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Abstract 

Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease that destroys 

pancreatic beta cells, affecting glucose homeostasis. In T1DM, glucoregulation 

and carbohydrate oxidation may be altered in different ambient temperatures; 

however, current literature has yet to explore these mechanisms. This study 

examines the effects of 30 minutes of exercise at 65% VO2max in 5ºC, 20ºC and 

35ºC in individuals with T1DM. No significant differences were observed for 

blood glucose across the 3 conditions (p = 0.442), but significance was found for 

core temperature, heat storage, and sweat rate (p < 0.01). Blood glucose was also 

shown to vary greatly between individuals among conditions. The mechanisms 

behind the differences in blood glucose may be due to the lack of significant 

glucagon production among conditions. These findings suggest that T1DM 

individuals may exercise submaximally for 30 minutes in different ambient 

temperatures without significant differences in glucoregulation. 
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Introduction 

 Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease of unknown 

etiology, characterized by hyperglycemia, and is often diagnosed in childhood, although 

it is not uncommon for diagnosis in later adulthood. The disease renders the beta cells of 

the pancreas unable to produce insulin, and as such, impacts the glucose dynamics of the 

individuals affected.  It is estimated that over 200,000 Canadians currently suffer from 

T1DM (StatsCan, Sanmartin & Gilmore, 2009). T1DM is managed with regular 

monitoring of blood glucose, insulin injections, and exercise. Complications associated 

with poor blood glucose management include retinopathy, nephropathy, and possible 

amputation, ultimately leading to a lower quality of life, increased mortality, and a greater 

financial health cost. Exercise in individuals with Type 1 diabetes can help maintain good 

general health, prevent obesity, control diabetic symptoms and reduce the risks for other 

complications, such as high cholesterol and high blood pressure (American Diabetes 

Association, 2008). 

 In non-diabetic subjects, the rate of glucose production is increased in proportion 

with glucose uptake for a given exercise intensity, but in subjects with moderately 

controlled T1DM, the rate of glucose production is sharply increased, and could be 

accredited to the rate of gluconeogenesis during exercise (Petersen, Price & Bergeron, 

2004). In order to maintain stable blood glucose during exercise, there is a concomitant 

decrease in insulin secretion from the beta cells, and an increase in glucose production 

from the liver in people not affected by type 1 diabetes. However, in people affected by 

T1DM, insulin is administered via insulin pump, or bolus injection, and if adjustments are 
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not made, hypoglycemia will occur. Numerous studies (Peirce, 1999; Corigliano et al., 

2006; Guelfi, et al., 2005; Perrone, et al., 2005) have demonstrated a decrease in the 

blood glucose of exercising individuals with T1DM. With moderate exercise in 

individuals with T1DM, if it is only 20-30 minutes in duration and less than 70% VO2max, 

minimal insulin adjustments may need to be made (Peirce, 1999). However, West, 

Morton, Bain, Stephens & Bracken (2010), showed that a 75% reduction in pre-exercise 

insulin best preserves blood glucose responses for 24 hours following 45 minutes of 

running at 70% VO2peak. 

 Differing environments have also been shown to impact the body during exercise. 

When the environment is warmer than the skin, the body gains heat through dry heat 

exchange that increases the requirements for sweating and circulatory responses, such as 

vasodilation, increasing blood flow to the skin (Kenny, et al., 2010). In non-diabetic 

individuals, exercise in the heat to the point of hyperthermia has been shown to alter the 

body’s metabolism, with alterations in carbohydrate metabolism including: increased 

gluconeogenesis, depressed glycogenesis, glucose intolerance and insulin resistance 

(Mizock, 1995). Likewise, during exercise in a cold environment in non-diabetic persons, 

there is an increase in carbohydrate utilization. Prolonged/strenuous exercise and 

alterations in diet have important effects on the quantity and the quality of metabolic fuel 

reserves that are available for shivering, and of all metabolic fuels, CHO reserves are the 

most affected by such changes in exercise and diet regimen (Haman, 2006). This 

increased CHO oxidation may often result in hypoglycemia. Plasma glucose and muscle 

glycogen have been shown to play significant roles in heat production during cold 

exposure (Jacobs, Martineau & Vallerand, 1994), but a more recent study by Haman et 
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al., (2002) showed that even though plasma glucose oxidation was strongly stimulated 

during low-intensity shivering, it only contributed a minor role (10%) to heat production. 

Prolonged/strenuous exercise and alterations in diet have important effects on the quantity 

and the quality of metabolic fuel reserves that are available for shivering, and of all 

metabolic fuels, CHO reserves are the most affected by such changes in exercise and diet 

regimen (Haman, 2006). Shivering has also been shown to use more CHO and less lipids 

than exercise (Weber & Haman, 2005). Hypothetical explanations for this include 

hormonal differences (i.e. catecholamines), or different neural control of shivering and 

exercise (Mentel, Duch, Stypa, Wegener, Müller & Pfluger, 2003). However, free fatty 

acid and glycerol levels are not higher, but may be lower during exercise in cold air or 

water when compared to corresponding warmer conditions (Doubt, 1991). Individuals 

with T1DM are at increased risk for hypoglycemia during exercise. Passias et al., (1996) 

found that hypoglycemia reduces, but does not eliminate, hypothermia-induced heat 

production and the reduction is achieved by decreasing the core temperature threshold for 

shivering thermogenesis by approximately 0.6ºC and the magnitude of heat production by 

approximately 20% compared to euglycemia. This decrease in the threshold for shivering 

is believed to be due to the decreased blood glucose perfusing tissue in the preoptic 

anterior hypothalamus (PO/AH), exciting warm-sensitive neurons, and inhibiting cold-

sensitive neurons (Passias, et al., 1996). Therefore, hypoglycemia causes a greater 

cooling of the core by inhibiting heat production. Currently, there is a limited literature 

pertaining to exercise in different temperatures and the effects on individuals living with 

T1DM. 



 

  

  

15

 This thesis will examine the effects of different thermal stress on glucoregulation 

during exercise in participants with Type 1 Diabetes Mellitus. Current literature involving 

both thermal and metabolic responses during exercise in individuals with T1DM is 

limited. Previous studies involving individuals with T1DM have shown significant rises 

in core temperature and diminished sweat rates when passively exposed to hot conditions 

(Petrofsky, et al., 2006), and have shown significant differences in blood glucose 

decrease during non-continuous, aerobic exercise in 10°C and 30ºC (Rönnemaa & 

Koivisto, 1988). The aim of the current study is to examine the effects of 5°C, 20°C, and 

35°C during exercise at 65% VO2max on core temperature, sweat rate, heat storage, blood 

glucose, insulin and glucagon in participants with T1DM. 
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Literature Review 

Diabetes 

a) What is Diabetes? 

 It is estimated that over 200,000 Canadians currently live with Type 1 Diabetes 

Mellitus (StatsCan, Sanmartin & Gilmore, 2009). There are two kinds of diabetes: Type 1 

Diabetes Mellitus (T1DM), comprising 5% to 10% of the total diabetic population 

(Salsali & Nathan, 2006), is characterized by insulin injections and is regularly diagnosed 

in childhood. T1DM is one of the most common chronic conditions of adolescence and 

young adulthood, and is the leading cause of medically related disabilities, including 

blindness, amputation, and renal failure, in the United States (Salsali & Nathan, 2006). 

Type 1 Diabetes is an autoimmune disease of unknown etiology. The disease affects the 

pancreas, rendering it unable to produce insulin. The pancreas has both exocrine and 

endocrine functions. The endocrine portion of the pancreas is composed of three types of 

specialized cells known as alpha cells, beta cells, and delta cells, which make up the islets 

of Langerhans; however, T1DM affects only the beta cells on the islets of Langerhans, 

leaving them unable to produce insulin. 

Type 2 diabetes mellitus (T2DM) is frequently diagnosed in later adulthood and is 

most often associated with overweight, sedentary individuals and is accompanied by 

insulin resistance. Accompanying the insulin resistance in T2DM is low-grade systemic 

inflammation, causing an increase in the release of TNF-alpha, which has direct 

inhibitory effects on insulin signaling and has been proposed to cause insulin resistance 
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by releasing free fatty acids from adipose tissue (Petersen & Pedersen, 2005). However, 

TNF-alpha is not the only mechanism by which insulin signaling is affected. Individuals 

affected by Type 1 or 2 diabetes must engage in continual self-care actions such as 

healthy eating and exercise if they are to minimize their risks of developing long-term 

diabetic complications (Balfe, 2007).  

b) Glucose Dynamics and Insulin Physiology 

The blood glucose of a non-diabetic individual is typically below 6.1 mmol/L 

(Diabeteshome, 2004), which is indicative of a functional pancreas that maintains 

homeostatic blood glucose levels. The target blood glucose for an individual with T1DM 

is meant to mimic that of a non-diabetic individual, and is maintained through regular 

blood glucose readings, and the administration of insulin injections, or the use of an 

insulin pump. Figure 1 illustrates the glucose dynamics in individuals with T1DM. 

Individuals with T1DM frequently meet with an endocrinologist to discuss blood glucose 

levels, insulin dosage, and HbA1c values. The typical lifespan of a red blood cell (RBC) is 

90 days, and during this time, plasma glucose becomes glycosylated and attaches to the 

RBC, HbA1c values are representative of the 3-month average of blood glucose and are a 

measure of the long-term control of blood glucose. Poor blood glucose control results in 

excess glucose that binds to red blood cells, and therefore results in a higher HbA1C. 

Normal values are between 5-7%, and are indicative of well- controlled T1DM. T1DM 

individuals must also meet with a dietician to discuss an insulin-carbohydrate ratio, in 

which a unit of insulin is given for a certain number of carbohydrate grams ingested. 

Exercise is important for individuals with T1DM for many reasons, including achieving 
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better blood glucose control and improving insulin sensitivity, thereby making it easier 

for the body to transfer sugar from the blood stream into the cells, and improving 

regulation of glucose by increasing the muscle-to-fat ratio and attainment of a longer life 

(Waden et al., 2005 & Kolatkar, 2006).  

Figure 1: Glucose-Insulin dynamics in T1DM individuals. 
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Insulin has profound effects on both carbohydrate (CHO) and lipid metabolism 

(Bowen, 2007). Glucose enters the blood stream after CHO is broken down in the small 

intestine. Insulin then acts on the cells throughout the body to stimulate uptake of glucose 

into the tissues. However, it should be noted that the brain and liver are two organs that 

do not require insulin for glucose uptake because they do not use GLUT4 for transporting 

glucose. The role of GLUT4 transport and insulin signaling will be discussed in a 

subsequent section. Insulin does stimulate glycogen synthesis in the liver by activating 

the hexokinase enzyme, phosphorylating glucose and keeping it in the cell as well as by 

activating glycogen synthase. In relation to lipid metabolism, insulin promotes de-novo 

fatty acid synthesis in the liver and adipose tissue, inhibiting the breakdown of 

triglycerides in adipose tissue by hindering intracellular lipases and directly stimulating 

fat accumulation in adipose tissue (Bowen, 2007).  

T1DM is a chronic medical disease characterized by potentially significant 

perturbations in blood glucose levels as a result of disrupted insulin homeostasis, namely 

hyperglycemia and hypoglycemia. Hyperglycemia is portrayed by elevated glucose 

(above 13.9 mM) in the blood stream, and has short-term consequences that include 

ketoacidosis, hyperosmolar hyperglycemic nonketotic syndrome (HHNS) and coma 

(Kolatkar, 2006). Impaired peripheral glucose uptake leads to hyperglycemia, 

hyperosmolarity, glycosuria and osmotic diuresis. The inability of the tissues to utilize 

glucose causes lipolysis and increased reliance on fat, causing the production of ketones 

in the liver that are responsible for metabolic acidosis (Sivanandan, et al., 2010). The role 

of the adrenergic response to stress hyperglycemia is based on interference with feedback 

mechanisms of hyperglycemia in beta and alpha cell function, ultimately leading to 
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increased glucagon secretions and decreased insulin (Halter, Beard & Porte, 1984). The 

consequences of long-term hyperglycemia include: kidney damage leading to diabetic 

nephropathy, neuropathy, retinopathy, and cardiovascular complications (angiopathy, 

heart attack and stroke). The fastest and most efficient way to combat hyperglycemia is 

by administering insulin, which should be administered based on the level of 

hyperglycemia. Figure 2 denotes hyperglycemia in the blood stream.  

Figure 2: Hyperglycemia in T1DM 

 

(Adapted from Kitabchi, et al., 2009) 

Conversely, hypoglycemia results when serum blood glucose levels drops below 

3.9 mM. Hypoglycemia that results during exercise is caused by enhanced insulin 

sensitivity combined with reduced glycogen stores as a consequence of increased energy 
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expenditure (Corigliano, et al., 2006). The relative increase in the ratio of insulin to 

carbohydrate in the blood stream may be a result of glucose being taken into the cell 

during exercise, or by administration of too much insulin following a meal. 

Hypoglycemia evokes changes in autonomic activity such as sweating, nausea, warmth, 

anxiety, tremulousness, palpitations, and paresthesia. Insufficient blood glucose also 

affects the brain and results in headache, blurred or double vision, confusion, difficulty 

speaking, seizures and possibly coma (Merck Manual Index, 2007). When blood glucose 

reaches the point of hypoglycemia, it is treated by the ingestion of glucose or, in extreme 

cases, by the administration of a glucagon bolus to stimulate liver glucose output. 

Hypoglycemia has short-term consequences including insulin shock and diabetic coma 

(Kolatkar, 2006), and if untreated, will lead to death. 

c) Insulin Signaling 

In order to maintain postprandial euglycemia, carbohydrates must be taken into the 

cells. This is accomplished by a number of pathways; however, this section will focus on 

insulin stimulation and muscle contraction. Insulin concentration must be low enough to 

allow hepatic glucose output necessary to maintain energy supply to vital organs like the 

brain and liver during a fasted state, yet high enough to suppress the excess formation of 

ketoacids (Riddell & Perkins, 2006). Because glucose is not able to passively diffuse into 

a cell, it must be transported through the cell membrane via glucose transporters 

(GLUTs). The major glucose transporter isoform expressed in skeletal muscle is GLUT4, 

and it has a large capacity to increase glucose transport across the cell membrane by 

facilitated diffusion (Merry & McConell, 2009).  GLUT4 is internalized from the plasma 
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membrane in the absence of insulin, and resides in intracellular tubulovesicular elements 

associated with the trans-Golgi reticulum (James & Piper, 1994). Insulin primarily 

promotes GLUT4 vesicle exocytosis (Klip, 2009); however, insulin also decreases the 

rate of GLUT4 vesicle endocytosis approximately 2-3 fold (Watson & Pessin, 2001). In 

the basal state, GLUT4 cycles between the plasma membrane and intracellular 

compartments, but when the insulin receptor is activated, this causes an increase in the 

rate of GLUT4 vesicle exocytosis, resulting in a net increase of GLUT4 on the cell 

surface, therefore, increasing the rate of glucose uptake (Watson & Pessin, 2001). Both 

exercise, (pertaining to muscle) and insulin (with respect to muscle and fat) cause a rapid 

and pronounced increase in cell surface levels of GLUT4 following recruitment from 

intracellular stores (James & Piper, 2004). Insulin initiates a signaling pathway that 

includes phosphatidylinositol kinase (PI3K), and the kinase known as Akt (Cartee & 

Funai, 2009). Figure 3, taken from Cartee & Funai (2009), demonstrates the detailed 

insulin-signaling pathway, resulting in translocation of GLUT4 to the cell surface. 
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Figure 3: Insulin pathway to activate GLUT4 

 

(Cartee & Funai, 2009) 

 

 Exercise (skeletal muscle contraction) can also affect glucose uptake using a 

different pathway than insulin. Muscle contraction, depolarization, and mitochondrial 

uncoupling can each increase the density of GLUT4 units at the muscle membrane and 

elevate the rate of glucose uptake (Klip, 2009). Membrane depolarization that triggers 

muscle contraction involves a rise in myocytoplasmic Ca2+, and is required for 

contraction-induced stimulation of glucose uptake (Klip, 2009). Exercise relies on the 

cumulative effects of multiple inputs with adenosine monophosphate (AMP)-activated 

protein kinase (AMPK) and increased Ca2+ are considered as likely to be major factors, as 

a great deal of evidence suggests that increased cytosolic Ca2+ is important for a portion 

of the contraction-stimulated increase in glucose transport (Cartee & Funai, 2009).  

Figure 4, taken from Cartee & Funai (2009), shows the pathway of translocation of 
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GLUT4 to the cell surface during exercise. Note, that this pathway is independent of the 

insulin pathway.  

Figure 4: GLUT4 activation by skeletal muscle contraction 

 

(Cartee & Funai, 2009) 

 

The pathway that glucose takes to get into the cell during exercise differs from the 

insulin pathway, and it has been suggested that this results (at least in part) from the 

activation of adenosine monophosphate (AMP)-dependent protein kinase (Watson & 

Pessin, 2001). Activation of AMPK via 5-aminoimidazole-4-carboxamide-riboside 

(AICAR) reduces GLUT4 endocytosis provides proof of concept that the enzyme is able 

to regulate this aspect of GLUT4 traffic (Klip, 2009).  
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Metabolism During Exercise 

a) Non-Diabetic  

 The liver is responsible for blood glucose homeostasis in the body under varying 

conditions. During exercise in the non-diabetic body, the glucose production of the liver 

is increased. Glycogenolysis is the process that breaks down liver glycogen into glucose, 

whereas gluconeogenesis is the process that synthesizes glucose from gluconeogenic 

precursors (lactate, alanine, glycerol and pyruvate), circulating in the blood stream. When 

exercise is short-term with extensive exertion, hepatic glycogenolysis is the primary 

source of extra glucose for skeletal muscle. Increased pre-exercise muscle glycogen 

availability increases muscle glycogenolysis during exercise; conversely, reduced muscle 

glycogen levels result in a lower rate or muscle glycogen breakdown during exercise 

(Hargreaves, McConell & Proietto, 1995). However, during prolonged exercise, hepatic 

gluconeogenesis becomes gradually more important as a result of falling insulin and 

rising glucagon levels (Wahren & Ekberg, 2007).   

b) Type 1 Diabetes 

Both T1DM and T2DM have effects on metabolism during exercise. The following 

will compare metabolic properties in both T1DM and T2DM. In a T1DM individual, it 

has been shown that during moderate-intensity exercise with euglycemia (blood glucose 

equal to that of a non-diabetic) the body mimics that of a non-diabetic individual by 

making a substrate oxidation shift towards lipid oxidation; however, when exercise is 

undertaken during hyperglycemia, fuel metabolism is dominated by carbohydrate 

oxidation (Jenni et al., 2008). Upon cessation of exercise, the liver’s glycogen reservoir 
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waits to be replenished following the postprandial period, which is accomplished by three 

factors (Radziuk & Pye, 2001): 

1. an increment in the hepatic glucose uptake from the liver, 

2. metabolic and hormonal signals in the portal vein, 

3. an increment in the gluconeogenic flux (gluconeogenesis). 

 

The response to exercise is also dependent upon the intensity of exercise undertaken. 

At the onset of light exercise, there is a tendency towards increased arterial glucose 

concentration due to the increase in liver glucose output induced by exercise. During 

recovery from submaximal exercise, muscle glycogen content increases at similar rates in 

both diabetic, and non-diabetic individuals, with the most pronounced increase in the first 

four hours of recovery (Maehlum, HØstmark & Hermansen, 1977). Glycogen synthesis 

following prolonged heavy exercise has been shown to proceed at a similar rate in the 

muscles of people affected by T1DM as in muscles of non-diabetics when individuals 

with T1DM take their insulin and carbohydrates given per os (Maehlum, HØstmark & 

Hermansen, 1977). If these intensities are not prolonged, they will not cause 

hypoglycemia. Figure 5 shows the hormonal response to exercise in individuals with 

T1DM. 
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Figure 5: T1DM response to exercise 

 

(Adapted from Jenni, et al., 2008)
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c) Type 2 Diabetes 

 Exercise is one of the main prescriptions for individuals with T2DM, as its effects 

have shown to markedly improve the consequences that accompany the disease (Wahren 

& Ekberg, 2007; Bordenave et al., 2008; Wang, Simar & Singh, 2009). 

T2DM is diagnosed by insulin resistance, and is sometimes combined with relative 

insulin deficiency. While T1DM patients have diminished hepatic glycogen stores, 

augmented gluconeogenesis, and an increase in basal hepatic glucose (Wahren & Ekberg, 

2007).  Conversely, the hyperglycemia of T2DM is partly caused by glucose 

overproduction from the liver, secondary to accelerated gluconeogenesis due to decreased 

liver insulin sensitivity, which would normally decrease gluconeogenesis (Wahren & 

Ekberg, 2007).  A single bout of aerobic exercise at moderate intensity has been shown to 

aid in the effects of T2DM by increasing insulin sensitivity, indicating that the acute 

effects of exercise on insulin receptiveness are qualitatively important in the 

interpretation of training-related insulin sensitivity (Bordenave, et al., 2008). Such effects 

are also seen with lipid metabolism after aerobic exercise and include decreases in 

intramuscular triglyceride concentration and enhanced insulin sensitivity (Wang, et al., 

2009). Figure 6 demonstrates insulin resistance in T2DM. Exercise has been shown to 

increase insulin sensitivity and increase GLUT4 transport via 2 independent mechanisms. 

Increased glucose uptake is the result of contraction-mediated GLUT4 translocation to the 

surface of the cell, (insulin-independent), while chronic exercise or training, thereby 

causes increased insulin sensitivity.  
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Figure 6: Type 2 Diabetes Mellitus 

 

(Adapted from review by Wang, et al., 2009) 

c) Individual Variability in T1DM 

 In individuals with T1DM, and non-diabetic individuals alike, there is a degree of 

variability associated with metabolism, and responses to thermal stress that are dependent 

on numerous factors. Baldi, Cassuto, Foxx-Luppo, Wheatley & Snyder (2010) found 

lower resting cardiac output and a higher systemic vascular resistance in T1DM 

individuals with a higher HbA1C (7.8 ± 0.4%) when compared to a low-HbA1C group (6.5 

± 0.3%) during maximal incremental cycle ergometry. The main findings of the study 

were that despite similar training volumes, subjects with higher HbA1C had lower peak 

workload, VO2peak, and peak cardiac output than those with lower HbA1C. The study also 
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found that pulmonary function measures were lower with the higher HbA1C group during 

peak exercise, and suggests that cardiopulmonary training adaptations are greater in 

individuals with T1DM when good glycemic control is maintained. The authors 

commented that the further research is needed to elucidate mechanism through which 

poor glycemic control influences both cardiac and pulmonary responses to maximal 

exercise, but postulated that autonomic dysfunction may have influenced the 

hemodynamic exercise response in the high-HbA1c group (Baldi, et al., 2010).  

 When comparing the metabolic control and lipid utilization (via insulin and 

glycemic clamp) in sedentary individuals and athletes with T1DM, Ebeling, Tuominen, 

Bourey, Koranyi & Koivisto (1995) determined that in athletes with T1DM, when 

competitive exercise is performed at variable schedules and intensities, it leads to a 

decrease in required insulin dose, impairment of metabolic control, and increase in lipid 

utilization. Further, there is no enhancement of insulin sensitivity, and glucose A-V 

(arteriovenous) difference, not blood flow, is the major determinant of body sensitivity to 

insulin. The study also found that glycemic control, as estimated by HbA1C level, was 

worse and insulin dose requirements were less for the athletes than their sedentary 

counterparts, and the energy expenditure was higher in the athletes than in the sedentary 

patients both between 50 and 80 min and between 130 and 160 min. At the end of insulin 

infusion, the metabolic rate had increased significantly in the control patients but 

remained unchanged in the athletes (Ebeling, et al, 1995). The main findings of the study 

were that the only difference between the athletes and sedentary patients regarding 

cellular mechanisms of glucose metabolism was increased muscle glycogen synthase 

activity in the diabetic athletes in the basal state, as has been previously reported 
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(Ebeling, et al., 1993 & Taylor et al., 1972) in healthy athletes. The mechanism behind 

this finding could be explained by the increased muscle contraction seen in athletes when 

compared to sedentary individuals; however, it has been shown that in healthy athletes, 

the non-oxidative glucose disposal rate is greater than in the sedentary subjects (Ebeling 

et al., 1992), but this was not observed between diabetic athletes and sedentary patients. 

Therefore, it is possible that athletes affected by T1DM demonstrate a reduced 

stimulatory effect of insulin on the utilization of glucose (Ebeling, et al., 1995). 

Exercise 

 Exercise is an important tool in maintaining the health of an individual, and there 

are many physiological mechanisms behind the benefits of exercise. The following will 

outline the effect and role of exercise in non-diabetic individuals to provide a framework 

for how the body is meant to function in the absence of T1DM. Figure 7 shows the non-

diabetic hormonal response to exercise. In a non-diabetic body, exercise can reduce the 

risk of hypertension, T2DM, coronary heart disease, stroke, and mild anxiety and 

depression. 
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Figure 7: Non-diabetic hormonal response to exercise 

 

(Adapted from Sigal, et al., 1999) 

Exercise can also increase stamina, and the capacity for work, ameliorate the 

effects of aging and muscle disease, and help prevent osteoporosis. During exercise, there 

is a decrease in insulin release from the pancreas and an increase in glucagon secretion by 

the liver due to increased sympathetic activity. Plasma glucose concentration is tightly 

regulated in exercise at 60% VO2max or less, with muscle glucose uptake being matched 
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by hepatic glucose production, and is regulated by the increase in the portal vein 

glucagon-to-insulin ratio (Shili, Wasserman & Vranic, 1996). Afferent signals for the 

increase in glucagon and decrease in insulin arise from the exercising muscle, consisting 

of a feedback mechanism (Shili, Wasserman, & Vranic, 1996). The decreased plasma 

insulin concentration during exercise is followed by a marked augmentation at the end of 

exhaustive exercise, lasting until 60 minutes of recovery and is linked with sustained 

hyperinsulinemia (Sigal et al., 1999). This hyperinsulinemia prevents hyperglycemia 

following exercise because of the increased glucose production during exercise, and 

promotes muscle and liver glycogen synthesis during recovery. During exercise in a non-

diabetic individual, plasma glucose concentration remains stable, and muscle glucose 

uptake is matched by hepatic glucose production. This response is due to the increase in 

the portal vein glucagon to insulin ratio (Shili, Wasserman & Vranic, 1996). 

 Carbohydrates are the primary, but not the only, source for providing energy 

during strenuous exercise, with the body relying more on fat as a source of energy during 

prolonged moderate intensity exercise. Timing of ingestion of carbohydrates is just as 

important as the type of food being ingested. In cycling endurance performance at 70% of 

maximal oxygen uptake (VO2max), time to exhaustion is 44, 32, and 17% longer (201 min, 

p > 0.05) for CHO feedings before and during exercise, CHO feedings during exercise, 

and pre-exercise CHO feedings, respectively, than for the same exercise without CHO 

ingestion (Wright, Sherman, & Dernbach, 1991). When exercise intensity is between 65% 

and 85% of VO2max, the body’s CHO reserves influence performance capacity; for 

example, low muscle glycogen or blood glucose concentrations result in a reduction in 

work capacity (Coyle, & Coggan, 1984). 
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a) Exercise and Diabetes 

The effects of exercise on the body of an individual with T1DM differ from the 

effects of exercise on the body of a non-diabetic individual. If exercise is undertaken with 

high insulin concentration, hepatic glucose output is inhibited and glucose disposal into 

active muscle causes hypoglycemia; on the other hand, if insulin levels are low or 

counter-regulatory hormone (adrenaline, glucagon, cortisol, and growth hormone) release 

is excessive when exercise is started, hepatic glucose output (and ketone production) will 

be excessive, leading to hyperglycemia (Riddell & Perkins, 2006). With regards to 

aerobic fitness, glycemic control and body composition in T1DM, there is a negative 

correlation between aerobic capacity and HbA1c (Wallymahmed, et al., 2007); however, 

this correlation does not necessarily reflect a cause and effect relationship. This does 

mean that the higher the aerobic capacity of an individual, the more HbA1c resembles that 

of a non-diabetic, healthy individual, and therefore, increased physical activity often 

translates into the T1DM individual being in better overall physical health due to better 

long term glucose regulation.  

 Regular physical activity is encouraged in people with Type 1 diabetes as exercise 

can help maintain good general health, prevent obesity, control diabetic symptoms and 

reduce the risks for other complications, such as high cholesterol and high blood pressure 

(American Diabetes Association, 2008). In order to maintain stable blood glucose levels, 

it is important to exercise and adjust insulin injections according to the type and intensity 

of exercise being performed. With respect to moderate exercise, if it is only 20-30 

minutes in duration and less than 70% VO2max, minimal reductions in insulin 

administration may need to be made (Peirce, 1999), noting that carbohydrates are the 
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dominant substrate oxidized at 60-70% VO2max, in 30 to 60 minutes of exercise 

(Corigliano, et al., 2006). However, West, Morton, Bain, Stephens & Bracken (2010), 

showed that a 75% reduction in pre-exercise insulin best preserves blood glucose 

responses for 24 hours following 45 minutes of running at 70% VO2peak. The balance 

between carbohydrate and lipid oxidation is determined by the intensity of exercise 

expressed in relation to aerobic capacity (Weber & Haman, 2005). As previously stated, 

the blood glucose of a non-diabetic individual is typically below 6.1 mM, and signifies 

the range in which an individual with T1DM should aim to have their blood glucose 

concentration. Prolonged blood glucose of more than 7-8 mM may compromise long-

term control, although levels below 10-12 mM will allow safe exercise; however, levels 

below 6 mM may increase the risk of hypoglycemia even if the exercise intensity is 

between 50-70% (Peirce, 1999).  Figure 8 depicts the blood glucose response to 

prolonged endurance exercise in both diabetic and non-diabetic individuals at 50-70% of 

VO2max (moderate intensity) without carbohydrate supplementation.  
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Figure 8: Diabetic and non-diabetic blood glucose response to endurance exercise 

 

(Adapted from Riddell & Perkins, 2009) 
 
It should be noted that figure 8 shows the theoretical blood glucose response to 

prolonged endurance exercise in an individual with T1DM, without CHO ingestion. 

In adolescents, it has been published that the effect of acute physical activity on 

children with T1DM probably depends on the type of activity, and not its intensity or the 

metabolic control. The type of exercise being performed will determine the effect, if any, 

on blood glucose. Endurance (aerobic) exercise has demonstrated to have a greater impact 

on reductions in average self-monitored blood glucose levels, when compared to 

resistance exercise; however, HbA1C was increased with aerobic training (Ramalho et al., 

2006). Glucose disposal during aerobic exercise causes an immediate requirement for 

increased hepatic glucose output, and if insulin levels are not changed to accommodate 
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for exercise, insulin levels will be high, inhibiting hepatic glucose output (Perkins & 

Riddell, 2006). With high-intensity, anaerobic exercise, the counter-regulatory hormone 

response (which may antagonize the effects of insulin at non-working muscles, permitting 

more available glucose for working muscles) frequently causes a dramatic exercise-

induced ketoacidosis because anaerobic energy production relies on intracellular stores of 

muscle glycogen, while aerobic energy production relies more heavily on glucose uptake 

(Perkins & Riddell, 2006). 

Post-exercise, the body of a T1DM individual enters a fasted state in which 

glycogen stores in muscle and liver are low and hepatic glucose production is accelerated. 

During any instance in which a T1DM individual is physically active, the risk of 

experiencing hypoglycemia is present.   

b) Exercise Intensity and Hypoglycemia 

When hypoglycemia occurs, subsequent exercise sessions undertaken within 24 

hours will result in acute counter-regulatory failure of proportionally greater magnitude. 

This may be induced in a dose dependent fashion by differing depths of prior 

hypoglycemia in patients with T1DM (Galasetti et al., 2006). This translates into 

hypoglycemia being reached earlier in similar intensity exercise following a previous 

hypoglycemic episode. Post-exercise hypoglycemia and delayed onset hypoglycemia in 

individuals with T1DM can occur up to 4 and 24 hours after exercise, respectively 

(Peirce, 1999). Increased insulin sensitivity (due to the acute bout of exercise) and 

depleted glycogen stores combine to produce profound hypoglycemia that is most 

commonly nocturnal (Peirce, 1999). 
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 During exercise, the glycemic response, or effect of different foods on blood 

glucose may be combated with carbohydrate ingestion. Ingesting a 6% carbohydrate 

drink during 60 minutes of moderate exercise and 30 minutes of recovery has been shown 

to increase blood glucose concentration by 1.17 mM in T1DM subjects (Perrone, et al., 

2005). The type and intensity of exercise also has a role in hypoglycemia. Blood glucose 

levels are found to be lower in individuals with T1DM following moderate intensity 

exercise than with moderate intensity exercise interspersed with high-intensity bouts 

(Guelfi, et al., 2005). It is assumed that similar intensities of exercise have the same 

effects on blood glucose among individuals with T1DM (whether they are well controlled 

or not, as determined by HbA1c values). In the past, studies concerned with T1DM have 

used individuals with “moderately controlled” blood glucose. It is presumed that 

individuals with moderately controlled T1DM were used because they were most willing 

to take part in the study. However, it is possible that these results may not translate 

equally well to uncontrolled type 1 diabetics. 

c) Glucose Regulation During Exercise 

As previously discussed, glycogen content of the muscles and liver are decreased 

when exercising and hepatic glucose production is accelerated (Peirce, 1999). During 

exercise in a non-diabetic individual, plasma glucose concentration remains stable, and 

muscle glucose uptake is matched by hepatic glucose production, with the response 

caused by the increase in the portal vein glucagon to insulin ratio (Shili, Wasserman & 

Vranic, 1996). However, in individuals with T1DM who are hyperglycemic at the onset 

of exercise, plasma glucose levels did not change significantly during moderate intensity 
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exercise, but decreased approximately 40% when exercise intensity was 70% of VO2max 

(Petersen, Price & Bergeron, 2004). In non-diabetic subjects, the rate of liver glucose 

production is proportionally increased with exercise intensity, but the rate of glucose 

production is distinctly increased in subjects with moderately controlled Type 1 Diabetes 

and could be accredited largely to the rate of gluconeogenesis (rather than hepatic 

glycogenolysis) during exercise (Petersen, Price & Bergeron, 2004).  

d) Thermoregulation & Diabetes 

 Currently, there is a lack of literature concerning the effects of ambient 

temperature on individuals with T1DM. However, one study (Rönnemaa & Koivisto, 

1988) examined the effects of rest and exercise on the absorption of insulin and blood 

glucose in 10°C and 30°C in individuals with T1DM. These authors (Rönnemaa & 

Koivisto, 1988) found that insulin absorption (unbound circulating insulin) was 3- to 5-

fold higher at 30°C than at 10°C, regardless of exercise. The study failed to examine heat 

storage, blood lactate, and sweat rate, as well as blood glucose at significant intervals. 

Their experimental protocol was performed on a cycle ergometer in three 15-minute 

periods with 5-minute rest intervals between periods. This protocol does not reflect the 

normal exercise undertaken by individuals with Type 1 Diabetes. A follow up study by 

Rönnemaa, et al., (1991) repeated the protocol of the previous study (1988), but examined 

the hormonal response at 10°C and 30°C. It was found that during the 55-minute exercise 

period at the 10°C, blood glucose was 3.4 mM lower than at rest and the corresponding 

difference at 30°C was 5.0 mM lower. Plasma lactate and norepinephrine concentrations 

from the pre-exercise to the end of exercise were greater at 30°C than at 10°C. A later 
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study found that in diabetic subjects at rest, heat tolerance is poor, resulting in a central 

body temperature of 1˚C higher and a clear correlation between abnormal rises in skin 

temperatures and rising core temperature when compared to control subjects (Petrofsky, 

et al., 2006). This experiment also showed that when compared with non-diabetic 

counterparts, individuals with T1DM were found to sweat at least 2 times less during 

exposure to external temperatures of 42ºC with core temperature and sweat rate 

increasingly proportionally in non-diabetic participants. However, sweat rate seemingly 

reached a plateau irrespective of the rise in core temperature seen in subjects with 

diabetes. Current data concerning T1DM and sweating (Petrofsky, et al., 2006) shows 

nonselective general damage to all areas of the body associated with diabetes, and did not 

appear to correlate with the duration or type of diabetes.  

Temperature 

a) Thermoregulation 

The body’s thermoregulatory system is vital to the maintenance of a homeostatic 

structure, and is regulated by the hypothalamus and thermoreceptors located in different 

parts of the body. Hammel’s neuronal model suggests four types of hypothalamic neurons 

that control set-point thermoregulation, and include: warm-sensitive and temperature-

insensitive neurons, heat loss and heat production effector neurons (Blount, 1996). The 

warm-sensitive neurons integrate core and peripheral thermal information; temperature-

insensitive neurons are important in determining thermoregulatory set points; and, heat 

loss effector neurons are excited by warm-sensitive neurons and inhibit heat production 

effector neurons  (Blount, 1996). The body reacts to both extreme heat, and extreme cold 
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in a manner that preserves the body’s central organs. Humans produce 40-60 kilocalories 

of heat per square metre of body surface while at rest. These kilocalories are generated by 

cellular metabolism in the liver and heart (Edelstein, Li, Silverberg & Decker, 2007). 

Adverse effects can also be seen with a decreased body temperature. At temperatures 

below 34˚C, cellular metabolism slows, causing unconsciousness and cardiac arrhythmias 

(Brooks, Fahey & Baldwin, 2005).  

 Exertional heat illness has classically been defined by 3 categories: heat cramps, 

heat exhaustion, and heat stroke, but a more complete definition includes heat syncope 

and exertional hyponatremia (Binkley, et al., 2002). Hyperthermia is a condition in which 

the body takes on heat faster than it is able to dissipate it, causing the core temperature of 

an individual to rise considerably above the normal 37˚C. Exertional heat stroke is an 

elevated core temperature that is usually above 40ºC, associated with signs of organ 

system failure. Exertional heat stroke is due to the overheating of organ tissues that may 

cause break down of the temperature-control centre in the brain, with signs and symptoms 

including tachycardia, hypotension, sweating, hyperventilation, altered mental state, 

vomiting, diarrhea, seizures and coma (Binkley, et al., 2002). There are various effects on 

the body while in a hyperthermic state, evoking a stress response on the body. 

Hyperthermia alters carbohydrate metabolism through increased gluconeogenesis, 

depressed glycogenesis, glucose intolerance and insulin resistance (Mizock, 1995). The 

effect of increasing core temperature resulting in increased hepatic glycogen release and 

higher blood glucose is examined in studies by Valerio, et al., 2001, Mizock, 1995, and 

Halter, Beard & Porte, 1984, for review. Not surprisingly then, plasma glucose levels 

have been found to be significantly higher in hyperthermic patients (core temperature > 
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39°C) (Valerio, et al., 2001). Specific effects of hyperthermia (effects on glucagon 

production, sweat rate, and heat storage) on individuals with T1DM has yet to be 

examined; however, a pilot study demonstrated that increased body temperature during 

exercise causes an increase in blood glucose values following 30 minutes of cycling at 

60% of VO2max in a person with T1DM (see appendix, page 108). The study aimed to 

examine the effect of an increase in core temperature on glucoregulation during 

submaximal exercise; however, blood samples were not taken during the study, and the 

cause for the increase in blood glucose was not determined. 

 Exposure to a cold environment may result in hypothermia, and results in 

numerous physiological changes. Vasoconstriction, which retards heat loss and helps 

defend core temperature, starts when skin temperature drops below approximately 35ºC, 

and becomes maximal when skin temperature is 31ºC or less (Young & Castellani, 2000). 

Hypothermia is a condition in which a greater amount of heat leaves the body than the 

body is able to produce, causing the core temperature of an individual to fall below the 

normal 37˚C. Bradycardia (decreased heart rate, usually below 60 beats per minute), 

caused by decreased depolarization of cardiac pacemaker cells, is a result of hypothermia 

(Edelstein, et al., 2007). Hypothermia also affects metabolism of lipids and 

carbohydrates. Shivering has been shown to use more CHO and less lipids than exercise 

(Weber & Haman, 2005). Hypothetical explanations for this include hormonal differences 

(i.e. catecholamines), or different neural control of shivering and exercise (Mentel, Duch, 

Stypa, Wegener, Müller & Pfluger, 2003). Prolonged/strenuous exercise and alterations in 

diet have important effects on the quantity and the quality of metabolic fuel reserves that 

are available for shivering, and of all metabolic fuels, CHO reserves are the most affected 
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by such changes in exercise and diet regimen (Haman, 2006). However, plasma free fatty 

acid and glycerol levels are not higher, but may be lower during exercise in cold air or 

water when compared to corresponding warmer conditions (Doubt, 1991). Hypoglycemia 

has been shown to decrease body temperature during cold exposure by inhibiting heat 

production by approximately 20%, thereby inhibiting shivering thermogenesis (Passias, et 

al., 1996). However, this inhibition of shivering thermogenesis appears to be centrally 

mediated, rather than a limitation to peripheral energy metabolism (Young & Castellani, 

2000). Previous studies have shown that plasma glucose and muscle glycogen have been 

shown to play significant roles in heat production during cold exposure (Jacobs, et al., 

1994), yet a more recent study showed that even though plasma glucose oxidation was 

strongly stimulated during low-intensity shivering, it only contributed a minor role (10%) 

to heat production (Haman, et al., 2002). Even if blood glucose only plays a minor role in 

low-intensity shivering, this reliance on blood glucose may result in hypoglycemia in 

individuals with T1DM. 

b) Exercise and Temperature 

The body’s natural response to exercise in a warm environment is to use 

evaporative heat loss through sweating and vasodilation in order to maintain a stable, but 

elevated core temperature. In instances where the body is not able to dissipate this heat 

fast enough, a rise in core temperature and skin temperature is witnessed. However, 

following the onset of exercise there is a rise core temperature and temporal dissociation 

(time taken to balance the differential rates of heat production and heat loss) resulting in a 

higher rate of heat storage (Kenny, et al., 2010). With regard to the effect of heat on 
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thermoregulation and performance, when body temperature rises, the gradient core to skin 

is decreased and the cutaneous blood flow necessary to maintain thermal balance is 

reduced.  A more rapid rise in core temperature will occur if a reduction in the rate of heat 

loss, or the addition of an external heat load occurs as soon as the environmental 

temperature exceeds the skin temperature (Maughan, et al., 2007). An increase in body 

temperature is well acknowledged as one of the limiting, physiological factors for 

prolonged exercise performance (González-Alonso, et al., 1999). Physiologic responses 

to cold exposure depend on factors such as; subcutaneous fat, metabolic rate, temperature 

of the surrounding environment, and initial body temperature. Individuals with excess 

body fat are better able to insulate heat when blood is diverted to the internal organs 

during exposure to cold stress. As metabolic heat production rises with increasing 

exercise intensity, both skin and core temperatures are maintained warmer and the 

afferent stimulus experienced in a cold environment, decreases (Young & Castellani, 

2000). It has been shown that oxygen consumption of a man with a healthy Body Mass 

Index (BMI; 18.5-24.9) is significantly higher than the oxygen consumption of a man 

with an obese BMI (>30) between 17˚C and 8˚C; however, at 5˚C, the oxygen 

consumption of the two men was not significantly different (Wyndham, Williams, & 

Loots, 1968). The differences in oxygen consumption are different because the man with 

the larger BMI has greater insulation, and therefore, prevents greater heat loss than the 

man with lower BMI. This relates to the current study because individuals with a higher 

BMI may have a better insulation, and therefore a greater reliance on fat than CHO in the 

cold, having less of an impact on blood glucose. Many physiological factors are different 

when comparing and individual with a healthy BMI to an obese individual when dealing 
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with cold exposure. A healthy man increases his metabolic rate sharply when ambient 

temperatures fall below 20˚C, while an obese man in the same circumstances does not 

alter his metabolism until the ambient temperature falls below 10˚C, suggesting that the 

insulation against heat flow is less in the healthy man, than in the obese man (Wyndham, 

Williams, & Loots, 1968).  

Knowledge Gaps 

 Currently, the majority of literature regarding T1DM and exercise simply 

investigates different intensities (Guelfi et al., 2005), two different temperatures 

(Rönnemaa & Koivisto, 1988; Rönnemaa et al., 1990), modes of exercise (Ramalho et al, 

2006) and their effects on blood glucose and other blood markers. There is a large gap in 

the literature pertaining to T1DM in terms of understanding heat storage, core 

temperature and sweat rate during continuous aerobic exercise at different temperatures. 

Because North America, and many places like it in the northern hemisphere are affected 

by all 4 seasons, it is not unusual to see a large variation in ambient temperature. Exercise 

in the heat and exercise in the cold both affect the non-diabetic body. However, the effect 

of different ambient temperatures has yet to be thoroughly investigated in individuals 

with T1DM. Although, it is beneficial for individuals with T1DM to exercise, it must be 

recognized that (in many countries) they are subject to the varying temperatures of the 4 

seasons. However, there is little information on the effects of these varying temperatures 

on thermal, metabolic and perceived responses in individuals with Type 1 Diabetics. 

During exercise in non-diabetic subjects, the rate of glucose production is proportionally 

increased with exercise intensity, but the rate of glucose production is distinctly increased 
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in subjects with moderately controlled Type 1 Diabetes and could be accredited to the 

rate of gluconeogenesis during exercise (Petersen, Price & Bergeron, 2004), but whether 

this is altered with different ambient temperatures has yet to be examined. The 

investigation of the effects of different ambient temperatures in individuals with T1DM is 

important in order to enhance the understanding of these individuals with respect 

monitoring their blood glucose and ingesting CHO when exercising in different ambient 

environments. To date, a study has yet to examine the effects of continuous aerobic 

exercise at 5°C, 20°, and 35C° on blood glucose, sweat rate, blood flow, heat storage and 

insulin and glucagon concentrations. The information obtained from this study will 

provide important information for the scientific community versed in Type 1 Diabetes, 

and millions of individuals living with T1DM. 

Summary and Statement of Problem 

Currently, there is a lack of literature concerning glucose dynamics, heat storage, 

blood flow, and sweat rate during exercise under varying ambient temperatures in 

individuals diagnosed with T1DM. Early studies by Rönnemaa & Koivisto, (1988) & 

Rönnemaa et al., (1991) suggest that blood glucose is lower with exercise in hot (30ºC), 

than cold (10ºC) temperatures. However, current literature (Jacobs, Martineau & 

Vallerand, 1994; Haman, 2002) and a case study conducted in 2008 (see appendix), in 

which blood glucose rose post-exercise in an increased body temperature condition, 

suggest otherwise. The primary aim of the present study is to investigate the effect(s) of 

different ambient temperatures during exercise in subjects with T1DM. Subjects 

exercised in 35˚C (H), 20˚C (T) and 5˚C (C) at 65% of their VO2max for 30 minutes. 
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Blood glucose, blood lactate, insulin, glucagon, heart rate, heat storage, sweat rate, blood 

flow and core temperature were all measured during each exercise condition. Blood 

glucose was monitored every 10 minutes for 60 minutes post-exercise, and at 6, 12, and 

24 hours post-exercise. 

Hypotheses 

  We evaluated the hypothesis that upon cessation of exercise in the hot condition, 

blood glucose will rise acutely because of increased gluconeogenesis (Hagreaves et al, 

1996) before beginning to fall in the post-exercise period. During the cold condition, we 

anticipated a significant drop in blood glucose because alterations in diet have important 

effects on the quantity and the quality of metabolic fuel reserves that are available for 

shivering, and of all metabolic fuels, CHO reserves are the most affected by such changes 

in exercise and diet regimen (Haman, 2006). It was expected that CHO oxidation would 

dominate in the cold environment with exercise at 65% VO2max because respiratory 

exchange ratios of between 0.8 and 0.9 (indicative of a mix of CHO and lipid 

metabolism, with a higher reliance on CHO) have been measured for exercise intensities 

of 60% to 75% of VO2max (Gray, Kolterman, & Cutler, 1990; Muojo, Leddy, Horvath, 

Awad, & Pendergast, 1994); and exposure to cold conditions has been shown to decrease 

reliance on lipid oxidation, and increase CHO oxidation (Weber & Haman, 2005). As a 

result of increased gluconeogensis, we expected glucagon to be significantly higher in the 

hot condition, and no significant differences would be apparent between conditions with 

respect to insulin. With respect to perceived responses, we hypothesized that participants 
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would be more uncomfortable in the hot and cold conditions, and would also have a 

higher rating of perceived exertion in these conditions than in the neutral condition.  
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Methods 

Participants 

 The experimental protocol and instrumentation conformed to the standards set by 

the Declaration of Helsinki and approved by the Research Ethics Board of Brock 

University (REB 09-005). Inclusion/exclusion criteria are outlined in Table 1. Eight 

participants with an activity level greater than or approximately equal to recreationally 

active (5 males, 3 females) were recruited from the University community and the 

Niagara region. Mean (±SD) age, height, body mass, relative body fat, A1C, and predicted 

VO2max of all participants are presented in Table 2. Four of the subjects took regular bolus 

insulin injections (2 males, 2 females), while the remaining four subjects were on an 

insulin pump (3 males, 1 female). Participants were instructed to follow the same diet the 

day prior to, the day of, and the day after each experimental condition.  

Table 1: Inclusion/Exclusion Criteria 

Inclusion Criteria Exclusion Criteria 
Activity level ≤ recreationally 
active 

Pre-existing heart condition 

Living with diagnosed diabetes for a 
minimum of 5 years 

Pain in the chest while exercising 

Receiving insulin therapy (bolus or 
pump) 

Deemed to be obese (body fat 
percentage above 32%) 

Able to recognize hypoglycemic 
symptoms (hypoglycemia aware) 

Diagnosed with hypertension 

Physician permission  Pregnant 
 Severe peripheral neuropathy or 

active proliferative retinopathy, 
unstable cardiac or pulmonary 
disease, disabling stroke, or severe 
arthritis 
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Table 2: Individual Participant Characteristics 

Participant Gender Relative 
Body Fat % 
(sum of 7) 

Predicted VO2max 
( ml  kg  min-1) 

Years 
with 

T1DM

HbA1C Type of 
insulin 
therapy 

1 Male 10.7 55 23 8.3 Bolus 
2 Male 14 53 10 6.3 Bolus 
3 Male 7.6 64 16 6.0 Pump 
4 Female 28.6 42 9 7.3 Pump 
5 Male 20.7 39 21 6.8 Pump 
6 Female 23.6 61 35 8.4 Bolus 
7 Female 30.3 36 23 6.6 Bolus 
8 Female 8.9 48 23 7.2 Pump 

 

Screening Visit (Anthropometrics and Predictive Maximal Oxygen Consumption) 

Participants had their height and body mass measured. Skin fold thickness were 

measured with a caliper at seven sites (chest, triceps, mid axillary, subscapular, suprailiac, 

abdominal and thigh) and relative body fat was calculated using the equations of Jackson 

and Pollock (1978) seen below.  

Jackson & Pollock 7-site body fat calculation for men: 

Body Density = 1.112 - (0.00043499 * SUM7) + (0.00000055 * SUM7²) - (0.00028826 * 
Age) 
 
Body Fat Percentage: [(4.95/Bone Density) - 4.5] 100 

Jackson & Pollock 7-site body fat calculation for women: 

Body Density = 1.097 - (0.00046971 * SUM7) + (0.00000056 * SUM7²) - (0.00012828 * 
Age) 
 
Body Fat Percentage: [(4.95/Bone Density) - 4.5] 100 
 

Participants were excluded if they were deemed to be obese (body fat percentage 

above 32%), had hypertension diagnosed by their physician, had T1DM for less than 5 

years, or had an HbA1C of above 9.0 mmol  mol-1. Predicted Maximal Oxygen 
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Consumption (VO2max) was determined on a cycle ergometer (Lode R.V. Medical 

Technology, Groningen, Netherlands). Participants were outfitted with a telemetric heart 

rate monitor (RS800CX, Polar Electro, Kempele, Finland), and performed an Astrand-

Rhyming (1954) cycle ergometry test as a predictive measure of VO2max. Participants 

cycled at 60 rpm at a wattage that elicited a heart rate between 130-160 beats per minute. 

If the participant’s heart rate was not in the target range of 130-160 beats per minute, then 

the wattage was increased to reach the desired heart rate. After 6 minutes, the participant 

ceased cycling, and final wattage and heart rate were recorded to determine predictive 

VO2max.  

Following the Astrand-Rhyming test, participants were hooked up to a metabolic 

cart (Moxus, AEI Technologies, Naperville, Illinois) and cycled in 4-minute incremental 

stages until they reached 65% of their VO2max. One day prior, and 3 days following 

Session 1, participants were asked to keep a diet log. This diet log provided baseline 

measurements of the typical CHO ingestion, and participants were instructed to follow 

their typical (baseline) eating habits prior to, and following each exercise session.  

Experimental Protocol 

All conditions were identical in instrumentation and protocol; the only difference 

between the three conditions was the application of ambient temperature in a randomized 

fashion: 1) temperature of 5˚C (C, cool); 2) temperature of 20˚C (N, neutral); and 3) 

temperature of 35˚C (H, hot). In all conditions, humidity was set at 40%. Prior to 

exercise, participants rested in the chamber for 5 minutes while baseline values were 

collected. This 5-minute baseline period provided measurements to which all exercise and 
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post-exercise values were compared. Participants then cycled for 30 minutes at 65% of 

their predicted VO2max on a cycle ergometer (Lode R.V. Medical Technology, Groningen, 

Netherlands) in the environmental chamber, with a relative humidity of 40%, and wind 

speed between 0.4-0.8 m/s (Kestrel Air Flow meter, Niche Retail, Sylvan Lake, MI). 

After exercise, the chamber was turned off, and the participants remained seated for 60 

minutes in an ambient temperature of approximately 22ºC.  

Participants were asked to refrain from strenuous physical exercise, caffeine, and 

alcohol for 24 hours prior to each session. Participants were also informed to follow their 

regular diet, and insulin administration. All studies were begun between the hours of 0800 

and 1000 h to avoid potential confounding effects from circadian rhythm in temperature. 

Experimental sessions were conducted at least 2 days apart to ensure adequate recovery. 

One hour prior to entering the laboratory, participants were instructed to take a blood 

glucose reading using Accu-Chek Compact Plus blood glucose monitors (Roche 

Diagnostics, Laval, Québec). These monitors were used for all blood glucose 

measurements, to ensure participant safety and blood glucose reliability. If blood glucose 

was at the level of, or below 4.0 mM, participants were instructed to ingest sufficient 

CHO to raise their blood glucose by 3.5-4.0 mM before entering the lab. Conversely, if 

hyperglycemia was present (blood glucose > 13.9 mM), the exercise trial was rescheduled 

to a later time in order to standardize blood glucose values. All trials were conducted in a 

controlled environmental chamber capable of temperature control. Blood glucose, blood 

lactate (Akray, Lactate Pro, Shiga, Japan), thermal sensation, thermal comfort and rating 

of perceived exertion were measured every 10 minutes from the onset of exercise until 60 

minutes post-exercise. If hypoglycemia occurred at any time during exercise, or post-
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exercise, participants were given 500 mL of Gatorade™ and remained in the chamber 

with all instrumentation attached. All bouts of hypoglycemia were noted and analyzed 

accordingly. To normalize blood glucose levels when Gatorade was administered, the 

average increase caused by Gatorade was subtracted from blood glucose for each time 

point. For example, in the 2 instances where hypoglycemia occurred in the cold 

condition, the average increase as from 20 to 30 minutes post-exercise as a result of 

Gatorade consumption was 0.9 mmol  mol-1 (one increase was 1.6 mmol  mol-1, and 

the other was 0.3 mmol  mol-1). Therefore, 0.9 was subtracted from blood glucose values 

at 30 minutes post-exercise for the 2 values where hypoglycemia occurred. Throughout 

the experiment, indirect calorimetric analysis of oxygen uptake was performed (Moxus, 

AEI Technologies, Naperville, Illinois). Participants were required to stay for 60 minutes 

post-exercise with blood glucose taken every 10 minutes. Rating of perceived exertion 

(RPE) (Borg, 1982) was also taken every 10 minutes during exercise. The Borg scale, 

ranging from 6-20, is indicative of the level of exertion felt by the participant, the greater 

the exertion, the greater the number reported. The Borg scale also provides a fairly good 

estimate of the participant’s heart rate. 

Upon leaving the laboratory, participants were given Dex-4™, and Gatorade™ to 

be taken in any instance in which hypoglycemia occurred. Participants were instructed to 

measure blood glucose every 6 hours for 24 hours post-exercise. Follow up phone calls 

were made to each participant at 6, 12, and 24 hours post-exercise to ensure participant 

safety, and for blood glucose reports. Participants also kept a diet log, indicating what 

foods were ingested, including quantity of food. Insulin and blood glucose levels were 

also recorded for each instance in which food was ingested. Participants were asked to 
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follow the same diet following each exercise session, and noted when hypoglycemia 

occurred. In instances were hypoglycemia did occur, sufficient CHO was ingested to 

counter hypoglycemia, and was different for each participant. 

Blood Collection 

 Blood was drawn from the antecubital vein prior to exercise, upon cessation, and 

60-minutes post-exercise. Blood was centrifuged at 2500 rpm for 10 minutes at 4ºC, and 

plasma was then pipetted into cryovials to be frozen for analysis. Insulin and glucagon 

were analyzed using Milliplex Human Endocrine Panel 2-plex for Insulin and Glucagon 

(Millipore, Billerica, MA). Blood analysis was performed at the University of Western 

Ontario.  

Instrumentation 

Upon arrival at the laboratory, participants changed into a t-shirt and shorts and had their 

height (cm) and weight (kg) measured prior to each session using standard laboratory 

equipment. Euhydration, defined as urine specific gravity of 1.02 or less (Dirckx, 2001), 

was assessed with a refractometer (Atago, PAL-10S, USA). Participants inserted a 

flexible core temperature thermistor (Mon-A-Therm Core, Mallinkrodt Medical, St Louis, 

MO) to a depth of 15 cm beyond the anal sphincter to measure rectal temperature. 

Participants were instrumented with a heart rate monitor strap (RS800CX, Polar Electro, 

Kempele, Finland) across the chest for telemetric recording of heart rate (HR). 

 Distribution of SkBF was quantified using Laser Doppler skin blood flow probes 

(PeriFlux System 5000, PeriMed, Järfälla, Sweden), placed on the lateral aspect of the 

forehead and the upper trapezium. Skin blood flow velocity was averaged over 5 min of 
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baseline and taken as 100%. Further measurements were averaged over the ensuing 5 min 

intervals (0-90 min) and recorded as a percentage change in flow velocity, relative to 

baseline.  

A ventilated sweat capsule (13.19 cm2) was firmly attached over the medial 

inferior aspect of the trapezius. Anhydrous air of known, constant volume flowed through 

the sweat capsule at a rate of 0.24 l·min-1 (Brooks 5850, mass flow controller, Emerson 

electric, Hetfield, PA). SR was defined as the product of the difference in vapour density 

between effluent and influent air with the flow rate adjusted for skin surface area under 

the capsule (mg·min-1·cm-2). The temperature and relative humidity difference between 

air entering and exiting the capsule was determined by a temperature and humidity sensor 

(Omega HX93, Omega Engineering, Stanford, CT). Consistent airflow measured the 

amount of sweat produced and was determined by DasyLab 10 (Measurement 

Computing, Norton, MA). Partitional calorimetry was used to measure residual body heat 

storage, and mean skin temperature was calculated using a seven point weighted averages 

equation, as described by Hardy and DuBois (1938).  

Heat flux, skin temperature/heat flow were quantified using heat flow transducers 

(Concept Engineering, Old Saybrook, Connecticut) placed on the forehead, abdomen, 

forearm, hand, quadriceps, shin, and foot surfaces (Hardy and Dubois, 1938). Humidity at 

the surface of the skin was measured using small humidity probes (HMP50 RH/T, 

Vaisala Inc., Vantaa, Finland), taped parallel to the surface of the skin of the upper back, 

abdomen and upper thigh. Metabolic data was collected using open-circuit spirometry 

(Moxus, AEI Technologies, Naperville, Illinois) to determine oxygen uptake and 

ventilation data during exercise. 
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Thermal comfort was assessed on a 5-point scale, increasing by increments of 0.5, 

(1- comfortable, 1.5, 2 – slightly uncomfortable, 2.5, 3 – uncomfortable, 3.5, 4 – very 

uncomfortable, 4.5, 5 – extremely uncomfortable) (Gagge, Stolwijk, & Hardy,1967). 

Thermal sensation was assessed on an 11-point scale, increasing by increments of 1 (0 – 

unbearably cold, 1 – very cold, 2 – cold, 3 – cool, 4 – slightly cool, 5 – neutral, 6 slightly 

warm, 7 – warm, 8 – hot, 9 – very hot, 10 – unbearably hot) (Gagge, Stolwijk & Hardy, 

1967). 

Heat Storage Measurements and Calculations 

The dynamic equilibrium of core body temperature, or the rate of heat storage  

(S), was calculated using the following heat balance equation: 

S  M W  Eres Cres  Esk K C R 

where M represents the heat created by metabolism, specifically the transport of oxygen 

throughout the body, and was calculated using the following equation : 

M = 352(0.23 · RQ + 0.77)(VO2 · AD-1) 
 

where RQ represents the respiratory quotient, and AD is the body surface area, which was 

calculated by: 

AD 0.007184Weight0.425 Height0.725 

W is the release of heat though the mechanical work of the human body. Eres represents 

the transfer of heat though evaporative process of respiration and Cres represents the 

transfer of heat through convective processes of respiration, and was modeled by the 

following equations, respectively: 

Eres  0.0023 M  6.51 Pa  
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Cres  0.0014 M  37  Ta  

Evaporative heat loss through the skin, as indicated by Esk, was modeled by the following 

equation: 

E = (Psk – Pa)v0.5  124 

in which E is evaporative heat loss in Wm-2, Psk the saturated water vapour pressure at 

skin temperature in kPa, Pa the ambient water vapour pressure in kPa, v the air velocity 

moving over the participant in ms-1, 124 the evaporative coefficient for heat exchange in 

Wm-2 kPa v0.5 (Dennis & Noakes, 1999). In still air, as was seen in the recovery period, 

air velocity was used as 0.75 kmh-1 (0.2 ms-1) (Adams, et al., 1992). The partial 

pressure of water vapour can be calculated by Antoine’s equation as follows: 

Psa  exp 18.956 
4030.18

t  235







 

Convective heat loss in still air (during recovery) was calculated using: 

C = 6(Tsk – Tdb) 

Where C is convective heat loss in Wm-2, 6 the heat transfer coefficient in Wm-2 C, 

Tsk the average skin temperature in C, and Tdb the dry bulb temperature in C (Adams, et 

al., 1992). In moving air, present during baseline and the exercise protocol, the formula: 

C = 8.3   v0.6   (Tsk – Tdb) 

was used. Where 8.3 is the convective coefficient for heat exchange in Wm-2 C, v is the 

velocity of moving air over the body in ms-1 (Kenney, 1998). 

Thermal resistance is represented by R and is modeled by the following equation: 

R 
1

h


1

hr  hc
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where hr represents the radiative heat transfer coefficient, and hc represents the convective 

heat transfer coefficient. Heat transfer coefficients were recently determined by Kurazumi 

et al., (2008) using thermal manikins, and are listed below for convection and radiation, 

respectively: 

hc 1.175T0.351 

hr  3.871 

Data Analysis 

 Data was analyzed using a repeated measures analysis of variance (ANOVA) in 

SPSS 18 (IBM, Somers, NY). All measurements were compared under each 

environmental condition as a 2-way ANOVA (condition x time) with a Bonferroni 

adjustment for pairwise comparisons and controlling familywise Type 1 error. If 

Mauchly’s Test of Sphericity was significant, Greenhouse-Geisser values were used for 

significance. In instances where Mauchly’s Test of Sphericity was insignificant, values 

for Sphericity Assumed were used. Mauchly’s test of Sphericity was used to validate the 

repeated measures ANOVA, as it relates to the equality of the variances of the differences 

between levels of the repeated measures factor. If significance for condition x time was 

found, a one-way ANOVA was performed to determine at which time points significant 

differences could be found. For each condition, the onset blood glucose served as the 

baseline measurement to which all other values were compared. For all other measures, 

the first 5 minutes (baseline), served as the value to which all other time points were 

measured against. Where appropriate, Tukey post hoc tests for conditions were performed 
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to permit less conservative pairwise comparisons. Diet logs were analyzed using Diet 

Analysis Plus version 7.0 (Thomson-Wadsworth, 2006). 
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Results 

Diet Logs 

 Participants were instructed to follow the same diet the day prior to, the day of, 

and the day after each experimental condition. Mean and standard deviation values for 

every participant are presented in Table 3 for the day prior to, the day of, and the day 

after experimental trials. Outlined in Table 4, are the lunch and dinnertime insulin 

injections for the day prior to, the day of, and the day after experimental sessions. Five 

participants experienced nocturnal low blood sugars on the day of, or the day after 

experimental trials. In 3 of the 5 participants, the low nighttime blood sugars occurred in 

the nights following experimental conditions and occurred a total of 4 times (twice in one 

participant). Low blood sugars were also observed in 3 subjects (a total of 4 times) on the 

day of an experimental session. Of these participants, only 1 also experienced low blood 

glucose the day after an experimental session. In instances where low blood sugar 

occurred on the day of an experimental session, 2 were in the hot condition, 1 was in the 

neutral condition, and 1 was in the cold condition. 
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Table 3: Average Individual Diet Information for 3 Conditions 

   Day Before Day Of Day After 
Subject Sex Body 

Weight 
(kg) 

Pro 
(g) 

CHO 
(g) 

Fat 
(g) 

Kcal Pro 
(g) 

CHO 
(g) 

Fat 
(g) 

Kcal Pro 
(g) 

CHO 
(g) 

Fat 
(g) 

Kcal

1 M 74 99 237 35 1631 70 192 40 1365 102 224 23 1481
2 M 85 60 255 62 1774 52 750 91 3819 61 307 56 1927
3 M 91 69 366 90 2490 76 592 61 3029 82 263 59 1872
4 F 79 37 164 23 986 31 156 17 895 29 157 25 936 
5 M 89 35 178 23 1009 42 201 24 1152 43 178 31 1119
6 F 59 54 142 46 1157 55 121 49 1129 48 129 57 1159
7 F 71 46 200 48 1386 55 178 50 1366 58 205 45 1432
8 M 89 77 163 54 1417 62 179 60 1461 65 164 47 1315
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Table 4: Average Individual Insulin Dosages for 3 Conditions 

 Subject 
 1 2 3 4 5 6 7 8 

Breakfast
Day 

Before 
3.3±0 5.7±0 5.2±1.2 4.4±2.7 6.1±1.7 8±1.2 6.4±1 4.6±0.7

Day of 2.0±0 4.7±0.6 4.1±0.1 2.4±0.3 5±0 7.3±1.2 4.3±0.6 2.5±0 
Day 
After 

4.0±0 6.3±0.6 5.7±0.1 7.3±0.3 6.3±1.5 8.0±0 9.0±1.7 5.6±0.3

Lunch 
Day 

Before 
5.6±0.6 10.3±1.5 6.4±0 8.5±1.1 9.3±2.3 0.0±0 7.3±2.3 4.0±0 

Day Of 5.3±0.6 10.0±2 5.8±0 9.1±2.4 8.7±0.6 0.0±0 7.7±0.6 4.0±0 
Day 
After 

5.3±0.6 8.0±2 6.1±0 7.1±1.9 7±1.7 0.0±0 5.7±0.6 4.0±0 

Dinner
Day 

Before 
5.0±1 7.7±1.2 7.2±0 3.7±0.4 10±1.7 8.0±0 8.7±3 6.0±0 

Day Of 5.6±0.6 10.7±1.2 6.8±0 7.7±1.2 9.3±1.5 8.0±0 7.0±1 7.1±0 
Day 
After 

5.3±0.6 9.7±0.6 6.8±0 7.4±0.9 8.7±1.2 8.0±0 8.0±0 5.0±0 

 

Thermal Responses 

Core Temperature 

 A significant difference was observed for time (p<0.01), and for condition x time 

(p <0.01). Core temperature in the hot condition was significantly different from the cold 

condition from 35 to 60 minutes post-exercise. In the cold condition, core temperature 

increased 0.66 ± 0.27ºC from the onset of exercise to the cessation of exercise and 

dropped down to 0.23 ± 0.25ºC lower than baseline by 60 minutes post-exercise. Core 

temperature in the neutral condition increased 0.46 ± 0.27ºC from onset to cessation of 

exercise, and was 0.15 ± 0.27ºC lower than onset at 60 minutes post-exercise. In the hot 
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condition, core temperature increased 0.42 ± 0.44ºC from the onset of exercise to the 

cessation of exercise, and was 0.28 ±0.29ºC higher than the onset of exercise at 60 

minutes post-exercise. Core temperature reached a maximum of 0.59ºC higher than 

baseline at 20 minutes post-exercise in the hot condition. Figure 9 shows core 

temperature from baseline to 60 minutes post-exercise. 
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Figure 9: Core Temperature 

 

* - indicates significant differences between cold and hot conditions (p ≤ 0.05) 
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Skin blood flow 

 With Laser Doppler sensors placed on the forehead and upper trapezium, no 

significant differences were observed for time (p = 0.557), or condition x time (p = 

0.887). Although mean forehead and trapezium skin blood flow were higher than baseline 

for all time points during the 30 minutes of exercise in all conditions, the increase was 

not statistically significant. No significant differences were observed between the 

forehead and upper trapezium sensor placements (p = 0.493). 

 

Heat Storage 

 Heat storage was attained using partitional calorimetry by attaching 7 heat flow 

transducers and 3 humidity sensors placed on the surface of the skin. Heat storage values 

up to 50 minutes post-exercise are displayed due to missing values in several trials for 55 

and 60 minutes post-exercise; however, heat storage had already reached a plateau prior 

to 50 minutes post-exercise. Significant differences were observed for both time (p<0.01) 

and condition x time (p<0.01). Heat storage increased from baseline to 30 minutes of 

exercise in all conditions. Heat storage increased 3.46 W  m-2 from baseline to 30 

minutes of exercise in the cold condition, 70.01 W  m-2 in the neutral condition, and 

77.27 W  m-2 in the hot condition.. Figure 10 displays heat storage values for each 

condition, up to 50 minutes post-exercise. 
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Figure 10: Heat Storage 
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Sweat Rate 

 Significant differences were found for both time (p<0.01), and condition x time 

(p<0.01). Significant differences were observed from the onset of exercise to 30 minutes 

post-exercise, and again at 40 minutes post-exercise. Significant differences were 

apparent between cold vs. hot, and neutral vs. hot (p < 0.01 and p = 0.02, respectively), 

but not for cold vs. neutral (p = 0.617). When exercise commenced, significant 

differences in sweat rate were observed for all exercise time points up to exercise 

cessation (5-25 minutes of exercise, p values<0.05). In the cold condition, sweat rate 

increased 0.043 cmmg  2min-1 from baseline, to 30 minutes of exercise. Likewise, 

sweat rate increased 0.184 cmmg  2min-1 in the neutral condition from baseline, to 30 

minutes of exercise. Finally, in the hot condition, sweat rate increased 0.227 

cmmg  2min-1 from baseline, to 30 minutes of exercise. Like heat storage, sweat rate 

values to 50 minutes post-exercise are displayed due to missing values in several trials for 

55 and 60 minutes; however, with the exception of the hot condition, sweat rate had 

reached a plateau in all conditions. A post hoc test revealed significance between 

conditions for cold vs. hot (p<0.01) and neutral vs. hot (p = 0.002), but not for cold vs. 

neutral (p = 0.644).  Figure 11 shows sweat rate for cold, neutral, and hot conditions. 
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 Figure 11: Sweat Rate 

 

* - indicates significant differences between cold and hot conditions (p ≤ 0.05) 
† - indicates significant differences between cold and neutral conditions (p ≤ 0.05) 
‡ - indicates significant differences between neutral and hot conditions (p ≤ 0.05) 
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Metabolic Responses 

Blood Glucose 

 Blood glucose was taken every 10 minutes from the onset of exercise, to the 

completion of the 60-minute recovery period. Blood glucose began at 13.0 ± 2.9 mM, 12 

± 2.6 mM and 12.1 ± 2.5 mM, and dropped by 5.2 ± 2.3 mM, 3.3 ± 2.2 mM, and 2.7 ± 

1.6 mM during exercise in the cold, neutral, and hot conditions (p<0.01), respectively. 

From onset, to 60-minutes post-exercise blood glucose fell 3.0 ± 0.75 mM, 3.5 ± 0.37 

mM, and 3.4 ± 0.037 mM in the cold, neutral, and hot conditions respectively. There was 

no significant difference between condition x time (p = 0.442).  

 Hypoglycemia occurred in 5 of the experimental trials (2 cold, 2 neutral, and 1 

hot) in 5 different participants, 2 of which received insulin pump therapy, and 3 received 

bolus insulin therapy. With respect to the cold condition, both cases of hypoglycemia 

took place within 20 minutes of exercise cessation (at 30 minutes of exercise, and 20 

minutes post-exercise), the neutral condition had hypoglycemia at 20 and 60 minutes 

post-exercise, and the incidence of hypoglycemia in the hot condition took place at 40 

minutes post-exercise. In instances where hypoglycemia occurred, 500 mL of Gatorade 

was given. To normalize blood glucose levels when Gatorade was administered, the 

average increase caused by Gatorade was subtracted from blood glucose for each time 

point. Figure 12 shows the blood glucose response both during exercise, and post-

exercise. Also of note, a rise in blood glucose (insignificant) occurred at 6 hours post-

exercise; however, this was due to 2 outlying values (15.0 mM and 20.0 mM), because of 

insufficient insulin for the amount of carbohydrate ingested.  
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Individual blood glucose responses for the cold, neutral and hot conditions are 

presented in Figures 13, 14 and 15, respectively.  
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Figure 12: Blood Glucose Response to Exercise in Different Ambient Temperatures 
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 Figure 13: Individual Blood Glucose Responses to Cold Condition 
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Figure 14: Individual Blood Glucose Responses to Neutral Condition 
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Figure 15: Individual Blood Glucose Responses to Hot Condition 
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Blood Lactate 

 Blood lactate was taken using a Lactate Pro blood lactate test meter, and was 

measured every 10 minutes from the onset of exercise until cessation, and again at 30 and 

60 minutes post-exercise. A significant difference was found for both time (p < 0.01), and 

for condition x time (p = 0.01). From the onset to cessation of exercise, blood lactate 

increased 2.9 ± 1.3 mM in the cold condition, and continued to rise up to 60 minutes 

post-exercise, where it reached its apex. In the neutral condition, blood lactate increased 

8.4 ± 4.4 mM from onset up to 20 minutes of exercise, before beginning to decline at 30 

and 60 minutes post-exercise. In the hot condition, blood lactate increased 6.7 ± 2.9 mM 

from the onset of exercise until 30 minutes of exercise, and decreased at 30 and 60 

minutes post-exercise. Blood lactate values are shown in Figure 16. 
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 Figure 16: Blood Lactate 
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Insulin 

 Insulin was obtained via blood samples from the antecubital vein at baseline, 30 

minutes of exercise, and 60 minutes post-exercise. Insulin was analyzed for the 4 

participants that received bolus insulin injections because the assayed insulin levels for 

the participants on insulin pump therapy were out of range, or not detectable. There was 

no significant difference for time (p = 0.072), or for condition x time (p = 0.288). Insulin 

levels dropped (statistically insignificant) from baseline, to 30 minutes of exercise, to 60 

minutes post-exercise in both the cold and hot conditions. In the neutral condition, insulin 

levels saw only slight fluctuations between time points. In the hot condition, insulin 

levels continuously dropped, although the decrease was statistically insignificant. Insulin 

values are displayed in Figure 17. 
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 Figure 17: Insulin 
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Glucagon 

 Glucagon was obtained via blood samples from the antecubital vein at baseline, 

30 minutes of exercise, and 60 minutes post-exercise. Glucagon was analyzed for the 4 

participants that received bolus insulin injections because the assayed glucagon levels for 

the participants on insulin pump therapy were out of range, or not detectable. A 

significant difference was observed for time (p = 0.01), but not for condition x time (p = 

0.542). Glucagon levels increased from baseline to 30 minutes of exercise in all 

conditions, and then decreased from 30 minutes of exercise, to levels that were above 

baseline by 60 minutes post-exercise. Glucagon values are shown in Figure 18.  
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Figure 18: Glucagon  
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 Perceived Responses 

Ratings of Perceived Exertion 

 Ratings of perceived exertion (RPE) were determined using the Borg Scale (Borg, 

1983) at 10, 20 and 30 minutes of exercise. There were significant differences observed 

for time (p < 0.01), but not for condition x time (p = 0.466). There was also a significant 

main effect of condition (p = 0.012). Significant differences were found with cold vs. hot, 

and neutral vs. hot conditions (p = 0.021 and p = 0.034, respectively), but not for cold vs. 

neutral conditions (p = 1.00). RPE was 11 (fairly light) at 10 minutes of exercise in the 

neutral condition, was 12 (between fairly light and somewhat hard) in the cold condition, 

and 13 (somewhat hard) in the hot condition at the same time point. By 30 minutes of 

exercise, RPE had increased to 12 in the neutral condition, and had increased to 14 

(between somewhat hard and hard) in the hot condition. A post hoc test confirmed 

significance for conditions (p = 0.019, and p = 0.029) for cold vs. hot, and neutral vs. hot 

respectively, and a non-significant value for cold vs. neutral (p = 0.980). Mean and S.D. 

values for RPE are presented in Table 5. 

Thermal Comfort 

 Thermal comfort was taken every 10 minutes from the onset of exercise until the 

completion of the 60-minute recovery period. There was a significant finding with both 

time (p<0.01) and condition x time (p<0.01). There was also a significant main effect of 

condition (p = 0.02). A significant difference existed for the neutral vs. hot condition (p = 

.024), but no other significant differences existed between conditions (p = 0.094 for cold 
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vs. neutral, and p = 1.00 for cold vs. hot). At the onset of exercise, the average value for 

the thermal comfort was 3 (uncomfortable) in the cold condition, 1.5 (between 

comfortable and slightly uncomfortable) in the neutral condition, and 2 (slightly 

uncomfortable) in the hot condition. There were no significant differences between the 

onset of exercise, and three exercise time points, but significance was attained between 

the onset, and all post-exercise time points. At 30 minutes of exercise, participants had 

become more comfortable in the cold condition, with the average response decreasing 

from 3, to 2. Thermal comfort level increased from 1.5, to 2 and 2 to 3 from the onset of 

exercise to 30 minutes of exercise, in the neutral, and hot conditions, respectively. Mean 

and S.D. values for Thermal Comfort are presented in Table 5. 

Thermal Sensation 

 Thermal sensation was taken every 10 minutes from the onset of exercise until the 

completion of the 60-minute recovery period. Significant differences existed for both 

time (p<0.01), and condition x time (p <0.01). There was also a significant main effect of 

condition (p < 0.01). There were significant differences for all condition comparisons 

(p<0.01). Significant differences were apparent between baseline and all exercise time 

points (p<0.01). At the onset of exercise, the average response for thermal sensation was 

1 (very cold) in the cold condition, 4 (slightly cool) in the neutral condition, and 7 (warm) 

in the hot condition. By 30 minutes of exercise, thermal sensation values had increased to 

4 in the cold condition, 7 in the neutral condition, and 8 (hot) in the hot condition.  Mean 

and S.D. values for Thermal Sensation are presented in Table 5. 
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 Table 5: Values for Perceived Responses 

  Ratings of 
Perceived 

Exertion (RPE) 

Thermal 
Sensation (TS) 

Thermal 
Comfort (TC) 

Cold Condition 10 minutes 11.6 ± 0.52 3.0 ± 0.76* 1.9 ± 0.23 
20 minutes 11.9 ± 0.35* 3.6 ± 0.52* 1.9 ± 0.42 
30 minutes 12.0 ± 0.53* 3.9 ± 0.64* 1.8 ± 0.46* 

Neutral 
Condition 

10 minutes 11.4 ± 0.92 5.4 ± 0.74‡ 1.2 ± 0.37‡ 
20 minutes 12.1 ± 1.13 6.0 ± 0.53‡ 1.6 ± 0.35‡ 
30 minutes 12.3 ± 0.89 6.5 ± 0.53 1.7 ± 0.37‡ 

Hot Condition 10 minutes 12.5 ± 0.76 7.4 ± 0.92 2.3 ± 0.89 
20 minutes 13.3 ± 1.04 8.0 ± 0.76 2.8 ± 0.93 
30 minutes 13.5 ± 1.69 8.0 ± 0.76 3.0 ± 1.07 

* - indicates significant differences between cold and hot conditions (p ≤ 0.05) 
‡ - indicates significant differences between neutral and hot conditions (p ≤ 0.05) 
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Discussion 

 The main findings of the current study were the lack of significant differences in 

blood glucose and glucagon concentrations among the three conditions, and significant 

differences observed for condition x time with core temperature, heat storage and sweat 

rate. However, due to the limited sample size and probability of a great deal of individual 

variability, these results are not surprising. 

Thermal Responses  

In examining core temperature and sweat rates for the current study, sweat rate 

was highest in the hot condition, whereas core temperature was highest in the neutral 

condition. Recent literature (Petrofsky et al., 2005 & 2006) would indicate that both 

passive heat exposure and isometric contraction in the heat, results in elevated core 

temperature, and sweat rates that were significantly lower in patients with diabetes when 

compared to non-diabetic individuals. The current study demonstrated similar sweating 

results in participants with T1DM (0.227 cmmg  2min-1) during exercise in 35ºC when 

compared to passive heat exposure of 42ºC (0.23 cmmg  2min-1) in subjects with 

diabetes (Petrofsky et al., 2006); however, core temperature was increased 0.59ºC as a 

result of exercise and exposure to 35ºC in the current study, in contrast to the 1ºC 

increase in core temperature as seen with Petrofsky et al., (2006). These differences may 

be attributed to the 7ºC difference in ambient temperature between the two studies. An 

abstract published in the Canadian Society for Exercise Physiology (McGarr, et al., 2010) 

found sweat rates of 0.33 ±0.08 cmmg  2min-1 during 30 minutes of in cycling in 35ºC 
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at 65% VO2max in non-diabetic participants. The sweat rates observed by McGarr, et al. 

(2010), may indeed be higher than the current study because of diminished sweating 

ability in people with T1DM, but also may be due to the increased exercise time. McGarr 

et al., (2010) also showed core temperature values of 37.78±0.30°C and 37.83±0.30°C 

(different training protocols) with 60 minutes of cycling at 65% VO2max, which are 

similar to the core temperature values attained in the hot condition in the current study 

(37.61 ± 0.54ºC). Therefore, the current study does not support the findings of Petrofsky 

et al., (2005 & 2006) where individuals with diabetes showed significant elevations in 

core temperature, and elicited diminished sweat rates when compared to non-diabetic 

counterparts; however, future studies must compare diabetics and non-diabetics in the 

context of the current study in order to draw definitive conclusions.  

Core temperature values at the cessation of exercise fell into safe ranges in all 

conditions (all core temperature values were well below the point of hyperthermia or 

exertional heat illness); (Armstrong, et al., 2007), indicating that 30 minutes of exercise 

at 65% VO2max in participants with T1DM can be undertaken without risk of heat illness. 

The potential mechanism behind a lower core temperature in the hot condition than in the 

neutral condition may be attributed to the significantly higher sweat rate in the hot 

condition. The increased sweat rate would facilitate a higher heat loss, and would explain 

the lower core temperature seen in the hot condition. Previous studies have shown that 

T1DM patients have thinner skin, reduced skin blood flow (Petrofsky, et al., 2008; Forst, 

et al., 2006), increased core temperature, and increased heat storage, which could 

contribute to heat illness (Kenny, et al., 2010). However, if exercise is prolonged, this rise 

in core temperature may be greater, and put individuals with T1DM more at risk for heat 
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illness. Core temperature was only significantly different between conditions in the post-

exercise period. The mechanism behind this lack of significant increase may be explained 

by looking at the sweat rates attained during exercise. The higher sweat rates achieved 

are a mechanism of cooling for the body. This evaporation of sweat from the body aids in 

the rise in core temperature. The higher sweat rates seen from baseline, through to 25 

minutes post-exercise are believed to be the reason for the lack of significant increase in 

core temperature that would have been expected in the hot condition. These findings 

indicate that exercise for 30 minutes at a submaximal intensity in participants with T1DM 

may be safe in 5ºC, 20ºC, and 35ºC. 

To date, this is the first study to examine the effects of heat storage during 

exercise in different ambient temperatures in participants with T1DM. Observed 

differences in residual body heat storage and peak heat storage were an expected result of 

the respective ambient temperatures in which subjects exercised. The rapidly decreasing 

heat storage following cessation of exercise, reaching a plateau at 15 minutes post-

exercise in the hot and cold conditions, at 40 minutes post-exercise in the neutral 

condition, is likely attributed to the ambient temperature being approximately 22ºC for 

the 60-minute post-exercise period. Because participants remained in the chamber at 

22ºC for the 60-minute post-exercise period when exercise had stopped after each of the 

3 conditions, the participants were in an environment that did not favour heat storage (i.e. 

not exercising), ultimately leading to the plateau in heat storage.  Currently, comparable 

heat storage data in individuals with T1DM only exists with skin temperature as a 

measurement. This ambient temperature and the lack of activity during the 60-minute 

post-exercise period are the reason for decrease in heat storage in all conditions. 
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Rönnemaa et al., (1991) found that during exercise at 30ºC, skin temperature decreased 

on average to a level lower (by 1.5ºC) than the pre-exercise value; whereas during 

exercise in the 10ºC condition, skin temperature increased on average by 3.0ºC from the 

level prior to the start of exercise and remained at the higher level for 30 minutes post-

exercise. Rönnemaa & Koivisto (1988) attribute this to constriction of skin veins and 

decrease in skin blood flow during exercise in a warm temperature. 

The current study saw no significant differences in heat storage between any of 

the three conditions, and significant differences in sweat rate in all conditions. When the 

environment is warmer than the skin, the body gains heat through dry heat exchange that 

increases the requirements for sweating and circulatory responses, such as vasodilation, 

increasing blood flow to the skin (Kenny, et al., 2010). This means that blood vessels 

must dilate, and sweat rate must increase in order to dissipate heat. Petrofsky et al., 

(2006) found that during passive exposure to different ambient temperatures (22ºC and 

42ºC), significant differences existed in both core temperature and sweat rate between 

control subjects, and subjects with T1DM. Compared to controls, after 30 minutes of heat 

exposure, subjects with T1DM demonstrated higher core temperature increases (1.0ºC vs. 

0.2ºC), and also attained a sweat rate that was half that of control participants (0.44 vs. 

0.81 cmmg  2 min -1). This means that control subjects were able to sweat at least twice 

the rate of subjects with diabetes (Petrofsky et al., 2006) even though their core 

temperature increase was lower. In T1DM, lack of circulation (Fealey, et al., 1989) and 

neuropathy (Kihara, Opfer-Gehrking, & Low, 1993) can result in damage to the sweat 

glands that innervate the skin resulting in lower sweat rates when compared to non-

diabetics. These findings would explain the lower sweat rates during exercise in 35ºC at 



 

  

  

88

65% VO2max in participants with T1DM, as seen in the current study, when compared to 

60 minutes of exercise in 35ºC in non-diabetics (McGarr, et al., 2010). 

The lack of circulation and diabetic neuropathy is believed to lead to decreases in 

skin blood flow, which ultimately cause a reduction in sweat rate. During thermal stress, 

skin blood flow can increase to 6 – 8 L/min as a result of vasodilation, which represents a 

vital aspect of normal thermoregulation in humans (Charkoudian, 2003). In both T1DM 

and T2DM, the body’s ability to dilate blood vessels may be impaired, which could 

decrease the amount of blood being brought to the skin’s surface to dissipate heat. In 

comparing skin blood flow responses to non-diabetic individuals, vascular reactivity was 

decreased during 5 minutes of heat exposure in diabetics (Stansberry, Hill, Shapiro, et al., 

1997). This inability to sufficiently dilate blood vessels, leads to potential heat illness as a 

result of increased core temperature, and heat storage when exposed to hot environments. 

In people with diabetes, there appears to be no apparent reduction in the vasoconstriction 

ability of smooth muscle, whereas a reduction in principally nitric oxide release or the 

sensitivity of nitric oxide receptors in smooth muscle reduces the ability to vasodilate 

(Petrofsky, et al., 2008). Therefore, potential problems for individuals with T1DM would 

be more apparent in the heat, rather than in the cold. On exposure to cold environments, 

skin blood flow decreases via cutaneous vasoconstriction, and results in a decrease in 

heat dissipation from the skin surface and less convective heat transfer from the core to 

the surface (Charkoudian, 2003). In the current study, the largest changes in skin blood 

flow were seen in the cold condition, when compared to baseline. This indicates 

significant vasoconstriction during baseline, and greater vasodilation during exercise; 

however, there were no significant differences in skin blood flow between conditions. 
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The current study showed similar skin blood flow changes (although, with much higher 

standard deviation) to cycling at 65% VO2max in 35ºC when compared to non-diabetic 

individuals. McGarr, et al, (2010) demonstrated a 329 ± 112% change from baseline with 

60 minutes of exercise at 35º compared to 429 ± 858%, as seen with the current study. 

However, future studies must directly compare diabetic, and non-diabetics under these 

conditions in order to draw definitive conclusions. 

No significant differences were observed with skin blood flow between the 

forehead, and upper trapezium locations, indicating that if there is damage to the sweat 

glands, the damage does not differ between the two locations. The relative thickness of 

skin and subcutaneous fat may explain lower skin blood flow values, and higher core 

temperature. Petrofsky, et al., (2008) examined the thickness of subcutaneous fat layer 

and skin thickness and the response to continuous heat stress on the lower back in non-

diabetic, and diabetic individuals. In the current study, all participants fell within the 

mean ± standard deviation for their sex and age range for tricep, subscapular, and 

suprailiac measurements according to Durnin & Womersley (1974). Associated with 

skinfold measurements is the risk of human error; however, experienced individuals 

performed all skinfold measurements and error is believed to have been minimal. It was 

found that core temperature dropped slower, skin temperature increased more rapidly, 

and blood flow was significantly lower in diabetic subjects, compared to non-diabetics 

when exposed to heat stress (Petrofsky, et al., 2008). In diabetics, skin thickness was 

found to be one-third as thick as their non-diabetic counterparts (Petrofsky, et al., 2008). 

It has also been found that individuals with T1DM demonstrate both significantly 

reduced skin thickness, as well as, significantly reduced microvascular blood flow when 
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compared to non-diabetic individuals (Forst, et al., 2006). Since skin thickness correlates 

with blood flow as a result of reduced microvascular flow, this may be caused by less 

blood flow attainable with thermal stress. If part of the reduction in skin blood flow is 

due to a lower number of capillaries, then irrespective of the mechanism of change in 

blood flow, there would be less blood flow attainable with thermal stress because there 

are fewer arterioles to dilate (Petrofsky, et al., 2008). However, the current study only 

used skinfold measurements to determine body fat percentage, as outlined by Jackson & 

Pollock (1978), and in order to draw more definitive conclusions on skinfold thickness, a 

control group would be needed for comparison, and measurements must be done in 

nonglaborous skin, as was seen in Forst, et al. (2006). 

Metabolic Responses 

One of the main findings of the current study is the lack of significance in the 

decrease of blood glucose among the three conditions. Like Rönnemaa & Koivisto 

(1988), blood glucose decreased significantly during exercise, but no significant 

differences were present among the different conditions in the current study like those 

seen with Rönnemaa & Koivisto (1988). The potential mechanism behind the differences 

in the current study, and Rönnemaa & Koivisto (1988) could be the methodology of 

exercise. Rönnemaa & Koivisto (1988) had participants exercise in three 15-minute 

bouts, increasing in the first, second and third minute, until 65% VO2max for the final 12-

minutes of exercise, with 5 minute intervals between each bout. The current study was 

largely driven by the findings of a case study (see appendix) in which blood glucose 

began to rise post-exercise in an increased body temperature condition. The case study 
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participant (Participant 1 in the current study) did not demonstrate similar results in the 

current study. The potential mechanism behind this lack of similar responses could be the 

result of core temperature not reaching a level as high in the current study. With the case 

study, tympanic measurements of core temperature were as high as 38.9C, which may 

have lead to an increase in gluconeogenesis, and therefore, an increase in blood glucose 

post-exercise. Figure 15 shows the individual blood glucose response in the hot 

condition. The blood glucose of Participant 1 continuously drops throughout exercise, 

and reaches a plateau in the post-exercise period. Blood glucose decreased in all 

conditions, both during, and post-exercise (despite a spike at 30 minutes post-exercise in 

the cold condition). Again, the possible mechanism behind the lack of increase in blood 

glucose post-exercise in the current study may be due to the lack of increased core 

temperature to the point where it was high enough to increase gluconeogensis, and 

therefore, blood glucose.  In non-diabetic individuals, exercise in the heat to the point of 

hyperthermia has been shown to alter the body’s metabolism, with alterations in 

carbohydrate metabolism including: increased gluconeogenesis, depressed glycogenesis, 

glucose intolerance and insulin resistance (Mizock, 1995); however, this has yet to be 

examined in individuals with T1DM. Because glucagon levels were only detectable for 4 

of 8 subjects in the current study, further studies are needed to elicit the effects of 

increased ambient temperature, and at what core temperature an increase in glucagon 

secretion elicits a response.  

There was a large amount of individual variability with respect to blood glucose 

both during exercise, and post-exercise in all conditions. In the cold condition, 

hypoglycemia occurred in participants 5 and 8, and was treated with Gatorade. In 
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participants 1-4, blood glucose remained relatively stable post-exercise, but contained 

small (insignificant) increases. In participants 6 and 7, blood glucose plateaued and 

remained stable post-exercise. In the neutral condition, participants 1 and 7 became 

hypoglycemic, and Gatorade was administered. Blood glucose in participants 2, 4, 6, 

and 8 decreased slightly in the post-exercise period, and in participants 3 and 5, blood 

glucose increased. In the hot condition, hypoglycemia occurred in participant 6, and 

again, was treated with Gatorade. Blood glucose decreased in participants 1, 2, and 8, 

and showed slight increases in participants 3, 4, 5, and 7. All of these instances show the 

large variability in the response to exercise in different ambient temperatures in 

individuals with T1DM, and may be due to HbA1C (Baldi, et al., 2010), fitness (Ebeling, 

et al., 1995), and/or muscle glycogen synthase relating to glucose metabolism (Ebeling, et 

al., 1993; Taylor, et al., 1972). 

Apart from major cardiovascular and thermoregulatory responses that occur as a 

result of acute exercise and heat exposure, a number of metabolic alterations associated 

with T1DM may reduce heat tolerance and affect exercise performance in the heat 

(Kenny, et al., 2010). Mizock (1995) showed that in non-diabetic individuals, when core 

temperature is elevated to the point of hyperthermia, it resulted in altered metabolism, 

with changes in carbohydrate metabolism including increased gluconeogenesis, 

depressed glycogenesis, glucose intolerance and insulin resistance. The effect of 

increasing core temperature results in increased hepatic glycogen release and higher 

blood glucose (Valerio, et al., 2001; Mizock, 1995; Halter, Beard & Porte, 1984). Despite 

the fact that these studies examined non-diabetic individuals, we hypothesized that there 

would be a significant rise in blood glucose in the hot condition because insulin, and not 
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glucose production, are affected in individuals with T1DM; however, this was not the 

case.  

One potential mechanism for the lack of significant increase in blood glucose in 

the hot condition may be that core temperature did not reach the point of hyperthermia to 

increase gluconeogenesis, and therefore, blood glucose. This finding suggests that the 

increase in blood glucose during exercise in hot conditions, therefore, may be the result 

of a critical core temperature leading to increased gluconeogenesis. Because core 

temperature in the present study increased to a maximum of only 0.59ºC above baseline 

during exercise in the hot condition, this could have been the reason that no significant 

increase in blood glucose was observed. The increase in core temperature in participants 

in the current study potentially could have been higher, however, the mechanism 

preventing this increase could involve the participant’s capacity to dissipate heat being 

high enough to offset large rises in core temperature. Comparitively, in non-diabetics 

during exercise in the heat, it has been found that plasma glucose levels were higher after 

40 minutes of exercise at 65% VO2peak in 40ºC than at 20ºC as a result of higher hepatic 

glucose production during the last 30 minutes of exercise (Hargreaves, et al., 1996). 

These investigators (Hargreaves, et al., 1996) also found that plasma insulin levels were 

not different between the trials in these non-diabetic subjects, and therefore, this did not 

appear to account for the differences in liver glucose output. Although, glucagon, 

cortisol, and growth hormone did not play a significant role in stimulating liver glucose 

output in the Hargreaves et al., (1996) study, their increased plasma levels of these 

hormones in the 40ºC trial, may have contributed to greater liver glucose output.  
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 In the cold, we hypothesized that there would be a more significant decrease in 

blood glucose during exercise than in any other condition because shivering has been 

shown to utilize more CHO, and less lipids than exercise alone (Weber & Haman, 2005). 

Again, despite the majority of studies examining non-diabetic individuals, because only 

insulin production is affected in T1DM, we believed that the increased reliance on CHO 

utilization would lead to a decrease in blood glucose. We then inferred that exercise in 

the cold would lead to more CHO oxidation, and therefore, lower blood glucose. In 

examining exercise in non-diabetics in -10ºC, 0ºC, 10ºC and 20ºC, Layden, et al., (2002) 

found that the lower blood glucose concentrations during exercise in the -10ºC, compared 

to the 20ºC, might imply that glucose utilization was increased in the cold. This finding 

suggests that there may be an effect of ambient temperature on blood glucose during 

exercise, but the current study did not reach this threshold. Passias, et al. (1996), found 

that hypoglycemia reduces, but does not eliminate, hypothermia-induced heat production 

and the reduction is achieved by decreasing the core temperature threshold for shivering 

thermogenesis by approximately 0.6ºC and the magnitude of heat production by 

approximately 20% compared to euglycemia. From this finding, hypoglycemia, as seen in 

2 instances in the cold condition, would significantly be expected to affect heat 

production. However, hypothermic core temperature values (below 35ºC) were never 

attained in the current study, heat production during the cold condition, therefore, is not 

believed to have been altered. 

In order to obtain results applicable to clinical practice, participants were told to 

follow the same insulin administration protocol they normally would prior to exercise for 

all conditions, as it was advised that insulin be individually tailored depending on fitness 
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level, and medical condition (Admon, et al., 2005). Participants on the pump were also 

instructed to follow protocol they would normally undertake prior to, and during exercise 

(2 participants - no change in basal rate, 1 participant– 50% decrease in basal rate for 

exercise, 1 participant – pump turned off for exercise). With respect to moderate exercise, 

as seen in the present study, if exercise is only 20-30 minutes in duration and less than 

70% VO2max, minimal insulin adjustments may need to be made (Peirce, 1999). 

Previously, no significant difference was found during prolonged exercise in adolescents 

with an insulin pump at 50% of regular basal rate, and with the pump turned off (Admon, 

et al., 2005).  

Hypoglycemia occurred in 5 experimental sessions; two times in the cold 

condition, two times in the neutral condition, and once in the hot condition, in 5 separate 

participants. Of the 5 instances of hypoglycemia, 2 were in participants receiving insulin 

pump therapy, and the other 3 instances were in participants receiving bolus insulin 

therapy. To normalize blood glucose levels when Gatorade was administered in cases 

where hypoglycemia occurred, the average increase caused by Gatorade was subtracted 

from blood glucose for each time point. In a high heat loss environment, hypoglycemia 

has been shown to induce a greater cooling of the core, which appears to be mediated by 

a reduction in heat production rather than an enhancement of heat loss (Passias, et al., 

1996). In a non-diabetic body, responses to hypoglycemia include inhibition of insulin 

release, activation of glucagon, epinephrine secretion, as well as other neuroendocrine 

release (Briscoe, et al., 2007). The inhibition of insulin release is obtained by increased 

-adrenergic activity, and the lower insulin then sensitizes the liver to basal levels of 

glucagon and epinephrine, de-inhibiting glycogenolysis and gluconeogenesis (Schneider 
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et al., 1991). However, this is not the case in individuals with T1DM. As the ability to 

inhibit insulin secretion is lost; therefore, there is persistent absorption of exogenous 

insulin despite falling glucose levels (Briscoe, et al., 2007). Hypoglycemia was, 

therefore, not an unexpected result, except that it would have been predicted to be more 

prevalent in the cold condition if ambient temperature was a factor. Instances of 

hypoglycemia were seen almost equally in each condition, supporting the lack of 

significance of ambient temperature during exercise on blood glucose. Five participants 

experienced nocturnal low blood sugars on the day of, or the day after experimental trials. 

In 3 of the 5 participants, the low nighttime blood sugars occurred in the nights following 

experimental conditions and occurred a total of 4 times (twice in one participant). 

Hypoglycemia has been shown to occur up to 24 hours post-exercise (Peirce, 1999), but 

in these cases, the low blood sugars were experienced more than 24 hours post-exercise, 

and therefore, these low blood sugars are believed to have been caused by too much 

insulin administered for the amount of CHO ingested, and not because of experimental 

exercise sessions. Low blood sugars were also observed in 3 subjects (a total of 4 times) 

on the day of an experimental session. Of these participants, only 1 also experienced low 

blood glucose the day after an experimental session. In instances where low blood sugar 

occurred on the day of an experimental session, 2 were in the hot condition, 1 was in the 

neutral condition, and 1 was in the cold condition. All of these instances were addressed 

before reaching the point of hypoglycemia, and were corrected with CHO ingestion. 

Again, because instances of low nighttime blood glucose were witnessed almost equally 

across the 3 conditions, this supports the notion that exercise in different ambient 

temperatures does not significantly differ with respect to blood glucose.  
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Respiratory exchange ratios (RER) during exercise were 0.87 ± 0.02,  

0.86 ± 0.03, and 0.84 ± 0.03 (data no shown), for the cold, neutral, and hot conditions, 

respectively. High values for RER indicate that CHO are the predominate substrate 

oxidized, whereas a low RER is indicative of primarily lipid oxidation (Simonson & 

DeFronzo, 1990; review by Pendergast, Leddy, & Venkatraman, 2000). Respiratory 

exchange ratios of between 0.8 and 0.9 have been measured for exercise intensities of 

60% to 75% of VO2max (Gray, Kolterman, & Cutler, 1990; Muojo, Leddy, Horvath, 

Awad, & Pendergast, 1994). The current study contained RER values that are indicative 

of both CHO, and lipid oxidation. The balance between CHO and lipid oxidation is 

determined by exercise intensity and not by exercise time and intramuscular stores of 

CHO and lipids determine the maximal endurance exercise time at a given VO2max 

percentage (review by Pendergast, Leddy, & Venkatraman, 2000). Post-exercise, RER 

values were 0.74 ± 0.06, 0.73 ± 0.08, and 0.72 ± 0.06 for the cold, neutral and hot 

conditions, respectively. These lower values (lower than exercise) demonstrate an 

increased reliance on lipid utilization as a fuel source. 

Diet 

 Dietary intake was assessed via self-reported food logs (see appendix). The 

average daily intake for calories for Canadian men aged 18-30 years and 31-50 years are 

2,729 and 2,500 kcal respectively; for Canadian women in the same age ranges the daily 

calorie intakes are 1,899 and 1,846 kcal respectively (Garriguet, 2007). In the current 

study, the average caloric consumption for participants on the day prior to, the day of, 

and the day after experimental trials were considerably lower than the average value for 
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men and women in the same age ranges. Although we believe that participants in the 

current study were honest with self-reporting food consumption, there may have been 

instances in which foods were not reported, leading to a hypocaloric diet report. Maurer 

et al. (2006), identified 9 possible categories for energy misreporting, including 

demographics, diet, eating behaviour, social desirability, dieting/weight history, body 

image, psychology, life status, and physical activity. This misreporting, specifically 

underreporting, is likely the result of one or a combination of incomplete record keeping 

on the part of the participant as a result of one or many established factors, conscious 

misreporting, the recording process itself causing a person to temporarily change their 

eating behaviour, and/or training and quality control (Maurer, et al., 2006). With respect 

to the current study, misreporting may have been present, but it is the belief of the 

investigators that if there was misreporting, it did not negatively impact the results of the 

study. However, if the diets of the participants were indeed hypocaloric, adjustments in 

insulin (decreased dosages of fast acting insulin) would be needed in order to avoid 

hypoglycemia. When comparing high CHO (>500g/day) to a mixed diet (<200g 

CHO/day), Schwellnus, Gordon, van Zeyl, et al., (1990) showed that although RER was 

significantly higher in the high CHO fed group during 150 minute cycle ergometer test 

(indicating a higher reliance on CHO oxidation), there were no significant differences in 

rectal or esophageal temperatures, sweating, and plasma volume between the high CHO, 

and mixed diet groups. It was concluded that an increased contribution of CHO to muscle 

metabolism because of a high CHO diet did not evoke any deleterious thermoregulatory 

consequences during prolonged exercise (Schwellnus, et al., 1990). When looking at 

prolonged exercise, Ainslie et al., (2003) examined the effects of a high-energy intake 
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(~3,019 kcal) compared with a low-energy intake (~616 kcal) on the time to complete at 

21 km hill walk. A clear trend of lowered rectal temperature was observed for the low-

energy intake group, but did not reach statistical significance at any time point (Ainslie et 

al., 2003). From these studies, we can infer that despite the participants in the current 

study consuming hypocaloric diets, there was no significant impact on the thermal 

responses to exercise in the 3 conditions. 

 Not surprisingly, exercise caused a decrease in blood glucose in all conditions and 

verifies previous research (Peirce, 1999; Corigliano et al., 2006; Perrone, et al., 2005; 

Guelfi, et al., 2005). The current study required the participants to cycle at 65% of 

VO2max in cold, neutral, and hot conditions for 30 minutes, and the decline in blood 

glucose was likely caused by a mechanism involving an increase energy demand during 

contraction. In T1DM individuals, the body enters a situation that mimics a ‘fasted’ state 

post-exercise, in which glycogen stores in muscle and liver are low and hepatic glucose 

production is accelerated. The counter-regulatory hormone levels (adrenaline, glucagon, 

cortisol, and growth hormone) may remain elevated for some considerable time and there 

is a concomitant hyperglycemic and hyperinsulinemic response. 

Insulin and Glucagon 

Insulin levels are dependent on the binding capacity of circulating antibodies and 

insulin dose, with values ranging from 0-717 pM (Esoterix, 2010). During exercise in a 

non-diabetic, insulin release is inhibited, but this is not the case in people with diabetes. 

In order to mimic the actions of the pancreas, insulin pumps deliver a basal rate of 

insulin, and when food is ingested, it is up to the individual to administer bolus insulin. In 
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the current study, the 4 participants on insulin pump therapy differed in their insulin 

administration. Regardless, this resulted in insulin values that were not detectable by the 

human endocrine panel assay. However, for the participants receiving bolus insulin 

injection therapy, all values fell within 0.90 – 70.45 pM. As a result, a continuous 

decrease in blood glucose was observed. As stated previously, plasma insulin levels were 

not different between exercise trials at 20ºC and 35ºC, and therefore, do not appear to 

account for differences in liver glucose output (Hargreaves, et al., 1996). 

Regarding glucagon, individuals with T1DM have been shown to have a 55% higher 

fasting glucagon level than non-diabetic counterparts (Alford et al., 1977). In the 

presence of decreased insulin-effect, this glucagon elevation in diabetics may be 

biologically important and contribute to fasting hyperglycemia (Alford et al., 1977). The 

glucagon values obtained in the current study ranged from 3.25 pM at baseline, to as high 

as 83.06 pM at 30 minutes of exercise. When compared to non-diabetics, acute 

disappearance time for glucagon was significantly prolonged in diabetics, indicating that 

the kinetics of the overall in vivo metabolism of pancreatic glucagon are different in 

diabetic, compared to non-diabetic individuals (Alford et al., 1976). In the current study, 

no significant difference was observed in glucagon between any of the conditions. Based 

on these findings (Alford et al., 1976), it would be expected that glucagon levels would 

be higher in the hot condition; however, this was not the case. A study by Schneider et 

al., (1991) looked at 60 minutes of exercise at 60-65% VO2max in both individuals with 

T1DM, and non-diabetics, and found small, insignificant increases in glucagon in both 

groups. Previous studies (Tuttle, et al., 1988; Bjorkman, et al., 1981) have suggested that 

increments in glucagon may not be of major importance for glucose during homeostasis 
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in non-diabetics (Schneider, et al., 1991). With respect to the current study, the lack of 

significant difference in glucagon concentration between conditions may be the result of 

core temperature not reaching the point of hyperthermia that could increase 

gluconeogenesis, in the hot condition. Future studies will need to examine both the rate of 

appearance, and the rate of disappearance of glucagon in such conditions in order to draw 

definitive conclusions. 

Conclusions  

The current study found no significant difference in blood glucose between 

conditions for exercise at 65% VO2max in participants with T1DM; however, future 

studies should examine the effects of prolonged exercise in the different ambient 

temperatures, as more significant rises in core temperature may occur, leading to 

increased heat storage, and increase the risk of heat illness. The rise in core temperature 

for each condition fell within a safe range, and indicates that it is safe for individuals with 

T1DM to undertake submaximal exercise in 5ºC, 20ºC, and 35ºC.  

Future Directions 

Future studies may also examine the effects of passive exposure to different 

ambient temperatures, as prolonged exposure to a cold condition would lead to shivering 

thermogenesis, an increased reliance on CHO metabolism, and therefore, a decrease in 

blood glucose. A cold environment has been shown to cause an increase in the rate of 

substrate oxidation to fuel shivering, utilizing more CHO, and less lipids (Weber & 

Haman, 2005). This increased CHO oxidation may often result in hypoglycemia in 

persons with T1DM. Finally, sport specific training, such as running, cycling, and 
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swimming, would represent another potential direction for research with regards to 

exercise in different ambient temperatures in people with T1DM because of the potential 

for different substrate utilization with differing intensities and muscle activation. Such 

information would be beneficial for events like triathlons, and Olympic oriented events.  

Clinical Application and Recommendations  

 Previous research (Petrofsky et al., 2005, 2006, 2008; Fealey, 1989; Kenny et al., 

2010) has provided evidence for lower sweat rates, skin blood flow, and higher core 

temperature in varying situations in individuals with T1DM when compared to non-

diabetic individuals. This evidence suggests that individuals with T1DM may be at much 

greater risk for heat illness with exercise in the heat. However, the current study found 

similar sweat rates when compared to Petrofsky et al., (2006); but, core temperature only 

increased to a maximum of 0.59ºC higher than baseline during exercise in 35ºC, which 

still falls within a safe range to avoid possible heat illness. However, due to reduced skin 

blood flow, sweat rate, and inappropriate rises in core temperature, it would be prudent to 

advise caution to T1DM individuals when exercising in the heat for prolonged periods, as 

this may result in heat illness and homeostasic disruption. However, future work would 

be needed to confirm this fact.  

 With respect to blood glucose, although no significant differences were found 

between conditions as a result of exercise, blood glucose did decrease, and validates 

previous research (Peirce, 1999: Corigliano, et al., 2006; Rönnemaa & Koivisto, 1988). 

Just as with exercise in the heat, individuals with T1DM may be at risk with prolonged 

exercise in the cold, because plasma glucose oxidation is strongly stimulated during low-
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intensity shivering, it only contributes a minor role (10%) to heat production (Haman, et 

al., 2002). Hypoglycemia reduces, but does not eliminate, hypothermia-induced heat 

production and the reduction is achieved by decreasing the core temperature threshold for 

shivering thermogenesis by approximately 0.6ºC and the magnitude of heat production by 

approximately 20% compared to euglycemia (Passias et al., 2006). Therefore, in 

instances where individuals with T1DM may be exercising in various ambient 

temperatures, it is recommended that caution still be taken, and blood glucose be 

monitored regularly in order to avoid hypoglycemia. 

Limitations 

 The current study used Accu-Chek Compact Plus blood glucose monitors in order 

to obtain blood glucose values throughout the experimental conditions, and for 24 hours 

post-exercise. Because blood glucose was taken at pre-determined intervals, potential 

changes between each interval could not be observed. Continuous blood glucose 

monitoring systems would have permitted a more complete view on the effects of 

different ambient temperatures during exercise, both during the exercise period, and for 

the 24 hours post-exercise. The Astrand-Rhyming submaximal ergometer test (1954) for 

predictive measurements of VO2max is a limitation of the current study. Ideally, a maximal 

VO2max test would have allowed an exact measurement of maximal oxygen consumption; 

however, use of the submaximal, Astrand-Rhyming (1954) test, permitted participants to 

undergo preliminary testing, without increased exertion, and potential withdrawal from 

the study. The use of a relative workload (65% VO2max), as seen in the current study, 

results in different metabolic and thermal outcomes, when compared to absolute 
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workloads. In comparing 1 hour of cycling exercise at relative (70 ± 4% VO2max) and 

absolute (140 W) in 22.5ºC, Greenhaff (1989) found that during exercise at a relative 

workload, sweat loss (932±383 g; 341-1410g) was equal to 1.3±0.5 per cent of pre-

exercise body weight, and was related to body weight , body surface area, absolute 

exercise workload and V02max. While exercise at an absolute workload (140 W), sweat 

loss (468±123 g; range 349-702 g) was equal to 0.7±0.1 percent of pre-exercise body 

weight and was related only to V02 max (Greenhaff, 1989). These results suggest that 

when exercise is undertaken at the same absolute workload, the sweat loss of an 

individual is not related to body weight or body surface area, and indicates that the 

greater sweat loss observed in fitter individuals during the absolute workload exercise, 

was not the result of body weight influencing their metabolic rate (Greenhaff, 1989). 

With respect to core temperature, during exercise at an absolute workload, core 

temperature increased gradually throughout exercise, whereas during exercise at a 

relative workload, there was no increase until after 5 minutes of exercise. Absolute 

workload was shown to be inversely related to VO2max and was positively related to the 

relative exercise intensity (%VO2max) at which exercise was performed. However, this 

was not the case during the relative workload intensity; rectal temperature recorded 

during the final minute of exercise was related only to resting pre-exercise heart rate 

(Greenhaff, 1989). The strong relationship between relative exercise intensity and core 

temperature supports previous research (Saltin & Hermansen, 1966) showing that during, 

exercise, rectal temperature is closely related to the (relative workload performed, and as 

would be expected, the results suggest that V02max will significantly influence core 

temperature during exercise; accounting for 74 per cent of the variability in core 
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temperature measured during the final minute of exercise during absolute intensity 

exercise (Greenhaff, 1989). When examining relative and absolute workloads in different 

environments, Havenith, Coenen, Kistemaker & Kenney (1998) revealed that during 

absolute exercise intensities, “heat production is equal for all individuals, and the higher 

heat loss efficiency of subjects with high VO2max, will then result in lower core 

temperature.” However, at relative exercise intensities, “the higher heat productions of 

subjects with high VO2max will be balanced by the higher heat loss efficiency, resulting in 

the absence of a net VO2max effect, as seen in Astrand, 1960; Saltin and Hermansen, 

1966.” Therefore, in instances where heat loss is limited by the climate, as was the case 

in the hot condition in the present study, “the balance will even go the opposite way in 

these relative conditions. The higher heat production of subjects with high VO2max will 

result directly in higher core temperature.” With regard to the current study, the use of a 

relative intensity instead of an absolute workload may have resulted in a higher sweat 

rate. Core temperature was shown to be related to VO2max (Greenhaff, 1989); therefore, 

each individual’s core temperature would be affected by fitness. The relative intensity of 

exercise for the current study was chosen because it was believed to be the intensity 

undertaken by the general T1DM population (the pace of a brisk walk), and would 

therefore, be most clinically applicable. Although, participants did ingest similar servings 

of carbohydrates prior to and following experimental conditions, ideally, participants 

would have been given the same meals, as pre-determined by the experimenters. With 

respect to insulin and glucagon results, because there were only values that were 

detectable, or in range for 4 participants, definitive conclusions are unable to be drawn. 

Ideally, a larger number of participants would have been utilized, and a greater number 
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blood samples could be analyzed. A larger sample size may have revealed significant 

differences between conditions. Applying an a priori statistical Power analysis to the 

repeated measures ANOVA, within factors test assuming moderate effect size f (0.2), α = 

0.05, nonsphericity correction (ε) =1, and set for (1-β) error probability = 0.8 the total 

sample size was determined to be 16. Post hoc testing with determined effect size f set at 

0.15 determined that (1-β) error probability = 0.7910317 would have required a sample 

size of n=20 for α =0.05. Finally, the use of a control group may have provided more 

appropriate comparisons between diabetic, and non-diabetic individuals; however, it was 

the specific goal of this study to examine the effects of different ambient temperatures 

during exercise in participants with Type 1 Diabetes Mellitus, and not the effects on non-

diabetic individuals. 
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Abstract 

Type 1 Diabetes Mellitus (T1DM) is a disease that renders the beta cells of the 

pancreas unable to produce insulin. T1DM is treated with insulin, diet, and exercise. The 

purpose of this study is to determine if blood glucose decreases more rapidly during 

exercise in an increased body temperature condition than in a control condition. The 

investigation consists of a single subject case study. The subject is a healthy, 22 year old 

male with T1DM. The subject cycled at 60% VO2max for 30 minutes in a control and 

increased body temperature condition on non-consecutive days. Measures include blood 

glucose, tympanic core temperature, and heart rate. Results show that blood glucose 

decreased during exercise to the same extent in the control and increased body 

temperature conditions (P=0.52). In the control condition, blood glucose continued to 

decrease post-exercise. However, upon cessation of exercise in the increased body 

temperature condition, blood glucose began to rise. The results agree with current 

literature regarding decrease in blood glucose during exercise in subjects with T1DM. 

The findings also suggest that in an increased body temperature condition, the body will 

respond in the same manner as in a febrile state. Because the study only utilizes a single 

subject, additional research into the area is required to validate results. More research into 

the effects of thermoregulation and exercise in subjects with T1DM is needed. 
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Introduction 

Diabetes is a chronic disease characterized by hyperglycaemia. It is the leading 

cause of medically related disabilities, including blindness, amputation, and renal failure, 

in the United States (Salsali & Nathan, 2006). It is estimated that over thirteen million 

people in the U.S. are living with diabetes. Salsali & Nathan (2006), state that the number 

of people with diabetes worldwide is projected to double to more than 366 million by 

2030. Exercise is important for individuals with Type 1 Diabetes Mellitus (T1DM) to 

help control blood glucose and promote blood circulation in the extremities.  

When discussing the effects of exercise on the diabetic body, Peirce (1999) says 

that at the end of exercise, the body enters a fasted state in which glycogen stores in 

muscle and liver are low and hepatic glucose production is accelerated. The counter-

regulatory hormone levels may remain elevated for some considerable time and there is a 

concomitant hyperglycaemic and hyperinsulinemic response. With respect to moderate 

exercise, if it is only 20-30 minutes in duration and less than 70% VO2max, minimal 

insulin adjustments may need to be made (Peirce, 1999). Peirce (1999) states that 

increases in blood glucose of more than 7-8 mmol/L may compromise long term control, 

although levels below 10-12 mmol/L will allow safe exercise. However, levels below 6 

mmol/L may increase the risk of hypoglycaemia even if the exercise intensity is between 

50-70% VO2max.   

Galassetti et al. (2006), investigated the effect of differing antecedent 

hypoglycemia on counter-regulatory responses to exercise in T1DM. The study set out to 

determine if prior levels of hypoglycemia induce acute counter-regulatory failure of 
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proportionally greater magnitude during subsequent exercise in individuals with T1DM. 

Twenty-two individuals with T1DM (11 males and 11 females), a Hemoglobin A1C of no 

higher than 8.4% and a mean age of 30 +/- 2, took part in the study. The study found that 

acute counter-regulatory failure prolonged by moderate-intensity exercise may be induced 

in a dose-dependent fashion by differing depths of antecedent hypoglycemia starting at 

only 3.9mmol/L in patients with T1DM. This shows that if hypoglycaemia occurs on a 

given day, an individual must carryout the physical activity under extreme caution.  

A study by Tsalikian et al. (2005) found that overnight hypoglycemia after 

exercise is common in children with T1DM and supports the importance of modifying 

diabetes management post-afternoon exercise to reduce the risk of hypoglycaemia. These 

findings must be considered when all individuals with T1DM are exercising, as the 

implications, if not carefully taken into account, can be fatal. Balfe (2007) states that 

modern management of diabetes is not just based on avoiding sugar and injecting insulin; 

it is based on a healthy diet and exercise. 

The current study examines the effect of increased body temperature on blood 

glucose during exercise. An article by Petrofsky, Besonis, Rivera, Schwab & Lee (2006) 

investigated heat tolerance in patients with Type 1 and Type 2 diabetes. The study 

involved subjecting control subjects, individuals with Type 1 diabetes and individuals 

with Type 2 diabetes to an environmental temperature of 42˚C while at rest. The finding 

of the experiment showed that for all diabetic subjects, heat tolerance was poor, resulting 

in a central body temperature of 1˚C higher than control subjects (Petrofsky, Besonis, 

Rivera, Schwab & Lee, 2006). The study also showed a clear correlation between 
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abnormal noncompensatory rises in skin temperatures with inappropriate rising of core 

temperature in subjects with diabetes (Petrofsky, Besonis, Rivera, Schwab & Lee, 2006).  

Valerio, Franzese, Carlin, Pecile, Perini & Tenore (2001) examined the increased 

prevalence of stress hyperglycaemia in children with febrile seizures and traumatic 

injuries. The study found that plasma glucose levels were significantly higher in patients 

exposed to stress (Valerio, Franzese, Carlin, Pecile, Perini & Tenore, 2001). Presence of 

fever (body temperature > 38˚C), seizures and pain made up the stress conditions. Mizock 

(1995) quotes, “a number of alterations in carbohydrate metabolism have been described, 

including increased gluconeogenesis, depressed glycogenesis, glucose intolerance and 

insulin resistance as a consequence of decreased skeletal muscle.”  

At this time, there is a significant gap in the literature concerning 

thermoregulation and exercise with regards to individuals with T1DM. The aim of the 

current study was to determine the relationship between increased body temperature and 

blood glucose during exercise in a subject with T1DM. It was hypothesized that a more 

rapid decline in blood glucose would occur in the increased body temperature condition 

than when riding in the control condition. 

 

Methods 

Subject 

 The subject, also the author of this paper is a healthy, 22 year-old male with 

T1DM (height, 170 cm; body weight, 73 kg; body mass index, 25.3 kg/m2; body fat 

percentage, 14.1%: HbA1C, 8.21%). At the time of the study, the subject had been living 
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with T1DM for 20 years. The subject is active on a regular basis, taking part in resistance 

or aerobic training 5 days a week.  

 

Protocol 

 The study occurred over 10 non-consecutive exercise days in two conditions: 

control, and increased body temperature. Each condition was completed a total of 5 times, 

alternating between the control condition and increased body temperature condition on 

given testing days. Blood glucose was tested a total of 8 times in a span of 2 hours on 

testing days. All testing was performed on a Monark ErgoMedic 828E cycle ergometer. 

The subject first took part in an Astrand submaximal test to obtain a predicted VO2max. 

The subject then refrained from physical activity 24 hours prior to each test condition. 

Blood glucose was taken using a OneTouch UltraSmart glucometer, OneTouch UltraSoft 

lancet and OneTouch Ultra test strips. Each site was sterilized with an alcohol swab 

before attaining the blood glucose sample. Because the subject is also the author of this 

paper, approval from the School of Health and Human Performance at Dalhousie 

University was not required. 

 The subject recorded blood glucose 1 hour prior to every experimental trial to 

avoid increased risk of hypoglycaemia while cycling. If the blood glucose reading was 

below 7 mmol/L, the subject consumed 30g of carbohydrate. If the blood glucose reading 

was below 4 mmol/L, the subject consumed 60g of carbohydrate. All trials were 

conducted on non-consecutive days to prevent the effects of counter-regulatory 

hypoglycaemia (Galassetti et al., 2006) 
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Control Condition 

 The control condition consisted of a 30-minute bicycle ride at 60% of predicted 

VO2max with the subject wearing shorts and a t-shirt. Blood glucose, body temperature and 

heart rate were recorded at the onset of exercise, at 10 minutes, 20 minutes, upon 

completion, 10 minutes post, 20 minutes post and 30 minutes post-exercise. Body 

temperature was recorded from tympanic measurements using a ThermoScan 

thermometer. If at any point blood glucose was below 3.5 mmol/L, or the subject reported 

symptoms of hypoglycaemia, cycling was immediately stopped and Gatorade® was 

administered.  

Increased Body Temperature Condition 

 The increased body temperature condition consisted of a 30-minute bicycle ride at 

60% of predicted VO2max with the subject wearing shorts and a t-shirt, underneath a non-

permeable rain suit. Blood glucose, body temperature and heart rate were recorded at on-

set of exercise, at 10 minutes, 20 minutes, completion 10 minutes post, 20 minutes post 

and 30 minutes post-exercise. Body temperature was recorded from tympanic 

measurements using a ThermoScan thermometer. If at any point blood glucose was below 

3.5 mmol/L, or the subject reported symptoms of hypoglycaemia, cycling was 

immediately stopped and Gatorade® was administered.  

Statistical Analysis 

The data were analyzed using SPSS 13.0, and treated as a single-subject design. 

The data was evaluated using a univariate mixed ANOVA. Thermal condition was 

analyzed as a between-subjects fixed effect, and time of testing was analyzed as a within-
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subjects fixed effect.  The five repeated trials of each condition were treated as random 

effects. 

Results 

 The analysis of blood glucose levels showed a significant main effect of interval 

(F = 18.36, P < 0.05). This indicates that blood glucose levels were lower at the end of 

exercise (mean value of 4.4) than initial values (mean value of 10.6) in both the control 

and increased body temperature conditions. The results (Figure 1) show no interaction 

between the thermal condition, and time of the blood glucose measure (P = 0.52). These 

values indicate there is no significant difference in the decrease of blood glucose when 

comparing the control and increased body temperature conditions.  

To be noted, the blood glucose values for 20 and 30 minutes post-exercise could 

not be included in the ANOVA analysis due to missing data points. The values were not 

included because hypoglycaemia occurred in 2 trials of the control condition and 1 trial of 

the increased body temperature. As a result, 591 mL of Gatorade® was administered and 

no blood glucose values were recorded for experimental purposes post-hypoglycaemia. 

However, when blood glucose did not reach a state of hypoglycaemia, results show a 

continued decrease in the blood glucose during the control condition, but not in the 

increased body temperature condition. In each control condition, blood glucose values 

continued to decrease from the completion to 30-minute post-exercise interval (Table 1). 

In the increased body temperature condition, each trial, with the exception of trial 3, 

resulted in an increase in blood glucose from completion to 30 minutes post-exercise 

(Table 2). Although the mean values in Table 1 indicate a small increase in blood glucose 
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from completion to 30 minutes post-exercise in the control condition, in each trial, blood 

glucose values decreased when compared to the value at cessation of exercise.  

Core temperature and heart rate were measured at each interval of exercise and 30 

minutes post-exercise. Mean values for heart rate and core temperature were 127 beats 

per minute and 37˚C and 135 beats per minute and 37.5˚C for control and increased body 

temperature conditions from onset of exercise to 30 minutes post, respectively. The 

highest body temperature and heart rate reached during either condition was 38.9˚C, and 

189 beats per minute, respectively. Both were attained in the increased body temperature 

condition. 
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Figure 1: Results of blood glucose values for both control and increased body 

temperature conditions. Time includes from 1 hour prior to 10 minutes post-exercise.  
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Table 1: Blood glucose values from completion to 30 minutes post-exercise for the 

control condition. Areas that do not contain blood glucose values were not recorded due 

to hypoglycaemia. Although the mean value for 30 minutes post is greater than 

completion, in each trial blood glucose is lower than at completion. 

 

 Control 

 Completion 10 min. post 20 min. post 30 min. post 

 4.9 4.6 4.4 4.3

 3.4 3.3 3   

 3.5 3.1     

 6.1 6 5.9 5.8

  5.7 5.4 5.2 4.9

MEAN 4.72 4.48 4.625 5

STD DEV 1.24 1.27 1.24 0.755
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Table 2: Blood glucose values from completion to 30 minutes post-exercise for the 

increased body temperature condition. The area that does not contain blood glucose 

values was not recorded due to hypoglycaemia. In each trial, blood glucose is higher at 30 

minutes post-exercise than at completion. 

 

 Increased Body Temperature 

  Completion 10 min. post 20 min. post 30 min. post 

 3.6 3.5 4.1 5.2

 6 5.1 5.6 6.1

 3.4 3.9 3.3   

 3.5 3.5 4.6 4.9

  5 5.4 5.8 5.7

MEAN 4.3 4.28 4.68 5.475

STD DEV 1.15 0.906 1.04 0.532

 

 

Discussion 

 

 The results of this study show that blood glucose decreases during exercise in a 

subject with T1DM. This result concurs with the findings of Peirce (1999) who examined 

exercise and diabetes, finding that hypoglycaemia can occur post-exercise up to 24 hours 

after cessation of exercise due to increased insulin sensitivity and depleted glycogen 

stores. Although profound hypoglycaemia did not occur, it should be noted that in 2 of 
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the 5 trials of the control condition, hypoglycaemia was evident. The results also 

correspond to data collected by Corigliano, Iazzetta, Corigliano, & Strollo (2006), who 

examine blood glucose changes in diabetics during common sports activity. One of the 

main findings of the 2006 study by Corigliano, Iazzetta, Corigliano, & Strollo was that 

hypoglycemia is due to enhanced insulin sensitivity combined with reduced glycogen 

stores as a consequence of increased energy expenditure. The current study required the 

subject to cycle at 60% of VO2max for 30 minutes, resulting in a greater glycogen demand 

by the muscles causing an increase in energy expenditure and, therefore, a decline in 

blood glucose. 

 Another result of the present was that the decrease in blood glucose during 

exercise was not significantly different between the control and increased body 

temperature conditions, despite the 8 beats more per minute and 0.5˚C higher core 

temperature in the increased body temperature condition. This discovery relates to 

findings by Cheung (2007) who found that thermal strain is usually accompanied by high 

levels of cardiovascular strain, and an impairment of blood pressure or critical levels of 

blood flow to the brain and the splanchnic tissues that may accelerate fatigue and 

precipitate exhaustion. These outcomes would suggest that the increased body 

temperature condition would result in a much higher heart rate than the control condition. 

However, the difference in heart rate between the control and increased body temperature 

conditions, as stated above, was only 8 beats per minute. The minimal difference may be 

due to the slight difference in body temperature in exercise conditions, 37˚C and 37.5˚C, 

for the control and increased body temperature conditions, respectively. Cheung & 

McLellan (1998) found that moderately fit individuals reached the point of voluntary 
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exhaustion at a consistent rectal temperature of ~38.7˚C in an uncompensable heat stress 

environment irrespective of hydration and acclimation status. One clear benefit of aerobic 

fitness is the ability to tolerate a higher rectal temperature at the point of voluntary 

fatigue, with highly fit individuals having a lower initial rectal temperature (by ~0.2˚C) 

coupled with a higher final rectal temperature (an increase of ~0.7˚C). Because the 

subject is healthy and is classified in the above average VO2max category for his age, this 

may explain the slight differences in core temperature and heart rate between the 

increased body temperature and control conditions. As stated by Petrofsky, Besonis, 

Rivera, Schwab & Lee (2006), heat tolerance is poor in diabetic subjects and their study 

resulted in diabetic subjects having a higher central body temperature of 1˚C. In subjects 

with T1DM, the study also demonstrated a relationship between abnormal non-

compensatory rises in skin temperatures with inappropriate rising of core temperature. 

Although Petrofsky, Besonis, Rivera, Schwab & Lee (2006) did not inquire into the 

effects of increased temperature during exercise, it can be suggested that in the current 

study, body temperature may have been elevated because of the subject’s poor heat 

tolerance and inappropriate rise in core temperature. 

 The interesting finding of this study is the increase in blood glucose upon 

cessation of exercise in the increased body temperature condition. One would assume that 

because there was no significant decrease in the rate of decline of blood glucose between 

the control and increased body temperature conditions, that the post-exercise values 

would be the same. A study of the high prevalence of stress hyperglycaemia was 

examined by Valerio, Franzese, Carlin, Pecile, Perini & Tenore in 2001. In relation to the 

present study, Valerio, Franzese, Carlin, Pecile, Perini & Tenore (2001) find that blood 
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glucose levels were notably higher in patients subjected to stress. The subject in the 

current study was exposed to heat stress and, therefore, would exhibit the same response 

to stress as an individual in a febrile state. Mizock (1995) notes that in a febrile state there 

are changes in carbohydrate metabolism including increased gluconeogenesis, depressed 

glycogenesis, glucose intolerance and insulin resistance. The intriguing aspect related to 

this field suggests that in an individual with T1DM exercising at an increased body 

temperature will exhibit an increase in blood glucose post-exercise because of increased 

gluconeogenesis and, therefore, increased levels of blood glucose.  

 

 

Conclusion 

 

 The main findings of this study are; the lack of difference in decrease of blood 

glucose when comparing control and increased body temperature conditions, and; the 

increase in blood glucose upon cessation of exercise in an increased body temperature 

condition. Type 1 Diabetes is a field that is heavily understudied with regards to exercise. 

The reasoning behind this is most likely because individuals with T1DM make up only 

10% of the diabetic population. Future research into thermoregulation and its effects on 

T1DM and exercise is greatly needed due to the fact that exercise is an important factor in 

maintaining a healthy lifestyle for people with T1DM. 
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Informed Consent: EEL-057 

 

Project Title: The Effects of Different Ambient Temperatures during Exercise in 
Subjects with Type 1 Diabetes Mellitus (EEL-057) 
 

Principal Investigator:  
Dr. Stephen Cheung, Ph.D. 
(Associate Professor) 
Department of Physical Education 
and Kinesiology 
Brock University                              
905-688-5550 x 5662, 
stephen.cheung@brocku.ca 

Principal Student Investigator 
Mr. Matthew Smith (M.Sc. 
Candidate) ms08db@brocku.ca, 
289-668-5648 
Department of Physical Education 
and Kinesiology 
Brock University                                

 

INVITATION 

You are invited to participate in a study that involves research. The purpose of this study 
is to test the effects that exercise has under different temperatures. These measurements 
will give us information on the effects that different temperatures have on people with 
Type 1 Diabetes Mellitus (T1DM) during and after exercise. You will be required to have 
the accompanying screening form signed by your physician to take part in the study. Your 
care provided at McMaster will not be affected by decision to participate or not.  

 

WHAT’S INVOLVED 

There will be a total of four sessions that will require you to come to the lab. In the first 
session you will have your physical characteristics measured, report HbA1C, and perform a 
cycle ergometer test to determine your fitness. In sessions 2-4, you will exercise on the 
cycle ergometer for 30 minutes at a moderate pace in 5, 20, or 35˚C. Time commitment 
will be approximately 10.5 hours over the five sessions, spaced out over approximately 
five weeks. Prior to each session, you will be asked to refrain from alcohol and/or heavy 
exercise for 24 hours prior to the trial and caffeine on the day of the trial. In all five 
sessions, you will change into your own exercise shirt and shorts. Appropriate change 
rooms will be provided for you to change into the required clothing. You will have free 
access to water throughout all sessions. When you come to the lab, you will be given a 
parking pass to permit parking in the Brock, Lot S lot. 
 
At your convenience, prior to beginning the study (Session 0), you will meet with the 
Principal Student Investigator to receive all consent material and will be informed of the 
measures and purpose of the study.  
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In the first session (Session 1), you will have your height, weight, and the amount of body 
fat in your body measured. Body fat testing will be performed using skinfold calipers, 
which might cause a slight pinching sensation, and will be taken by someone of the same 
sex in a private room. You will also cycle on an ergometer to determine your predicted 
Maximal Oxygen Consumption (VO2max). You will perform an Astrand submaximal cycle 
ergometer test to determine your VO2max. Based on your age, and fitness level, you will 
be instructed to cycle at 60 revolutions per minute (rpm) for 6 minutes. Heart rate will be 
monitored throughout the test using a telemetric heart rate monitor (s810i, Polar Electro 
Oy, Finland). Your heart rate will be measured every minute, and should be between 130-
160 beats per minute (bpm)You’re your heart rate is not in the 130-160 bpm range, the 
wattage will be increased or decreased accordingly, until your heart rate falls in the 
desired range. With the heart rate and wattage from your final minute, the Astrand-
Ryhming Nomogran will be used to predict your maximal oxygen uptake, giving us an 
idea of your fitness level. One day prior, and 3 days after Session 1, you will be asked to 
keep a diet log. This diet log will provide baseline measurements of your typical 
carbohydrate ingestion, and you will be instructed to follow your typical (baseline) eating 
habits prior to, and following each exercise session. Before leaving the laboratory, you 
will be asked to find a ‘partner’ that will be able to monitor you for 24h post-exercise, and 
their contact information will be required upon your next visit. Before leaving the lab, 
you will be given an Accu-Chek Compact Plus blood glucose monitor and strips to be 
used throughout the study. The contact information for your chosen ‘partner’ will also be 
recorded. Time commitment for this session will be approximately 2h. 
 
In the experimental sessions (sessions 2-4), all conditions will be identical in 
instrumentation and protocol; the only difference between the three conditions will be the 
application of the chamber’s temperature in a randomized fashion: 1) temperature of 5˚C 
(C, cool); 2) temperature of 20˚C (T, thermoneutral); and 3) temperature of 35˚C (H, hot). 
In the incident that you have had a hypoglycemic incident in the 48 hours leading up to 
the exercise session, you will be required to inform the PSI, and the exercise session will 
be rescheduled, as prior hypoglycemic events can increase the risk of another 
hypoglycemic episode. Conversely, if hyperglycemia is present (blood glucose > 13.9 
mmol/L), you will be required to take an additional finger stick for a meter test of blood 
ketones. Should ketones be present, you will be instructed to inject a correction bolus of 
insulin, and exercise will be postponed until blood glucose levels drop below 13.9 
mmol/L. If no ketones are present, you will need to wait 30 minutes before testing again, 
and exercise will commence when blood glucose is below 13.9 mmol/L. If hyperglycemia 
is present (blood glucose > 13.9 mmol/L) and blood glucose is not decreasing, the 
exercise trial will be rescheduled to a later time in order to standardize blood glucose 
values. If blood glucose levels are low (i.e. near 5 mmol/L and showing a decreasing 
trend, or below 5 mmol/L) you will be provided with glucose in tablet form (around 16 
g). You will be asked to check your blood glucose after 20 and 40 minutes to ensure that 
levels are greater than 5 mmol/L and stable before starting exercise. Should the correct 
range not be reached within 90 minutes, the exercise session will be terminated and the 
exercise trial will be rescheduled to a later time in order to standardize blood glucose 
values One hour prior to entering the laboratory, you will be need to take a blood glucose 
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reading to ensure your safety. If your blood glucose is at the level of hypoglycemia 
(below 4.0 mmol/L), you will be instructed to ingest sufficient CHO to raise your blood 
glucose 2.5-4.0 mmol/L before resuming the trial. Upon arrival at the laboratory, you will 
change into a t-shirt and shorts and insert the rectal probe to a depth of 15 cm beyond the 
anal sphincter. You will have your baseline body mass measured and provide a small 
urine sample so that we can measure your hydration level. You will then be instrumented 
with a heart rate monitor strap (s810i, Polar Electro Oy, Finland) across the chest for 
telemetric recording of heart rate (HR). Skin temperature sensors will be taped onto the 
body surface at the following sites: chest, upper arm, front thigh, calf, which will be used 
to calculate a mean skin temperature. Prior to the commencement of the first exercise 
session, you will have a catheter inserted into your antecubital vein (at the elbow) for 
blood analysis prior to exercise, at 15 minutes during exercise, and 60 minutes post-
exercise. Throughout the experiment, you will breathe through a soft silicone mask and 
have your expired air collected and analyzed to measure oxygen uptake. Every 10 min 
throughout the experiment, you will have your blood glucose measured, to monitor 
changes to exercise and ambient temperature. You will then begin exercise at 65% of 
your predetermined VO2max on a cycle ergometer. Exercise time will last 30 minutes. At 
times 0, 10, 20 and 30 min, you will have a small blood sample taken via finger prick, for 
analysis of blood lactate. You will have a blood sample, taken via the blood draw for 
analysis prior to starting exercise, and upon completion of exercise. In the case of severe 
hypoglycemia, an injection of glucagon will be administered. Glucagon will be kept in 
the fridge in the Environmental Ergonomics Laboratory. Glucagon will be drawn into a 
needle, and given via bolus injection into the right posterior (gluteus maximus) and 
emergency services will immediately be called, as well as your partner. Immediately 
following the exercise period, you will be seated outside the chamber in the laboratory, 
and will be required to stay for 60 minutes post-exercise with blood glucose taken every 
10 minutes. Upon leaving the laboratory, you will be given Dextrosol ® of Glucosol ® to 
be taken in any instance in which hypoglycemia may occur. You will be instructed to 
measure blood glucose every 6 hours for 24 hours post-exercise. A follow up phone call 
will be made to you at approximately 6, 12, 18, and 24 hours post-exercise to ensure your 
safety, and for blood glucose reports. These phone calls are for research purposes and you 
may need to address your glucose readings more regularly. You are responsible for your 
maintaining the monitoring of your own health status and consulting your physician as 
needed. If you should feel hypoglycemic at any point, take the required steps to ensure 
that your blood glucose returns to normal values.  
Time commitment for each experimental session will be approximately 2.5 h. 
 
 

POTENTIAL BENEFITS AND RISKS 

Possible benefits of participation include knowing your maximal fitness levels through 
the Maximal Oxygen Consumption (VO2max) test. You will also receive an Accu-Chek 
Compact Plus blood glucose monitor that you are free to keep following the study.  
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There may be risks associated with participation. The Bruce submaximal protocol test 
may leave your legs feeling sore (calf muscles), possibly causing discomfort. There is 
also the risk of hypoglycaemia associated with Sessions 3-5 up to 24h after exercise. 
There is also a very remote risk of heart attack or stroke when exercising to exhaustion, 
but this is minimized with the use of the health screening questionnaire. With the blood 
draws, there is a risk of bruising, and a risk that infection may develop at the site of 
insertion. The risk of heart disease is greater in individuals with Type 1 Diabetes Mellitus, 
even if you are physically active. You should consult with your physician about whether 
an ECG analysis is advisable prior to taking part in the study. There will be at least two 
investigators trained in First Aid and CPR present for each experiment. The investigators 
will contact you at regular intervals following each session to check on your health status, 
and your ‘partner’ will be asked to check on you regularly also. 
 
 
 
Experimental sessions will be terminated if: 
1. Rectal temperature increases beyond 39.5oC. 
2. Blood glucose reaches 4.0 mmol/L or below 
3. Subject experiences hypoglycemic signs and/or symptoms 
4. Heart rate has risen above 95% of its predicted maximum (220-age) for 3 min. 
5. Dizziness or nausea precludes further experimentation. 
6. Subject decides, for any reason, to end the experiment. 
7. The investigators determine that the subject is unable/unfit to continue.  
 
Insertion of the flexible rectal probe may cause slight discomfort. You will be given 
instruction about how to prepare the probe, and will self-insert the probe in a private 
room. You will be provided with water-based lubricant if necessary, and will secure the 
probe with a soft gauze “sumo sling” harness which will keep it in place during exercise. 
There is a slight but real risk of perforation of the bowel from the insertion of the rectal 
probe, though the investigators are unaware of this ever occurring in a research setting. 
There is also a chance that surface electrodes or electrode tape may cause some skin 
irritation.  
 
Because of the duration of the exercise test (30 min), you can expect to experience fatigue 
and some degree of sweating or mild rise in body temperature. Some of the symptoms 
that may be experienced with an elevated body temperature include: discomfort, 
sweating, flushing and redness in the face and body, thirst, loss of fine motor coordination 
due to sweating, minor mental confusion, dizziness or nausea. These symptoms 
commonly disappear almost immediately upon return to normal body temperature. You 
will be able to drink water during and after the test. If you experience any unusual 
symptoms after completing a testing session, you should immediately seek medical 
attention and inform Dr. Cheung. The investigators will also contact you the evening of 
your participation to ensure that you are in a healthy state. Depending on your health 
status, you may be asked to consult with a physician. 
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RECTAL PROBE 

When performed in a healthcare setting, insertion of the rectal probe is a controlled act as 
set out in the Regulated Health Professions Act. While this act does not extend to research 
outside of a healthcare setting, you should be aware of the following potential risks: 

 Insertion of the rectal probe can stimulate the vagus nerve which can cause 
slowing of the heart rate which may lead to fainting. This is more likely to happen 
if you have a low resting heart rate. 

 Perforation of the bowel can lead to peritonitis, a serious infection of the 
abdominal cavity. 

 You should not participate in this research if you are pregnant, are under the 
influence of alcohol or other sedating substances (tranquilizers, sleeping pills, 
street drugs) or have any history of fainting or heart disease. 

 
CONFIDENTIALITY 

Access to this data will be restricted to Dr. Cheung and the principal student investigator, 
Mr. Matthew Smith. Other members of Dr. Cheung’s lab may be assisting with the study, 
and therefore will have some access to data. Your participation will remain confidential. 
The data collected from this investigation will be kept secured on the premises of the 
Department of Physical Education and Kinesiology (PEKN) at Brock University in Dr. 
Cheung’s office or laboratory, and will not be accessed by anyone other than the listed 
investigators. The data (paper and electronic) will be destroyed five years after the 
publication of the results of the study. Blood draws will be stored in a freezer at -80ºC in 
the PEKN Department, and will only be accessible by the PI and PSI for research 
purposes. Blood analyses will be done upon completion of data collection from all 
subjects, and then will be appropriately disposed in biohazardous waste disposal bins. 
Investigators will require disclosure of your name and contact information (phone, email), 
and therefore your participation is not anonymous during the conduct of the research. All 
participants will have their names removed from any data. The master list matching 
participants to data will be kept by Dr. Cheung and Mr. Smith, and will be destroyed 
following the publication of data. 
All information you provide is considered confidential; your name will not be included 
or, in any other way, associated with the data collected in the study. Furthermore, because 
our interest is in the average responses of the entire group of participants, you will not be 
identified individually in any way in written reports of this research.  
 

VOLUNTARY PARTICIPATION 

Participation in this study is voluntary. If you wish, you may decline to answer any 
questions or participate in any component of the study. Further, you may decide to 
withdraw from this study at any time and may do so without any penalty or loss of 
benefits to which you are entitled. Participation, non-participation, or withdrawal from the 
study will not affect your standing at Brock University. 
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PUBLICATION OF RESULTS 

Results of this study may be published in professional journals and presented at 
conferences, but your personal information and participation will remain confidential. 
Approximately one month after we finish testing all participants, we will provide you 
with a summary of your own results and also the overall group results. Feedback about 
this study will be available from Dr. Stephen Cheung (stephen.cheung@brocku.ca, 905-
688-5550x5662). 
 

CONTACT INFORMATION AND ETHICS CLEARANCE 

If you have any questions about this study or require further information, please contact 
Dr. Cheung or Mr. Smith using the contact information provided above. This study has 
been reviewed and received ethics clearance through the Research Ethics Board at Brock 
University (REB 09-005). If you have any comments or concerns about your rights as a 
research participant, please contact the Research Ethics Office at (905) 688-5550 Ext. 
3035, reb@brocku.ca.  
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CONSENT FORM 

I agree to participate in this study described above. I have made this decision based on the 
information I have read in the Information-Consent Letter. I have had the opportunity to 
receive any additional details I wanted about the study and understand that I may ask 
questions in the future. I understand that I may withdraw this consent at any time. My 
participation, non-participation, or withdrawal from the study will not affect my standing 
at Brock University.  
 

Participant:  

I have read the preceding information thoroughly. I have had an opportunity to ask 
questions and all of my questions have been answered to my satisfaction. I agree to 
participate in this study. I understand that I will receive a signed copy of this form. 
 
 
 
 
 
Name 

 
 
 
Signature 

 
 
 
Date 

 
 
Person obtaining consent: 
I have discussed this study in detail with the participant. I believe the participant 
understands what is involved in this study. 
 
 
 
 
 
Name, Role in Study 

 
 
 
Signature 

 
 
 
Date 

 
 
Investigator:  
In my judgment, this participant has the capacity to give consent, and has done so 
voluntarily.  
 
 
 
 
 
Name, MD 

 
 
 
Signature 

 
 
 
Date 
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The Effects of Different Ambient Temperatures During Exercise in 
Subjects with Type 1 Diabetes Mellitus  (EEL-057) 

Environmental Ergonomics Laboratory Fitness Screening Form 
Please read over the questions below*. They are to assist in assessing whether you are fit to participate in 
this study. Please ask the investigators if you have any queries before you begin filling out the form. THIS 
FORM DOES NOT REPLACE YOUR RIGHT TO CONSULT YOUR DOCTOR AT ANY TIME, 
and you should bring this and the informed consent document to review with your doctor prior to 
participation. 
Screening Questions* YES NO 

1. Has your doctor ever said that you have a heart condition and that you should only 
do physical activity recommended by a doctor? 

  

2. Do you feel pain in your chest when you do physical activity?   

3. In the past month, have you had chest pain when you were not doing physical 
activity? 

  

4. Do you lose your balance because of dizziness or do you ever lose consciousness?   

5. Do you have a bone or joint problem (for example, back, knee or hip) that could be 
made worse by a change in your physical activity? 

  

6. Is your doctor currently prescribing drugs (for example, water pills) for your blood 
pressure or heart condition? 

  

7. Do you know of any other reason why you should not do physical activity?   

8. Current pregnancy or menstrual irregularities (e.g., loss of cycle) in females?   

9. Do you have any bowel or prostate problems (e.g. colitis, irritable bowel syndrome, 
prostate problems)? 

  

10. Neuromuscular (e.g., epilepsy, Multiple Sclerosis, Cerebral Palsy) or skeletal (e.g., 
inflammatory or degenerative arthritis) disorders? 

  

11. Do you have a tendency for, or ever been diagnosed with, claustrophobia (a very 
strong fear of confined spaces)? 

  

12. Are you unable to detect the symptoms of a low blood sugar (ie. Sweating, 
shaking/trembling, rapid pulse, etc.)? 

  

13. Has it been less than 5 years since you were diagnosed with Type 1 Diabetes and 
began to receive insulin therapy? 

  

14. Do you smoke?   

15. Have you had a severe hypoglycemic episode in the last 3 months that required 
assistance from another person? 

  

16. Is your HbA1c greater than 9%? (as determined by your 
physician/endocrinologist) 
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17. Do you have frequent, unpredictable hypoglycemia and/or hyperglycemia?   

18. Do you have intermittent cramping pains in your periphery? Do you have severe 
peripheral neuropathy or active proliferative retinopathy, unstable cardiac or 
pulmonary disease, disabling stroke, or severe arthritis? 

  

19. Do you have known or suspected clinically significant gastroparesis? (as 
diagnosed by your physician) – symptoms include chronic nausea, vomiting (of 
undigested food), heartburn, weight loss, abdominal bloating, erratic blood glucose 
levels or lack of appetite? 

  

20. Do you have an expected requirement within the subsequent 6 months for 
medications (other than insulin) that will affect your glucose metabolism (e.g. 
corticosteroids)? 

  

 
Name: ________________________________________  
 
Signature______________________________________ Date**________________________ 
I have discussed the project with the above signed individual, and deem them physically capable to participate in the 
above mentioned study 
 
Name of physician: ________________________________________  
 
Signature______________________________________ Date**________________________ 
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Thermal Comfort Scale 

 

1 Comfortable 

1.5 

2 Slightly uncomfortable 

2.5 

3 Uncomfortable 

3.5 

4 Very uncomfortable 

4.5 

5 Extremely uncomfortable 
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Thermal Sensation Scale 

 

0 Unbearably cold 

1 Very cold 

2 Cold 

3 Cool 

4 Slightly cool 

5 Neutral 

6 Slightly warm 

7 Warm 

8 Hot 

9 Very hot 

10 Unbearably hot 
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