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Abstract 

Iridium complexes with bidentate P,N ligands represent a class of catalysts that 

significantly expand the application range of asymmetric hydrogenation. New substrate 

classes, for which there have previously been no suitable catalysts, can now be efficiently 

hydrogenated in high conversion and enantioselectivity. These substrates are often of 

synthetic importance, thus iridium catalysis represents a significant advance in the field 

of asymmetric catalysis. 

Planar chiral ferrocenyl aminophosphine ligands in which both heteroatoms were 

directly bound to the cyclopentadienyl ring were prepared by BF3-activated lithiation­

substitution in the presence of a chiral diamine in 49-59% yield and 75-85% enantiomeric 

excess. Some of these ligands were recrystallized to enantiomeric purity via ammonium 

fluoroborate salt formation of the phosphine sulfide. A crystal structure of one of these 

compounds was obtained and features an intramolecular hydrogen bond between the 

nitrogen, hydrogen, and sulfur atoms. Neutralization, followed by desulfurization, 

provided the free ligands in enantiomeric purity. Iridium complexes with these ligands 

were formed via reaction with [Ir(COD)Clh followed by anion exchange with NaBArF. 

These complexes were successfully applied in homogeneous hydrogenation of several 

prochiral substrates, providing products in up to 92% enantiomeric excess. Variation of 

the dimethyl amino group to a pyrrolidine group had a negative effect on the selectivity of 

hydrogenation. Variation of the substituents on phosphorus to bulkier ortho-tolyl groups 

had a positive effect, while variation to the more electron rich dicyclohexyl phosphine 

had a negative effect on selectivity. 
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Chapter 1: Introduction and Historical Background 

1.1 Catalysis, Ligands, and Complexes. 

The importance of stereochemical purity in pharmaceutical products has been a 

prominent driving force in the pursuit of improved control over the stereochemical output 

of organic reactions.) To this end, new catalysts, ligands, and applications are reported 

every year to satisfy the need to embrace a wider range of reactions and to improve the 

efficiency of existing processes. A catalyst is defined as a substance that changes the rate 

of a chemical reaction without itself being consumed. Today, precatalysts are often used 

which are activated in situ to form an active catalyst complex. The active catalyst will 

pass through a number of intermediates during a catalytic cycle, but can mediate a 

reaction many times, in effect remaining unaltered, and thus these molecules are also 

classified as catalysts? 

Homogeneous catalysis refers to a catalytic system in which the substrate and 

catalyst are brought together in the same phase where the reaction takes place. The 

number of times a catalyst goes through the cycle is termed the turnover number (TON) 

and is defined as the total number of substrate molecules that a catalyst converts into 

product molecules. The turnover frequency (TOF) is the number of substrate molecules 

that a catalyst converts into product molecules in a period of time and is often reported in 

moles of substrate molecule per mole of catalyst per hour.3 

A ligand is a molecule that bonds to a central metal atom to form a coordination 

complex that may be used as a catalyst or precatalyst. Bonding generally involves 

donation of one or more pairs of electrons from the ligand HOMO to the LUMO of the 
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meta1.4 The 'metal-ligand bond can be further stabilized by back donation from filled 

metal orbitals into the LUMO of the ligand. By linking a metal center and an organic 

fragment together to form a complex, the properties of both components change greatly. 

The identity, charge, size, and hapticity of the ligand dictate the reactivity of the complex. 

Ligands that are bound directly to the metal center form the first coordination, or inner, 

sphere of the complex. Outer sphere ligands are not directly bound to the metal, but are 

generally weakly bound to the inner ligands.s Ligands that bind via more than one donor 

atom are called chelating ligands with the most favourable chelate ring size being five or 

six atoms. Ligands with two donor atoms are termed bidentate ligands, and are 

characterized by their bite angle. Bite angle refers to the angle between the two donor 

atoms created upon complexation «(), Figure 1). The bite angle is affected by the cone 

angle of each donor atom, the distance between the donor atoms, the size and flexibility 

of the backbone, and the orientation in which chelation to the metal occurs (which is 

affected by steric repulsion between substituents on the donor atom and backbone).6 

Electronic properties playa role on the metal-donor atom bond length, another factor 

influencing the bite angle. In addition, other ligands attached to the metal center can 

influence the bite angle if they are bulky or have a strong influence on the metal orbitals. 

Ligand bite angle is often related to catalytic performance and selectivity.3 

n 
X ,-- Y 

,\8/ 
M 

Figure 1. Ligand bite angle formed upon coordination of heteroatoms X and Y with metal 

M. 
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Chelating ligands are less easily displaced than their corresponding mono dentate 

analogues, as they are entropically favoured. Chelation not only makes the complex more 

stable, but also forces the donor atoms to take up adjacent, or cis, sites in the resulting 

complex. Trans ligands are those that occupy opposite vertices of a complex. Werner first 

recognized that certain ligands affect the reactions of groups opposite to them in 1893 

and termed the principle "trans-elimination".6 Chernyaev later described the "trans-effect 

rule" based on studies of square planar Pt(II) complexes. The trans-effect rule described 

the property that certain ligands, L\ aided in the dissociation of a second ligand, L, trans 

to the first, and their replacement by an external ligand. Lt ligands were said to have a 

higher trans effect. 7 The trans effect occurs because two trans ligands compete with each 

other for electron density as they use the same metal orbitals for bonding. Ligands with 

high trans effect properties often have strong 0" interactions with the metal center (such as 

K, Me-, and SnCb-) or strong 1t interactions with the metal center (such as CO, C2H2, and 

(NH2)2CS).8 These ligands weaken the metal-ligand bonds trans to them as seen in the 

lengthening of the M-L distances, or changes in the M-L coupling in NMR spectroscopy 

or v(M-L) stretching frequency in IR spectroscopy.9 The trans effect is a kinetic 

phenomenon, different from the trans influence, which describes a change in the ground 

state thermodynamic properties of complexes with certain ligands. 1O Thus, by chelation 

of a bidentate ligand with differing heteroatoms in cis orientation, different trans effects 

can occur during catalysis. 
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1.1.1 Chiral Ligands and Complexes. 

Chiral ligands used in asymmetric synthesis can contain central, axial, or planar 

chirality, or a combination of these (Figure 2). 

NMe2 
PPh2 

A 

~B 
I 

Fe 

~ 
(R) 

A 

B--b 
I 

Fe 

~ 
(8) 

(central) (axial) (planar) 

Figure 2. Different categories of chirality. 

Bidentate chiral ligands coordinate to a metal center to form a chiral complex 

which may transfer its chirality to a substrate during a catalytic process. Enantiofacial 

differentiation can be enhanced by using bidentate ligands, as they display greater 

conformational rigidity since the chiral backbone forces the ligand into a single or 

restricted conformation. Chiralligands can induce asymmetry in a reaction through steric 

interactions between the ligand and the substrate, as well as by creating electronic 

asymmetry around a metal center through the presence of different donor atoms. 

Variation of these steric and electronic influences can affect the binding of substrates, and 

thus the stereochemical outcome of the reaction. II 

Transition metal mediated asymmetric catalysis has applications ranging from 

bench top research to the preparation of compounds on an industrial scale. In principle, 

the use of chiral ligands in synthesis enables the preparation of large amounts of chiral 

compounds from achiral precursors in a reliable and highly enantioselective manner, 
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generally in good yields and with only a very small amount of chiral catalyst required. 

Ideally, these chiral catalysts (or the chiral ligands used to prepare them) are readily 

accessible or commercially available. Additionally, asymmetric catalysis can be used to 

construct the skeleton of the target molecule, or to prepare optically pure starting 

materials that induce asymmetry in the remaining stereogenic centers of a complex 

target. I I 

Despite much progress in the field of asymmetric catalysis, the design of suitable 

ligands for a particular application still remains a challenging task. . The complexity of 

most catalytic processes prevents a purely rational design of chiral ligands. However, 

understanding of reaction mechanisms and how steric and electronic factors affect 

intermediates, identified through both analysis of experimental results and computational 

modeling, can allow for a semirational approach to ligand design. Moreover, the 

investigation of new ligands with frameworks that differ from previous cases may 

provide further insight and possibly catalysts that are able to surmount the limitations of 

known systems. 

1.2 P,N Donor Ligands. 

Aminophosphine, or P,N, ligands contain nitrogen and phosphorus donor atoms 

and are prominent bidentate ligands in many transition metal mediated synthetic 

processes. The 1t acceptor character of phosphorus stabilizes a metal center in low 

oxidation states and the 0' donor ability of nitrogen makes the metal more susceptible to 

oxidative addition reactions.3 The markedly different characteristics of nitrogen and 
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phosphorus provide a class of ligands that are electronically desymmetrized, allowing the 

possibility for preferential coordination of substrates to the metal center of their 

complexes. The combination of these two heteroatoms in a ligand motif can help to 

stabilize intermediate oxidation states or geometries formed during the catalytic cycle in 

which the substrate is transformed into the desired product. 12 

Many modifications can be made to alter both the steric and electronic 

characteristics of these ligands. For example, an additional stereogenic element can be 

created by having different groups on a donor atoml3 (for example see Scheme 6, Section 

1.2.1). Established chirality in the backbone can induce a preferential orientation of the 

different substituents on the donor atom upon binding to the metal. When adding an 

additional stereogenic element to an already chiral ligand, there is the possibility for 

match / mismatch interactions where selectivity can be enhanced or hindered by the 

additional stereogenic element. Bonding the phosphorus donor directly to a more 

electronegative atom such as oxygen or nitrogen (as in phosphinite or phosphoroamidine 

ligands) can lessen its electron donating ability while enhancing its 1t acceptor capacity, 

thereby enhancing the electrophilicity of the metal. Utilizing an imino rather than an 

amino group normally results in greater 0' donating capabilities making the metal more 

susceptible to oxidative addition reactions. These factors can create a greater electronic 

disparity between the donor atoms. 14 

P,N ligands can be split into three modules, the phosphorus moiety, nitrogen 

moiety, and backbone linker. The most popular and successful designs for P,N ligands 

feature an achiral phosphorus moiety, an achiral amino or imino nitrogen moiety, and a 

chiral backbone. The ability to modularly alter the structure of P,N ligands has made 
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them a popular ligand motif, as it allows for fine tuning of a generalized structure to suit a 

specific process or substrate. 

1.2.1 Amine N, Phosphine P Ligands. 

Kumada and Hayashi were the first to prepare and utilize chiral aminophosphine 

ligands with the planar chiral ferrocenes (S)-a-(R)-[2-diphenylphosphinoferrocenyl] 

ethyl dimethyl amine (PPFA) (1) and (R)-a-(S)-[2-dimethylphosphinoferrocenyl] 

ethyldimethylamine (MPFA) (2) (Figure 3)Y These ligands contained both planar and 

central chirality and were utilized in Rh-catalyzed hydrosilylations with low catalyst 

loadings (0.5 mol %) (Scheme 1).15 Although low to moderate enantioselectivities (up to 

49% optical purity) were obtained with these early P,N ligands, they demonstrated the 

utility of chiral aminophosphine ligands. For example, MPF A gave higher selectivity in 

the hydrosilylation of acetophenone (3 ~ 4) than diphosphine ligands of the time. I5 

1 2 

Figure 3. PPFA and MPFA ligands. 
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if 
3 

2. MeOH, W 

~NMe2 
Fe PPh2 

$ 2 

OH 

V 
4 

(89% yld, 49% op) 

Scheme 1. Rh-catalyzed asymmetric hydrosilylation using MPFA. 

Kumada and Hayashi later utilized central chiral P.aminoalkylphosphine (5) P,N 

ligands derived from chiral amino acids in Ni-catalyzed asymmetric Grignard cross 

couplings of I-phenylethylmagnesium chloride (6) and vinyl bromide (7).16 The best 

results were obtained with a t-Bu group as the substituent with (R) configuration, giving 

(R)-8 in 94% optical purity (Scheme 2). 

~M9CI + 

6 7 

"­Sr • 

(R)-8 

(96% yld, 94% op) 

Scheme 2. Ni-catalyzed asymmetric Grignard cross coupling with p. 
aminoalkylphosphine ligand. 

It was found that the larger the substituent at the chiral carbon atom, the higher the 

asymmetric induction: (R = t-Bu) > (R = i-Pr) > (R = CH2Ph) = (R = Ph) > (R = Me). It 

was also found that switching the positions of the phosphino and amino groups resulted 

in lower selectivity. Analogous diphosphines provided only racemic product, indicating 
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that the nitrogen substituent was crucial for asymmetric induction. Asymmetry was 

thought to be induced by the dissociation of nitrogen from the nickel complex (9 ~ 10) 

during the reaction to preferentially bind one enantiomer of the Grignard reagent, 

forming a diastereomeric transition state and fixing the conformation of the benzylic 

carbon (10 ~ 11) before reductive elimination gave the product and regenerated the 

catalyst (11 ~ 9) (Figure 4).16 

[ 
jPPh2)Ni~1 

R NMe2 Br 

.PhMeCHMgCI 

Ph,C~ 
Me" I 

H 

9 

j

PPh2"-. ~ 
N·/~ * I 

R NMe{ ';;C("Ph 

11 

I Me 
H 

Figure 4. Mechanism of Ni-catalyzed asymmetric Grignard cross coupling with ~ 

aminoalkylphosphines (adapted from ref 16). 

Kumada and Hayashi compared the ferrocenyl aminophosphine ligands in the 

nickel catalyzed Grignard reactions, obtaining up to 68% optical purity with PPFA (1, 

Scheme 3).17 It was found that the planar chirality was moro important to the selectivity 

than the carbon central chirality, the dimethyl amino group was required for high 

stereoselectivity, and the same type of mechanism was suggested (Figure 5).17 It was also 
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shown that ferrocene ligand 12 could facilitate this transformation in 65% optical purity, 

showing that the planar chirality of ferrocene can induce asymmetry without the added 

central chiral unit. 

~M9CI 
6 

+ 

7 

" Br 
NiCI2, Et20, -20°C or 0 °c 

• 

~NMe2 
Fe PPh2 

$ 
(>95% yld, 68% op) (>95% yld, 65% op) 

(S)-8 

Scheme 3. Ni-catalyzed asymmetric Grignard cross coupling with ferrocene ligands. 

PhMeCHMgCI 

13 

Ph" 
""C~ 

Me"-/ 

~Br 

H 

15 

~
~ PPh2" ~ 
,~. Ni ~ 
"." "-

R " NMe2 Br 
t \ 

R2 MgCI 
I 

H-C 
=.'Ph 
Me 

14 

MgCIBr 

Figure 5. Mechanism of Ni-catalyzed asymmetric Grignard cross coupling with ferrocene 

P,N ligands (adapted from ref 17). 
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Weissensteiner et al. 1S prepared planar chiral ferrocene ligands constraining the 

additional central chiral element within a ring (16), making the ligand less flexible and 

more bulky than PPFA. These were used in asymmetric Pd-catalyzed Grignard cross 

couplings resulting in increased selectivity of 79% ee for (R)-8 (Scheme 4). 

~M9CI + 

6 7 

" Br ~ I . 
.0-

(R)-8 

(95% yld, 79% ee) 

Scheme 4. Pd-catalyzed asymmetric Grignard cross coupling with constrained planar / 

central chiral ferrocene P,N ligand. 

Axial chirality is another form of chirality used in ligands, often achieved using 

the binaphthalene backbone or derivatives thereof, such as Hs-binaphthalene derivative 

17. Ligand 17 was found to have a larger bite angle than the fully aromatic binaphthalene 

analogue, and gave (S)-24 in 87% ee in the Pd-catalyzed asymmetric allylic alkylation of 

1,3-diphenylprop-2-en-I-yl acetate (18) with dimethyl malonate (Scheme 5).19 
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o 
o~ 

Ph~Ph 
18 

NMe2 
P(3,5-xylh 

17 

o 0 

MeO~OMe 
Ph~Ph 

(S)-19 
(99% yld, 87% ee) 

Scheme 5. Pd-catalyzed allylic alkylation with axial chiral P,N ligand. 

In addition to dimethyl amino substituted ligands, different substituents at nitrogen 

may be used to give an extra stereogenic element upon coordination to a metal. For 

example, Anderson et al. applied P.aminoalkylphosphine ligands with various nitrogen 

donor groups in Pd-catalyzed allylic alkylations (Scheme 6).13 It was found that the 

chirality in the backbone induced a preferential orientation of the amino substituents upon 

chelation to the metal, rendering the nitrogen atom stereo genic. This caused different 

diastereomers to be formed depending on the substitution at nitrogen. For example, when 

using identical amino substituents (ligands 20 (R=Me) and 21 (R=Ph)), the product of 

alkylation of (E)-1,3-diphenylpropenyl acetate (18) had (R) configuration ((R)-19), while 

(S)-19 was obtained when using ligands with two different amino substituents (ligands 22 

(R=Me, Ph) and 23 (R=Me, i-Pr)). This added nitrogen stereogenic element did not, 

however, enhance the enantioselectivity of the reaction - 62% ee for 20,92% for 21, 73% 

for 22, and 56% for 23, probably due to mismatch diastereomeric interactions. 
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o 
o~ 

Ph~Ph 
18 

20 
((R)-19, 

NaCH(C02Meh, 

[Pd(TJ3-C3H6)Clh, 
• 

20-23, THF, -50°C 

21 
((R)-19, 

o 0 

MeO~OMe + 

Ph~Ph 
(S)-19 

~ 
Ph-N PPh2 I 

Me 

91 % yld, 62% ee) 94% yld, 92% ee) 

22 
((S)-19, 

89% yld, 73% ee) 

o 0 

MeO~OMe 
Ph~Ph 

(R)-19 

~ 
;-Pr-N PPh2 I 

Me 
23 

((S)-19, 
89%yld, 56% ee) 

Scheme 6. Pd-catalyzed asymmetric allylic alkylation with P,N ligand with different N 

substituents. 

Restriction of the nitrogen donor within a ring has been used to orient substituents 

on the ligand and give rise to differing steric effects. Pyrrolidine ligands are the most 

common cycles used, working best with an aromatic backbone between the nitrogen and 

phosphorus atoms. For example, asymmetric Heck reactions were conducted in up to 

90% ee (Scheme 7) with pyrrolidine ligand 24.20 With the same ligand, Pd-catalyzed 

allylic alkylations were performed, again with excellent results, 90% ee for compound 19 

(Scheme 8)?1 With axial chiral pyrrolidine ligand 28, the silver-catalyzed allylation of 

benzaldehyde was achieved in 55% ee (Scheme 9)?2 

o o 

~ Pd(dbah, 24, (iPrhNEt, PhH 
+ Y . 

on 0 ~t 
26 ~~""I 

PPh2 r 24 

Et 

~Ph 
25 27 

(15% yld, 90% ee) 

Scheme 7. Asymmetric Heck reaction with pyrrolidine based P,N ligand. 
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o 
O~ 

Ph~Ph 
18 

Scheme 8. Pd-catalyzed allylic alkylation with pyrrolidine based P,N ligand. 

OH 

AgOTf,28 • r 
30 31 

(>99% yld, 55% ee) 

Scheme 9. Ag-catalyzed asymmetric allylation with axial chiral pyrrolidine ligand. 

Oxazolidine ligands are similar to pyrrolidine ligands yet provide a slightly 

different steric and electronic environment because of the added oxygen atom. Jin et al. 23 

used oxazolidine ligand 32 in Pd-catalyzed allylic alkylations, obtaining excellent 

enantioselectivities of 98% ee for 19 (Scheme 10). Imidazolidine ligands, with two 

nitrogen atoms in the ring were also evaluated in this reaction, again with excellent 

results, for example, providing (S)-19 in 98% ee with ligand 33.24 
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o 
O~ 

Ph~Ph 
18 

CH2(C02Meh, BSA, 

KOAc, [Pd(TJ3-C3H6)CI12, 

o 0 

MeO~OMe 
Ph~Ph 

(S)-19 

.. 
32 or 33, THF, 10°C or 0 °C 

~J 
Ph2P N. 32 

I '" P Me /- r 

() ¥e 

~N 
Ph

2
P N -)"",\ 33 

M~~ 
(98% yld, 98% ee) (>99% yld, 98% ee) 

Scheme 10. Pd-catalyzed allylic alkylation with oxazolidine and imidazolidine based P,N 

ligands. 

1.2.2 Imine N, Phosphine P Ligands. 

Sp2 -hybridized nitrogen donors are stronger electron donors than their sp3 

analogues (as there is more electron density on the nitrogen available for donation to the 

metal) and as such often provide for stronger bonding to a metal. Iminophosphine ligands _ 

34 were prepared by Hashimot025 and utilized in Pd-catalyzed allylic alkylations. The 

bulky mesityl analogue (Ar = Mes) was found to be the best ligand, giving (R)-19 in 94% 

ee. Ligand 34 was also used on the more difficult dimethyl substrate 35, giving (R)-36 in 

72% ee (Scheme 11).25 Similarly, Iwao developed iminophosphine ligands with bulky 

ferrocene substituents, with ligand 37 giving (S)-19 in 97% ee (Scheme 12).26 
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R=Ph,18 
R=Me,35 

CH2(C02Me)2, BSA, 

[Pd(1l3_C3Ha)Clh, 34, 
• 

o 0 

MeOVOMe 

R~R 
R=Ph, (R)-19 (98% yld, 94% ee) 
R=Me, (R)-36 (54% yld,72% ee) 

Scheme 11. Pd-catalyzed asymmetric allylic alkylation with iminophosphine ligand. 

o 
O~ 

Ph~Ph 
18 

CH2(C02Meh, BSA, 

[Pd(1l3_C3Ha)Clh, 37, 

LiOAc, Et20 

Ph 

• 

CC~ ~N~ o PPh ~e 
2 Q 
37 

o 0 

MeO~OMe 
Ph~Ph 

19 
(98% yld, 97% ee) 

Scheme 12. Pd-catalyzed asymmetric allylic alkylation with iminophosphine ligand with 

ferrocene substituent. 

Hayashi prepared analogues with planar and central chirality (38), and utilized 

them in the Rh-catalyzed asymmetric hydrosilylation of acetophenone, providing (S)-4 in 

90% ee27 (Scheme 13), a large improvement from the early MPFA ligand (2, Scheme 1, 

Section 1.2.1). 
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OH 
1. [(NBD)RhCI12, 38, Ph2SiH2 , THF .. ~ 

3 

2. MeOH, HCI(aq) 

~N~CF3 
Fe PPh2 LV 
~ 38 

(5)-4 
(90% yld, 90% ee) 

Scheme 13. Rh-catalyzed asymmetric hydrosilylation with a central and planar chiral 

ferrocenyl iminophosphine ligand. 

Axial chiral iminophosphine ligands have also been used. For example, 1-(2-

diphenylphosphino-l-naphthyl)isoquinoline (QUINAP) ligand 39 has been used by 

Knochel28 in the Cu-mediated one-pot three-component reaction of terminal alkynes (40), 

aldehydes (41), and secondary amines (42) to form synthetically important 

propargylamines (43) in up to 98% ee (Scheme 14). 

+ + CuBr, 39, 

toluene, 4 A MS 

40 42 

43 
(95% yld, 98% ee) 

39 
(QUINAP) 

Scheme 14. Cu-catalyzed synthesis of propargylamines with QUINAP ligand. 

Planar chiral ferrocenyl QUINAP analogues were also prepared by Knochel and 

utilized in Pd-catalyzed allylic aminations with ligand 44 providing (S)-46 in 83% ee 

(Scheme 15).29 
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o 
o~ 

Ph~Ph 
18 

o 
PhA NH2 45 

[Pd(YJ3-C3H6)Clh, 44, 

KH, THF, 40 °C 

~ --N 
PPh2 

F'e 

~ 44 

• 

o 
HNAph 

Ph~Ph 
(S)-46 

(80% yld, 83% ee) 

Scheme 15. Pd-catalyzed asymmetric allylic amination with ferrocenyl-QUINAP 

analogue. 

Similar in structure to the ,B-aminoalkylphosphine ligands (5, Scheme 2, Section 

1.2.1), ami dine ligand 47, based on the amino acid valine, was prepared by Morimoto et 

al. and utilized in Pd-catalyzed allylic alkylation of (E)-1,3-diphenylprop-2-enyl pivalate 

(49) giving 19 in 95% ee with (R) selectivity (Scheme 16).30 Zheng et al. prepared similar 

ferrocenylphosphine-amidine ligands, and obtained (S)-19 in 94% ee with ligand 48.31 

49 

CH2(C02Meh, BSA, 

[Pd(l]3_C3H6)Clb, 47 or 48, 
• 

LiOAc, CH2CI2 or KOAc, PhMe 

«R)-19, 
98% yld, 95% ee) 

Et 

~N-::::--"'NMe2 
Fe PPh2 

~ 48 

«S)-19, 
98% yld, 94% ee) 

(R)-19 

o 0 

MeO~OMe 
Ph~Ph 

(S)-19 

Scheme 16. Pd-catalyzed asymmetric allylic alkylation with amidine ligands. 
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As with amino nitrogen donor ligands, constraining the imino nitrogen within a 

ring changes the steric and electronic environment of the ligand. Oxazoline rings, such as 

in phosphinooxazoline (PHOX) ligands, are the most common and have become one of 

the most popular P,N ligand motifs. They wen~ introduced independently by Pfaltz32, 

Helmchen33, and Williams34 in 1993. In particular, the diphenylphosphinooxazolines (50, 

Figure 6) are highly modular and can be easily synthesized from commercially available 

amino acids. 

R 

Figure 6: Diphenylphosphinooxazoline ligand structure 

Since its introduction, many researchers have utilized this ligand motif in a large 

variety of catalytic processes. For example, Pd-catalyzed allylic substitution can be 

accomplished with a number of different nucleophiles in excellent enantioselectivities 

(Table 1).32 Ligand 50e was also applied successfully in Pd-catalyzed asymmetric Heck 

reactions in which only the kinetic 2,5-dihydropyran product ((R)-27) was obtained in 

excellent selectivity (97% ee) upon phenylation of 2,3-dihydrofuran (25).35 Other 

derivatives could also be prepared in good to excellent enantioselectivities (Scheme 17). 

It was speculated that the kinetic specificity was due to the n-complex between the 

PHOX-palladium hydride and the olefin (formed after the first jJ-hydride elimination) 
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being less stable than the corresponding complexes with other ligands, enabling 

dissociation to the product faster than insertion of the olefin into the Pd-H bond.35 

o 

O~ 
R~R 

R = Ph 18 
R = i-Pr 51 

[Pd(T]3(C3Hs)CI12, 50, 

BSA, KOAc, H-Nu 

H-Nu = H-CH(COOMeh 

Nu 

R~R 
19,52-54 

Yuo 
PPh2 ~J 

L R = Ph R = i-Pr H-Nu = H-CH(COMeh H-Nu = H-C(NHAc)(COOEth 

50 
(S)-19 (S)-52 R = Ph, (S)-53 . R = Ph, (R)-54 

R (% yld, % ee) (% yld, % ee) (% yld, % ee) (% yld, % ee) 

R=CH3 50a 98,89 91,93 98,84 97, 77 
R = CH2Ph 50b 97,97 92,92 95, 93 99, 91 
R = i-Pr 50c 98,98 88,94 98,92 94,96 
R= Ph 50d 99,99 93,89 98,97 98,97 
R = t-Bu 50e 94,95 88,96 96,94 99,96 

Table 1. Pd-catalyzed asymmetric allylic alkylations with various nucleophiles with 

phosphinooxazoline ligand SO (reproduced from ref 32). 
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0 nOD [Pd2(dbahdba] I 50e 0"'0 + 1 
.. 

0 ",-:::. i-Pr2NEt, THF, 70°C 
1",-:::. 

25 26 27 
(87% yld, 97% ee) 

0 + non [Pd,(dba),·dbal/50e 0· .. 0 .. 0 '7 
0 proton spong, PhH, 50 °C 

25 55 56 
(95% yld , 88% ee) 

on 

0(9 0 +00 [Pd2(dbahdba] I 50e ... 
0 ",-:::. ",-:::. i-Pr2NEt, PhH, 80°C 1",-:::. 

25 57 1",-:::. 

~O 58 

PPh2 ~J (95% yld , 95% ee) 

50e t-Bu 

Scheme 17. Pd-catalyzed asymmetric Heck reactions with phosphinooxazoline ligand 

50e. 

Additionally, these ligands have found application in Pd-catalyzed 

enantioselective Diels-Alder reactions, providing a high endolexo ratio (97:3) and the (S)-

endo-62 product in high enantioselectivity (99% ee) with complex 59 (Scheme 18).36 
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+ o 
60 61 

~HO 
o N~ 

lJO 

+ 

(S)-endo-62 
(76% yld, 99% ee) 

(S)-exo-62 

Scheme 18. Pd-catalyzed asymmetric Diels-Alder reaction with phosphine-oxazoline 

ligand. 

Several derivatives based on the phosphinooxazoline framework have been 

prepared. For example, planacchiral ferrocene analogues were prepared independently by 

Uemura3
?, Richards38

, and Sammakia39 in 1995 and shown to provide excellent 

enantioselectivities in many catalytic reactions40 such as Ru-catalyzed transfer 

hydrogenations (Table 2)41, Ir-catalyzed hydrosilylations (Table 3)42, and Pd-catalyzed 

asymmetric Heck reactions (Scheme 19).43 Axial chiral phosphinooxazoline 81 with 

binaphthalene backbone was used in allylic aminations with up to 99% ee (Scheme 20).44 

Possibly the largest application of the PHOX ligands continues to be in Ir-catalyzed 

asymmetric hydrogenation (see Section 1.3.5). 
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o 

~ 
R 64 

---~~i-pr 
~_ ~ '-'" ........ PPh3 

Fe P-Ru ¢ Ph2/\ 63 
CI CI 

OH 

• () 
R 65 

i-PrOH / i-PrONa 

R Time, h Product, % Yield %ee 

3 H 2 4 94 99.6 
64a a-Me 1 65a 99 99.9 
64b a-CI 1 65b 99 99.7 
64e m-Me 1 65e 98 99.9 
64d m-CI 2 65d 99 99.7 
64e p-Me 4 65e 98 99.3 
64f p-CI 2 65f 99 98.7 

Table 2. Asymmetric transfer hydrogenation with ferrocenyl phosphinooxazoline Ru 

complex 63 (reproduced from ref 41). 

23 



~)""i-pr PPh2 N ."Ph 

66 or 67 ~)-Ph 
68-72 

[lr(COD)Clh 73-77 Fe PPh2 Fe .. Q Q Ph2SiH2, Et20, 0 DC 66 67 

Substrate Ligand Reaction time Product Yield,% %ee 

68 
r:;APh 

66 20 h 73 ~Ph 95 85 

H 

Ph'llCH3 Phv CH3 

69 66 60 h 74 - 56 89 
N"'CH3 HN"'

CH3 

0 QH 

3 ci' 67 15 h 4 V 100 96 

0 OH 

70 oJV 67 15 h 75 ~ 100 92 

° QH 

QA o : 
71 67 15 h 76 U" 100 81 

0 QH 

72 if 67 15 h 77 U 100 84 

Table 3. Ir-catalyzed asymmetric hydrosilylations of imines and ketones with ferrocenyl 

phosphinooxazoline ligands 66 and 67 (reproduced from ref 42). 

(:f TlOD Pd2(dbab, 78 Ph/"ex + 1.0 .. 
benzene, NEt3, 80°C 

79 26 ~)"'t-BU 80 
(90% yld, 98% ee) 

Fe PPh2 

~ 78 

Scheme 19. Pd-catalyzed asymmetric Heck reaction with ferrocenyl phosphinooxazoline 

ligand 78. 
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o 

O~ 
Ph~Ph 

18 

Pd(TJ3-C3Hs)CI2, 81, 

2-(MeO)-C6H4CH2NH2' 

THF, 40°C 
.. 

o 
~J" ,,, P /- r 

PPh2 

81 

OMe 

H~~ 
Ph~PhV 

82 
(94% yld, 99% ee) 

Scheme 20. Pd-catalyzed allylic amination with axial chiral phosphinooxazoline ligand 

81. 

1.2.3 Imine N, Heteroatom Bound P Ligands. 

Placing an electronegative atom on the phosphorus donor atom increases its 1t-

accepting qualities. Most work in this area involves oxazoline nitrogen donor groups, and 

either nitrogen or oxygen substituted phosphorus donor groups. This often makes these 

types of ligands more effective than traditional phosphine ligands. For example, 

phosphinitooxazolines have been found to offer better substrate scope in Ir-catalyzed 

asymmetric hydrogenation than traditional PHOX ligands (see Table 6, Section 

1.3.5).45,46 Additionally, Richards used phosphinitooxazolines, such as ligand 83 in Pd-

catalyzed asymmetric allylic alkylation of 18 and obtained (S)-19 in excellent yield and 

96% ee (Scheme 21).47 Gilbertson prepared ligand 84 with a pyrrolidine-bound 

phosphorus donor atom. This ligand provided product (R)-19 in excellent yield and 94% 

ee (Scheme 22).48 
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o 
O~ 

Ph~Ph 
18 

o 0 

M~OMe 
Ph ~ Ph 

(5)-19 
(95% yld, 96% ee) 

Scheme 21. Pd-catalyzed asymmetric allylic alkylation with phosphinitooxazoline ligand 

83. 

o 

O~ 
Ph~Ph 

,18 

Y-i~ 
PPh2 i-Pr 84 

o 0 

MeoVOMe 

Ph~Ph 

(R)-19 
(96% yld, 94% ee) 

Scheme 22: Pd-catalyzed asymmetric allylic alkylation with pyrrolidine-bound phosphine 

oxazoline ligand 84. 

1.3 Catalytic Homogeneous Hydrogenation. 

Hydrogenation in organic synthesis involves the addition of two or more 

hydrogen atoms across a multiple bond. Hydrogen gas addition to an olefin is often 

termed H2-catalytic hydrogenation, while transfer of hydrogen from one molecule 

(usually an alcohol) to a double bond (usually a carbonyl) is termed catalytic transfer 

hydrogenation (Figure 7). In the absence of catalysts, molecular hydrogen is stable, with 

a bond energy of 104 kcal/mol, and does not react with organic molecules. However, in 

the presence of transition metals or their complexes, H2 can be activated to participate in 
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hydrogenation of unsaturated orgamc molecules. The nature and reactivity of the 

intermediate transition metal species depends on the central metal atom as well as the 

electronic and steric properties of attached ligands.49 

o 
~ 

H2(g), cat 

OH 

A ,cat 
• 

• 

Figure 7. Catalytic H2 and transfer hydrogenations. 

Alkenes that can give two enantiomers upon hydrogenation are termed prochiral 

alkenes. The two faces of the prochiral alkene can be defined as re or si; one face has a 

clockwise arrangement of substituents R, R', and alkene about the trisubstituted Sp2 

carbon (re), while the other face has a counterclockwise arrangement of the same 

substituents (si). Upon coordination with a metal complex, diastereomers are formed 

based on the face of coordination. Thus, when H2 is exclusively added from one face, one 

enantiomer is formed; when added form the other, the opposite enantiomer is formed 

(Figure 8).8 
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* R' MLn R\* \ 
C=CH2' • C=CH2 Ff / \ 

R ML n 
* 

H2 addition 
to re face 

R' \ 
H·.C-CH3 

R'-

R'>R, (R) 

+ 

1 

+ 

H2 addition 
to si face 

R' \ 
H 'C-CH3 
R~ 

R'>R, (S) 

Figure 8. Enantiofacial differentiation of alkenes during asymmetric hydrogenation. 

The first studies of homogeneous catalytic hydrogenation of C=C and c=o bonds 

were in the late 1960s to early 1970s using Wilkinson's rhodium complex 

(RhCI(PPh3)3).50 Hydrogenation has now become the most studied process in asymmetric 

catalysis and is the preferred catalytic method for the production of chiral compounds on 

an industrial scale. The first asymmetric reaction applied on an industrial scale was the 

Rh-catalyzed hydrogenation of 89 with the P-chiral diphosphine ligand DiPAMP (85), 

the key step in the preparation of the amino acid derivative L-DOPA (91) used to treat 

Parkinson's disease (Scheme 23). The hydrogenation proceeded in 95% ee with 

substrate/catalyst ratios of 20000:1.51
,52 Knowles received the Nobel prize in Chemistry 

in 2001 along with Noyori and Sharpless for this contribution to asymmetric catalysis.52 
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0 

qCHO 
0 

COOH 
AC20 -~ I 

HO .0 + CH2 .. N Ac I 

OCH3 
NHAc AcO 

vanillin 86 87 OCH3 88 

j H,O 

COOH 

~NHAC 
ACO~ : 

OCH 90 
3 (95% ee) 

COOH 

~NH' HO~ I 

~
COOH 

• H2 I NHAc 
[Rh(COD)(DiPAMP)]BF4 AcO .0 

< ~.Q OCH
3 

89 

(

•• OCH
3 

H3CO '. 

b~'o 85 

(R,R)-DiPAMP 

OH 

L-DOPA 91 

Scheme 23. Monsanto synthesis of L-DOPA. 

The largest scale enantioselective catalytic process in industry is the synthesis of a 

precursor to the herbicide (S)-metolachlor (95) by Xyliphos (92) Ir-catalyzed asymmetric 

imine hydrogenation with a TON of 2 000 000, TOF 600 000 I hour, and with 'more than 

10 000 tons prepared per year. This reaction is one of the fastest homogeneous systems 

known (SIC 106
) giving precursor 94 in 80% ee, a sufficient enantiopurity for this process 

(Scheme 24).53 
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MeO 

Me~ a ~ Me~ 
[lr(COO)Clh, 92 NH N~CI 

N • 

lY 
(8U)4NI, AcOH 

lY lY ~P(3,5-XYIYlh 
Fe PPh2 

95 93 $ 94 
92 (80% ee) 

Scheme 24. Key asymmetric hydrogenation step in the synthesis of (S)-metolachlor. 

1.3.1 Structural Types of Alkenes in Asymmetric Homogenous Hydrogenation. 

Alkenes can be divided into several different categories - functionalized, largely 

unfunctionalized, and unfunctionalized (Figure 9).54 Often certain catalysts will work 

well for one class of olefin, but not for another. Functionalized olefins, including a,fJ-

unsaturated carboxylic acids and amides, have functional groups that often bind to metal 

centers and orient the substrates in the catalytic intermediates. Largely unfunctionalized 

olefins, including a,fJ-unsaturated esters, contain a functional group that is directly 

conjugated to the alkene but that does not coordinate to the metal center. 

Unfunctionalized olefins involve functional groups that do not coordinate to metal 

centers, nor contain polarized double bonds, and include those with aromatic or alkyl 

substituents. A large portion of the useful largely unfunctionalized alkene substrates for 

asymmetric hydrogenations are tri- and tetra-substituted alkenes.54 
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"Functionalized" alkenes 
(can bind to metal via functional groups) 

~OR 
"Largely unfunctionalized" alkenes 

(polarized alkene, poor binding to metal) 

"Unfunctionalized" alkenes 
(no polarization, no binding to metal) 

Figure 9. Classes of alkenes used in asymmetric iridium catalyzed hydrogenations. 

1.3.2 Iridium-Catalyzed Homogeneous Hydrogenation. 

Iridium complexes were first discovered to promote catalytic hydrogenation by 

Crabtree and Morris in 1977.55 They utilized a cationic iridium complex composed of 

tricyclohex ylphosphine, pyridine, and cyclooctadiene ligands, with a 

hexafluorophosphate (PF6) counterion (96, Figure 10). Reactions were performed in non-

coordinating solvents such as dichloromethane.55 

96 

Figure 10. Crabtree and Morris' cationic iridium complex. 
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Several factors were found to be crucial for the iridium complexes to be active. In 

particular was the electrophilic nature of the cationic complex, which can be affected by 

the number and identity of ligands associated with the metal center. 55 Other important 

factors included the use of non-coordinating solvents and bulky, weakly coordinating 

anions. Coordinating solvents and stronger anions (such as halides) were found to form 

complexes that were too stable to promote hydrogenation (i.e. dissociation of any ligands 

needed to create a vacant site for the substrate does not occur).55,56 By combining non-

coordinating solvents with non-coordinating counterions, as well as the COD ligand 

(which can be easily released from the Ir complex via hydrogenation thus irreversibly 

providing vacant sites), active iridium complexes were developed. Catalysts with two 

pyridine ligands were found to be inactive, while those with two phosphine ligands were 

found to be less active than the mixed pyridine/phosphine complexes which exhibited 

high TOFs, particularly for hindered (e.g. tetrasubstituted) alkenes (Table 4 and Figure 

11).56 While these initial complexes were achiral, they showed how tremendously 

effective iridium(I) was at catalyzing this class of reaction. 

catalyst precursor temp,OC solvent ~ 0 () ~ 
[lr(COD)PCY3(py)]PFe 0 CH2CI2 6400 4500 3800 4000 
[lr(COD)(PMePh2h]PFe 0 CH2CI2 5100 3800 1900 50 

0 Me2CO -10 0 0 0 
[Rh(COD)(PPh3h]PFe 25 CH2CI2 4000 10 0 
[RuHCI(PPh3bl 25 CeHe 9000 7 0 
[RhCI(PPh3bl 25 CeHe / EtOH 650 700 13 0 

0 CeHe/ EtOH 60 70 0 

Table 4. Turnover frequencies (mol substrate reduced (mol catalystr J h- J
) for several 

olefins with various catalysts (reproduced from ref 56). 
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Figure 11. Hydrogen absorption curves for several alkenes with [Ir(COD)(Pi-Pr3)(py)]PF6 

(rates expressed in mol H2 (mol Irrl h- l) (used with permission from ref 56). 

Unfortunately, Crabtree's catalyst suffered from deactivation after, or in some 

cases before, full conversion was reached. Deactivation was found to occur via the 

formation of trimers of the catalyst (Figure 12). Crabtree stated that "the fact that the 

deactivation products are polynuclear clusters suggests that by keeping the catalyst 

species apart from one another, deactivation can be prevented or at least slowed down. 

One effective method is simply to inject a dilute catalyst solution dropwise into the 

reaction vessel as the hydrogenation proceeds. Choosing ligands so large that they 

prevent dimerization also works, but at the cost of almost complete loss of activity".56 
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31Ir(()OdJLL'JP}<~6 + 10Hz ..... 
1) 

[(H~LL'Ir)1l(P:3·H)JPf$ + HPF6 .;,. Scoa 
l' 

L' = pyridine; L =: P·i-Pr3, PCY3 

Figure 12. Structure of Crabtree deactivated complexes (used with permission from ref 

56). 

Suggs and Crabtree demonstrated the usefulness of these iridium complexes in 

hydrogenation of hindered steroidal alkenes. Several ~4-3-ketosteroids could be 

hydrogenated to the desired 5a-3-ketosteroids (Table 5).57 Heterogeneous catalysts gave 

mixtures of the 5a- and 5,B-steroids, with the undesired 5/3 isomer predominating. 

Wilkinson's catalyst (RhCl(PPh3)3) did selectively hydrogenate from the a face, but the 

reduction required long reaction times and yields were low.58 Consequently, 

[Ir(COD)PCY3(py)]PF6 showed higher activity than Wilkinson's catalyst while retaining 

the 5aselectivity, providing the steroids in good to excellent yields. 
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Substrate Product Yeild 

o o 

97 100 
73 

o o 

o o 

70 

98 101 

o o 
H 

o o 

90 
99 

Table 5. Steroid derivatives reduced with Crabtree's iridium complex. 

1.3.3 Further Development of Iridium Catalysts. 

Subsequent studies have focused on the preparation of chiral bidentate P,N 

ligands for use in asymmetric applications. Iridium complexes with P,N ligands represent 

a class of catalysts that significantly expand the application range of asymmetric 

hydrogenation. Iridium complexes are advantageous over rhodium or ruthenium 

complexes because they are generally more stable to oxidizing conditions that normally 

deactivate the latter. Additionally, in contrast to chiral rhodium- or ruthenium-phosphine 

catalysts, iridium catalysts do not require the presence of a polar functional group 

conjugated to the C=C double bond, although these functionalized alkenes can be 
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hydrogenated as well. This makes the application range of iridium catalysts largely 

complementary to chiral rhodium and ruthenium catalysts.59 

Pfaltz expanded the field of Ir-catalyzed asymmetric hydrogenation with the 

discovery that the BArF counterion {tetrakis[3,5-bis(trifluoromethyl)phenyl]borate} (103) 

(Figure 13) made iridium complexes much more active, air and moisture stable, and less 

prone to deactivation prior to full conversion of the 0lefin.6o 

Figure 13. BArF counterion. 

Pfaltz further showed that the reaction kinetics, and thus the catalytic activity and 

productivity of PHOX-iridium complexes, were largely influenced by the counterion. The 

reaction rate for methyl stilbene hydrogenation was found to decrease strongly over the 

conversions were found with the aluminate, BArF-, and perfluorotetraphenylborate 

anions, while 50% conversion was observed with the hexafluorophosphate anion. High 

turnover frequencies were found with the aluminate, BArF-, and perfluorinated 

tetraphenylborate anions with [AI{OC(CF3)3}4r being -10% faster than BArF-, and the 

[B(C6F5)4r found to be -17% slower than BArF-.1t was also observed that the aluminate, 
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BArF-, and [B(C6FS)4r salts remained active after full conversion of the substrate was 

reached, while the PF6 - salt had lost its activity.61 

Following a short induction period involving gas transfer to the liquid phase and 

generation of the active catalyst by hydrogenation and dissociation of COD, a linear 

uptake of hydrogen was observed until the reaction was complete. Kinetic data showed 

that there was an approximately first order rate dependence on the hydrogen pressure, 

indicating that dihydrogen is involved in the rate-determining step.61 It was also shown 

that at low alkene concentrations, a rate order of approximately one was observed for the 

PF6- salt, suggesting that the alkene is involved in the rate-determining step with PF6-

complexes. This was not the case for the BArF- salt. This data suggests that the 

counterion effect was due to the significantly faster reaction of the alkene with the BArF­

containing catalyst compared to the PF6- salt. Thus, stronger coordination to the PF6-

counterion blocks coordination of the alkene substrate to iridium.61 Crabtree's initial 

complex became even more active with the BArF- counterion, and the deactivation 

problems observed with the PF6- counterion were eliminated.62 

Pfaltz also showed that enantioselectivity does not vary during the reaction. An 

experiment where several samples were taken throughout the reaction (ranging from 9 to 

84% conversion) was conducted, and showed that the enantiomeric excess remained 

constant throughout the reaction. Additionally, the effect of a chiral anion in asymmetric 

hydrogenation of methyl stilbene was examined. Complex 104 with the chiral anion L1-

TRISPHAT and achiral cation produced product in racemic form. Conversely, complex 

105 with L1-TRISPHAT anion and chiral cation provided product in the same 
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enantioselectivity as the corresponding BArp -complex (Figure 14), thus indicating that it 

was the ligand chirality that determined the enantioselectivity of the reaction.61 

+ 

~o N-'! 
Ph2P, / ~ 
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CI*CI 0::::"" CI 
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CI ~ \ 

CI::o-... CI 

CI 

105 

Figure 14. Complexes containing chiral L1-TRISPHAT anion with achiral (104) and chiral 

(105) cations. 

1.3.4 Mechanistic Studies of Ir-Catalyzed Hydrogenation. 

The earliest mechanistic studies of iridium catalyzed hydrogenation were 

conducted by Crabtree et al. who used low temperature NMR spectroscopy to identify 

intermediates.63 The mechanism of hydrogenation involves the oxidative addition of 

dihydrogen to the square planar Ir(l) precatalyst to provide the thermodynamically and 

kinetically more stable octahedral Ir(III) dihydride species (101, Figure 14). Hydrogen 

oxidatively adds two hydrides trans to the electronically more donating group (pyridine 

in this case), and cis to the olefin group (whether that be the initial COD ligand or the 

substrate alkene) in order to achieve co-planarity.63c As hydride is a strong cr donor, the 

two hydrides do not occupy trans positions to one another, nor do they occupy sites trans 

to the next strongest trans effect ligand, the phosphine,64 further explaining the preference 

38 



for species 106. Crabtree and Morris showed that these octahedral dihydride complexes 

could be formed reversibly if hydrogen was added and then quickly removed from the 

system at low temperature.63c Also, dihydride intermediates could be identified by low 

temperature NMR spectroscopy (Figure 15). In the proton NMR spectrum (CD2Ch at -80 

°C), HA appeared as a doublet at -18.0 ppm and HB as a doublet at -12.7 ppm, with 

coupling constants of 18 and 20 Hz, respectively, consistent with cis phosphorus-hydride 

coupling. The identities of HA and HB were established based on chemical shifts, based 

on the effect of the ligand trans to them. Inequivalence of the COD vinyl protons was 

also observed, further confirming the stereochemistry of species 106 seen in Figure 15.63c 

[lr(COD)PCY3(py)t -PF6 + COD + 2 H2 

96 

+ 

PF6 + COE 

107 

Figure 15. Crabtree's dihydride complex (measured at -80°C in CD2Ch) (reproduced 

from ref 63c). 

Pfaltz et al. also conducted low temperature NMR studies with a 

[Ir(PHOX)COD]BArp catalyst and found that a single olefin dihydride intermediate was 

formed at -40 °C in THF.65 The addition of H2 was highly stereos elective, resulting from 

both steric and electronic influences of the PHOX ligand. Two new signals appeared in 

the hydride region at -12.7 and -15.6 ppm, with coupling constants to phosphorus of 

approximately 20 Hz (again consistent with cis coupling), represented by structure 111 in 

Figure 16. Isomer 111 is favoured both electronically and sterically. Dihydrogen addition 
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to this face 'provided a structure with the least amount of steric strain between the 

che1ating COD and PHOX ligands. Additionally, in accordance with Crabtree's 

observations, addition of dihydrogen occurred trans to nitrogen.63b
,c This structural 

isomer was also confirmed by 2D-NMR experiments where NOE contacts between the 

hydride in the apical position (HI) and both the isopropyl hydrogen (H3) and the ortho 

hydrogen on the P-phenyl ring (H5) were observed (Figure 17).65 

108 109 110 111 112 

... ..... L 
~-- --- ~, ~~.-,~'~~'~·· ~I ~, ~~,~r-~' ~~'~I ~'~~' ~I~~~'~'-~, ~~ 

~ 12 _5 ·13.0 ~Lt5 .. !.iI ,Q .. 14-..\ .. 15.0 wI5.,'lj 

Figure 16. Pfaltz's dihydride complex (measured at ---40 °C in d8-THF) (used with 

permission from ref 65). 

i H1 H2 ~ 
ppm~" ..... ,~-............,...,.._ ........ ___ jL-
7 . S· ~ l H5 H6 -~-== 

~ '] . 0 
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Figure 17. NOE observations and spectrum for dihydride intermediate 111 (used with 

permission from ref 65). 

These structures were also studied via computational modeling (DFT 

calculations) where it was predicted that experimentally observed isomer 111 was 

thermodynamically the most stable isomer (Figure 18), and that the ligand played a 

crucial role in the geometry of the Ir-hydride complexes. The +4.9 kcal/mol energy 

difference between isomer 111 and 112 was explained by unfavourable steric interactions 

between the COD ligand and the oxazoline portion of the ligand. The + 10.6 kcal/mol 

energy difference between isomer 111 and 109 was explained by the unfavourable 

coordination of the hydride trans to phosphorus instead of nitrogen. Isomer 110 was both 

sterically and electronically disfavoured.65 
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Figure 18. Calculated energies for dihydride species (used with permission from ref 65). 

No spectral changes were observed upon slowly warming the solution of catalyst 

from -40 to 0 °C in the absence of hydrogen, indicating that the kinetically preferred 

product was also thermodynamically favoured. Upon warming from -40 to 0 °C in the 

presence of hydrogen, gradual consumption of isomer 111 was observed, accompanied 

with formation of solvated complexes 115 and 116 and free cyclooctane, confirming 

hydrogenation of the COD ligand (Figure 19).65 These isomers were established based on 

chemical shifts (-17 and -29 ppm), coupling constants (iw
31

p -19 Hz), and NOE 

observations. The highly negative chemical shift of one hydride ligand indicated that it 

was located trans to a weak ligand, the coupling constants are consistent with cis-

phosphine coupling, and complex 115 has an NOE contact between the apical hydride 
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and the hydrogen on the isopropyl substituent (Figure 20).65 It should be noted that the 

NMR reactions were run in [Ds]THF, a more coordinating solvent than used standard 

catalytic conditions, as attempts to follow the reaction under H2 in CD2Ch were 

unsuccessful and a complex mixture of hydrido species observed which could not be 

analyzed. Pfaltz later stated that an iridium dihydride solvate species had been 

characterized in dichloromethane, but no experimental details or discussion of structure 

have been published to this point.66 

113 114 

115 

H~C~F, ...... H ~.I 
.ollifT 

~ 
..... P.P.h.2 
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s 

115 
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115

1 
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__ , .... _ ..... i ~""'...,.. .... ______ . i _________ ....... Il _ __ 0<0jr ........... ~L6 
· 18..0 ·19.5 -':11.0 -2,2.5 · 25.5 -27.0 -28.5 
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Figure 19. Pfaltz's solvated (THF) hydride complexes (used with pelmission from ref 

65). 
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Figure 20. NOE observation for dihydride intermediate 115 (used with permission from 

ref 65). 

These complexes were again studied computationally with methyl chloride 

molecules used to simulate the dichloromethane generally used as solvent in actual 

hydrogenation reactions, and again the predicted lowest energy conformation was 

consistent with the main observed isomer, 115 (Figure 21).65 
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(kcallmol) 
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Figure 21. Calculated energies for solvated (CH3CI) complexes (used with permission 

from ref 65). 
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Once transfer of hydrogen to the COD ligand and oxidative addition of another H2 

molecule has occurred, two open coordination sites are left, which are subsequently 

occupied by solvent to produce species 117. Both the oxidative addition and solvent 

coordination steps were found to be energetically favoured in calculations by Brandt.67 

Dissociation of solvent with simultaneous coordination of alkene gave an intermediate 

Ir(IlI)-dihydride-alkene complex with olefin coordinated trans to the stronger trans effect 

terminus, the phosphine donor group (118 or 122, Figure 22).66,67 The trans effect occurs 

because two trans ligands compete with each other for electron density as they use the 

same metal orbitals for bonding. Thus, trans ligands can exert an effect on one another 

dictating the order in which ligands bind or are displaced (kinetic effect - see Section 

1.1). The order of trans influence for phosphines is as follows: P(OMe)Ph2 > PPh) > 

P(Me)Ph2 > PEt) > P(i-Pr)) > PCY3.68 

Following coordination of the alkene, two pathways have been studied. The first 

follows a similar mechanism as rhodium diphosphine catalyzed hydrogenation of 

alkenes,69 and involves Ir(I) / Ir(IIl) intermediates (Figure 22, left). In this mechanism, 

transfer of one hydride to the alkene via 1,2-hydride migratory insertion occurs giving an 

Ir(IlI) ethane complex (119). A coplanar M(C=C)H system is required in order for 

insertion of the coordinated olefin into the M-H bond.7o After this, transfer of the second 

hydride with simultaneous dissociation of the alkane (reductive elimination) gives an Ir(I) 

species (120) which undergoes solvent coordination and rapid oxidative addition of 

dihydrogen to reform the active Ir(IlI) solvated dihydride species (117). Alternatively, an 

Ir(IlI) / Ir(V) catalytic cycle has been proposed based on computationally studies (Figure 

22, right).67 Dihydrogen and substrate alkene coordination to intermediate 117 with 
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dissociation 'of two solvent molecules, forms Ir(III) species 121 with ,,2 coordinated 

dihydrogen.67 Migratory insertion of the alkene into the axial Ir-H bond accompanied by 

simultaneous oxidative addition of the attached H2 gives Ir(V) complex 122. This 

complex rapidly undergoes reductive elimination of the alkane to produce Ir(I1I) 

dihydride species 123, and ligand substitution of the alkane with solvent reforms Ir(III) 

dihydride solvent species 117. Both of these mechanisms may be active during 

hydrogenation, especially as different factors will influence the transition states involved. 

These include the temperature of the reaction, the hydrogen pressure used, the catalyst 

loading, the concentration of both substrate and catalyst, the solvent, and the substrate for 

hydrogenation.71 
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C
H 

~~,\pl+ H H
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H l + H l+ H, H l + 
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~ H ~+ 
~III~~ 

H ~+ ~ N"I"'P NI'I'r" P 
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Figure 22. Ir(I) / Ir(III) (left) and Ir(III) / Ir(V) (right) catalytic cycles. 
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The origin of enantioselectivity was found to depend on a combination of two 

factors, the facial selectivity of the alkene upon complexation with iridium, and the 

relative rates of the hydride migratory insertion step. Olefin coordination can occur either 

in the plane of the ligand (i.e. trans to the ligand plane) or in the axial position (i.e. cis to 

the ligand plane). Calculations by Brandt67 and Burgess and Hall72 have shown that the 

olefin preferentially lies in the equatorial plane. Upon coordination in the equatorial 

plane, the alkene is cis to the nitrogen group (which is generally the terminus with the 

bulky chiral group), and as such the alkene prefers to bind with its smallest substituent 

pointing toward the bulky group, with larger groups preferring unhindered regions 

(Figure 23). 67,72,73 Having steric bulk on phosphorus can also aids in selectivity by 

forcing the more substituted carbon of the alkene trans to phosphorus. 

Hindered 
Match 
Favored 

Alkene 
Re-side 
Coordination 

Open 

Empty catalyst 

Alkene 
Si-side 
Coordination flMs-match 

Unfavored 

Figure 23. Steric influence on enantioselectivity (used with permission from ref 73). 

In the transition state for the hydride migratory insertion step, the olefin becomes 

tilted towards the hydride. The hydride addition becomes sterically favoured if the olefin 

is tilting away from the ligand bulk, and disfavoured if tilting toward the ligand bulk.74 

Additionally, while non-coordinating functional groups do not direct hydrogenation by 

chelation as with rhodium and ruthenium catalysis, they have been found to influence the 
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stereoselectivity by polarization of the double bond.74 Hydride addition then becomes 

preferentially selective towards the ~ carbon (electronically favoured). These steric and 

electronic factors during hydride insertion can work synergistically or counteract each 

other (Figure 24). 

Alkene polarization adds a component of 
direction in migratory insertion step 

Semi­
hindered 

Open 

Catalyst with coordinated 
polarized olefin 

Semi­
hindered 

Open 

Sterical match, 
electronical mis­
match. 

Empty catalyst Sterical and 
electronical match. 

Figure 24. Steric and electronic influences during enantiodetermining migratory insertion 

step (used with permission from ref 73). 

For example, Andersson has shown that hydrogenation of p-methyl cinnamate 

was both sterically and electronically favoured, while hydrogenation of the a-substituted 

ester was sterically favoured, but electronically unfavoured. Computational modeling of 

the enantiodetermining migratory insertion transition states with Andersson's thiazole 

complex explained the levels of enantioselectivities and why higher levels of selectivity 

were obtained with p-substituted cinnamates (Figure 25).73 
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A (0.0 keat) B (12.7kcal) 

C (0.0 kcal) D (4.4kcaJ) 

Figure 25. Calculated transition states for migratory insertion: A - sterically and 

electronically favoured hydride addition to the fi-carbon of trans-fi-methyl cinnamate; B 

- sterically and electronically un favoured hydride addition to the a-carbon of trans-fi­

methyl cinnamate; C - sterically favoured, electronically unfavoured hydride addition to 

the a-carbon of trans-a-methyl cinnamate; D - sterically unfavoured, electronically 

favoured hydride addition to the fi-carbon of trans-a-methyl cinnamate (used with 

permission from ref 73). 
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1.3.5 Applications of Ir-Catalyzed Hydrogenation. 

There are numerous chiral ligands that have been employed in Ir-catalyzed 

hydrogenation with excellent results (several examples are given in Figure 26).75 When 

new ligands are prepared, they are tested against several standard substrates for both 

activity and selectivity. Some of these substrates are shown in Figure 27, and include 

methyl stilbenes (124), alkyl substituted alkenes (125, 126), trisubstituted cyclic alkenes 

(127), a,f3-unsaturated esters (128), and allylic alcohols (129). In general, different 

substrates require different ligands for optimum enantioselectivity, while tetrasubstituted 

and purely alkyl substituted olefins remain difficult to hydrogenate even with the best 

ligands. Additionally, aromatic substituents attached to the C=C bond seem to have a 

beneficial effect on enantioselectivity, and thus these are often present in the standard 

substrates.59 p-Methoxy phenyl is also a common substituent as it aids in 

enantioselectivity determination by chiral stationary phase HPLC or GC. 

/PPh2 W ~>"R - o .b .b I N 

O}-Ph II Ar2P Fe PPh2 
Ph, .. S=N PPh2 ~ "8

4 
I U -

Andersson Bolm R Zhou 

~o Bn Bn OR 
~NMe2 OX,('O ~ I \ # Fie PPh2 

PAr2 ~J PAr2 N=\ Fe PPh2 N ~ ~ R ~ R 

Pfaltz Knochel Metallinos 

Figure 26. P,N ligands used in asymmetric Ir-catalyzed hydrogenation. 
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'0 
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Figure 27. Standard test substrate alkenes for asymmetric Ir-catalyzed hydrogenations. 

Several catalysts exist that can hydrogenate olefins in Figure 27 with near 

quantitative yields and high enantioselectivities. A few representative examples are given 

in Table 6.76 

~o ~o ~)" 'Me ~ ,N 0 0 

~J Ph2P ~J Fe PPh2 I~.J 
(O-tol)2P '. "t B 

~ (o-tolhP '., 

PHOX 't-Bu NeoPHOX - u FcPHOX SimplePHOX t-Bu 
130 131 132 133 

124 r 97 97 89 98 
I~ 

.0 

125 dv MeO 1 .0 
61 89 91 

128 ~Co,Et 84 95 82 94 

1.0 

129 ~OH 96 94 99 97 

Table 6. Selectivities of several chiral catalysts (reproduced from ref 76). 
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The development of the PHOX and phosphinitooxazoline ligands along with the 

discovery of more active iridium complexes using the BArF counterion sparked vast 

interest in the area of asymmetric iridium catalyzed hydrogenation. Many new chiral P,N 

ligands are introduced every year by various groups employing modifications of this and 

other structural motifs. No one ligand is effective for every substrate, thus the search for a 

catalyst with a wide or complementary substrate range is ongoing. Several types of 

functionalized and unfunctionalized alkenes can be hydrogenated with excellent turnover 

frequencies (> 5000 h- I
) and enantioselectivities, while some improvement is still needed 

with tetrasubstituted olefins. New substrate classes for which there have previously been 

no suitable catalysts are frequently being reported with good conversions and 

enantioselectivities. These substrates are often key intermediates in the synthesis of 

complex molecules. For example, Pfaltz reported the hydrogenation of terminal 

alkenes,77 purely alkyl substituted alkenes,78 and tetrasubstituted alkenes79 in 2005,2006, 

and 2007, respectively, using oxazoline or pyridine derived P,N ligands (Figure 28). Full 

conversions and high selectivites were found with the terminal and alkyl alkenes, while 

varying conversions, and moderate to high enantioselectivities were obtained with 

tetrasubstituted alkenes. 
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Figure 28. Hydrogenation results of terminal, purely alkyl-substituted, and 

tetrasubstituted alkenes. 

7-Pr 

Andersson reported the hydrogenation of diaryl substituted alkenes in 2009, 

providing products which are prevalent in medicinal chemistry. His thiazole based P,N 

ligand (144, Figure 29) was able to achieve high conversions and excellent 

enantioselectivities for a broad range of diaryl alkenes, with some limitations and high 

pressures and temperatures needed in some cases.80 Andersson also applied the same 

thiazole catalyst in the hydrogenation of trifluoromethyl substituted alkenes, products of 

which have applications ranging from agrochemical to pharmaceuticals and materials 

chemistry. Products were obtained in high enantioselectivity, although high pressures 

(100 bar) were needed for good conversions (Figure 29).81 Other uncommon classes of 

hydrogenation substrates include quinolines by Zhou,82 N-protected indoles by Pfaltz,83 
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chromenes by Pfaltz,84 as well as a,p-unsaturated ketones,85 amides,86 and carboxylic 

acids.87 

Ph Ph Ph 
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1.0 1.0 1.0 

148 149 150 
94% cony 87% cony 85% cony 
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Figure 29. Hydrogenation results of diaryl- and trifluoromethyl-substituted alkenes. 

Iridium catalyzed asymmetric hydrogenation using P,N ligands has been used in 

numerous asymmetric total syntheses of natural products and drug leads. One of the 

earliest examples was Pfaltz's synthesis of lilial in 1998. Lilial (154) was obtained in 

94% ee and 53% overall yield in two steps from allylic alcohol 152 (Scheme 25).88 In 

2006, Pfaltz synthesized y-tocopheryl acetate via hydrogenation of triene 155, a rare 

example of hydrogenation of a purely alkyl substituted alkene (Scheme 26).89 The 

tocopherol family of molecules are the main components in vitamin E and are 

biologically and economically important fat-soluble antioxidants. In the reaction, three 

c=c bonds are hydrogenated with two new stereocenters created. When starting with the 

two prochiral double bonds in the (E) configuration (155), the expected sense of 
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induction will be either (R,R) or (S,S), depending on the configuration of the catalyst 

used. Using pyridine~phosphinite ligand 135, the natural (R,R,R)-tocopheryl acetate 156 

was obtained in 98% dr and nearly quantitative conversion from triene 155. Thus, 

asymmetric iridium catalyzed hydrogenation provides a highly effective stereoselective 

route to this important class of bioactive antioxidants with installation of the R,R 

configuration established in one step.89 

~OH 
~ I , 

t-8u 

152 

2mol% 

50 bar H2 
CH2CI2 

(95%) 

151 
(Y'YOH 

t-8u ~ = 

t-8u 

153 
(94% ee) 

PCC 

CH2CI2 

(56%) 

~. ~ CHO 
~= 

154 
(53% overall yield 

94% ee) 

Scheme 25. Asymmetric synthesis of lilial using Ir-PHOX complex 151. 
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155 

1 mol% [lr(123)(COD)]BArF ?iQ~ 
50 bar H2, CH2CI2 (o-tolh P N.o 
(> 99% cony) 

Ph 
135 

156 

(>98% RRR; <0.5% RRS; <0.5% RSR; <0.5% RSS) 

Scheme 26. Asymmetric synthesis of y-tocopheryl acetate 156. 

A further example was given by Pfaltz in 2009, where he utilized asymmetric 

iridium hydrogenation as the key step in the synthesis of (+)- and (-)-mutisianthol, a 

phenolic sesquiterpene with moderate antitumor activity (Scheme 27).90 Utilizing two 

different catalysts (157 or 158), both enantiomers of intermediate 160 could be obtained 

after asymmetric hydrogenation of trisubstituted cyclic olefin 159. From here, selective 

oxidation of the benzylic position, followed by reduction/dehydration provided 

intermediate 162. This intermediate was then subjected to a ring contraction reaction 

using thallium(III) trinitrate (TTN) to give the aldehyde intermediate 163. This 

intermediate underwent Wittig olefination, followed by demethylation to affor.d (+)- and 

(-)-mutisianthol (164) in good overall yield and selectivity. As seen previously, 

asymmetric iridium catalyzed hydrogenation proved to be a vital step in the synthesis to 

set the initial stereochemistry of the molecule.91 
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AN 

(- )-162 
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Me)CQ0: 

1 . 
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1) NaBH4 

2)p-TsOH Meo~ 
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(+)-161 0 (+)-162 

Me:oj 1) >=PPh3 
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I,,;;;:. 
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o ·C, MS 3A 2) NaSEt, DMF I,,;;;:. 

(-)-162 .. 
15 min (- )-163 tHO (83%) 

(-)-164 ~:r-(74%) 
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TTN, MeCN Me:cq 1) >=PPh3 
80 % eel : 

o ·C, MS 3A HO 
(+)-162 .. 

I,,;;;:. 
(86%l 

15 min 
2) NaSEt, DMF 

(80 %) 
(+)-163 CHO (77 %) 

(+)-164 
(21 % overall yld 

90 % eel 

Scheme 27. Total synthesis of (+)- and (-)-mutisianthol. 
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1.4 Planar Chiral Ferrocene Ligands. 

1.4.11,2-Substituted Planar Chiral Ferrocenes. 

Ferrocenyl compounds substituted with different groups at the 1 and 2 positions 

exhibit planar chirality due to the loss of both the cry plane of symmetry and inversion 

axis, and as such may be synthesized in enantiopure form.92 The absolute configuration is 

assigned by looking along the Cs axis of ferrocene with the more substituted ring directly 

towards the observer (Figure 30). When R1 > R2, the compound has (R) planar chiral 

configuration; when R2 > R I , the compound has (S) planar chiral configuration.93 

viewed from top 

J C, axis 

~R1 
Fe R2 

¢ 
If R1 > R2 , R configuration 
If R1 < R2, S configuration 

Figure 30. Planar chirality of 1,2-substituted ferrocenes. 

1.4.2 Stereoselective Synthesis of Planar Chiral P,N Ferrocenes and 

Aminoferrocenes. 

The three main strategies for obtaining enantiomerically enriched planar chiral 

ferrocenes are resolution of racemic 1,2-substituted ferrocenes, diastereoselective ortho-

lithiation of 1-substituted ferrocenes containing an appropriate chiral ortho-directing 
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group and subsequent in situ trapping with an electrophile, and enantioselective lithiation 

with a chiral additive' (Figure 31 ).93 Resolution can either be accomplished by enzymatic 

kinetic resolution 94 (using for example lipase) or by non-enzymatic routes (such as using 

a chiral catalytic reaction like Sharpless asymmetric dihydroxylation or asymmetric ring 

closing metathesis.95 In either case, the resolving species reacts preferentially with one 

enantiomer of the starting racemic mixture over the other, thereby providing one 

enantiomer in enriched form, with the other being converted to another separable species. 

In diastereoselective lithiation, an attached chiral directing group ' coordinates to the 

lithiating reagent, thereby differentiating the two prochiral ortho positions on the Cp 

ring.96 In enantiose1ective lithiation, a chiral additive coordinates with an alkyl lithium to 

create a chirallitliiating species that differentiates the two prochiral ortho positions on the 

Cp ring. 
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resolution - enzymes or chiral catalysts 

R2 
~R1 ~R1 , 

Fe R2 + Fe 

0 0 

diastereoselective directed ortho metalation 

~DG* 
, 

Fe o 
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Fe Li 

o 

enantioselective directed ortho metalation 

~DG 
~ RLi I chiral diamine 

~R1 
Fe R2 

0 
R2 

~R1 , 
Fe 

0 

Fe -
~L·DG 

Fe I ------o orR*2NLi o 
achiral 

~A 
+ Fe R2 

0 
or 

R2 
Q-A 

+ 
, 

Fe 

0 

~DG* 

Fe E o 

~DG 
Fe E 

o 

Figure 31. Strategies for synthesizing planar chiral ferrocene compounds. 

Compounds prepared from diastereoselective lithiation of U gi' s amine97 (165, 

Scheme 28) can undergo further stereos elective SN 1 type reactions of the dimethylamino 

moiety with different nucleophiles while retaining the set configuration. For example, the 

early P,N ligand PPFA (1) was prepared by the reaction of the lithiated intermediate of 

Ugi's amine with chlorodiphenylphosphine (Scheme 28).97 Josiphos (166, 1-

(dicyclohexylphosphino )ethyl-2-( diphenylphosphino )ferrocene) was synthesized by SN 1 

type reaction of the dimethyl amino group from Ugi' s amine with secondary phosphines.98 

Additionally, BoPhoz type ligands (167) are prepared by reaction of the 2-phosphino 
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derived secondary amine with PCh/NEt3 followed by Grignard reaction to form 

phosphine-aminophosphines (Scheme 28).99 

Ugi's amine 
165 

BoPhoz 
167 

.. 

1. PCI" NEt" PhMe ~~'R 
• Fe 2 

2. RMgBr ~ 

Scheme 28. Ligands derived from U gi' s amine. 

PPFA 
1 

HPCY2 
AcOH, 80°C 

Josiphos 
166 

Chiral oxazoline directing groups 1 
00 provide the added advantage of being used 

directly as ligands (i.e. no need to remove / transform the group). Enantiopure ferrocenyl 

oxazolines are easily prepared from ferrocenyl carboxylic acid or cyanide and optically 

pure amino alcohols. 101 Ferrocenyl phosphinooxazoline (Fc-PHOX) ligands were 

synthesized by diastereoselective ortho-lithiation / phosphorylation of chiral ferrocenyl 

oxazolines (Scheme 29).102 
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~COOH 
I 

Fe 
~ 

168 

1. (COClh. CH2CI2 

o 

~NH 
I l-, PPh3. CCI4• NEt3. CH3CN 

2. p-amino alcohol 

NEt3. CH2CI2 

(84%) 

Fe . 
~i-pr' 

169 
OH 

--=-- ~)""i-pr 
~PP~hN PPh2CI Fe 2 •• ------~----
~ (64% yld. >99% de) 

66 

(89%) 
• 

170 

~UU' TMEDA' / n-E Et
2
0 

Scheme 29. Synthesis of Fc-PHOX ligands via diastereoselective lithiation. 

Compounds generated through Kagan's sulfoxide 1 03 route have also been used as 

ligands directly. For example, aminoferrocene 173, a rare example of a directly bound 

amino group, was prepared from sulfoxide 171 (Scheme 30).104 

Kagan's sulfoxide 
171 

[ 

t-Bu, .:.] 

n-BuLi. THF .. ~i~~ 
o °C Fe 

Q 

TsN3• THF. rt . 

172 173 
(64%. >98% eel 

Scheme 30: Synthesis of aminoferrocene ligand 173 via diastereoselective lithiation of 

Kagan's sulfoxide. 

Another example of a planar chiral aminoferrocene is the synthesis of an N-

ferrocenyl-linked N-heterocyc1ic carbene (181) by Togni, et al. (Scheme 31).105 This 

synthesis begins with the installation of the 1,2-stereochemistry via diastereoselective 

ortho-lithiation using the acetal directing group.l06 Several steps must then be taken to 

62 



remove the acetal and install the nitrogen-ferrocene bond via a Curtius rearrangement of 

a ketyl azide (178 ~ 179). Togni states that a major challenge in the synthesis of the 

ferrocenyl imidazolium ligand was the generation of the nitrogen ferrocene bond. lOS 

~:\ 
Fe OMe 

@ o °C ~ rt 

174 o 

NaOH, ~OH 1. DMF,SOCI2, PhH 
----~--~ Fe ----~--~~---~ 

aq. EtOH ~ 2. NaN3 , pyridine, 

177 
BU4NBr, CH2CI2, rt 

178 179 

H2, Pd/C 
~NH2 Q Q 

~ I / \ I .. Fe 10- ~N<t> N Fe i-PrOH, rt ~ • v~ e I 
180 181 

Scheme 31. Togni's synthesis of a substituted aminoferrocene. 

Use of an external source of chirality for enantioselective ortho-lithiation on 

prochiral ferrocenes without a chiral directing group would provide solely planar chiral 

ferrocene derivatives. This approach was investigated by Uemura et al. who prepared 2-

substituted N,N-(dimethylamino)methylferrocenes via ortho-lithiation of 183 in the 

presence of TMCDA (182). The best results were obtained with n-BuLi (1.5 eq) at 0 °C 

with 2 eq. of TMCDA, providing products in up to 80% ee (Scheme 32).107 Snieckus 

performed enantioselective lithiation of ferrocenyl carboxamides (186) in the presence of 
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(-)-sparteine (185), obtaining products ranging from 81% to up to 99% ee (Scheme 

33).108 Simpkins also accomplished enantioselective lithiation, this time using a chiral 

lithium amide analogue (188), starting from ferrocenyl diphosphine oxides (189), 

providing products in up to 54% ee (Scheme 34).109 

~NMe2 
I 

Fe 
o:NMe2 

1. 1.5 eq n-BuLi 12 eq 182 

Et20, a °C, 5 h J"NMe2 

~ 2. DMF, a °C ~ rt 

183 

.. 

CHO 

~NMe2 
I 

Fe 
~ 

184 
(41 % yld, 80% ee) 

Scheme 32. Enantioselective synthesis of 1,2-substituted ferrocenes in the presence of 

TMCDA. 

° ~N(i-prh 
I 

Fe 
~ 

186 

1.1.2eqn-BuLiI dSPN 
1.2 eq (-)-sparteine 185 _ 

Et20, -78°C, 5 h N H 
• 

2. TMSCI, -78 °C ~ rt 

TMS ° 
~N(i-prh 

I 

Fe 
~ 

187 
(96% yld, 98% ee) 

Scheme 33. Enantioselective synthesis of 1,2-substituted ferrocenes in the presence of 

(-)-sparteine. 

° II 

~PPh2 
~ 

I 

Fe 
~ 

189 

Ph"lNJ.ph 
1. Li 188 

THF, -78°C .. 
2. TMSCI, -78 °C ~ rt 

190 
(95% yld, 54% ee) 

Scheme 34. Enantioselective synthesis of 1,2-substituted ferrocenes in the presence of 

chiral LDA derivative. 
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A complementary method has been developed by the Metallinos group that allows 

for the direct synthesis of 1,2-substituted aminoferrocenes with the amino group directly 

attached to the cyclopentadienyl ring, a class of ligands that has yet to be explored fully 

in catalysis. 1l0
,lll,1l2 Thus, the Metallinos procedure starts with the nitrogen-ferrocene 

bond in place (192) and installs the 1,2-substitution via an enantioselective lithiation of 

boron trifluoride-complexed tertiary aminoferrocenes. Optimal results were obtained in t-

BuOMe at -78°C using 2.1 eq i-PrLi with bulkyl cyclohexyldiamine derivatives (such as 

(S,S)-191). A wide variety of electrophiles could be installed in good yields and 

enantioselectivities up to 82% (Scheme 35).113 

~NMe2 
I 

Fe 
~. 

192 

BF3e()Et2 

t-BuOMe, 0 °C 
a 

15 min 

1.3.15 i-PrLi, 1.05 eq DMAE, 
I~ 

ON 
1.05eq N~ 

1 (5,5)-191 
a 

-78 °C ~ -40°C, 2 h 

-40°C, 1 h 

CHO 

6-NMe2 
I 

Fe 

~ 
193 

2. DMF, -78 °C ~ rt 61% yld, 82% ee 

Scheme 35. Enantioselective synthesis of 1,2-substituted ferrocenes by BF3-activated 

lithiation with chiral diamine ligand. 

The stereochemistry of the lithiation was verified with the crystal structure of 

alcohol (S)-192 (Figure 32), which was prepared with (S,S)-diamine ligand 191 (Scheme 

36) and recrystallized to enantiomeric purity in one crystallization from diethyl etheL I 12 

The X-ray confirmed that the pro-S hydrogen (Figure 33) was removed during lithiation. 
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~NMe2 
I 

Fe 

~ 
192 

BF3·OEt2 

tBuOMe, 0 °C 
• 

15 min 

1. 3.15 i-PrLi, 1.05 eq DMAE, 
I~ 

ON 

1.05eq N~ 
I (S,S)-191 

• 
-78 °C ~ -40 DC, 2 h 

-40 DC, 1 h 

Ph 
Ph+OH 

Q-NMe2 
I 

Fe 

~ 
(S)-193 

2. Ph2CO, -78 °C ~ rt (74% yld, 
recrystallized to >99% ee) 

Scheme 36. Synthesis of alcohol (S)-193 with (S,S)-diamine ligand 191. 

Figure 32. ORTEP plot of alcohol (S)-193 at 50% probability; all H atoms except HI are 

omitted for clarity. 
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Figure 33. Pro-R and Pro-S ortho protons of aminoferrocenes. 

With this new method for synthesizing planar chiral 1,2-substituted 

aminoferrocenes available, the potential to investigate 1,2-substituted aminoferrocene 

compounds as ligands in asymmetric transformations is possible. 

1.4.3 Applications of Planar Chiral P,N Ferrocene Ligands. 

The applications of planar chiral ferrocenes are of interest to both academia and 

industry.114 For example, the largest scale enantioselective catalytic process in industry is 

the synthesis of a precursor to the herbicide (S)-metolachlor by an Xyliphos (ferrocenyl 

P,P ligand) Ir-catalyzed asymmetric imine hydrogenation (see Scheme 24, Section 1.3).53 

Another industrial example is the synthesis of non-natural a-amino acids on a 

multikilogram scale using a Rh-catalyzed asymmetric hydrogenation with methyl-

BoPhoz 194 (ferrocenyl P,P ligand) to make (R)-2-naphthylalanine (200) and (R)-N-tert-

butoxycarbonyl-2-naphthylalanine (201) with a SIC ratio of 2000 and enantiopurity of 

greater than 99.5% (Scheme 37).115 
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195 
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(R)-200, >99.5% ee 

Scheme 37. Rh-catalyzed asymmetric hydrogenation with methyl-BoPhoz. 

The first industrial catalytic process with a ferrocenyl oxazoline (P,N) ligand was 

the ruthenium catalyzed hydrogenation of 3,5-bis(trifluoromethyl)acetophenone (202) on 

a 140 kg scale (4000 L reactor) with SIC ratio of 20,000 giving a TOF of 1660 h- I and the 

product (203) in 96% ee in full conversion after 15 hours (Scheme 38).116 
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OH 

RuCI2(PPh3b / 68 F3C~ 
20 bar H2, PhMe, 1 M NaOH" y 
~~>.". CF3 N '/-Pr 

I 203 
Fe PPh2 (96% ee) 

¢ 66 

Scheme 38. Ru-catalyzed hydrogenation with ferrocenyl phosphinooxazoline ligand. 

1.S Aims and Objectives. 

As seen in the introduction, P,N-donor ligands are predominant in asymmetric 

iridium catalyzed hydrogenation reactions. Despite this, Sp3 -hybridized amine donor 

groups are relatively uncommon structural features of such ligands, which normally have 

Sp2 -hybridized nitrogen donors. In addition, in ferrocene ligands, the N donor is usually 

part of a pendant group, not directly attached to the Cp ring. Moreover, ligands with 

exclusively planar chirality have also not been investigated to their full potential. The 

objective of this thesis project is to assess the catalytic activity of planar chiral 2-

phosphino-l-aminoferrocene ligands in iridium catalyzed hydrogenation reactions. This 

type of ligand has been poorly investigated in catalytic applications in the past because of 

a lack of convenient synthetic methods to prepare them. In response to this problem, the 

ligands to be investigated are to be prepared using the Metallinos method, wherein BF3-

activated tertiary aminoferrocenes undergo asymmetric lithiation in the presence of chiral 

diamine ligands and the phosphorus group installed by addition of a chlorophosphine to 

the lithiated intermediate (Scheme 39). 
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BF3
oOEt2 --------- - --.-

RLi 
--------. 

CIPR2 ._---_ .. - .. 

Scheme 39. Proposed preparation of ferrocenyl aminophosphine ligands. 

Coordination chemistry of ligands of this series with Ir(l) will be investigated 

(Scheme 40) via formation of cationic iridium complexes with chloride or BArF 

counterions. Assessment of the catalytic activity of these complexes in iridium-catalyzed 

hydrogenations (Scheme 41), as well as the asymmetric induction that these ligands 

impart, will be carried out. Various prochiral alkenes will be prepared and hydrogenated 

using the enantioenriched catalysts to test the scope of activity and selectivity. 

+ 

1. [lr(COD)CI12 
--------------- .. 
2. NaBArF 

Scheme 40. Proposed preparation of iridium complex with ferrocenyl aminophosphine 

ligands. 
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Scheme 41. Proposed hydrogenation of alkenes with iridium complex. 

Finally, variation of substituents on the ligand will be carried out in order to 

optimize enantioselectivity. For example, the phenyl substituent on the phosphorus donor 

atom may be altered to ortho-tolyl or cyc10hexyl to establish the steric and electronic 
, 

influences of the phosphorus donor on catalysis. Substituents on the nitrogen donor atom 

may be varied from a dimethyl amino group to pyrrolidine to determine the steric 

influence of the nitrogen moiety on catalysis (Figure 34). 

~NMe2 

Fe PPh2 

~NMe2 
Fe P(o-tolylh 

~NMe2 

Fe PCY2 
~NO 

Fe PPh2 

~ ~ ~ ~ 

204 205 206 207 

Figure 34. Proposed variations of 2-phosphino-1-aminoferrocene ligand. 
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Chapter 2: Results and Discussion 

2.1 Synthesis of Aminoferrocenes. 

To investigate the potential of planar chiral 2-phopshino-l-aminoferrocenes in 

catalysis, two different tertiary amine starting materials, N,N-dimethylaminoferrocene 

(192) and N-ferrocenyl pyrrolidine (213), were prepared from aminoferrocene (212). 

Aminoferrocene was prepared according to literature procedures (Scheme 42).117 To this 

end, lithioferrocene (209) was prepared by reacting ferrocene (208) with tert-butyllithium 

in THF at 0 °C. Solid lithioferrocene was isolated in 68% yield as a pyrophoric orange 

powder by precipitation with hexane at -78°C and collection in a Schlenk filtration 

apparatus. Lithium-halogen exchange of lithioferrocene with iodine gave iodoferrocene 

(210) as a yellow-orange semi-solid in 73% yield. Copper-mediated cross coupling of 

iodoferrocene with phthalimide provided N-ferrocenyl phthalimide (211) in 57% 

yield. II7a,b This intermediate was recrystallized to give deep red needles and stored until 

needed. Hydrolysis of 211 with hydrazine gave aminoferrocene (212) in 98% yield, 28% 

overall yield from commercially available ferrocene. 
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Scheme 42. Aminoferrocene preparation. 

From am41oferrocene, both tertiary aminoferrocenes were prepared in good yields 

(Scheme 43). Reductive amination of aminoferrocene with paraformaldehyde using 

sodium cyanoborohydride in acetic acid was used to prepare dimethylaminoferrocene 

(176) in 860/0 yield. Alternatively, reaction of aminoferrocene with succinic anhydride 

followed by reduction with borane provided N-ferrocenylpyrrolidine (198) in 760/0 yield 

over 3 steps. 

~NH2 
I 

Fe 

~ 
212 

° ° ° 1. U ,THF/Et20, rt, 2 h 

2. AC20, NaOAc, 80 °e, 1 h 

3. BH3·THF, THF, reflux, 2 h 

(76%) 

~N~ 
I 

Fe 

~ 
213 

Scheme 43. Preparation of tertiary aminoferrocenes 192 and 213. 
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2.2 2-Phosphino-l-aminoferrocene Ligand Synthesis. 

The investigation of 2-phosphino-l-aminoferrocene ligands in catalysis was 

initiated with racemic 2-diphenylphosphino-l-dimethylaminoferrocene 204. This ligand 

was prepared using the Metallinos BF3-activated lithiation method (Scheme 44).110 

Treatment of a THF solution of dimethylaminoferrocene (192) with BF3 etherate resulted 

in a colour change from orange to yellow with precipitation of a yellow solid, attributed 

to the formation of the Lewis acid-base complex 192·BF3. Treatment of a stirred solution 

of 192·BF3 with n-BuLi at --40 °C resulted in a rapid colour change to orange. After 1 

hour of stirring, a red-orange homogenous solution had formed, attributed to the 

formation of the 2-lithioferrocene species. Addition of chlorodiphenylphosphine 

electrophile to the intermediate carbanionic intermediate also resulted in a colour change 

to yellow-orange. At this point, the reaction mixture was allowed to warm from --40 °C to 

room temperature over approximately 4 hours. After workup, the product was filtered 

through a plug of silica and recrystallized from ether to give racemic 2-

diphenylphosphino-l-dimethlaminoferrocene (204) as orange crystals in 64% yield. 

BF3oOEt2 BF3 1. 1.1 equiv n-BuLi, 
NMe2 

~NMe2 I &PPh2 
THF, 0 °e ~NMe2 -40 °e, 1 h I I 

Fe .. I + .. Fe 

~ 15 min Fe 2. e1PPh2, -40 °e ~ rt ~ ~ (64%) 
192 192·BF3 204 

Scheme 44. Synthesis of racemic ligand 204. 
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The Metallinos group had previously shown that palladium complexes of this 

ligand were catalytically active in reactions such as Suzuki-Miyaura cross coupling and 

Buchwald-Hartwig aminations of aryl halides (Table 7, 8).111 Moreover, crystal structures 

of square planar Pd(II) and Pt(II) complexes of 204 were obtained that indicated cis-

bidentate coordination of the ligand and near orthogonal bite angles. With these results in 

mind, the investigation of iridium complexes of this ligand and their potential activity in 

hydrogenation of alkenes was carried out. 

2 mol % Pd(OAc)2, 

PhB(OHh ArX 
4 mol % 204 . Ph-Ar + 

214 215 
3 equiv. CsF, dioxane, reflux 

216 

ArX 215 Ph-Ar 216 Yield(%) ArX 215 Ph-Ar 216 Yield(%) 

~CF3 ~CF3 94 OCN ~CN 92 a d 
CI .0 Ph .0 CI .0 Ph .0 

0 0 

d' d' 88 f? f? 73 
b e CI .0 Ph .0 

CI .0 Ph .0 
N02 N02 

~OMe ~OMe 70 Br Ph 

c CI .0 Ph .0 .¢ ¢ 88 

Br .0 N'" Ph .0 N'" 

NH2 NH2 

Table 7. Pd-catalyzed Suzuki-Miyaura cross coupling (reproduced from ref 111) 
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Co) 2 mol % Pd2(dbah'CHCI3, Co) 
+ ArX 

4 mol % 204, 
N 1.4 eq. NaOt-Bu, N 
H I 

PhMe, reflux Ar 
217 218 219 

ArX Product 219 Yield (%) 

° ° 
215b d' if 74 r N 0 

CI 0 
O~ 

215a 
j)CF, OCF, 77 

CI 0 r N 0 

O~ 

218a D ~ 82 r N ~ 
Br 0 

O~ 

j)oMe OOMe 
218b I ~ r N 0 

67 

Br 0 O~ 

Table 8. Pd-catalyzed Buchwald-Hartwig aminations (reproduced from ref 111). 

2.3 Synthesis of Iridium Complexes. 

Reaction of racemic 204 with iridium cyclooctadiene chloride dimer in CH2Ch at 

reflux gave cationic iridium(I) complex 220, isolated as the chloride salt in 99% yield. 

This complex was converted to BArF salt 221 by anion exchange (Scheme 45), isolated 

as an air stable orange solid in 83% yield. For this purpose, sodium tetrakis[3,5-

bis(trifluoromethyl)phenyl] borate (NaBArF, 103, Scheme 46) was prepared by Grignard 

reaction of 3,5-bis(trifluoromethyl)phenyl magnesium bromide with sodium 
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tetrafluorobo'rate because of its exorbitant commercial price.118 Complex 221 could be 

recrystallized as orange needles from benzene. I 11 

+ 

~NMe2 ~ ~ 
CI I 

Ph 
: PPh [lr(COO)CI12 Fe Ph Fe 

Fe 2 .. ~-,p-Ph NaBArF ~~-Ph 
~ CH2CI2, reflux, 2h ~ Me-N- Ir Me-N-Ir H20, 15 min 

204 
(99%) 

MI 1J (83%) MI [J 
220 221 

Scheme 45. Synthesis of iridium BArF complex 221 from ligand 204. 

222 

1. Mg, Et20, NaBF 4 

2, aq. Na2C03 

(56%) 

Scheme 46. Synthesis of NaBArF. 

With complex 221 in hand, bidentate coordination of the ligand to iridium was 

established by NMR spectroscopy. The 31 p NMR spectrum of the free ligand showed a 

peak at -20.4 ppm. Coordination of phosphorus was inferred by the downfield shift of 

this signal to 15.0 ppm (Figure 35). In addition, the IH NMR spectrum of the free ligand 

showed a singlet at 2.69 ppm for the two methyl groups on nitrogen. Simultaneous 

coordination of the phosphorus and nitrogen moieties to iridium would render the methyl 

groups diastereotopic giving two signals. This was observed in the IH NMR spectrum 

(Figure 36) of the complex, with aminomethyl signals at 3.13 and 2.69 ppm. 
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+ 

BArF 



+ 

204 

221 

I I I i 
4tJ :ro ro 10 

Figure 35. 31 p NMR spectra of the free ligand 204 and iridium complex 221. 

+ 

204 

221 

I I 
I I 5 3.0 2.S 

3.0 25 

I 
Figure 36. IH NMR spectra of NMez group in free ligand 204 and iridium complex 221. 
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SuffiCient quality crystals of complex 221 were grown from benzene and an X-ray 

structure was obtained, clearly showing bidentate coordination of the ligand to Ir(COD) 

(Figure 37). The crystals packed in the triclinic space group PI. The heteroatom-metal 

bond distances were 2.225(3) A for NI-Irl and 2.2951(9) A for PI-Irl, resulting in a 

ligand bite angle (NI-Irl-Pl) of 82.84(8)°. This was slightly lower than previous Pd and 

Pt complexes [87.87(6)° and 88.78(5)° respectively]111, and similar to Pfaltz's PHOX 

complex with ligand SOc (N-Ir-P angle of 84.96°)65. Unlike the Pd and Pt complexes, the 

iridium COD portion of the complex was bent out of the plane of the substituted Cp ring 

of the ligand due to the steric demands of COD. This spacial preference brought the COD 

ligand in close contact with the protons of the unsubstituted Cp' ring (HI '-H26B distance 

= 2.68(1) A; H2'':H26B distance = 2.56(1) A) causing a near eclipsed configuration of the 

cyclopentadienyl rings of the ferrocene moiety (H4-C4-C4'-H4' dihedral angle = 

4.53(8)°). Similarly to Pfaltz's complex,65 longer Ir-C distances for the C=C bond 

coordinated trans to the phosphine were observed. (Irl-C20 2.173 A; Irl-C21 2.217 A; 

Irl-C24 2.148 A; Irl-C25 2.125 A). In addition, the pseudoequitorial phenyl group on 

phosphorus (C6-Cll) pointed away from the unsubstituted Cp' ring in the preferred 

conformation of the chelate ring. Another interesting aspect of the crystal structure is the 

large distance between the cation and the BArF counterion, as can be seen in the packing 

diagram (Figure 38). 
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Figure 37. ORTEP plot of Ir complex 221 at 50% probability; all H atoms and the BArp 

counterion have been omitted for clarity. 

Figure 38. ORTEP plot of crystal packing of Ir complex 221 at 50% probability; all H 

atoms have been omitted for clarity. 
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2.4 Hydrogenation of Alkenes with Racemic Iridium(COD) Complex 221. 

Initial studies focused on the potential of catalyst 221 in hydrogenation of several 

prochiral and non-prochiral alkenes. 111 Hydrogenation of the common test alkene 1,2-

diphenylethene (trans-stilbene, 223a) was performed. Not surprisingly, the chloride 

complex (220) was found to be inactive in hydrogenation of this substrate, as was the 

complex with tetraphenylborate counterion. However, the BArF complex (221) gave full 

conversion of 223a after 72 hours at 62 bar H2 in CH2Ch at room temperature (Scheme 

47), and 224a could be isolated pure in 97% yield. A diverse array of alkenes could be 

hydrogenated in full conversion and with excellent isolated yields (Table 9) including 

1,2-disubstituted 'alkenes such as a,fl-unsaturated esters and ketones (223b, 223c), cyclic 

enones such as cyclohexenone (223d) and male imide (223e), and exocylic alkenes 

(223f). 

2 mol% 221 .. 

223a 224b 

Scheme 47. Hydrogenation of stilbene. 
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Alkene (223) Product (224) Isolated Yield 

223a 224a 97% 

0 0 

223b ~O/ 224b ~O/ 1.0-
95% 

0 0 

223c 224c 99% 

0 0 

223d 6 224d 6 84% 

H H 

223e °VO 224e °VO 82% 

0 0 

223f P 224f )Y 96% 

Table 9. Iridium catalyzed hydrogenation of disubstituted alkenes. 

A number of prochiral trisubstituted alkenes were then investigated (Table 10), 

and many types of alkenes were hydrogenated in full conversion and with excellent 

isolated yields. I I I These included methyl stilbene (124), a,p-unsaturated esters (128, 

225a-d), allylic alcohols (225e,f), aryl-alkyl alkenes (125, 225g,h), a,p-unsaturated 

amide (225i), allylic ether (225j) and acetate (225k), as well as imines (2251,m). 
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Alkene Product Isolated Yield (%) 

124 
I~ 

124a 99 

.0 

128 ~OEt 128a ~OEI 94 

225a ~OEI 226a ~OEI 96 

MeO .0 MeO .0 

0 0 

225b vY0EI 226b 
()YOEI 

92 

0 0 

225c j)YOEI 226c 
j)YOEI 

98 

MeO .0 MeO .0 

225d ?OMe 226d ~OMe 94 

225e ~OH 226e ~OH 98 

225f OlOH 226f OlOH 96 

125 ~ 125a ~ 94 

MeO 1 h MeO h 

225g ~ 226g 

~ 94 

1.0 

225h ~ 226h 

~ 83 
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0 0 

225i vY~~Ph 226i vY~~Ph 98 

225j ~OMe 226j UlOMe 41 a 

225k ~OAC 226k UlOAC 79 

2251 ~N~ 2261 d'N~ 81 

'-b '-b H 

225m ~Nv 226m cf~l) 88 

a ION yield due to volatility of ~ane 

Table 10. Racemic Ir-catalyzed hydrogenation of prochiral alkenes. 

Strongly coordinating alkenes (227a,b), enamines (227c), OXlmes (227d,e,f), 

cyclic dienamines (227i) and cyclic a,p-unsaturated esters (227j,k) did not show any 

conversion with catalyst 221 (Figure 39). From these results it can be gleaned that 

alkenes that are too "electron rich" are not tolerated well (for example 227a, b, or c) nor 

are substituted cyclic alkenes (for example 227g, j, or k). Additionally, some substrates 

that were attempted did not undergo complete hydrogenation (Figure 40). In some cases 

however, this reactivity could be increased by using higher pressures of H2 and/or using 

additives such as NEt3 or Hiinig's base (for example, chromone 227m and isoflavone 

2270, and the a,p-unsaturated acids 227v-x). 
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~co2Me yC02Me 

°SO °SO NHAc NHAc 
227a 228a 

dichloromethane 70 bar 3 days NR 

2279 2289 

~co2Me ~co2Me 
dichloromethane 62 bar 4 days NR 

I u NHAc I b NHAc 0 0 

227b 228b ~ ~ 1.0 - 1.0 dichloromethane 70 bar 3 days NR 

227h 228h 
0 0 dichloromethane 62 bar 3 days NR 

~NMe2 ~NMe2 
crN-+ ~N-+ .0 OH 

227c OH 228c 

dichloromethane 62 bar 3 days NR 
f( 
0 0 

PH pH 227i 228i 
N HN 

~H ~H 
dichloromethane 62 bar 4 days NR 

C02Et C02Et 

227d 228d HO'Nq:>< HO'Nq:>< dichloromethane 62 bar 3 days NR 

N ~OH HN~OH NHAc H NHAc 

uY d" 227j 228j 

dichloromethane 90 bar 2 days NR 

227e 228e 

~~>< dichloromethane 62 bar 3 days NR 

~q:>< PH pH 
N HN N3 0 

6 6 NHAc NHAc 

227k 228k 

227f 228f dichloromethane 62 bar 2 days NR 

dichloromethane 62 bar 2 days NR 

Figure 39. Attempted hydrogenation reactions with no conversion. 
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0 0 

cO o 0 cO o 0 

227m 228m 

dichloromethane 62 bar 2 days 4 % isolated yield 
dichloromethane 100 bar 4 days 9% isolated yiekJ 
toluene 100 bar 2 days 10% isolated yield 
MeOH , NEt3 100 bar 4 days 91 % conversion 
MeOH, Hunig's base 62 bar 2 days 27<'10 isolated yield 
toluene, Hunig's base 100 bar 2 days 74% isolated yiekJ 

0 0 

mPh 1,& 1 
0 roPh 

10 
0 

227" 228" 

toluene, Hunig's base 100 bar 3 days 17% conversion 

o 0 

M ~OJ.( ro o 0 

2280 2270 

dichloromethane 
MeOH , Hunig's base 
toluene, Hunig's base 

62 bar 2 days NR 
62 bar 2 days NR 
100 bar 2 days NR 

o 0 

M ~OJ..Ph ell o 0 . Ph 

227p 228p 

toluene, Hunig's base 100 bar 3 days NR 

o n l 

~oJ 
227q 

dichloromethane 

~ ~O~O 
227r 

dichbromethane 
dichbromethane 
MeOH, NEt3 

0 

cal 1,& 
0 

62 bar 

228q 

4 days NR 

62 bar 
100 bar 
100 bar 

~ ~O~O 

4 days 
4 days 
4 days 

228r 

11.5% conversion 
7% conversion 
86.5% conversion 

~ o 0 oUo ,& 0 
2275 2285 

dichloromethane 62 bar 4 days 11 % conversion 

urCHO 

10 QlCHO 1.& 
227t 228t 

dichloromethane 62 bar 3 days 7% conversion 

O~O O~O 

227u 228u 

dichloromethane 62 bar 4 days 70% conversion 

0 0 vrOH crY0H 

227v 228v 

dichloromethane 62 bar 3 days 44% conv 
MeOH, NEt3 62 bar 3 days 83% con v 

0 0 

~OH oY0H 

M 0 ,& 
MeO 227w e 228w 

dichloromethane 62 bar 3 days 16% conv 
MeOH, NEt3 62 bar 3 days 74% conv 

0 0 

oY0H ~OH 
Br 227x Br 228x 

dichloromethane 62 bar 3 days 65% conv 
MeOH, NEt3 62 bar 3 days 83% conv 

Figure 40. Attempted hydrogenation reactions with incomplete hydrogenation. 

Clearly, enough substrates were hydrogenated III good yields to prompt 

investigation of enantioenriched versions of 221 and its congeners in asymmetric 

hydrogenations. The synthesis of these complexes is the topic of the next section. 
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2.5 Synthesis of Enantiopure 2-Phosphino-l-aminoferrocenes and their Iridium 

Complexes. 

Enantioenriched ligand 204 was prepared (Scheme 48) following the optimal 

asymmetric lithiation conditions developed by the Metallinos group. I 12,113 Specifically, a 

suspension of Lewis acid-base complex 192·BF3 in tert-butyl methyl ether (t-BuOMe) at 

-78°C was treated with a pre-formed lithiating reagent prepared from 3.15 equivalents of 

isopropyllithium (i-PrLi) and 1.05 equivalents each of diamine (R,R)-229 and 

dimethylaminoethanol (DMAE) in t-BuOMe at -40 0c. As observed in the non-selective 

reaction, slow warming of the solution from -78°C to -40 °C over a two to three hour 

period resulted in the formation of a red-orange solution, which was held at -40 °C for an 

additional hour. Chlorodiphenylphosphine electrophile was added to the solution at -78 

°C, and the whole was allowed to warm slowly to room temperature over approximately 

15 hours. In order to facilitate purification as well as measurement of enantiomeric excess 

on chiral stationary phase HPLC, this crude mixture was treated with sulfur to produce 

(S)-2-diphenylphosphinothionyl-l-dimethylaminoferrocene 215 in 49% overall yield with 

78% enantiomeric excess. 

1. 3.15 i-PrLi, 1.05 eq DMAE, 

[ 

BF3] O~~i-pr NMe2 NMe2 
BF3·OEt2 ~NMe2 1.05eq, ~i-Pr &PPh2 &"Ph2 
tBuOMe, 0 °C : + ~ (R,R)-229: S8, toluene : ~ 
-----'--.... Fe .. Fe .. Fe 
15min ~ -780C~-400C,2h ~ 40°C,2h ~ 

192·BF3 -40 °C, 1 h 204 230 
2. CIPPh2, -78 °C ~ rt (49% yld, 78% eel 

Scheme 48. Synthesis of enantioenriched (S)-2-diphenylphosphinothionyl-l­

dimethylaminoferrocene 230. 
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Sulfide 230 was treated with tetrafluoroboric acid to form the ammonium 

fluoroborate salt 230·HBF4 (Scheme 49). This salt could be recrystallized via liquid-

liquid or vapour-liquid diffusion of diethyl ether into a solution of the salt in 

dichloromethane. After two recrystallizations, the salt was enantiopure as determined by 

neutralization of a small amount of the ammonium salt back to free aminophosphine 

sulfide with sodium bicarbonate under sonication. Notably, the melting point of the 

ammonium salt increased significantly after recystallization (from 115°C to >225 °C) 

and the optical rotation ([afoD) increased from -76.0 ° to -94.9 0. The enantiomeric 

purity of the phosphine sulfide was assayed by chiral stationary phase HPLC separation 

as before and found to be 99.7:0.3 er (>99% ee). 

NMe2,S 

~PPh2 
I 

Fe 

~ 
230 

(77% ee) 

Et20, 0 ce, 15 min 

(99%) 

2. recrystallization 

+ -

~~ BF, 
, PPh2 
I 

Fe 

~ 
230'HBF4 
(>99% ee) 

Scheme 49. Formation of ammonium tetrafluoroborate salt 230·HBF4. 

The absolute stereochemistry of (R,R)-229 derived (S)-230·HBF4 was determined 

by X-ray crystallographic analysis (Figure 41) and found to corroborate the 

stereochemistry of lithiation as previously determined with alcohol 193 (Figure 32, 

Section 1.4.2). Importantly, the relative stereochemistry of (S)-230·HBF4 was opposite to 

(S,S)-191 derived alcohol 193 previously prepared by the Metallinos groupll2, indicating 
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that the configuration the diamine ligand 229 determines the stereochemistry of the 

products. Crystals were obtained via vapour diffusion of diethyl ether into a solution of 

salt 230·HBF4 in dichloromethane. The salt crystallized in the orthorhombic P2)2)2) 

space group. The X-ray structure features an intramolecular hydrogen bond between Hla, 

and Sl, in addition to an intermolecular hydrogen bond between Hla, and F4 of the 

fluoroborate counterion. The presence of these hydrogen bonds may be a critical factor in 

increasing the propensity of the compound to crystallize as a single enantiomer, 

especially as an intramolecular hydrogen bond was also observed in alcohol 193. This 

observation raised the possibility that the same ammonium salt-recrystallization 

technique could be used to obtain other enantiopure 2-phosphino-l-aminoferrocenes. 
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ii Cl I 
~F ~ ~ ~ ~ ~QH 1 0 
~ ~ - \\ 

___ '.'1 \\ 

S 1 :: C4 ' \\ 
~::~. . .. C5' \\\ 

C3'~~~ '\ 

C2' C 1 ' 

Figure 41. ORTEP plot of ammonium tetrafluoroborate salt 230·HBF4 at 50% 

probability; all H atoms except Hla are omitted for clarity. 

Neutralization of (S)-230·HBF4 with saturated NaHC03 and extraction into 

ether/ethyl acetate provided enantiopure phosphine sulfide (S)-230. This solvent system 

was found to be crucial for maintaining enantiopurity, as use of stronger bases such as 

NaOH or Na2C03, or extraction with dichloromethane resulted in isolation of product 

with reduced enantiopurity. Enantiopure phosphine sulfide (S)-230 was readily 

de sulfurized to the free phosphine in good yield using freshly activated Raney nickel 

(Scheme 50). To the best of our knowledge, (S)-204 is the first enantiomerically pure 2-

phosphino-l-aminoferrocene to be made. 
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+ - , 
Me NH S BF4 

J _" ~PPh2 
I sat. NaHC03 , Et20 Fe ~ o (99%) 

(5)-230"HBF4 

NMe2~ 
~PPh2 

I Raney Ni, MeCN Fe ----~~----~~ 

~ (850/0) 

(5)-230 

NMe2 

~PPh2 
I 

Fe 
~ 

(5)-204 

Scheme 50. Neutralization and desulfurization to enantiopure ligand (S)-204. 

In view of the preceding results, it was expected that a similar approach could be 

pursued for the preparation of other aminophosphine ligands by using different 

chlorophosphines as electrophiles after the asymmetric lithiation step, or by starting with 

an alternative tertiary aminoferrocene, such as N-ferrocenylpyrrolidine (213). For the 

purposes of this project, a few key steric variations to the structure of 204 were pursued. 

As can be seen in the X-ray structure of the racemic iridium complex 221 (Figure 37), a 

cyclic amine (such as in 207) is likely to have an influence on catalyst conformation, due 

to changes in steric demand in that spacial quadrant of the complex. The artha-tolyl (205) 

or cyclohexyl (206) phosphine analogues of 204 would also be expected to introduce 

both steric and electronic differences compared to the original complex, which may have 

an impact on yield and enantioselectivity in asymmetric hydrogenation reactions. 

Following the established procedure to prepare (S)-204, salt (S)-231·HBF4 was 

prepared (Scheme 51), but unfortunately could not be recrystallized to enantiomeric 

purity. Nonetheless, the salt was neutralized and de sulfurized to phosphine 205. The 

cyclohexylphosphine derivative 206 could be prepared following the established 

procedure, and the ammonium salt of the phosphine sulfide (232·HBF4) was enriched 

from 71 % to 84% ee (Scheme 52). Fortunately, N-ferrocenyl pyrrolidine derived salt (S)-
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233·HBF4 was recrystallized to enantiomeric purity, enabling isolation of homochiral (S)-

207 (Scheme 53). 

1. 3.15 i-PrLi, 1.05 eq DMAE, 

[

SF 1 ON~ ~NM3e2 1.05eq 'N~ 
~ + I (R,R)-191 

Fe • 
~ -78 DC ~ -40 DC, 2 h 

-40 DC, 1 h 
192·BF3 2. CIP(o-tolylh, -78 DC ~ rt 

3. Sa, toluene, 40 DC, 2 h 

~NMe2 
Fie P(o-tolyl)2 

~ 
(S)-205 

231 
(59% yield, 76% eel 

Raney Ni, MeCN 

(99%) 

Et20, 0 DC, 15 min 

(99%) 

reCry~ation 

~NMe2 

~e f.'(o-tolylh 

~S 
(S)-231 

(77% eel 

Scheme 51. Synthesis of ortho-tolyl derivative 205. 

1. 3.15 i-PrLi, 1.05 eq DMAE, 

[

SF 1 ON~ ~N~e2 1.05eq 'N~ 
~ + I (R,R)-191 

Fe • 
~ -78 DC ~ -40 DC, 2 h 

-40 DC, 1 h 
192·BF3 2. CIPCY2, -78 °C ~ rt 

3. Sa, toluene, 40 DC, 2 h 

(S)-206 

232 
(54% yield, 71% eel 

Raney Ni, MeCN 

(99%) 

recrystallization 

~NMe2 

~e ~CY2 
~S 

(S)-232 
(84% eel 

Scheme 52. Synthesis of cyc10hexyl derivative 206. 

H BF4' 
I 

~NMe2 
~e P(o-tolylh 

OS . 
(S)-231 ·HBF4 

sat. NaHC03, 

Et20 I EtOAc 

(98%) 

(S)-232'HBF 4 

sat. NaHC03, 

Et20 I EtOAc 

(98%) 
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~N~ 
I 

Fe 

~ 
213 

BF3·OEt2 

tBuOMe, o·c 
~ 

15 min 

1. 3.15 i-PrLi, 1.05 eq DMAE, 

[
SF] ON~ I 3 

~o 1.05eq 'N~ 
I I (R,R)-191 

Fe ~ 

~ -78·C ~-40 ·C, 2 h 

-40 ·C, 1 h 
213·BF3 

~o 
Fe PPh2 

OS 
233 

(51% yield, 83% eel 2. CIPPh2, -78 ·C ~ rt 

3. S8, toluene, 40 ·C, 2 h 

HBF4'Et20 

Et20, 0 ·C, 15 min 

(96%) 

~o 
Fe PPh2 

o 
(S)-207 

Raney Ni, MeCN 
• 

(89%) 

~N'J 
Fe PPh2 

OS 
(S)-233 

(>99.9% eel 

1. recrystallization 

2. sat. NaHC03, 

Et20 I EtOAc 

(86%) 

Scheme 53. Synthesis of N-ferrocenylpyrrolidine ligand (S)-207. 

2.6 Synthesis of Enantiopure Iridium Complexes. 

With enantiopure/enriched aminophosphine ligands in hand, iridium complexes 

(S)-221, (S)-234, (S)-235, and (S)-236 were prepared in 80-87% yield following the 

procedure described previously (Scheme 54). 
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~NMe2 
~PPh2 1. [lr(COO)Clh. .. 

~ CH2CI2• reflux. 2h 

(S)-204 
(>99% ee) 

~NMe2 
Fe P(o-tolh 

~ 
(S)-205 

(77% ee) 

~NMe2 

Fe PCY2 

~ 
(S)-206 

(84% ee) 

2. NaBArF. 

H20/CH2CI2• 15 min 

(83%) 

1. [lr(COO)Clh. 

CH2CI2• reflux. 2h 

2. NaBArF. 

H20/CH2CI2. 15 min 

(80%) 

1. [lr(COO)Clh. 

CH2CI2. reflux. 2h 

2. NaBArF. 

H20/CH2CI2. 15 min 

(87%) 

~~? 1. [lr(COOlCI]" • 

~ CH2CI2• reflux. 2h 

(S)-207 
(>99% ee) 

2. NaBArF. 

H20/CH2CI2. 15 min 

(84%) 

~ 
+ 

I 

Fe Ph 

~/~--Ph 
Me-N-Ir 

MI g 
(S)-221 

~ 
I 

Fe (o-tol) 

~i-(O-to') 
Me-N-Ir 

MI g 
(S)-234 

~ 
I 

Fe Cy 

~/~ __ CY 
Me-N-Ir 

MI g 
(S)-235 

~ 
I 

Fe Ph 

~/~ __ Ph 

0?'fJ b-
(S)-236 

+ 

+ 

+ 

Scheme 54. Synthesis of enantioenriched cationic Ir(COD)[BArFJ complexes ·(S)-221, 

(S)-234, (S)-235, and (S)-236. 
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2.7 Asymmetric Hydrogenation of Alkenes with Enantioenriched I Enantiopure 

Iridium(COD)[BArFl Complexes (8)-221, (8)-234, (8)-235, and (8)-236. 

Enantioenriched / enantiopure iridium complexes were employed in asymmetric 

hydrogenation of several prochiral alkenes (Table 11).119 In contrast to most iridium 

catalysts currently explored which form six membered chelate rings with iridium, 2-

phoshpino-l-aminoferrocenes form a five membered chelate ring. In addition, the N-

donor is an sp3 hybridized amine and both ligating heteroatoms are attached to the Cp 

ring. The ligands also feature only planar chirality. As a result, this is a relatively 

unexplored class of iridium complexes, which should provide some insight as to the 

potential of planar chiral 2-phosphino-l-aminoferrocenes in asymmetric catalysis. 

Alkene Product 
cal (8)·221 cal (5)·234 cat(5)·235 cat (8)·236 
(> 99 % eel (77 % ee) (84 %ae) (> 99 % ee) 

~ ~ 124 (R).124. "" '" 94% ykl 84% eo (F/) 99% yld n % ee (R) 98% ykl 49% ea (R) 96% yld 84% ee (F/) 

IQ IQ 

~OEI 
0 

128 (11)-128. ~OEI 97% ykl 91 % ee (R) 97% ykl76% ee (F/) 87% yld 55% ee ( F/) 98% yld 62% ee (R) 

oUOEI 

a 

225. (R)·226. ~OEI 99% yld 92% ee (F/) 99% yld 74 % ee (R) 96% yld 56% ee (R) 83% yld 61% ee (F/) 

Mea Q MeO Q 

ooUOEI 

a 

226n (R).226n ~OEI 96% yld 82% ae (F/) 97% yId 72% ee (F/) 99% yld 55% ee (R) 91%yld36% ee(R) 

Q Q I Q Q 

a a 

225b vYoEI (S)·226b vY0EI 88% yld 82% aa (5) 96% yld 21 % ee (S) 94% yld, 49% ee (5) 74% cony 4% ee (R) 

a a 

2250 oYoEI (8)·226c oY0EI 98% yld 84% ee (S) 93% yld 28% ee (S) 95% yld 55% ee (5) 79% cony 2% ee (R) 

MeO .& MeO Q 

a a 

2251 ()Y~-----Ph (5)·2261 ~~-----Ph 96% yld, 48% ee (5) 95% yId , 11 % ee (8) 96% yld, 11% ee (5) 98% yld, 16% ee (R) 

2251 Q"YoH (R)..2261 Q"Y0H 83% yld 18% eo (R) 96% yld 48% ee (R) 99% yld 23% ee (R) 99% yld 12% ee (S) 
Q • 

22Sj Q"YoMe (R)·226j Q"YoMe II 61%yld 17% ee a 56% yld 37% ee 882% yld 100/0 ee a61%yld 2% ee 

~ bw yield We toVOlatifly of alkane 

Table 11. Asymmetric hydrogenation results with complexes (S)-221, (S)-234, (S)-235, 

and (S)-236. 
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227e ~OH (S)-228e ~OH 99% yld 43% opt pur (S) 

125 ~ (R)-125a ~ 95% yld 26% ee 

MeO I ~ MeO h 
(with 80% ee cat) 

2250 dNA< I~ H 
ent-2260 dN-A< I h H 

97% yld, 17% ee 

225p 
H3C(H2C)sMoMe 

ent-226p 
H3C(H2C)sMoMe 

97% yld, 9% opt pur 

0 0 

227v ~OH (S)-228v vrOH 78% yld, 97% conv, 53% opt pur 

0 0 

227w oY0H (S)-228w oY0H 91% yld, 91% conY, 60% opt pur 

MeO ~ MeO h 

Table 12. Additional asymmetric hydrogenation results with complex (S)-221. 

Trans-l,2-diphenylpropene (methyl stilbene, 124) was the first substrate tested. 

For initial catalyst (S)-221, (R)-1,2-diphenylpropane ((R)-124a) was obtained in excellent 

yield (94%) and good enantioselectivity (84% ee). Given that 204 was the first ligand 

tested in the series, this was an encouraging result. Variation of solvent conditions led to 

a decrease in activity and selectivity in some cases. For example, using toluene provided 

the product in only 46% conversion and 74% ee. Chloroform (60% conversion, 81 % ee) 

and dichloroethane (91 % conversion, 77% ee) were also inferior solvents. Satisfyingly, it 

was found that lowering the catalyst loading 1 mol % or even 0.5 mol % was sufficient to 

provide full conversion while still maintaining enantioselectivity (94% yield, 81% ee 

with 1 mol %; and 93% yield, 85% ee with 0.5 mol %). Utilizing complex (S)-234 

improved the enantioselectivity, giving (R)-124a in 77% ee (equal to the catalyst % ee), 
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while complex (S)-236 gave similar results to 221, with (R)-124a isolated in 84% ee. 

Complex (S)-235 gave the poorest results with product (R)-124a produced in only 49% 

ee. 

Electron deficient alkenes such as a,p-unsaturated esters were then explored. p­

Substituted-a,p-unsaturated ester trans-ethyl 3-phenylbut-2-enoate (128) was 

hydrogenated to give (R)-ethyl 3-phenylbutanoate ((R)-128a), again in excellent isolated 

yield, and satisfyingly, with greater enantiomeric excess (91 % ee with complex (S)-221). 

Excellent induction was also found with complex (S)-234 giving (R)-128a in 76% ee 

(with 77% ee catalyst). Complex (S)-236 gave lower selectivity and provided ester (R)-

128a in 62% ee, and complex (S)-235 was also less selective (55% ee with 84% ee 

catalyst). Trans-ethyl 3-(4-methoxyphenyl)but-2-enoate (225a) was converted to (R)­

ethyl 3-(4-methoxyphenyl)butanoate ((R)-226a) in 92% enantiomeric excess with 

complex (S)-221, in 74% ee with complex (S)-234 (at 77% ee), in 61 % ee with complex 

(S)-236, and in 56% ee with complex (S)-235 (at 84% ee). As a further example, trans­

ethyl 3-(naphthalen-2-yl)butenoate (227y) was hydrogenated with isolation of (R)-ethyl 

3-(naphthalen-2-yl)butanoate ((R)-228y) in 82% enantiomeric excess using (S)-221, and 

in 72% ee using (S)-234 (at 77% ee). 

Hydrogenation of a-substituted-a,p-unsaturated ester trans-ethyl 2-methyl-3-

phenyl acrylate (227b) gave (S)-ethyl 2-methyl-3-phenylpropanoate ((S)-228b) in 82% 

enantiomeric excess with (S)-221, in 21 % ee with (S)-234, in 49% ee with (S)-235, and 

surprisingly was only hydrogenated in 74% conversion and gave the product in nearly 

racemic (4% ee) form favouring the opposite enantiomer (R) with (S)-236. Similarily, 

trans-ethyl 3-(4-methoxyphenyl)-2-methylacrylate (227c) was hydrogenated to give (S)-
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ethyl 3-(4-methoxyphenyl)-2-methylpropanoate ((S)-228c) in 84% enantiomeric excess 

with catalyst (S)-221, in 28% ee with (S)-234, in 55% ee with (S)-235, and again was not 

fully hydrogenated (79% conversion) and gave nearly racemic product (2% ee favouring 

the (R) enantiomer) with (S)-236. a-Substituted-a,p-unsaturated amide trans-N-benzyl-2-

methyl-3-phenylacrylamide (227i) is slightly more electron rich than the ester analogues, 

and was hydrogenated to (S)-N-benzyl-2-methyl-3-phenylpropanamide ((S)-228i) in 48% 

enantiomeric excess with (S)-221, and in low (-10%) selectivity with all other 

complexes. 

Electron rich allylic alcohol geraniol (227e) was converted to (S)-3,7-

dimethyloctanol ((S)-228e) in 99% isolated yield and 43% optical purity with complex 

(S)-221, and trans-2-methyl-3-phenylpropenol (227f) was converted to (R)-2-methyl-3-

phenylpropanol ((R)-228f) in 18% enantiomeric excess with complex (S)-221, with 

slightly higher selectivity (23% ee) with (S)-235 (at 84% ee), and the highest selectivity 

achieved with (S)-234 at 48% ee (catalyst at 77% ee). Again with (S)-236, the opposite 

enantiomer, (S)-2-methyl-3-phenypropanol, was obtained in 12% ee. Allylic ether trans­

(3-methoxy-2-methylprop-l-enyl)benzene (227j), was hydrogenated with selectivities 

similar to allylic alcohol 227f. Complex (S)-221 provided (-)-(3-methoxy-2-

methylpropyl)benzene (228j) in 17% ee, nearly racemic product (2% ee) was obtained 

using complex (S)-236, and 10% ee was achieved with (S)-235 (at 84% ee). Again, the 

highest enantioselectivity was achieved with complex (S)-234 providing (-)-228j in 37% 

ee (with catalyst at 77% ee). Electron neutral trans-l-(but-2-enyl)-4-methoxybenzene 

(125) was hydrogenated giving (R)-I-sec-butyl-4-methoxybenzene ((R)-125a) in 26% 

enantiomeric excess (with 80% ee catalyst (S)-221). Electron rich N-acyl-a-arylenamide 
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227z was hydrogenated in 17% ee with complex (S)-221. Purely alkyl substituted a,fJ­

unsaturated ester, trans-methyl 3-methyldodecenoate (227ab), provided fatty acid methyl 

ester (-)-methyl 3-methyldodecanoate ((-)-228ab) in 9% optical purity showing the 

commonly observed trend that aryl substituted alkenes give products in higher 

enantioselectivity than alkyl substituted alkenes. 

From the preceding results, it can be seen that initial ligand 204 has the broadest 

substrate scope with good to excellent enantioselectivities with a number of substrates. 

Complex 234 with bulkier ortho-tolyl groups on the phosphorus moiety of the ligand 

proved to be more selective for several alkenes, especially those substituted on the same 

carbon as the aromatic group, although unfortunately the ligand could not be 

recrystallized to enantiomeric purity as with ligands 204 and 207. Complex 235 with 

more electron rich cyc10hexyl groups on the phosphorus moiety was less selective in 

hydrogenation of all alkenes. Finally, complex 236 with pyrrolidine amine moiety proved 

to be the least selective, exhibiting lower reactivity in some cases as well, while some 

alkanes were obtained with opposite stereochemistry. 

2.8 Proposed Mechanism of Hydrogenation. 

The mechanism of hydrogenation with (S)-221 starts with oxidative addition of 

hydrogen. Four dihydride complexes can be envisioned (Figure 42). Complexes 237a and 

237b can be discounted as oxidative addition trans to phosphorus is electronically 

disfavoured, and complex 237c is sterically disfavoured as the COD ligand is forced into 

the region of the ferrocene backbone. Thus, complex 237d is both sterically and 
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electronically favoured. Hydrogenation of the COD ligand and coordination of solvent 

provides complexes 238c and 238d (Figure 42) . 
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Figure 42. Formation of catalytically active Ir-dihydride solvent species. 

After this specIes IS formed, substrate alkene will coordinate trans to the 

phosphorus moiety. The orientation of coordination depends on the steric environment of 
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the catalyst, and influences the enantioselectivity of the reaction. As can be seen in Figure 

43, placing a quadrant system over the ligand provides insight into how the alkene will 

bind. Coordination of a substrate alkene (such as fJ-methyl ethyl cinnamate) can 

potentially occur in four ways. Based on the quadrant system, it becomes clear that 

species 239a is sterically preferred (Figure 44). 

hindered seml-Ol)en 

semi-Ol)en 

Figure 43. Quadrant system for selective binding of substrate alkene. 
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239c 239d 

Figure 44. Alkene coordination modes for j3-methyl ethyl cinnamate. 

A second factor affecting the enantioselectivity of the reaction is the migratory 

insertion step. Following selective coordination, hydride migratory insertion can occur at 

either the a- or j3-carbon (Figure 45). Electronically, hydride addition to the j3-carbon is 

preferred (240a). In the case of j3-methyl substituted cinnamate derivatives, addition to 

this carbon is also sterically favoured, accounting for the high levels of selectivity. 
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migratory insertion 

240a 240b 

= 0 

.. ~OEt 
91%ee 

Figure 45. Migratory insertion modes for p-methyl ethyl cinnamate. 

This mechanism also helps to explain the reduced enantioselectivities obtained 

with a-substituted a,p-unsaturated esters, in which case there are bulky groups on both 

ends of the alkene (i.e. making binding in one manner less preferential) (Figure 46). 
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Additionally, electronically favoured transfer of the hydride to the p-carbon explains why 

the opposite stereochemistry is obtained when compared to p-substituted cinnamate 

derivatives (Figure 47). 
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Figure 46. Alkene coordination modes for a-methyl ethyl cinnamate. 
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X = CH2CI2 or H2 
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Figure 47. Migratory insertion modes for a-methyl ethyl cinnamate. 

The differences in asymmetric induction between complexes 221, 234-235 can be 

rationalized by the proposed mechanism. For example, the bulkier ortho-tolyl derivative 
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gives higher selectivity for methyl stilbene, and the p-substituted a,p-unsaturated esters 

where the increased steric bulk of the ligand makes alkene coordination more selective 

towards the re-face, but not with the a-substituted a,p-unsaturated esters because of the 

increased steric interaction of the aromatic portion of the alkene with the ortho-tolyl 

groups of the ligand upon alkene coordination. 

Complex 236 with a pyrrolidine amine moiety has increased steric bulk at 

nitrogen in the complex, thus leading to less selective alkene coordination, and reduced 

enantioselectivity with some alkenes. This also explains why there is a reversal of 

stereochemistry and loss in reactivity with the a-substituted a,p-unsaturated esters 

compared to the other complexes. 

There are still limitations of this rudimentary model, of course, especially with 

"electron rich" alkenes, but it does help to explain some of the obtained results, as well as 

being potentially useful for the rational design of new chiral ligands, especially if 

considering specific substrates for hydrogenation. 

106 



Chapter 3: Conclusions 

Several new planar chiral and rare 2-phosphino-1-aminoferrocenes have been 

prepared, their coordination chemistry investigated with iridium and their applications in 

asymmetric hydrogenation of alkenes explored. These ligands take advantage of the 

planar chiral backbone of ferrocene to impart asymmetry. The initial ligand (2-

diphenylphosphino-1-dimethylaminoferrocene) provided excellent asymmetric induction 

in the hydrogenation of several prochiral alkenes. A trend relating selectivity to alkene 

electronic properties was observed, with several electron poor alkenes providing high 

selectivities. For example, hydrogenation of f3-substituted-a,f3-unsaturated esters provided 
, 

products in 91-92% enantiomeric excess. The a-substituted counterparts of these esters 

were hydrogenated with slightly lower selectivity, nevertheless good enantiomeric 

excesses of 82-84% were achieved. Electron neutral substituted alkenes were also 

hydrogenated with less selectivity, for example providing 1,2-diphenylpropane in 84% 

enantiomeric excess. Finally, electron rich alkenes, such as allylic alcohol 2-methyl-3-

phenylpropenol, were hydrogenated with the lowest selectivity and were obtained in 17-

48% enantiomeric excess. 

Variation of the substituents on both the phosphorus and nitrogen donor atoms of 

the ligand was performed for evaluation of their effect on selectivity. Locking the 

dimethyl amino group into a pyrrolidine ring had a detrimental effect on selectivity and 

reactivity in some cases. Changing the P-phenyl substituents to cyc10hexyl groups again 

had a detrimental effect on selectivity, with no loss in reactivity. However, changing to 

P-ortho-tolyl groups had a positive effect on selectivity. From these results it can be 
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predicted that electron rich donors on phosphorus would be detrimental to selectivity, 

while bulkier aromatic groups could provide a way to excellent selectivities. A 

mechanism is proposed that helps to explain the sense and extent of chiral induction 

differences between ligands. 

In contrast to many ligands currently used, which contain mostly imine or related 

Sp2 nitrogen donors, the ligands described here offer an alternative structural scaffold and 

warrant further investigation in asymmetric catalysis. It is clear that the prepared 

complexes, which exhibit 5-membered chelate rings with iridium (as opposed to a 6-

membered ring which is normally seen) are viable catalysts. The results also show that 

the planar chirality of ferrocene is capable of inducing high levels of asymmetry during 

catalytic reactions, in the absence of any other elements of chirality. 

The synthetic route to these ligands is straightforward, and provides the products 

in good yields and enantioselectivities. Two of the four aminophosphine ligands were 

recrystallized to enantiomeric purity in relatively few steps. Either enantiomer of the 

ligands may be obtained simply by switching the configuration of the chiral diamine 

ligand used in the asymmetric lithiation step. 
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Chapter 4: Future Work 

Future work will focus on two different areas - modification of the ligand 

structure, and use of these ligands in different catalytic reactions. Further modifications 

on the ligand may include variation of the phenyl substituents on phosphorus to other 

aromatic groups with various electronic and steric properties. It has been shown that 

substituent electronic effects in chiral ligands can have an impact on asymmetric 

induction in many catalytic reactions. 12o For example, electron donating p-methoxy (242) 

derivative, electron withdrawing p-trifluoromethyl (243) or 3,5-bis(tifluoromethyl) (244), 

as well as neutral p-tolyl (241) derivatives could be prepared. Bulky phosphine 
, 

derivatives should also be investigated. For example, mesityl (245) or 3,5-xylyl (246) 

derivatives would increase the steric bulk without altering the electronic environment too 

much. Additionally, different groups on nitrogen should be investigated, such as 

diethylaminoferrocene (247 and 248), which increases steric bulk on nitrogen without 

locking the groups into a ring system. Increasing the steric bulk on nitrogen while 

decreasing the steric bulk on phosphorus (for example, 249) may also provide insight into 

the origin of selectivity. Other routes to variation of ligand properties could involve use 

of an additional substituent. 1,2,3-Trisubstituted ferrocenes such as 250 or 251 can be 

easily prepared by the Metallinos route, and as such may lead to ligands that are more 

sterically and electronically desymmetrized. It would also be advantageous to investigate 

phosphinite derivatives such as 252 and 253, considering the work of Pfaltz.76d 
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Additional catalytic reactions that could be attempted would be asymmetric Ir-

catalyzed transfer hydrogenation, hydrosilylation, and hydroboration with the Ir-CI 

complex, as well as Ir-catalyzed allylic isomerization. This ligand system could also be 

utilized in Pd or Ni-catalyzed asymmetric Grignard reactions. Asymmetric 

hydroamination is also worth investigating with either the Ir complex, or via preparation 

and utilization of a Rh complex. 

+ + 
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Chapter 5: Experimental 

General procedures. 

All reagents were purchased from commercial sources and used as received 

unless otherwise indicated. Tetrahydrofuran (THF) was dried and distilled over 

sodiumlbenzophenone ketyl under an atmosphere of nitrogen. Toluene was dried and 

distilled over sodium under an atmosphere of nitrogen. Dichloromethane was dried and 

distilled over CaH2 under an atmosphere of nitrogen. Tert-butyl methyl ether (TBME) 

was dried and distilled over LiAI~ under an argon atmosphere. Dimethylaminoethanol 

was distilled over KOH under an argon atmosphere. Alkyl lithium reagents were titrated 

according to literature procedure with N-benzylbenzamide at -40 °C to a blue 

endpoint. 121 All reactions were performed under argon in flame- or oven-dried glassware 

using syringe-septum cap techniques or Schlenk conditions unless otherwise indicated. 

Column chromatography was performed on silica gel 60 (70-230 mesh) or neutral 

alumina. 

NMR spectra were obtained on a Bruker Advance 300 or 600 MHz instrument 

and are referenced to the residual proton signal of the deuterated solvent for lH spectra 

and to the carbon multiplet of the deuterated solvent for 13C spectra according to 

published values. Pressurized reactions were performed with a Parr 4760 bomb. FT-IR 

spectra were obtained on an A TI Mattson Research Series spectrometer as KBr pellets for 

solids or on KBr discs for liquids. Mass spectra were obtained on an MSIIKratos Concept 

IS mass spectrometer. Combustion analyses were performed by Atlantic Microlab Inc., 

Norcross, GA. Melting points were determined on a Kofler hot-stage apparatus and are 
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uncorrected. X-ray data were collected on a Bruker APEX II CCD area detector equipped 

with a Kappa goniometer and using Mo KR graphite-monochromated radiation, A = 

0.71073 A. The structure was solved by direct methods using SHELXTL software. The 

refinement and all further calculations were carried out using SHELXTL. The H atoms 

were included in calculated positions and treated as riding atoms using SHELXL default 

parameters. The non-H atoms were refined anisotropically using weighted full-matrix 

least-squares on F2. A multiscan absorption correction was applied using the SADABS 

routine. 

Isopropyllithium.122 To a dry flask under argon was added 50 mL dry pentane. Hammer-

flattened lithium 'wire cut into chips (5.83 g, 840 mmol) was added, followed by addition 

of another 60 mL dry pentane. The mixture was heated to reflux, and 2-chloropropane 

(32 mL, 350 mmol) with tert-butyl methyl ether (0.42 mL, 3.5 mmol) was added 

dropwise to the refluxing solution over 2.5 hours. After addition was complete, the 

solution was allowed to cool to room temperature and precipitates allowed to settle (over 

16 hours). The solution was transferred by cannula to a dry serum bottle and titrated to 

give a concentration of 1.85 mollL. 

Lithioferrocene (209). To a dry flask under argon was added ferrocene (20 g, 108 

~Li 
I 

Fe 

~ 

mmol) and dry THF (125 mL). The stirred solution was cooled to 0 °C and 

treated with t-BuLi (112 mL, 1.11 M, 124 mmol). After addition was 

complete, the solution was cooled to -78°C and dry hexane (150 mL) was 

added causing precipitation of an orange solid. With sufficient stirring the suspension 
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was cannulated into a Schlenk filter, and washed with dry hexane (5 x 50 mL). The 

orange powder was dried under vacuum and then transferred to a Schlenk flask, affording 

14.2 g of lithioferrocene (69%). 

Iodoferrocene (210). To a dry flask containing lithioferrocene (14.2 g, 74 mmol) was 

~, 
I 

Fe 

~ 

added dry THF (135 mL). The stirred solution was cooled to -78 DC, and 

iodine (18.8 g, 74 mmol) was added in one portion under a stream of argon. 

The solution was allowed to warm to room temperature over 2 h then diluted 

with ether (384 rnL) and treated with saturated sodium thiosulfate. The layers were 

separated, the organic layer washed with water and brine, and then dried with MgS04• 

The solution was filtered and the solvent removed in vacuo. The crude dark orange / 

yellow oil was dissolved in minimal hexanes, and passed through silica (50 rnL) with 

hexanes. The solvent was removed in vacuo to yield 16.9 g (73%) of iodoferrocene as a 

dark orange semi-solid. IH NMR (300 MHz, CDCI3) ~ 4.42 (t, 1H), 4.38 (t, 1H), 4.20 (s, 

5 H), 4.19 (t, 1H), 4.16 (t, 1H). 

N-ferrocenyl phthalimide (211). To a dry flask containing iodoferrocene (16.9 g, 54 

o mmol) was added phthalimide (13.0 g, 88 mmol), copper oxide 

~N~ (3.78 g, 26 mmol), and pyridine (105 mL). The solution ~as heated 

~ 0 at reflux for 48 hours, after which the pyridine was removed by 

vacuum distillation. Hexane was added and the solution filtered through neutral alumina 

(200 mL) to remove unreacted iodoferrocene (1.38 g). Crude N-ferrocenyl phthalimide 

was obtained by flushing the alumina with Et20. The crude N-ferrocenyl phthalimide was 
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crystallized from absolute ethanol in two crops to yield 10.25 g (57%) of red needles. mp 

161-164 °C; IH NMR (300 MHz, CDCh) ~ 7.88 (m, 2H), 7.75 (m, 2H), 5.01 (t, 2 H, J = 

2.1 Hz), 4.22 (s, 5 H), 4.20 (t, 2 H, J = 1.8 Hz). 

Aminoferrocene (212). Absolute EtOH (80 mL) in a dry flask was degassed for 10 min 

with argon. 211 (5.5 g, 17 mmol) was added under a stream of argon, 

followed by hydrazine monohydride (32 mL, 7 mmol). The solution was 

heated to reflux for 2 hours, then cooled to room temperature, and water 

was added. The solution was extracted with Et20 until colourless. The combined organic 

layer was washed with water and brine, dried with Na2S04, filtered, and the solvent 

removed in vacuo to yield 3.3 g (98%) of aminoferrocene as a bright orange solid. mp 

112-115 °C (sub); IH NMR (CDCh, 300 MHz) ~ 4.10 (s, 5 H), 3.99 (t, 2 H, J = 1.8 Hz), 

3.84 (t, 2H, J = 1.8 Hz), 2.59 (bs, 2H). 

N,N-dimethylaminoferrocene (192). To a dry flask containing aminoferrocene (2.0 g, 

10 mmol), was added acetic acid (30 mL), paraformaldehyde (3.0 g, 10 

mmol), and sodium cyanoborohydride (3.1 g, 5 mmol). The solution was 

stirred under argon for 18 h, after which water was added, and the 

solution made basic with 6 M NaOH. Hexanes was added, the layers separated, and the 

aqueous layer extracted with hexanes. The combined organic layer was washed with 

water, brine, dried with Na2S04, filtered, and most of the solvent removed in vacuo. The 

solution was cooled to -20°C to induce precipitation, and 192 (1.95 g, 86%) obtained as 

shiny orange flakes. mp 72-76 °C; IH NMR (300 MHz, CDCh) ~ 4.26 (s, 5H), 3.94 (t, 
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2H, J = 1.8 Hz), 3.79 (t, 2H, J = 1.8 Hz), 2.59 (s, 6H); l3C NMR (75.5 MHz, CDCh) b 

115.4,66.8,63.5,55.1,42.3. 

N-ferrocenyl pyrrolidine (213). To a dry flask containing aminoferrocene (1.3 g, 6.5 

~N~ 
I 

Fe 

~ 

mmol) in Et20 (45 mL) was added a solution of succinic anhydride (0.65 

g, 6.5 mmol) in THF (20 mL). The solution was allowed to stir under 

argon at room temperature for 3.5 h, after which solvent was removed in 

vacuo. To the crude oil was added a suspension of NaOAc (0.53 g, 6.5 mmol) in acetic 

anhydride (14 mL). The solution was heated at reflux for 30 min, then poured into ice 

cold saturated NaHC03. The layers were separated, aqueous layer extracted with EtOAc 

until colourless. The combined organic layer was washed with water, brine, dried with 

Na2S04, filtered, and solvent removed in vacuo. Filtration of the preadsorbed crude oil 

through silica with 1: 1 hexanes:EtOAc, followed by crystallization from 1: 1 

hexanes:EtOAc afforded N-ferrocenyl succinimide (1.45 g, 79%) as an orange solid. lH 

NMR (300 MHz, CDCh) J 4.91 (t, J = 1.8 Hz, 2H), 4.19 (s, 5H), 4.16 (t, 2H, J = 1.8 Hz), 

2.78 (s, 4H). To a dry flask under argon was added intermediate N-ferrocenyl 

succinimide (1.0 g, 3.5 mmol), dry THF (20 mL), and borane (BH3·THF, 18 mL, 0.8 M 

in THF, 14.4 mmol). The solution was heated at reflux at which point a yellow precipitate 

formed. After refluxing for 2 h, the solution was cooled to room temperature, diluted with 

Et20, and 10 % NaOH was added until bubbling had ceased. The layers were separated, 

aqueous extracted with Et20 (1 x 20 mL), combined organic washed with water (2 x 10 

mL), brine, dried with Na2S04, filtered, and concentrated in vacuo. Filtration of the 

preadsorbed crude material through silica with 1: 1 Et20:pentane afforded 213 (874 mg, 
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97%) as an orange yellow solid. mp 109-110 °C; IH NMR (300 MHz, CDC13) ~ 4.18 (s, 

5H), 3.89 (s, 2H), 3.71 (s, 2H), 2.97 (m, 4H), 1.94 (qn, 4H, J = 3.3 Hz). 

2-diphenylphosphine-1-dimethylaminoferrocene (204). To a dry flask under argon 

was added 192 (460 mg, 2.0 mmol) and dry THF (20 mL). The solution 

was cooled to 0 °C, treated with BF3·0Et2 (0.265 mL, 2.11 mmol) at 

which point a colour change from orange to yellow with precipitation of a 

yellow solid occurred, and allowed to stir at 0 °C for 15 min. The solution was cooled to 

-40 °C, treated with n-BuLi (1.27 mL, 2.21 mmol), and allowed to stir at -40 °C for 1 h. 

CIPPh2 (440 ~L, 2.41 mmol)was added at -40 °C and the solution was allowed to warm 

slowly to room temperature over 3.5 h, at which point the solution was diluted with Et20 

and saturated NaHC03 added. The layers were separated and the aqueous washed with 

Et20 (1 x 10 mL). The combined organic layer was washed with water, brine, dried with 

Na2S04, filtered, and concentrated in vacuo. Filtration of the preadsorbed crude material 

through silica with Et20, followed by crystallization from Et20 afforded 204 (534 mg, 

64%) as orange needles in two crops. mp146-148 °C; 31 p NMR (121.5 MHz, CDCh) ~-

20.40; IH NMR (300 MHz, CDCh) ~ 7.57-7.51 (m, 2H), 7.39-7.37 (m, 3H), 7.25 (m, 5H) 

4.19 (q, IH, J = 1.8 Hz), 4.12 (s, 5H), 4.08 (t, IH, J = 2.4 Hz), 3.49 (t, IH, J = 1.5 Hz), 

2.68 (s, 6H); J3C NMR (75 MHz, CDCh) ~ 139.7 (d, i3C_31p = 10.6 Hz), 137.8 (d, i3C_31p 

= 11.3 Hz), 135.2 (d, i3c_3lp = 21.9 Hz), 132.4 (d, i3C_31p = 18.1 Hz), 129.0, 128.0 (d), 

127.8 (d), 118.9 (d, i 3
C?p = 18.1 Hz), 68.6, 68.4 (d, i3c_3lp = 3.8 Hz), 65.9 (d, i3c_31p = 

10.6 Hz), 65.1, 60.1 (d, i3C_31p = 3.0 Hz), 45.4 (d, i3C_31p = 9.1 Hz). 
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Sodium tetrakis[3,S-bis(trifluoromethyl)phenyl]borate (103). To a dry flask under 

argon was added cleaned (acetone/HCI) Mg turnings (485 mg, 

+ 
Na B 

20 mmoI), dry Et20 (30 mL), dry NaBF4 (338 mg, 3.1 mmoI) 

and an iodine crystal. The solution was heated briefly to 

activate the Mg, and 3,5-bis(trifluoromethyl)bromobenzene (3 

mL, 17.3 mmol) in Et20 (20 mL) was added dropwise. The solution was then stirred at 

reflux and a colour change to dark tan / brown was observed. After 1 h, the solution was 

cooled to room temperature and allowed to stir for 16 h, over which a tan solid 

precipitated. The solution was slowly poured into a solution of Na2C03 (24 g) in H20 

(100mL) and stirred for 20 min. The layers were separated, brine was added to the 

aqueous layer, and the aqueous layer was extracted with Et20 (4 x 25 mL). The organic 

was dried with Na2S04, treated with decolourizing charcoal, filtered, and concentrated in 

vacuo. The crude oil was dissolved in minimal hot CHCI3, and product precipitated with 

hexanes. The solid was collected by filtration, washed with cold CHCh, and dried in 

vacuo to afford 103 (1.52 g, 56%) as a pale grey crystalline solid. mp >230 °C; 19F NMR 

(300 MHz, acetone-d6) b -63.3; IH NMR (300 MHz, acetone-d6) b 7.79 (t, 8H), 7.67 (s, 

4H). 

2-Diphenylphosphino-1-dimethylaminoferroceneiridium (cyclooctadiene )chloride 

+ (220). To a dry flask under argon was added 204 (83 mg, 0.20 
~ 

Fe Ph 
~-.p-Ph 

mmol), [Ir(COD)Clh (68 mg, 0.10 mmol), and CH2Clz (2.1 mL). 
CI 

Me-N-Ir 

MI fjJ The solution was stirred at reflux for 1 h and solvent removed in 

vacuo to afford 220 (150 mg, 99%) as an orange-yellow solid. 
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mp 122-125 bC (dec, CHzCh); IR (KBr) Vrnax 3406, 3049, 2939, 2881, 2831, 2775, 1645, 

1479, 1435, 1385, 1325, 1097, 1003,822, 750, 696 em-I; 31 p NMR (121.5 MHz, CDCb) 

b 20.1; IH NMR (300 MHz, CDCh) b 8.29 (t, 2H, J = 8.1 Hz), 8.01 (m, 2H), 7.48 (m, 

3H), 7.38 (m, 3H), 4.33 (t, 1H, J = 3.9 Hz), 4.17 (t, 1H, J = 2.4 Hz), 3.92 (s, 5H), 3.68 (t, 

1H, J = 1.2 Hz), 2.98 (s, 6H), 2.12 (m, 4H), 1.62 (m, 4H); FABMS [m/z(%)] 714 (M-Cl, 

90), 712 (100); HRMS (FAB) ca1cd for C3zH36NPFel93Ir 714.1564, found 714.1500. 

2-DiphenyIphosphino-l-dimethyIaminoferroceneiridium (cyclooctadiene) 

tetrakis(3,5-bis(trifluoromethyl)phenyI)borate (221). 

+ 
Direct synthesis: To a dry flask containing NaBArF (45 mg, 

0.051 mmol) was added distilled water (1 mL), CHzCh (1 
BArF 

mL), and 220 (24 mg, 0.032 mmol). The solution was stirred 

vigorously for 15 min, layers separated, and aqueous layer 

extracted with CHzCh (3 x 2 mL). The combined organic 

layer was washed with water (1 x 5 mL), and concentration in vacuo. Filtration through a 

plug of silica with CHzCh provided 221 (42 mg, 83%) as a bright orange solid. 

In situ synthesis: To a dry flask containing 204 (83 mg, 0.20 mmol) was added 

[Ir(COD)CI]z (67 mg, 0.10 mmol), and CHzCh (2.1 mL). After refluxing for 1 h, the 

solution was cooled to room temperature, and NaBArF (277 mg, 0.31 mmol) and 2.1 mL 

distilled water was added. After vigorous stirring for 15 min, the layers were separated, 

the aqueous layer extracted with CHzCh (3 x 5 mL), and the combined organic layer 

washed with water (1 x 10 mL). The crude was concentrated in vacuo, and filtered 

through a plug of silica with CHzCh to afford 221 (299 mg, 94%). mp 197-198 °C (dec, 
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benzene); !R(KBr) Vrnax 2958, 2925, 2891, 1610, 1439, 1356, 1279, 1169, 1126; 31p NMR 

(121.5 MHz, CDCh) b 14.95; 19F NMR (282.4 MHz, CDCh) b -62.34; IH NMR (300 

MHz, CDCh) b 7.75-7.72 (m, 2H), 7.72 (s, 8H), 7.58-7.54 (m, 4H), 7.53 (s, 4H), 7.46-

7.40 (m, 4H), 5.03 (m, 1H), 4.90 (t, 1H, J = 2.7 Hz), 4.57 (m, 1H), 4.47 (s, 1H), 4.41 (s, 

1H), 4.31 (s, 5H), 4.05 (m, 1H), 3.51 (m, 1H), 3.12 (s, 3H), 2.69 (s, 3H), 2.40-2.33 (m, 

2H), 2.30-2.24 (m, 2H), 2.04 (m, 1H), 1.92-1.90 (m, 2H), 1.78-1.74 (m, 1H); 13C NMR 

(75.5 MHz, CDCh) b 161.7 (q, i3C_IIB = 49.8 Hz, B-C BArF), 134.8 (2 x ortho-BArF), 

132.6 (d, JJ3C_3Ip= 51.3 Hz, Ph-P), 132.5 (d, i3C_31p = 4.5 Hz, meta-Ph), 132.4 (d, meta­

Ph), 132.1 (d, i3C_31p= 1.5 Hz, para-Ph), 131.7 (d, i3c_31p = 1.5 Hz, para-Ph), 129.6 (d, 

i3C_31p = 10.6 Hz, ortho-Ph), 129.5 (d, JJ3c _3Ip= 12.1 Hz, ortho-Ph), 128.9 (2 x q, J13C_19F 

= 30.8 Hz, meta-BArF), 127.4 (d, J13C_3I p = 60.4 Hz, Ph-P), 124.5 (2 x q, i3C_19F = 271.6 

Hz, BArF CF3), 124.1 (d, i3C_31p = 24.1 Hz, 1-Cp-N), 117.5 (para BArF), 92.7 (d, JI3c_31 p 

= 12.1 Hz, COD alkene - trans-P), 91.3 (d, JJ3C_31p = 12.1 Hz, COD alkene - trans-P), 

74.6 (d, i3c_31p = 6.0 Hz, 5-Cp sub), 72.0 (Cp unsub), 70.2 (d, JI3C_3I p = 57.3 Hz, 2-Cp-

P), 65.5 (4-Cp sub), 60.7 (COD alkene - trans-N), 60.5 (COD alkene - trans-N), 58.4 (d, 

hC-3IP = Hz, 3-Cp sub), 57.6 (NMe), 50.5 (NMe), 32.3 (COD), 32.2 (COD), 29.6 (COD), 

29.4 (COD); FABMS [rnIz, (%)] 714 (M-BArF, 100); HRMS (FAB) calcd for 

C32H36NP56Fel93rr 714.1564, found 714.1502. Anal. Calcd for C64~8BF24FeNPlr: C, 

48.75; H, 3.07. Found: C, 48.79; H, 2.98; X-ray crystallographic analysis was performed 

on an orange block (0.30 x 0.26 x 0.04 mm3): C64H48BF24FeNPlr: M = 1576.86 g/mol, 

triclinic, PI, a = 12.7697(6) A, b = 12.8455(6) A, c = 19.8377(10) A, V = 3045.8(3) A3, a 

= 74.724(2) 0, B = 76.026(3) 0, Y = 87.188(2) 0, Z = 2, Dc = 1.719 g/cm3, F(OOO) = 1556, 

T = 150(2) K. Data were collected on a Bruker Kappa Apex II area detector system with 

120 



graphite moriochromated Mo Ka radiation (A = 0.71073 A); 81694 data were collected. 

The structure was solved by Direct Methods (SHELXTL) and refined by full-matrix least 

squares on F2 resulting in final R, Rw and GOF [for 15144 data with F > 2cr(F)] of 0.0352, 

0.0985 and 1.133, respectively. 

(lR,2R)-N1
,N2 -diisopentyl-N1

,N2 -dimethylcyclohexane-l,2-diamine (229).123 

+ 

.. a NH3 

. + 
"NH3 

... 
I 

('yNH 

V"/NH 
I 

To a flask containing L-tartrate (12.5 g, 83.4 mmol) in distilled H20 (45 mL) was added 

trans-1,2-cyclohexanediamine (20 mL, 184.4 mmol) dropwise over 30 min resulting in 

heat evolution (to - 40°C) and production of a white precipitate. Glacial acetic acid (5 

mL) was added dropwise over 15 min resulting in a temperature increase to 40°C. This 

solution was allowed to cool to room temperature over 4 h, stirred at 0 °C for 2 h, then 

placed in the fridge (at 2-4 DC) for -12 h to crystallize. White crystals were filtered, 

washed once with H20 (20 mL), then with MeOH (5 x 10 mL - filtrates collected into 

separate receiving flasks), and dried in vacuo to give (R,R)-1,2-cyclohexanediamine 

tartrate salt (15.5 g, 64%). [a]2oD + 12.6 (c 4.0, H20). To a stirred solution of the salt (15.5 
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g, 58.7 mmol) in toluene (75 mL) at 0 DC was simultaneously added a solution of NaOH 

(18.8 g, 469 mmol) in distilled H20 (35 mL) and methy1chloroformate (9.56 mL, 124 

mmol). The solution was allowed to warm to room temperature, then stirred open to air. 

After 48 h, CHCb (75 mL) was added, the solid filtered off, and washed with CHCb (3 x 

25 mL). H20 (40 mL) was added to the filtrate, the layers separated, and aqueous 

extracted with CHCb (2 x 75 mL). The combined organic phase was dried with K2C03, 

filtered, and solvent removed in vacuo to give carbamate intermediate (12.82 g, 95%). To 

a flask containing LiAIH4 under Ar was added dry THF (100 mL) and the suspension 

cooled to 0 DC, and a solution of carbamate intermediate (12.82 g, 55.7 mmol) in dry 

THF (125 mL) was added dropwise over 2.25 hours. The solution was allowed to warm 

to room temperature over 1 h then heated to reflux. After stirring at reflux for 40 h, the 

solution was cooled to room temperature, placed in an ice bath at 0 DC, diluted with Et20 

(100 mL), and saturated Na2S04 was added dropwise until residual LiAIH4 was quenched 

(-50 mL). The solution was allowed to warm to room temperature, and filtered through 

celite washing with 24:1 CH2Clz:MeOH (2 x 75 mL). The filtrate was dried with K2C03, 

filtered, and solvent removed in vacuo to provide (1R,2R)-N1 ,N2 -dimethy1cyc1ohexane-

1,2-diamine as a yellow oil (6.8 g, 82%). IH NMR (300 MHz, CDCb) f5 2.39 (s, 6H), 

2.12 (m, 1H), 2.08 (m, 1H), 2.03-1.99 (m, 2H), 1.74-1.69 (m, 2H), 1.41 (bs, 2H), 1.26-

1.18 (m, 2H), 1.00-0.89 (m, 2H); l3C NMR (75.5 MHz, CDCb) f5 63.3, 33.7, 30.9, 25.1. 

To a flask containing Nl,N2-dimethyl diamine (6.8 g, 47.8 mmol) in MeOH (100 mL) was 

added butyraldehyde (12.9 mL, 144 mmol), sodium cyanoborohydride (12.0 g, 191 

mmol), and glacial acetic acid (2.75 mL, 48.1 mmo!). After stirring at room temperature 

for 24 h, the MeOH was removed in vacuo, crude redissolved in Et20 (100 mL), washed 
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with 10% NaOH (2 x 30 mL), H20 (30 mL), and brine (30 mL), dried with Na2S04, 

filtered, and solvent removed in vacuo to give crude diamine (12.6 g) as a yellow oil. 

Kogelrohr distillation (110 DC, 0.5 mmHg) provided pure diamine 229 (11.3 g, 93%) as a 

colourless oil. [a]2
0o -27.8 (c 1.0, CHCl); IH NMR (300 MHz, CDCI3) ~ 2.53-2.39 (m, 

6H), 2.23 (s, 6H), 1.79-1.68 (m, 4H), 1.49-1.37 (m, 4H), 1.36-1.26 (m, 4H), 1.19-1.07 

(m, 4H), 0.90 (t, 6 H, J = 7.2 Hz). 

(lR,2R)-N1
,N2 -dibutyl-N1

,N2 -dimethylcyclohexane-l,2-diamine (191). To a solution of 

(1R, 2R)-N1,N2-dimethylcyc1ohexane-l,2-diamine (1.5 g, 10.5 mmol) in MeOH (25 mL) 

under Ar was added isovaleraldehyde (3.4 mL, 32 mmol), sodium cyanoborohydride (2.6 

g, 42 mmol), and glacial acetic acid (0.60 mL, 10.5 mmol). After stirring at room 

temperature for 24 h, the MeOH was removed in vacuo, crude redissolved in Et20 (25 

mL), washed with 10% NaOH (2 x 20 mL), H20 (20 mL), and brine (20 mL), dried with 

Na2S04, filtered, and solvent removed in vacuo to give crude diamine (3.0 g) as a yellow 

oil. Kogelrohr distillation (115 DC, 0.2 mmHg) provided pure diamine 191 (2.9 g, 97%) 

as a colourless oil. [a]2
0o -27.2 (c 1.0, CHCl); IH NMR (300 MHz, CDCl) ~ 2.56-2.39 

(m, 6H), 2.23 (s, 6H), 1.79-1.68 (m, 4H), 1.61-1.53 (m, 2H), 1.38-1.29 (m, 4H), 1.11-

1.07 (m, 4H), 0.89 (d, 6H, J = 1.5 Hz), 0.87 (d, 6H, J = 1.5 Hz); I3C NMR (300 MHz, 

CDCl) ~ 63.1,52.8,37.9,36.9,26.7,26.1,25.7,23.2,22.9. 

2-diphenylphosphinothionyl-l-dimethylaminoferrocene (230). A solution of (R,R)-

~NMe2 229 (390 mg, 1.38 mmol) in t-BuOMe (3 mL) was cooled to -40 DC, 

Fie PPh2 .c$s treated sequentially with i-PrLi (2.23 mL, 1.85 M in pentane, 4.13 mmol) 

and dimethylaminoethanol (124 mg, 1.39 mmol) in t-BuOMe (3 mL), 
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and stirred for 20 min at that temperature. The solution was transferred by cannula to a 

mixture of 192·BF3 at -78°C [prepared by addition of BF3·OEt2 (175 ilL, 1.39 mmol) to 

a solution of 192 (300 mg, 1.31 mmol) in t-BuOMe (13 mL) at 0 °C and stirring for 10 

min]. The mixture was allowed to warm slowly to -40 °C over approximately 2 h and 

then held at that temperature for an additional hour. After cooling back to -78°C, CIPPh2 

(600 ilL, 3.27 mmol) was added and the mixture was allowed to warm slowly to room 

temperature. The reaction mixture was diluted with Et20 and worked-up by addition of 

saturated aqueous NaHC03. The aqueous layer was extracted with EtiO (3 x 15 rnL) and 

the combined organic extract was washed with H20 (1 x 15 mL), brine (1 x 15 mL), dried 

over anhydrous Na2S04 and concentrated under reduced pressure in vacuo to afford the 

crude aminophosphine. To the crude material in a dry round bottom flask under argon 

was added sulfur powder (1.59 g, 49.6 mmol) and toluene (25 mL), and the mixture was 

heated at 40°C for 2 h. After cooling to room temperature, the reaction mixture was 

gravity filtered to remove excess sulfur and the filtrate was pre-adsorbed on silica gel in 

vacuo. Flash column chromatography (silica gel, 9: 1 pentane:Et20) gave 230 (285 mg, 

50%) as an orange foam. [a]D20 +38.5 (c 1.0, CHCb); CSP HPLC analysis (Chiralcel OD-

H; eluent: 99:1 hexane:i-PrOH, 1.0 rnUmin) determined an 88.9:11.1 er (78% ee) 

[tR(minor) = 6.7 min, tR(major) = 7.2 min]; IR (KBr) Vmax 3394, 2950, 2788, 1494, 1419; 

31 p NMR (121.5 MHz, CDCI3) J 44.21; IH NMR (300 MHz, CDCb) J 8.00-7.88 (m, 

2H), 7.79-7.71 (m, 2H), 7.48-7.36 (m, 6H), 4.33 (s, 5H), 4.29 (s, IH), 4.13 (s, IH), 3.81 

13 ,13 31 (s, IH), 2.50 (s, 6H); C NMR (75.5 MHz, CDCh) (5 135.4 (d, J c- p = 87.6 Hz), 133.5 

13 31 3 6 d 13 31 6 8 d JI3 31 106 3 (d, J c- p = 86.8 Hz), 1 2. (, J c- p = 10. Hz), 131. (, c- p = . Hz), 1 1.1 

13 31 0 d 13 31 d 13 31 28 d (d, J c- p = 2.3 Hz), 13 .8 ( ,J c- p = 2.3 Hz), 127.9 ( ,J c- p = 1 . Hz), 127.9 ( , 
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13 31 ' d 13 31 13 31 3 6 J c- p = 12.8 Hz), 117.2 ( ,J c- p = 9.1 Hz), 72.3 (d, J c- p = 1 . Hz), 69.9, 67.1 (d, 

13 31 13 31 13 31 J c- p = 92.9 Hz), 65.3 (d, J c- p = 11.3 Hz), 61.8 (d, J c- p = 8.3 Hz), 46.0; ElMS 

[m/z(%)] 445 (M+, 100), 413 (32); HRMS (EI) ca1cd for CZ4Hz4NPS56Fe: 445.0716; 

found 445.0716. Anal. Ca1cd for CZ4H24NPSFe: C, 64.73; H, 5.43. Found: C, 64.79; H, 

5.44. 

(8)-( - )-[2-(Diphenylphosphinothioyl)ferrocenyl]-1-dimethylammonium 

H BF4- tetrafluoroborate «8)-230·HBF4). A solution of aminophosphine 
I 

~N+Me2 
~_ sulfide 230 (131 mg, 0.29 mmol) in diethyl ether (13 mL) at 0 °C was 

Fie PPh2 

~S ~ treated with tetrafluoroboric acid-diethyl ether complex (50 ilL, 0.38 

mmol). An immediate change in color from orange to yellow was observed, and a yellow 

powder precipitated out of solution. The solid was collected by suction filtration, washed 

with cold EtzO, and dried in vacuo to afford ammonium salt (S)-230·HBF4 as a yellow 

powder (155 mg, 99%). mp 115-117°C; [a]ozo -76.0 (c 1.0, CHCb); IR (KBr) Vmax 3449, 

3369, 3051, 2923, 1436, 1100, 1053, 751, 714 cm-I; 31 p NMR (121.5 MHz, CDCb) J 

37.7; IH NMR (300 MHz, CDCh) J 11.03 (s, IH), 7.94-7.87 (m, 2H), 7.68-7.55 (m, 6H), 

7.52-7.50 (m, 2H), 5.52 (s, IH), 4.73 (s, 6H), 4.31 (s, 6H), 3.63 (d, 3H, J = 5.4 Hz), 2.90 

(d, 3H, J = 5.1 Hz); I3C NMR (150.9 MHz, acetone-d6) J 134.4 (d, i3c_3lp = 87.6 Hz), 

133.8, 133.4, 132.8 (d, JI3C_3I p = 12.1 Hz), 132.0 (d, i3C_31p = 10.6 Hz), 130.8 (d, i3c_3lp 

5 30 d 13 31 8 13 31 0 13 31 = 9 .1 Hz), 1 .1 ( ,J c- p = 12.1 Hz), 129. (d, J c- p = 12.1 Hz), 1 9.1 (d, J c- p = 

37.8 Hz), 73.8 (d, i3c_3lp = 10.6 Hz), 73.4, 71.0 (d, i3C_31p = 9.8 Hz), 66.3 (d, i3c_3lp = 

93.6 Hz), 66.2 (d, i3c_3lp = 5.3 Hz), 50.7, 46.8; FABMS [m/z(%)] 446 (M+, 100),229 

(87) HRMS (FAB) ca1cd for CZ4Hz5NPS56Fe: 446.0794; found 446.0789; Anal. Ca1cd for 
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C24H2sNPSFeBF4: C, 54.07; H, 4.73. Found: C, 54.36; H, 4.75. Two recrystallizations via 

liquid-liquid diffusion of Et20 into a solution of (S)-230·HBF4 in CH2Ch rendered the 

salt as enantiomerically pure orange rod-shaped crystals. mp >225 °C (dec); [a]D20 -94.9 

(c 1.0, acetone); X-ray crystallographic analysis was performed on an orange block (0.33 

10.3605(13) A, b = 12.6260(16) A, c = 17.967(2) A, V = 2350.3(5) A3, a = P = 'Y = 90 0, 

Z = 4, Dc = 1.507 g/cm3
, F(OOO) = 1096, T = 100(2) K. Data were collected on a Bruker 

APEX CCD system with graphite monochromated Mo Ka radiation (Iv = 0.71073 A); 

35112 data were collected. The structure was solved by Direct Methods (SHELXTL) and 

refined by full-matrix least squares on F2 resulting in final R, Rw and GOF [for 6435 data 

with F > 2cr(F)] of 0.0238, 0.0578 and 1.021, respectively, for solution using the S 

enantiomer model [Flack parameter = 0.000(7)]. 

(S)-( + )-2-diphenylphosphinothionyl-l-dimethylaminoferrocene ((S)-230). A flask 

containing a biphasic suspension of recrystallized salt (S)-230·HBF4 (140 

mg, 0.26 mmol) in sat. aqueous NaHC03 and diethyl ether was sonicated 

for 1 min or until all the solid dissolved. The layers were separated and 

the aqueous phase was washed once with diethyl ether. The combined ether layer was 

washed with water, brine, dried over anhydrous Na2S04, filtered and concentrated in 

vacuo to give (S)-230 (116 mg, 99%). mp 120-122 °C; [a]D20 +62.4 (c 0.85, CHCh); CSP 

HPLC analysis (Chira1cel OD-H; eluent: 99: 1 hexane:i-PrOH, 1.0 mLimin) determined a 

99.7:0.3 er (>99% ee) [tR(minor) 6.7 min, tR(major) 7.4 min]. 
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(S)-( - )-2-diphenylphosphino-l-dimethylaminoferrocene «S)-204). Acetonitrile (25 

mL) was added to freshly activated Ni-AI catalyst [(1.44 g, 16.8 mmol, 

activated by portion-wise addition to 25 mL 6 M NaOH and heating at 50 

DC for 1 h, followed by washing the residue with H20 (7 x 10 mL), 

MeOH (3 x 10 mL), Et20 (2 x 10 mL) and MeCN (2 x 10 mL)] and aminophosphine 

sulfide 230 (150 mg, 0.34 mmol) in a round bottom flask under argon, and the mixture 

was heated to 60 DC for 3 h. The reaction mixture was allowed to cool to room 

temperature and filtered through a pad of Celite, washing with acetonitrile. Removal of 

the solvent afforded (S)-204 as an orange semi-solid (118 mg, 85%) having spectroscopic 

data matching the racemate. [a]2oD -213 (c 0.81, CHCb). 

Chlorodi(ortho-tolyl)phosphine.1 24 To a refluxing solution of Mg turnings (4.57 g, 188 

I ~ mmol) in dry THF (25 mL) was added dropwise a solution of ortho­

CIP\\.J-b), chlorotoluene (20 mL, 171 mmol) in dry THF (25 mL) over 1.5 hours. 

The solution was allowed to reflux under argon overnight (approximately 20 hours). To a 

solution of PCb (6.75 mL, 77.2 mmol) in dry THF (150 mL) at -78 DC was added 

dropwise to the preformed Grignard solution. The solution was allowed to warm slowly 

to room temperature and then stirred at room temperature overnight (approximately 24 

hours total) after which the solution was heated to reflux for 1.5 hours. At this point, a 

large amount of while precipitate formed. The solution was allowed to cool to room 

temperature, THF was removed in vacuo, and benzene (150 mL) was added. The mixture 

was filtered (to remove Mg salts), and concentrated in vacuo. Kogelrohr distillation (120-

125 C, 0.45 mmHg) provided the desired chlorophosphine (15.0 g, 78%) as a white solid. 
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31p NMR (121.5 MHz, CDCh) b 73.6; IH NMR (300 MHz, CDCh) b 7.45 (q, 2H, J = 5.1 

Hz), 7.34 (t, 2H, J = 7.5 Hz), 7.22 (m, 4H); 2.49 (d, 6H, J = 2.1 Hz) I3C NMR (75.5 

MHz, CDCI3) b 141.5 (d, i3c_3lp = 31.0 Hz), 135.5 (d, i3C_31p = 35.5 Hz), 131.5 (d, Jl3c _ 

31p = 3.0 Hz), 130.3, 130.3 (d, i3C_31p = 3.8 Hz), 126.5,20.6 (d, Jl3c _3l p = 24.2 Hz). 

2-bis[(ortho-tolyl)phosphinothionyl]-I-dimethylaminoferrocene (231). A solution of 

(R,R)-191 (235 mg, 0.922 mmol) in t-BuOMe (4.5 mL) was cooled to-

40°C, treated sequentially with i-PrLi (1.25 mL, 2.25 M in pentane, 

2.81 mmol) and dimethylaminoethanol (86 mg, 0.970 mmol) in t-

BuOMe (4.5 mL), and stirred for 20 min at that temperature. The solution was transferred 

by cannula to a mixture of 192·BF3 at -78°C [prepared by addition of BF3·OEt2 (115 j..tL, 

0.917 mmol) to a solution of 192 (200 mg, 0.873 mmol) in t-BuOMe (13 mL) at 0 °C and 

stirring for 10 min]. The mixture was allowed to warm slowly to -40 °C over 

approximately 2.5 h and then held at that temperature for an additional hour. After 

cooling back to -78°C, CIP(o-tolylh (548 mg, 2.20 mmol) in 4 mL t-BuOMe was added 

and the mixture was allowed to warm slowly to room temperature. The reaction mixture 

was diluted with Et20 and worked-up by addition of saturated aqueous NaHC03. The 

aqueous layer was extracted with Et20 (3 x 10 mL) and the combined organic extract was 

washed with H20 (1 x 10 mL), brine (1 x 10 mL), dried over anhydrous Na2S04 and 

concentrated under reduced pressure in vacuo to afford the crude aminophosphine. Flash 

column chromatography (silica gel, 9:1 hexanes:EtOAc) gave 205 (232 mg, 60%) as an 

orange semi-solid. 31 p NMR (75.5 MHz, CDCh) b -39.8; IH NMR (300 MHz, CDCh) b 

7.16-6.94 (m, 8H), 4.23 (s, 1H), 4.11 (s, 6H), 3.62 (s, IH), 2.90 (s, 3H), 2.67 (s, 6 H), 

128 



2.11 (s, 3H). 'To 205 (254 mg, 0.576 mmol) in a dry round bottom flask under argon was 

added sulfur powder (185 g, 57.6 mmol) and toluene (6 mL), and the mixture was heated 

at 40°C for 2 h. After cooling to room temperature, the reaction mixture was gravity 

filtered to remove excess sulfur and the filtrate was pre-adsorbed on silica gel in vacuo. 

Flash column chromatography (silica gel, 9:1 hexanes:Et20) gave 231 (321 mg, 99%) as 

an orange foam. mp 60-64 DC; [a]20D +31.7 (c 1.0, CHCI3); CSP HPLC analysis 

(Chira1cel OD-H; eluent: 99:1 hexane:i-PrOH, 1.0 mLimin) determined an 88.0:12.0 er 

(76% ee) [tR(minor) = 5.8 min, tR(major) = 6.3 min]; IR (KBr) Vrnax 3097, 3055, 2951, 

2925, 2854, 2783, 1732, 1591, 1566, 1493, 1454, 1421, 1383, 1327, 1276, 1146, 1107, 

1055, 1006, 819, 756, 713, 687, 647, 609, 581, 532, 474 em-I; 31 p NMR (121.5 MHz, 

CDCh) g 43.8; IH NMR (300 MHz, CDCh) g 8.69-8.63 (m, IH), 7.88-7.81 (m, IH), 

7.45-7.42 (m, 2H), 7.21-7.10 (m, 4H), 4.40 (s, 6H), 4.08 (s, IH), 3.73 (s, IH), 2.79 (s, 

6H), 2.12 (s, 3H), 1.85 (s, 3H); I3C NMR (75.5 MHz, CHCh) g 141.3 (d, i3c_3lp = 10.6 

Hz), 140.4 (d, JI3C_3I p = 8.3 Hz), 134.7 (d, i3c_3lp = 13.6 Hz), 134.2, 133.1, 132.7 (d, 

13 31 13 31 d 13 31 5 1 d J c- p = 12.1 Hz), 131.8 (d, J c- p = 10.6 Hz), 131.5 ( ,J c- p = 1 . Hz), 131.4 ( , 

13 31 13 31 d 13 31 3 6 5 d J c- p = 9.8 Hz), 130.9 (d, J c- p = 3.0 Hz), 126.0 ( , J c- p = 1 . Hz), 12 .5 ( , 

13 31 64 9 d 13 31 64 1 d J13 31 8 3 H ) 46 7 22 5 (d J c- p = 28.7 Hz), . ( ,J c- p = 11.3 Hz), . (, c- p =. z, ., . , 

J13C_3I p = 3.8 Hz), 21.5 (d, i3C_31p = 5.3 Hz); ElMS [m/z(%)] 473 (M+, 100),441 (21); 

HRMS (EI) ca1cd for C26H28NPS56Fe: 473.1029; found 473.1032; Anal. ca1cd for 

C26H28NPSFe: C, 65.97; H, 5.96. Found: C, 65.74; H, 5.97. 
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(S)-( - )-{ 2-[bis( ortho-tolyl)phosphino ]ferrocenyl }-I-dimethylammonium 

H BF
4

- tetrafluoroborate «S)-231·HBF4). A solution of 231 (190 mg, 0.401 
I 

~NMe2 
~_ mmol) in Et20 (20 mL) at 0 DC open to air was treated with HBF4·Et20 

Fie P(crtol)2 
/?"k\S ~ (66 ilL, 0.485 mmol). An immediate colour change was observed with 

precipitation of a yellow powder. The solution was allowed to stir for 10 minutes, after 

which the solid was collected by suction filtration, washed with cold Et20, and dried in 

vacuo to afford ammonium salt (S)-231·HBF4 (210 mg, 93%) as a yellow powder. mp 

137-139DC; [a]D20 --46.9 (c 0.5, acetone); IR (KBr, thin film) 31 p NMR (121.5 MHz, 

CDCh) b 38.8; IH NMR (300 MHz, CDCh) b 11.60 (bs, 1H), 8.84-8.79 (m, 1H), 7.62 

(m, 3H), 7.46-7.42 (m, 1H), 7.26 (m, 2H), 7.05-6.97 (m, 1H), 5.59 (s, 1H), 4.78 (s, 1H), 

4.28 (s, 6H), 3.66 (d, 3H, J = 4.8 Hz), 3.12 (d, 3H, J = 4.5 H), 2.21 (s, 3H), 1.94 (s, 3H); 

Hz), 135.8 (d, J13C_3I p = 15.1 Hz), 134.2 (d, i3C_31p = 3.0 Hz), 134.1 (d, i3c_3lp = 55.1 

Hz), 133.5 (d, J13 c _3I p = 4.5 Hz), 133.4 (2 x d), 131.6 (d, i3c_31p = 11.3 Hz), 128.2 (d, 

i3C_31p = 53.6 Hz), 127.6, 127.4, 109.6 (d, J13C_3I p = 9.8 Hz), 73.6, 72.4 (d, i3C_31p = 9.1 

H d 13 31 9 8 6 13 31 13 31 z), 71.3 ( ,J c- p = . Hz), 7.3 (d, J c- p = 67.3 Hz), 66.5 (d, J c- p = 6.8 Hz), 

2 4 6 2 d 13 31 13 31 50. , 7. , 2.8 ( ,J c- p = 3.0 Hz), 20.9 (d, J c- p = 6.0 Hz); FABMS [m/z(%)] 474 

(M-BF4, 100), 229 (94), HRMS (FAB) ca1cd for C26H29NPS56Fe: 474.1107; found 

474.1072; All attempts at enriching the salt by recrystallization were unsuccessful. 

(S)-( + )-2-bis[(ortho-tolyl)phosphinothionyl]-I-dimethylaminoferrocene «S)-231). A 

flask containing a biphasic suspension of (S)-231·HBF4 (190 mg, 0.34 

mmol) in Et20 (10 mL) and 1M NaHC03 (7 mL) was sonicated for 1 

130 



min or until all the solid dissolved. The layers were separated and the aqueous phase was 

extracted with diethyl ether. The combined ether layer was washed with water, brine, 

dried over anhydrous Na2S04, filtered and concentrated in vacuo, then filtered through a 

plug of silica with 7:3 hexanes:EtOAc to give (S)-231 (113 mg, 71 %) as an orange semi-

solid. [a]2oD +31.3 (c 0.5, CHCh); CSP HPLC analysis (Chiralcel OD-H; eluent: 99:1 

hexane:i-PrOH, 1.0 mL/min) determined an 88.4:11.6 er (77% ee) [tR(minor) = 5.6 min, 

tR(major) = 6.1 min]. 

(S)-( - )-2-bis[ (ortho-tolyl)phosphino ]-l-dimethylaminoferrocene «S)-20S). 

~NMe2 Acetonitrile (20 mL) was added to freshly activated Ni-Al catalyst [(814 

Fie P(o-tOI)2 
~ mg, 9.51 mmol, activated by portion-wise addition to 14 mL 6 M NaOH 

and heating at 50°C open to air for 1 h, followed by washing with H20 (7 x 10 mL), 

MeOH (3 x 10 mL), Et20 (2 x 10 mL) and MeCN (2 x 10 mL)] and aminophosphine 

sulfide 231 (90 mg, 0.19 mmol) in a round bottom flask under argon, and the mixture was 

heated to 60°C for 2 h. The reaction mixture was allowed to cool to room temperature 

and filtered through a pad of Celite, washing with acetonitrile. Flask chromatography 

(silica, 9:1 hexanes:Et20) afforded (S)-20S as an orange solid (85 mg, 99%). mp 115-118 

°C; [a]2oD -133.4 (c 0.5, CHCh); IR (KBr) Vmax 3052, 2950, 1923, 2843, 2778, 1488, 

1451,1417,1330,1105,1051,1000,813,750,463 em-I; 31p NMR (75.5 MHz, CDC13) b 

-3'9.8; IH NMR (300 MHz, CDCh) b 7.26-6.94 (m, 8H), 4.23 (s, IH), 4.11 (s, 6H), 3.62 

(s, IH), 2.90 (s, 3H), 2.67 (s, 6H), 2.11 (s, 3H); l3C NMR (75.5 MHz, CDCh) b 143.4 (d, 

J I3 31 294 H) 1403 (d JI3 31 2 93 d JI 3 31 43 6 c- p = . z , . , c- p = 24. Hz), 13. (, c- p = 1 . Hz), 13 .0, 

135.3 (d, i3c_3lp = 10.6 Hz), 131.8, 129.8 (d, i3c_31p = 11.3 Hz), 129.7, 129.7, 129.0, 
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127.5, 125.4 (d, i3C_31p = 15.1 Hz), 119.0 (d, i3c_31p = 18.1 Hz), 69.0 (d, i3C_31P = 3.0 

6 6 d 13 31 1 d 13 31 Hz), 8.4, 5.2 ( ,J C- P = 2.1 Hz), 65.1, 61.1 ( ,J C- p = 2.3 Hz), 45.4, 45.3, 22.1 

(d, i3C_31p = 24.9 Hz), 20.8 (d, i3c_31p = 19.6 Hz); ElMS [m/z(%)] 441 (100, M+); 

HRMS (El) ca1cd for C26H2sNPS56Fe: 441.1308; found 441.1311. 

2-dicyclohexylphosphinothionyl-l-dimethylaminoferrocene (232). A solution of 

~NMe2 (R,R)-191 (233 mg, 0.916 mmol) in t-BuOMe (4.5 mL) was cooled to­

Fie PCY2 
~ S 40°C, treated sequentially with i-PrLi (1.40 mL, 1.,98 M in pentane, 2.76 

mmol) and dimethylaminoethanol (82 mg, 0.917 mmol) in t-BuOMe (4.5 

mL), and stirred for 15 min at that temperature. The solution was transferred by cannula 

to a mixture of 192·BF3 at -78°C [prepared by addition of BF3·0Et2 (115 ilL, 0.916 

mmol) to a solution of 192 (200 mg, 0.873 mmol) in t-BuOMe (9 mL) at 0 °C and stirring 

for 10 min]. The mixture was allowed to warm slowly to -40 °C over approximately 3.5 h 

and then held at that temperature for an additional hour. After cooling back to -78°C, 

CIPCY2 (390 ilL, 1.77 mmol) was added and the mixture was allowed to warm slowly to 

room temperature (over 3.5 h). The reaction mixture was diluted with Et20 and worked-

up by addition of saturated aqueous NaHC03. The aqueous layer was extracted with Et20 

(3 x 15 mL) and the combined organic extract was washed with H20 (1 x 15 mL), brine 

(1 x 15 mL), dried over anhydrous Na2S04 and concentrated under reduced pressure in 

vacuo to afford the crude aminophosphine which was filtered through a plug of silica 

with 90: 10 hexane:Et20. To the crude material in a dry round bottom flask under argon 

was added sulfur powder (700 mg, 21.8 mmol) and toluene (15 mL), and the mixture was 

heated at 40°C for 2 h. After cooling to room temperature, the reaction mixture was 
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gravity filtered to remove excess sulfur and the filtrate was pre-adsorbed on silica gel in 

vacuo. Flash column 'chromatography (silica gel, 95:5 hexane:EtOAc) gave 232 (215 mg, 

54%) as an orange semi-solid. [a]D20 -51.2 (c 1.7, CHCI3); CSP HPLC analysis (Chira1cel 

OD-H; eluent: 99:1 hexane:EtOAc, 1.0 mUmin) determined an 85.5:14.5 er (71 % ee) 

[tR(minor) = 8.0 min, tR(major) = 8.5 min]. 

(S)-( - )-( 2-[ dicyclohexylphosphino ]ferrocenyl }-l-dimethylammonium 

tetrafluoroborate «S)-232·HBF4). A solution of 232 (180 mg, 0.394 

mmol) in Et20 (20 mL) at 0 DC open to air was treated with HBF4·Et20 

(76 ~L, 0.559 mmol). An immediate colour change was observed with 

precipitation of a 'yellow precipitate. The solution was allowed to stir for 10 minutes, after 

which the solid was collected by suction filtration, washed with cold Et20, and dried in 

vacuo to afford ammonium salt (S)-232·HBF4 (212 mg, 99%) as a yellow powder. mp 84-

89 DC; [a]D20 -43.2 (c 1.0, CHCh). Two recrystallizations via liquid-liquid diffusion of 

Et20 into a solution of 232·HBF4 in CH2Ch provided product in 84% ee as determined by 

neutralization of a small portion back to the free phosphine sulfide and measurement on 

chiral HPLC. Further attempts at recrystallization did not increase the enantiomeric 

excess. mp 104-106 DC; [a]D20 -51.3 (c 1.0, CHCI3); IR (KBr) Vmax 3037, 2933, 2856, 

2652,2564,2423, 1450, 1217, 1176, 1110, 1053,851,754,608 cm- I; 31 p NMR (121.5 

MHz, CDCh) J 56.7; IH NMR (300 MHz, CDCb) J 12.01 (s, 1H), 5.45 (t, 1H, J = 1.2 

Hz), 4.78 (q, 1H, J = 1.5 Hz), 4.57 (s, 5H), 4.35 (d, 1H, J = 2.4 Hz), 3.58 (d, 3H, J = 5.1 

Hz), 3.11 (d, 3H, J = 5.1 Hz), 2.59 (m, 1H), 2.50-2.45 (m, 1H), 2.41-2.31 (m, 1H), 2.05 

. 13 (m, 3H), 1.85-1.70 (m, 5H), 1.58-1.35 (m, 8H), 1.17 (m, 3H), C NMR (75.5 MHz, 
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CDCh) t5 110.9 (d, i3c-3lp = 7.6 Hz), 72.5, 70.4 (d, i3C-31p = 8.3 Hz), 69.2 (d, J13C-3I p = 

8.3 Hz), 64.2 (d, i3C-31p = 6.8 Hz), 62.85 (d, i3C-31p = 75.6 Hz), 49.2, 48.7, 44.5 (d, i 3
C-

31 8 3 6 d 13 -31 13 -31 13 -p = 4 . Hz), 39. (, J c p = 47.6 Hz), 27.6 (d, J c p = 3.2 Hz), 27.4, 27.2 (d, J c 

31 6 8 H ) 2 (d J13 -31 3 . 6 d 13 -31 8 62 d 13 -31 p=. z,7.1 , c p= .8 HZ),2 .3( ,J c p= .3 HZ),2 . (,J c p=5.3 

H 25 9 d 13 -31 68 H 25 d 13 -31 d 13 -31 Z), . ( ,J c p =. z), .8 ( ,J c p = 6.0 Hz) 25.7 ( ,J c p = 3.8 Hz), 25.3; 

FABMS [m/z(%)] 458 (95, M+), 229 (100), HRMS (FAB) calcd for C24H37NPS56Fe: 

458.1733, found 458.1732; Anal. calcd for C24H37NPSFeBF4: C, 52.87; H, 6.84. Found: 

C, 52.17; H, 6.72. 

(S)-( - )-2-dicyclohexylphosphinothionyl-l-dimethylaminoferrocene «S)-232). A flask 

containing a biphasic suspension of (S)-232·HBF4 (190 mg, 0.34 mmol) 

in Et20 (10 mL) and 1M NaHC03 (5 mL) was sonicated for 1 min or 

until all the solid dissolved. The layers were separated and the aqueous 

phase was extracted with diethyl ether (2 x 10 mL). The combined ether layer was 

washed with water, brine, dried over anhydrous MgS04, filtered and concentrated in 

vacuo, then filtered through a plug of silica with 1: 1 hexane:EtOAc to give (S)-232 (89 

mg, 82%) as an orange semi-solid. [afoD -64.8 (c 0.51, CHCh); CSP HPLC analysis 

(Chiralcel OD-H; eluent: 99:1 hexane:EtOAc, 1.0 mL/min) determined an 92.0:8.0 er 

(84% ee) [tR(minor) = 8.0 min, tR(major) = 8.4 min]; IR (KBr, thin film) Vmax 2929,2851, 

1644, 1635, 1475, 1447, 1413, 1383, 1320, 1156, 1109, 1035, 1003, 850, 821, 755, 638 

em-I; 31 p NMR (121.5 MHz, CDCh) t5 60.7; IH NMR (300 MHz, CDCh) t5 4.48 (q, IH, J 

= 2.7 Hz), 4.35 (s, 5H), 4.34 (m, IH), 4.30 (q, IH, J = 1.5 Hz), 2.65 (s, 6H), 2.55 (m, 

2H), 2.09 (m, IH), 1.93 (m, 4H), 1.82-1.61 (m, 7H), 1.16 (m, 5H), 1.13 (m, 3H) ; 13C 
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NMR (75.5 MHz, CDCb) ~ 116.1 (d, i3C-31p = 7.6 Hz), 70.7, 70.6 (d, i3C_31p = 7.6 Hz), 

13 31 6 6 13 31 6 d 13 31 8 62.7 (d, J c- p = 2:7 Hz), 6.6 (d, J c- p = 9.8 Hz), 2.3 ( ,J c- p = .3 Hz), 43.4, 

13 31 06 d 13 31 8 2 d J13 31 2 3 2 4 39.4 (d, J c- p = 5 . Hz), 37.3 ( ,J c- p = 51.3 Hz), 2. (, c- p = . Hz), 7. 

13 d 13 31 d 13 31 6 66 d (d, J C-3IP = 3.0 Hz), 27.3, 27.1 ( ,J c- p = 6.0 Hz), 26.8 ( ,J c- p = .0 Hz), 2 . (, 

J13c?p = 3.8 Hz), 26.5, 26.0 (d, i 3
c_3\ = 2.3 Hz), 26.0 (d, J13C?p = 3.2 Hz), 25.9 (d, 

i3C_31p = 3.8 Hz); ElMS [rn/z(%)] 457 (100, M+), 308 (23), 229 (16); HRMS (FAB) 

ca1cd for C24H36NPS56Fe: 457.1655 ,found 457.1662. 

(S)-( - )-2-dicyclohexylphosphino-l-dimethylaminoferrocene «S)-206). Acetonitrile 

(15 mL) was added to freshly activated Ni-AI catalyst [(646 mg, 7.54 

mmol, activated by portion-wise addition to 11 mL 6 M NaOH and 

heating at 50 DC open to air for 1 h, followed by washing with H20 (7 x 

10 mL), MeOH (3 x 10 mL), Et20 (2 x 10 mL) and MeCN (2 x 10 mL)] and 

aminophosphine sulfide 232 (68 mg, 0.15 mmol) in a round bottom flask under argon, 

and the mixture was heated to 60 DC for 2 h. The reaction mixture was allowed to cool to 

room temperature and filtered through a pad of Celite, washing with acetonitrile. Flask 

chromatography (silica, 9:1 hexanes:Et20) afforded (S)-206 as an orange oil (62 mg, 

99%). [a]2oD -14.3 (c 0.55, CHCb); IR (KBr) Vmax 3095, 2922, 2849, 2781, 1488, 1448, 

1419, 1332, 1182, 1141, 1106, 1053,999,813,614 em-I; 31p NMR (121.5 MHz, CDCb) 

~ -11.2; IH NMR (300 MHz, CDCh) ~ 4.23 (s, 5H), 4.10 (s, IH), 4.04 (q, IH, J = 2.4 

Hz), 3.91 (m, IH), 2.75 (s, 6H) 2.42 (m, IH), 1.86 (m, 4H), 1.73-1.53 (m, 6H), 1.47-1.19 

(m, lOH), 0.89-0.81 (m, IH); l3e NMR (75.5 MHz, eDCb) ~ 118.1 (d, i3C_31p = 13.6 

d 13 31 d 13 31 63 6 d 13 31 Hz), 67.9, 67.2 ( ,J c- p = 3.8 Hz), 63.9 ( ,J c- p = 23.4 Hz), .4, 1.3 ( ,J c- p = 
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2.3 Hz), 44.9, 44.8, 35.2 (d, i 3 
C_

31
P = 14.3 Hz), 33.8 (d, J13 C_

31
P = 11.3 Hz), 32.5, 32.2, 

13 31 13 31 d 13 31 6 8 30.3 (d, J c- p = 14.3 Hz), 29.7 (d, J c- p = 10.6 Hz), 29.3 ( , J c- p = . Hz), 27.7 

(d, i3C_31p = 12.1 Hz), 27.5 (d, i3C_31p = 6.8 Hz), 27.5 (d, i3C_31p = 13.6 Hz), 27.3 (d, 

i3c_31p = 7.6 Hz), 26.5 (d, i3c_31p = 8.3 Hz); ElMS [m/z(%)] 425 (100, M+), 342 (13), 

260 (27), 138 (16); HRMS (EI) calcd for C24H36Np56Pe: 425.1934; found 425.1935. 

[2-(Diphenylphosphinothionyl)ferrocenyl]-I-pyrrolidine (233). A solution of (R,R)-

191 (315 mg, 1.24 mmol) in t-BuOMe (2.5 mL) was cooled to -40 DC, 

treated sequentially with i-PrLi (2.05 mL, 1.80 M in pentane, 3.69 mmol) 

and dimethylaminoethanol (110 mg, 1.23 mmol) in t-BuOMe (2.5 mL), 

and stirred for 20 min at that temperature. The solution was transferred by cannula to a 

pre-formed mixture of 213·BP3 at -78°C [prepared by addition of BP3·OEt2 (175 ilL, 

1.39 mmol) to a solution of 213 (300 mg, 1.18 mmol) in t-BuOMe (12 mL) at 0 °C and 

stirring for 10 min]. After stirring for 10 min at -78°C, the mixture was allowed to warm 

slowly to -40 °C over 2 h and then held at that temperature for an additional hour. After 

cooling back to -78°C, CIPPh2 (435 ilL, 1.97 mmol) was added and the mixture was 

allowed to warm slowly to room temperature. The reaction mixture was diluted with Et20 

and worked-up by addition of a saturated solution of aqueous NaHC03. The aqueous 

layer was extracted with Et20 (3 x 15 mL) and the combined organic extract was washed 

with H20 (1 x 15 mL), brine (1 x 15 mL), dried over anhydrous Na2S04 and concentrated 

under reduced pressure on a rotary evaporator to afford the crude aminophosphine. To the 

crude mixture in a dry round bottom flask was added sulfur powder (567 mg, 18 mmol) 

under argon. Toluene (25 mL) was added and the reaction mixture heated at 40°C for 2 
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h. The reaction mixture was gravity filtered to remove excess sulfur and pre-adsorbed on 

silica gel. Flash column chromatography (94:6 hexane/diethyl ether) gave (S)-233 (255 

mg, 43%) as an orange foam. mp 194-202 °C (dec); [a]2oD +46.4 (c 0.95, acetone); CSP 

HPLC analysis (Chiralcel OD-H; eluent: 99: 1 hexane:i-PrOH, 1.0 mLImin) determined a 

91.4:8.6 er (83% ee) [tR(major) = 5.8 min, tR(minor) = 7.0 min]; IR (KBr) Vrnax 2958, 

2942,2869,2814, 1473, 1455, 1435, 1098, 814, 751, 710, 693, 651, 509,434,459 em-I; 

31 p NMR (121.5 MHz, CDCI3) J 46.45; IH NMR (300 MHz, CDCh) J 7.86-7.7.79 (m, 

2H), 7.76-7.69 (m, 2H), 7.47-7.36 (m, 6H), 4.42 (s, 5H), 4.13 (s, IH), 4.03 (s, IH), 3.46 

(s, IH), 3.18 (s, IH), 2.84 (s, 2H), 1.73-1.66 (m, 4H); I3C NMR (150.9 MHz, CDCh) J 

135.6 (d, i3C_31p = 87.6 Hz), 133.7 (d, J13C_3I p = 86.1 Hz), 132.2 (d, JI3C_3I p = 10.6 Hz), 

131.8 (d, J13C_3I p' = 10.6 Hz), 131.1 (d, i3c_3lp = 3.0 Hz), 130.7 (d, i3C_31p = 1.5 Hz), 

d 13 31 13 6 H 2 9 13 31 d 13 31 128.1 ( ,J C- p = . z), 1 7. (d, J c- p = 12.1 Hz), 114.8 ( ,J c- p = 7.6 Hz), 

60.8 (d, JI3C_3I p = 9.1 Hz), 53.2, 24.9; ElMS [m1z(%)] 471 (M+, 89),467 (79), 255 (100); 

HRMS (EI) calcd for C26H26NPS56Pe: 471.0873; found 471.0874. Anal. Calcd for 

C26H26NPS56Pe: C, 66.25; H, 5.56. Pound: C, 66.16; H, 5.51. 

(S)-( -)-[2-(Diphenylphosphinothioyl)ferrocenyl]-1-pyrrolidinium tetrafluoroborate 

BF4- «S)-233·HBF4). A solution of aminophosphine sulfide 233 (255 mg, 

~~':) 0.5084 rnmol) in diethyl ether (20 mL) at 0 "C was treated with 

Fie PPh2 
~ S tetrafluoroboric acid-diethyl ether complex (85 I-lL, 0.6246 mmol). An 

immediate change in color from orange to yellow was observed, and a yellow powder 

precipitated out of solution. The solid was collected by suction filtration, washed with 

137 



cold Et20, and dried in vacuo to afford ammonium salt 233·HBF4 as a yellow powder 

(261 mg, 92%). mp 110°C; [a]2oD --48.2 (c 1.0, acetone); IR (KBr) Vmax 3504, 3455, 

3110, 3056, 2974, 2882, 2810, 2628, 2569, 2443, 2360, 1636, 1481, 1460, 1438, 1383, 

1170,1102,1057,998,839,754,714,694,517,484; 31p NMR (243.0 MHz, acetone-d6) 

~ 38.2; 1H NMR (600 MHz, acetone-d6) ~ 11.02 (s, IH), 8.08-8.05 (m, 2H), 7.78-7.65 (m, 

6H), 7.58 (s, 2H), 5.42 (s, IH), 4.90 (s, IH), 4.59 (s, IH), 4.50 (s, IH), 4.43 (s, 5H), 4.12 

(s, IH), 3.57 (s, IH), 3.15 (s, IH), 2.40 (s, IH), 2.25 (s, 2H), 2.08 (s, IH); 13C NMR 

s: d 13 1 3 32 d 13 31 (150.9 MHz, acetone-d6) u 134.3 ( ,J C-3 P = 89.1 Hz), 133.7, 13 .1, 1 .7 ( ,J c- p = 

13 31 13 31 ) 29 8 d 13 31 12.1 Hz), 131.8 (d, J c- p = 10.6 Hz), 130.3 (d, J c- p = 89.1 Hz ,1 . (, J c- p = 

13 31 13 31 d 13 31 12.1 Hz), 129.6 (d, J c- p = 12.1 Hz), 105.1 (d, J c- p = 10.6 Hz), 73.5 ( ,J c- p = 9.1 

13 31 13 31 66 d 13 31 6 Hz), 73.1, 71.0 (d, J c- p = 9.1 Hz), 66.3 (d, J c- p = 143.4 Hz), .1 ( ,J c- p = .0 

Hz), 62.9, 58.4, 25.2, 24.5; FABMS [m/z(%)] 472 (M+, 100), 255 (74), 134 (22) HRMS 

(FAB) ca1cd for C26H27NPS56Fe: 472.0951, Found 472.0893. Recrystallization via liquid-

liquid diffusion of Et20 into a solution of (S)-233·HBF4 in CH2Ch rendered the salt 

enantiomerically pure in >99% ee after two recrystallizations. mp 113-115 °C; [a]2oD -

59.3 (c 0.99, acetone). 

(S)-( + )-[2-(Diphenylphosphinothionyl)ferrocenyl]-1-pyrrolidine «S)-233). A flask 

containing a biphasic suspension of salt (S)-233·HBF4 (170 mg, 0.30 

mmol) in sat. aqueous NaHC03 and diethyl ether was sonicated for 1 min 

or until all the solid dissolved. The layers were separated and the aqueous 

phase was washed once diethyl ether. The combined ether layer was washed with water, 

brine, dried over anhydrous Na2S04, filtered and concentrated in vacuo to give (S)-233 
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(150 mg, 98%). mp 216-218 °C; [a]D20 +60.9 (c 0.89, CHCh); CSP HPLC analysis 

(Chiralcel OD-H; eluent: 99: 1 hexane:i-PrOH, 1.0 mLimin) determined a 99.98:0.02 er 

(>99.9% ee) [tR(major) 5.8 min, tR(minor) 7.0 min]. 

(S)-( - )-[ -2-(Dipbenylpbospbino )ferrocenyl]-l-pyrrolidine «S)-207). Acetonitrile (25 

mL) was added to freshly activated Ni-AI catalyst [(1.41 g, 16.4 mmol, 

activated by portion-wise addition to 25 mL 6 M NaOH and heating at 

50°C for 1 h, followed by washing the residue with H20 (7 x 10 mL), 

MeOH (3 x 10 mL), Et20 (2 x 10 mL) and MeCN (2 x 10 mL)] and aminophosphine 

sulfide (S)-233 (125 mg, 0.27 mmol) in a round bottom flask under argon, and the 

mixture was heated to 60°C for 3 hours. The reaction mixture was allowed to cool to 

room temperature and filtered through a pad of Celite, washing with acetonitrile. 

Removal of the solvent afforded the free aminophosphine (S)-207 (91 mg, 78%) as an 

orange solid. mp 118-120 °C; [a]2oD -137.3 (c 0.75, CHCh); 31 p NMR (121.5 MHz, 

CDCh) b -16.32; IH NMR (300 MHz, CDCh) b 7.49-7.43 (m, 2H), 7.38-7.35 (m, 3H), 

7.26-7.18 (m, 5H), 4.12 (s, 5H), 4.03 (q, 1H, J = 1.5 Hz), 3.99 (t, 1H, J = 2.4 Hz), 3.26 

(m, 1H), 3.20-2.12 (m, 4H), 1.90-1.81 (m, 4H); l3C NMR (75.5 MHz, CDCh) b 139.7 (d, 

l3 31 3 9 d 13 31 d l3 31 2 9 d J c- p = 12.1 Hz), 1 7. (, J c- p = 11.3 Hz), 135.3 ( ,J c- p = 1. Hz), 132.3 ( , 

l3 31 28 9 28 d 13 31 d l3 31 3 8 6 J c- p = 18.1 Hz), 1 ., 1 .1 ( ,J c- p = 5.3 Hz), 128.0 ( ,J c- p = . Hz), 11 .7 

(d, i3C_31p = 16.6 Hz), 68.0, 67.9 (d, i3C_31p = 3.8 Hz), 64.7, 62.1 (d, i3C_31p = 12.8 Hz), 

60.2 (d, i3C_31p = 3.8 Hz), 52.4, 52.3, 24.9, 24.8; ElMS [m/z(%)] 439 (100, M+); HRMS 

C, 71.08; H, 5.97. Found: C, 71.21; H, 5.92. 
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(S)-( + )-2-Diphenylphosphino-l-dimethylaminoferrocene iridium (cyclooctadiene) 

+ tetrakis{3,5-bis(trifluoromethyl)phenyl}borate (S)-(221). 

BArF 
A solution of [Ir(COD)Clh (81 mg, 0.12 mmol) and (S)-204 

(100 mg, 0.24 mmol) in dry CH2Ch (4 mL) was heated at 

reflux for 1 h. NaBArp (322 mg, 0.36 mmol) and distilled 

H20 (4 mL) were added, followed by stirring for 15 min. The layers were separated and 

the aqueous layer was washed with CH2Ch (3 x 5 mL). The combined organics were 

washed with water (1 x 5 mL), then evaporated and dried in vacuo. The resulting orange 

solid was re-dissolved in CH2Ch and filtered through a pad of silica gel with CH2Ch to 

afford iridium complex (S)-221 (316 mg, 83%) having spectroscopic data matching the 

racemic complex. mp 168-172 DC; [a]20D +8.7 (c 1.04, acetone). 

(S)-( - )-2-Bis( ortho-tolyl)phosphino-l-dimethylaminoferrocene iridium 

+ (cyclooctadiene) tetrakis{ 3,5-

BArF 
bis(trifluoromethyl)phenyl}borate «S)-234). [Ir(COD)Clh 

(29.6 mg, 0.044 mmol) and dry CH2Ch (2 mL) were added 

-to a flask containing aminophosphine 205 (39 mg, 0.088 

mmol) under argon. The solution was heated at reflux for 1.5 h, after which the solution 

was concentrated to provide (S)-( + )-2-bis( ortho-tol yl)phosphino-l-

dimethylaminoferrocene iridium (cyc1ooctadiene) chloride (67 mg, 99%) as an orange-

red solid. mp >230 DC; [a]20D -49.1 (c 1.02, CHCb); FABMS [m/z(%)] 742 (M-Cl, 88), 

740 (77), 630 (59), 629 (50), 628 (l00), 627 (40), 626 (64), 458 (34), 457 (45),441 (48), 
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229 (35), 149 (45); HRMS (FAB) ca1cd for C34H40Np56Fel93Ir 742.1877, found 742.1831. 

To a flask containing chloride complex (35 mg, 0.045 mmol) was added NaBArF (50 mg, 

0.056 mmol), dry CH2Ch (1.5 mL), and deionized water (1.5 mL) under argon. The 

mixture was stirred for 15 minutes at room temperature over which time a colour change 

from orange to red occurred. The layers were separated, aqueous layer extracted with 

CH2Ch (3 x 1.5 mL), and the combined organic washed with deionized water (1 x 2 mL). 

The solvent was removed in vacuo, the residue taken up in CH2Ch and filtered through a 

plug of silica eluting with CH2Ch to give (S)-234 (58 mg, 81 %) as an orange solid. mp 

161-163 DC; [a]20D -27.4 (c 0.50, CHCb); IR (KBr, thin film) Vmax 3063, 2927, 2856, 

1611, 1467, 1355, 1279, 1162, 1127, 908, 888, 834, 758, 713, 682, 671 cm-I; 31p NMR 

(121.5 MHz, acetone-d6, -10 DC as a 1:1 mixture of bidentate conformational isomers) b 

17.63, 12.92; 19F NMR (282.4 MHz, CDCb, 22 DC) b -62.33; IH NMR (600 MHz, 

acetone-d6, -10 DC as a 1: 1 mixture of bidentate conformational isomers) b 9.31 (dd, 1H, 

iH?lp = 13.2, iH_IH = 7.8 Hz), 9.25 (bs, 1H), 8.57 (bs, 1H), 7.82 (s, 2 x 8H), 7.71 (bs, 

1H), 7.71 (s, 2 x 4H), 7.60 (q, 2H, J = 7.8 Hz), 7.47 (t, 2 x 1H, J = 7.2 Hz), 7.45-7.37 (m, 

2 x 2H), 7.33 (t, 1H, J = 7.2 Hz), 7.26 (bs, 1H), 7.24 (t, 1H, J = 7.2 Hz), 7.14 (bs, 1H), 

5.66 (bs, 1H), 5.28 (bs, 1H), 5.17 (bs, 1H), 5.13 (s, 1H), 5.12 (s, 1H), 5.08 (s, 1H), 5.04 

(s, 1H), 4.81 (bs, 1H), 4.80 (s, 1H), 4.63 (s, 1H), 4.57 (s, 5H), 4.30 (s, 5H), 4.14 (s, 1H), 

3.87 (s, 1H), 3.72 (s, 1H), 3.50 (s, 3H), 3.47 (s, 3H), 3.46 (bs, 1H), 3.07 (s, 3H), 3.00 (s, 

3H), 2.63 (bm, 2H), 2.52 (bs, 3H), 2.44-2.38 (bm, 1H), 2.36-2.29 (bm, 2H + 1H), 2.26-

2.19 (bm, 2H), 2.18-2.12 (bm, 1H), 2.04 (s, 3H), 2.02 (bm, 1H), 1.99 (bs, 3H), 1.97 (bm, 

1H), 1.92 (s, 3H), 1.84 (bm, 2 x 1H), 1.77-1.74 (bm, 2H), 1.54-1.52 (bm, 1H); I3C NMR 

(150.9 MHz, acetone-d6, -10 DC, as a 1:1 mixture ofbidentate conformational isomers) b 
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162.4 (q, J13C_ll B = 49.8 Hz), 142.4 (d, i3C_31p = 9.1 Hz), 142.2 (d, J13C_3I p = 4.5 Hz), 

140.5 (bd, i3C_31p = 12.1 Hz), 139.4 (bd, i3C_31p = 22.6 Hz), 137.2 (bd, JI3C_3I p = 21.1 

13 31 13 31 33 3 d 13 31 Hz), 136.0 (bd, J c- p = 13.6 Hz), 135.4, 133.6 (d, J c- p = 9.1 Hz), 1 . ( , J c- p = 

d 13 31 . d 13 31 ) 327 (d J13 31 60 7.5 Hz), 133.1 ( , J c- p = 7.5 Hz), 133.0 ( , J c- p = 1.5 Hz , 1 . , c- p = . 

13 31 13 31 3 6 130 7 d JI3 31 Hz), 132,6 (d, J c- p = 1.5 Hz), 132.5 (d, J c - p = 6.0 Hz), 1 1., . (, c- p = 

48.3 Hz), 129.8 (qq, i3C_19F = 31.7,3.0 Hz), 128.3 (d, i3C_31p = 58.9 Hz), 127.4 (d, i
3
C_ 

31p = 15.1 Hz), 127.2 (d, i3C_31p = 13.6 Hz), 127.1 (d, i3C_31p = 10.6 Hz), 126.5 (d, Jl3c_ 

31 5 d JI3 31 24 252 13 19 271 6 H) 1183 ( p = 27.2 Hz), 12 .7 (, c- p = .1 Hz), 1 . (q, J c- F =. Z , . sept, 

i3C_19F = 4.5 Hz), 93.8 (bs), 92.1 (d, JI3C_3I p = 12.1 Hz), 91.6 (bs), 89.1 (bs), 75.8 (bs), 

74.5 (d, i3C_31p = 6.0 Hz), 73.2, 72.7, 72.5 (d, i3c_3lp = 19.6 Hz), 71.9 (d, JI3C_31 p = 22.6 

b 13 31 6 d 13 31 9 Hz), 68.2, 65.8, 63.8 (bs), 61.8 ( s), 60.7 (d, J c- p = 10.6 Hz), 0.2 ( , J c- p = .1 

Hz), 60.1 (bs), 59.1 (bs), 57.9, 57.8, 53.0, 51.1, 34.2, 33.9 (bs), 32.0 (bs), 31.5, 31.3, 31.1 

(bs), 29.1 (bs), 28.4, 23.3 (2 x d, i3C_31p = 4.5 Hz), 22.3 (bd, J13C_3I p = 3.0 Hz), 21.9 (d, 

i3c_3lp = 3.0 Hz).; FABMS [mlz (%)] 742 (62, M-BArF), 740 (61), 630 (54), 629 (49), 

628 (100), 627 (40), 626 (65), 441 (20), 229 (26); HRMS (FAB) ca1cd for 

49.39; H, 3.27. Found: C, 48.74; H, 3.25 

(S)-( -)-2-DicycIohexylphosphino-l-dimethylaminoferrocene iridium 

+ (cycIooctadiene) tetrakis{3,5-

BArF 
bis(trifluoromethyl)phenyl}borate ((S)-235). [Ir(COD)Clh 

(22.5 mg, 0.034 mmol) and dry CH2Clz (1.5 mL) were added 

to a flask containing aminophosphine (S)-206 (28.5 mg, 
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0.067 mmol) under argon. The solution was heated at reflux for 1.5 h, after which the 

solution was concentrated to provide (S)-( -)-2-dicyc1ohexylphosphino-1-

dimethylaminoferrocene iridium (cyc1ooctadiene) chloride (51 mg, 99%) as an orange-

rust coloured solid. mp >230 °C; [a]2oD -25.1 (c 0.64, CHCh); FABMS [mlz (%)] 726 

(77, M-CI), 724 (100), 722 (67), 450 (31), 394 (31), 229 (14); HRMS (FAB) ca1cd for 

50.49; H, 6.36. Pound: C, 49.36; H, 5.80. To a flask containing chloride complex (25 mg, 

0.033 mmol) was added NaBArF (36 mg, 0.041 mmol), dry CH2Ch (1.0 mL), and 

deionized water (1.0 mL) under argon. The mixture was stirred for 15 minutes at room 

temperature over which time a colour change from orange to red occurred. The layers 

were separated, aqueous layer extracted with CH2Ch (3 x 1.5 mL), and the combined 

organic washed with deionized water (1 x 2 mL). The solvent was removed in vacuo, the 

residue taken up in CH2Ch and filtered through a plug of silica eluting with CH2Ch to 

give (S)-235 (46 mg, 88%) as a bright orange solid. mp 159-160 °C; [a]2oD -4.21 (c 0.53, 

CHCh); IR (KBr) Vrnax 3036, 2929, 2857, 1641, 1634, 1612, 1464, 1454, 1355, 1278, 

1162, 1127,888, 839, 760, 713, 682, 670 cm-I; 31 p NMR (129.5 MHz, CDCh) b 18.61; 

19p NMR (282.4 MHz, CDCh) b -62.32; IH NMR (600 MHz, CDCh) b 7.71 (s, 8H), 

7.53 (s, 4H), 4.90 (bm, 1H), 4.84 (t, 1H, J = 3.0 Hz), 4.39 (s, 6H), 4.29 (bm, 1H), 4.23 

(bm, 1H), 4.13 (d, 1H, J = 2.4 Hz), 3.75 (bm, 1H), 3.07 (s, 3H), 2.83 (s, 3H), 2.54 (bm, 

1H), 2.41-2.11 (m, 5H), 2.05-2.01 (m,4H), 1.95 (m, 1H), 1.87-1.68 (m, 12H), 1.62-1.56 

(m, 1H), 1.45-1.34 (m, 3H), 1.25-1.18 (m, 4H); l3C NMR (150.9 MHz, CDCh) b 161.7 

(q, i3C_IIB = 49.8 Hz, C-BArF), 134.8 (p-BArF)' 128.9 (q, i 3
C_I\ = 27.1 Hz, m-BArF), 

125.7 (d, i3C_31p = 22.6 Hz, C1-Cp), 124.5 (q, i3c_19F = 273 Hz, CF3), 117.5 (o-BArF), 
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91.8 (d, jJ3cYp = 10.6 Hz, COD alkene trans-P), 88.8 (d, i3C_31p = 12.1 Hz, COD alkene 

trans-P), 74.8 (d, i3c_3lp = 4.5 Hz, C5-Cp), 71.3 (Cp unsub), 70.1 (d, i3C_31p = 45.3 Hz, 

C2-Cp), 67.6 (COD alkene trans-N), 59.3 (COD alkene trans-N), 58.1 (d, i3C_31p = 9.1 

C . d 13 31 C Hz, C3-Cp), 57.9 ( 4-Cp), 57.1 (N-CH3), 52.3 (N-CH3), 39.3 ( ,j c- p = 25.7 Hz, y-

P), 38.6, (d, i3C_31p = 30.2 Hz, Cy-P), 33.6 (d, jJ3c?p = 3.0 Hz, COD-CH2 trans-P), 32.0 

J3 31 6 C d J3 31 (d, j c- p = 3.0 Hz, COD-CH2 trans-P), 31.0 (para-Cy), 30. (para- y), 29.8 ( ,j c- p 

= 6.0 Hz, meta-Cy), 29.6 (COD-CH2 trans-N) , 28.8 (meta-Cy), 27.9 (COD-CH2 trans­

N), 27.3 (d, i3C_31p = 9.1 Hz, ortho-Cy), 27.1 (d, jJ3c_3Ip = 13.5 HZ,ortho-Cy), 27.1 (d, 

i3C_31p = 10.6 Hz, ortho-Cy), 27.1 (meta-Cy), 27.0 (d, jJ3C_31 p = 10.6 Hz, ortho-Cy), 25.7 

(meta-Cy), 25.4 (meta-Cy); FABMS [mlz (%)] 726 (58, M-BArF), 725 (41) 724 (100), 

723 (41), 722 (89), 721 (29), 720 (48), 612 (25), 610 (25), 530 (34), 528 (35), 451 (35), 

450 (59), 449 (47), 448 (45), 447 (27), 406 (28), 392 (47), 345 (35), 343 (36), 330 (28), 

229 (29); HRMS (FAB) ca1cd for C32~8NpS6Fe193Ir 726.2503, found 726.2526; Anal. 

(S)-( - )-2-Diphenylphosphino-l-pyrrolidinylferrocene iridium (cyclooctadiene) 

~ 
+ tetrakis{ 3,S-bis( trifluoromethyl)phenyl }borate «S)-236). 

Fe Ph BArF 

~-.~-Ph 
[Ir(COD)Clh (61 mg, 0.091 mmol) and dry CH2Ch (5 mL) 

0p were added to a flask containing aminophosphine 207 (80 mg, 

0.182 mmol) under argon. The solution was heated at reflux 

for 1.5 h, after which the solution was concentrated to provide (S)-(-)-2-

diphenylphosphino-1-pyrrolidinylferrocene iridium (cyclooctadiene) chloride (138 mg, 

98%) as an orange solid. mp >230 °C; [afoo +71.5 (c 1.0 CHCh); 31 p NMR (121.5 MHz, 
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CDCl)) 0 19:66; lH NMR (300 MHz, CDCl)) 0 8.49 (t, 2H, J = 7.8 Hz), 7.93 (bs, 2H), 

7.51 (s, 3H), 7.36 (s,'3H) 5.01 (bs, IH), 4.33 (s, IH), 4.15 (s, IH), 3.93 (s, 5H), 3.72 (m 

2H), 7.67 (s, IH), 2.95 (m, 2H), 2.75 (bs, IH), 2.37 (m, IH), 2.20-2.16 (m, 2H), 2.04 (m, 

2H), 1.91 (bs, 4H), 1.91 (bs, IH), 1.43 (m, 4H); l3C NMR (121.5 MHz, CDCl)) 0 137.6 

(d, Jl3 C_31
P = 10.6 Hz), 134.0, 131.0, 129.4, 127.8 (d, i 3 C_31

P = 9.8 Hz), 126.9 (d, i 3 C_31
P 

= 10.6 Hz), 126.8, 123.6, 109.6 (d, Jl3C_3I p = 11.3 Hz), 73.9 (d, i3C_31p = 9.1 Hz), 70.0, 

68.0,59.1,55.7,25.0 ; FABMS [m/z (%)] 740 (56, M-Cl), 738 (100), 737 (45), 736 (76), 

734 (39), 630 (25), 391 (27), 149 (55); HRMS (FAB) ca1cd for C34H3SNp56Fel93Ir 

740.1720, found 740.1760; Anal. Ca1cd for C34H3SNp56Fel93IrCl C, 52.68; H, 4.94. 

Found: C, 50.37; H, 4.77. To a flask containing chloride complex (90 mg, 0.116 mmol) 

was added NaBArF (129 mg, 0.145 mmol), dry CH2Ch (6 mL), and deionized water (6 

mL) under argon. The mixture was stirred for 15 minutes at room temperature over which 

time a colour change from orange to red occurred. The layers were separated, aqueous 

layer extracted with CH2C12 (3 x 3 mL), and the combined organic washed with 

deionized water (1 x 2 mL). The solvent was removed in vacuo, the residue taken up in 

CH2Ch and filtered through a plug of silica eluting with CH2Ch to give (S)-236 (158 mg, 

85%) as an orange solid. mp 128-129 DC; [a]20D -140.3 (c 0.61, CHCl)); 31 p NMR (121.5 

MHz, CDCh) 0 14.37; 19F NMR (282.4 MHz, CDCh) 0 -62.34; lH NMR (300 MHz, 

CDCh) 07.71 (s, 8 H), 7.65-7.56 (m, 5H), 7.52 (s, 4 H), 7.47-7.41 (m, 5H), 4.86 (bs, 

IH), 4.84 (t, IH, J = 2.7 Hz), 4.49 (s, 5H), 4.44 (s, IH), 4.31 (s, IH), 4.04 (bs, IH), 3.30 

(m, IH), 3.24 (m, 2H), 2.38-2.31 (m, IH), 2.05-1.83 (m, 7H), 1.70-1.65 (m, 2H); I3C 

NMR (150.9 MHz, CDC13) 0 161.70 (q, i 3
C_II B = 49.8 Hz, C-BArF), 133.3 (d, i3c_3lp = 

h d 13 31 h) 3 8 d 13 31 12.1 Hz, ortho-P ), 133.0 ( ,J c- p = 40.7 Hz, Ph-P), 132.0 (para-P ,1 1. ( ,J c- p 
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9 d 13 31 h 9 d 13 31 06 = 10.6 Hz, ortho-Ph), 12 .7 ( ,J c. p = 9.1 Hz, meta-P ), 12 .2 ( ,J c- p = 1 . Hz, 

meta-Ph), 128.9 (q, i3C_19F = 30.2 Hz, meta-BArF), 128.8 (para-Ph) 126.5 (d, i3c_3lp = 

h 24 5 ( 13 19 27 C) 6 d J13 31 22 6 H C 1 C ) 58.9 Hz, P -P), 1 . q, J c- F = 3.1 Hz, F3, 121. (, c- p = . z, - p, 

117.5 (para-BArF), 91.3 (d, J13C_3I p = 7.5 Hz, COD alkene trans-P), 90.9 (d, J13c_3I p = 

12.1 Hz, COD alkene trans-P), 74.1 (d, i3C_31p = 6.0 Hz, C5-Cp), 72.28 (Cp unsub), 68.8 

(d, i3C_31p = 96.6 Hz, C2-Cp), 66.5 (pyr CH2 alpha-N), 65.9 (C4-Cp), 61.1 (d, JI3c_3I p = 

9.1 Hz, C3-Cp), 60.7 (pyr CH2 alpha-N), 58.64 (COD alkene trans-N), 57.98 (COD 

alkene trans-N), 32.6 (COD CH2 trans-P), 32.4 (d, i3C_31p = 4.5 Hz, COD CH2 trans-P), 

29.8 (COD CH2 trans-N), 28.8 (COD CH2 trans-N), 24.5 (pyr CH2), 22.2 (pyr CH2); 

FABMS [m1z (%)] 740 (39), 739 (43), 738 (100), 737 (55), 736 (100), 735 (40), 734 (58), 

732 (29), 631 (33), 630 (79), 629 (36), 628 (65), 627 (25), 626 (30), 624 (25), 472 (30), 

430 (34), 426 (27), 417 (39), 388 (30), 300 (27), 208 (33), 55 (54); HRMS (FAB) calcd 

for C34H38NpS6Fel93Ir 740.1720, found 740.1730; Anal. Calcd for 

C66HsoNpS6FeI93IrBF24: C, 49.45; H, 3.14. Found: C, 46.44; H, 3.06. 

Diethyl benzylphosphonate. Benzyl bromide (0.89 mL, 7.5 mmol) and triethylphosphite 

P(OEtb Qo .. II 
140°C 1.0 P(OEth 

(1.74 mL, 10 mmol) were placed in a dry 

round bottom flask and stirred under 

argon at 140°C until gas evolution (bromoethane) had ceased (16 h). Excess P(OEt)3 was 

removed in vacuo to afford product (1.5 g, 88%) as a clear, colourless oil. 31p NMR 

(121.5 MHz, CDCh) J 26.4; IH NMR (300 MHz, CDCh) J 7.31-7.29 (m, 4H), 7.26-7.21 

(m, IH), 4.0 (m, 4H), 3.13 (d, 2H, i H_
3Ip= 21.6 Hz), 1.32 (t, 6H, J = 1.8 Hz). 
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1,2-diphenylethene (223a). To a dry flask was added NaH (79 mg, 3.3 mmol) and dry 

dimethoxyethane (5 

Q o 
II + 1.0 P(OEt)2 

NaH,DME 
• mL). Diethyl 

benzylphosphonate 

(0.55 mL, 2.6 mmol) was added dropwise, followed by dropwise addition of 

benzaldehyde (225 JlL, 2.2 mmol), and the solution was stirred at room temperature for 

16 h. Diethyl ether was added, followed by dropwise addition of water to quench excess 

NaH. The layers were separated and the aqueous layer extracted with EtzO (3 x 5 mL). 

The combined organic layer was washed with water, brine, dried with MgS04, filtered, 

and solvent removed in vacuo. Recrystallization from ethanol afforded 223a (253 mg, 

64%) as shiny colourless flakes. mp 110°C; lH NMR (300 MHz, CDCI3) ~ 7.52 (m, 4H), 

7.37 (m, 4H), 7.27 (m, 2H), 7.12 (s, 2H); 13C NMR (75.5 MHz, CDCb) ~ 128.7, 127.6, 

126.5. 

Trans-l,2-diphenylpropene (124). To a dry 3-neck flask was added cleaned Mg 

AcOH, cat H~04 

'" '" 
2. 0 

d' 
Et20, -20 °C -? rt 

turnings (1.18 g, 48 mmol, cleaned by washing with acetone / HCI and drying in vacuo), 

dry EtzO (35 mL), and a few crystals of iodine. Distilled benzyl bromide (4.75 mL, 40 

mmol) was placed in a dropping funnel with dry EtzO (5 mL), and approximately 10% of 

the solution was added upon which the solution decolourized, turned cloudy grey, and 

started refluxing. The remainder of the solution was added dropwise over 35 minutes, and 
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stirred for an additional 15 min. The Grignard reagent was then cannulated into a dry 

flask containing distilled acetophenone (3.75 mL, 32 mmol) in Et20 (4 mL) at -20°C. 

The solution was allowed to warm slowly to room temperature, then stirred at room 

temperature overnight (15 hours). The reaction mixture was worked up by addition of 

saturated NH4Cl solution (20 mL), extraction of the aqueous layer with Et20 (1 x 20 mL), 

and washing of the combined organic layer with brine (2 x 10 mL). The organic layer 

was dried with Na2S04, filtered, and solvent removed in vacuo to afford alcohol 

intermediate (6.57 g, 96%). Intermediate alcohol (6.5 g, 31 mmol) was added to a dry 

flask, followed by glacial acetic acid (10 mL), and sulfuric acid (30 JlL). The mixture was 

stirred at reflux until consumption of starting material, neutralized with aqueous NaOH, 

and diluted with hexanes. The aqueous layer was extracted with hexanes (3 x 20 mL), 

combined organic layer washed with 1 M NaOH (1 x 10 mL), water (1 x 20 mL), and 

brine (1 x 10 mL). The organic phase was dried with Na2S04, filtered, and solvent 

removed in vacuo. Crude product was recrystallized from absolute EtOH to give 4.2 g 

(71 %) as shiny colourless flakes. mp 82-84 °C; IH NMR (300 MHz, CDCl)) J 7.57 (d, 

2H, J = 1.5 Hz), 7.54-7.38 (m, 6H), 7.34-7.27 (m, 2H), 6.87 (s, 1H), 2.31 (d, 3H, J = 1.2 

Hz); 13C NMR (75.5 MHz, CDCl)) J 129.1, 128.3, 128.2, 127.7, 126.4, 126.0, 17.5. 

Triethylphosphonoacetate. Ethyl bromo acetate (5 mL, 45.2 mmol) and 

o 
EtO~Br 

triethylphosphite (8.25 mL, 47.5 mmol) 

were placed in a dry flask and stirred 

under argon at 120°C until gas evolution (bromoethane) ceased (16 hours). Excess 

P(OEt)3 was removed in vacuo to afford product (10.1 g, 99%) as a clear, colourless oil. 
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31p NMR (111.5 MHz, CDCh) b 19.8; IH NMR (300 MHz, CDCh) b 4.17 (m, 6H), 2.95 

(d, 2H, i H_
3l

p = 21.6 Hz), 1.34 (t, 9 H, J = 7.2 Hz). 

Trans-ethyl 3-phenylbut-2-enoate (128). To a dry flask under argon was added dry THF 

o 0 
II II 

O~P(OEth Et 
o ~ ~ 

NaH, DME/THF % 
+ I ~ CH3 • I ~ OEt 

h- h-

(10 mL), dry 

DME (10 

mL), and 

NaH (1.1 g, 27.5 mmol). Triethylphosphonoacetate (4 mL, 20.2 mmol) was added 

dropwise and the solution stirred at reflux for 30 min. After cooling to room temperature, 

a solution of acetophenone (2.14 mL, 18.3 mmol) in 10 mL 1:1 THF:DME was added 

dropwise. The solution was stirred at reflux until consumption of starting material was 

observed. The solution was diluted with Et20, water was added, the layers separated, and 

the aqueous layer extracted with Et20. The combined organic layer was washed with 

water, brine, dried with Na2S04, filtered, and concentrated in vacuo. Column 

chromatography (300 mL silica) with 20: 1 hexanes:EtOAc afforded 935 mg (27%) of 

pure trans ester as a clear, colourless oil. IH NMR (300 MHz, CDCh) b 7.50-7.27 (m, 

5H), 6.13 (d, IH, J = 1.2 Hz), 4.22 (q, 2H, J = 7.2 Hz), 2.58 (d, 3H, J = 1.2 Hz), 1.33 (q, 

3H, J = 7.2 Hz); 13C NMR (75.5 MHz, CDCh) b 166.9, 155.5, 142.2, 128.9, 128.5, 126.3, 

117.2,59.8,17.9,14.3. 

Trans-ethyl 3-(4-methoxyphenyl)but-2-enoate (225a). To a dry flask under argon was 

o 0 ~ 
EtO~~(OEt)2 + D 

MeO 

NaH, DME/THF ~O 
• I ~ OEt 

MeO .0 

added 

dry 
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THF (10 mL), dry DME (10 mL), and NaH (1.10 g, 27.5 mmol). 

Triethylphosphonoacetate (4.0 mL, 20.2 mmol) was added dropwise and the solution 

stirred at reflux for 30 min. After cooling to room temperature, a solution of 4-

methoxyacetophenone (2.75 mL, 18.3 mmol) in 10 mL 1:1 THF:DME was added 

dropwise. The solution was stirred at reflux until consumption of starting material was 

observed. The solution was diluted with Et20, water was added, the layers separated, and 

the aqueous layer extracted with Et20. The combined organic layer was washed with 

water, brine, dried with Na2S04, filtered, and concentrated in vacuo. Column 

chromatography (300 mL silica) with 9: 1 hexanes:EtOAc afforded 867 mg (22%) of pure 

trans ester as a clear, colourless oil. lH NMR (300 MHz, CDCh) J 7.46 (d, 2H, J = 9.0 

Hz), 6.89 (d, 2H, J = 9.0 Hz), 6.11 (d, IH, J = 1.2 Hz), 4.21 (q, 2H, J = 7.2 Hz), 3.83 (s, 

3H), 2.56 (d, 3H, J = 1.2 Hz), 1.31 (t, 3H, J = 7.2 Hz); J3C NMR (75.5 MHz, CDCh) J 

167.1, 160.4, 154.9, 134.3, 127.7, 115.3, 113.8,59.7,55.3, 17.64, 14.4. 

Trans-2-methyl-3-phenyl-acrylic acid (227v). Triethylamine (16.2 mL, 116 mmol), 

propionic anhydride (15 mL, 116 mmol), and benzaldehyde (1.7 mL, 

16.7 mmol) were combined in a dry flask under argon, heated at 

reflux for 80 h. After cooling to room temperature, the mixture was 

poured into 1 M H2S04 (100 mL), then left to sit for 2 days at which point the crystalline 

solid was filtered, dissolved in CHCh and extracted with 5% aqueous NaHC03. The 

combined aqueous layer was acidified with 1M H2S04 at which point a white precipitate 

formed. The mixture was extracted with CHCl3 (3 x 30 mL), the combined organic phase 

washed with water (1 x 20 mL), brine (1 x 20 mL) and dried with Na2S04. Concentration 
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gave 227v (1.88 g, 69%) as an off white solid. IH NMR (300 MHz, CDCb) J 11.89 (bs, 

1H), 7.86 (s, 1H), 7.45-7.36 (m, 5H), 2.17 (s, 3H). 

Trans-ethyl 2-methyl-3-phenylacrylate (225b). 227v (1.0 g, 6.2 mmol) was combined 

o with absolute EtOH (31 mL) and H2S04 in a dry round bottom flask 

()YoEt under argon. The mixture was heated to reflux overnight (19 h) then 

cooled to room temperature, and neutralized by addition of saturated 

aqueous NaHC03. The solution was extracted with CH2Ch (3 x 20 mL), followed by 

washing with water, brine, and drying with MgS04. Removal of the solvent in vacuo 

afforded crude product which was purified by Kogelrohr distillation (90-92 °C 0.2 

mmHg) to give 225b (1.1 g, 97%) as a colourless oil. IH NMR (300 MHz, CDCh) J 7.69 

(d, 1H, J = 0.9 Hz), 7.40 (d, 3H, J = 4.2 Hz), 7.36-7.26 (m, 2H), 4.28 (q, 2H, J = 6.9 Hz), 

2.12 (d, 3H, J = 1.5 Hz), 1.36 (t, 3H, J = 6.9 Hz); 13C NMR (75.5 MHz, CDCb) J 168.9, 

141,4, 138.6, 136.0, 129.6, 128.3, 128.2,60.8, 14.3, 14.0. 

Trans-3-(4-methoxy-phenyl)-2-methyl-acrylic acid (227w). Triethylamine (16.2 mL, 

o 116.2 mmol), propionic anhydride (15 mL, 116.4 mmol), and 

~OH 
Meo)l) I 

p-methoxybenzaldehyde (2.0 mL, 16.4 mmol) were combined 

in a dry flask under argon and heated at reflux for 80 h. After 

cooling to room temperature, the mixture was poured into 1 M H2S04 (100 mL), then left 

to sit for 2 days at which point the crystalline solid was filtered, dissolved in CHCh and 

extracted with 5% aqueous NaHC03. The combined aqueous layer was acidified with 1M 

H2S04 at which point a white precipitate formed. The mixture was extracted with CHCh 
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(3 x 30 mL), the combined organic phase washed with water (1 x 20 mL), brine (1 x 20 

mL) and dried with Na2S04. Concentration gave 227w (992 mg, 31 %) as an off white 

solid. IH NMR (300 MHz, CDCh) J 11.93 (bs, IH), 7.80 (s, IH), 7.43 (d, 2H, J = 8.7 

Hz), 6.95 (d, 2H, J = 8.7 Hz), 3.85 (s, 3H), 2.17 (s, 3H). 

Trans-ethyl 3-(4-methoxyphenyl)-2-methylacrylate (22Sc). 227w (192 mg, 1.57 

o 

~OEt 
MeoJl) I 

mmol) was combined with absolute EtOH (5 mL) and H2S04 

(40 ilL) in a dry round bottom flask under argon. The mixture 

was heated to reflux overnight (19 h) then cooled to room 

temperature, and neutralized by addition of saturated aqueous NaHC03• The solution was 

extracted with CH2Ch (3 x 20 mL), followed by washing with water, brine, and drying 

with MgS04. Removal of the solvent in vacuo afforded crude product which was purified 

by Kogelrohr distillation (90-92 °C 0.2 mmHg) to give 22Sc (208 g, 95%) as a colourless 

oil. IH NMR (300 MHz, CDCh) J 7.64 (s, IH), 7.38 (d, 2H, J = 8.7 Hz), 6.93 (d, 2H, J = 

9.0 Hz), 2.26 (q, 2H, J = 7.2 Hz), 3.84 (s, 3H), 2.13 (d, 3H, J = 1.2 Hz), 1.35 (t, 3H, J = 

6.9 Hz); I3C NMR (75.5 MHz, CDCh) J 168.9, 138.3, 131,4, 128.5, 113.8, 60.7, 55.3, 

14.4, 14.1. 

Trans-3-(4-bromo-phenyl)-2-methyl-acrylic acid (227x). Triethylamine (16.2 mL, 116 

o 
mmol), propionic anhydride (15 mL, 116 mmol), and 4-

~OH 
BrN I 

bromobenzaldehyde (3.07 mL, 16.6 mmol) were combined in a 

dry flask under argon, heated at reflux for 80 h. After cooling to 

room temperature, the mixture was poured into 1 M H2S04 (100 mL), then left to sit for 2 
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days at which point the crystalline solid was filtered, dissolved in CHCh and extracted 

with 5% aqueous NaHC03. The combined aqueous layer was acidified with 1M H2S04 at 

which point a white precipitate formed. The mixture was extracted with CHCh (3 x 30 

mL), the combined organic phase washed with water (1 x 20 mL),brine (1 x 20 mL) and 

dried with Na2S04. Concentration gave the carboxylic acid as an off white solid (2.99 g, 

75%). IH NMR (300 MHz, CDCh) J 11.71 (bs, 1H), 7.74 (s, 1H), 7.55 (d, 2H, J = 8.4 

Hz), 7.30 (d, 2H, J = 8.4 Hz), 2.12 (s, 3H). 

Trans-methyl 3-p-tolylbut-2-enoate (225d). To a suspension of NaH (325 mg, 8.13 

mmol) in DME (15 mL) was added dropwise 

trimethylphosphonoacetate (1.15 mL, 7.96 mmol) , followed by 

dropwise addition of a solution of p-methyl acetophenone (1.05 

mL, 7.86 mmol) in DME (5 mL). The solution was allowed to stir at room temperature 

overnight (approximately 14 h). Et20 and water were added, layers separated, and the 

aqueous layer extracted with Et20. The combined organic layer was washed with brine, 

dried with MgS04, filtered, and concentrated. The mixture of cis and trans alkene, as 

well as unreacted starting material was purified by flash chromatography (silica 150 mL, 

95:5 hexane:MeOH) to give 201 mg of pure trans alkene (13%), 155 mg mixed cis and 

trans alkene, and 516 mg unreacted starting material. IH NMR (300 MHz, CDCI3) J 7.39 

(d, 2H, J = 8.4 Hz), 7.18 (d, 2H, J = 8.1 Hz), 6.14 (d, 1H, J = 1.2 Hz), 3.75 (s, 3H), 2.57 

(d, 3H, J = 1.2 Hz), 2.37 (s, 3H). 
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Trans-2-methyl-3-phenylpropenol (225f). To a flask containing a-methyl trans 

r(YV'OH cinnamaldehyde (2 mL, 14.3 mmol) in 95% EtOH (30 mL) at 0 °C 

V I was added sodium borohydride (650 mg, 17.2 mmol). The solution 

was stirred for 30 min, then saturated NH4CI (7.5 mL) and H20 (7.5 mL) were added, 

followed by further stirring for 1 h. The EtOH was removed in vacuo, and the aqueous 

layer was extracted with Et20 (3 x 10 mL). The combined organic layer was washed with 

brine (1 x 10 mL), dried with MgS04, filtered, and concentrated in vacuo to give 225f 

(2.1 g, 97%) as a clear, colourless oil. IH NMR (300 MHz, CDCh) ~ 7.37-7.20 (m, 6H), 

6.53 (bs, 1H), 4.20 (bs, 2H), 1.91 (s, 3H). 

Trans-1-(butenyl)-4-methoxybenzene (125). To a solution of PPh3 (5.25 g, 20 mmol) in 

~ 
MeoJU ~ 

dry THF (15 mL) at 0 °C was added ethyl iodide (1.60 mL, 20 

mmol). The solution was stirred for 5 minutes then the ice bath 

was then removed and the solution stirred at room temperature for 

20 h. The mixture was filtered, washed with THF, and the solid dried in vacuo to give the 

phosphonium salt (4.23 g, 51 %). The solid was dissolved in dry THF (25 mL), cooled to 

o DC, and treated slowly with n-BuLi (5.14 mL, 10.1 mmol, 1.97 M in hexane). The 

solution was allowed to stir for a further 10 minutes then was treated with a solution of p-

methoxyacetophenone (1.52 mL, 10.1 mmol) in dry THF (12 mL). The solution was 

allowed to warm slowly to room temperature over 24 h over which time the solution went 

from deep red to light orange with precipitate formed. After treatment with saturated 

aqueous NH4CI (20 mL) the solution went colourless and more precipitate formed. 
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CH2Ch (40 inL) was added and the layers separated. The aqueous layer was extracted 

with EtOAc (2 x 20 'mL), the combined organic washed with brine (40 mL), and dried 

with MgS04. Flash chromatography (silica, CH2Ch) provided a colourless oil as a 3:1 

trans:cis mixture (1.12 mg, 68%). IH NMR (300 MHz, CDC13) f5 7.31 (m, 2H), 6.88-6.83 

(m, 2H), 5.79 (qq, IH, J = 6.9, 1.2 Hz), 3.81 (s, 3H), 2.01 (s, 3H), 1.79 (dd, 3H, 6.9, 0.9). 

Trans-butenylbenzene (225g). Mg turnings (740 mg, 30.8 mmol) and dry Et20 (5 mL) 

~ 
were added to a dry round bottom flask under argon and activated with a 

~ ~ 
I crystal of iodine. Mel (1.75 mL, 28.1 mmol) in dry Et20 (10 mL) was 

Q 

added dropwise. After addition was complete, the reaction mixture was heated to reflux 

for 30 min. Propiophenone (3.4 mL, 25.6 mmol) in dry Et20 (10 mL) was then added 

dropwise to the solution at reflux. After addition was complete, the reaction mixture was 

heated at reflux for a further 3 h. After cooling to 0 C, 10 % HCl (50 mL) was added. The 

layers were separated, and the aqueous extracted with Et20. The crude was concentrated 

then treated with a mixture of glacial acetic acid (3.4 mL) and H2S04 (0.5 mL), and the 

mixture heated at 60 DC for 15 minutes. The mixture was extracted with Et20 followed 

by washing with 1M NaHC03, brine, and drying with MgS04. Flash chromatography 

(silica, 9:1 hexanes:EtOAc) gave 225g (755 mg, 22%) as a clear colourless oil. IH NMR 

(300 MHz, CDCh) f5 7.38-7.25 (m, 5H), 5.95 (q, IH, J = 6.9 Hz), 2.10 (s, 3H), 1.87 (d, 

3H, J = 6.6 Hz). 
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But-l-en-2-ylbenzene (225h). To a solution of PPh3 (5.25 g, 20 mmol) in dry THF (15 

~ mL) at 0 °C was added Mel (1.25 mL, 20.1 mmol). The ice bath was then o ~ removed and the solution stirred at room temperature for 1 h over which 

time copious amounts of white solid formed. After 1 h the mixture was filtered, washing 

with THF, and the solid dried in vacuo to give the phosphonium salt (7.56 g, 94 %). The 

solid was dissolved in dry THF (25 mL), cooled to 0 °C, and treated with n-BuLi (9.5 

mL, 18.7 mmol, 1.97 M in hexane) at which point the solution went from a white slurry 

to a clear red solution (formation of CH2=PPh3 ylide). The solution was allowed to stir for 

a further 10 minutes then was treated with a solution of propiophenone (2.49 mL, 18.7 

mmol) in dry THF (10 mL). The solution was allowed to warm slowly to room 

temperature over 24 h over which time the solution became light orange and precipitate 

formed. After treatment with 1M HCI (20 mL) the solution went colourless and more 

precipitate formed. EtOAc (40 mL) was added and the layers separated. The aqueous 

layer was extracted with EtOAc (2 x 20 mL), the combined organic washed with brine 

(40 mL), and dried with MgS04• Flash chromatography (silica, hexanes) provided 225h 

(742 mg, 28%) as a colourless oil. lH NMR (300 MHz, CDCh) J 7.47 (d, 2H, J = 1.8 

Hz), 7.46-7.35 (m, 3H), 5.42 (s, IH), 5.20 (d, IH, J = 1.2 Hz), 2.65 (q, 2H, J = 7.2 Hz), 

1.24 (t, 3H, J = 7.5 Hz). 

Trans-N-benzyl-2-methyl-3-phenylacrylamide (225i). 227v (162 mg, 1.0 mmol) was 

o dissolved in SOCb (2 mL) and heated to reflux under argon 

oY~V for I h. Removal of excess SOCh in vacuo provided a 

yellow oil which was taken up in dry CH2Cb and cooled to 0 0c. To this solution was 
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dropwise added benzyl amine (220 ilL, 2 mmol) and NEt3 (560 ilL, 4 mmol) forming a 

cloudy orange-brown solution. The solution was stirred at 0 °C for 30 min, then at room 

temperature for 2 h. The solution was quenched with saturated aqueous NH4CI, EtOAc 

added, and the layers separated. The aqueous layer was extracted with EtOAc and the 

crude product dissolved in CH2Ch, and washed with 1M NaHC03 (3 x 10 mL). The 

organic layer was washed with water, brine, and dried with MgS04. Flash 

chromatography (silica, 9: 1 hexanes:EtOAc) afforded amide 225i (165 mg, 66%) as an 

off white solid. IH NMR (300 MHz, CDCI3) 67.40-7.29 (m, llH), 6.16 (bs, IH), 4.58 (d, 

2H, J = 5.7 Hz), 2.12 (d, 3H, J = 0.9 Hz). 

Trans-(3-methoxy-2-methylprop-l-enyl)benzene (225j). A solution of 225f (1.0 mL, 

VlOMe 6.75 mmol) in dry THF (7 mL) was added dropwise to a stirred 

suspension of NaH (450 mg, 11.25 mmol) in dry THF (15 mL) at 

o °C under argon. Once addition was complete, Mel (615 ilL, 9.86 mmol) was added 

dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 

24 h. 4M NaOH (10 mL) was added and the solution stirred overnight (16 h). The 

mixture was diluted with E120, layers separated, and the aqueous layer extracted with 

Et20 (3 x 10 mL). The combined organic phase was washed with water, brine, and dried 

with MgS04. Flash chromatography (silica, 8:2 hexanes:EtOAc) provided a clear oil 

(1.08 g, 99%). IH NMR (300 MHz, CDCl)) 6 7.37-7.20 (m, 5H), 6.51 (s, IH), 3.98 (s, 

2H), 3.38 (s, 3H), 1.89 (d, 3H, J = 1.2 Hz); J3C NMR (75.5 MHz, CDCl)) 6 137.5, 135.1, 

128.9, 128.1, 126.9, 126.4, 78.7, 57.8, 15.4. 
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Trans-2-methyl-3-phenylallyl acetate (225k). Pyridine (3 mL, 33.75 mmol) and acetic 

VlOAC anhydride (3 mL, 33.75 mmol) were added to a solution of allylic 

alcohol 225f and stirred at room temperature under argon for 24 h. 

Water (5 mL) was added, the layers separated and the aqueous layer extracted with 

CH2Ch (3 x 10 mL). The combined organic phase was washed with 1M NaHC03, water, 

and brine, dried with MgS04 and volatiles removed in vacuo. Flash chromatography 

(silica, 8:2 hexanes:EtOAc) provided a clear oil (1.18 g, 92%). IH NMR (300 MHz, 

CDCh) b 7.37-7.21 (m, 5 H), 6.54 (s, IH), 4.64 (s, 2H), 2.13 (s, 3H), 1.91 (d, 3H, J = 1.2 

Hz); BC NMR (75.5 MHz, CDCh) b 170.9, 132.7, 128.9, 128.2, 128.1, 126.8, 70.2, 21.0, 

15.5. 

Trans-N-(l-phenylethylidene)aniline (2251). Acetophenone (1.0 mL, 8.55 mmol), and 

~ ~ aniline (940 flL. 10.32 mmol) in ~luene (60 mL) were stirred in the o N presence of molecular sieves (5 A) at reflux for 12 h. The mixture 

was filtered through celite and volatiles removed in vacuo and 

recrystallized from pentane (499 mg, 30%). mp 39-40 °C; IH NMR (300 MHz, CDCh) b 

8.00-7.97 (m, 2H), 7.47-7.38 (m, 3H), 7.36 (t, 2H, J = 7.8 Hz), 7.09 (m, IH), 6.80 (m, 

2H), 2.24 (s, 3H). 

Trans-l-phenyl-N-(l-phenylethylidene)methanamine (225m). Acetophenone (590 ilL, 

5.05 mmol), benzyl amine (550 ilL, 5.04 mmol), and p-toluene 

sulfonic acid (11 mg, 0.06 mmol) in benzene (10 mL) were heated 

to reflux with a Dean-Stark trap for 10 h. Na2C03 was added and 
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the mixture passed through celite with benzene and volatiles removed in vacuo to give a 

16:1 mixture of trans and cis imines (646 mg, 61%). lH NMR (300 MHz, CDCh) J 7.91-

7.88 (m, 2H), 7.45-7.33 (m, 8H), 4.75 (s, 2H), 2.35 (s, 3H). 

Trans-ethyl 3-(naphthalen-2-yl)but-2-enoate (225n). A suspension of NaH (500 mg, 

12.5 mmol) in DME (15 mL) was treated with a solution of 

OEt triethylphosphonoacetate (1.82 mL, 9.17 mmol) in DME (6 

mL) and the mixture stirred for 15 min. A solution of 2'-

acetonaphthone (1.42 mL, 8.3 mmol) in DME (6 mL) was added, and the solution stirred 

at room temperature under argon for 15 h. Water (20 mL) and Et20 (20 mL) were added, 

the aqueous layer extracted with Et20 (3 x 20 mL), and the combined organic layer 

washed with water (1 x 20 mL), brine (1 x 20 mL) and dried with MgS04. Flash 

chromatography (silica 200 mL, 95:5 hexanes:EtOAc) provided trans alkene as a clear 

oil which was purified by Kogelrorh distillation (130 °C, 0.125 mmHg) yielding 600 mg 

(30%). lH NMR (300 MHz, CDCh) J 7.96 (s, IH), 7.95-7.82 (m, 3H), 7.62 (dd, IH, J = 

8.7, 1.8 Hz), 7.53-7.49 (m, 2H), 6.29 (d, IH, J = 1.2 Hz), 4.25 (q, 2H, J = 7.2 Hz), 2.69 

(d, 3H, J = 7.2 Hz). 

N-(l-phenylvinyl)acetamide (2250). Acetophenone (3 mL, 25.7 mmol), hydroxylamine 

~ NHAc ~ 
hydrochloride (3.8 g, 54.7 mmol), pyridine (4 mL, 49.7 mmol) were 

I h- combined in EtOH (40 mL) and heated at reflux for 5 h. The solution 

was cooled to 0 °C and water (40 mL) was added. The precipitate was collected and 

washed with ice cold water. The solid was dissolved in EtOAc, dried with MgS04, and 
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volatiles removed in vacuo to provide intermediate oxime (2.94 g, 85%). The 

intermediate oxime (2.5 g, 18.5 mmol) was dissolved in toluene, and acetic anhydride 

(5.25 mL, 55.6 mmol), acetic acid (3.2 mL, 55.9 mmol), iron powder (2.17 g, 38.9 

mmol), and three drops of TMSCl were added. The solution was heated at 70°C for 5 h 

after which the mixture was filtered through celite eluting with toluene. The organic layer 

was washed with 2M NaOH (2 x 20 mL), water, brine, and dried with MgS04• The 

volatiles were removed and the residue columned with 95:5 CH2Clz:EtOAc giving 2250 

(1.8 g, 60%) as a tan solid. IH NMR (300 MHz, CDCh) ~ 7.41-7.36 (m, 5 H), 6.76 (bs, 

1H), 5.89 (s, 1H), 5.09 (s, 1H), 2.15 (s, 3H). 

Trans-methyl 3-methyldodecenoate (225p). To a suspension of NaH (325 mg, 8.13 

o mmol) in DME (15 mL) was added dropwise 

0/ trimethylphosphonoacetate (1.15 mL, 7.96 mmol), 

followed by dropwise addition of a solution of 2-undecanone (1.63 mL, 7.86 mmo!) in 

DME (5 mL). The solution was allowed to stir at room temperature overnight 

(approximately 14 h). Et20 and water were added, layers separated, and the aqueous layer 

extracted with Et20. The combined organic layer was washed with brine, dried with 

MgS04, filtered, and concentrated. The mixture of cis and trans alkene, as well as 

unreacted starting material was purified by flash chromatography (silica 150 mL, 95:5 

hexane:MeOH) to give 116 mg of pure trans alkene (7%), and 448 mg mixed cis and 

trans alkene (25%). IH NMR (300 MHz, CDC h) ~ 5.66 (m, 1H), 3.68 (s, 3H), 2.15 (s, 

3H), 1.48 (m, 2H), 1.27 (m, 14 H), 0.88 (t, 3H, J = 6.9 Hz). 
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Methyl 2-acetamido-3-phenylacrylate (227b). To a vial containing phenyl iodide (72.4 

~C02Me mg, 0.355 mmol) were added methyl 2-acetamidoacrylate (76 mg, 

V NHAc 0.531 mmol) , Pd(OAc)2 (2.4 mg, 0.011 mmol), Me4NBr (61 mg, 

0.396 mmol), NaHC03 (80.5 mg, 0.958 mmol), and DMF (5 mL). The mixtures was 

flushed with argon and heated at 85°C for 36 h. Water was added, and the solution 

extracted with hexane. The combined organic layer was washed with water, brine, and 

dried with Na2S04. Removal of the solvent in vacuo, followed by flash chromatography 

(silica, 6:4 EtOAc:hexanes) of the preadsorbed crude mixture provided 227b (58 mg, 

75%) as beige crystals. IH NMR (300 MHz, CDCh) (j 7.45-7.35 (m, 6 H), 3.86 (s, 3H), 

2.15 (s, 3H), 1.25 (bs, 1H). 

3-( dimethylamino )-1-(2-hydroxyphenyl)prop-2-en-l-one (227c). 2'-hydroxy-1-

o acetophenone (2 mL, 16.6 mmol) and 1,1-diethoxy-N,N-

~NMe2 dimethylmethanamine (4.3 mL, 25.1 mmol) were combined 
~OH 

together under argon and heated at 85°C for 3 h. The crude was 

recrystallized from EtOAc to give yellow-lime green needles (2.34 g, 74%). mp 140-142 

C; IH NMR (300 MHz, CDCh) (j 13.92 (s, 1H), 7.89 (d, 1H, J = 12.0 Hz), 7.69 (dd, 1H, J 

= 8.1, 1.5 Hz), 7.35 (dt, 1H, J = 8.7, 1.5 Hz), 6.94 (dd, 1H, J = 8.4, 0.9 Hz), 6.82 (dt, 1H, 

J = 8.1, 0.9 Hz), 5.79 (d, 1H, J = 12.3 Hz), 3.20 (s, 3H), 2.98 (s, 3H). 

Cinnamaldehyde oxime (227d). To a solution of hydroxylamine hydrochloride (415 mg, 

'pH 
N 

~H 
V 

5.97 mmol) in absolute EtOH (10 mL) was added cinnamaldehyde 

(500 f.!L, 3.97 mmol) and pyridine (0.5 mL) and the solution was 
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heated to reflux for 2 h. The EtOH was removed in vacuo, water (5 mL) was added and 

the solution stirred at 0 °C overnight. The solid that formed was collected by vacuum 

filtration, washing with H20, and recrystallized from absolute EtOH to give the oxime 

(375 mg, 64%) as pale yellow crystals. 

Acetophenone oxime (227e). To a solution of hydroxylamine hydrochloride (450 mg, 

6.48 mmol) in absolute EtOH (10 mL) was added acetophenone (500 ilL, 

4.29 mmol) and pyridine (0.5 mL) and the solution was heated to reflux 

for 2 h. The EtOH was removed in vacuo, water (5 mL) was added and 

the solution stirred at 0 °C overnight. The solid that formed was collected by vacuum 

filtration, washing with H20, and recrystallized from absolute EtOH to give the oxime 

(356 mg, 61 %) as pale yellow crystals. mp 56-58°C; IH NMR (300 MHz, CDCh) 0 8.14 

(s, IH), 7.65-7.62 (m, 2H), 7.40-7.39 (m 3H), 2.30 (s, 3H). 

Cylcohexane oxime (227f). Cyc1ohexanone (500 ilL, 4.82 mmol) , hydroxylamine 

hydrochloride (402.5 mg, 5.79 mmol), and NaOH (258 mg, 6.45 mmol) 

were combined in a mortar and pestle and ground for 10 min, and then 

every 5 min for a further 10 min. The mixture was then washed with water, filtered, and 

then purified via hot filtration with petroleum ether to give the oxime as off-white 

crystals. mp 78-80 0c. IH NMR (300 MHz, CDCh) 0 8.07 (s, IH), 2.50 (t, 2H, J = 6.0 

Hz), 2.21 (t, 2H, J = 5.7 Hz), 1.69-1.61 (m, 6H). 
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Chromenone (227m). To a solution of 2'-hydroxyacetophenone (2 mL, 16.6 mmol) in 

o methyl formate (15 mL, 243 mmol) was added sodium (1.55 g, 67.4 mmol) 

c6~ I 
# 0 

in pieces. The addition resulted in the formation of copious amounts of off 

white precipitate. The solution was then heated to reflux, leading to the 

formation of more precipitate. More methyl formate (15 mL) was added and the solution 

heated at reflux for 1.5 h. The solution was cooled to room temperature and 20 g of 

crushed ice was added, resulting in a clear dark yellow-brown solution. The solution was 

extracted with Et20 (4 x 25 mL), the combined organic phase washed with water, brine, 

and dried with Na2S04. Volatiles were removed in vacuo providing intermediate 

aldehyde (1.80 g, 66%) as a tan precipitate. mp 93-96 0c. To a solution of intermediate 

aldehyde (1.0 g; 6.09 mmol) in H2S04 (3 mL) was added cold water slowly until 

precipitate formed (20 mL). The solid was collected by suction filtration, washing with 

ice cold water, dried and recrystallized from petroleum ether to provide 227m (850 mg, 

96%) as a tan solid. mp 51-52°C; IH NMR (300 MHz, CDCh) J 8.21 (dd, 1H, J = 8.1, 

1.5 Hz), 7.86 (d, 1H, J = 6.0 Hz), 7.71-7.65 (m, 1H), 7.48-7.39 (m, 2H), 6.34 (d, 1H, J = 

6.0 Hz). 

2-methylchromen-4-one (2270). To a solution of 2'-hydroxyacetophenone (2.0 mL, 16.6 

o mmol) in EtOAc (20 mL) was slowly added sodium (1.6 g, 69.6 mmol) in 

M ~o~ 
pieces over approximately 1.5 h over which time the solution turned a 

dark brown colour and became viscous with precipitate. After addition 

was complete, the solution was heated to reflux for 2 h after which the solution was a 

viscous tan-brown colour. Once cool, crushed ice (20 g) was added slowly and the 
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solution turned a dark brown colour with off white precipitate. After stirring for 25 min in 

an ice bath, the precipitate was collected by suction filtration, washing with petroleum 

ether. The precipitate was washed with 40% acetic acid (20 mL), filtered again, and solid 

washed with petroleum ether to give 2270 (600 mg, 20%) as an off-white solid. mp 92-95 

DC; lH NMR (300 MHz, CDCh) J 8.12 (dd, IH, J = 7.8, 1.5 Hz), 7.59 (m, IH), 7.37-7.29 

(m, 2H), 6.12 (s, IH), 2.33 (s, 3H); 13C NMR (75.5 MHz, CDCh) J 178.2, 166.2, 156.5, 

133.5, 125.6, 124.9, 123.6, 117.8, 110.6,20.6. 

3-iodochromen-4-one (227q). A solution of 227c (1.0 g, 5.23 mmol) and Iz (2.0 g, 7.88 

o mmol) in chloroform (100 mL) was stirred open to air for 4 h. The 

M' ~oJ 
solution was then washed with saturated aqueous Na2S203 (100 mL). 

The aqueous layer was extracted once with CHCh (50 mL), and the 

combined organic layer was dried with Na2S04. Flash chromatography (silica, 70:30 

hexane:EtOAc) provided 227q (977 mg, 69%) as a tan solid. mp 94-97 DC; lH NMR (300 

MHz, CDCh) J 8.26 (s, IH), 8.19 (dd, IH, J = 7.8,1.2 Hz), 7.68 (m, IH), 7.41 (m, 2H). 

3-pheny1chromen-4-one (227n). To a solution of 227q (300 mg, 1.10 mmol) in benzene 

~Ph 
~"J o 

(44 mL) were added Na2C03 (2.2 mL, 2M, 4.40 mmol), Pd(PPh3)4 

(63.6 mg, 0.055 mmol), and a solution of phenylboronic acid (536.8 

mg, 4.40 mmol) in EtOH (10 mL). The solution was heated to reflux for 

18 h, after which time 30 % H20 2 (2.2 mL) was added and the solution stirred for 1 h. 

The mixture was poured into 100 mL ice water, followed by extraction with CH2C}z. The 

combined organic layer was washed with water, brine, and dried with Na2S04. Flash 
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chromatography (silica, benzene) provided 227n (208 mg, 85%) as a beige solid. IH 

NMR (300 MHz, CDCh) J 8.33 (dd, IH, J = 7.8, 1.2 Hz), 8.03 (s, IH), 7.69 (m, IH), 

7.58 (m, 2H), 7.44 (m, 5H); l3C NMR (75.5 MHz, CDCh) J 176.2,156.2,153.0,133.6, 

131.8, 129.9, 128.5, 128.2, 126.4, 125.4, 125.2, 124.6, 118.0. 

2-phenylchromen-4-one (227p). To a solution of 2'-hydroxyacetophenone (2.0 mL, 16.6 

o 
mmol) and benzaldehyde (1.65 mL, 16.6 mmol) in absolute EtOH (50 

M ~OJlph 
mL) was added NaOH (2.08 g, 52.0 mmol) at which point the colour 

changed to yellow and precipitate formed. After stirring at room 

temperature overnight, the solution was neutralized with HCI, the EtOH removed in 

vacuo, and the solution extracted with Et20. The combined organic layer was washed 

with brine, dried with Na2S04, and the crude mixture purified by flash chromatography 

(silica, 90:10 hexane:EtOAc) and recrystallized from MeOH to give intermediate alkene 

(2.09 g, 53 %). IH NMR (300 MHz, CDCh) J 12.81 (s, IH), 7.96-7.91 (m, 2H), 7.70-

7.65 (m, 3H), 7.51 (m, IH), 7.46-7.44 (m, 3H), 7.04 (dd, IH, J = 8.4, 0.9 Hz), 6.98-6.93 

(m, IH). To a solution of the intermediate (1.80 g, 7.54 mmol) in DMSO (15 mL) was 

added h (192.8 mg, 0.760 mmol) and the solution heated at reflux for 2 h. After the 

solution was cooled to room temperature, saturated sodium thiosulfate (30 mL) was 

added and the solution extracted with CH2Chlhexanes. Flash chromatography (silica, 

75:25 hexanes:EtOAc) provided 227p (1.51 g, 90%) as an off-white solid. mp 96-97 °C; 

IH NMR (300 MHz, CDCh) J 8.24 (dd, IH), 7.94 (m, 2H), 7.71 (m, IH), 7.59-7.51 (m, 

4H), 7.43 (m, IH), 6.84 (s, IH). 
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1,3-diphenylbut-2-en-l-one (227s). A mixture of acetophenone (3.0 mL, 25.7 mmol), 

o acetic acid (2.2 mL, 34.9 mmol), and ammonium acetate (1.19g, 

15.4 mmol) in toluene were heated to reflux in a Dean-Stark trap 

at reflux overnight (12 h). The mixture was transferred to a separator funnel and the 

organic washed once with water (10 mL). The organic phase was dried with Na2S04 and 

solvent removed in vacuo. The mixture was Kogelrohr distilled to provide two fractions -

acetophenone (65°C, 0.35 mmHg, 1.52 g) and 227s (150-160 DC, 0.35 mmHg, 599 mg, 

21 %) as a yellow oil. 

1,2-diphenylethane (226a). A solution of trans-stilbene 225a (50 mg, 0.28 mmol) and 

iridium catalyst 221 (8.8 mg, 0.0056 mmol, 2.0 mol %) in CH2Ch 

(3 mL) in a vial under argon was sealed in an autoclave. The 

autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 48 h. The reaction mixture was passed 

through a silica plug with Et20 and solvent was removed in vacuo to give 226a (49.6 mg, 

97%) as a colourless solid. mp 48-50 DC (Lit.125 mp 47-49 DC); IH NMR (300 MHz, 

CDCb) J 7.39-7.25 (m, lOH), 3.01 (s, 4H); I3C NMR (75.5 MHz, CDCb) J 141.9, 128.6, 

128.5, 126.0,38.1. 

Methyl3-phenylpropanoate (226b). A solution of methyl trans cinnamate (49 mg, 0.30 

o mmol) and iridium catalyst 221 (9.8 mg, 0.0062 mmol, 2.0 mol %) 

~o/ in CH,CI, (3 mL) in a vial under argon was sealed in an autoclave. 

The autoclave was evacuated and back-filled with hydrogen three times, pressurized to 
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62 bar, and allowed to stir for 48 h. The reaction mixture was passed through a silica plug 

with Et20 and solvent was removed in vacuo to give 226b (47.6 mg, 95%) as a clear oil. 

IH NMR (300 MHz, CDCh) J 7.33-7.19 (m, 5H), 3.68 (s, 3H), 2.97 (t, 2H, J = 8.1 Hz), 

2.65 (t, 2H, J = 7.8 Hz); I3C NMR (75.5 MHz, CDCh) J 173.4, 140.6, 128.6, 128.4, 

126.4,51.7,35.8,31.0. 

1,3-diphenylpropan-l-one (226c). A solution of chalcone (50 mg, 0.24 mmol) and 

o iridium catalyst 221 (7.4 mg, 0.0047 mmol, 2.0 mol %) in CH2Ch 

(3 mL) in a vial under argon was sealed in an autoclave. The 

autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, 

and allowed to stir for 96 h. The reaction mixture was passed through a silica plug with 

Et20 and solvent was removed in vacuo to give 226c (50 mg, 99%) as a pale yellow 

solid. mp 69-70 DC (Lit. 126 70-72 DC); 1 H NMR (300 MHz, CDCh) J 7.98 (d, 2H, J = 7.2 

Hz), 7.6-7.2 (m, 8H), 3.33 Ct, 2H, J = 7.8Hz), 3.10 (t, 2H, J = 7.2Hz); I3C NMR (75.5 

MHz, CDCh) J 199.3, 141.4, 136.9, 133.2, 128.7, 128.6, 128.5, 128.1, 126.2,40.5,30.2. 

Cyclohexanone (226d). A solution of cyclohexenone (30 JlL, 0.31 mmol) and iridium 

rY0 catalyst 221 (9.8 mg, 0.0062 mmol, 2.0 mol %) in CH2Ch (3 mL) in a vial 

V under argon was sealed in an autoclave. The autoclave was evacuated and 

back-filled with hydrogen three times, pressurized to 62 bar, and allowed to stir for 48 h. 

The reaction mixture was passed through a silica plug with Et20 and solvent was 

removed in vacuo to give 226d (26 mg, 84%) as a slightly volatile clear oil. IH NMR 
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(300 MHz, CDCI3) ~ 2.31 (t, 2H, J = 6.9 Hz), 1.85-1.81 (m, 2H), 1.70-1.69 (m, 1H); l3C 

NMR (75.5 MHz, CDCh) ~ 212.2, 40.1, 35.6, 27.1, 25.1. 

Pyrrolidine-2,5-dione (226e). A solution of maleimide (32 mg, 0.33 mmol) and iridium 

H catalyst 221 (l0.4 mg, 0.0066 mmol, 2.0 mol %) in CH2Ch (3 mL) in a 
o N 0 

\Y vial under argon was sealed in an autoclave. The autoclave was evacuated 

and back-filled with hydrogen three times, pressurized to 62 bar, and allowed to stir for 

96 hours. The reaction mixture was passed through a silica plug with Et20 and solvent 

was removed in vacuo to give 225e (27 mg, 82%) as an off white solid. mp 125-127 °C 

(Ut. 127 125-127 °C); IH NMR (300 MHz, acetone-d6) ~ 2.68 (s, 4H), 9.88 (bs, 1H); 13C 

NMR (75.5 MHz, acetone-d6) ~ 178.9, 30.2. 

5-isopropyl-2-methylcyclohex-2-enone (2260. A solution of carvone (45 ilL, 0.29 

o mmol) and iridium catalyst 221 (8.0 mg, 0.0051 mmol, 1.8 mol %) in 

p CH2Ch (3 mL) in a vial under argon was sealed in an autoclave. The 

autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 48 h. The reaction mixture was passed 

through a silica plug with Et20 and solvent was removed in vacuo to give 226f (43 mg, 

96%) as a clear oil. IH NMR (300 MHz, CDCh) ~ 6.72-6.69 (m, 1H), 2.53-2.47 (m, 1H), 

2.37-2.27 (m, 1H), 2.13-1.99 (m, 2H), 1.85-1.78 (m, 1H), 1.73-1.72 (m, 3H), 1.54 (qn, 

1H, J = 6.6 Hz), 0.87 (dd, 6H, J = 6.9 Hz, 0.9 Hz); 13C NMR (75.5 MHz, CDCI3) ~ 200.7, 

145.4, 135.4,42.1,32.1,30.0, 19.6, 16.0. 
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1,2-diphenylpropane (124a). A solution of methyl stilbene 124 (40 mg, 0.21 mmol) and 

iridium catalyst 221 (6.4 mg, 0.0041 mmol, 2.0 mol %) in CH2Clz (3 

mL) in a vial under argon was sealed in an autoclave. The autoclave 

was evacuated and back-filled with hydrogen three times, 

p~essurized to 62 bar, and allowed to stir for 24 h. The reaction mixture was passed 

through a silica plug with Et20 and solvent was removed in vacuo to give 124a (35 mg, 

86%) as a clear oil. lH NMR (300 MHz, CDCh) J 7.35-7.12 (m, lOH), 3.10-2.98 (m, 

2H), 2.88-2.79 (m, 1H), 1.30 (d, 3H, J = 6.9 Hz); 13C NMR (75.5 MHz, CDCl]) J 147.1, 

140.9, 129.3, 128.4, 128.2, 127.2, 126.1, 126.0,45.1,42.0,21.3. 

Ethyl3-phenylbutanoate (128a). A solution of ethyl 3-phenylbut-2-enoate 128 (54 mg, 

0.28 mmol) and iridium catalyst 221 (9.0 mg, 0.0057 mmol, 2.0 

~. 0 O~ mol %) in CH2Clz (3 mL) in a vial under argon was sealed in an U-
autoclave. The autoclave was evacuated and back-filled with 

hydrogen three times, pressurized to 62 bar, and allowed to stir for 48 h. The reaction 

mixture was passed through a silica plug with Et20 and solvent was removed in vacuo to 

give 128a (52 mg, 94%) as a clear oil. lH NMR (300 MHz, CDCh) J 7.34-7.18 (m, 5H), 

4.10 (q, 2H, J = 7.2 Hz), 3.28 (sx, 1H, J = 7.2 Hz), 2.67-2.51 (m, 2H), 1.32 (d, 3H, J = 

6.9Hz), 1.19 (t, 3H, J = 6.9 Hz); 13C NMR (75.5 MHz, CDCh) J 172.5, 145.9, 128.6, 

126.9, 126.5,60.3,43.1,60.3,43.1,36.6,21.9, 14.3. 
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Ethyl 3-(4-methoxyphenyl)butanoate (226a). A solution of ethyl 3-(4-

methoxyphenyl)but-2-enoate 225a (60 mg, 0.27 mmol) and 

iridium catalyst 221 (8.7 mg, 0.0055 mmol, 2.0 mol %) in 

CH2Ch (3 mL) in a vial under argon was sealed in an 

autoclave. The autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 48 h. The reaction mixture was passed 

through a silica plug with Et20 and solvent was removed in vacuo to give 226a (59 mg, 

96%) as a clear oil. lH NMR (300 MHz, CDCb) ~ 7.14 (d, 2H, J = 8.7 Hz), 6.84 (d, 2H, J 

= 6.9 Hz), 4.07 (q, 2H, J = 7.2 Hz), 3.78 (s, 3H), 3.23 (sx, 1H, J = 7.2 Hz), 2.61-2.47 (m, 

2H), 1.28 (d, 3H, J = 6.9 Hz), 1.19 (t, 3H, J = 7.2 Hz); l3C NMR (75.5 MHz, CDCb) b 

172.6,158.2,138.0,127.8,113.9,60.3,55.4,43.4,35.9, 22.1,14.3. 

Ethyl 2-methyl-3-phenylpropanoate (226b). A solution of trans-ethyl 2-methyl-3-

~o~ 
ll)1 

phenyl acrylate 225b (31 mg, 0.16 mmol) and iridium catalyst 221 

(5.1 mg, 0.0032 mmol, 2.0 mol %) in CH2Ch (1.6 mL) in a vial 

under argon was sealed in an autoclave. The autoclave was 

evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and allowed 

to stir for 72 h at room temperature. The solvent was removed in vacuo, crude passed 

through a silica plug with 9: 1 hexanes:EtOAc, and solvent removed in vacuo to give 

226b (28 mg, 92%) as a clear oil. lH NMR (300 MHz, CDCb) b 7.31-7.16 (m, 5H), 4.09 

(q, 2H, J = 6.9 Hz), 3.08-2.98 (m, 1H), 2.79-2.64 (m, 2H), 1.21 (d, 3H, J = 7.2 Hz), 1.16 

(d, 3H, J = 6.3 Hz); l3C NMR (75.5 MHz, CDCb) b 176.1, 139.4, 128.9, 128.3, 126.2, 

60.2,41.4,39.7, 16.7, 14.1. 
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Ethyl 3-(4-methoxyphenyl)-2-methylpropanoate (226c). A solution of trans-ethyl 3-(4-

o · methoxyphenyl)-2-methylacrylate 225c (31 mg, 0.14 mmol) 

~"" and iridium catalyst 221 (4.4 mg, 0.0028 mmol, 2.0 mol %) '-oN I 
in CH2Clz (1.4 mL) in a vial under argon was sealed in an autoclave. The autoclave was 

evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and allowed 

to stir for 72 h at room temperature. The solvent was removed in vacuo, crude passed 

through a silica plug with 9: 1 hexanes:EtOAc, and solvent removed in vacuo to give 226c 

(30 mg, 96%) as a clear oil. IH NMR (300 MHz, CDCh) ~ 7.08 (d, 2H, J = 8.7 Hz), 6.81 

(d, 2H, J = 8.7 Hz), 4.09 (q, 2H, J = 7.2 Hz), 3.78 (s, 3H), 3.01-2.90 (m, IH), 2.73-2.57 

(m, 2H), 1.19 (t, 3H, J = 7.2 Hz), 1.13 (d, 3H, J = 6.6 Hz); l3C NMR (75.5 MHz, CDCh) 

~ 176.2, 158.1, 131.4,129.9,113.7,60.2,55.2,41.7,38.8,16.7,14.2. 

Methyl 3-p-tolylbutanoate (226d). A solution of trans-methyl 3-p-tolylbutenoate 225d 

o (53 mg, 0.28 mmol) and iridium catalyst 221 (8.8 mg, 0.0056 

~/ mmol, 2.0 mol %) in CH,Ch (3 mL) in a vial under argon was 

sealed in an autoclave. The autoclave was evacuated and back-

filled with hydrogen three times, pressurized to 62 bar, and allowed to stir for 72 h at 

room temperature. The solvent was removed in vacuo, crude passed through a silica plug 

with Et20, and solvent removed in vacuo to give 226d (51 mg, 94%) as a clear oil. IH 

NMR (300 MHz, CDCh) ~ 7.13 (s, 4H), 3.64 (s, 3H), 3.29 (sx, IH, J = 6.9 Hz), 2.60 (dq, 

2H, J = Hz, Hz), 2.34 (s, 3H), 1.32 (d, 3H, J = 6.9 Hz); 13C NMR (75.5 MHz, CDCh) ~ 

172.8,142.7,135.8,129.1,126.5,51.4,42.8,36.0,21.8,20.9. 
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3,7-dimethyloctan-l-01 (226e). A solution of geraniol (52 ilL, 0.29 mmol) and iridium 

~ catalyst 221 (9.0 mg, 0.0057 mmol, 2.0 mol %) in CHzClz (3 

OH mL) in a vial under argon was sealed in an autoclave. The 

autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, 

and allowed to stir for 72 h. The reaction mixture was passed through a silica plug with 

EtzO and solvent was removed in vacuo to give 226e (47 mg, 98%) as a clear oil. IH 

NMR (300 MHz, CDCI3) b 3.68 (m, 2H), 1.61-1.17 (m, lOH), 0.9 (3 s, 9H); l3C NMR 

(75.5 MHz, CDCh) b 61.4,30.1,39.4,37.5,29.7,28.1,24.8,22.8,22,7, 19.8. 

2-methyl-3-phenylpropan-l-01 (2260. A solution of trans-2-methyl-3-phenylpropenol 

OIOH 

225f (34.2 mg, 0.23 mmol) and iridium catalyst 221 (7.3 mg, 0.0046 

mmol, 2.0 mol %) in dry CHzClz (2.4 mL) in a vial under argon was 

sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen three 

times, pressurized to 62 bar, and allowed to stir for 72 h at room temperature. The solvent 

was removed in vacuo, crude passed through a silica plug with 9: 1 hexanes:EtOAc, and 

solvent was removed in vacuo to afford 226f (33 mg, 96%) as a clear oil. IH NMR (300 

MHz, CDCI3) b 7.31-7.17 (m, 5H), 3.51 (oct, 2H), 2.76 (dd, IH), 2.43 (dd, IH), 1.95 (oct, 

IH), 1.47 (bs, IH), 0.94 (d, 3H); l3C NMR (75.5 MHz, CDCb) b 140.6, 129.1, 128.2, 

125.8,67.6,39.6,37.7, 16.4. 

l-sec-butyl-4-methoxybenzene (125a). A solution of 1-(butenyl)-4-methoxybenzene 

~ 
125 (54 mg, 0.33 mmol) and iridium catalyst 221 (lO.lmg, 0.0064 

I ~ mmol, 2.0 mol %) in CHzClz (3 mL) in a vial under argon was sealed 
'0 .0 
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in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 72 h at room temperature. The solvent was 

removed in vacuo, crude passed through a silica plug with Et20, and solvent removed in 

vacuo to give 125a (51 mg, 94%) as a clear oil. IH NMR (300 MHz, CDCb) ~ 7.12 (d, 

2H, J = 8.7 Hz), 6.87 (d, 2H, J = 8.7 Hz), 3.82 (s, 3H), 2.58 (sx, IH, J = 6.9 Hz), 1.57 

(qnt, 2H, J = 7.5 Hz), 1.24 (d, 3H, J = 6.9 Hz), 0.85 (t, 3H, J = 7.5 Hz). 

sec-butylbenzene (226g). A solution of but-2-en-2-ylbenzene 225g (40 mg, 0.31 mmol) 

~ and iridium catalyst 221 (9.8 mg, 0.0062 mmol, 2.0 mol %) in CH2Clz (3 

Q ~ mL) in a vial under argon was sealed in an autoclave. The autoclave was 

evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and allowed 

to stir for 72 h at room temperature. The solvent was removed in vacuo (over ice),crude 

passed through a silica plug with Et20, and solvent removed in vacuo (over ice) to give 

226g (38 mg, 93%) as a volatile clear oil. IH NMR (300 MHz, CDCh) ~ 7.35-7.19 (m, 

5H), 2.64 (sx, IH, J = 6.9 Hz), 1.70-1.58 (m, 2H), 1.30 (d, 3H, J = 6.9 Hz), 0.88 (t, 3H, J 

= 7.5 Hz). 

sec-butylbenzene (226h). A solution of but-l-en-2-ylbenzene 225h (39 mg, 0.30 mmol) 

and iridium catalyst 221 (9.3 mg, 0.0059 mmol, 2.0 mol %) in CH2Clz (3 

mL) in a vial under argon was sealed in an autoclave. The autoclave was 

evacuated and back-filled with hydrogen three times, pressurized to 62 

bar, and allowed to stir for 72 h at room temperature. The solvent was removed in vacuo 

(over ice), crude passed through a silica plug with Et20, and solvent removed in vacuo 
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(over ice) to afford the title compound (33 mg, 83%) as a volatile clear oil, with 

spectroscopic data matching 226g. 

N-benzyl-2-methyl-3-phenylpropanamide (226i). A solution of trans-N-benzyl-2-

o methyl-3-phenylacrylamide 22Si (30 mg, 0.12 mmol) and 

vY~V iridium catalyst 221 (3.7 mg, 0.0023 mmol, 2.0 mol %) in 

dry CHzClz (1.2 mL) in a vial under argon was sealed in an autoclave. The autoclave was 

evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and allowed 

to stir for 72 h at room temperature. The solvent was removed in vacuo, crude passed 

through a silica plug with 9: 1 hexanes:EtOAc, and solvent was removed in vacuo to give 

226i (29 mg, 98%) as a pale yellow oil. IH NMR (300 MHz, CDCb) J 7.24-7.16 (m, 9H), 

7.04-7.01 (m, 2H), 5.66 (bs, 1H), 4.32 (dd, 2H), 2.98 (dd, 1H), 2.70 (dd, 1H), 2.47 (sx, 

1H), 1.23 (d, 3H); 13C NMR (75.5 MHz, CDCb) J 175.3, 139.8, 138.1, 128.5, 128.4, 

127.5,127.2,126.2,43.9,43.3,40.5, 17.8. 

3-Methoxy-2-methyl-propyl)-benzene (226j). A solution of trans-(3-methoxy-2-

~OMe methyl-propenyl)-benzene 22Sj (32.9 mg, 0.20 mmol) and iridium 

VI 
catalyst 221 (6.4 mg, 0.0041 mmol, 2.0 mol %) in dry CHzClz (2.1 

mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated and 

back-filled with hydrogen three times, pressurized to 62 bar, and allowed to stir for 72 h 

at room temperature. The solvent was removed in vacuo, crude passed through a silica 

plug with 9:1 hexanes:EtOAc, and solvent was removed in vacuo (over ice) to afford 

226j (14 mg, 41 %) as a volatile clear oil. IH NMR (300 MHz, CDCb) J 7.31-7.16 (m, 
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5H), 3.35 (s,' 3H), 3.27-3.17 (m, 2H), 2.78 (dd, IH, J = 13.2, 6.0 Hz), 2.41 (dd, IH, J = 

13.5,8.1 Hz), 2.11-1:96 (m, IH), 0.90 (d, 3H, J = 6.6 Hz); I3C NMR (75.5 MHz, CDCh) 

b 140.7, 129.2, 128.1, 125.7,58.7,39.9,35.4, 16.7. 

2-methyl-3-phenylpropyl acetate (226k). A solution of 2-methyl-3-phenylallyl acetate 

225k (34.6 mg, 0.182 mmol) and iridium catalyst 221 (5.7 mg, 
~OAC 
V I 0.0036 mmol) in CHzCh (1.9 mL) in a vial under argon was sealed 

in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 72 h at room temperature. The solvent was 

removed in vacuo, crude passed through a silica plug with 9: 1 hexanes:EtOAc, and 

solvent removed zn vacuo (over ice) to afford 211k (27.6 mg, 79%) as a volatile clear oil. 

lH NMR (300 MHz, CDCh) b 7.31-7.15 (m, 5H), 3.95 (m, 2H), 2.74 (dd, IH, J = 13.5, 

6.3 Hz), 2.46 (dd, IH, J = 13.5, 7.8 Hz), 2.16-2.09 (m, IH), 2.07 (3H), 0.93 (d, 3H, J = 

6.6 Hz). 

N-(I-phenylethyl)aniline (2261). A solution of N-(l-phenylethylidene)aniline 2251 (50 

~ mg, 0.26 mmol) and iridium catalyst 221 (7.8 mg, 0.0050 mmol, 1.9 

~NN mol %) in CHzCh (3 mL) in a vial under argon was sealed in an UH 
autoclave. The autoclave was evacuated and back-filled with 

hydrogen three times, pressurized to 62 bar, and allowed to stir for 72 h. The reaction 

mixture was passed through a silica plug with EtzO and solvent was removed in vacuo to 

give 2261 (41 mg, 81%) as a pale yellow oil. IH NMR (300 MHz, CDC h) b 7.4-7.3 (m, 

4H), 7.3-7.25 (m, 2H), 7.15 (t, 2H, J = 7.5 Hz), 6.7 (t, 1H, J = 7.5 Hz), 5.55 (d, 2H, J = 
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7.8 Hz), 4.53 (q, IH, J = 6.6 Hz), 4.07 (bs, IH), 1.56 (d, 3H, J = 6.6 Hz); 13C NMR (75.5 

MHz, CDCl)) 0 147.4, 145.4, 129.3, 128.8, 127.0, 126.0, 117.4,113.4,53.6,25.2. 

N-benzyl-l-phenylethanamine (226m). A solution of I-phenyl-N-(1-

J phenylethylidene)methanamine 225m (50 mg, 0.24 mmol) and 

10 ~V iridium catalyst 221 (7.5 mg, 0.0048 mmol, 2.0 mol %) in CH2Ch 

(3 mL) in a vial under argon was sealed in an autoclave. The autoclave was evacuated 

and back-filled with hydrogen three times, pressurized to 62 bar, and allowed to stir for 

72 h. The reaction mixture was passed through a silica plug with Et20 and solvent was 

removed in vacuo to give 226m (45 mg, 88%) as a pale yellow oil. IH NMR (300 MHz, 

CDCl)) 0 7.35-7.27 (m, lOH), 3.85 (q, IH, J = 6.6 Hz), 3.66 (q, 2H, J = 22.2 Hz), 1.59 

(bs, IH), 1.39 (d, 3H, J = 6.6 Hz); 13C NMR (75.5 MHz, CDCl)) 0 145.7, 140.8, 128.6, 

128.5, 128.3, 127.0, 126.95, 126.8,57.6,51.8,24.7. 

(R)-(-)-1,2-diphenylpropane [(R)-124a]. A solution of trans-methyl stilbene 124 (30 

mg, 0.15 mmol) and iridium catalyst (S)-221 (4.9 mg, 0.0031 mmol, 

2.0 mol %) in CH2Ch (3 mL) in a vial under argon was sealed in an 

autoclave. The autoclave was evacuated and back-filled with 

hydrogen three times, pressurized to 62 bar, and allowed to stir for 72 h at room 

temperature. The solvent was removed in vacuo, crude passed through a silica plug with 

9: 1 hexanes:EtOAc, and solvent removed in vacuo to afford the title compound (30 mg, 

94%) as a colourless oil. [a]2
0o -48.3 (c 0.86 CHCh); [Lit. 128 [a]2

0o -73.7 (c 1.0, 

CHCb)]; Chiral GC analysis (Chirasil DEX-CB; 100°C for 5 min, 0.5 °C/min increase to 
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140°C, hold 'at 140 °C for 5 min, 2 °C/min increase to 180°C, hold at 180 °C for 10 min) 

determined an enantiomeric ratio (er) of 91.8:8.2 (84% ee) [tR(major) = 64.32 min, 

tR(minor) 64.61 = min]; IH NMR (300 MHz, CDCh) b 7.37-7.30 (m, 3H), 7.24-7.20 (m, 

2H), 7.14 (d, 2H, J = 7.2 Hz), 3.13-2.98 (m, 2H), 2.82 (q, IH, J = 7.8 Hz), 1.31 (d, 3H, J 

= 6.6 Hz); l3C NMR (75.5 MHz, CDCh) b 147.0, 140.8, 129.1, 128.3, 128.1, 127.0, 

126.0, 125.8,45.0,41.8,21.1. 

(R)-(-)-Ethyl 3-phenylbutanoate [(R)-128a]. A solution of trans-ethyl 3-phenylbut-2-

= 0 enoate 128 (57 mg, 0.29 mmol) and iridium catalyst (S)-221 (9.4 

~o~ mg, 0.0060 mmol, 2.0 mol %) in CH,Cl, (3 mL) in a vial under 

argon was sealed in an autoclave. The autoclave was evacuated and back-filled with 

hydrogen three times, pressurized to 62 bar, and allowed to stir for 72 h at room 

temperature. The solvent was removed in vacuo, crude passed through a silica plug with 

9:1 hexanes:EtOAc, and solvent removed in vacuo to afford the title compound (54 mg, 

94%) as a colourless oil. [a]2oD -23.5 (c 0.94 CHCh) [Lit. 129 [afoD -24.7 (c 1.12, 

CHCh)]; CSP HPLC analysis (Chira1cel OB-H; eluent: 99.5:0.5 hexane:i-PrOH, 0.5 

mLimin) determined an enantiomeric ratio (er) of 95.4:4.6 (91% ee) [tR(major) 11.99 

min, tR(minor) 14.09 min]; IH NMR (300 MHz, CDCh) b 7.33-7.17 (m, 5H), 4.08 (q, 2H, 

J = 6.9 Hz), 3.35-3.23 (sx, IH, J = 7.2 Hz), 2.66-2.50 (m, 2H), 1.31 (d, 3H, J = 6.9 Hz), 

1.19 (t, 3H, J = 6.9 Hz); l3C NMR (75.5 MHz, CDCh) b 172.4, 145.7, 128.4, 126.7, 

126.3,60.2,43.0,36.5,21.8, 14.1. 
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(R)-(-)-Ethyl 3-(4-methoxyphenyl)butanoate [(R)-226a]. A solution of trans-ethyl 3-

(4-methoxyphenyl)but-2-enoate 225a (58 mg, 0.26 mmol) 

and iridium catalyst (S)-221 (8.4 mg, 0.0053 mmol, 2.0 mol 

%) in dry CH2Ch (3 mL) in a vial under argon was sealed in 

an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 72 h at room temperature. The solvent was 

removed in vacuo, crude passed through a silica plug with 9: 1 hexanes:EtOAc, and 

solvent was removed in vacuo to afford the title compound (58 mg, 99%) as a colourless 

oil. [a]2oD -26.7 (c 0.996, CHCh); CSP HPLC analysis l30 (Chiralcel OB-H; eluent: 

99.5:0.5 hexane:i-PrOH, 0.5 mUmin) determined an enantiomeric ratio (er) of 96.1:3.9 

(92% ee) [tR(major) 21.73 min, tR(minor) 28.91 min]; IH NMR (300 MHz, CDCh) ~ 7.14 

(d, 2H, J = 8.4 Hz), 6.84 (d, 2H, J = 8.7 Hz), 4.07 (q, 2H, J = 6.9 Hz), 3.78 (s, 3H), 3.24 

(sx, 1H, J = 7.2 Hz), 2.61-2.46 (m, 2H), 1.27 (d, 3H, J = 6.9 Hz), 1.18 (t, 3H, J = 7.2 Hz); 

I3C NMR (75.5 MHz, CDCh) ~ 172.4, 158.0, 137.8, 131.4, 127.6, 113.8,60.1,55.1,43.2, 

35.7,21.9, 14.1. 

(R)-(-)-Ethyl 3-(naphthalen-2-yl)-butanoate [(R)-226n]. A solution of trans-ethyl 3-

(naphthalen-2-yl)-but-2-enoate) 225n (26.6 mg, 0.11 mmol) 

O~ and iridium catalyst (S)-221 (3.5 mg, 0.0022 mmol, 2.0 mol 

%) in CH2Ch (1.1 mL) in a vial under argon was sealed in 

an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 80 h at room temperature. The solvent was 

removed in vacuo, crude passed through a silica plug with 9: 1 hexanes:EtOAc, and 
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solvent removed in vacuo to afford the title compound (25.6 mg, 96%) as a colourless oil. 

[a]20D -26.0 (c 0.97; CHCh); CSP HPLC analysis (Chiralcel OD-H; eluent: 99.5:0.5 

hexane:i-PrOH, 1.0 mLimin) determined an enantiomeric ratio (er) of 91.1:8.9 (82% ee) 

[tR(major) 25.7 min, tR(minor) 20.4 min]; IH NMR (300 MHz, CDCh) ~ 7.82 (d, 3H, J = 

8.4 Hz), 7.69 (s, IH), 7.51-7.39 (m, 3H), 4.11 (q, 2H, J = 7.2 Hz), 3.50 (sx, IH, J = 7.5 

Hz), 2.81-2.62 (m, 2H), 1.42 (d, 3H, J = 6.9 Hz), 1.19 (t, 3H, J = 7.2 Hz); 13C NMR (75.5 

MHz, CDCh) ~ 172.3, 143.1, 135.5, 132.3, 128.1, 127.6, 127.5, 125.9, 125.4, 125.3, 

124.9,60.2,42.8,42.6,36.6,21.7, 14.1. 

(S)-(+)-Ethyl 2-methyl-3-phenylpropanoate [(S)-226b]. A solution of trans-ethyl 2-

o 
~o~ lJj 

methyl-3-phenylacrylate 225b (34 mg, 0.18 mmol) and iridium 

catalyst (S)-221 (5.7 mg, 0.0036 mmol, 2.0 mol %) in CH2Clz 

(1.8 mL) in a vial under argon was sealed in an autoclave. The 

autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, 

and allowed to stir for 72 h at room temperature. The solvent was removed in vacuo, 

crude passed through a silica plug with 9: 1 hexanes:EtOAc, and solvent removed in 

vacuo to afford the title compound (30 mg, 88%) as a colourless oil. [a]2oD +28.4 (c 1.0, 

CHCh); CSP HPLC analysis73 (Chiralcel OB-H; eluent: 99.5:0.5 hexane:i-PrOH, 1.0 

mLimin) determined an enantiomeric ratio (er) of 91.1:8.9 (82% ee) [tR(major) 10.1 min, 

tR(minor) 8.5 min]; IH NMR (300 MHz, CDCh) ~ 7.31-7.16 (m, 5H), 4.09 (q, 2H, J = 6.9 

Hz), 3.08-2.98 (m, IH), 2.79-2.64 (m, 2H), 1.21 (d, 3H, J = 7.2 Hz), 1.16 (d, 3H, J = 6.3 

Hz); 13C NMR (75.5 MHz, CDCh) ~ 176.1, 139.4, 128.9, 128.3, 126.2, 60.2, 41.4, 39.7, 

16.7, 14.1. 
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(S)-(+)-Ethyl 3-(4-methoxyphenyl)-2-methylpropanoate [(S)-226c]. A solution of 

trans-ethyl 3-(4-methoxyphenyl)-2-methylacrylate 225c (30 

mg, 0.14 mmol) and iridium catalyst (S)-221 (4.5 mg, 0.0029 

mmol, 2.0 mol %) in CHzCh (1.4 mL) in a vial under argon 

was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen 

three times, pressurized to 62 bar, and allowed to stir for 72 h at room temperature. The 

solvent was removed in vacuo, crude passed through a silica plug with 9: 1 

hexanes:EtOAc, and solvent removed in vacuo to afford the title compound (30 mg, 

96%) as a colourless oil. [a]zoD +24.5 (c 1.25, CHCh); CSP HPLC analysis73 (Chiralcel 

OB-H; eluent: 99.5:0.5 hexane:i-PrOH, 0.5 mLlmin) determined an enantiomeric ratio 

(er) of 92.0:8.0 (84% ee) [tR(major) 20.9 min, tR(minor) 19.1 min]; IH NMR (300 MHz, 

CDCh) J 7.08 (d, 2H, J = 8.7 Hz), 6.81 (d, 2H, J = 8.7 Hz), 4.09 (q, 2H, J = 7.2 Hz), 3.78 

(s, 3H), 3.01-2.90 (m, IH), 2.73-2.57 (m, 2H), 1.19 (t, 3H, J = 7.2 Hz), 1.13 (d, 3H, J = 

6.6 Hz); 13C NMR (75.5 MHz, CDCh) J 176.2, 158.1, 131.4, 129.9, 113.7,60.2,55.2, 

41.7,38.8, 16.7, 14.2. 

(R)-(+)-2-methyl-3-phenylpropan-l-01 [(R)-226f]. A solution of trans-2-methyl-3-

err phenylpropeno1225f (37.5 mg, 0.25 mmol) and iridium catalyst (S)-
I ~ ~ OH , 

~ - 221 (8.0 mg, 0.0051 mmol, 2.0 mol %) in dry CHzCh (2.5 mL) in a 

vial under argon was sealed in an autoclave. The autoclave was evacuated and back-filled 

with hydrogen three times, pressurized to 62 bar, and allowed to stir for 72 h at room 

temperature. The solvent was removed in vacuo, crude passed through a silica plug with 

9: 1 hexanes:EtOAc, and solvent was removed in vacuo to afford the title compound (37 
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mg, 98%). (a]20o +1.36 (c 1.06, CHCI)) [Lit. 133 [a]20o -11.1 (c 0.86, CHCI)) for (S)-

enantiomer]; CSP HPLC analysis (Chira1cel OD-H; eluent: 95:5 hexane:i-PrOH, 1.0 

mUmin, 254 nm) determined an enantiomeric ratio (er) of 58.8:41.2 (18% ee) [tR(major) 

10.52 min, tR(minor) 8.73 min]; IH NMR (300 MHz, CDCI)) ~ 7.31-7.17 (m, 5H), 3.51 

(oct, 2H), 2.76 (dd, 1H), 2.43 (dd, 1H), 1.95 (oct, 1H), 1.47 (bs, 1H), 0.94 (d, 3H); l3C 

NMR (75.5 MHz, CDCI)) ~ 140.6, 129.1, 128.2, 125.8,67.6,39.6,37.7, 16.4. 

(-)-3-Methoxy-2-methyl-propyl)-benzene [( - )-226j]. A solution of trans-(3-methoxy-

2-methyl-propenyl)-benzene 22Sj (30.5 mg, 0.19 mmol) and 
~OMe 
V I iridium catalyst (S)-221 (5.9 mg, 0.0037 mmol, 2.0 mol %) in dry 

CH2Clz (1.9 mL) in a vial under argon was sealed in an autoclave. The autoclave was 

evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and allowed 

to stir for 72 h at room temperature. The solvent was removed in vacuo, crude passed 

through a silica plug with 9: 1 hexanes:EtOAc, and solvent was removed in vacuo to 

afford the title compound (19 mg, 61 %) as a clear volatile oil. [a]20o -1.24 (c 0.38, 

CHCI)); CSP HPLC analysis (Chira1cel OD-H; eluent: 99:1 hexane:i-PrOH, 1.0 mL/min, 

254 nm) determined an enantiomeric ratio (er) of 58.45:41.55 (17 % ee) [tR(major) 5.67 

min, tR(minor) 4.48 min]; IH NMR (300 MHz, CDCI)) ~ 7.31-7.16(m, 5H), 3.35 (s, 3H), 

3.27-3.17 (m, 2H), 2.78 (dd, 1H, J = 13.2,6.0 Hz), 2.41 (dd, 1H, J = 13.5, 8.1 Hz), 2.11-

1.96 (m, 1H), 0.90 (d, 3H, J = 6.6 Hz); l3C NMR (75.5 MHz, CDCI)) ~ 140.7, 129.2, 

128.1, 125.7,58.7,39.9,35.4, 16.7. 
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(S)-( + )-N-benzyl-2-methyl-3-phenylpropanamide [(S)-226iJ. A solution of trans-N-

benzyl-2-methyl-3-phenylacrylamide 225i (30 mg, 0.12 

mmol) and iridium catalyst (S)-221 (3.8 mg, 0.0024 mmol, 

2.0 mol %) in dry CH2Ch (1.2 mL) in a vial under argon 

was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen 

three times, pressurized to 62 bar, and allowed to stir for 72 h at room temperature. The 

solvent was removed in vacuo, crude passed through a silica plug with 9: 1 

hexane:EtOAc, and solvent was removed in vacuo to afford the title compound (29 mg, 

96%). [a]2oD +23.2 (c 0.93, CHCh) [Lit. l31 [a]2oD +52.3 (c, 1.2 CHCh)]; CSP HPLC 

analysis (Chiralcel OB-H; eluent: 99:1 hexane:i-PrOH, 1.0 mLimin) determined an 

enantiomeric ratio (er) of 73.8:26.2 (48% ee) [tR(major) 26.5 min, tR(minor) 30.0 min]; 

IH NMR (300 MHz, CDCh) ~ 7.24-7.16 (m, 9H), 7.04-7.01 (m, 2H), 5.66 (bs, 1H),4.32 

(dd, 2H), 2.98 (dd, 1H), 2.70 (dd, 1H), 2.47 (sx, 1H), 1.23 (d, 3H); 13C NMR (75.5 MHz, 

CDCh) ~ 175.3,139.8, 138.1, 128.5, 128.4, 127.5, 127.2, 126.2,43.9,43.3,40.5,17.8. 

(S)-(-)-3,7-dimethyloctan-l-01 [(S)-226eJ. A solution of geraniol (46.5 mg, 0.30 mmol) 

I ~ and iridium catalyst (S)-221 (9.5mg, 0.0060 mmol, 2.0 mol %) 

~OH 
in CH2Ch (3 mL) in a vial under argon was sealed in an 

autoclave. The autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 24 hours. The solvent was removed in 

vacuo, crude passed through a silica plug with 9: 1 hexane:EtOAc, and solvent removed 

in vacuo to afford the title compound (47 mg, 99%) as a colourless oil. [a]2oD -2.05 (c 

0.5, CHCh) {Lit132 [a]2oD -4.8 (c 0.5 CHCh)} IH NMR (300 MHz, CDCh) ~ 3.71-7.59 
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(m, 2H), 1.71 (bs, IH), 1.64-1.09 (m, lOH), 0.86 (3 x d, 9H);13C NMR (75.5 MHz, 

CDCh) 6 61.1,39.9,39.2,37.3,29.5,27.9,24.6,22.6,22.5, 19.6. 

(R)-( + )-I-sec-butyl-4-methoxybenzene [(R)-125a]. A solution of trans-l-(butenyl)-4-

methoxybenzene 125 (51 mg, 0.32 mmol) and iridium catalyst (S)-

221 (9.9mg, 0.0063 mmol, 2.0 mol %) in CH2Clz (3 mL) in a vial 

under argon was sealed in an autoclave. The autoclave was 

evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and allowed 

to stir for 72 h at room temperature. The solvent was removed in vacuo, crude passed 

through a silica plug with Et20, and solvent removed in vacuo to afford the title 

compound (49 mg, 95%) as a clear oil. [a]2oD +8.2 (c 0.15, CHCb); CSP HPLC analysis 

(Chira1cel OD-H; eluent: 99.9:0.1 hexane:i-PrOH, 0.4 mLimin) determined an 

enantiomeric ratio (er) of 63.2:36.8 (26% ee) [tR(major) 18.94 min, tR(minor) 20.87 min]; 

lH NMR (300 MHz, CDCb) 67.12 (d, 2H, J = 8.7 Hz), 6.87 (d, 2H, J = 8.7 Hz), 3.82 (s, 

3H), 2.58 (sx, IH, J = 6.9 Hz), 1.57 (qnt, 2H, J = 7.5 Hz), 1.24 (d, 3H, J = 6.9 Hz), 0.85 

(t, 3H, J = 7.5 Hz). 

ent-N-(I-Phenyl-ethyl)-acetamide (ent-2260). A solution of N-(I-phenyl-vinyl)-

cf 
Jl acetamide 2250 (46.5 mg, 0.29 mmol) and iridium catalyst (S)-221 

I -.-:::: ~ (9.0 mg, 0.0057 mmol) in dry CH2Clz (3 mL) in a vial under argon 
h 

was sealed in an autoclave. The autoclave was evacuated and back-filled with hydrogen 

three times, pressurized to 62 bar, and allowed to stir for 72 h at room temperature. The 

solvent was removed in vacuo, crude passed through a plug of silica with 7:3 
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hexane:EtOAc, and solvent removed in vacuo to afford the title compound (56 mg, 97%) 

as a clear oil. CSP HPLC analysis (Chiralcel OD-H; eluent: 90:10 hexane:i-PrOH, 1.0 

mLimin, 254 nm) determined an enantiomeric ratio (er) of 58.6:41.4 (17% ee) [tR(major) 

23.20 min, tR(minor) 26.90 min]; IH NMR (300 MHz, CDCh) J 7.28-7.20 (m, 5H), 6.15 

(bd, IH, J = 4.5 Hz), 5.04 (qnt, IH, J = 7.2 Hz), 1.94 (s, 3H), 1.42 (d, 3H, J = 6.9 Hz). 

(-)-methyl 3-methyldodecanoate [(-)-226p]. A solution of trans-methyl 3-

methyldodecenoate 22Sp (61 mg, 0.27 mmol) and 

0/ iridium catalyst (S)-221 (8.5 mg, 0.0054 mmol, 2.0 

mol%) in dry CH2Clz (3 mL) in a vial under argon was sealed in an autoclave. The 

autoclave was evacuated and back-filled with hydrogen three times, pressurized to 62 bar, 

and allowed to stir for 72 h at room temperature. The solvent was removed in vacuo, 

crude passed through a silica plug with 9: 1 hexanes:EtOAc, and solvent was removed in 

vacuo to afford the title compound (29 mg, 96%) as a colourless oil. [afoD -0.44 (c 1.0, 

CHCh) {Lit. 134 [a]2oD +5.13 (c 1.0 CHCh)};IH NMR (300 MHz, CDCh) J 3.64 (s, 3H), 

2.29 (dd, IH), 2.08 (dd, IH), 1.95-1.90 (m, IH), 1.24 (s, 16H), 0.91 (d, 3H), 0.88 (t, 3H); 

l3C NMR (75.5 MHz, CDCh) J 173.7, 51.2,41.6,36.7,31.9,30.3,29.7,29.6,29.6,29.3, 

26.9,22.6, 19.7, 14.1. 

(S)-2-Methyl-3-phenyl-propionic acid [(S)-228v]. A solution of trans-2-methyl-3-

phenyl-acrylic acid 227v (38.5 mg, 0.24 mmol), iridium catalyst (S)-
o 

v(OH 221 (7.5 mg, 0.0048 mmol, 2.0 mol %), and triethylamine (33 ~L, 

0.24 mmol) in dry MeOH (2.4 mL) in a vial under argon was sealed 
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in an autoclave. The autoclave was evacuated and back-filled with hydrogen three times, 

pressurized to 62 bar, and allowed to stir for 72 h at room temperature. The solvent was 

removed in vacuo, crude passed through a silica plug with 8:2 hexanes:EtOAc, and 

solvent removed in vacuo to afford the title compound (31 mg, 78%) as a colourless oil. 

[a]20D +15.9 (c 1.0, CHCh) {Lit.135 [afoD +30.2 (c 0.82, CHCh)}; IH NMR (300 MHz, 

CDCh) ~ 11.68 (bs, 1H), 7.34-7.20 (m, 5H), 3.10 (dd, 1H, J = 12.9, 6.0 Hz), 2.80-2.66 

(m, 2H), 1.20 (d, 3H, J = 6.9 Hz). 

(S)-3-(4-Methoxy-phenyl)-2-methyl-propionic acid [(S)-228w]. A solution of trans-3-

o (4-methoxy-phenyl)-2-methyl-acrylic acid 227w (39.5 mg, 

oT°H 

MeO 

0.21 mmol) , iridium catalyst (S)-221 (6.5 mg, 0.0041 mmol, 

2.0 mol %), and triethylamine (29 ilL, 0.21 mmol) in dry 

MeOH (2.1 mL) in a vial under argon was sealed in an autoclave. The autoclave was 

evacuated and back-filled with hydrogen three times, pressurized to 62 bar, and allowed 

to stir for 72 h at room temperature. The solvent was removed in vacuo, crude passed 

through a silica plug with 8:2 hexanes:EtOAc, and solvent removed in vacuo to afford the 

title compound (36 mg, 91%) as a colourless oil. [a]2oD +18.5 (c 0.81, CHCh) {Lit.135 

[a]20D +31.0 (c 0.51, acetone)}; IH NMR (300 MHz, CDCh) ~ 11.38 (bs, 1H), 7.11 (d, 

2H, J = 8.4 Hz), 6.84 (d, 2H, J = 8.4 Hz), 3.79 (s, 3H), 3.02 (dd, 1H, J = 13.2,6.0 Hz), 

2.79-2.60 (m, 2H), 1.18 (d, 3H, J = 6.9 Hz). 
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7.2 Appendix 2 - X-ray data. 

X-ray data for racemic complex (S)-221 

data_costadec2008b 

_audiCcreation_method 
_ chemical_name_s ystematic 

? 

_chemicaCname_common 
_chemical_melting_point 
_chemical_formula_moiety 
_chemicaCformula_sum 
'C64 H48 B F24 Fe Ir N P' 

_chemicaCformula_ weight 

loop _ 

SHELXL-97 

? 
? 

'C32 H36 Fe Ir N P, C32 H12 B F24' 

1576.86 

_ atom_type_symbol 
_atom_type_description 
_atom_type_scaCdispersion_real 
_atom_type_scaC dispersion_imag 
_atom_type_scacsource 
'C' 'C' 0.0033 0.0016 
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'H' 'H' 0.0000 0.0000 
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'B' 'B' 0.0013 0.0007 
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'N' 'N' 0.0061 0.0033 
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'F' 'F' 0.0171 0.0103 
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'P' 'P' 0.1023 0.0942 
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'Fe' 'Fe' 0.3463 0.8444 
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'Ir' 'Ir' -1.4442 7.9887 
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

_symmetry _cell_setting Tric1inic 
_symmetry_space_group_name_Hall '-P l' 
_symmetry_space_group_name_H-M 'P -1' 
loop _ 
_ symmetry _equiv _pos_as_xyz 

242 



'x, y, z' 
'-x, -y, -z' 

_cell_length_a 
_cell_length_b 
_ cell_length_ c 
_cell_angle_alpha 
_cell_angle_beta 
_cell_angle_gamma 
_celLvolume 
_ceILformula_units_Z 

12.7697(6) 
12.8455(6) 
19.8377(10) 

74.724(2) 
76.026(3) 

87.188(2) 
3045.8(3) 

2 
_cell_measuremenctemperature 
_cell_measuremenCreflns_used 
_cell_measuremenCtheta_min 
_cell_measuremenctheta_max 

150(2) 
9579 
2.609 
28.34 

_exptLcrystaLdescription 'plate' 
_exptLcrystaLcolour 'orange' 
_exptLcrystaLsize_max 0.30 
_exptl_crystal_size_mid 0.26 
_exptLcrystal_size_min 0.04 
_exptl_crystal_density_meas 'not measured' 
_exptLcrystaLdensity_diffm 1.719 
_exptl_crystal_density_method 'not measured' 
_exptLcrystaLF _000 1556 
_exptl_absorpccoefficienCmu 2.563 
_exptl_absorpccorrection_type 'multi-scan' 
_exptLabsorpccorrection_ T _min 0.5136 
_exptl_absorpt_correction_ T _max 0.9044 
_exptLabsorpCprocess_details 'SADABS, Bruker 2001' 

_exptLspecial_details 

? 

_diffm_ambienCtemperature 150(2) 
_diffm_radiation_ wavelength 0.71073 
_diffm_radiation_type MoK\a 
_diffm_radiation_source 'fine-focus sealed tube' 
_diffm_radiation_monochromator graphite 
_diffm_measuremencdevice_type 'Bruker Kappa Apex II area detector' 
_diffm_measuremencmethod 'phi and omega scans' 
_diffm_detectocarea_resol_mean ? 
_diffm_standards_number ? 
_diffm_standards_intervaLcount ? 
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_diffrn_standards_intervaLtime ? 
_diffrn_standards_decay _ % ? 
_diffrn_reflns_number 81694 
_diffrn_reflns_av _R_equivalents 0.0341 
_diffrn_reflns_av _sigmaI/netI 0.0274 
_diffrn_reflns_limiCh_min -17 
_diffrn_reflns_IimiCh_max 17 
_diffrn_reflns_limiCk_min -17 
_diffrn_reflns_limiCk_max 16 
_diffrn_reflns_limiCLmin -26 
_diffrn_reflns_limicI_max 26 
_diffrn_reflns_theta_min 2.19 
_diffrn_reflns_theta_max 28.48 
_reflns_numbectotal 15144 
_reflns_numbecgt 13709 
_reflns_threshold_expression >2sigma(I) 

_computing_data_collection 'Bruker SMART' 
_computing_cell_refinement 'Bruker SMART' 
_computin~data_reduction 'Bruker SAINT' 
_computing_strueture_solution 'SHELXS-97 (Sheldrick, 1990)' 
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' 
_computing_moieculacgraphics 'Bruker SHELXTL' 
_computing_publication_material 'Bruker SHELXTL' 

Refinement of FA2A against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on FA2A, conventional R-factors R are based 
on F, with F set to zero for negative FA2A. The threshold expression of 
FA2A > 2sigma(FA2A) is used only for calculating R-factors(gt) etc. and is 
not relevant to the choice of reflections for refinement. R -factors based 
on FA2A are statistically about twice as large as those based on F, and R­
factors based on ALL data will be even larger. 

_refine_ls_structure_factoccoef Fsqd 
_refine_ls_matrix_type full 
_refine_ls_ weightin~scheme calc 
_refine_ls_ weighting_details 
'calc w=1/[\sA2A(FoA2A )+(0.0658P)A2A+2.5190P] where P=(FOA2A+2FcA2A )/3' 

_atom_sites_solution_primary direct 
_atom_sites_solution_secondary difmap 
_atom_sites_solution_hydrogens geom 
_refine_ls_hydrogen_treatment constr 
_refine_ls_extinction_method none 
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_refine_ls_extinction_coef ? 
_refine_ls_numbecreflns 15144 
_refine_ls_numbecparameters 840 
_refine_ls_numbecrestraints 0 
_refine_ls_R_factocall 0.0413 
_refine_ls_R_factocgt 0.0352 
_refine_ls_ wR_factocref 0.1041 
_refine_ls_ wRjactocgt 0.0985 
_refine_ls_goodness_oCfiCref 1.133 
_refine_ls_restrained_S_all 1.133 
_refine_ls_shiftlsu_max 0.003 
_refine_ls_shiftlsu_mean 0.000 

loop _ 
_ atom_site_label 
_atom_site_type_s ymbol 
_atom_sitejracCx 
_atom_site_fraccy 
_atom_site_fracCz 
_atom_site_ V _iso_oCequiv 
_atom_site_adp_type 
_atom_site_occupancy 
_atom_site_symmetry _multiplicity 
_atom_site_ca1c_flag 
_atom_site_refinemenCflags 
_atom_site_disordecassembly 
_atom_site_disordecgroup 

Irl Ir 0.819137(9) 0.732546(9) 0.724132(6) 0.01758(5) Vani 1 1 d .. . 
Fel Fe 0.65246(4) 0.63311(4) 0.61656(3) 0.02188(10) Vani 11 d .. . 
PI P 0.65216(7) 0.65692(7) 0.78367(5) 0.01951(16) Vani 11 d .. . 
Nl N 0.8452(2) 0.5776(2) 0.69269(16) 0.0212(5) Vani 11 d .. . 
Bl B 0.1510(3) 0.1954(3) 0.75556(19) 0.0171(6) Vani 1 1 d .. . 
Fl F 0.1252(3) -0.2253(2) 0.9334(2) 0.0740(11) Vani 1 1 d .. . 
F2 F -0.0283(3) -0.1550(3) 0.94970(19) 0.0630(9) Vani 1 1 d .. . 
F3 F 0.0539(3) -0.1879(2) 1.03264(14) 0.0598(8) Vani 1 1 d .. . 
F4 F 0.3978(3) 0.0551(4) 0.9843(3) 0.1114(18) Vani 1 1 d .. . 
F5 F 0.3682(6) 0.2138(5) 0.9398(3) 0.177(4) Vani 1 1 d .. . 
F6 F 0.2764(3) 0.1309(6) 1.0372(3) 0.125(2) Vani 1 1 d .. . 
F7 F 0.3898(3) 0.5360(3) 0.5627(2) 0.0722(10) Vani 1 1 d .. . 
F8 F 0.2370(3) 0.5427(2) 0.53820(17) 0.0620(8) Vani 1 1 d .. . 
F9 F 0.2866(4) 0.6686(2) 0.5763(2) 0.0818(12) Vani 1 1 d .. . 
FlO F 0.1401(7) 0.4693(5) 0.9102(3) 0.191(4) Vani 1 1 d .. . 
Fll F 0.0270(4) 0.5587(3) 0.8631(2) 0.0849(12) Vani 11 d .. . 
F12 F 0.1795(4) 0.6307(4) 0.8357(3) 0.126(2) Vani 11 d .. . 
F13 F 0.5684(2) 0.1861(4) 0.6904(2) 0.0864(14) Vani 1 1 d .. . 
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F14 F 0.6192(2) 0.0893(3) 0.6164(2) 0.0737(11) Vani 11 d .. . 
F15 F 0.5777(2) 0.2509(3) 0.5814(2) 0.0833(13) Vani 1 1 d .. . 
F16 F 0.2395(3) -0.1432(2) 0.62868(15) 0.0556(8) Vani 1 1 d .. . 
F17 F 0.3577(2) -0.0730(2) 0.53292(16) 0.0496(7) Vani 1 1 d .. . 
F18 F 0.1959(2) -0.0155(2) 0.54871(15) 0.0456(6) Vani 1 1 d .. . 
F19 F -0.3102(3) 0.0884(3) 0.8488(3) 0.1108(19) Vani 1 1 d .. . 
F20 F -0.3434(2) 0.2533(3) 0.81183(15) 0.0716(11) Vani 1 1 d .. . 
F21 F -0.2557(2) 0.2037(3) 0.89133(14) 0.0635(10) Vani 11 d .. . 
F22 F -0.01493(19) 0.20262(18) 0.53517(11) 0.0334(5) Vani 11 d .. . 
F23 F -0.04654(19) 0.36663(17) 0.53893(11) 0.0321(5) Vani 1 1 d .. . 
F24 F -0.17850(18) 0.2555(2) 0.56166(12) 0.0363(5) Vani 1 1 d .. . 
Cl C 0.6403(3) 0.5765(3) 0.72443(19) 0.0245(7) Vani 1 1 d .. . 
C2 C 0.7412(3) 0.5480(3) 0.68283(18) 0.0225(6) Vani 1 1 d .. . 
C3 C 0.7195(3) 0.4840(3) 0.6395(2) 0.0285(7) Vani 1 1 d .. . 
H3 H 0.77060.45410.6081 0.034 Viso 11 calc R .. 
C4 C 0.6064(3) 0.4735(3) 0.6523(2) 0.0328(8) Vani 1 1 d ... 
H4 H 0.5705 0.4361 0.6301 0.039 Viso 1 1 calc R .. 
C5 C 0.5564(3) 0.5291(3) 0.7043(2) 0.0285(7) Vani 1 1 d ... 
H5 H 0.48250.53410.72220.034 Viso 1 1 calc R .. 
Cl' C 0.6333(3) 0.7985(3) 0.5872(2) 0.0296(8) Vani 1 1 d ... 
HI' H 0.61770.84380.61780.036 Viso 11 calc R .. 
C2' C 0.7378(3) 0.7706(3) 0.5532(2) 0.0280(7) Vani 1 1 d ... 
H2' H 0.8028 0.7942 0.5577 0.034 Viso 11 calc R .. 
C3' C 0.7254(3) 0.7001(3) 0.5111(2) 0.0312(8) Vani 11 d ... 
H3' H 0.78080.66920.48320.037 Viso 1 1 calc R .. 
C4' CO.6132(4) 0.6855(3) 0.5191(2) 0.0338(8) Vani 1 1 d ... 
H4' H 0.5824 0.64370.49700.041 Viso 11 calc R .. 
C5' C 0.5567(3) 0.7452(3) 0.5663(2) 0.0320(8) Vani 1 1 d ... 
H5' H 0.4820 0.7490 0.58110.038 Vi so 11 calc R .. 
C6 C 0.5355(3) 0.7401(3) 0.8007(2) 0.0267(7) Vani 1 1 d .. . 
C7 C 0.4602(3) 0.7614(4) 0.7585(2) 0.0357(9) Vani 1 1 d .. . 
H7 H 0.4642 0.7268 0.7223 0.043 Viso 1 1 calc R .. 
C8 C 0.3784(3) 0.8355(4) 0.7712(3) 0.0487(12) Vani 1 1 d ... 
H8 H 0.32740.8495 0.7436 0.058 Viso 1 1 calc R .. 
C9 C 0.3729(4) 0.8879(4) 0.8241(3) 0.0520(13) Vani 11 d ... 
H9 H 0.3187 0.9376 0.8316 0.062 Viso 11 calc R .. 
ClO C 0.4466(4) 0.8677(4) 0.8661(3) 0.0492(12) Vani 1 1 d ... 
HlO H 0.4430 0.9036 0.9017 0.059 Viso 1 1 calc R .. 
C11 C 0.5271(3) 0.7922(3) 0.8546(2) 0.0339(9) Vani 11 d ... 
Hll H 0.5760 0.7766 0.8837 0.041 Viso 11 calc R .. 
C12 C 0.6481(3) 0.5621(3) 0.87001(18) 0.0245(7) Vani 1 1 d .. . 
C13 C 0.5767(3) 0.4745(3) 0.8964(2) 0.0336(8) Vani 1 1 d .. . 
H13 H 0.52630.46660.8711 0.040 Viso 1 1 calc R .. 
C14 C 0.5799(4) 0.3989(4) 0.9602(2) 0.0430(10) Vani 1 1 d ... 
H14 H 0.5326 0.3399 0.97710.052 Viso 1 1 calc R .. 
C15 C 0.6523(4) 0.4106(4) 0.9985(2) 0.0510(12) Vani 11 d ... 
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H15 H 0.65350.3603 1.04170.061 Viso 11 calc R .. 
C16 C 0.7237(5) 0.4972(5) 0.9728(3) 0.0646(16) Vani 1 1 d ... 
H16 H 0.77370.5047 0.9985 0.077 Viso 1 1 calc R .. 
C17 C 0.7214(4) 0.5734(4) 0.9088(2) 0.0467(11) Vani 11 d ... 
H17 H 0.7692 0.6320 0.8921 0.056 Viso 1 1 calc R .. 
C18 C 0.8756(3) 0.4907(3) 0.7517(2) 0.0286(7) Vani 1 1 d ... 
H18A H 0.81690.47750.79380.043 Viso 1 1 calc R .. 
H18B H 0.93850.51340.76290.043 Vi so 1 1 calc R .. 
H18C H 0.8909 0.4256 0.7362 0.043 Viso 11 calc R .. 
C19 C 0.9312(3) 0.5811(3) 0.6259(2) 0.0297(8) Vani 11 d ... 
H19A H 0.9370 0.5112 0.61650.045 Viso 1 1 calc R .. 
H19B H 0.99890.6011 0.6323 0.045 Viso 1 1 calc R .. 
H19C H 0.9129 0.6332 0.58610.045 Viso 1 1 calc R .. 
C20 C 0.9631(3) 0.8183(3) 0.64605(19) 0.0246(7) Vani 1 1 d ... 
H20 H 0.9574 0.7756 0.6158 0.029 Viso 11 calc R .. 
C21 C 0.9888(3) 0.7673(3) 0.7109(2) 0.0249(7) Vani 11 d ... 
H21 H 0.9995 0.6932 0.7204 0.030 Viso 1 1 calc R .. 
C22 C 1.0009(3) 0.8223(3) 0.7675(2) 0.0309(8) Vani 11 d ... 
H22A H 1.06950.86120.75160.037 Viso 1 1 calc R .. 
H22B H 1.0017 0.7679 0.8118 0.037 Viso 1 1 calc R .. 
C23 C 0.9087(3) 0.9018(3) 0.7824(2) 0.0321(8) Vani 1 1 d ... 
H23A H 0.9007 0.9110 0.8304 0.039 Viso 1 1 calc R .. 
H23B H 0.92710.97170.74830.039 Viso 1 1 calc R .. 
C24 C 0.8032(3) 0.8616(3) 0.7761(2) 0.0265(7) Vani 1 1 d ... 
H24 H 0.76150.81310.81590.032 Viso 1 1 calc R .. 
C25 C 0.7647(3) 0.8939(3) 0.7127(2) 0.0253(7) Vani 1 1 d ... 
H25 H 0.69710.86800.71450.030 Viso 1 1 calc R .. 
C26 C 0.8242(3) 0.9665(3) 0.6429(2) 0.0264(7) Vani 1 1 d ... 
H26A H 0.8192 1.04040.64680.032 Viso 1 1 calc R .. 
H26B H 0.7893 0.96220.6053 0.032 Viso 1 1 calc R .. 
C27 C 0.9436(3) 0.9384(3) 0.6209(2) 0.0283(7) Vani 1 1 d ... 
H27 A H 0.96820.9617 0.56900.034 Viso 1 1 calc R .. 
H27B H 0.98570.97750.64120.034 Viso 1 1 calc R .. 
C28 C 0.1592(2) 0.1237(3) 0.83538(17) 0.0192(6) Vani 1 1 d .. . 
C29 C 0.1059(3) 0.0236(3) 0.86819(17) 0.0212(6) Vani 1 1 d .. . 
H29 H 0.0582 0.0006 0.8461 0.025 Viso 1 1 calc R . . 
C30 C 0.1222(3) -0.0423(3) 0.93275(18) 0.0238(7) Vani 1 1 d .. . 
C31 C 0.1916(3) -0.0104(3) 0.96741(19) 0.0298(8) Vani 1 1 d .. . 
H31 H 0.2019 -0.0540 1.01080.036 Viso 1 1 calc R .. 
C32 C 0.2455(3) 0.0875(3) 0.9364(2) 0.0297(8) Vani 1 1 d .. . 
C33 C 0.2305(3) 0.1527(3) 0.87166(19) 0.0240(7) Vani 1 1 d .. . 
H33 H 0.2688 0.2177 0.8516 0.029 Viso 1 1 calc R .. 
C34 C 0.0698(3) -0.1521(3) 0.9625(2) 0.0300(8) Vani 1 1 d .. . 
C36 C 0.1766(3) 0.3241(3) 0.74316(18) 0.0211(6) Vani 1 1 d .. . 
C41 C 0.1467(3) 0.3768(3) 0.7983(2) 0.0332(9) Vani 1 1 d .. . 
H41 H 0.11230.33760.84430.040 Viso 1 1 calc R .. 
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C40 C 0.1674(4) 0.4871(4) 0.7856(3) 0.0422(11) Vani lId .. . 
C39 C 0.2122(4) 0.5498(3) 0.7180(3) 0.0415(11) Vani lId .. . 
H39 H 0.22450.62320.71010.050 Vi so 11 calc R .. 
C37 C 0.2221(3) 0.3894(3) 0.6748(2) 0.0254(7) Vani 11 d ... 
H37 H 0.2422 0.3577 0.6366 0.030 Viso 1 1 calc R .. 
C43 C 0.1314(7) 0.5345(5) 0.8512(4) 0.083(3) Vani lId .. . 
C38 C 0.2389(3) 0.5006(3) 0.6613(2) 0.0317(8) Vani lId .. . 
C42 C 0.2865(4) 0.5634(3) 0.5861(3) 0.0457(11) Vani lId .. . 
C45 C 0.2438(2) 0.1453(2) 0.69967(17) 0.0169(6) Vani 11 d .. . 
C46 C 0.3528(3) 0.1706(3) 0.68947(18) 0.0197(6) Vani 11 d .. . 
H45 H 0.3710 0.21770.71340.024 Viso 11 calc R .. 
C47 C 0.4345(3) 0.1282(3) 0.64510(18) 0.0206(6) Vani 11 d .. . 
C48 C 0.4113(3) 0.0570(3) 0.60826(19) 0.0221(6) Vani lId .. . 
H47 H 0.4660 0.0291 0.57790.027 Viso 1 1 calc R .. 
C49 C 0.3050(3) 0.0294(3) 0.61828(17) 0.0190(6) Vani 11 d .. . 
C50 C 0.2222(3) 0.0718(3) 0.66408(17) 0.0182(6) Vani lId .. . 
H50 H 0.1512 0.05010.67080.022 Viso 1 1 calc R .. 
C51 C 0.5492(3) 0.1607(4) 0.6349(2) 0.0335(8) Vani 11 d .. . 
C52 C 0.2751(3) -0.0495(3) 0.5817(2) 0.0271(7) Vani 11 d .. . 
C53 C 0.0317(2) 0.1960(2) 0.73875(17) 0.0170(6) Vani 11 d .. . 
C58 C 0.0215(2) '0.2220(2) 0.66740(17) 0.0175(6) Vani lId .. . 
H58 H 0.0838 0.2313 0.6305 0.021 Viso 11 calc R .. 
C57 C -0.0781(2) 0.2343(2) 0.64986(17) 0.0169(6) Vani 11 d .. . 
C56 C -0.1729(2) 0.2230(3) 0.70280(18) 0.0188(6) Vani lId .. . 
H56 H -0.2397 0.23140.6911 0.023 Viso 1 1 calc R .. 
C55 C -0.1655(3) 0.1986(3) 0.77419(17) 0.0196(6) Vani lId .. . 
C54 C -0.0657(3) 0.1850(3) 0.79179(17) 0.0188(6) Vani 11 d .. . 
H54 H -0.06330.16810.83990.023 Viso 11 calc R .. 
C59 C -0.2682(3) 0.1863(4) 0.8315(2) 0.0343(9) Vani 11 d .. . 
C60 C -0.0807(3) 0.2638(3) 0.57222(18) 0.0207(6) Vani lId .. . 
C35 C 0.3213(4) 0.1240(4) 0.9735(3) 0.0472(12) Vani 11 d .. . 

loop _ 
_ atom_site_aniso_label 
_atom_site_aniso_ V_II 
_atom_site_aniso _ V _22 
_atom_site_aniso_ V _33 
_atom_site_aniso_ V _23 
_atom_site_aniso_ V _13 
_atom_site_aniso_V_12 

Irl 0.01716(7) 0.01637(7) 0.01950(7) -0.00589(5) -0.00358(5) 0.00046(4) 
Fe1 0.0270(2) 0.0186(2) 0.0216(2) -0.00413(18) -0.00970(19) -0.00110(18) 
PI 0.0197(4) 0.0192(4) 0.0177(4) -0.0033(3) -0.0024(3) 0.0002(3) 
Nl 0.0226(13) 0.0186(13) 0.0222(14) -0.0049(11) -0.0059(11) 0.0032(10) 
B1 0.0180(15) 0.0186(16) 0.0173(16) -0.0073(13) -0.0070(13) 0.0038(12) 
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F1 0.080(2) 0.0349(15) 0.089(3) -0.0293(16) 0.0295(19) -0.0041(15) 
F2 0.0561(18) 0.0512(17) 0.074(2) 0.0139(15) -0.0300(16) -0.0218(14) 
F3 0.100(2) 0.0526(17) 0.0222(12) 0.0050(11) -0.0165(14) -0.0247(16) 
F4 0.074(3) 0.154(4) 0.166(5) -0.096(4) -0.089(3) 0.043(3) 
F5 0.271(8) 0.136(4) 0.145(5) 0.067(4) -0.176(5) -0.133(5) 
F6 0.078(3) 0.253(7) 0.098(3) -0.122(4) -0.034(2) -0.006(3) 
F7 0.0483(18) 0.0558(19) 0.090(3) 0.0045(18) 0.0017(17) -0.0020(15) 
F8 0.086(2) 0.0472(17) 0.0485(17) 0.0068(13) -0.0249(17) -0.0177(16) 
F9 0.123(3) 0.0182(13) 0.092(3) -0.0029(15) -0.014(2) -0.0093(16) 
FlO 0.395(11) 0.145(5) 0.134(4) -0.122(4) -0.192(6) 0.173(6) 
F11 0.103(3) 0.092(3) 0.073(2) -0.053(2) -0.013(2) 0.022(2) 
F12 0.097(3) 0.134(4) 0.200(5) -0.149(4) -0.017(3) -0.009(3) 
F13 0.0270(14) 0.182(4) 0.077(2) -0.077(3) -0.0113(15) -0.0179(19) 
F14 0.0204(12) 0.079(2) 0.143(4) -0.066(2) -0.0222(16) 0.0154(13) 
F15 0.0371(16) 0.082(3) 0.106(3) 0.023(2) -0.0152(18) -0.0327(16) 
F16 0.093(2) 0.0276(13) 0.0459(16) -0.0139(11) -0.0060(15) -0.0218(14) 
F17 0.0317(12) 0.0676(18) 0.0610(17) -0.0522(15) 0.0068(12) -0.0034(12) 
F18 0.0421(14) 0.0552(16) 0.0591(17) -0.0361(14) -0.0269(13) 0.0074(12) 
F19 0.087(3) 0.083(3) 0.119(4) -0.031(3) 0.071(3) -0.050(2) 
F20 0.0307(13) 0.138(3) 0.0318(14) -0.0084(17) -0.0025(11) 0.0393(17) 
F21 0.0348(14) 0.130(3) 0.0265(13) -0.0286(16) -0.0045(11) 0.0230(17) 
F22 0.0475(13) 0.0361(12) 0.0204(10) -0.0138(9) -0.0108(9) 0.0155(10) 
F23 0.0479(13) 0.0236(10) 0.0203(10) 0.0011(8) -0.0062(9) -0.0039(9) 
F24 0.0291(11) 0.0548(15) 0.0256(11) -0.0010(10) -0.0169(9) -0.0049(10) 
C1 0.0309(18) 0.0206(15) 0.0226(16) -0.0040(13) -0.0089(14) -0.0007(13) 
C2 0.0273(16) 0.0185(15) 0.0222(16) -0.0040(12) -0.0088(13) 0.0012(12) 
C3 0.041(2) 0.0191(16) 0.0301(19) -0.0081(14) -0.0151(16) 0.0022(14) 
C4 0.046(2) 0.0199(16) 0.037(2) -0.0042(15) -0.0205(18) -0.0061(15) 
C5 0.0316(18) 0.0228(16) 0.0293(18) 0.0006(14) -0.0101(15) -0.0081(14) 
C1' 0.039(2) 0.0205(16) 0.0279(18) -0.0012(14) -0.0112(16) 0.0016(14) 
C2' 0.0321(18) 0.0243(17) 0.0254(18) 0.0013(14) -0.0101(15) -0.0054(14) 
C3' 0.039(2) 0.0313(19) 0.0203(17) -0.0035(14) -0.0052(15) -0.0006(16) 
C4' 0.045(2) 0.0322(19) 0.0271(19) -0.0012(15) -0.0188(17) -0.0075(17) 
C5' 0.0303(19) 0.0302(19) 0.034(2) 0.0013(16) -0.0144(16) 0.0009(15) 
C6 0.0197(15) 0.0253(17) 0.0259(17) 0.0009(14) 0.0035(13) 0.0006(13) 
C7 0.0228(17) 0.042(2) 0.032(2) 0.0019(17) -0.0012(15) 0.0032(16) 
C8 0.027(2) 0.054(3) 0.045(3) 0.010(2) 0.0003(18) 0.0135(19) 
C9 0.038(2) 0.047(3) 0.050(3) 0.000(2) 0.010(2) 0.021(2) 
ClO 0.048(3) 0.043(3) 0.045(3) -0.014(2) 0.011(2) 0.013(2) 
C11 0.0243(17) 0.033(2) 0.040(2) -0.0118(17) 0.0022(16) 0.0049(15) 
C12 0.0268(17) 0.0258(17) 0.0170(15) -0.0027(13) -0.0015(13) 0.0027(13) 
C13 0.037(2) 0.0309(19) 0.0260(19) 0.0010(15) -0.0026(16) -0.0057(16) 
C14 0.052(3) 0.035(2) 0.031(2) 0.0043(17) -0.0013(19) -0.0032(19) 
C15 0.066(3) 0.053(3) 0.023(2) 0.0077(19) -0.009(2) 0.007(2) 
C16 0.072(4) 0.087(4) 0.033(3) 0.007(3) -0.031(3) -0.016(3) 
C17 0.052(3) 0.053(3) 0.031(2) 0.005(2) -0.018(2) -0.017(2) 
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C18 0.0332(19) 0.0196(16) 0.035(2) -0.0049(14) -0.0159(16) 0.0059(14) 
C19 0.0294(18) 0.0272(18) 0.0321(19) -0.0145(15) -0.0003(15) 0.0060(14) 
C20 0.0214(16) 0.0241(16) 0.0266(17) -0.0064(14) -0.0019(13) -0.0056(13) 
C21 0.0191(15) 0.0223(16) 0.0331(19) -0.0069(14) -0.0060(14) -0.0009(12) 
C22 0.0256(17) 0.0343(19) 0.038(2) -0.0103(16) -0.0167(16) 0.0025(15) 
C23 0.036(2) 0.0286(18) 0.039(2) -0.0187(16) -0.0112(17) -0.0004(15) 
C24 0.0266(17) 0.0234(16) 0.0306(18) -0.0127(14) -0.0022(14) -0.0034(13) 
C25 0.0245(16) 0.0163(15) 0.037(2) -0.0100(14) -0.0076(14) 0.0015(12) 
C26 0.0260(17) 0.0199(16) 0.0331(19) -0.0042(14) -0.0093(15) -0.0008(13) 
C27 0.0267(17) 0.0252(17) 0.0283(18) -0.0012(14) -0.0031(14) -0.0051(14) 
C28 0.0156(14) 0.0258(16) 0.0183(15) -0.0102(12) -0.0043(11) 0.0068(12) 
C29 0.0220(15) 0.0265(16) 0.0181(15) -0.0099(13) -0.0069(12) 0.0071(13) 
C30 0.0252(16) 0.0282(17) 0.0181(15) -0.0077(13) -0.0050(13) 0.0075(13) 
C31 0.038(2) 0.037(2) 0.0161(16) -0.0045(14) -0.0126(14) 0.0080(16) 
C32 0.0322(19) 0.038(2) 0.0237(17) -0.0088(15) -0.0155(15) 0.0042(15) 
C33 0.0219(16) 0.0295(17) 0.0228(16) -0.0075(14) -0.0093(13) 0.0032(13) 
C34 0.039(2) 0.0304(19) 0.0194(17) -0.0055(14) -0.0062(15) 0.0051(16) 
C36 0.0218(15) 0.0227(15) 0.0258(17) -0.0123(13) -0.0132(13) 0.0070(12) 
C41 0.041(2) 0.034(2) 0.038(2) -0.0239(17) -0.0235(18) 0.0202(17) 
C40 0.051(2) 0.038(2) 0.064(3) -0.037(2) -0.042(2) 0.0245(19) 
C39 0.045(2) 0.0239(18) 0.077(3) -0.026(2) -0.043(2) 0.0150(17) 
C37 0.0253(16) 0.0193(15) 0.037(2) -0.0108(14) -0.0147(15) 0.0031(13) 
C43 0.144(6) 0.051(3) 0.111(5) -0.061(4) -0.104(5) 0.059(4) 
C38 0.0305(18) 0.0172(16) 0.054(3) -0.0098(16) -0.0220(18) 0.0030(14) 
C42 0.045(2) 0.0206(18) 0.069(3) -0.0025(19) -0.017(2) -0.0046(17) 
C45 0.0184(14) 0.0158(13) 0.0161(14) -0.0025(11) -0.0054(11) 0.0026(11) 
C46 0.0178(14) 0.0208(15) 0.0225(16) -0.0056(12) -0.0087(12) 0.0014(12) 
C47 0.0161(14) 0.0214(15) 0.0245(16) -0.0043(13) -0.0070(12) 0.0013(12) 
C48 0.0188(15) 0.0221(15) 0.0245(16) -0.0069(13) -0.0032(13) 0.0044(12) 
C49 0.0185(14) 0.0184(14) 0.0208(15) -0.0087(12) -0.0024(12) 0.0019(11) 
C50 0.0173(14) 0.0172(14) 0.0184(15) -0.0046(12) -0.0010(12) 0.0016(11) 
C51 0.0178(16) 0.045(2) 0.042(2) -0.0205(19) -0.0056(15) 0.0027(15) 
C52 0.0234(16) 0.0277(17) 0.0314(19) -0.0165(15) 0.0009(14) -0.0004(13) 
C53 0.0184(14) 0.0167(14) 0.0171(14) -0.0067(11) -0.0045(11) 0.0032(11) 
C58 0.0171(14) 0.0183(14) 0.0163(14) -0.0042(11) -0.0033(11) 0.0007(11) 
C57 0.0195(14) 0.0155(13) 0.0169(14) -0.0041(11) -0.0069(12) 0.0019(11) 
C56 0.0171(14) 0.0190(14) 0.0198(15) -0.0038(12) -0.0053(12) 0.0015(11) 
C55 0.0176(14) 0.0210(15) 0.0177(15) -0.0034(12) -0.0016(12) 0.0030(11) 
C54 0.0195(14) 0.0220(15) 0.0156(14) -0.0050(12) -0.0057(12) 0.0033(12) 
C59 0.0254(18) 0.049(2) 0.0221(18) -0.0034(16) -0.0001(14) 0.0045(16) 
C60 0.0199(15) 0.0235(15) 0.0195(15) -0.0059(12) -0.0063(12) 0.0028(12) 
C35 0.054(3) 0.056(3) 0.040(3) -0.006(2) -0.034(2) -0.003(2) 

_geom_speciaLdetails 

All esds (except the esd in the dihedral angle between two l.s. planes) 
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are estimated using the full covariance matrix. The cell esds are taken 
into account individually in the estimation of esds in distances, angles 
and torsion angles; correlations between esds in cell parameters are only 
used when they are defined by crystal symmetry. An approximate (isotropic) 
treatment of cell esds is used for estimating esds involving 1.s. planes. 

loop_ 
_geom_bond_atom_site_labeLl 
_geom_bond_atom_site_label_2 
_geom_bond_distance 
_geom_bond~site_symmetry _2 
_geom_bond_publjlag 

Ir1 C25 2.125(3) . ? 
Ir1 C24 2.148(3) . ? 
Irl C21 2.173(3) . ? 
Irl C20 2.217(3) . ? 
Ir1 N1 2.225(3) . ? 
Irl PI 2.2951(9) . ? 
Fe1 C2 2.012(3) . ? 
Fe1 C1 2.040(4) . ? 
Fe1 C3' 2.043(4) . ? 
Fe1 C3 2.044(4) . ? 
Fe1 C4' 2.048(4) . ? 
Fe1 C4 2.050(4) . ? 
Fe1 C5 2.055(4) . ? 
Fe1 C5' 2.055(4) . ? 
Fe1 C2' 2.060(4) . ? 
Fe1 C1' 2.068(4). ? 
PI C1 1.792(4) . ? 
PI C6 1.807(4) . ? 
PI C12 1.812(4) . ? 
N1 C2 1.470(4) . ? 
N1 C19 1.494(4) . ? 
N1 C18 1.502(4) . ? 
B1 C28 1.634(5) . ? 
B 1 C53 1.636(5) . ? 
B 1 C36 1.643(5) . ? 
B1 C45 1.647(4) . ? 
F1 C34 1.320(5) . ? 
F2 C34 1.341(5) . ? 
F3 C34 1.314(4) . ? 
F4 C35 1.304(6) . ? 
F5 C35 1.267(7) . ? 
F6 C35 1.279(6) . ? 

F7 C42 1.350(6) . ? 
F8 C42 1.346(6) . ? 
F9 C42 1.314(5) . ? 
FlO C43 1.273(8) . ? 
F11 C43 1.333(8) . ? 
F12 C43 1.335(8) . ? 
F13 C51 1.306(5) . ? 
F14 C51 1.309(5) . ? 
F15 C51 1.344(6) . ? 
F16 C52 1.335(5) . ? 
F17 C52 1.330(4) . ? 
F18 C52 1.330(5) . ? 
F19 C59 1.317(6).? 
F20 C59 1.318(5) . ? 
F21 C59 1.312(5) . ? 
F22 C60 1.343(4) . ? 
F23 C60 1.353(4) . ? 
F24 C60 1.329(4) . ? 
C1 C2 1.441(5) . ? 
C1 C5 1.441(5) . ? 
C2 C3 1.415(5) . ? 
C3 C4 1.411(6) . ? 
C3 H3 0.9300 . ? 
C4 C51.417(6) . ? 
C4 H4 0.9300 . ? 
C5 H5 0.9300 . ? 
C1' C2' 1.417(5).? 
C1' C5' 1.417(5).? 
C1' HI' 0.9300. ? 
C2' C3' 1.421(5) . ? 
C2' H2' 0.9300 . ? 
C3' C4' 1.418(6) .? 
C3' H3' 0.9300. ? 
C4' C5' 1.408(6) . ? 
C4' H4' 0.9300 . ? 
C5' H5' 0.9300 . ? 
C6 C11 1.384(6) . ? 
C6 C7 1.394(6) . ? 
C7 C8 1.401(6) . ? 
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C7 H7 0.9300 . ? 
C8 C9 1.376(8) . ? 
C8 H8 0.9300 . ? 
C9 ClO 1.374(8) . ? 
C9 H9 0.9300 . ? 
ClO Cll 1.398(5) . ? 
ClO HlO 0.9300 . ? 
C11 H11 0.9300. ? 
C12 C17 1.382(6) . ? 
C12 C13 1.390(5) . ? 
C13 C14 1.386(6) . ? 
C13 H13 0.9300 . ? 
C14 C15 1.366(7) . ? 
C14 H14 0.9300. ? 
C15 C16 1.381(8) . ? 
C15 H15 0.9300 . ? 
C16 C17 1.389(7) . ? 
C16 H16 0.9300 . ? 
C17 H17 0.9300. ? 
C18 H18A 0.9600. ? 
C18 H18B 0.9600 . ? 
C18 H18C 0.9600. ? 
C19 H19A 0.9600. ? 
C19 H19B 0.9600 . ? 
C19 H19C 0.9600. ? 
C20 e21 1.390(5) . ? 
C20 C27 1.520(5) . ? 
C20 H20 0.9300. ? 
C21 C22 1.515(5) . ? 
C21 H21 0.9300 . ? 
C22 C23 1.546(5) . ? 
C22 H22A 0.9700. ? 
C22 H22B 0.9700. ? 
C23 C24 1.511(5) . ? 
C23 H23A 0.9700 . ? 
C23 H23B 0.9700 . ? 
C24 C25 1.413(5) . ? 
C24 H24 0.9300. ? 
C25 C26 1.499(5) . ? 
C25 H25 0.9300 . ? 
C26 C27 1.534(5) . ? 
C26 H26A 0.9700 . ? 
C26 H26B 0.9700 . ? 
C27 H27 A 0.9700 . ? 
C27 H27B 0.9700. ? 
C28 C29 1.404(5) . ? 

C28 C33 1.406(4) . ? 
C29 C30 1.393(5) . ? 
C29 H29 0.9300 . ? 
C30 C31 1.381(5) . ? 
C30 C34 1.498(5) . ? 
C31 C32 1.381(6) . ? 
C31 H31 0.9300. ? 
C32 C33 1.387(5) . ? 
C32 C35 1.506(5) . ? 
C33 H33 0.9300 . ? 
C36 C37 1.395(5) . ? 
C36 C41 1.402(5) . ? 
C41 C40 1.399(6) . ? 
C41 H41 0.9300 . ? 
C40 C39 1.371(7) . ? 
C40 C43 1.542(7) . ? 
C39 C38 1.395(6) . ? 
C39 H39 0.9300 . ? 
C37 C38 1.399(5) . ? 
C37 H37 0.9300 . ? 
C38 C42 1.491(7) . ? 
C45 C50 1.392(4) . ? 
C45 C46 1.399(4) . ? 
C46 C47 1.383(4) . ? 
C46 H45 0.9300 . ? 
C47 C48 1.393(5) . ? 
C47 C51 1.494(5) . ? 
C48 C49 1.375(5) . ? 
C48 H47 0.9300 . ? 
C49 C50 1.407(4) . ? 
C49 C52 1.502(4) . ? 
C50 H50 0.9300. ? 
C53 C58 1.403(4) . ? 
C53 C54 1.407(4) . ? 
C58 C57 1.390(4) . ? 
C58 H58 0.9300 . ? 
C57 C56 1.383(4) . ? 
C57 C60 1.494(4) . ? 
C56 C55 1.393(5) . ? 
C56 H56 0.9300 . ? 
C55 C54 1.392(4) . ? 
C55 C59 1.498(5) . ? 
C54 H54 0.9300 . ? 

loop_ 
_geom_angle_atom_site_label_l 
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_georn_angle_atorn_site_label_2 
_georn_angle_atorn_site_label_3 
_georn_angle 
_georn_angle_site_syrnrnetry_1 
_georn_angle_site_syrnrnetry _3 
_georn_angle_publ_flag 

C25 Ir1 C24 38.60(14) . . ? 
C25 Ir1 C21 96.97(13) . . ? 
C24 Ir1 C21 80.63(13) .. ? 
C25 Ir1 C20 80.81(13) .. ? 
C24 Ir1 C20 88.20(13) .. ? 
C21 Ir1 C20 36.91(14) .. ? 
C25 Ir1 N1 153.97(13) .. ? 
C24 Ir1 N1 167.22(13) .. ? 
C21 Ir1 N1 95.84(12) .. ? 
C20 Ir1 N1 96.35(12) .. ? 
C25 Ir1 PI 94.25(10) .. ? 
C24 Ir1 PI 95.35(10) .. ? 
C21 Ir1 PI 155.94(10) .. ? 
C20 Ir1 Pl167.12(10) .. ? 
N1 Ir1 PI 82.84(8) .. ? 
C2 Fe1 C1 41.66(14) .. ? 
C2 Fe1 C3' 119.36(16) .. ? 
C1 Fe1 C3' 157.18(16) .. ? 
C2 Fe1 C3 40.84(13) .. ? 
C1 Fe1 C3 69.30(14) .. ? 
C3' Fe1 C3 104.23(16) .. ? 
C2 Fe1 C4' 153.27(16) .. ? 
C1 Fe1 C4' 162.01(16) .. ? 
C3' Fe1 C4' 40.57(17) .. ? 
C3 Fe1 C4' 117.31(16) .. ? 
C2 Fe1 C4 68.42(15) .. ? 
C1 Fe1 C4 68.82(15) .. ? 
C3' Fe1 C4 121.13(16) .. ? 
C3 Fe1 C4 40.31(16) .. ? 
C4' Fe1 C4 104.70(16) .. ? 
C2 Fe1 C5 69.13(15) .. ? 
C1 Fe1 C5 41.21(14) .. ? 
C3' Fe1 C5 158.40(16) .. ? 
C3 Fe1 C5 68.38(16) .. ? 
C4' Fe1 C5 123.24(16) .. ? 
C4 Fe1 C5 40.39(16) .. ? 
C2 Fe1 C5' 165.38(15) . . ? 
C1 Fe1 C5' 127.45(16) .. ? 
C3' Fe1 C5' 67.95(16) .. ? 

C3 Fe1 C5' 153.15(15) .. ? 
C4' Fe1 C5' 40.15(17) .. ? 
C4 Fe1 C5' 120.18(16) .. ? 
C5 Fe1 C5' 108.98(16) .. ? 
C2 Fe1 C2' 108.76(15) .. ? 
C1 Fe1 C2' 123.96(14) .. ? 
C3' Fe1 C2' 40.53(15) .. ? 
C3 Fe1 C2' 123.86(16) .. ? 
C4' Fe1 C2' 67.90(15) .. ? 
C4 Fe1 C2' 158.86(17) .. ? 
C5 Fe1 C2' 160.03(15) .. ? 
C5' Fe1 C2' 67.75(15) .. ? 
C2 Fe1 C1' 128.13(15) .. ? 
C1 Fe1 C1' 111.64(15) .. ? 
C3' Fe1 C1' 67.79(16) .. ? 
C3 Fe1 C1' 162.46(16) .. ? 
C4' Fe1 C1' 67.51(16) .. ? 
C4 Fe1 C1' 157.20(17) .. ? 
C5 Fe1 C1' 124.64(16) .. ? 
C5' Fe1 C1' 40.19(15) .. ? 
C2' Fe1 C1' 40.15(15) .. ? 
C1 PI C6 112.12(18) .. ? 
C1 PI C12 105.58(16) .. ? 
C6 PI C12 104.26(16) .. ? 
C1 PI Ir1 98.32(12) .. ? 
C6 PI Ir1 121.11(12) .. ? 
C12 PI Ir1 114.61(12) .. ? 
C2 N1 C19 109.6(3) .. ? 
C2 N1 C18 108.7(3) .. ? 
C19 N1 C18 106.7(3) .. ? 
C2 N1 Irl106.17(19) .. ? 
C19 N1 Irl115.1(2) .. ? 
C18 N1 Irl 110.5(2) .. ? 
C28 B1 C53 115.1(3) .. ? 
C28 B1 C36 112.2(3) .. ? 
C53 B1 C36 103.1(2) .. ? 
C28 B1 C45 104.4(2) . . ? 
C53 B 1 C45 112.3(2) .. ? 
C36 B1 C45 109.8(3) .. ? 
C2 C1 C5 106.4(3) .. ? 
C2 C1 PI 115.0(3) .. ? 
C5 C1 PI 138.6(3) .. ? 
C2 C1 Fe1 68.13(19) .. ? 
C5 C1 Fe1 69.9(2) .. ? 
PI C1 Fe1 125.43(19) .. ? 
C3 C2 C1 108.8(3) .. ? 
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C3 C2 N1 129.6(3) .. ? 
C1 C2 N1 121.4(3) .. ? 
C3 C2 Fe1 70.8(2) ... ? 
C1 C2 Fe1 70.22(19) .. ? 
N1 C2 Fe1 128.6(2) .. ? 
C4 C3 C2 107.8(3) .. ? 
C4 C3 Fe1 70.1(2) .. ? 
C2 C3 Fe1 68.38(19) .. ? 
C4 C3 H3 126.1 .. ? 
C2 C3 H3 126.1 .. ? 
Fe1 C3 H3 127.0 .. ? 
C3 C4 C5 109.1(3) .. ? 
C3 C4 Fe1 69.6(2) .. ? 
C5 C4 Fe1 70.0(2) .. ? 
C3 C4 H4 125.5 .. ? 
C5 C4 H4 125.5 .. ? 
Fe1 C4 H4 126.5 .. ? 
C4 C5 C1 107.9(3) .. ? 
C4 C5 Fe1 69.6(2) .. ? 
C1 C5 Fe1 68.9(2) .. ? 
C4 C5 H5 126.0 : . ? 
C1 C5 H5 126.0 .. ? 
Fe1 C5 H5 127.0 .. ? 
C2' C1' C5' 108.1(3) .. ? 
C2' C1' Fe1 69.6(2) .. ? 
C5' C1' Fe1 69.4(2) .. ? 
C2' C1' HI' 126.0 .. ? 
C5' C1' HI' 126.0 .. ? 
Fe1 C1' HI' 126.6 .. ? 
C1' C2' C3' 107.8(3) .. ? 
C1' C2' Fe1 70.3(2) .. ? 
C3' C2' Fe1 69.1(2) .. ? 
C1' C2' H2' 126.1 .. ? 
C3' C2' H2' 126.1 .. ? 
Fe1 C2' H2' 126.1 .. ? 
C4' C3' C2' 107.8(4) .. ? 
C4' C3' Fe1 69.9(2) .. ? 
C2' C3' Fe1 70.3(2) .. ? 
C4' C3' H3' 126.1 .. ? 
C2' C3' H3' 126.1 .. ? 
Fe1 C3' H3' 125.2 .. ? 
C5' C4' C3' 108.3(3) .. ? 
C5' C4' Fe1 70.2(2) .. ? 
C3' C4' Fe1 69.6(2) .. ? 
C5' C4' H4' 125.9 .. ? 
C3' C4' H4' 125.9 .. ? 

Fe1 C4' H4' 125.9 .. ? 
C4' C5' C1' 108.1(4) .. ? 
C4' C5' Fe1 69.6(2) .. ? 
C1' C5' Fe1 70.4(2) .. ? 
C4' C5' H5' 126.0 .. ? 
C1' C5' H5' 126.0 .. ? 
Fe1 C5' H5' 125.6 .. ? 
C11 C6 C7 119.1(3) .. ? 
C11 C6 Pl117.3(3) .. ? 
C7 C6 PI 123.3(3) .. ? 
C6 C7 C8 119.3(4) .. ? 
C6 C7 H7 120.3 .. ? 
C8 C7 H7 120.3 .. ? 
C9 C8 C7 120.6(5) .. ? 
C9 C8 H8 119.7 .. ? 
C7 C8 H8 119.7 .. ? 
ClO C9 C8 120.7(4) .. ? 
ClO C9 H9 119.6 .. ? 
C8 C9 H9 119.6 .. ? 
C9 ClO C11 118.9(5) .. ? 
C9 ClO HlO 120.5 .. ? 
C11 ClO HlO 120.5 .. ? 
C6 C11 ClO 121.3(4) .. ? 
C6 C11 H11 119.3 .. ? 
ClO C11 Hl1119.3 .. ? 
C17 C12 C13 119.0(4) .. ? 
C17 C12 Pl119.5(3) .. ? 
C13 C12 PI 121.4(3) .. ? 
C14 C13 C12 120.5(4) .. ? 
C14 C13 H13 119.8 .. ? 
C12 C13 H13 119.8 .. ? 
C15 C14 C13 120.3(4) .. ? 
C15 C14 H14 119.8 .. ? 
C13 C14 H14 119.8 .. ? 
C14 C15 C16 119.7(4) .. ? 
C14 C15 H15 120.1 .. ? 
C16 C15 H15 120.1 .. ? 
C15 C16 C17 120.5(5) .. ? 
C15 C16 H16 119.8 .. ? 
C17 C16 H16 119.8 .. ? 
C12 C17 C16 120.0(5) .. ? 
C12 C17 H17 120.0 .. ? 
C16 C17 H17 120.0 .. ? 
N1 C18 H18A 109.5 .. ? 
N1 C18 H18B 109.5 .. ? 
H18A C18 H18B 109.5 .. ? 
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N1 C18 H18C 109.5 .. ? 
H18A C18 H18C 109.5 .. ? 
H18B C18 H18C 109.5 .. ? 
N1 C19 H19A 109.5 .. ? 
N1 C19 H19B 109.5 .. ? 
H19A C19 H19B 109.5 .. ? 
N1 C19 H19C 109.5 .. ? 
H19A C19 H19C 109.5 .. ? 
H19B C19 H19C 109.5 .. ? 
C21 C20 C27 124.9(3) .. ? 
C21 C20 Ir1 69.8(2) .. ? 
C27 C20 Ir1 111.5(2) .. ? 
C21 C20H20 117.5 .. ? 
C27 C20 H20 117.5 ., ? 
If1 C20 H20 88.6 .. ? 
C20 C21 C22 125.5(3) .. ? 
C20 C21 Ir1 73.3(2) .. ? 
C22 C21 Ir1 109.5(2) .. ? 
C20 C21 H21117.3 .. ? 
C22 C21 H21 117.3 .. ? 
Irl C21 H21 87.2 .. ? 
C21 C22 C23 112.3(3) .. ? 
C21 C22 H22A 109.2 .. ? 
C23 C22 H22A 109.2 .. ? 
C21 C22 H22B 109.2 .. ? 
C23 C22 H22B 109.2 .. ? 
H22A C22 H22B 107.9 .. ? 
C24 C23 C22 111.3(3) .. ? 
C24 C23 H23A 109.4 .. ? 
C22 C23 H23A 109.4 .. ? 
C24 C23 H23B 109.4 .. ? 
C22 C23 H23B 109.4 .. ? 
H23A C23 H23B 108.0 .. ? 
C25 C24 C23 123.3(3) .. ? 
C25 C24 Irl 69.80(19) .. ? 
C23 C24 Ir1 114.4(2) .. ? 
C25 C24 H24 118.4 .. ? 
C23 C24 H24 118.4 .. ? 
Irl C24 H24 85.9 .. ? 
C24 C25 C26 125.2(3) .. ? 
C24 C25 Irl 71.6(2) .. ? 
C26 C25 Ifl 111.0(2) .. ? 
C24 C25 H25 117.4 .. ? 
C26 C25 H25 117.4 .. ? 
Ir1 C25 H25 87.3 .. ? 
C25 C26 C27 113.5(3) .. ? 

C25 C26 H26A 108.9 .. ? 
C27 C26 H26A 108.9 .. ? 
C25 C26 H26B 108.9 .. ? 
C27 C26 H26B 108.9 .. ? 
H26A C26 H26B 107.7 .. ? 
C20 C27 C26 112.3(3) .. ? 
C20 C27 H27A 109.1 .. ? 
C26 C27 H27A 109.1 .. ? 
C20 C27 H27B 109.1 . . ? 
C26 C27 H27B 109.1 .. ? 
H27A C27 H27B 107.9 .. ? 
C29 C28 C33 115.7(3) .. ? 
C29 C28 B1 122.4(3) .. ? 
C33 C28 B1 121.5(3) .. ? 
C30 C29 C28 122.1(3) .. ? 
C30 C29 H29 118.9 .. ? 
C28 C29 H29 118.9 .. ? 
C31 C30 C29 120.6(3) .. ? 
C31 C30 C34 119.4(3) .. ? 
C29 C30 C34 119.9(3) .. ? 
C30 C31 C32 118.7(3) .. ? 
C30 C31 H31120.7 .. ? 
C32 C31 H31 120.7 .. ? 
C31 C32 C33 120.8(3) .. ? 
C31 C32 C35 119.5(4) .. ? 
C33 C32 C35 119.6(4) .. ? 
C32 C33 C28 122.1(3) .. ? 
C32 C33 H33 119.0 .. ? 
C28 C33 H33 119.0 .. ? 
F3 C34 F1 107.8(4) .. ? 
F3 C34 F2 104.6(3) .. ? 
F1 C34 F2 104.6(4) .. ? 
F3 C34 C30 113.7(3) .. ? 
Fl C34 C30 112.5(3) .. ? 
F2 C34 C30 112.9(3) .. ? 
C37 C36 C41 115.9(3) .. ? 
C37 C36 B1 121.1(3) .. ? 
C41 C36 B1 122.8(3) .. ? 
C40 C41 C36 121.4(4) .. ? 
C40 C41 H41119.3 .. ? 
C36 C41 H41 119.3 .. ? 
C39 C40 C41 121.6(4) .. ? 
C39 C40 C43 122.3(4) .. ? 
C41 C40 C43 116.0(5) .. ? 
C40 C39 C38 118.4(4) .. ? 
C40 C39 H39 120.8 .. ? 
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C38 C39 H39 120.8 .. ? 
C36 C37 C38 122.9(3) .. ? 
C36 C37 H37 118.6 ... ? 
C38 C37 H37 118.6 .. ? 
FlO C43 Fll103.7(8) .. ? 
FlO C43 F12 115.4(6) .. ? 
Fll C43 F12 102.8(4) .. ? 
FlO C43 C40 113.7(4) .. ? 
Fll C43 C40 111.8(4) .. ? 
F12 C43 C40 108.8(7) .. ? 
C39 C38 C37 119.7(4) .. ? 
C39 C38 C42 121.7(4) .. ? 
C37 C38 C42 118.6(4) .. ? 
F9 C42 F8 106.9(4) .. ? 
F9 C42 F7 106.6(4) .. ? 
F8 C42 F7 103.3(5) .. ? 
F9 C42 C38 114.7(5) .. ? 
F8 C42 C38 112.8(4) .. ? 
F7 C42 C38 111.8(4) .. ? 
C50 C45 C46 115.9(3) .. ? 
C50 C45 Bl124.'1(3) .. ? 
C46 C45 Bl119.9(3) .. ? 
C47 C46 C45 122.5(3) .. ? 
C47 C46 H45 118.7 .. ? 
C45 C46 H45 118.7 .. ? 
C46 C47 C48 120.9(3) .. ? 
C46 C47 C51119.9(3) .. ? 
C48 C47 C51 119.2(3) .. ? 
C49 C48 C47 117.8(3) .. ? 
C49 C48 H47 121.1 .. ? 
C47 C48 H47 121.1 .. ? 
C48 C49 C50 121.1(3) .. ? 
C48 C49 C52 120.3(3) .. ? 
C50 C49 C52 118.6(3) .. ? 
C45 C50 C49 121.7(3) .. ? 
C45 C50 H50 119.1 .. ? 
C49 C50 H50 119.1 .. ? 
F13 C51 F14 109.2(4) .. ? 
F13 C51 F15 103.3(4) .. ? 
F14 C51 F15 104.2(4) .. ? 
F13 C51 C47 113.6(3) .. ? 
F14 C51 C47 113.7(3) .. ? 
F15 C51 C47 111.9(3) .. ? 

_diffm_measured_fraction_theta_max 
_diffm_reflns_theta_full 28.48 

0.983 

F18 C52 F17 106.9(3) .. ? 
F18 C52 F16 105.2(3) .. ? 
F17 C52 F16 106.3(3) .. ? 
F18 C52 C49 113.3(3) .. ? 
F17 C52 C49 113.0(3) .. ? 
F16 C52 C49 111.6(3) .. ? 
C58 C53 C54 115.7(3) .. ? 
C58 C53 B1 120.0(3) .. ? 
C54 C53 Bl123.8(3) .. ? 
C57 C58 C53 122.4(3) .. ? 
C57 C58 H58 118.8 .. ? 
C53 C58 H58 118.8 .. ? 
C56 C57 C58 120.9(3) .. ? 
C56 C57 C60 120.5(3) .. ? 
C58 C57 C60 118.5(3) . . ? 
C57 C56 C55 118.0(3) .. ? 
C57 C56 H56 121.0 .. ? 
C55 C56 H56 121.0 .. ? 
C54 C55 C56 121.0(3) .. ? 
C54 C55 C59 121.0(3) .. ? 
C56 C55 C59 118.0(3) .. ? 
C55 C54 C53 121.8(3) .. ? 
C55 C54 H54 119.1 .. ? 
C53 C54 H54 119.1 .. ? 
F21 C59 F19 106.4(4) .. ? 
F21 C59 F20 105.8(4) .. ? 
F19 C59 F20 106.3(4) .. ? 
F21 C59 C55 113.2(3) .. ? 
F19 C59 C55 111.7(4) .. ? 
F20 C59 C55 112.8(3) .. ? 
F24 C60 F22 107.1(3) .. ? 
F24 C60 F23 106.4(3) .. ? 
F22 C60 F23 105.3(3) .. ? 
F24 C60 C57 113.4(3) .. ? 
F22 C60 C57 112.4(3) .. ? 
F23 C60 C57 111.8(3) .. ? 
F5 C35 F6 106.9(6) .. ? 
F5 C35 F4 106.0(6) .. ? 
F6 C35 F4 102.4(5) .. ? 
F5 C35 C32 114.4(4) .. ? 
F6 C35 C32 113.7(4) .. ? 
F4 C35 C32 112.4(4) .. ? 
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_diffrn,-measuredjraction_theta_full 0.983 
_refine_diff_density _max 6.129 
_refine_diff_density_min -0.790 
_refine_difCdensity_rms 0.138 

X-ray data for salt (S)-230-HBF4 

data_costa4_0m 

_audiccreation_method 
_chemicaLname_systematic 

? 

_chemical_name_common 
_ chemical_meltin~point 
_chemical_formula_moiety 
_chemicaljormula_sum 
'C24 H25 B F4 Fe N P S' 

SHELXL-97 

? 
? 

'C24 H25 Fe N P S, B F4' 

_chemical_formula_weight 533.14 
_chemical_absolute_configuration 'S' 

loop _ 
_ atom_type_s ymbol 
_atom_type_description 
_atom_type_scacdispersion_real 
_atom_type_scaCdispersion_imag 
_atom_type_scaCsource 
'C' 'C' 0.0033 0.0016 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'H' 'H' 0.0000 0.0000 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'B' 'B' 0.0013 0.0007 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'N' 'N' 0.0061 0.0033 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'F' 'F' 0.0171 0.0103 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'P' 'P' 0.1023 0.0942 
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'Internatiomll Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'S' 'S' 0.1246 0.1234 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 
'Fe' 'Fe' 0.3463 0.8444 

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 

_s ymmetry _cell_setting Orthorhombic 
_symmetry_space_group_name_H-M P2(1)2(1)2(1) 
_symmetry_space_group_name_Hall 'P 2ac 2ab' 

'x, y, z' 
'-x+ll2, -y, z+1I2' 
'-x, y+ 112, -z+ 112' 
'x+ 112, -y+ 112, -z' 

_cell_Iength_a 
_ceILlength_b 
_ceILlength_c 
_cell_angle_alpha 
_ceILangle_beta 
_cell_angle_gamma 
_celL volume 
_ cell_formula_ units_Z 

10.3605(13) 
12.6260(16) 
17.967(2) 

90.00 
90.00 

90.00 
2350.3(5) 

4 
_cell_measuremenCtemperature 
_ceILmeasuremenCreflns_used 
_cell_measuremenCtheta_min 
_celLmeasuremenCtheta_max 

100(2) 
9973 
2.27 
32.47 

_exptLcrystaLdescription block 
_exptl_crystaLcolour orange 
_exptLcrystaLsize_max 0.33 
_exptl_crystal_size_mid 0.23 
_exptLcrystaLsize_min 0.21 
exptl_crystaLdensity_meas 'not measured' 
_exptl_crystaLdensity _diffrn 1.507 
_exptLcrystaLdensity _method 'not measured' 
_exptl_crystal_F _000 1096 
_exptLabsorpccoefficienCmu 0.843 
_exptl_absorpCcorrection_type numerical 
_exptLabsorpccorrection_ T _min 0.7659 
_exptLabsorpccorrection_ T _max 0.8401 
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_exptLabsorpcprocess_details SADABS 

_exptLspeciaLdetails 

? 

_diffm_ambienCtemperature 100(2) 
_ diffm_radiation_ wavelength 0.71073 
_diffm_radiation_type MoK\a 
_diffm_radiation_source 'fine-focus sealed tube' 
_ diffm_radiation_monochromator graphite 
_diffm_measuremencdevice_type 'CCD area detector' 
_diffm_measuremenCmethod 'phi and omega scans' 
_diffm_detectocarea_resoLmean ? 
_diffm_standards_number ? 
_diffm_standards_interval_count ? 
_diffm_standards_intervaLtime ? 
_ diffm_standards_decay _ % ? 
_diffm_reflns_number 35112 
_diffm_reflns_av _R_equivalents 0.0332 
_diffm_reflns_av _sigmaI/netI 0.0295 
_diffm_reflns_limiCh_min -12 
_diffmJeflns_IimiCh_max 14 
_diffm_reflns_IimiCk_min -14 
_diffm_reflns_IimiCk_max 
_diffm_reflns_IimiCLmin 
_diffm_reflns_IimiCI_max 
_diffm_reflns_theta_min 
_diffm_reflns_theta_max 
_reflns_numbectotal 
_reflns_number_gt 
_reflns_threshold_expression 

17 
-25 
24 

2.27 
30.00 

6841 
6435 

>2sigma(I) 

_computin~data_collection 'Bruker SMART' 
_computin~cell_refinement 'Bruker SMART' 
_computin~data_reduction 'Bruker SAINT' 
_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' 
_computin~structure_refinement 'SHELXL-97 (Sheldrick, 1997)' 
_computing_moleculacgraphics 'Bruker SHELXTL' 
_computing_publication_material 'Bruker SHELXTL' 

Refinement of FA2A against ALL reflections. The weighted R-factor wR and 
goodness of fit S are based on FA2\ conventional R-factors R are based 
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on F, with F'set to zero for negative FA2A. The threshold expression of 
FA2A > 2sigma(FA2A) is used only for calculating R-factors(gt) etc. and is 
not relevant to the choice of reflections for refinement. R -factors based 
on FA2A are statistically about twice as large as those based on F, and R­
factors based on ALL data will be even larger. 

_refine_ls_structure_factoccoef Fsqd 
_refine_ls_matrix_type full 
_refine_ls_ weightin~scheme calc 
_refine_ls_ weighting_details 
'calc w=1I[\sA2A(FoA2A)+(0.0358PY2A+0.0000P] where P=(FOA2A+2FcA2A)/3' 

_atom_sites_solution_primary direct 
_atom_sites_solution_secondary difmap 
_atom_sites_solution_hydrogens geom 
_refine_ls_hydrogen_treatment mixed 
_refine_ls_extinction_method none 
_refine_ls_extinction_coef ? 
_refine_ls_abs_structure_details 
'Flack H D (1983), Acta Cryst. A39, 876-881' 

_refine_ls_abs_structure_Flack 0.000(7) 
_refine_ls_numbecreflns 6841 
_refine_l s_numbecp arameters 358 
_refine_ls_numbecrestraints 0 
_refine_ls_R_factocall 0.0262 
_refine_ls_R_factocgt 0.0238 
_refine_ls_ wRjactocref 0.0590 
_refine_ls_ wRjactocgt 0.0578 
_refine_ls_goodness_oCficref 1.021 
_refine_ls_restrained_S_all 1.021 
_refine_ls_shiftlsu_max 0.001 
_refine_ls_shift/su_mean 0.000 

loop_ 
atom_site_label 

_atom_site_type_symbol 
_atom_site_fracCx 
_atom_sitejraccy 
_atom_site_fracCz 
_atom_site_ U _iso _ oc equiv 
_atom_site_adp_type 
_atom_site_occupancy 
_atom_site_symmetry _multiplicity 
_atom_site_calc_flag 
_atom_site_refinemenCflags 

260 



_atom_site_disordecassembly 
_atom_site_disordecgroup 

Fel Fe 0.140704(17) 0.379757(13) 0.797601(10) 0.01101(5) Uani lid ... 
SI S 0.42003(3) 0.45211(3) 0.63891(2) 0.01927(8) Uani lid .. . 
PI P 0.24910(3) 0.39648(2) 0.614823(19) 0.01303(7) Uani lid .. . 
Nl N 0.37892(11) 0.24541(9) 0.75177(7) 0.0161(2) Uani lid .. . 
HIA H 0.4160(16) 0.3071(13) 0.7432(9) 0.015(4) Uiso lid .. . 
Cl C 0.23908(13) 0.26488(10) 0.74667(8) 0.0137(2) Uani lid .. . 
Cl' C 0.26598(15) 0.47476(12) 0.85523(9) 0.0221(3) Uani 11 d .. . 
HI' H 0.349(2) 0.4680(15) 0.8570(11) 0.036(5) Uiso lid ... 
C2 C 0.17623(12) 0.33175(10) 0.69249(7) 0.0128(2) Uani 11 d .. . 
C2' C 0.19206(15) 0.53620(11) 0.80509(9) 0.0194(3) Uani 11 d .. . 
H2' H 0.2263(17) 0.5743(13) 0.7655(10) 0.016(4) Uiso 11 d ... 
C3 C 0.04008(13) 0.32567(10) 0.70815(8) 0.0139(2) Uani 11 d .. . 
H3A H -0.0241(19) 0.3649(15) 0.6845(10) 0.024(5) Uiso lid .. . 
C3' C 0.05925(14) 0.52266(11) 0.82310(9) 0.0180(3) Uani 11 d .. . 
H3' H -0.0080(19) 0.5496(15) 0.7961(11) 0.026(5) Uiso lid .. . 
C4' C 0.05143(15) 0.45274(11) 0.88474(9) 0.0186(3) Uani lid .. . 
H4' H -0.0224(19) 0.4301(14) 0.9032(11) 0.025(5) Uiso lid .. . 
C4 C 0.02081(14) 0.25635(11) 0.76942(8) 0.0150(3) Uani lid .. . 
H4A H -0.0586(16) 0.2402(12) 0.7914(10) 0.011(4) Uiso 11 d .. . 
C5 C 0.14318(13) 0.21709(10) 0.79292(8) 0.0153(2) Uani 11 d .. . 
H5A H 0.1583(16) 0.1685(12) 0.8338(9) 0.012(4) Uiso lid ... 
C5' C 0.17919(16) 0.42323(11) 0.90484(8) 0.0217(3) Uani lid ... 
H5' H 0.2038 0.3745 0.9463 0.026 Uiso 1 1 calc R .. 
C6 C 0.41659(16) 0.20448(13) 0.82680(9) 0.0255(3) Uani lid ... 
H6A H 0.3850 0.2529 0.8653 0.038 Uiso 1 1 calc R .. 
H6B H 0.5108 0.19950.82990.038 Uiso 11 calc R .. 
H6C H 0.37870.13420.83440.038 Uiso 11 calc R .. 
C7 C 0.42744(15) 0.17153(12) 0.69226(10) 0.0247(3) Uani lid ... 
H7A H 0.40290.19890.64320.037 Uiso 11 calc R .. 
H7B H 0.3894 0.1012 0.6994 0.037 Uiso 11 calc R .. 
H7C H 0.5217 0.1664 0.6954 0.037 Uiso 1 1 calc R .. 
C8 C 0.13837(15) 0.49643(10) 0.57985(8) 0.0163(3) Uani lid .. . 
C9 C 0.03104(15) 0.46729(12) 0.53725(9) 0.0219(3) Uani 11 d .. . 
H9A H 0.0158(19) 0.3907(16) 0.5302(11) 0.033(5) Uiso lid .. . 
ClO C -0.04583(17) 0.54427(15) 0.50454(10) 0.0280(3) Uani lid ... 
HlOA H -0.110(2) 0.5240(16) 0.4730(11) 0.029(5) Uiso 11 d ... 
C11 C -0.01608(17) 0.65014(14) 0.51333(9) 0.0276(4) Uani lId ... 
HIlA H -0.0680 0.7027 0.4901 0.033 Uiso 1 1 calc R .. 
C12 C 0.08966(18) 0.68000(12) 0.55601(9) 0.0274(3) Uani lId ... 
H12A H 0.10900.75290.56260.033 Uiso 1 1 calc R .. 
C13 C 0.16714(15) 0.60351(11) 0.58906(9) 0.0207(3) Uani lId .. . 
H13A H 0.2377(18) 0.6198(14) 0.6167(11) 0.025(5) Uiso lid .. . 
C14 C 0.24465(13) 0.29594(10) 0.54316(8) 0.0143(2) Uani lId .. . 
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C15 C 0.30523(14) 0.31742(11) 0.47550(8) 0.0166(3) Vani 11 d .. . 
H15A H 0.3492(17) 0.3807(14) 0.4704(10) 0.020(4) Viso lId .. . 
C16 C 0.29305(14) 0~24781(11) 0.41647(8) 0.0185(3) Vani lId .. . 
H16A H 0.3324(16) 0.2640(12) 0.3708(9) 0.012(4) Vi so lId . . . 
C17 C 0.22192(15) 0.15524(12) 0.42444(9) 0.0206(3) Vani lId .. . 
H17A H 0.2130(16) 0.1100(13) 0.3858(10) 0.013(4) Viso 11 d .. . 
C18 C 0.16389(15) 0.13200(12) 0.49173(9) 0.0233(3) Vani 11 d .. . 
H18A H 0.11700.06790.49750.028 Viso 1 1 calc R .. 
C19 C 0.17393(14) 0.20213(12) 0.55106(9) 0.0199(3) Vani 11 d ... 
H19A H 0.132(2) 0.1816(15) 0.5955(11) 0.033(5) Viso 11 d ... 
B1 B 0.69375(15) 0.38085(14) 0.79917(10) 0.0219(3) Vani lId . . . 
F1 F 0.70622(10) 0.28031(8) 0.76822(6) 0.0343(2) Vani lId .. . 
F2 F 0.75342(11) 0.45508(8) 0.75371(6) 0.0354(2) Vani lId .. . 
F3 F 0.74856(10) 0.38200(11) 0.86926(6) 0.0446(3) Vani lId .. . 
F4 F 0.56193(8) 0.40524(7) 0.80543(6) 0.0254(2) Vani lId .. . 

loop _ 
_ atom_site_aniso_label 
_atom_site_aniso_V_11 
_atom_site_aniso_ V _22 
_atom_site_aniso_ V _33 
_atom_site_aniso_ V _23 
_atom_site_aniso_V_13 
_atom_site_aniso_ V _12 

Fe1 0.01185(8) 0.01028(8) 0.01088(9) -0.00118(7) -0.00096(7) -0.00011(7) 
Sl 0.01519(15) 0.01870(15) 0.02393(19) -0.00266(14) 0.00115(14) -0.00528(13) 
PI 0.01349(14) 0.01275(14) 0.01285(16) -0.00097(12) 0.00153(12) -0.00178(12) 
N1 0.0143(5) 0.0125(5) 0.0214(6) -0.0007(4) -0.0005(4) 0.0016(4) 
C1 0.0136(6) 0.0117(5) 0.0158(6) -0.0022(5) -0.0008(5) 0.0008(5) 
C1' 0.0166(7) 0.0214(7) 0.0282(8) -0.0117(6) -0.0046(6) -0.0006(6) 
C2 0.0133(5) 0.0127(5) 0.0124(7) -0.0010(5) -0.0004(5) -0.0017(4) 
C2' 0.0260(7) 0.0125(6) 0.0197(8) -0.0039(5) 0.0033(6) -0.0054(5) 
C3 0.0125(5) 0.0163(6) 0.0129(6) -0.0033(5) -0.0020(5) -0.0009(5) 
C3' 0.0188(7) 0.0131(6) 0.0222(8) -0.0048(5) -0.0040(6) 0.0023(5) 
C4' 0.0219(7) 0.0161(6) 0.0177(7) -0.0067(5) 0.0061(5) -0.0036(5) 
C4 0.0152(6) 0.0146(6) 0.0152(7) -0.0021(5) 0.0012(5) -0.0035(5) 
C5 0.0187(6) 0.0112(5) 0.0160(6) -0.0010(5) -0.0013(6) -0.0004(5) 
C5' 0.0354(8) 0.0159(6) 0.0139(7) -0.0041(5) -0.0056(6) 0.0034(6) 
C6 0.0213(7) 0.0264(7) 0.0287(8) 0.0072(6) -0.0059(6) 0.0071(7) 
C7 0.0213(7) 0.0205(7) 0.0322(9) -0.0097(6) 0.0026(6) 0.0059(6) 
C8 0.0200(6) 0.0166(6) 0.0124(6) 0.0020(5) 0.0032(5) 0.0016(6) 
C9 0.0213(7) 0.0230(7) 0.0213(8) 0.0026(6) -0.0005(6) -0.0004(6) 
ClO 0.0249(8) 0.0373(9) 0.0219(8) 0.0060(7) -0.0006(6) 0.0065(7) 
C11 0.0300(8) 0.0304(8) 0.0223(8) 0.0085(6) 0.0080(7) 0.0144(7) 
C12 0.0405(9) 0.0197(7) 0.0222(8) 0.0012(6) 0.0105(7) 0.0087(7) 
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C13 0.0275(7) 0.0185(7) 0.0161(7) -0.0015(5) 0.0050(6) 0.0010(6) 
C14 0.0151(6) 0.0146(5) 0.0133(6) -0.0011(5) 0.0002(5) 0.0002(5) 
C15 0.0176(6) 0.0139(6) 0.0183(7) 0.0018(5) 0.0052(5) 0.0011(5) 
C16 0.0217(7) 0.0191(6) 0.0147(7) -0.0002(5) 0.0050(5) 0.0031(5) 
C17 0.0213(7) 0.0239(7) 0.0165(7) -0.0050(6) 0.0007(5) 0.0006(6) 
C18 0.0253(7) 0.0215(7) 0.0230(8) -0.0064(6) 0.0041(6) -0.0093(6) 
C19 0.0228(7) 0.0216(7) 0.0152(7) -0.0022(6) 0.0041(5) -0.0071(6) 
B1 0.0148(6) 0.0272(8) 0.0237(8) -0.0064(8) -0.0012(6) 0.0038(6) 
F1 0.0299(5) 0.0274(5) 0.0455(6) -0.0107(4) 0.0060(5) 0.0064(4) 
F2 0.0297(5) 0.0337(5) 0.0427(6) -0.0034(5) 0.0096(5) -0.0042(5) 
F3 0.0254(5) 0.0814(9) 0.0270(6) -0.0122(6) -0.0088(4) 0.0137(6) 
F4 0.0134(4) 0.0251(4) 0.0376(6) -0.0039(4) -0.0033(4) 0.0047(3) 

All esds (except the esd in the dihedral angle between two 1.s. planes) 
are estimated using the full covariance matrix. The cell esds are taken 
into account individually in the estimation of esds in distances, angles 
and torsion angles; correlations between esds in cell parameters are only 
used when they are defined by crystal symmetry. An approximate (isotropic) 
treatment of cell esds is used for estimating esds involving 1.s. planes. 

loop_ 
_geom_bond_atom_site_label_1 
_geom_bond_atom_site_labeL2 
_geom_bond_distance 
~eom_bond_site_symmetry _2 
_geom_bond_pubLflag 

Fe1 C1 1.9950(13) . ? 
Fe1 C2 2.0173(14) . ? 
Fe1 C3 2.0337(14) . ? 
Fe1 C4' 2.0386(15) . ? 
Fe1 C5' 2.0427(15) . ? 
Fe1 C3' 2.0439(14) . ? 
Fe1 C1' 2.0482(15) . ? 
Fe1 C2' 2.0500(14) . ? 
Fe1 C5 2.0557(12) . ? 
Fe1 C4 2.0560(14) . ? 
Sl PI 1.9537(5) . ? 
PI C2 1.7847(14) . ? 
PI C14 1.8087(14) . ? 
PI C8 1.8176(15) . ? 
N1 C1 1.4723(18) . ? 
N1 C6 1.4954(19) . ? 

N1 C7 1.5053(18) . ? 
N1 H1A 0.882(17) . ? 
C1 C5 1.4289(19) . ? 
C1 C2 1.4438(18) . ? 
C1' C2' 1.414(2) . ? 
C1' C5' 1.423(2). ? 
C1' HI' 0.87(2) . ? 
C2 C3 1.4404(18) . ? 
C2' C3' 1.424(2) . ? 
C2' H2' 0.929(18) . ? 
C3 C4 1.420(2) . ? 
C3 H3A 0.932(19) . ? 
C3' C4' 1.419(2) . ? 
C3' H3' 0.915(19) . ? 
C4' C5' 1.422(2) . ? 
C4' H4' 0.88(2) . ? 
C4 C5 1.425(2) . ? 
C4 H4A 0.935(16) . ? 
C5 H5A 0.970(16) . ? 
C5' H5' 1.0000 . ? 
C6 H6A 0.9800. ? 
C6 H6B 0.9800. ? 
C6 H6C 0.9800 . ? 
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C7 H7A 0.9800. ? 
C7 H7B 0.9800 . ? 
C7 H7C 0.9800 . ? 
C8 C13 1.3944(19) . ? 
C8 C9 1.399(2) . ? 
C9 ClO 1.387(2) . ? 
C9 H9A 0.99(2) . ? 
ClO C11 1.381(3) . ? 
ClO HlOA 0.91(2) . ? 
C11 C12 1.389(3) . ? 
C11 H11A 0.9500 . ? 
C12 C13 1.389(2) . ? 
C12 H12A 0.9500 . ? 
C13 H13A 0.907(19) . ? 
C14 C15 1.3946(19) . ? 
C14 C19 1.4000(19) . ? 
C15 C16 1.383(2) . ? 
C15 H15A 0.925(18) . ? 
C16 C17 1.389(2) . ? 
C16 H16A 0.939(17) . ? 
C17 C18 1.382(2). ? 
C17 H17A 0.903(17). ? 
C18 C19 1.390(2) . ? 
C18 H18A 0.9500. ? 
C19 H19A 0.95(2) . ? 
B1 F3 1.382(2) . ? 
B 1 F2 1.388(2) . ? 
B1 F1 1.392(2) . ? 
B 1 F4 1.4046(17) . ? 

loop_ 
_geom_angle_atom_site_labeLl 
_geom_angle_atom_site_label_2 
_geom_angle_atom_site_label_3 
_geom_angle 
_geom_angle_site_symmetry _1 
_geom_angle_site_symmetry _3 
_geom_angle_pubLflag 

C1 Fe1 C2 42.18(5) .. ? 
C1 Fe1 C3 69.84(6) .. ? 
C2 Fe1 C3 41.65(5) .. ? 
C1 Fe1 C4' 155.88(6) .. ? 
C2 Fe1 C4' 159.65(6) .. ? 
C3 Fe1 C4' 121.74(6) .. ? 
C1 Fe1 C5' 121.89(6) .. ? 

C2 Fe1 C5' 158.15(6) .. ? 
C3 Fe1 C5' 159.34(6) .. ? 
C4' Fe1 C5' 40.77(6) .. ? 
C1 Fe1 C3' 162.86(6) .. ? 
C2 Fe1 C3' 123.40(6) .. ? 
C3 Fe1 C3' 105.18(6) .. ? 
C4' Fe1 C3' 40.67(6) .. ? 
C5' Fe1 C3' 68.41(6) .. ? 
C1 Fe1 C1' 109.50(6) .. ? 
C2 Fe1 C1' 122.25(6) .. ? 
C3 Fe1 C1' 157.06(6) .. ? 
C4' Fe1 C1' 68.56(6) .. ? 
C5' Fe1 C1' 40.72(7) .. ? 
C3' Fe1 C1' 68.37(6) .. ? 
C1 Fe1 C2' 126.73(6) .. ? 
C2 Fe1 C2' 107.67(6) .. ? 
C3 Fe1 C2' 120.56(6) .. ? 
C4' Fe1 C2' 68.40(6) .. ? 
C5' Fe1 C2' 68.19(6) .. ? 
C3' Fe1 C2' 40.70(6) .. ? 
C1' Fe1 C2' 40.37(6) .. ? 
C1 Fe1 C5 41.28(6) .. ? 
C2 Fe1 C5 70.07(5) .. ? 
C3 Fe1 C5 68.81(5) .. ? 
C4' Fe1 C5 119.26(6) .. ? 
C5' Fe1 C5 107.74(6) .. ? 
C3' Fe1 C5 153.67(6) .. ? 
C1' Fe1 C5 126.72(6) .. ? 
C2' Fe1 C5 164.17(6) .. ? 
C1 Fe1 C4 69.19(6) .. ? 
C2 Fe1 C4 69.63(5) .. ? 
C3 Fe1 C4 40.64(5) .. ? 
C4' Fe1 C4 104.93(6) .. ? 
C5' Fe1 C4 123.63(6) .. ? 
C3' Fe1 C4 118.34(6) .. ? 
C1' Fe1 C4 162.01(6) .. ? 
C2' Fe1 C4 154.58(6) .. ? 
C5 Fe1 C4 40.56(6) .. ? 
C2 PI C14 102.97(6) .. ? 
C2 PI C8 108.74(6) .. ? 
C14 PI C8 103.01(6) .. ? 
C2 PI Sl112.02(5) .. ? 
C14 PI Sl115.67(5) .. ? 
C8 PI Sl 113.52(5) .. ? 
C1 N1 C6 111.76(12) .. ? 
C1 N1 C7 112.82(11) .. ? 
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C6 N1 C7 109.81(11) .. ? 
C1 N1 H1A lOS.7(11) .. ? 
C6 N1 H1A 110.4(11) .. ? 
C7 N1 H1A 106.2(11) . . ? 
CS C1 C2 108.99(12) .. ? 
CS C1 N1 12S.28(12) .. ? 
C2 C1 N1 12S.69(12) .. ? 
CS C1 Fe1 71.64(8) .. ? 
C2 C1 Fe1 69.74(7) .. ? 
N1 C1 Fe1 126.SS(9) .. ? 
C2' C1' CS' 107.91(13) .. ? 
C2' C1' Fe1 69.88(8) .. ? 
CS' C1' Fe1 69.43(8) .. ? 
C2' C1' HI' 128.0(14) .. ? 
CS'C1'H1' 124.1(14) .. ? 
Fe1 C1' HI' 126.3(13) .. ? 
C3 C2 C1106.18(12) .. ? 
C3 C2 PI 126.26(10) .. ? 
C1 C2 PI 127.17(10) .. ? 
C3 C2 Fe1 69.78(8) .. ? 
C1 C2 Fe1 68.09(8) .. ? 
PI C2 Fe1 132.19(7) .. ? 
C1' C2' C3' 108.23(14) .. ? 
C1' C2' Fe1 69.7S(8) . . ? 
C3' C2' Fe1 69.42(8) .. ? 
C1' C2' H2' 124.4(11) . . ? 
C3' C2' H2' 127.2(11) .. ? 
Fe1 C2' H2' 123.3(10) .. ? 
C4 C3 C2 108.78(12) .. ? 
C4 C3 Fe1 70.S2(8) .. ? 
C2 C3 Fe1 68.S6(8) .. ? 
C4 C3 H3A 12S.S(12) .. ? 
C2 C3 H3A 12S.6(12) .. ? 
Fe1 C3 H3A 123.2(11) .. ? 
C4' C3' C2' 107.89(13) .. ? 
C4' C3' Fe1 69.46(8) .. ? 
C2' C3' Fe1 69.88(8) .. ? 
C4' C3' H3' 127.0(12) .. ? 
C2' C3' H3' 124.8(12) .. ? 
Fe1 C3' H3' 121.6(12) .. ? 
C3' C4' CS' 107.9S(13) .. ? 
C3' C4' Fe1 69.87(8) . . ? 
CS' C4' Fe1 69.77(8) .. ? 
C3' C4' H4' 123.0(13) .. ? 
CS' C4' H4' 128.9(13) .. ? 
Fe1 C4' H4' 122.4(12) .. ? 

C3 C4 CS 108.S9(12) .. ? 
C3 C4 Fe1 68.83(8) .. ? 
C5 C4 Fe1 69.71(7) . . ? 
C3 C4 H4A 12S.8(1O) . . ? 
C5 C4 H4A 12S.6(10) .. ? 
Fe1 C4 H4A 126.4(10) .. ? 
C4 CS C1 107.43(12) .. ? 
C4 CS Fe1 69.73(7) .. ? 
C1 CS Fe1 67.08(7) .. ? 
C4 CS HSA 126.0(10) .. ? 
C1 CS HSA 126.6(10) .. ? 
Fe1 C5 HSA 127.1(9) .. ? 
C4' CS' C1' 108.01(13) .. ? 
C4' CS' Fe1 69.46(8) .. ? 
C1' CS' Fe1 69.8S(8) . . ? 
C4' CS' HS' 126.0 .. ? 
C1' CS' HS' 126.0 .. ? 
Fe1 CS' HS' 126.0 .. ? 
N1 C6 H6A 109.S .. ? 
N1 C6 H6B 109.S .. ? 
H6A C6 H6B 109.S .. ? 
N1 C6 H6C 109.S .. ? 
H6A C6 H6C 109.S .. ? 
H6B C6 H6C 109.S .. ? 
N1 C7 H7A 109.S .. ? 
N1 C7 H7B 109.S .. ? 
H7 A C7 H7B 109.S .. ? 
N1 C7 H7C 109.S .. ? 
H7A C7 H7C 109.S .. ? 
H7B C7 H7C 109.S .. ? 
C13 C8 C9 119.33(14) .. ? 
C13 C8 Pl119.82(12) .. ? 
C9 C8 PI 120.S4(11) .. ? 
ClO C9 C8 120.2S(lS) .. ? 
ClO C9 H9A 122.7(12) .. ? 
C8 C9 H9A 117.0(12) .. ? 
C11 ClO C9 120.11(17) .. ? 
C11 ClO HlOA 120.4(13) .. ? 
C9 ClO HlOA 119.1(13) .. ? 
ClO C11 C12 120.12(1S) .. ? 
ClO C11 H11A 119.9 .. ? 
C12 C11 H11A 119.9 .. ? 
C13 C12 C11 120.20(lS) .. ? 
C13 C12 H12A 119.9 .. ? 
C11 C12 H12A 119.9 .. ? 
C12 C13 C8 119.98(1S) .. ? 
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C12 C13 H1:3A 122.8(12) .. ? 
C8 C13 H13A 117.2(11) .. ? 
CI5 C14 C19 119.24(13) .. ? 
C15 C14 PI 118.20(10) .. ? 
C19 C14 PI 122.34(11) .. ? 
C16 C15 C14 120.25(13) .. ? 
C16 C15 H15A 121.2(11) .. ? 
C14 C15 H15A 118.4(11) .. ? 
C15 C16 C17 120.25(14) .. ? 
C15 C16 H16A 119.5(10) .. ? 
C17 C16 H16A 120.3(9) .. ? 
C18 C17 C16 119.99(14) .. ? 
C18 C17 H17A 119.6(11) .. ? 
C16 C17 H17A 120.4(11) .. ? 
C17 C18 C19 120.21(14) .. ? 
C17 C18 H18A 119.9 .. ? 
C19 C18 H18A 119.9 .. ? 
C18 C19 C14 120.03(14) .. ? 
C18 C19 H19A 116.1(12) .. ? 
C14 C19 H19A 123.9(12) .. ? 
F3 B1 F2 110.25(14) .. ? 
F3 B1 F1 109.62(14) .. ? 
F2 B 1 F1 109.83(13) .. ? 
F3 B1 F4 108.93(13) .. ? 
F2 B1 F4 109.39(14) .. ? 
F1 B1 F4 108.80(12) .. ? 

loop_ 
_geom_torsioll_atom_site_label_1 
_geom_torsioll_atom_site_label_2 
_geom_torsioll_atom_site_label_3 
_geom_torsioll_atom_site_labeC 4 
_geom_torsioll 
_geom_torsioll_site_symmetry _1 
_geom_torsioll_site_symmetry_2 
_geom_torsioll_site_symmetry_3 
_geom_torsioll_site_symmetry _4 
_geom_torsioll_pubCflag 

C6 N1 C1 C5 -22.08(17) .... ? 
C7 N1 C1 C5 102.25(16) .... ? 
C6 N1 C1 C2 160.56(13) .... ? 
C7 N1 C1 C2 -75.12(16) .... ? 
C6 N1 C1 Fe1 70.46(14) .... ? 
C7 N1 C1 Fe1 -165.22(10) .... ? 
C2 Fe1 C1 C5 -119.21(11) .... ? 

C3 Fe1 C1 C5 -80.48(8) .... ? 
C4' Fe1 C1 C5 42.98(17) .... ? 
C5' Fe1 C1 C5 80.51(10) .... ? 
C3' Fe1 C1 C5 -156.36(18) .... ? 
C1' Fe1 C1 C5 123.91(9) .... ? 
C2' Fe1 C1 C5 165.83(9) .... ? 
C4 Fe1 C1 C5 -36.96(8) .... ? 
C3 Fe1 C1 C2 38.73(7) .... ? 
C4' Fe1 C1 C2 162.19(13) .... ? 
C5' Fe1 C1 C2 -160.28(8) .... ? 
C3' Fe1 C1 C2 -37.2(2) .... ? 
C1' Fe1 C1 C2 -116.88(8) .... ? 
C2' Fe1 C1 C2 -74.97(10) .... ? 
C5 Fe1 C1 C2 119.21(11) .... ? 
C4 Fe1 C1 C2 82.24(8) .... ? 
C2 Fe1 C1 N1 120.03(15) .... ? 
C3 Fe1 C1 Nl158.76(13) ... . ? 
C4' Fe1 C1 N1 -77.78(19) .... ? 
C5' Fe1 C1 N1 -40.25(14) .... ? 
C3' Fe1 C1 N1 82.9(2) .... ? 
C1' Fe1 C1 N1 3.15(14) .... ? 
C2' Fe1 C1 N1 45.06(15) .... ? 
C5 Fe1 C1 N1 -120.76(15) .... ? 
C4 Fe1 C1 N1 -157.73(13) .... ? 
C1 Fe1 C1' C2' 124.25(9) .... ? 
C2 Fe1 C1' C2' 79.17(10) .... ? 
C3 Fe1 C1' C2' 40.07(18) .. .. ? 
C4' Fe1 C1' C2' -81.44(10) .... ? 
C5' Fe1 C1' C2' -119.16(13) .... ? 
C3' Fe1 C1' C2' -37.57(9) .... ? 
C5 Fe1 C1' C2' 167.33(9) .... ? 
C4 Fe1 C1' C2' -153.19(17) .... ? 
C1 Fe1 C1' C5' -116.58(9) .... ? 
C2 Fe1 C1' C5' -161.67(8) .... ? 
C3 Fe1 C1' C5' 159.23(13) .... ? 
C4' Fe1 C1' C5' 37.73(9) .... ? 
C3' Fe1 C1' C5' 81.60(9) .... ? 
C2' Fe1 C1' C5' 119.16(13) .. .. ? 
C5 Fe1 C1' C5' -73.51(11) .... ? 
C4 Fe1 C1' C5' -34.0(2) .... ? 
C5 C1 C2 C3 1.48(14) .... ? 
N1 C1 C2 C3 179.21(12) .... ? 
Fe1 C1 C2 C3 -59.69(9) .... ? 
C5 C1 C2 PI -171.71(10) .... ? 
N1 C1 C2 PI 6.02(19) .... ? 
Fe1 C1 C2 Pl127.11(11) .... ? 
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C5 C1 C2 Fe1 61.18(9) .... ? C4 Fe1 C2' C1' 161.07(13) .... ? 
N1 C1 C2 Fe1 -121.10(13) .... ? C1 Fe1 C2' C3' 163.91(9) .... ? 
C14 PI C2 C3 -85.91(12) .... ? C2 Fe1 C2' C3' 121.02(9) .... ? 
C8 PI C2 C3 22.88(14) .... ? C3 Fe1 C2' C3' 77.29(10) .... ? 
Sl PI C2 C3 149.16(10) .... ? C4' Fe1 C2' C3' -37.76(9) .... ? 
C14 PI C2 C1 85.97(12) .... ? C5' Fe1 C2' C3' -81.80(10) .... ? 
C8 PI C2 C1 -165.24(11) .... ? C1' Fe1 C2' C3' -119.65(13) .... ? 
Sl PI C2 C1 -38.96(13) .... ? C5 Fe1 C2' C3' -159.78(19) .... ? 
C14 PI C2 Fel179.13(9) .... ? C4 Fe1 C2' C3' 41.42(18) .... ? 
C8 PI C2 Fe1 -72.08(10) .... ? C1 C2 C3 C4 -0.61(15) .... ? 
Sl PI C2 Fe1 54.20(10) .... ? PI C2 C3 C4 172.66(10) .... ? 
C1 Fe1 C2 C3 117.93(11) .... ? Fe1 C2 C3 C4 -59.21(10) .... ? 
C4' Fe1 C2 C3 -41.01(19) .... ? C1 C2 C3 Fe1 58.60(9) .... ? 
C5' Fe1 C2 C3 168.25(13) .... ? PI C2 C3 Fe1 -128.13(11) .... ? 
C3' Fe1 C2 C3 -74.39(9) .... ? C1 Fe1 C3 C4 81.18(8) .... ? 
C1' Fe1 C2 C3 -158.30(8) .... ? C2 Fe1 C3 C4 120.38(11) .... ? 
C2' Fe1 C2 C3 -116.41(8) .... ? C4' Fe1 C3 C4 -75.19(10) .... ? 
C5 Fe1 C2 C3 80.16(8) .... ? C5' Fe1 C3 C4 -47.21(18) .... ? 
C4 Fe1 C2 C3 36.83(8) .... ? C3' Fe1 C3 C4 -116.05(9) .... ? 
C3 Fe1 C2 C1 -117.93(11) .... ? C1' Fe1 C3 C4 173.76(13) .... ? 
C4' Fe1 C2 C1 -158.94(15) .... ? C2' Fe1 C3 C4 -157.28(8) .... ? 
C5' Fe1 C2 C1 50.32(17) .... ? C5 Fe1 C3 C4 36.93(8) .... ? 
C3' Fe1 C2 C1 167.69(8) .... ? C1 Fe1 C3 C2 -39.20(7) .... ? 
C1' Fe1 C2 C1 83.78(9) .... ? C4' Fe1 C3 C2 164.43(8) .... ? 
C2' Fe1 C2 C1 125.67(8) .... ? C5' Fe1 C3 C2 -167.59(14) .... ? 
C5 Fe1 C2 C1 -37.77(8) .... ? C3' Fe1 C3 C2 123.57(8) .... ? 
C4 Fe1 C2 C1 -81.10(8) .... ? C1' Fe1 C3 C2 53.38(17) .... ? 
C1 Fe1 C2 PI -120.95(13) .... ? C2' Fe1 C3 C2 82.34(9) .... ? 
C3 Fe1 C2 PI 121.12(13) .... ? C5 Fe1 C3 C2 -83.45(8) .... ? 
C4' Fe1 C2 PI 80.11(19) .... ? C4 Fe1 C3 C2 -120.38(11) .... ? 
C5' Fe1 C2 PI -70.63(18) .... ? C1' C2' C3' C4' 0.14(16) .... ? 
C3' Fe1 C2 PI 46.73(12) .... ? Fe1 C2' C3' C4' 59.28(10) .... ? 
C1'Fel C2Pl-37.17(12) .... ? C1' C2' C3' Fe1 -59.14(10) .... ? 
C2' Fe1 C2 PI 4.71(11) .... ? C1 Fe1 C3' C4' -168.01(18) .... ? 
C5 Fe1 C2 PI -158.72(11) .... ? C2 Fe1 C3' C4' 162.93(8) .... ? 
C4 Fe1 C2 PI 157.95(11) .... ? C3 Fe1 C3' C4' 121.38(9) .... ,? 
C5' C1' C2' C3' -0.29(16) .... ? C5' Fe1 C3' C4' -37.90(9) .... ? 
Fe1 C1' C2' C3' 58.93(10) .... ? C1' Fe1 C3' C4' -81.85(10) .... ? 
C5' C1' C2' Fe1 -59.23(10) .... ? C2' Fe1 C3' C4' -119.12(13) .... ? 
C1 Fe1 C2' C1' -76.44(11) .... ? C5 Fe1 C3' C4' 48.60(17) .... ? 
C2 Fe1 C2' C1' -119.33(9) .... ? C4 Fe1 C3' C4' 79.70(10) .... ? 
C3 Fe1 C2' C1' -163.06(9) .... ? C1 Fe1 C3' C2' -48.9(2) .... ? 
C4' Fe1 C2' C1' 81.89(10) .... ? C2 Fe1 C3' C2' -77.95(10) .... ? 
C5' Fe1 C2' C1' 37.85(9) .... ? C3 Fe1 C3' C2' -119.50(9) .... ? 
C3' Fe1 C2' C1' 119.65(13) .... ? C4' Fe1 C3' C2' 119.12(13) .... ? 
C5 Fe1 C2' C1' -40.1(3) .... ? C5' Fe1 C3' C2' 81.22(10) .... ? 
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C1' Fe1 C3' e2' 37.27(9) .... ? Fe1 C1 CS C4 S8.20(9) .... ? 
CS Fe1 C3' C2' 167.72(12) .... ? C2 C1 CS Fe1 -S9.99(9) .... ? 
C4 Fe1 C3' C2' -161.18(9) .... ? N1 C1 CS Fe1 122.27(13) .... ? 
C2' C3' C4' CS' 0.07(16) .... ? C1 Fe1 CS C4 -120.19(12) .... ? 
Fe1 C3' C4' CS' S9.61(10) .... ? C2 Fe1 CS C4 -81.62(9) .... ? 
C2' C3' C4' Fe1 -S9.S4(1O) .... ? C3 Fe1 CS C4 -37.01(8) .... ? 
C1 Fe1 C4' C3' 171.38(13) .... ? C4' Fe1 CS C4 78.44(10) .... ? 
C2 Fe1 C4' C3' -44.82(19) .... ? CS' Fe1 CS C4 121.37(9) .... ? 
C3 Fe1 C4' C3' -75.67(10) .... ? C3' Fe1 CS C4 44.36(17) .... ? 
CS' Fe1 C4' C3' 119.01(12) .... ? C1' Fe1 CS C4 162.42(9) .... ? 
C1' Fe1 C4' C3' 81.33(10) .... ? C2' Fe1 CS C4 -166.2(2) .... ? 
C2' Fe1 C4' C3' 37.79(9) .... ? C2 Fe1 CS C1 38.S6(8) .... ? 
CS Fe1 C4' C3' -157.S9(8) .... ? C3 Fe1 CS C1 83.18(9) .... ? 
C4 Fe1 C4' C3' -116.34(9) .... ? C4' Fe1 CS C1 -161.38(8) .... ? 
C1 Fe1 C4' C5' S2.37(17) .... ? CS' Fe1 CS C1 -118.44(9) .... ? 
C2 Fe1 C4' C5' -163.83(14) .... ? C3' Fe1 CS C1 164.S4(12) .... ? 
C3 Fe1 C4' C5' 16S.32(8) .... ? C1' Fe1 C5 C1 -77.39(10) .... ? 
C3' Fe1 C4' CS' -119.01(12) .... ? C2' Fe1 CS C1 -46.0(2) .... ? 
C1' Fe1 C4' CS' -37.68(9) .... ? C4 Fe1 CS C1 120.19(12) .... ? 
C2' Fe1 C4' CS' -81.22(9) .... ? C3' C4' CS' C1' -0.2S(16) .... ? 
CS Fe1 C4' C5' 83.40(10) .... ? Fe1 C4' CS' C1' S9.42(10) . ... ? 
C4 Fe1 C4' C5' 124.6S(9) .... ? C3' C4' CS' Fe1 -S9.67(10) .... ? 
C2 C3 C4 CS -0.48(1S) .... ? C2' C1' CS' C4' 0.34(16) .... ? 
Fe1 C3 C4 C5 -S8.S0(9) .... ? Fe1 C1' CS' C4' -S9.18(10) .... ? 
C2 C3 C4 Fe1 S8.01(9) .... ? C2' C1' CS' Fe1 S9.S1(1O) .... ? 
C1 Fe1 C4 C3 -82.91(8) .... ? C1 Fe1 CS' C4' -lS7.60(8) .... ? 
C2 Fe1 C4 C3 -37.71(8) .... ? C2 Fe1 C5' C4' 164.92(13) .... ? 
C4' Fe1 C4 C3 121.69(9) .... ? C3 Fe1 C5' C4' -37.6S(19) .... ? 
CS' Fe1 C4 C3 161.88(8) .... ? C3' Fe1 CS' C4' 37.80(9) .... ? 
C3' Fe1 C4 C3 80.12(9) .... ? C1' Fe1 CS' C4' 119.30(12) .... ? 
C1' Fe1 C4 C3 -172.11(17) .... ? C2' Fe1 CS' C4' 81.76(9) .... ? 
C2' Fe1 C4 C3 SO.77(17) .... ? CS Fe1 CS' C4' -114.S1(9) .... ? 
CS Fe1 C4 C3 -120.S1(12) .... ? C4 Fe1 CS' C4' -72.68(10) .... ? 
C1 Fe1 C4 CS 37.S9(8) .... ? C1 Fe1 CS' C1' 83.11(10) .... ? 
C2 Fe1 C4 C5 82.80(9) .... ? C2 Fe1 CS' C1' 4S.62(18) .... ? 
C3 Fe1 C4 C5 120.51(12) .... ? C3 Fe1 CS' C1' -156.94(14) .... ? 
C4' Fe1 C4 CS -117.80(9) .... ? C4' Fe1 CS' C1' -119.30(12) .... ? 
CS' Fe1 C4 CS -77.62(10) .... ? C3' Fe1 CS' C1' -81.49(9) .... ? 
C3' Fe1 C4 CS -159.37(9) .... ? C2' Fe1 CS' C1' -37.S3(9) .... ? 
C1' Fe1 C4 CS -S1.6(2) .... ? CS Fe1 CS' C1' 126.20(9) .... ? 
C2' Fe1 C4 CS 171.27(13) .... ? C4 Fe1 CS' C1' 168.02(8) .... ? 
C3 C4 CS C1 1.40(1S) .... ? C2 PI C8 C13 110.06(12) .... ? 
Fe1 C4 CS C1 -S6.S6(9) .... ? C14 PI C8 C13 -141.17(12) .... ? 
C3 C4 CS Fe1 S7.96(9) .... ? Sl PI C8 C13 -lS.34(13) .... ? 
C2 C1 C5 C4 -1.79(14) .... ? C2 PI C8 C9 -76.38(13) .... ? 
N1 C1 CS C4 -179.S3(12) .... ? C14 PI C8 C9 32.39(13) .... ? 
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Sl PI C8 C9 158.22(11) .... ? 
C13 C8 C9 ClO 0.0(2) .... ? 
PI C8 C9 ClO -173.58(13) .... ? 
C8 C9 ClO C11 0.6(3) .... ? 
C9 ClO Cll C12 -1.1(3) .... ? 
ClO C11 C12 C13 1.0(2) .... ? 
C11 C12 C13 C8 -0.4(2) .... ? 
C9 C8 C13 C12 -0.1(2) .... ? 
PI C8 C13 C12 173.54(12) .... ? 
C2 PI C14 C15 -174.48(11) .... ? 
C8 PI C14 C15 72.47(12) .... ? 
Sl PI C14 C15 -51.96(12) .... ? 

_diffm_measuredjraction_theta_max 1.000 
_diffm_reflns_theta_full 30.00 
_diffm_measured_fraction_theta_full 1.000 
_refine_difCdensity_max 0.297 
_refine_diff_density_min -0.201 
_refine_difCdensity _rms 0.049 

C2 PI C14 C19 11.01(14) .... ? 
C8 PI C14 C19 -102.04(13) .... ? 
Sl PI C14 C19 133.53(11) .... ? 
C19 C14 C15 C16 1.4(2) .... ? 
PI C14 C15 C16 -173.28(11) .... ? 
C14 C15 C16 C17 -0.9(2) .... ? 
C15 C16 C17 C18 -0.5(2) .... ? 
C16 C17 C18 C19 1.5(2) .... ? 
C17 C18 C19 C14 -1.0(2) .... ? 
C15 C14 C19 C18 -0.5(2) .... ? 
PI C14 C19 C18 173.99(12) .... ? 
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