a scaffold, linking 

Sho 1 p to Ste 11 p activation and, thereby, possibly limiting cross-talk to other 

Stel1p-dependent MAPK pathways (Posas and Saito 1998). 

Once Pbs2p is activated by Ssk2p and Ssk22p of the Slnlp branch or Stellp of the 
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Sholp branch, it immediately activates the MAPK Hoglp by phosphorylation (Fig. I). 

It has been proven that the phosphorylation of the Hoglp kinase occurs in the cytosol, 

because the MAPKK Pbs2p is a cytoplasmic protein and specifically excluded from 

the nucleus (Reiser et al. 1999). Recently, Yang et al. (2006) and Hawle et al. (2007) 

proposed that the chaperone Hsp90p and its cochaperone Cdc37p were essential for 

the stability of Hog I p and thereby were significant for the subsequent Hog I p 

phosphorylation and downstream function. Hog 1 p is activated by dual 

phosphorylation on the conserved Thr174 and Tyr176 (Schiiller et al. 1994). 

Coincident with phosphorylation by Pbs2p, Hog 1 p is rapidly transferred into the 

nucleus and causes a rapid and marked concentration of Hog 1 p in the nucleus, while 

under normal conditions Hoglp appears to be evenly distributed between the cytosol 

and the nucleus (Reiser et al. 1999) (Fig. 1.1). 

1.2.2.1.2 Genetic regulation of the HOG pathway 

Once entering into the nucleus, Hog 1 p interacts with several transcriptional factors 

and hence regulates the expression of numerous genes (Posas et al. 2000, Rep et al. 

2000). The reported numbers of genes that are expression-regulated by osmolarity are 

different between studies because different growth conditions and thresholds were 

applied in the analysis. It appears that about 200 to 400 genes are upregulated and 

approximately 150 to 250 genes are downregulated following a hyperosmotic shock 

(Hohmann 2002). 

Hotlp (Alepuz et al. 2003; Rep et al. 1999; 2000) is the characteriz~d transcription 
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factor that is involved in the HOG pathway and plays a significant role in protecting 

cells from high osmolarity. It is a transcriptional activator which displays Hoglp- and 

osmotic shock-dependent phosphorylation. Hotlp controls a set of less than 10 genes, 

including those that encode proteins in glycerol metabolism and uptake, e.g. GDP 1 

and GPP2. Hotlp binds to the GPDl promoter constitutively and recruits Hoglp to 

the DNA during the HOG response. In addition, Msnlp is also localized at the GPDl 

promoter, but only during hyperosmotic stress (Alepuz et al. 2003; Rep et al. 1999; 

2000). This initiates the upstream expression of GPDl which contributes to the 

formation of the intracellular osmolyte glycerol. 

Msn2p and Msn4p are two redundant proteins mediating a general stress response, 

including osmotic stress (Ruis and SchUller 1995). These two transcriptional factors 

regulate the stress response elements which are located in the promoter regions of the 

general stress responsive genes (Martinez-Pastor et al. 1996). When yeast cells are 

placed under hyperosmotic stress, Msn2p and Msn4p are rapidly transferred from the 

cytosol to the nucleus where they induce gene expression. It has been proven that the 

nuclear localization of Msn2p/Msn4p is mediated by protein kinase A (PKA) but it 

functions as a negative control (Gomer et al. 1998). 

1.2.2.1.3 Glycerol production and the redox implication of acetic acid during 

Icewine fermentation 

Glycerol is one of the most crucial products of HOG response. It is produced to 

serve as an intracellular osmolyte to balance the osmotic pressure placed on the cell 

(Blomberg and Adler 1992; Blomberg 2000). The rate limiting step in glycerol 
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formation induced by high osmotic stress is the expression of glycerol-3-phosphate 

dehydrogenase which is encoded by GPDJ (Remize et al. 2001). This gene product 

catalyzes the reduction of the glycolytic intermediate dihydroxyacetone phosphate 

(DHAP) to form glycerol-3-phosphate. The glycerol-3-phosphate is then 

dephosphorylated by glycerol-3-phosphatase (encoded by GPP2) to produce glycerol 

(Pahlman et al. 2001) (Fig. 1.2). Pigeau and Inglis (2005) showed that GPDJ was 

upregulated during Icewine fermentation, and reflected the elevated levels of glycerol. 
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Figure 1.2: Glycerol production induced by high osmolarity 

Fructose-1,6-biphosphate 

The production of glycerol is an effective strategy to protect yeasts from 

hyperosmolarity; however, this leads to imbalance of the NAD+ INADH coenzyme 

redox system. During glycerol formation, NADH is oxidized to NAD+ when DHAP is 

reduced to form glycerol 3-phosphate (Fig. 1.2 and 1.3). Because of the lack of a 
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transhydrogenase in yeast to convert reducing equivalents between the NAD+ INADH 

system and the NADP+ INADPH system (Blomberg and Adler 1989), yeasts must rely 

on metabolite formation to maintain the redox balance for the coenzyme system (van 

Dijken and Scheffers 1986). Acetic acid has been considered as such a metabolite by 

which yeast cells balance the excess NAD+ produced during glycerol formation under 

salt-induced osmotic stress (Blomberg and Adler 1989) (Fig. 1.3). This may occur 

during the oxidation of acetaldehyde to acetic acid, catalyzed by NAD+ -dependent 

aldehyde dehydrogenases. Certain aldehyde dehydrogenases reduce NAD+ to NADH 

while oxidizing acetaldehyde and may be involved in restoring internal redox balance 

(Blomberg and Adler 1989; Miralles and Serrano 1995; Navarro-Avino et af. 1999) 

(Fig. 1.3). 
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Figure 1.3: Glycerol production and the redox implication of acetic acid during Icewine 

fermentations in S. cerevisiae. 

The traditional wine yeast Saccharomyces cerevisiae has five ALD isogenes that 

encode acetaldehyde dehydrogenases involved in the production of acetic acid from 
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acetaldehyde: ALD2 ALD3, ALD4, ALD5, and ALD6 (Navarro-Avino et al. 1999). 

Ald2p and Ald3p are cytosolic enzymes and NAD+-dependent; Ald4p and Ald5p are 

located in mitochondrion and rely on NAD(Pt and NADP+ respectively; Ald6p is 

cytosolic and uses NADP+ as coenzyme. Previous studies have correlated acetic acid 

production to increased glycerol formation in response to hyperosmotic stress 

(Miralles and Serrano 1995; Navarro-Avino et al. 1999). If it is true that acetic acid 

is produced during Icewine fermentation to correct the redox imbalance of NAD+ / 

NADH system by oxidizing acetaldehyde to acetic acid and reduce NADH back to 

NAD+ concomitantly by cytosol ie, NAD+ -dependent aldehyde dehydrogenases 

(Miralles and Serrano 1995; Navarro-Avino et al. 1999), the two cytosolic, 

NAD+-dependent aldehyde dehydrogenases Ald2p and Ald3p are assumed to be 

mainly responsible for the generation of acetic acid under hyperosmotic stress. 

Navarro-Avino et al. (1999) found that the NAD+-dependent aldehyde 

dehydrogenase activity increases in wild-type cells but not in ald2ald3 mutant cells 

under NaCI-induced hyperosmotic stress. Pigeau and Inglis (2005; 2007) reported 

that ALD3 showed a 6.2-fold upregulation 4 days into the Icewine fermentation 

compared to the diluted fermentation; whereas the expression pattern of the other 

ALD genes were not affected by this high sugar environment. However, Ald6p was 

previously reported as the main aldehyde dehydrogenase responsible for acetic acid 

production in S. cerevisiae strains during fermentation of glucose media (Eglinton et 

at. 2002), Ald5p was recently found to contribute to acetic acid production as well 

(Saint-Prix et at. 2004), and both are NADP+-dependent. In contrast;Remize et al. 
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(2000) reported that Ald4p and Ald6p are the major contributors of acetate formation 

during wine fermentations. In a study of hyperosmotic stress during Icewine 

fermentation, a wine yeast showed upregulated ALD2, -3, -4 and -6 exposed to the 

highly concentrated sugar after 2 hours (Erasmus et al. 2003). These studies 

indicated that the expression of ALD genes varies between yeast strains, media and 

time of exposure to the hyperosmotic stress, and it is still unclear which isoform is 

responsible for acetic acid generation during Icewine fermentation. The 

downregulation of genes involved in acetic acid utilizing pathways, such as ACSI 

and ACS2 which encode mitochondrial and cytosolic acetyl-CoA synthetases 

respectively, occurs at the same time as the upregulation of ALD3, and may 

contribute to the elevated acetic acid concentration in Icewine (Fig. 1.3). The 

down-regulation of ACSI and ACS2 during Icewine fermentation was exhibited by 

microarray analysis (Martin and Inglis 2006), but the expression in protein level has 

not been investigated. 

1.2.2.2. Strain, solute and time dependency of osmotic stress response 

Although the osmotic stress response in S. cerevisiae has been well characterized, 

the majority of these researchers focused on laboratory strains of S. cerevisiae under 

salt-induced osmotic stress for a short period and also under aerobic conditions. 

However, wine yeast strains are genetically different from laboratory yeast strains and 

may also differ in their response to hyperosmotic stress under anaerobic fermentation 

conditions (Bidenne et al. 1992, Remize et al. 1999). Different solute induced stresses 
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may affect the cell response as well. Sugar, such as glucose, can eventually be 

metabolized by the cells, which decreases osmotic stress gradually, but high levels of 

sodium ion could be toxic to the yeast (Kinc1ova-Zimmermannova and Sychrova 

2006). In addition, the initial response of yeast cells to high osmotic stress differs 

from the adapted response. The adapted response also contributes to the quality of 

final wine taking into account that Icewine fermentations require 4-6 weeks to reach 

the desired ethanol concentration. 

Wine yeasts are traditionally selected from the natural environment and selected for 

positive oenological properties during wine fermentation (Pretorius 2000). They are 

closely related to S. cerevisiae laboratory strains but have distinct physiological 

properties which make them suitable for wine fermentations (Pretorius 2000). For 

instance, the commercial wine yeasts were selected with high tolerance of sugar and 

ethanol. They are capable of efficient fermentations and make contributions to the 

desired flavour of wine (Pretorius 2000). The different characteristics between wine 

yeasts and laboratory yeasts affect the organoleptic properties of the finished wines 

(Bidenne et al. 1992; Remize et al. 1999). It is suggested that most laboratory yeast 

strains are either haploid or diploid, whereas commercial yeast strains are possible to 

be diploid, aneuploid and/or polyploidy (Bidenne et al. 1992; Pretorius 2000). The 

polyploidy might be the reason why the commercial strains can withstand the highly 

stressed environment during fermentations since they possess a higher dosage of 

genes essential for fermentation performance (Salmon 1997). 

Erasmus et al. (2003) proposed that wine yeast exposed to sugar induced osmotic 
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stress for two hours displayed a different transcriptional response compared to 

laboratory strains under salt induced stress. In this study, four aldehyde 

dehydrogenases encoded genes ALD 2, 3, 4 and 6 were upregulated; whereas only 

ALD 3 and 6 were reported to be upregulated in laboratory strains under salt induced 

osmotic stress (Norbeck and Blomberg 2000). Furthermore, pyruvate decarboxylase 

PDC 6, which encodes a key enzyme in fermentative metabolic pathway, was found 

upregulated in wine yeast under sugar induced stress (Erasmus et al. 2003), but this 

gene was not affected by salt or sorbitol induced stress (Rep et al. 2000). 

Nevertheless, the situation of wine yeasts under hyperosmotic stress during Icewine 

fermentation is also different from the initial sugar induced stress since the juice is not 

only highly concentrated in sugar but also in acids, nitrogen and other compounds. 

The adapted response to high osmotic stress during the fermentation differs from the 

initial response, and the fermentation lasts weeks. For industrial applications of yeast, 

the changing stress response over time may impact the quality of final wine. Pigeau 

and Inglis (2005; 2007) suggested that only ALD3 was differenciately upregulated of 

all the ALDs in wine yeast during Icewine fermentation compared to a dilute juice 

fermentation, and this increased expression follows increased production of 

acetaldehyde, which is followed by increased acetic acid production. Interestingly, 

although the accumulation of acetaldehyde was proven to be the trigger for the 

upregulation of ALD3, the exogenous acetaldehyde alone did not affect the acetic acid 

concentration during fermentations. It appears that the expression of ACS genes varies 

between yeast strains as well. Erasmus and van Vuuren (2009) 'compared the 
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transcripts of ACSJ between a high acetic acid producing strain VIN7 and a low acetic 

acid generating strain ST grown in grape musts containing 40% w/v sugar. The 

transcriptional pattern of ACSJ in VIN7 was found lower than in ST, while 

transcription of ACSJ unchanged in S. cerevisiae Vin13 when subjected to high sugar 

concentrations (Erasmus et al. 2003). 

1.2.3. Acidic stress response of yeast cells 

During Icewine fermentation, yeast cells are not only under hyperosmotic stress 

caused by the high concentration of sugar, they are also placed under acidic stress due 

to the high concentration of acids in the juice. Organic acids can enter yeast cells 

through passive diffusion when they are in the uncharged state outside of cells where 

the pH value is lower than their pKa's. Once in the cytosol they readily dissociate 

upon encountering the higher pH environment, generating a proton and acid anion. 

The anionic form of acid will tend to accumulate intracellularly to a high level, as 

being charged, they cannot readily diffuse from the cell (reviewed in Piper et al. 2001). 

Therefore, yeast cells have to develop different adaptation mechanisms that will allow 

them to resist the inhibitory acidic environment. Yeasts' adaptive response to acidic 

stress includes genetic control, signal transduction, post-translational modifications 

and protein degradation. 

The primary response mechanism to weak acid stress in S. cerevisiae is the 

induction of the plasma membrane W ATPase activation (Pmal p), an ATP driven 

proton efflux pump (Mollapour et al. 2008). The role of Pmalp in yeast cells is to 
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create the transmembrane electrochemical gradient through the translocation of 

protons across the plasma membrane. The proton gradient provides the driving force 

of nutrient uptake. Exposure of S. cerevisiae cells to acid stress results in cytosolic 

acidification due to acid dissociation. To prevent the disruption of cytosolic pH 

homoeostasis, cells induce the activation of the Pmal pump (Reviewed in Mollapour 

et aZ. 2008) (Fig. 1.4). Piper et aZ. (1997) found that the activity of Pm alp increased in 

response to 2 mM sorbic acid in Hsp30p deletion mutants. This membrane heat shock 

protein is a negative regulator of Pmal p under sorbic stress. These mutants 

experienced longer adaptation time as compared to wild type, possibly due to 

increased use of A TP by the pump, which leads to limited yeast growth (Piper et aZ. 

1997). 
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Figure 1.4: The adaptive response of S. cerevisiae to acetic acid stress. 
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Transcriptional profiling of weak acid stress response in S. cerevisiae revealed that 

PDR12, the ATP-binding cassette transporter, is one of the most highly induced genes 

in response to sorbate stress (Schuller et al. 2004). It was found that Pdrl2p was as an 

energy dependant carboxylate anion extruder (Piper et al. 2008) (Fig. 1.4). PDR12 

gene is induced strongly by I mM of sorbate at pH 4.5 by Warlp-transcription factor 

(Kren et al. 2003). The extrusion of the acid anion firstly involves the binding of acid 

anion. Secondly, the energy dependent transporter trans locates the anion against its 

concentration gradient to the periplasmic side of the membrane. This results in 

reprotonation of the anion due to the encounter with low pH. Removal of the acid 

anions by Pdr12p is a highly energy demanding process and that is why low biomass 

is observed under these acid stressors (Reviewed in Mollapour et al. 2008). 

Mollapour and Piper (2006) demonstrated that when different genes that encode for 

the proteins of the HOG pathway were deleted, S. cerevisiae experienced increased 

sensitivity to acetic acid stress. Acetate activation of Hog I P is absent in the sskl1 and 

pbsl1 mutants but is present in sholl1 and stel1, showing that it involves the Slnlp 

branch of the HOG pathway signaling to Pbs2p (Mollapour and Piper 2006). 

Interestingly, the induction of the HOG pathway under acetic acid stress conferred 

yeast resistance to the acid with no increase in the expression of GPDI gene or 

intracellular glycerol concentration, which are both typical events upon activation of 

the HOG pathway under hyperosmotic stress (Mollapour and Piper 2006). 

Thorsen et al. (2006) extensively studied the role of Hoglp in response to arsenite 

toxicity and found the activation of Hog I p did not result in transcriptional regulation 
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of downstream genes, but rather modulated the activity ofFpslp, a plasma membrane 

glyceroporin through which arsenite enters the cell. The Hoglp is able to translocate 

into the plasma membrane and phosphorylate the N-terminal tail of Fps 1 p, which will 

induce Fps 1 p to adopt a closed channel conformation in order to prevent further 

uptake of arsenite into the cell (Thorsen et al. 2006). At low pH, the acetic acid stress 

generated transient activation of the Hoglp MAP kinase mediated by the Slnl branch 

of the HOG pathway (Mollapour and Piper 2007) (Fig. 1.4). Hog 1 p phosphorylated 

the Fpslp at two 12 amino acid regions, both located on the cytosolic surface of the 

membrane. This phosphorylation was the signal for Fpslp to become ubiquitinated, 

and then was endocytosed to the vacuole for degradation by the 26S proteasome 

(Mollapour and Piper 2007). Thus, the Hoglp downregulates the entry of arsenite via 

either the closure of the Fpsl p or targeting it for degradation. 

Since yeast cells are facing both hyperosmotic stress and acidic stress during 

Icewine fermentation, it is critical to understand the adaptation response of wine 

strains to environmental stress under Icewine fermentative condition for the purpose 

of industrial application. It is also important to select yeast stains well adapted to 

stressful environments in order to produce the highly qualified and satisfied products. 

1.2.4. Introduction of wine yeasts 

Traditionally, alcoholic fermentation of grape must is carried out by allowing the 

microorganisms naturally present on grapes to grow, which is termed spontaneous 

fermentation. These fermentations were conducted by a broad spectrum of yeast 
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species. It has been known for a long time that many non-Saccharomyces species, 

especially species of Hanseniaspora, Candida, Pichia and Metschnikowia, initiate 

spontaneous alcoholic fermentation of the juice (reviewed in Fleet and Heard 1993; 

Fleet 2003). However, they are commonly soon overtaken by the growth of S. 

cerevisiae, the species that dominates the mid to final stages of the process, and most 

often is the only species found in the fermenting juice at these times (reviewed in 

Fleet and Heard 1993; Fleet 2003). 

Yeast cells of different species metabolize in a variety of ways to produce 

byproducts from sugar consumption and to counteract the fermentative stress, hence 

they contribute to different aroma and flavours in the final wine. Being aware of that, 

pure yeast strains were selected and commercialized to be used as starter cultures in 

order to produce wines with desired aroma and flavours. The commercial wine yeasts 

are selected for distinct fermentative properties and high adaptation to the oenological 

environment, such as high tolerance to alcohol and sugar (Pretorius 2000). In addition, 

they are able to conduct rapid, complete and efficient conversion of grape sugar to 

ethanol, carbon dioxide and other minor but critical metabolites without the 

development of off-flavours (Pretorius 2000). 

1.2.4.1. Genus Saccharomyces in wine fermentations 

The genus Saccharomyces plays the central role in wine fermentations. Currently, 

this genus consists of eight species: S. cerevisiae, S. bayanus, S. uvarum, S. 

pastorianus, S. paradoxus, S. cariocanus, S. mikatae and S. kudriavzevii (Kurtzman 
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2003; Nguyen and Gaillardin 2005). Studies on the genus Saccharomyces could date 

back to 1838, when the first yeast species Saccharomyces cerevisiae was named by J. 

Meyen (reviewed in Rainieri et al. 2003). Saccharomyces means sugar moulds and 

cerevisiae means beer from the Gaelic word kerevigia or old French word cervoise 

(reviewed in Mortimer 2000). Previously the Saccharomyces sensu stricto consisted 

of four species: S. cerevisiae, S. bayanus, pastorianus and S. paradoxus 

(Vaughan-Martini and Martini 1998). S. bayanus strains were initially divided into 

two subgroups: S. bayanus var. bayanus and S. bayanus var. uvarum by molecular 

analysis (Nguyen and Gaillardin 1997; Nguyen et al. 2000). However, S. uvarum was 

later proven to be a distinct species when Nguyen and Gaillardin (2005) found the 

nucleotide sequences of several genetic markers from a S. bayanus strain diverged 

from those of the type strain of S. uvarum. Three new species were classified to genus 

Saccharomyces in 2000: S. cariocanus, S. mikatae and S. kudriavzevii, on the basis of 

genetic analysis, molecular karyotyping and sequence analyses of the 18S rRNA and 

internal transcribed spacer (ITS) region (Naumov et al. 2000). A new member 

recently was also categorized into this genus: S. arboricolus, which was isolated from 

oak trees in China (Wang and Bai 2008), but further identification is required. 

S. cerevisiae is the predominant and type species in genus Saccharomyces which is 

responsible for wine, beer, bread and sake fermentations. It has been highly adapted to 

fermentative environments and most of the commercial wine yeast strains in the 

market currently belong to this species. S. bayanus, which was formerly designated as 

S. bayanus var. bayanus (Nguyen and Gaillardin 1997; Nguyen et al. 2000), was 
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isolated from beer fermentations. Because of its properties of cryotolerance and low 

acetate generation during wine fermentation, this species recently attracted great 

attention for investigation in sweet wine making. Eglinton et al. (2000) suggested that 

S. bayanus contributes to more glycerol, succinic acid, acetaldehyde and S02 than S. 

cerevisiae, but produces less acetic acid, malic acid and ethyl acetate. It is more 

associated with savoury- and cooked-like aroma attributes; such as 'cooked orange 

peel', 'honey', 'yeasty', 'nutty' and 'aldehyde' (Eglinton et al. 2000). S. uvarum, 

which was formerly designated as S. bayanus var. uvarum (Nguyen and Gaillardin 

1997; Nguyen et al. 2000), has been described as adapted to low temperature 

fermentations during wine making and cider production (Naumon et al. 2001; 2002). 

S. pastorianus is generally known as lager yeast due to its association with beer 

brewing. S. pastorianus is thought to be the natural hybrid between S. cerevisiae and S. 

bayanus evolved in a brewing environment. It normally contains multiple copies of 

parental genomes, either in the form of intact genomes or aneuploid (reviewed in 

Querol and Bond 2009). S. paradoxus has been described as the main yeast species in 

Croatian vineyards (Redzepovic et al. 2002). S. cariocanus and S. mikatae have never 

been found and studied in fermentative environments. S. kudriavzevii, which was first 

isolated from decayed leaves and soils in Japan, and from oaks in Portugal (Sampaio 

and Goncalves 2008), has recently been studied in different fermentative conditions 

due to its cryotolerant and low acetate-generating characteristics. 

The genus Saccharomyces consists of hybrids between two or more distinct species. 

Naturally occurring hybrids have been isolated from different fermentative 
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environments, such as cider, brewing, and wine fermentations. Many interspecies 

hybrids were obtained under laboratory conditions, by conjugating (mating) spores, 

spores with haploid cells, by making use of 'rare mating' occurring between diploid 

vegetative cells or by fusing protoplasts, in order to study the contribution to wine 

industry of hybrids with distinct properties from both parental strains (Sipiczki 2008). 

Apparently, favourable combinations of positive characteristics, including better 

adaptation, can be accomplished from the mixing of two or more genomes (Sipiczki 

2008). 

The two major wine yeast species, S. cerevisiae and S. bayanus, both have 

characteristically organoleptic contribution to wine, and distinct properties to adapt to 

fermentative conditions better than the other species (Sipiczki 2008). Therefore, their 

hybrids, either natural or laboratory-made, which possess combined properties from 

both parental species, were studied under fermentative environments. Caridi et al. 

(2002) observed low production of acetate and high production of glycerol in a hybrid, 

two distinct characteristics of the cryotolerant S. bayanus parent. The Australian Wine 

Research Institute (A WRI) hybridized S. cerevisiae with additional members of the 

Saccharomyces genus to explore genetic resources for the wine industry (reviewed in 

Sipiczki 2008). The hybrid A WRI 1503 between S. cerevisiae and S. kudriavzevii, 

which was commercialized by Maurivin™, displayed high alcohol tolerance, low 

volatile acidity, moderate foaming and excellent sedimentation properties after 

alcoholic fermentation (reviewed in Sipiczki 2008). The hybrid AWRI 1501 between 

S. cerevisiae and S. paradoxus is better at building flavour complexity {A WRI 2006). 
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The natural triple hybrids between S. cerevisiae, S. bayanus and S. kudriavzevii 

displayed adaptation to growth under ethanol and temperature stress by inheriting 

competitive traits from one or another parental species (Belloch et al. 2008). 

Although the properties of these hybrids in wine making look promising, the 

genetic analysis of the natural and laboratory-bred hybrids revealed great variability 

of hybrid genome structures and suggested that the alloploid genome of the zygote 

can undergo drastic changes during mitotic and meiotic divisions of the hybrid cells 

(Sipiczki 2008). These variations towards genome-stabilization consist of loss of 

chromosomes and genes and recombination between the partner genomes (Sipiczki 

2008). 

In the Saccharomyces sensu stricto group of yeasts, the interspecies hybrids can 

mate, but their hybrid offspring are almost completely sterile, producing less than 1 % 

viable spores (gametes) (Greig et al. 2002). The hybrid sterility is thought to arise 

from the inability of the chromosomes of the heterogeneous genomes to pair in the 

prophase of meiosis I, which inhibits normal meiotic division (Hawthorne and 

Philippsen 1994; Sebastiani et al. 2002; Antunovics et al. 2005). Nevertheless, this 

postzygotic barrier does not seem to be effective in allotetraploids due to the presence 

of a matching homologous partner for each chromosome, which makes meiosis 

possible (Greig et al. 2002; Antunovics et al. 2005). Since the partner genomes are 

not isolated in the hybrid cell and can interact, the recombination is manifested, 

accompanied by extensive reduction of the genome size through the loss of large parts 

of one or both parental genomes, making the hybrid genome become more stable 
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(Sipiczki 2008). Although the genetic variation leads to hybrid genomes evolving 

towards genome-stability, it might cause instability of yeast genomes during wine 

fermentations and thus results in unpredictable variation in the composition and 

flavour of the final wine. Therefore, the stability of the hybrids needs to be 

investigated more thoroughly in order to make it a powerful technique for directed 

and controllable fermentations. 

1.2.4.2. Non-Saccharomyces yeast species in wine fermentations 

Grape berries and associated processing equipment contain a variety of yeasts that 

accumulate in the must or juice. Whether or not the juice is inoculated with a starter 

culture, some yeast strains will grow according to their adaptability to the juice 

composition and the fermentation conditions. At the same time of building cell 

concentration, they metabolize grape-derived compounds, to produce a variety of 

volatile and non-volatile metabolites and carry out transformation reactions. 

Depending on the vigor of the Saccharomyces starter culture and the growth and 

metabolic activity of the non-Saccharomyces yeasts during fermentation, wine 

composition will be affected to various degrees by the metabolic activities of all 

yeasts present. Fermentations in which non-Saccharomyces species were present in 

high populations will have greater metabolic impact on wine composition and flavour 

(Reviewed in U gliano and Henschke 2009). 

The freshly pressed grape juice harbors a diversity of yeast species, principally 

within the genera Hanseniaspora (anamorph Kloeckera), Pichia, Candida, 
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Metschnikowia, Kluyveromyces and Saccharomyces (reviewed in Fleet and Heard 

1993; Fleet 2003). Occasionally, species in other genera such as Zygosaccharomyces, 

Saccharomycodes, Torulaspora, Dekkera and Schizosaccharomyces could be found 

(reviewed in Fleet and Heard 1993; Fleet 2003). Many of these non-Saccharomyces 

species from the microbial communities of the grape berry and winery environment 

initiate spontaneous alcoholic fermentation, especially species of Hanseniaspora, 

Candida, Pichia and Metschnikowia, but are overtaken by S. cerevisiae sooner or later 

during the fermentations (Fleet and Heard 1993; Fleet 2003). A practical problem with 

non-Saccharomyces yeast species is that few strains are able to complete 

fermentations, and in many cases only a small proportion of grape sugar will be 

converted to ethanol (Fleet 2008). Two strategies could solve this problem: 

co-fermentation with a robust Saccharomyces strain and sequential fermentation, in 

which the non-Saccharomyces stain and Saccharomyces strain are inoculated 

successively. Thus these non-Saccharomyces yeasts could conduct complete 

fermentations at the same time with the development of desired aroma and flavours in 

the final wine (Fleet 2008). 

Out of all these non-Saccharomyces species associated with wine fermentations, 

two species displayed great potential for Icewine fermentation: Candida stellata 

which displays high osmotolerance (Csoma and Sipiczki 2008; Sipiczki 2008), and 

Torulaspora delbrueckii that reduces volatile acidity in sweet wine fermentations 

(Ciani and Ferraro 1998; Herraiz et al. 1990; Moreno et al. 1991). 

Yeast strains in the species Candida stellata are frequently associated with overripe 
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and botrytized grapes in sweet wine production and displayed outstanding 

osmotolerance and cryotolerance (Csoma and Sipiczki 2008; Sipiczki 2008). It 

possesses several desired properties in wine making: high glycerol and succinic acid 

production, preference for fructose consumption fermentation, moderate ester and 

higher alcohol production, and production of novel wine aromas. However, it 

displayed high variability in acetic acid production amongst strains (Ugliano and 

Henschke 2009). Csoma and Sipiczki (2008) recently studied 41 strains initially 

classified as Candida stellata but it was found most of them belonged to Candida 

zemplinina and related species. The confusing identification might be the reason for 

the high variance of acetic acid production within the species. Strain selection of 

Candida stellata and its co- or sequential-fermentation with Saccharomyces 

cerevisiae might be worth re-investigating for Icewine fermentation. 

Torulaspora delbrueckii (anamorph Candida colliculosa; formerly Saccharomyces 

rosei) produces comparatively low concentrations of acetic acid, ethyl acetate, 

acetaldehyde, and its potential suitability for wine production has been suggested by 

several studies (Ciani and Ferraro 1998; Herraiz et al. 1990; Moreno et al. 1991). 

Torulaspora delbrueckii was isolated from high sugar musts, thus its osmotolerant 

characteristic is investigated in the fermentation of botrytized wines (Henschke and 

Dixon 1990; Bely et al. 2008). Under hyperosmotic stress conditions of sweet 

fermentations, Torulaspora delbrueckii typically retains its distinct properties to 

produce high glycerol and low acetic acid compared, to Saccharomyces species, 

although co-fermentation with Saccharomyces is necessary to reach high ethanol 
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requirements. Based on these characteristics, Torulaspora delbrueckii might also be a 

potential species that would contribute to low volatile acidity during Icewine 

fermentations. Torulaspora delbrueckii has already been developed as a component of 

a mixed yeast culture with Saccharomyces cerevisiae and Kluyveromces 

thermotolerans which was commercialized by Chr. Hansen (Viniflora® 

HARMONY.nsac and MELODY.nsac) (Ugliano and Henschke 2009). It was also 

commercialized by Lallemand (LEVEL™ TD) as the world's first sebsequential 

inoculation kit using two different species of yeast. 

1.2.4.3. Mixed strains in controlled fermentations - a new fermentative strategy 

Yeast strains within and other than Saccharomyces species are ecologically and 

metabolically different in wine fermentation and therefore produces wine with unique 

and distinctive properties. Thus it would be interesting to exploit the more creative 

and controlled fermentation of different yeast strains. However, some of the strains 

with attractive properties are not capable of a fully completed fermentation, limiting 

in their ability to produce sufficient ethanol or displaying limited cell accumulation 

which leads to sluggish fermentations. 

Under this condition, conducting wine fermentations by controlled inoculation of 

mixtures of different yeast strains is an effective strategy to harness the unique 

activity of such yeasts (Fleet 2008). Essentially, there are two ways to introduce 

mixed strains into controlled fermentation: inoculating the juice with mixed starter 

culture, and sequential inoculation. In the former, the juice is inocul~ted with more 
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than one yeast strain simultaneously, normally S. cerevisiae and one or more other 

strains with relatively weak fermentative ability. In such case, the inoculating ratio of 

the different yeast stains will affect the completion of fermentation and also flavours 

of the final wine. A ratio with lower S. cerevisiae is essential to allow a slow 

accumulating rate of this species under fermentative environments. The latter involves 

inoculating S. cerevisiae into grape juice several days after the inoculation of the other 

strains, thereby permitting the growth of the non-So cerevisiae strain before being 

overtaken by the more dominant S. cerevisiae, and thus allow the non-So cerevisiae 

yeast to produce important metabolites. Many studies have focused on the mixed 

inoculation strategy due to the great potential to introduce and combine specific 

characteristics into wine (reviewed in Fleet 2008). This area of wine technology is 

very likely to grow in future applications and more study is required to understand the 

biological mechanisms of how yeasts interact ecologically and metabolically when 

grown in co-culture and sequential culture under wine making conditions (Fleet 

2008). 
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Chapter 2. Study of new yeast strains as novel starter cultures for 

Icewine production in sterile Icewine fermentations 

F. Yang1,2, J. R. Bellon3 and D.L. Inglis1
,2,4 

1 Cool Climate Oenology and Viticulture Institute, Brock University, St Catharines, ON, Canada 

2 Centre for Biotechnology, Brock University, St Catharines, ON, Canada 

3 The Australian Wine Research Institute, Urrbrae, SA, Australia 

4 Department of Biological Sciences, Brock University, St Catharines, ON, Canada 

2.1. Abstract 

Aims 

The objective of this study is to investigate three new yeast strains as novel starter 

cultures for Icewine fermentation: a naturally occurring strain of S. bayanus/S. 

pastorianus isolated from Icewine grapes, and two hybrids between S. cerevisiae and 

S. bayanus, AWRI 1571 and AWRI 1572, compared to commercial wine yeast S. 

cerevisiae KI-VI116. 

Methods and Results 

All yeast strains were inoculated to sterile filtered Riesling Icewine juice (41.6°Brix, 

reducing sugar 473 ± 11 g r!) at 1 x 107 cells mr!. Fermentations were conducted at 

17°C in triplicate. Both viable and total cell concentration, reducing sugar 

concentration and acetic acid concentration were monitored during the course of 

fermentation. Ethanol, glycerol, nitrogen and ethyl acetate production were also 

measured in final wines to determine the metabolic conversion of sugar during 

fermentation. The hybrids were tested for genetic stability during fermentation. All 

three new strains produced less acetic acid as a function of both time and sugar 
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consumption compared to the commercial yeast KI-V1116. The two hybrids were 

able to consume as much sugar as KI-V1116, but the isolated strain S. bayanus/S. 

pastorianus displayed lower sugar-consuming ability and correspondingly produced 

low concentration of ethanol. Both AWRI 1571 and AWRI 1572 showed some 

genomic loss during sterile fermentations but it was not correlated to metabolic 

profile. 

Conclusions 

AWRI 1571 and AWRI 1572 displayed potential for use as novel starter cultures for 

Icewine production. They produced target ethanol concentration of approximately 10 

% v/v in a reasonable fermentation time and low acetic acid. Their genomic 

instability during fermentations did not detract from wine composition. S. bayanus/S. 

pastorianus produced less acetic acid but failed to reach the target ethanol 

concentration. 

Significance and Impact 

This work investigated the potential of three new yeast strains used as novel starter 

cultures for Icewine fermentation. The genomic instability of newly formed hybrids 

during Icewine fermentations was investigated for the first time. Hybrids A WRI 

1571 and AWRI 1572 were determined as potential candidates for Riesling Icewine 

fermentations. 

Key words: acetic acid, Icewine, sterile, S. cerevisiae, S. bayanus, S. bayanus/S. 

pastorianus, hybrids, stability 

41 



2.2. Introduction 

Icewine is an intensely sweet late harvest wine fermented from the juice of 

naturally frozen grapes. The grapes are typically harvested and pressed below -7 DC 

(EU regulations) and -8 DC (Canada) between December and January, making the 

water crystals in grape berries separated from the highly concentrated juice (Bowen 

2010). The removal of water results in extremely high concentration of soluble solids 

in Icewine juice, including sugar, acids and nitrogen compounds. 

The minimum allowed soluble solids concentration in juice for Icewine 

fermentation is 35 °Brix according to regulations (VQA 1999), but commonly juice 

with soluble solids concentration between 38 to 42 °Brix is used for Icewine 

production (Ziraldo and Kaiser 2007). Such highly concentrated sugar in Icewine 

juice places yeast cells under extreme hyperosmotic stress, coupled with the high 

acid concentration often results in sluggish fermentation and high concentrations of 

volatile acidity, mainly in the form of acetic acid (Kontkanen et al. 2004). In Canada, 

any Icewine with acetic acid concentration> 2.1 g rl can not be designated as an 

Icewine (VQA 1999). Furthermore, acetic acid formed during fermentation can 

esterify with ethanol to produce ethyl acetate, which gives wine an undesired solvent 

or nail polish remover aroma (Cliff and Pickering 2006). Nurgel et al. (2004) found 

that the average concentration of ethyl acetate in commercial Canadian Icewine was 

0.240 g rl, which was lower than the sensory threshold of ethyl acetate in Icewine, 

0.198 g rl (Cliff and Pickering 2006). Therefore, it is of great significant to decrease 

the acetic acid production during Icewine fermentation. 
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Since wine yeast strains vary greatly in their ability to produce acetic acid (Delfini 

and Cervelli 1991), investigating new strains of Saccharomyces may offer a solution 

to overcome the elevated volatile acidity in Icewine production. Erasmus et al. (2004) 

compared seven commercially available wine yeast strains (ST, N96, Vin13, Vin7, 

EC1118, 71B, V1116) for Icewine production, and found that Yin 7 produced almost 

twice the amount of acetic acid as ST. Eglinton et al. (2000) noted that Chardonnay 

wine fermented with cryophilic strains of yeast S. bayanus produced lower amounts 

of acetic acid compared with S. cerevisiae. Because of its properties of cryotolerance 

and low acetate generation during wine fermentation, the application of this species 

may also be favourable for Icewine production. 

The genus Saccharomyces consists of hybrids between two or more distinct species, 

including naturally occurring hybrids isolated from different fermentative 

environments and hybrids obtained under laboratory conditions (Sipiczki 2008). It 

seems that favourable combinations of positive characteristics from parental species, 

including better adaptation, can be accomplished from the mixing of two or more 

genomes, and it could also contribute to wine fermentations (Sipiczki 2008). S. 

cerevisiae plays the most important role at the fermentative stage due to its high 

adaptation and great fermentative ability, but its high acetic acid generation during 

Icewine fermentation has been a concern; whereas S. bayanus displayed properties of 

low acetate generation during wine fermentation and cryotolerance which suits 

Icewine fermentative environment, but lower efficiency in fermentations. Therefore, it 

would be interesting to investigate the behavior of hybrids between these two species, 
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which possess combined properties from both parental species, in Icewine 

fermentation. In fermentations of Gaglioppo red wine must, one hybrid between S. 

cerevisiae and S. bayanus showed low production of acetic acid and a high 

concentration of glycerol, two distinct characteristics of the s. bayanus parent (Caridi 

et at. 2002). 

In our study, one S. cerevisiae strain, one S. bayanus/S. pastorianus strain isolated 

from Icewine grapes and two hybrids between S. cerevisiae and S. bayanus were 

compared for Icewine production. Yeast strains were evaluated for fermentation rates, 

ethanol, glycerol and acetic acid production. The two hybrids were also tested for 

genomic stability. Fermentations were conducted using sterile-filtered Icewine juice 

in order to determine the fermentative properties of the yeast strain without the 

interference of indigenous microflora. 

2.3. Materials and methods 

2.3.1. Yeast strain 

The commercial yeast strain S. cerevisiae KI-V1116 was supplied by 

Lallemand Inc. (Montreal, QB, Canada). The natural yeast strain S. bayanus/S. 

pastorianus was isolated from Icewine grapes. The hybrid yeast strain AWRI 1571 

and A WRI 1572 were kindly provided by the Australian Wine Research Institute 

(A WRI), Glen Osmond, SA, Australia. These strains are hybridized by natural yeast 

mating techniques. They are hybrids between a S. cerevisiae wine strain (A WRI 

838-an isolate ofEC1118) and as. bayanus strain (AWRI 1176) isolated from grape 
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juice fermenting slowly at 4°C. 

2.3.2. Icewine juice for fermentation trials 

Riesling Icewine juice was kindly provided by Niagara Vintage Harvesters Ltd 

(Virgil, ON, Canada). To remove the indigenous microorganisms in the juice, the 

juice was filtered through coarse, medium and fine pore-size pad filters and 

subsequently through a 0.22 /lm membrane cartridge filter (Millipore, Etobicoke, 

ON, Canada). 500 mg rl of diammonium phosphate was added into the juice in 

order to increase the nitrogen. After filtration, the juice was aliquoted into 1 litre 

sterile bottles and stored at -20°C until use. 

2.3.3. Chemical composition ofIcewine juice 

Soluble solids of Icewine juice was determined with a bench top refractometer 

(AO ABBE unit, model 10450, American Optical, Buffalo, NY, USA). Reducing 

sugar concentration was measured using Lane-Eynon method (Zoecklein et at. 1996). 

Juice pH was measured with a 455 Corning pH meter and titratable acidity (TA; 

recorded in units of g rl tartaric acid) was titrated against standardized NaOH (0.1 N) 

to a pH 8.2 endpoint (Zoecklein et at. 1996). Yeast assimilable nitrogenous 

compounds were determined by measuring primary amino nitrogen (PAN) and 

ammonia nitrogen using enzymatic kits (K-PANOPA and K-AMIAR, Megazyme 

International Ireland Ltd). Juice variables were as follows: 41.6± 0 °Brix, reducing 

sugar 473 ± 11 g rl, pH 3.48 ± 0, TA 6.1 ± 0.1 g rl tartaric acid, ammonia nitrogen 

143 ± 3 mgN rl, PAN 216 ± 6 mgN rl. 
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2.3.4. Yeast inoculation procedure for fermentations 

All four yeast strains were plated out on yeast peptone dextrose (YPD) plates 

(10 g rl yeast extract, 20 g rl peptone, 20 g rl dextrose, and 20 g rl agar) before 

use in fermentations. 100 ml of Riesling Icewinejuice was diluted to 10 °Brix and 

had 2 g rl of diammonium phosphate was added to the dilute juice to prepare the 

growth media to build up the yeast cultures. Using a sterile wire loop, a loop-full of 

each of the four yeast strains were inoculated into the growth media. These cultures 

were grown aerobically at 25°C with shaking at 130 rpm until the cell 

concentrations reached 2 x 108 cells mrl. 25 ml of these cultures were then added 

into 25 ml of diluted Riesling Icewine juice (20 °Brix) respectively and held for 1 h 

without shaking at room temperature. 25 ml of undiluted Riesling Icewine juice 

(41.6° Brix) were then added into these 50 ml cultures respectively, and the 

cultures were held for 2 h without shaking at room temperature. Following this 

acclimatization procedure, the starter cultures (75 ml) were inoculated into 425 ml 

of Riesling Icewine juice (41.6 °Brix) to achieve a yeast inoculum rate of 1 x 107 

cells mrl in a final volume of 500 ml. 

2.3.5. Fermentation monitoring 

Fermentations were carried out at 17°C in triplicate and continued until the yeast 

stopped consuming sugar, signaled by no further change in sugar concentration for 

three days. Daily sampling (1.5 ml) of the fermentations occurred after stirring the 

fermentations for 5 minutes to ensure a homogeneous mixture. Yeast cell 
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concentrations were measured by cell counting via haemocytometer outlined by 

Zoecklein et at. (1996). Differentiation of viable and dead cells was determined by 

methylene blue staining. The remaining fermentation samples were centrifuged to 

remove yeast cells and then the supernatants were frozen at -20°C for determination 

of sugar, acetic acid, glycerol, nitrogen, ethanol and ethyl acetate. The sugar 

concentration in fermentation samples were measured via Lane-Eynon method. 

Acetic acid, glycerol, ammonia nitrogen and PAN were determined by enzymatic 

kits (K-ACET, K-GCROL, K-AMIAR and K-PANOPA, Megazyme International 

Ireland Ltd). Ethanol and ethyl acetate were measured via gas chromatography 

(Agilent, CA, USA) using an Agilent 6890 system equipped with flame ionization 

detector and DB Wax (30m x 0.23mm x 0.25Jlm) column. The carrier gas was 

helium. For ethanol measurement, samples were diluted 10-fold and 1.0 JlI was 

injected into the injection port heated to 225°C. The column head pressure was set as 

24.4 psig and the flow rate of helium gas was 2.5 ml min-I. The oven temperature 

was programmed to start at 60°C, increase to 95 °C at 15°C min-I, and then 

increase to 225°C at 75 ml min-I and hold for 1 min. The detector temperature was 

225°C and 2% I-butanol was used as an internal standard. For ethyl acetate 

measurement, 1.0 JlI of sample was injected and heated to 230°C. The column head 

pressure was 15.4 psig and helium flow rate was 1.5 ml min-I. The oven temperature 

was hold at 35°C for two min, and then increased to 230°C at 10 ml min-I and hold 

for 2 min. The detector temperature was 230°C and 5% 4-methyl-2-pentanol (2 g rl) 

was used as an internal standard. 
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Significant Difference (LSD, p < 0.05). 

2.4. Results 

2.4.1. Fermentation kinetics 

The four different strains consumed similar amount of reducing sugar with 

analogous consumption rates in the first 10 days, but differences were displayed 

beyond day 10 of the sterile fermentations (Fig. 2.1A). The Icewine isolate S. 

bayanus/S. pastorianus showed the slowest sugar consumption rate (Fig. 2.1A) and 

consumed the least amount of reducing sugar (148 g rl) over the 39 day 

fermentations (Fig. 2.1B). The sugar consumption of commercial yeast KI-VI116, 

AWRI 1571 and AWRI 1572 (ranging from 186 to 190 g rl) were higher compared 

with S. bayanus/S. pastorianus (148 g rl) (Fig. 2.1B). The cell accumulation was 

faster and to a greater extent in fermentations by Kl-V 1116 and S. bayanus/S. 

pastorianus in comparison with fermentations by the two hybrids (Fig. 2.2A and 

2.2B), although S. bayanus/S. pastorianus consumed less sugar even with the higher 

cell population (Fig. 2.1B). 
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2.3.6. Stability analysis of hybrids AWRI 1571 and AWRI 1572 

Yeast samples were taken on day 34 of the fermentations, and 0.1 ml of the 

sample was added into 0.9 ml of sterilized 0.1% peptone buffer to reach a 10-fold 

dilution. Then 0.1 ml of diluted sample was added into another 0.9 ml of buffer to 

reach a 100-fold dilution. Such successive dilution of the previously diluted samples 

was applied to obtain a serial dilution from 10-1 to 10-4
• Each diluted sample was 

plated on YPD plates, incubated at 25°C until colonies formed, and then kept at 4 

°C until use. A total number of 74 colonies from AWRI 1571 and 75 colonies from 

AWRI 1572 were analyzed for stability of the ribosomal DNA region spanning the 

internal transcribed spacers (ITS 1 and 2) and the 5.8S rRNA gene. Primer pairs used 

to amplify the ITS region are ITSI (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 

(5'-TCCTCCGCTTATTGATATGC-3'). The PCR thermal cycling parameters were 

an initial denaturation at 95°C for 6 min, followed by 35 cycles of denaturation at 

95 °C for 30 sec, annealing at 55°C for 30 sec, and extension at 72 °C for 30 min, 

with a final extension at 72 °C for 10 min. 4.0 III of PCR products were digested 

with the restriction endonuclease HaeIII. Restriction fragments were electrophoresed 

on 2% agarose gel. 

2.3.7. Statistical analysis 

Differences between variables were determined by XLSTAT statistical software 

package released by Addinsoft (Version 7.l; Paris, France). Statistical methods used 

were analysis of variance (ANOVA) with mean separation by -Fisher's Least 
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Figure 2.1: Sugar consumption during sterile filtered Riesling Icewine fermentation. 

Reducing sugar consumption was followed throughout the course of fermentation (A) and the 

total sugar consumed was compared among yeast strains (B). Fermentations were performed in 

triplicate and samples from each trial were tested in duplicate. Sugar values represent the average 

± standard deviation of the mean of triplicate fermentations. Statistical methods used were 

analysis of variance (ANOVA) with mean separation by Fisher's Least Significant Difference 

(LSD; p<O.05). Lowercase letters indicate statistical difference in sugar consumption between 

strains in descending order analyzed by Fisher's LSD (p<O.05). 
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Figure 2.2: Viable and total yeast cell accumulation during sterile filtered Riesling Icewine 

fermentation. Both viable yeast cell concentrations (A) and total yeast cell concentrations (B) 

were monitored throughout the course of fermentation. Fermentations were performed in 

triplicate and samples from each trial were tested in duplicate. Cell values represent the average 

± standard deviation of the mean of triplicate fermentations. 
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2.4.2. Yeast metabolite conversion 

2.4.2.1. Acetic acid production during fermentations 

All three new strains produced less acetic acid compared to the commercial wine 

yeast KI-VI116 during 39 days of fermentations (Fig. 2.3A and 2.3B). The 

fermentation by S. bayanus/S. pastorianus displayed the lowest acetic acid 

production during the course of fermentations and in the final wine, followed by 

AWRI 1571 and AWRI 1572 (Fig. 2.3A and 2.3B, Table 2.2). 

Since acetic acid is a byproduct of sugar consumption, the acetic acid production 

needed to be normalized to the total amount of sugar consumed for each yeast strain 

tested in order to compare metabolic conversion across the strains. KI-V1116 

produced higher acetic acid as a function of the sugar consumed when compared 

with the other strains throughout the entire fermentations (Fig. 2.4A). All three new 

strains, S. bayanus/S. pastorianus, AWRI 1571 and AWRI 1572 produced less acetic 

acid per total amount of sugar consumed as opposed to KI-V1116 (Fig. 2.4B). 

Although S. bayanus/S. pastorianus produced the least acetic acid, there was no 

difference in ratios of acetic acid production to the sugar consumption between the 

three new strains (Fig. 2.4B). 
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Figure 2.3: Productiou of acetic acid during sterile filtered Riesling Icewine fermentation. 

Acetic acid production was followed throughout the course of fennentation (A), and the total 

acetic acid production was compared among yeast strains (B). Fennentations were perfonned in 

triplicate and samples from each trial were tested in duplicate. Acetic vailles represent th~ 

average ± standard deviation of the mean of triplicate fermentations. Statistical methods used 

were analysis of variance (ANOVA) with mean separation by Fisher's Least Significant 

Difference (LSD; p<O.05). Lowercase letters indicate statistical difference between strains in 

descending order analyzed by Fisher's LSD (p<O.05), 
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Figure 2.4: Acetic acid produced/Sugar consumed during sterile filtered Riesling Icewine 

fermentations. Acetic acid production was plotted versus sugar consumed throughout the course 

of fermentation (A), and the total acetic acid production was normalized to sugar consumed and 

compared among yeast strains (B). Fermentations were performed in triplicate and samples from 

each trial were tested in duplicate. Values represent the average ± standard deviation of the mean 

of triplicate fermentations. Statistical methods used were analysis of variance (ANOVA) with 

mean separation by Fisher's Least Significant Difference (LSD; p<O.05). Lowercase letters 

indicate statistical difference between strains in descending order analyzed by Fisher'S LSD 

(p<O.05). 

2.4.2.2. Conversion of other metabolites during fermentations 

Compositions of the fmal Icewine fermentated from sterile filtered Riesling juice 

were listed in Table 2.1. Icewine fermented by the isolate S. bayanus/S. pastorianus 
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had a higher concentration of residual ammonia and displayed the lowest TA. Ethyl 

acetate concentration was tested to determine the level of esterification between 

acetic acid and ethanol across the four strains. Although all three new strains 

displayed lower acetic acid production compared with Kl-V1116, only S. bayanus/S. 

pastorianus showed lower concentration of ethyl acetate than the commercial yeast 

in the final wine (Table 2.1). 

Table 2.1: Final concentration of compounds in sterile fermented Riesling Icewine. 

Fennentations were perfonned in triplicate and samples from each trial were tested in duplicate. 

Values represent the average ± standard deviation of the mean of triplicate fermentations. 

Statistical methods used were analysis of variance (ANOVA) with mean separation by Fisher's 

Least Significant Difference (LSD; p<O.05). Lowercase letters indicate statistical difference 

between strains in descending order analyzed by Fisher's LSD (p<O.05). 

Kl- V1116 S. bayanus/S. AWRI1571 AWRII572 
pastorianus 

Sugar 264 ± 10 305 ± 13 263 ± 10 267 ± 14 
(g rl) b a b b 

Ethanol 10.8 ± 1.4 7.7 ± 0.5 10.5 ± 0.9 10.3 ± 1.2 
(% v/v) a b a a 

TA 7.9 ± 0.3 6.9±0.0 7.6± 0.2 7.5±0.1 
(g r 1 tartaric a c ab b 

acid) 
pH 3.64 ± 0.03 3.67 ± 0.03 3.61 ± 0.04 3.61 ± 0.03 

Ammonia 93 ± 14 112±6 82 ± 11 82 ±9 
(mgN rl) ab a b b 

PAN (mgN rl) 188 ± 7 191 ± 7 188 ± 8 187 ± 12 
Glycerol 9.57 ± 0.39 8.12 ± 0.80 10.22 ± 0.43 10.46 ± 0.95 

(g rl) a b a a 
Acetic acid 2.13 ± 0.16 1.29 ± 0.05 1.72 ± 0.10 1.57 ± 0.19 

(g rl) a c b b 
Ethyl acetate 79 ± 31 29 ± 11 79±22 63 ± 21 

(mg rl) a b a ab 

During fermentations, the yeast metabolites measured are derived from sugar 
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metabolism, so the production of acetic acid, glycerol, ethanol and ethyl acetate 

during fermentations was normalized to sugar consumption (Table 2.2), by 

subtracting out the starting concentrations before fermentations from the final 

concentrations in the wines. The metabolites produced were then divided by the 

sugar consumed for the purpose of normalizing the data for the comparison across 

the four yeast strains. 

Table 2.2: Conversion of metabolites during sterile filtered Riesling Icewine fermentation. 

Fermentations were performed in triplicate and samples from each trial were tested in duplicate. 

Values represent the average ± standard deviation of the mean of triplicate fermentations . 

Statistical methods used were analysis of variance (ANOVA) with mean separation by Fisher's 

Least Significant Difference (LSD; p<O.05). Lowercase letters indicate statistical difference 

between strains in descending order analyzed by Fisher 's LSD (p<O.05). 

Kl- V1116 S. bayanus/S. AWRI1571 AWRII572 
pastorianus 

Sugar consumed 188 ± 0 148 ± 4 186 ±2 190 ± 18 
(g rl) a b a a 

Acetic acid 2.07 ± 0.17 1.20 ± 0.02 1.62 ± 0.12 1.46 ± 0.12 
produced (g rl) a c b b 

Glycerol produced 9.57 ± 0.39 8.12 ± 0.80 10.22 ± 0.43 10.46 ± 0.95 
(g rl) a b a a 

Ethanol produced 10.8 ± 1.4 7.7 ± 0.5 10.5 ± 0.9 10.3 ± 1.2 
(% v/v) a b a a 

Ethyl acetate 79 ± 31 29± 11 79±22 63 ± 21 
production (mg rl) a b a ab 

S. bayanus/S. pastorianus produced less glycerol, ethanol and ethyl acetate 

compared with the other three strains during the fermentations (Table 2.2). 

Nevertheless, it also consumed the least amount of sugar (Fig. 2.1B and Table 2.2). 

When the production of these metabolites was normalized into the amount of sugar 

consumed for each strain, there was no difference between these strains (Table 2.3). 
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Table 2.3: Normalized production of metabolites during sterile filtered Riesling Icewine 

fermentation. Fermentations were performed in triplicate and samples from each trial were 

tested in duplicate. Values represent the average ± standard deviation of the mean of triplicate 

fermentations. Statistical methods used were analysis of variance (ANOVA) with mean 

separation by Fisher's Least Significant Difference (LSD; p<O.05). Lowercase letters indicate 

statistical difference between strains in descending order analyzed by Fisher's LSD (p<O.05). 

K1- V1116 S. bayanus/S. AWRI1571 AWRI1572 
pastorianus 

Ethanol produced 
(% v/v) / sugar 0.056 ± 0.005 0.053 ± 0.002 0.057 ± 0.005 0.053 ± 0.005 

consumed (g rl) 
Glycerol produced 

(g rl) / sugar 0.050 ± 0.002 0.056 ± 0.004 0.055 ± 0.002 0.054 ± 0.005 
consumed (g rl) 

Ethyl acetate 
produced (mg rl) / 0.41 ± 0.17 0.20 ± 0.07 0.43 ± 0.12 0.33 ± 0.10 

sugar consumed 
(g rl) 

Acetic acid 
produced (mg rl) / 10.73 ± 1.37 8.21 ± 0.24 8.74 ± 0.65 7.64± 1.19 

sugar consumed a b b b 
(g rl) 

Acetic acid 
produced (g r I) / 0.20 ± 0.04 0.17 ± 0.01 0.17 ± 0.02 0.15 ± 0.03 
ethanol produced 

(% v/v) 
Acetic acid 

produced (g rl) / 0.223 ± 0.021 0.159±0.015 0.169 ± 0.013 0.152 ± 0.028 
glycerol produced a b b b 

(g rl) 

One theory for acetic acid production from acetaldehyde when yeast cells are 

under hyperosmotic stress is to reduce the NAD+ generated during glycerol 

formation in order to maintain intracellular redox balance for the NAD+ INADH 

cofactor system. Therefore, the ratios of acetic acid generation to glycerol production 

were compared among the four strains to determine whether there were any changes 

in this ratio among yeast strains. The ratio of acetic acid to glycerol was higher for 
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the commercial yeast strain KI-VllI6 in comparison to the isolate and the hybrids 

(Table 2.3). Acetic acid generation was also normalized to ethanol production to 

compare the divergence of converting acetaldehyde into either acetic acid or ethanol 

across the four strains during the Icewine fermentations (Table 2.3). Although all the 

three new strains displayed lower ratio compared to the commercial yeast K I-V 1116, 

there was no difference between all these treatments (Table 2.3). 

2.4.3. Stability analysis of hybrids AWRI 1571 and AWRI 1572 

The ribosomal DNA regions of AWRI 1571 and AWRI 1572, which contain 

sequences from both S. cerevisiae and S. bayanus, were used to investigate the 

genomic stability of these heterogeneous strains during Icewine fermentations. After 

digestion by HaeIII restriction endonuclease, the ribosomal DNA regions of S. 

cerevisiae and S. bayanus displayed different restriction fragments; whereas the 

hybrids had restriction fragments from both parental species. Therefore, the lost or 

reduced restriction fragments of this region in hybrids during fermentation may not 

only suggest an unstable genome of the heterogeneous strains, but also indicate the 

origin of the lost gene fragments. The ITS region was amplified from hybrids on day 

34 which was close to the end of the 39 day fermentations and followed by HaeIII 

digestion. Restriction fragments were compared to the rDNA regions of the hybrids 

before fermentations and the parental species to determine the genomic loss and its 

origin. Out of 74 colonies from samples of triplicate fermentations, one colony of 

AWRI 1571 displayed lost or reduced number of the 500 bp rDNA fr~gment from 
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the S. bayanus parent (AWRI 1176) (lane 11, Fig. 2.5C), but no genomic loss from 

the S. cerevisiae parent (AWRI 838), suggesting a 1.4% genomic instability (Fig. 

2.5). 

Interestingly, AWRI 1572 displayed a much higher genomic instability during 

fermentations. Out of 75 colonies, eight colonies displayed lost or reduced copy 

numbers of the 500 bp rDNA fragment from the S. bayanus parent (lane 7 from Fig. 

2.6A; lane 2, 8, 9, 12, 19, 23 and 25 from Fig. 2.6B), and another two colonies 

showed loss of the 320 bp and 180 bp rDNA fragments from the S. cerevisiae parent 

(lane 4 and 21, Fig; 2.6B). This genomic loss was indicative of a genomic instability 

of AWRI 1572 during Icewine fermentation as high as 13.3%. 

2.5. Discussion 

Acetic acid has been a concern in Icewine production due to its association with 

wine spoilage when present at high concentration, because it imparts a vinegar 

aroma to wines and may contribute to the formation of ethyl acetate. Wine yeasts for 

Icewine fermentation are desired to conduct efficient fermentation to reach the target 

ethanol concentration of approximately 10 % v/v in the final wine in a reasonable 

fermentation time, produce low concentration of acetic acid and ethyl acetate, and 

display a stable genome during fermentations for consistent organoleptic 

contribution. We investigated three new yeast strains in sterile Riesling Icewine 

fermentations compared with a commercial wine yeast KI-V1116 to determine their 

properties in laboratory conditions in order to assess their potential for b.eing used as 
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novel starter cultures for Icewine production. 

A 

300bp 

320 bp 

220 bp 

180 bp 
143 bp 

B 

300 bp 

320bp 

220bp 

180bp 
143bp 

C 

500 bp 

320 bp 

220 bp 

180bp 

143bp 

A WRI 1571 from fennentation replicate #1 

m Sc Sb H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

A WRI 1571 from fennentation replicate #2 

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 H Sc Sb 

A WRI 1571 from fennentation replicate #3 

m Sc Sb H 1 2 3 4 5 6 7 8 9 10 11 121314 15 1617 18 19 20 21 22 23 24 25 

Figure 2.5: ITS restriction fragments (HaeIII) of hybrid AWRI 1571 during sterile filtered 

Riesling Icewine fermentation Colonies of hybrid AWRI 1571 isolated on day 34 from 

fermentation replicate #1 (A), #2 (B), and #3 (C) were analyzed. Lane m represents molecular 

weight markers; Sc represents the S. cerevisiae parent (AWRI 838); Sb represents the S. bayanus 

parent (AWRI 1176); H represents the original hybrid AWRI 1571 before fermentation. Lanes 

1-25 are colonies of hybrid AWRI 1571 isolated on day 34 from triplicate fermentations. 
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A WRI 1572 from fermentation replicate #1 

m So Sb H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
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145bp 
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500 bp 

320 bp 

220 bp 

180bp 
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A WRI 1572 from fermentation replicate #2 

A WRI 1572 from fermentation replicate #3 

Figure 2.6: ITS restriction fragments (HaeIII) of hybrid AWRI 1572 during sterile filtered 

Riesling Icewine fermentation Colonies of hybrid AWRI 1572 isolated on day 34 from 

fermentation replicate #1 (A), #2 (B), and #3 (C) were analyzed. Lane m represents molecular 

weight markers; Sc represents the S. cerevisiae parent (AWRI 838); Sb represents the S. bayanus 

parent (AWRI 1176); H represents the original hybrid AWRI 1571 before fermentation. Lanes 

1-25 are colonies of hybrid AWRI 1572 isolated on day 34 from triplicate fermentations. 
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AWRI 1571 and AWRI 1572 produced approximately 10 % vlv of ethanol yields 

and consumed the same concentration of sugar as Kl-V 1116 (Fig. 2.1 B and Table 

2.2) , which suggested that these two hybrids are well adapted to the Icewine 

fermentation environments and displayed potential to conduct an efficient 

fermentation alone. In contrast, the natural isolate S. bayanuslS. pastorianus does not 

appear as suitable for such severe fermenting conditions when used as a single starter 

culture because it consumed 21.3% less sugar compared with KI-Vl116 (Fig. 2.lB 

and Table 2.2) and correspondingly failed to produce the target ethanol concentration 

(Table 2.2). However, it will be valuable to investigate the co-fermenting property of 

this strain together with S. cerevisiae since it produced 28.8% less acetic acid per 

final sugar consumed compared to KI-Vl116 during fermentations (Table 2.3). Bely 

et af. (2007) studied Torulaspora delbrueckii, a low acetic acid producer but with 

low ethanol production, in mixed and sequential fermentations of high-sugar must 

(360 gil of sugar) with S. cerevisiae. It was found that a mixed T. delbrueckiilS. 

cerevisiae culture at a 20: 1 ratio produced 52.8% less volatile acidity and the 

sequential fermentation produced 37.1% less compared to a pure culture of S. 

cerevisiae. Therefore, both mixed and sequential fermentations of S. bayanuslS. 

pastorianus with S. cerevisiae, which are traditionally used for Icewine production, 

could be investigated, and a best inoculating ratio for industrial application could be 

studied. 

In our study, all the three new stains displayed lower acetic acid production 

compared to KI-V1116 as a function of both time and sugar (Fig. 2.3 and 2.4). The 
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ratios of acetic acid production to glycerol produced by the three new strains were 

also lower than KI-V116 (Table 2.3). The ethyl acetate production by all yeast 

strains were well below the sensory threshold, 0.198 g rl (Cliff and Pickering 2006), 

but they did not differ as a function of the sugar consumed across the four strains. 

Under hyperosmotic stress, acetic acid production has been correlated to increased 

glycerol formation (Miralles and Serrano 1995; Navarro-Avino et al. 1999). Yeast 

cells produce glycerol as a compatible solute when they are placed under 

hyperosmotic stress in order to keep the membrane turgor and avoid efflux of 

intracellular water (Blomberg and Adler 1989; Brewster et al. 1993; Nevoigt and 

Stahl 1997; Blomberg 2000). The key enzyme for glycerol formation is 

NADH-dependent glycerol-3-phosphate dehydrogenases which convert 

dihydroxyacetone phosphate to glycerol-3-phosphate with the concomitant oxidation 

ofNADH to NAD+ (Ganccdo et al. 1968; Nevoigt and Stahl 1997). The oxidation of 

cofactor NAD+ in glycerol formation leads to a potential redox imbalance for this 

cofactor system. Acetic acid production was suggested as a mechanism to correct 

this redox shift by reducing NAD+ back to NADH by cytosolic, NAD+-dependent 

aldehyde dehydrogenases when acetaldehyde is oxidized to acetic acid (Miralles and 

Serrano 1995; Navarro-Avino et al. 1999). This might be the mechanism of acetic 

acid production during Icewine fermentation, in which the high concentration of 

sugar places yeast cells under an extreme hyperosmotic stress. Pigeau and Inglis 

(2005) found that the expression of a glycerol-3-phosphate dehydrogenase gene 

GPDI and a NAD+-dependent aldehyde dehydrogenase gene ALD3 were both at 
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higher levels during Icewine fermentation compared to diluted fermentation and 

displayed a higher increase of acetaldehyde followed by high acetic acid 

accumulation. In comparing the ratio of acetic acid production to glycerol production 

among the four strains tested, the natural isolate and the two hybrids showed a lower 

ratio than the commercial strain K I-V 1116, indicating that the these yeasts may 

either be satisfying redox balance though other metabolites, or the acetic acid 

generated is being further metabolically converted. 

In our study, all three new strains produced less acetic acid compared to 

KI-V1116. This could be caused by the variation in dissimilation of acetic acid 

between yeast strains. Acetic acid could be converted into acetyl-CoA by acetyl-CoA 

synthetase in the pyruvate dehydrogenase bypass, in which acetic acid is an 

intermediate metabolite that leads to the formation of acetyl-CoA from pyruvate 

(reviewed in Pronk et at. 1996). Erasmus and van Vuuren (2009) found that the 

transcripts of ACSI, an acetyl-CoA synthetase encoding gene, were lower in a high 

acetic acid producing strain VIN7 than in a low acetic acid generating strain ST 

grown in grape musts containing 40% w/v sugar, although ACSI did not respond to 

hyperosmotic stress in an industrial strain of S. cerevisiae Vin13 subjected to high 

sugar concentrations (Erasmus et al. 2003). Therefore, the variety in expression 

profile of ASC genes between yeast strains might result in various dissimilation of 

acetic acid and subsequently different concentrations of acetic acid accumulation. 

This might be the reason of low acetic acid generation by the three new strains. 

Furthermore, acetic acid might not only be generated to reduce the over-produced 
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NAD+ formed during glycerol synthesis catalyzed by a cytosolic, NAD+ -dependent 

dehydrogenase. The cytosolic, NADP+ -dependent aldehyde dehydrogenase Ald6p 

might contribute to acetic acid generation as well. A recent study suggested that the 

deletion of ALD6 and the deletion of its transcription factor, ZMSJ, in a laboratory 

wild-type strain BY4741 produced substantially less acetic acid compared to the 

wild type in media containing 40% w/v glucose. In addition, the expression of ALD6 

was much higher in high acetic acid producing strain grown in grape musts 

containing 40% w/v sugar (Erasmus and van Vuuren 2009). Nonetheless, this raises 

the question of how the NAD+ produced during glycerol formation is reduced back 

to NADH. Since yeast cells do not have transhydrogenases to convert reducing 

equivalents between the NAD+ INADH system and the NADP+ INADPH system 

(Blomberg and Adler 1989), it must rely on the formation of some other metabolites. 

Unstable genomes of yeast strains might result in unpredictable sensory profile in 

the final wine and might affect the metabolite accumulation, such as acetic acid and 

glycerol, during the fermentation. The ribosomal DNA regions of AWRI 1571 and 

AWRI 1572, which contain sequences from both S. cerevisiae and S. bayanus, were 

analyzed to determine the genomic stability of these heterogeneous strains during 

fermentations. This DNA region includes two non-coding regions designated as the 

internal transcribed spacers (lTSI and ITS2) and the S.8S rRNA gene. The ITS 

regions are much less evolutionarily conserved than the rRNA coding genes (Bruns et 

al. 1991) and have been used for yeast identification (Guillamon et al. 1998) and 

differentiation between species of Saccharomyces (Huffman et al. 1992; Molina et al. 
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1992). Because the restriction fragments of ITS regions differ between 

Saccharomyces species, they were tested for genomic stability of the hybrids to 

indicate the parental origin of genomic DNA fragments loss. 

In our study, both hybrids displayed a higher proportion of genomic loss from the S. 

bayanus parent during the Icewine fermentations (Fig. 2.5 and 2.6). These genomic 

losses might be caused by the extremely stressful environment during Icewine 

fermentations. James et al. (2008) found that the lager yeast S. pastorianus (generally 

believed hybrids between S. cerevisiae and S. bayanus) were dynamic and can 

undergo rearrangements, gene amplification and general genome instability in 

response to exposure to environmental stress during brewing. The genomic instability 

of hybrid genomes might be the molecular mechanisms for adaptive evolution of 

hybrid strains driven by environmental stresses (Hittinger and Carroll 2007; Coyle 

and Kroll 2008). Querol and Bond (2009) proposed that the large variations of S. 

cerevisiae DNA content in lager strains and the relative stablility of the cryotolerant S. 

bayanus DNA content may reflect adaptive pressures to cold fermentations and other 

environmental stresses experienced during the brewing process. In our study, the 

opposite result may explain the genome-stabilizing evolution of AWRI 1571 and 

A WRI 1572 by deleting genomic contents from the parent S. bayanus which was less 

adapted to Icewine fermenting conditions. 

However, the genomic instability in our study could not be correlated to metabolic 

profiles of the fermentation. The loss or reduced expression of parental rONA 

occurred in some, but not all of the triplicate fermentations (Fermentation replicate 
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#3 of A WRI 1571 and fermentation replicate #1 and #2 of AWRI 1572), but it did 

not make these fermentations differ from the rest of the fermentations in either sugar 

consumption or acetic acid generation (data not shown). Whether or not the genomic 

instability of hybrids would affect the wine composition depended on what the actual 

genomic changes were and to which extent, and also at what timepoint of the 

fermentations these changes occurred. Currently, there are few studies into the 

genomic stability of newly-formed yeast interspecific hybrids. Antunovics et al. 

(2005) oberserved the genomic changes of a hybrid between S. cerevisiae and S. 

uvarum over four filial generations of viable spores in several gene markers, 

including YCL008c, HIS4, MET] 0, ITS regions, and also in chromosomal patterns, 

but this study was not conducted under fermentation coditions. In our study, the 

1.4% changes of AWRI 1571 and the 13.3% of AWRI 1572 in their ITS regions on 

day 34 of fermentations did indicate the genomic instability of these hybrids close to 

the end of fermentations, but more frequent sampling during the course of 

fermenations and a study of their chromosomal patterns and more gene markers are 

required to understand their global genomic stability during fermentations and its 

relevance to wine composition. It appears that, in this study, the instability of A WRI 

1571 and AWRI 1572 did not affect their metabolic conversion and thus would not 

detract from their potential to be used as starter cultures for Icewine production. 

2.6. Conclusions 

This study investigated three new yeast strains as novel starter cultures for 
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Icewine production in fermenting sterile filtered Riesling Icewine juice with focus on 

the effect of yeast strains on acetic acid production. The two hybrids AWRI 1571 and 

A WRI 1572 were designated as potential strains used as novel starter cultures for 

Icewine production since they reached the desired ethanol concentration of 

approximately 10 % v/v in 39 days fermentations and produced lower acetic acid as 

a function of both time and sugar compared to commercial wine yeast KI-V1116. 

They displayed reduced or lost rDNA fragments during fermentations but this 

genomic instability did not detract from wine composition. The isolate S. bayanus/S. 

pastorianus did not appear suitable for Icewine production due to its failure to reach 

the target ethanol concentration although it produced less acetic acid in comparison 

with KI-V1116. 
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3.1. Abstract 

Aims 

This study investigated three new yeast strains: S. bayanus/S. pastorianus, AWRI 

1571 and AWRI 1572, in unfiltered Icewine juice which mirrors the winery 

condition to determine their potential to be used as novel starter cultures for Icewine 

fermentation. The commercial wine yeast KI-V1116 was used as a control. 

Methods and Results 

All yeast strains were inoculated into unfiltered Riesling Icewine juice (39.2°Brix, 

reducing sugar 422 ± 11 g rl) at 1 x 107 cells mrl. Fermentations were conducted in 

triplicate at 25°C for four days and then transferred to 17 °C for the rest of 

fermentation. Both viable and total cell concentration, reducing sugar concentration 

and acetic acid concentration were monitored during the course of fermentations. 

Ethanol, ethyl acetate and glycerol production, and D-glucose, D-fructose and 

nitrogen consumption were measured to investigate the metabolic qmversion of 
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sugar during fermentations. The hybrids were tested for genetic stability during 

fermentation. AWRI 1572 consumed higher concentration of sugar compared to 

KI-V1116, but AWRI 1571 and S. bayanus/S. pastorianus showed lower 

sugar-consuming ability and correspondingly produced low ethanol. S. bayanus/S. 

pastorianus and A WRI 1572 produced less acetic acid as a function of sugar 

consumed compared with the commercial yeast K I-V 1116, but AWRI 1571 

displayed a higher ratio. Both AWRI 1571 and AWRI 1572 showed genomic loss 

during unfiltered fermentations but it was not correlated to metabolic profile. 

Conclusions 

AWRI 1572 displayed potential for being used as a starter culture for Icewine 

production with target ethanol production in a reasonable fermentation time and low 

acetic acid production. S. bayanus/S. pastorianus produced less acetic acid but failed 

to reach the target ethanol concentration. AWRI 1571 had high acetic acid 

production and low ethanol production compared with Kl-V1116. Both hybrids 

displayed genomic instability during unfiltered Riesling Icewine fermentations but it 

did not detract from wine composition. 

Significance and Impact 

This work investigated three new yeast strains as novel starter cultures for unfiltered 

Icewine fermentation to mirror the winery wine making condition. The genomic 

instability of hybrids during Icewine fermentations was found and the hybrid A WRI 

1572 was determined as a promising candidate for Riesling Icewine production. 

Key words: acetic acid, Icewine, unfiltered, S. cerevisiae, S. bayanus, S. bayanus/S. 
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pastorianus, hybrids, stability 

3.2. Introduction 

Icewine currently plays an important role in the stage ofthe Canadian wine industry 

since Canada produces millions of cases of Icewine every year, with a reported 

production of 1.053 million litres in Ontario in 2009 (VQAO 2009). Because of the 

high concentration of sugar in a low pH matrix, the production of Icewine is often 

associated with prolonged fermentation times and the generation of high 

concentration of volatile acidity, mainly in the form of acetic acid (Kontkanen et ai. 

2004). In Canada, the concentration of acetic acid in Icewine is strictly regulated and 

is not permitted above 2.1 g rl (VQA 1999). Therefore, it is important to understand 

the mechanism through which acetic acid is produced during Icewine fermentation 

and develop methods to decrease acetic acid generation in Icewine production. 

Selecting new yeast strains as novel starter cultures for Icewine production 

appears as a good approach to reduce acetic acid production since wine yeast strains 

display a variety of ability in acetic acid generation (Delfini and Cervelli 1991). The 

traditional wine yeasts belong to the genus Saccharomyces with S. cerevisiae being 

the prominent species that has been highly adapted to fermentative environments. 

Most of the commercial wine yeast strains in the market currently belong to this 

species. S. bayanus, which was formerly designated as S. bayanus var. bayanus 

(Nguyen and Gaillardin 1997; Nguyen et al. 2000), recently attracted great attention 

for investigation in wine making due to its property of cryotolerance and low acetate 
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generation during wine fermentation. It was found that S. bayanus contributes to 

more glycerol, succinic acid, acetaldehyde and S02 than S. cerevisiae, but produces 

less acetic acid, malic acid and ethyl acetate in Chardonnay wine fermentation 

(Eglinton et al. 2000). The wine produced by S. bayanus is more associated with 

savoury- and cooked-like aroma attributes; such as 'cooked orange peel', 'honey', 

'yeasty', 'nutty' and 'aldehyde' (Eglinton et al. 2000). Recently, it was noted that 

hybrid strains have the potential to combine oenological favourable characteristics 

from both parental species, including better adaptation (Reviewed in Sipiczki 2008). 

Thus it would also be valuable to investigate hybrid strains between S. cerevisiae and 

S. bayanus, with anticipation of low acetic acid production from merits contributed 

by the S. bayanus parent and high fermentation efficiency from the S. cerevisiae 

parent. 

We previously investigated three new yeast strains, one natural isolate S. bayanus/S. 

pastorianus and two hybrids between S. cerevisiae and S. bayanus, AWRI 1571 and 

AWRI 1572, in fermentations of sterile filtered Riesling Icewine juice in comparison 

with a commercially available starter S. cerevisiae Kl-V1116. S. bayanus/S. 

pastarianus displayed lower acetic acid generation but was not able to consume as 

much sugar as KI-VI116. However, AWRI 1571 and A WRI 1572, reached desired 

ethanol concentration of approximately 10 % v/v as KI-V1116 but showed much 

lower acetic acid generation either as a function of time or of sugar consumed, with 

the lowest ratio of acetic acid produced to sugar consumed displayed by A WRI 1572. 

Nevertheless, AWRI 1571 displayed 1.4% lost or reduced ITS rDNA fragments, and 
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AWRI 1571 showed a higher proportion of 13.3%. These results are indicative of the 

fermentative ability and acetic acid production of these strains under aseptic 

conditions without the interaction and interference with other micro flora; whereas 

commercial Icewine production in a winery is conducted in a nonsterile environment 

using juice that has not been sterile filtered. The freshly pressed grape juice is 

commonly composed of a diversity of yeasts; such as species in the genera 

Hanseniaspora (anamorph Kloeckera), Pichia, Candida, Metschnikowia, 

Kluyveromyces and Saccharomyces (reviewed in Fleet and Heard 1993; Fleet 2003). 

Therefore, it is also important to investigate the performance of these strains under 

commercial conditions for metabolite production and genomic stability. 

In this study, the three strains, S. bayanus/S. pastorianus, AWRI 1571 and AWRI 

1572, were investigated in unfiltered Riesling Icewine fermentations, designed to 

mimic the commercial wine making environment. Yeast strains were evaluated for 

fermentation kinetics, ethanol, glycerol, acetic acid and ethyl acetate production with 

comparison to a commercial wine yeast S. cerevisiae KI-VI116. The two hybrids 

were also tested for genomic stability during the fermentations. 

3.3. Materials and methods 

3.3.1. Yeast strain and Icewine juice for fermentation trials 

Yeast strains KI-V1l16, S. bayanus/S. pastorianus, AWRI 1571 and AWRI 1572 

were the same as those in Chapter 2, page 43. Riesling Icewine juice was provided 

by Niagara Vintage Harvesters Ltd (Virgil, ON, Canada). The juice from four 
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different vintages was blended together, and 500 mg rl of diammonium phosphate 

was added into the juice during mixture. The juice was ali quoted into 20 L buckets 

and stored at -40°C until required. 

3.3.2. Chemical composition of Icewine juice 

Soluble solids, reducing sugar concentration, juice pH, titratable acidity (TA) , 

primary amino nitrogen (PAN) and ammonia nitrogen were measured following the 

methods described in Chapter 2, page 44. Glycerol, acetic acid, and L~malic acid in 

Icewine juice were measured by enzymatic kits (K-GCROL, K-ACET and 

K-LMALL, Megazyme International Ireland Ltd). Juice variables were as follows: 

39.2 ± 0 °Brix, reducing sugar 423 ± 11 g rl, pH 3.22 ± 0, TA 8.5 ± 0.1 g rl tartaric 

acid, ammonia nitrogen 169 ± 0 mg N r\ PAN 206 ± 4 mg N rl, acetic acid 0.004 ± 

0.001 g rl, malic acid 3.8 ± 0.1 g rl, glycerol 4.31 ± 0.05 g rl. 

3.3.3. Yeast inoculation procedure for fermentations 

All four yeast strains were plated out on yeast peptone dextrose (YPD) plates 

before use in fermentations. Icewine juice was diluted to 10 °Brix and had 2 g rl of 

diammonium phosphate added to 525 ml of the dilute juice to prepare the growth 

media to build up the yeast cultures. Using a sterile wire loop, a loop-full of each of 

the four yeast strains were inoculated into the media. These cultures were grown 

aerobically at 25°C with shaking at 130 rpm until the cell concentrations reached 2 

x 108 cells ml -I. These cultures were then added into 525 ml of diluted juice (20 

°Brix) respectively and held for 1 h without shaking at room temperature. Then 525 
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ml of undiluted Icewine juice (39.2° Brix) were added, and the cultures were held 

for 2 h without shaking at room temperature. Following this acclimatization 

procedure, the starter cultures were then divided into three aliquots (525 ml for each 

fermentation) and each was inoculated into 2,975 ml of Icewine juice (39.2 °Brix) 

respectively to achieve a yeast inoculum rate of 1 x 107 cells mr! in a final volume 

of3.5 L. 

3.3.4. Fermentation monitoring and stability analysis of hybrids 

Fermentations were carried out in triplicate, at 25°C for four days and then 

transferred to 17 °C until the yeast stopped consuming sugar, indicated by no further 

sugar consumption for three days. Daily sampling (3 ml) of the fermentations, 

measurements of both total and viable yeast cell concentrations and the 

determination of sugar, acetic acid, glycerol, ammonia nitrogen, PAN, ethanol and 

ethyl acetate followed the methods described in Chapter 2, page 45-46. D-fructose 

and D-glucose were measured by enzymatic kits (K-FRUGL, Megazyme 

International Ireland Ltd). Stability analysis of hybrids followed the method 

described in Chapter 2, page 47. From each fermentation sample of AWRI 1571 and 

AWRI 1572, 25 colonies were analyzed. 

3.3.5. Statistical analysis 

Differences between variables were determined by XLSTAT statistical software 

package released by Addinsoft (Version 7.1; Paris, France) and method was same as 

it was applied in Chapter 2. 
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3.4. Results 

3.4.1. Fermentation kinetics 

The four yeast strains displayed different sugar consumption during the course and 

at the end of unfiltered fermentations, ranging from 118 g rl to 227 g rl (Fig. 3.1A 

and 3.1B). AWRI 1572 consumed the highest amount of sugar (227 g rl), followed 

by KI-VI116 (169 g rl) (Fig. 3.1B). AWRI 1571 and S. bayanus/S. pastorianus 

consumed less sugar compared to the commercial wine yeast Kl-V 1116, with sugar 

consumption values of 118 g rl and 169 g r1, respectively (Fig. 3.1B). D-glucose 

and D-fructose consumption were also measured to compare the difference of yeast 

strains on sugar preference (Table 3.1). All four strains were gluco-philic and S. 

bayanus/S. pastorianus consumed a higher proportion of glucose compared to the 

other three strains (Table 3.1B). 

The ammonia concentration in the final wine showed an opposite trend to sugar 

consumption (Table 3.2 and 3.1A), and correspondingly the consumption of 

ammonia nitrogen displayed the same trend as sugar consumption (Table 3.lA). 

PAN was not different in the final wines (Table 3.2) from that measured in the 

starting unfermented juice, 206 ± 4mg N rl, suggesting that it was not consumed 

during fermentations. 
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Figure 3.1: Sugar consumption during unfiltered Riesling Icewine fermentation. Reducing 

sugar consumption was followed throughout the course of fermentation (A) and the total sugar 

consumed was compared among yeast strains (B). Fermentations were performed in triplicate 

and samples frQrn each trial were testeq in duplicate. Sugar values represent the avernge ± 

standard deviation of the mean of triplicate fermentations. Statistical methods used were analysis 

of variance (ANOVA) with mean separation by Fisher's Least Significant Difference (LSD; 

p<O.05). Lowercase letters indicate statistical difference between strains in descending order 

analyzed by Fisher's LSD (p<O.05), 
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Table 3.1(A): Sugar and nitrogen consumption in unfiltered Riesling Icewine fermentation. 

Fermentations were performed in triplicate and samples from each trial were tested in duplicate. 

Values represent the average ± standard deviation of the mean of triplicate fermentations. 

Lowercase letters indicate statistical difference between strains in descending order analyzed by 

Fisher's LSD (p<O.05). 

KI-V1116 S. bayanus/ AWRI 1571 AWRI 1572 
S. pastorianus 

D-glucose + D-fructose 172 ± 5 108 ± 4 153 ± 9 224±3 
consumed (g rl) b d c a 

D-glucose consumed 107 ±2 74±2 98±4 140 ± 1 
(g r1) b d c a 

D-fructose consumed 64±4 34±2 55 ± 5 84±2 
(g rl) b d c a 

Ammonia nitrogen 48±4 14 ±1 42 ± 1 58±2 
consumption (mg N rl) b d c a 

Table 3.1 (B) Percentage of D-glucose consumption and D-fructose consumption of the total 

sugar consumed Fermentations were performed in triplicate and samples from each trial were 

tested in duplicate. Values represent the average ± standard deviation of the mean of triplicate 

fermentations. Lowercase letters indicate statistical difference in descending order between 

strains analyzed by Fisher's LSD (p<O.05). 

KI-VllI6 S. bayanus/ AWRI 1571 AWRI 1572 

S. pastorianus 

D-glucose consumption! 62 ± 1 69 ± 1 64± 1 63±0 

(D-glucose + D-fructose c a b c 
consumption) (%) 

D-fructose consumption/ 38 ± 1 31 ± 1 36 ± 1 37±0 
(D-glucose + D-fructose a c b ab 

consumption) (%) 

The cell accumulation was faster and to a greater extent in fermentations by 

KI-V1116 and AWRI 1572 in comparison with fermentations by AWRI 1571 and S. 

bayanus/S. pastorianus (Fig. 3.2A and 3.2B), which agrees with the sugar and 

nitrogen consumption (Fig. 3.1B and Table 3.1A). Interestingly, although both 

K I-V 1116 and AWRI 1572 displayed higher viable cell concentrations, AWRI 1572 

reached the peak earlier and retained in high viable cell values for a longer period 
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compared to KI-Vl1l6 (Fig. 3.2A). In addition, the peak of viable cells of AWRI 

1572 was only slightly lower than its peak of total cells, indicating a high proportion 

of viable cells (Fig. 3.2A and 3.2B). 
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Figure 3.2: Viable and total yeast cell accumulation during unfiltered Riesling Icewine 

fermentation. Both viable yeast cell concentrations (A) and total yeast cell concentrations (B) 

were monitored throughout the course of fermentation. Fermentations were performed in 

triplicate at 25°C for four days and then transferred to 17 °C for the rest of the fermentations. 

Samples from each trial were tested in duplicate. Cell values represent the average ± standard 

deviation of the mean of triplicate fermentations. 
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3.4.2. Yeast metabolite production 

3.4.2.1. Acetic acid production during fermentations 

S. bayanus/S. pastorianus displayed lower acetic acid production during the 

entire course of fermentations. In contrast, A WRI 1572 produced a high 

concentration of acetic acid from the beginning of the fermentation, which plateaued 

earlier (on day 10) and maintained this stable concentration until the end of the 

fermentations (Fig. 3.3A). All three new yeast strains produced less acetic acid 

compared with the commercial yeast K I-V 1116 at the end of the fermentations (Fig. 

3.3A and 3.3B, Table 3.3), but only AWRI 1572 produced less acetic acid per gram 

sugar consumed as opposed to KI-VI116 (Fig. 3AB). S. bayanus/S. pastorianus 

produced comparable concentration of acetic acid per gram sugar consumed as 

KI-V1116 (Fig. 3AB), with both low sugar consumption (Fig. 3.1B) and acetic acid 

production (Fig. 3.3B). AWRI 1571 produced higher acetic acid when the same 

amount of sugar was consumed throughout the entire fermentations (Fig. 3AA and 

3AB). 
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Figure 3.3: Production of acetic acid during unfiltered Riesling Icewine fermentation. 

Acetic acid production was followed throughout the course of fermentation (A), and the total 

acetic acid production was compared among yeast strains (B). Fermentations were performed in 

triplicate and samples from each trial were tested in duplicate. Acetic values represent the 

average ± standard deviation of the mean of triplicate fermentations. Statistical methods used 

were analysis of variance (ANOVA) with mean separation by Fisher's Least Significant 

Difference (LSD; p<O.05). Lowercase letters indicate statistical difference between strains in 

descending order analyzed by Fisher's LSD (p<O.05). 
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Fi~ure 3.4: Acetic acid produced/Sul:ar consumed durinl: unfiltered Riesling Icewine 

fermentations. Acetic acid production was plotted versus sugar consumed throughout the course 

of fermentation (A), and the total acetic acid production was normalized to sugar consumed and 

compared among yeast strains (8). Fermentations were performed in triplicate and samples frOll'! 

each trial were tested in duplicate. Values represent the average ± standard deviation of the mean 

of triplicate fermentations. Statistical methods used were analysis of variance (ANOVA) with 

mean separation by Fisher's Least Significant Difference (LSD; p<O.05). Lowercase letters 

indicate statistical difference between strains in descending order analyzed by Fisher's LSD 

(p<O.05). 

3.4.3.2. Conversion of other metabolites during fermentations 

The final Icewines did not differ in TA (Table 3.2). The concentration of ethyl 

acetate was measured to indicate the levels of esterification of ethanol and acetic 
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acid across the four yeast strains. S. bayanus/S. pastorianus and AWRI 1571 which 

produced both less acetic acid and ethanol than KI-V1116 also produced less ethyl 

acetate in the final wine (Table 3.2 and Fig. 3.4B). AWRI 1572 which showed the 

highest ethanol production produced the same concentration of ethyl acetate as 

KI-V1116, although it generated less acetic acid (Table 3.3 and Fig. 3.4B). 

Table 3.2: Final concentration of compounds in Riesling Icewine fermented from unfiltered 

juice. Fermentations were performed in triplicate and samples from each trial were tested in 

duplicate. Values represent the average ± standard deviation of the mean of triplicate 

fermentations. Statistical methods used were analysis of variance (ANOVA) with mean 

separation by Fisher's Least Significant Difference (LSD; p<O.05). Lowercase . letters indicate 

statistical difference between strains in descending order analyzed by Fisher's LSD (p<O.05). 

Kl- VI116 S. bayanus/S. AWRI1571 AWRII572 
pastorianus 

Sugar 228±3 279±7 243 ±4 168 ± 3 
(g rl) c a b d 

Ethanol 10.0±0.1 5.1 ± 0.1 7.6 ± 0.4 11.2 ± 0.2 
(% v/v) b d c a 

TA 
(g r1 tartaric 9.2 ± 0.5 9.1 ± 0.2 9.5 ± 0.3 9.5 ± 0.0 

acid) 
pH 3.37 ± 0.07 3.33 ± 0.05 3.30 ± 0.06 3.33 ± 0.04 

Ammonia 109 ±4 131±2 97 ± 1 85 ±2 
nitrogen b a c d 

(mg N rl) 
PAN (mgN rl) 198 ± 8 202±3 206±4 193 ± 3 

Glycerol 15.05 ± 0.02 12.68 ± 0.05 14.07 ± 0.44 15.80 ± 0.22 
(g rl) b d c a 

Acetic acid 1.30 ± 0.01 0.87 ± 0.02 1.26 ± 0.01 1.18 ± 0.03 
(g rl) a d b c 

Ethyl acetate 64 ± 11 21 ± 5 46±2 69 ± 10 
(mg rl) a c b a 

Since the four yeast strains consumed various concentration of sugar during the 

Icewine fermentations, and the yeast metabolites measured are derived from sugar 

metabolism, the yeast metabolites produced (Table 3.3) were normalized to gram per 

sugar consumed to compare metabolic conversions across the four yeast strains 
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(Table 3.4). After normalization, all three new strains produced less ethanol than 

KI-VIl16, indicating KI-V1116 has the most efficient conversion of sugar to 

ethanol but the S. bayanus/S. pastorianus was the least efficient. However, S. 

bayanus/S. pastorianus produced less ethyl acetate per gram sugar consumed in 

comparison to the other strains even though it was not the lowest producer of acetic 

acid (Table 3.4). AWRI 1571 produced less glycerol as a function of the sugar 

consumed compared to the other strains (Table 3.4). 

Table 3.3: Production of metabolites during unfiltered Riesling Icewine fermentation. 

Fermentations were performed in triplicate and samples from each trial were tested in duplicate. 

Values represent the average ± standard deviation of the mean of triplicate fermentations. 

Statistical methods used were analysis of variance (ANOVA) with mean separation by Fisher's 

Least Significant Difference (LSD; p<O.05). Lowercase letters indicate statistical difference 

between strains in descending order analyzed by Fisher's LSD (p<O.05). 

KI-VIl16 S. bayanus/S. AWRI1571 AWRII572 
pastorianus 

Acetic acid 1.25 ± 0.01 0.81 ± 0.02 1.19 ± 0.01 1.12 ± 0.03 
produced (g rl) a d b c 

Glycerol produced 10.82 ± 0.04 7.67 ± 0.13 8.99 ± 0.52 10.97 ± 0.40 
(g rl) a c b a 

Ethanol produced 10.0 ± 0.1 5.1 ± 0.1 7.6 ± 0.4 11.2 ± 0.2 
(% v/v) b d c a 

Ethyl acetate 64 ± 11 21 ± 5 46±2 69± 10 
production (mg r1) a c b a 

Acetic acid was suggested to be produced under hyperosmotic stress to reduce the 

excess NAD+ generated during glycerol formation in order to maintain intracellular 

redox balance for the NAD+/NADH cofactor system (Miralles and Serrano 1995; 

Navarro-Avino et al. 1999). Therefore, the ratios of acetic acid generation to glycerol 

production were compared to determine if this ratio remained consistent among the 

four strains during fermentations. S. bayanus/S. pastorianus and A WRI 1572 

generated less acetic acid when the same amount of glycerol was produced as 

87 



opposed to K1-V1116; whereas AWRI 1571 displayed the highest ratio (Table 3.4). 

In addition, acetic acid generation was normalized to ethanol production to compare 

the conversion of acetaldehyde to either acetic acid or ethanol across the four strains 

during the fermentations (Table 3.4). Ratios of acetic acid production to ethanol 

production displayed a different trend. A WRI 1572 remained with the lowest 

concentration but both S. bayanus/S. pastorianus and AWRI 1571 generated higher 

acetic acid when the same amount of ethanol was produced (Table 3.4). 

Table 3.4: Normalized production of metabolites during unfiltered Riesling Icewine 

fermentation. Fermentations were performed in triplicate and samples from each trial were 

tested in duplicate. Values represent the average ± standard deviation of the mean of triplicate 

fermentations. Statistical methods used were analysis of variance (ANOVA) with mean 

separation by Fisher's Least Significant Difference (LSD; p<O.05). Lowercase letters indicate 

statistical difference between strains in descending order analyzed by Fisher's LSD (p<O.05). 

K1- Vl116 S. bayanus/S. AWRI1571 AWRI1572 
pastorianus 

Ethanol produced 0.059 ± 0.002 0.044 ± 0.001 0.052 ± 0.004 0.050 ± 0.001 
(% v/v) / sugar a c b b 

consumed (g rl) 

Glycerol produced 
(g rl) / 0.064 ± 0.003 0.065 ± 0.002 0.061 ± 0.003 0.048 ± 0.002 

sugar consumed (g a a a b 
rl) 

Ethyl acetate (mg 0.38 ± 0.07 0.18 ± 0.03 0.32± 0.04 0.31 ± 0.04 
rl) / sugar a b a a 

consumed (g rl) 

Acetic acid 
produced (mg rl) / 7.41±0.31 6.93 ± 0.39 8.16 ± 0.56 4.96 ± 0.17 
sugar consumed (g b b a c 

rl) 

Acetic acid 
produced (g rl) / 0.13 ± 0.00 0.16 ± 0.01 0.16 ± 0.01 0.10 ± 0.00 
ethanol produced b a a c 

(v/v %) 

Acetic acid 
produced (g rl) / O.l16±0.001 0.106 ± 0.003 0.133 ± 0.008 0.102 ± 0.003 

glycerol produced b c a c 
(g rl) 
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3.4.3. Stability analysis of hybrids AWRI 1571 and AWRI 1572 

The ribosomal DNA regions of AWRI 1571 and AWRI 1572 were used to 

investigate the genomic stability of these hybrids during fermentation. The ribosomal 

DNA region was amplified from hybrids on day 34 of the fermentations and 

followed by HaeIII digestion. Restriction fragments were compared to ribosomal 

DNA regions of hybrids before fermentations and the parental species to determine 

the genomic loss and its origin. Out of 75 colonies from samples of triplicate 

fermentations, one colony of AWRI 1571 displayed lost or reduced number of the 

500 bp rDNA fragment from the S. bayanus parent (AWRI 1176) (lane 57, Fig. 3.5), 

but no genomic loss from the S. cerevisiae parent (AWRI 838), suggesting a 1.3% 

genomic instability (Fig. 3.5). 
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Figure 3.5: ITS restriction fragments (HaeIII) of hybrid AWRI 1571 during unfiltered 

Riesling Icewine fermentation 75 colonies of hybrid AWRI 1571 isolated on day 34 of 

triplicate fermentations were analyzed. Lane m represents molecular weight markers; Sc 

represents the S. cerevisiae parent (AWRI 838); Sb represents the S. bayanus· parent (AWRI 

1176); H represents the hybrid AWRI 1571 before fermentation. Lanes 1-25 are colonies of 
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hybrid AWRI 1571 isolated on day 34 from fermentation replicate #1, 26-50 are from replicate 

#2, and 51-75 are from replicate #3. 

Out of of 75 colonies of A WRI 1572 isolated during the fermentations, two 

colonies displayed loss of the 500 bp rDNA fragment from the S. bayanus parent 

(lane 42 and 48, Fig. 3.6), but no genomic loss from the S. cerevisiae parent, which 

was indicative of a 2.7% genomic instability (Fig. 3.6). 
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Figure 3.6: ITS restriction fragments (HaeIlI) of hybrid AWRI 1572 during unfiltered 

Riesling Icewine fermentation 75 colonies of hybrid AWRI 1572 isolated on day 34 of 

triplicate fermentations were analyzed. Lane m represents molecular weight markers; Sc 

represents the S. cerevisiae parent (AWRI 838); Sb represents the S. bayanus parent (AWRI 

1176); H represents hybrid A WRI 1572 before fermentation. Lanes 1-25 are colonies of hybrid 

AWRI 1572 isolated on day 34 from fermentation replicate #1, 26-50 are from replicate #2, and 

51-75 are from replicate #3. 

3.5. Discussion 

Acetic acid is an undesired byproduct during Icewine fermentations because it 

gives wine a vinegar aroma when present at high concentration and can esterify with 

ethanol to form ethyl acetate, detracting from wine quality. Thus it is important to 
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develop methods to decrease acetic acid and ethyl acetate concentration in Icewine 

production. Selecting new yeast strains to be used as novel starter cultures appears to 

be a good approach to solve this problem. The desired yeast strains for Icewine 

production are able to conduct efficient fermentation with target ethanol 

concentration of approximately 10 % v/v in a reasonable fermentation time, produce 

a low concentration of acetic acid. Ideally, the new strains should also display stable 

genome during fermentations to produce a consistent and predictable metabolic 

profile. In this study, three new yeast strains were investigated in comparison with a 

commercially available wine yeast KI-VI116 in Icewine fermentations. 

Fermentations were conducted using unfiltered Icewine juice which mimics the 

industrial environment in order to determine the applicable value of these stains to be 

used as novel starter cultures in commercial wine making circumstance. 

The high sugar consumption of AWRI 1572 (Fig. 3.1B) and correspondingly high 

ethanol production (Table 3.3), together with high viable cell concentrations during 

most of the fermentation time (Fig. 3.2A) and low metabolic conversion of sugar to 

acetic acid (Table 3.4), suggested that this strain is well adapted to the Icewine 

fermentation environments. It displayed the potential to conduct an efficient 

fermentation even in the likely presence of competing microflora in the juice. A WRI 

1571 and the isolate S. bayanus/S. pastorianus did not appear as suitable for Icewine 

production due to their failure in reaching the target ethanol production with the 

lowest concentration produced by S. bayanus/S. pastorianus (Table 3.3). These two 

strains consumed much less sugar compared to K I-V 1116 during the fermentations 
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(Fig. 3.1B) and their viable cell concentrations were maintained at low concentration 

for almost the whole course offermentations (Fig. 3.2A). 

Interestingly, although AWRI 1572 produced the highest concentration of ethanol, 

its ability to convert sugar to ethanol was lower than K1-V 1116 as indicated by the 

ratios of ethanol produced to sugar consumed (Table 3.2). All three new strains 

displayed lower ratios compared to K1-V1116 (Table 3.2). 

During fermentations, the acetic acid production per sugar consumed varied 

between yeast strains (Fig. 3.4B and Table 3.2) Acetic acid production under 

hyperosmotic stress has been suggested as a mechanism to reduce NAD+ produced 

during glycerol formation back to NADH by cytosolic, NAD+ -dependent aldehyde 

dehydrogenases when acetaldehyde is oxidized to acetic acid (Miralles and Serrano 

1995; Navarro-Avino et al. 1999). This might be the mechanism of acetic acid 

production during Icewine fermentation as it was discussed in Chapter 2, and thus the 

production of acetic acid correlated to the production of glycerol during Icewine 

fermentation. In our study, the ratios of acetic acid produced to glycerol production in 

unfiltered fermentations varied between yeast strains. S. bayanus/S. pastorianus and 

AWRI 1572 displayed lower ratios compared to K1-V1116; whereas the ratio of 

AWRI 1571 was higher (Table 3.5). This indicated that acetic acid was produced at 

different concentrations across the four strains when the same concentration of 

glycerol was produced. The reason for the different ratios may be several fold: it may 

be due to metabolites other than acetic acid satisfying the redox balance requirement 

during glycerol production; acetic acid may be synthesized for variou's reasons, using 
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both NADP+ - and NAD+ -dependent aldehyde dehydrogenases; acetic acid may be 

further metabolized in some strains evidenced by the fact we already see difference in 

ethyl acetate production among the four strains; or glycerol is not only made in 

response to osmotic stress. 

S. bayanus/S. pastorianus and AWRI 1572 accumulated lower acetic acid in 

response to the same concentration of glycerol production than KI-V1116 (Table 3.2) 

might be due to a higher level of dissimilation of acetic acid. As discussed in Chapter 

2, acetic acid could be converted into acetyl-CoA by acetyl-CoA synthetases in the 

pyruvate dehydrogenase bypass (reviewed in Pronk et al. 1996) and it was found that 

an acetyl-CoA synthetase encoding gene ACSI was expressed at a higher level in a 

high acetic acid producer VIN7 than in a low acetic acid generating strain ST in 

fermenting grape must containing 40% w/v sugar (Erasmus and van Vuuren 2009). 

The reason that AWRI 1571 accumulated higher concentration of acetic acid per 

glycerol produced than KI-V1116 (Table 3.2) might be caused by higher contribution 

of NADP+ -dependent aldehyde dehydrogenases to acetic acid production. As 

mentioned in Chapter 2, the cytosolic, NADP+-dependent aldehyde dehydrogenase 

Ald6p might contribute to acetic acid generation as well (Eglinton et al. 2002; 

Erasmus and van Vuuren 2009) and the expression of ALD6 was much higher in a 

high acetic acid producing strain grown in grape musts containing 40% w/v sugar 

(Erasmus and van Vuuren 2009). In addition, glycerol is made in fermenting yeasts 

not only by serving as an osmolyte under hyperosmotic stress, but also produced as a 

redox balancing metabolite, oxidizing the excess NADH generated during biomass 
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formation (Nordstrom 1968; van Dijken and Scheffers 1986). The higher production 

of glycerol (Table 3.3) by KI-VI116 and AWRI 1572 might be partially caused by 

their faster and greater extent of accumulation of cell concentrations (Fig. 3.2), which 

could be further proved by their higher ammonia nitrogen consumption (Table 3.lA). 

The isolate S. bayanus/S. pastorianus and A WRI 1571 which showed a relatively 

lower extent of cell accumulation (Fig. 3.2) also produced less glycerol (Table 3.3) 

and displayed lower ammonia consumption (Table 3.1A). 

Unstable genome of yeast strains during fermentation could lead to an 

unpredictable organoleptic profile in the final wine and might affect the wine 

composition, such as sugar consumption and acetic acid production. The DNA 

restriction fragments of rDNA regions comprising the ITS and the 5.8S rRNA gene 

were analyzed to determine the genomic stability of AWRI 1571 and AWRI 1572 

during fermentations. In our study, both hybrids showed a higher portion of genomic 

instability from the S. bayanus parent as opposed to the S. cerevisiae parent during 

unfiltered Icewine fermentations (Fig. 3.5 and 3.6). These genomic losses might be 

caused by the extremely stressful environment during Icewine fermentations as 

discussed in Chapter 2 since environmental stresses could drive hybrids evolving 

towards adaptation (Hittinger and Carroll 2007; Coyle and Kroll 2008). In our study, 

the higher proportion of DNA variation from the S. bayanus parent and relatively 

stable DNA content from the S. cerevisiae parent of the hybrids may reflect that 

AWRI 1571 and AWRI 1572 were evolving towards adaptation to Icewine 

production by deleting genomic contents from the parent S. bayanus which was less 
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adapted to Icewine fermenting circumstance. 

The loss or reduced expression of parental rDNA occurred in only one out of the 

triplicate unfiltered fermentations (fermentation replicate #3 of AWRI 1571 and 

fermentation replicate #2 of AWRI 1572, Fig. 3.5 and 3.6), but there was no 

difference in either sugar consumption or acetic acid generation among the triplicate 

fermentations of both hybrid strains (data not shown). This means that the unstable 

rDNA regions of AWRI 1571 and AWRI 1572 could not be correlated to the 

metabolic profiles during Icewine fermentations and therefore it would not detract 

from the composition of the final wine. A global scan of hybrid genomes is required 

to correlate the genomic instability with the metabolic change during unfiltered 

Icewine fermentations. It could be either that the genes involved in the metabolism 

of sugar and acetic acid were not affected by the stressful environment during 

unfiltered Icewine fermentations or a small extent of genomic instability did not 

affect the metabolism. 

3.6. Conclusions 

This study investigated three new yeast strains as novel starter cultures for 

unfiltered Icewine fermentation and emphasized the effect of yeast strains on acetic 

acid production. A WRI 1572 was identified as a potential strain used as a novel 

starter culture for Icewine production since it reached the target ethanol 

concentration in a reasonable fermentation time with lower acetic acid production as 

a function of both time and sugar compared to commercial wine yea~t KI-Vll16. 
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AWRI 1571 and S. bayanus/S. pastorianus do not appear suitable for Icewine 

production due to their failure in desired ethanol production and high acetic acid 

production. Both hybrids displayed genomic instability of the rDNA regions during 

fermentations but it did not affect wine composition. 
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Chapter 4. Discussion and conclusions 

4.1. Discussion 

Icewine fermentation is often correlated to high concentration of acetic acid 

production (Kontkanen et al. 2004), which has been a concern for Icewine producer 

because it gives wine an unwanted vinegar aroma and any Icewine in Canada with 

an acetic acid concentration higher than 2.1 g rl cannot be designated an Icewine 

according to the Vintners Quality Alliance (VQA 1999). This study investigated 

three new yeast strains in Riesling Icewine fermentations to determine their potential 

to be used as novel starter cultures for Icewine production with highlight on acetic 

acid production in comparison to a commercially available wine strain KI-VI116. 

Fermentations were firstly conducted in sterile filtered Riesling Icewine juice to 

evaluate the authentic characteristics of these yeast strains under aseptic, laboratory 

condition, and then conducted in unfiltered Riesling Icewine juice, which mimics the 

winery environment, to assess their applicable potential to be used for industrial 

Icewine production. It should be noticed that, in this study, the sterile Riesling 

Icewine juice used for sterile fermentations was not obtained by sterile filtering the 

same Riesling Icewine juice which was used for unfiltered fermentations. They were 

different batches of juice from different vintages. This could explain the high 

variance in compositions between sterile and unfiltered juice listed in Chapter 2 and 

3, respectively. 

In our study, the commercial wine yeast KI-V1116 produced 1.25 g rl of acetic 
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acid in unfiltered fermentations which simulates the winery conditions. This value 

was in good agreement with the average acetic acid concentration in Canadian 

commercial Icewine, 1.3 g rl, reported by Nurgel et al. (2004) and the mean volatile 

acidity concentration of 348 Canadian commercial Icewines, 1.2 g rl, found by 

Soleas and Pickering (2007). However, KI-VI116 produced a much higher 

concentration of acetic acid in our sterile Icewine fermentations (2.07 g rl) 

compared to the unfiltered, and the same result can be observed in fermentations 

conducted by the other yeast strains (Table 2.2 and 3.4). The higher acetic acid 

production in sterile fermentations could be caused by the higher juice soluble solids 

and reducing sugar in sterile filtered juice (41.6 ± 0 °Brix, 473 ± 11 g rl of sugar in 

sterile juice versus 39.2 ± 0 °Brix, 423 ± 11 g rl of sugar in unfiltered juice). In 

compositional analysis of Ontario commercial Icewine, it was reported that volatile 

acidity was positively correlated with juice soluble solids (Soleas and Pickering 

2007). The higher ratios of acetic acid production to sugar consumption in sterile 

fermentations in our study (Table 2.1 and 3.2) also agreed with the study ofPigeau et 

al. (2007), which showed that the acetic acid production per sugar consumed was 

positively correlated to the sugar concentration of Icewine juice. In addition, the 

clarification of Icewine juice for sterile fermentations might lead to an extra stress on 

yeasts during fermentation. Clarification of juice does not only deplete must 

microflora but also removes suspended solids present in must, which can supply 

yeasts with nutritional elements and adsorb certain metabolic inhibitors 

(Ribereau-Gayon et al. 2006). The depletion of such suspended solids might place 
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yeast cells under a more stressful environment and give rise to difference in the 

production of metabolites such as acetic acid. 

In our study, AWRI 1572 appears as a potential yeast strain to be used as a novel 

starter culture for Icewine production. It consumed the same concentration of sugar 

as KI-VI116 in sterile fermentations and produced 28.8% less acetic acid; in 

unfiltered conditions it displayed even better adaption, with 34.3% higher sugar 

consumption than KI-V1116 and 33.1% lower acetic acid production. Although it 

showed lost or reduced copies of ITS rDNA fragments under both fermentation 

conditions, this genomic instability could not be correlated with the metabolic profile, 

and therefore may not affect the composition of the final wine. The higher sugar 

consumption and less acetic acid production by AWRI 1572 under unfiltered 

fermentations indicated that this strain was able to maintain its metabolic profile 

displayed in sterile fermentations, and adapted even better in the unfiltered condition 

similar to commercial conditions. This better adapt ion might result from the 

presence of suspended solids in unfiltered Icewine juice, which provided nucleation 

sites to eliminate CO2, promoted yeast multiplication (Fig. 2.2 and 3.2) as a support 

and also supplied yeasts with nutrition and adsorbed certain metabolic inhibitors 

(Ribereau-Gayon et at. 2006). 

The isolate S. bayanus/S. pastorianus and the other hybrid AWRI 1571 appear to 

be unsuitable for Icewine production using unfiltered juice, due to their low sugar 

consumption and corresponding failure in reaching target ethanol concentration in 

unfiltered fermentations (Table 2.1 and 2.2). The low sugar consiImption and 
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correspondingly low ethanol production of S. bayanus/S. pastorianus in both sterile 

and unfiltered fermentations (Table 2.2, 3.1A and 3.3) indicated that this isolate 

appears less adaptive to the severe stressful environment of Icewine fermentations. 

However, its low production of ethyl acetate and relatively low conversion of sugar 

to acetic acid indicate this yeast may be suitable for other wine styles, such as wines 

made from grapes concentrated by drying (appassimento) where the starting soluble 

solids concentration is not quite as high as that was found in Icewine juice. The less 

sugar consumption of AWRI 1571 compared to KI-VI116 in unfiltered 

fermentations but not in sterile fermentations suggested that this strain appears less 

suitable in fermenting unfiltered juice in which other microflora and suspended 

solids are present. Both strains displayed low acetic acid production as a function of 

both time and sugar in sterile fermentations under aseptic, laboratory conditions 

(Table 2.2 and 2.3), but they failed to maintain this property in fermenting unfiltered 

Icewine juice which was the condition for Icewine production in the winery (Table 

3.4). It seems that the presence of natural microflora or/and the suspended solids in 

the unfiltered juice affected yeasts' metabolism of acetic acid during Icewine 

fermentations. 

The variation of acetic acid production of these yeast strains between sterile 

Icewine fermentations and unfiltered might also be caused by the difference in juice 

composition since the juice used was from different vintages. Paraggio and Fiore 

(2004) tested 15 yeast strains, differing in acetic acid production, in fermentation of 

grape musts of different varieties and found that the strain behavior was dependent 
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on various grape must. Romano et al. (2003) inoculated S. cerevisiae strains to grape 

musts of different varieties and found that the acetic acid production is the result of 

the interaction between the yeast and the grape must composition. However, Soleas 

and Pickering (2007) reported that there was no difference in volatile acidity 

between Icewines produced from 2000 to 2004 in a study of 348 Canadian 

commercial Icewines. Whether or not the acetic acid producing property of these 

yeast strains are affected by vintage and variety of juice is required to be further 

investigated. 

The stability analysis of the two hybrids, AWRI 1571 and AWRI 1572, indicated 

that both strains showed lost or reduced copies of parental rDNA freagments during 

both sterile and unfiltered Riesling Icewine fermentation. However, the extent of 

genomic instability of A WRI 1572 is much higher in sterile filtered fermentation 

compared to the unfiltered (13.3% versus 2.7%) (Fig. 2.6 and 3.6). AWRI 1571 only 

displayed a slightly higher genomic instability in sterile fermentations (1.4%) 

compared to that in unfiltered condition (1.3%) (Fig. 2.5 and 3.5). 

We previously discussed that the natural and laboratory-bred hybrids could 

undergo dramatic genomic changes during mitotic and meiotic divisions to evolve 

towards genome-stabilization, which consists of loss of chromosomes and genes and 

recombination between the partner genomes (Sipiczki 2008). This evolution could 

be accelerated by an extremely stressful environment during Icewine fermentation; 

such as high ethanol, strong acidity and extremely high sugar. The gene loss or 

reduced expression of hybrid genomes during Icewine fermentation might be the 

103 



molecular mechanisms for adaptive evolution of hybrid strains driven by 

environmental stress (Hittinger and Carroll 2007; Coyle and Kroll 2008). In our 

study, the juice used for sterile fermentation had much higher sugar concentration 

and therefore placed yeast cells under a more stressful circumstance in comparison 

to the unfiltered fermentation. In addition, the depletion of suspended solids could 

lead to extra stress on yeast cells (Ribereau-Gayon et at. 2006). The more stressful 

environment for yeast cells under sterile fermentations might be the reason for the 

higher genomic instability of A WRI 1572 during sterile fermentations, since 

environmental stress could drive genomic modification of hybrids (Hittinger and 

Carroll 2007; Coyle and Kroll 2008). Furthermore, we previously mentioned that, in 

this study, the sterile Riesling Icewine juice used for sterile fermentations and the 

unfiltered Riesling Icewine juice which was used for unfiltered fermentations were 

from different vintages. The variation of juice compositions might also contribute to 

the different level of genomic instability of A WRI 1572. 

AWRI 1571 displayed lower genomic instability compared to AWRI 1572 and 

was only affected slightly by different stressful environments under sterile or 

unfiltered fermentations. This indicated that the genome of AWRI 1571 is relatively 

stable even under more stressful environments compared to AWRI 1572. 

Nevertheless, the unstable genome of both hybrids seem not detracting from the 

limited measurements of wine composition performed in this body of work since it 

could not be correlated to the metabolic profile. 

Since AWRI 1572 produced much less acetic acid in both fermentation conditions, 
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it would be interesting to investigate the molecular mechanism for its acetic acid 

production. Analysis of gene expression profile of glycerol and acetic acid 

metabolism-associated genes is valuable. Microarray or Northern analysis focusing 

on GPD, ALD and ACS genes are potential investigating methods. In addition, the 

activity of these related enzymes can be investigated to compare enzyme activity 

between different strains. 

The sensory profile of Icewine produced by these yeast strains should be 

investigated. The sensory characteristics of yeast strains are another important 

standard to assess whether or not a yeast strain is suitable to be used as a starter 

culture for wine production because starter cultures play predominant role in 

contribution to aroma and sensory profile of the final wine. It was suggested that S. 

bayanus is more associated with savoury- and cooked-like aroma attributes; such as 

'cooked orange peel', 'honey', 'yeasty', 'nutty' and 'aldehyde' (Eglinton et al. 2000). 

The sensory evaluation of Icewine produced by these strains could further prove 

whether these yeasts are qualified to be used as novel starter cultures for Icewine 

production. 

The naturally isolated strain S. bayanus/S. pastorianus failed to reach the target 

ethanol concentration of approximately 10 % v/v in both sterile and unfiltered 

Icewine fermentations, but it produced less acetic acid and ethyl acetate in the 

fermentations which are desirable qualities for these and other wine styles. A WRI 

1571 failed to produce the desired ethanol concentration in unfiltered fermentations 

but it also produced less acetic acid in sterile condition. Since acetic acid production 
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is the result of interaction between yeast strains and juice composition (Romano et al. 

2003), study of these strains in additional varieties used for Icewine production such 

as Vidal or Cabernet Franc might provide a more thorough description of 

characteristics of these yeast strains. It would also be interesting to assess the 

performance of these strains in appassimento-style wines where grapes are ripened 

off-vine. Ripening the fruit off-vine post harvest could concentrate flavours and 

sugars. However, desiccation of grapes through the drying process (appassimento) 

provokes physical and biochemical changes resulting from both endogenous grape 

metabolism and mould development. The loss of water in grapes through this drying 

process formed high concentrations of ethyl acetate and volatile acidity (Costantini 

et al. 2006). In addition, the mould Botrytis cinerea often develops on the grapes 

during the drying process and contributes to the production of organic acids 

including acetic acid (Ribereau-Gayon et al. 2000). Therefore, yeast strains that 

produce reduced concentrations of acetic acid and ethyl acetate, such as those 

investigated in this study, may be favourable in the fermentation of 

appassimento-style wines. 

4.2. Conclusions 

This study investigated three new yeast strains as novel starter cultures for 

Icewine production. AWRI 1572 was designated as a potential strain used as a novel 

starter culture for Icewine production because it reached the target ethanol 

concentration in a reasonable fermentation time with lower acetic acid production in 
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comparison with commercial wine yeast KI-V1116 under both sterile filtered and 

unfiltered Riesling Icewine fermentations. Although it displayed genomic instability 

ofrDNA region, it did not affect the composition of the final wine. AWRI 1571 and 

S. bayanus/S. pastorianus do not appear suitable for Icewine production due to their 

failure in the desired ethanol production and high acetic acid production in unfiltered 

fermentations, although both strains produced less acetic acid as a function of both 

time and sugar consumed in sterile fermentations compared to K I-V 1116. 
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